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The effects of habitat filtering on community assembly have been extensively

researched, and topography has been identified as a critical factor influencing

the spatial distribution of trees. In this study, a 25-ha plot was established in karst

evergreen–deciduous broadleaf forests in southwestern China. Eight

topographical factors were used to divide plots into four habitat types, i.e.,

hilltop, steep slope, gentle slope, and depression, using a multivariate

regression tree. A total of 85 evergreen and deciduous tree species were

recorded in these four habitats and classified into three life stages, the

differentiation of which was assessed using torus-translation tests. A total of 65

species significantly positively associated with at least one habitat and 79 species

significantly negatively associated with at least one habitat were identified. Most

species, whether evergreen or deciduous, exhibited a positive correlation with

steep slopes, whereas relatively few species were adapted to depressions.

Moreover, the percentage of evergreen species positively associated with

hilltops and steep slopes was higher than that of deciduous species. Both

evergreen and deciduous species showed an increasing percentage of positive

correlation with hilltops from the sapling stage to the mature stage. However,

more evergreen species grew on steep slopes in the sapling stage, whereas

deciduous species grew in the mature stage. Canonical correspondence was

used to analyze the relationship between species and the eight topographical

factors. Regardless of life form or life stage, results showed that species

distribution was significantly affected by topography. Furthermore, the

distribution of evergreen species on sapling-stage trees was found to be more

influenced by topography, whereas deciduous species were more influenced by

topography in the mature stage. Finally, elevation was identified as the most

crucial topographical factor affecting species distribution.

KEYWORDS

environmental heterogeneity, habitat filtering, life form, species distribution,
topography, karst forests
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1 Introduction

The coexistence of species has long been a central focus of

community ecology research (Nakashizuka, 2001; Wright, 2002;

Silvertown, 2004), with niche differentiation and species diffusion

limitation theories being among the most important in this regard

(Whitfield, 2002; Lai et al., 2009). According to the niche theory,

community structure is affected by environmental heterogeneity and

the interactions between species, with each species carving out unique

niches to avoid competitive exclusion (Chesson, 2000; Potts et al.,

2002). Therefore, environmental factors, such as topography and soil,

can shape the distribution of species through their species-level

associations with habitats (Whittaker, 1956). Thus, it is important

to investigate species–habitat associations at the community scale.

Previous research has demonstrated that niche differentiation

plays a critical role in community maintenance and species

coexistence at various scales (Clark et al., 1999; Tuomisto et al.,

2003; Potts et al., 2004). However, the association between a single

species and its habitat is often not determined during the early

stages of seed germination or seedling growth but rather undergoes

developmental changes at different life stages (Webb & Peart, 2000;

Yamada et al., 2006; Comita et al., 2007; Lai et al., 2009). Moreover,

the adaptability of specific species to particular habitats may not be

constant, as their response to extreme weather events and global

changes can vary (Condit et al., 1995). In addition, topography has

been identified as a crucial driver of habitat diversity and variations

in soil moisture and nutrient levels (Harms et al., 2001; Daws et al.,

2002; Sorensen et al., 2006; John et al., 2007), which are essential for

plant growth and development. In this respect, karst areas, which

are characterized by a complex topography consisting of cliffs,

caves, and sinkholes, as well as variable climate conditions

(Clements et al., 2006), offer a diverse range of ecological niches

that promote high species diversity. As a result, the uniqueness of

the karst ecosystem makes it an especially valuable reservoir of

biodiversity (Schilthuizen et al., 2004).

The phenology of leaves is of great importance in community

appearance, understory environment, litter decomposition, and

ecosystem productivity, as leaves are the main site of plant

photosynthesis (Quigley & Platt, 2003). Deciduous tree species

can avoid damage and the effects of adverse environmental

conditions, such as low temperatures and drought, on growth by

shedding leaves (Reich et al., 2004; Poorter & Markesteijn, 2008).

Previous studies have shown that plants with different life forms

have differences in leaf nutrient uptake efficiencies (Liu et al., 2006).

Typically, deciduous species have a higher rate of nitrogen

mineralization than evergreen species (Malhi et al., 2010), which

are often found in barren habitats and, thus, considered to have

higher nutrient re-uptake efficiencies (Chapin & Kedrowski, 1983;

Chapin & Moilanen, 1991).

Southwest China is one of the three largest karst regions in the

world (Jiang et al., 2014). The area features a distinctive evergreen–

deciduous broadleaf forest, which boasts a complex community

structure, high species diversity, and unique habitat heterogeneity (Du

et al., 2017). However, the mechanisms underlying the species’

coexistence in local-scale plots were unclear, and consequently, based
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on studies conducted on Barro Colorado Island, Panama, we surveyed a

25-ha forest plot in Mulun National Natural Reserve in 2014. Our

hypotheses are that there are significant species–habitat associations in

the karst evergreen–deciduous broadleaf forest and that topographical

factors significantly affect species distribution. Furthermore, we assume

that the percentage of species–habitat association ratio for evergreen

species in slope habitats is lower than that of deciduous species. We

anticipate that this result will be evident even in the mature stage. The

results of this study will serve as a foundation for future research on the

structure of tree communities in the highly heterogeneous, species-rich

karst evergreen–deciduous broadleaf forest. This study will also aid in

preserving the vulnerable ecosystem in the area.
2 Material and methods

2.1 Study area

The study was conducted in the Mulun National Natural Reserve

(MNNR) (25°07′01″–25°12′22″N, 107°54′01″–108°05′51″E), located
in the northwest of Huanjiang County, Guangxi Province, Southwest

China. The study area’s maximum elevation is 1,028.0 m. The region

has an annual average temperature of 15.7°C, January has an average

temperature of 10.1°C, July has an average temperature of 28°C, the

minimum temperature is 5.2°C, the frost-free period is 290 days, the

average annual sunshine is 1,451 h, the average relative humidity is

70%, the average evaporation is 1,571.1 mm, the and average annual

rainfall is 1,389.1 mm, with precipitation from April to September

accounting for 70% of the annual total (Du et al., 2017). The

geomorphological type comprises depressions between the karst

hills. The soil is mainly dark or brown calcareous soil developed

over carbonate rocks, which is a non-zonal shallow soil with high

rock exposure, and the pH ranges from 7.06 to 7.68 (Du et al., 2019).

In 2014, we established a 25-ha (500 m × 500 m) forest plot

within the MNNR. We subdivided the plot into a grid of 625 cells,

each of which was 20 m × 20 m in size. Within these grids, we

measured plant characteristics and topographical factors, i.e.,

elevation, slope, and slope aspect, as previously described by

Condit (1998). This plot belongs to the Chinese Forest

Biodiversity Monitoring Network (CForBio) and is currently the

largest forest plot in the karst region, with elevations ranging from

442.6 m to 651.4 m and slopes ranging from 0.12° to 66.97° (Du

et al., 2017) (Figure 1).
2.2 Data collection

In the year of plot establishment, wemapped the individuals of all

tree species with a diameter at breast height (DBH) ≥ 1 cm and tagged

them following standard field procedures of the Center for Tropical

Forest Science (CTFS). The first census documented 144,552 free-

standing individual trees. The region is characterized by a subtropical

mixed evergreen deciduous broadleaf forest, dominated by

Cryptocarya microcarpa F. N. Wei and Lindera communis Hemsl.

Other important species include Itoa orientalis Hemsl, Platycarya
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longipes Wu, Decaspermum gracilentum (Hance) Merr. et Perry,

Brassaiopsis glomerulata (Bl.) Regel, Diospyros dumetorum W. W.

Smith, and Clausena dunniana Levl. (Lu et al., 2021).

Trees were divided into the sapling, juvenile, and mature stages

based on DBH (Bagchi et al., 2011). Within each species, trees were

ranked by DBH, and the 99th percentile (DBH99) was determined.

All trees with a DBH > DBH992/3 were classified as the mature

stage, trees with a DBH < DBH991/2 were classified as saplings, and

those with a DBH991/2 ≤DBH < DBH992/3 were classified as

juveniles (Guo et al., 2017). The species–habitat associations were

examined for those species with individual stems greater than 25 in

the sapling, juvenile, and mature stages. In total, 85 species

including 52 evergreen species and 33 deciduous species were

included (Supplementary Table S1).

In terms of topographical factors, average elevation (ELE), slope

(SLO), aspect (ASP), convexity (CON), soil thickness (STK), rock

outcrop ratio (ROC), topographic wetness index (TWI), and

altitude above channel (ACH) were used as eight major

topographical factors. The first four factors were computed

following the methods described by Du et al. (2017), and the

remaining factors were assessed following Liu et al. (2020). TWI

and ACH were used to quantify topographical control on

hydrological processes, where the TWI was calculated as the ratio

of the area upslope from any given point on the landscape to the

local slope at that point, and the ACH was calculated as the vertical

distance from the channel network (Punchi-Manage et al., 2013);

these two indicators make up the lack of hydrology.
2.3 Statistical analysis

2.3.1 Multivariate regression tree analysis
For species–habitat association analysis, we used a multivariate

regression tree (MRT) to classify habitats into four categories,
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i .e. , hil ltop, steep slope, gentle slope, and depression

(Supplementary Figures S1, S2). We computed the MRT

procedure using the “mvpart” package. The data are presented

in Table 1.

2.3.2 Species–habitat association analysis
To determine the association between a species and a particular

type of habitat, we used the torus-transformation test, which is the

most commonly used method in this regard (Harms et al., 2001),

with a slight modification as described by Comita et al. (2007). This

test entails calculating the probability of the true distribution of a

species in each habitat under the condition of random distribution

and determining whether a species is significantly correlated with a

certain type of habitat based on probability. Detailed descriptions of

the test can be found in a paper published by Harms et al. (2001).

Our field survey obtained a species abundance data matrix for 625

samples in three size classes. We computed the torus-

transformation test using the tt_test function of the “fgeo”

package. Using canonical correspondence analysis (CCA) in the

“vegan” package (Oksanen et al., 2020), we assessed the influence of

topographical factors, and we used the Monte Carlo permutation

test to evaluate their significance. We used the hierarchical

partitioning method to distinguish a single topographical factor’s

contribution via the “rdacca.hp” package in R (Lai et al., 2022). We

performed all the above analyses in R4.0.2 (Team, 2020).
3 Results

3.1 Topographical habitat types and
their characteristics

The forest plot covers a topographically heterogeneous area that

contains two small peaks and a complete depression. The cross-
FIGURE 1

Topographic map of the 25-ha forest dynamics plot in Mulun, south of China.
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validation relative error (CVRE) value of the MRT analysis was

approximately 0.716 (Supplementary Figure S1). Hilltop was

exposed to limestones characterized by high rock exposure,

received direct sunlight, and was dry. The steep slope was the

largest of the assessed Mulun habitats, whereas the gentle slope was

located at the foot of the hill and contained large amounts of rubble

and a number of caves, and the depression was low-lying and moist.

With respect to tree density, steep slopes and the depression were

found to have the highest and lowest densities, respectively

(Supplementary Figure S2). The Shannon–Wiener index values

(species diversity per quadrat) ranged from 1.03 (depression

habitats) to 1.68 (steep slope habitats), whereas the values of the

Patrick index (species richness per quadrat) ranged from 20.82 to

35.06. Steep-slope habitats had both the highest species richness and

diversity (Table 1).
3.2 Associations of species with
the four habitat types

Based on the torus-translation test analysis, only Pistacia

weinmannifolia J. Poisson ex Franch among the total 85 species

was neither positively nor negatively associated with any of the four

habitat types, whereas 65 (75.6%) species were positively associated

with at least one habitat, and 79 (91.9%) species were negatively

associated with at least one habitat. Furthermore, 44 species showed

a positive association with steep slopes, whereas only C. microcarpa

F. N was positively associated with depression. However, most

species were negatively associated with depression habitats.

We conducted separate analyses for evergreen and deciduous

species and found that 73.1% of evergreen species and 79.4% of

deciduous species were positively associated with at least one

habitat. Species in two life forms showed similar habitat

association distributions, with a higher percentage found on

slopes or hilltops and a lower percentage in depressions.
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However, evergreen species were found to have a higher

percentage of growth on hilltops and steep slopes than deciduous

species, whereas the percentage of evergreen species growing on

gentle slopes was lower than that of deciduous species. There was

little difference between the evergreen and deciduous species in

terms of their habitat association with depressions.

The percentage of evergreen and deciduous species growing on

hilltops increased from the sapling stage to the mature stage.

Among all species and evergreen species in particular, the highest

percentage of sapling stage trees was found on steep slopes, whereas

deciduous species had the highest percentage on mature stage trees.

Additionally, both evergreen and deciduous species had the highest

number of mature-stage trees on gentle slopes and in

depressions (Figure 2).
3.3 The relationship between species
distribution and topographical factors

Species distribution patterns as explained by CCA for all,

evergreen, and deciduous species were similar. Regardless of life

form or life stage, the permutation test showed that species

distribution was significantly affected by topographic factors.

When all, evergreen, and deciduous species were taken into

consideration, topographical factors explained approximately

20.4%, 21.0%, and 18.2% of the variation, respectively (Table 2).

The first axis explains most of the explainable parts across different

stages (Figure 3) (Supplementary Figure S2). Among the eight

topographic factors, ELE was the most important factor affecting

species distribution in different life forms and stages, followed by

SLO, CON, and ROC. Topographic factors explained the most

variation in evergreen species at the sapling stage and deciduous

species at the mature stage while explaining the least variation in

evergreen and deciduous species at the juvenile stage (Table 2).
TABLE 1 The characteristic parameters of habitat categories in the 25-ha Mulun permanent plot.

Habitat category A: Hilltop B: Steep slope C: Gentle slope D: Depression

Total area (ha) 4.56 8.08 6.32 6.04

Average elevation (m) 576.02 ± 28.87 501.35 ± 18.67 459.90 ± 6.81 448.64 ± 1.53

Slope (°) 50.77 ± 6.39 41.41 ± 9.32 25.78 ± 10.25 9.02 ± 6.21

Aspect −0.23 ± 0.58 −0.24 ± 0.74 0.08 ± 0.77 0.01 ± 0.72

Convexity (m) 2.09 ± 3.77 −0.67 ± 1.94 −0.86 ± 1.31 −0.73 ± 0.86

Rock outcrop (%) 63.65 ± 23.96 60.82 ± 24.67 57.98 ± 26.57 22.05 ± 23.40

Soil thickness (cm) 16.97 ± 8.24 14.91 ± 7.54 17.13 ± 9.59 34.92 ± 14.06

TWI 2.67 2.16 2.85 3.52

ACH (m) 5.94 10.48 3.46 0.97

Individual 159.33 ± 74.91 198.37 ± 86.28 172.32 ± 74.23 129.53 ± 64.21

Shannon index 1.64 ± 0.81 1.68 ± 0.57 1.38 ± 0.41 1.03 ± 0.32

Patrick index 32.72 ± 13.70 35.06 ± 13.14 26.34 ± 14.89 20.82 ± 13.42
TWI, topographic wetness index; ACH, altitude above channel.
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4 Discussion

4.1 Topographic habitat types and
their characteristics

Karst, in southwest China, is characterized by large slopes and

high rock exposure, which contribute to high habitat heterogeneity

(Su et al., 2019). Although the habitat tends to be more

homogeneous at the 20-m scale, a diverse range of niche types are

widely distributed throughout the entire experiment plot because of

the strong fragmentation of karst (Harms et al., 2001; Punchi-

Manage et al., 2013; Guo et al., 2017). Along a hilltop-depression

gradient within the MNNR, different habitat types occur. Our MRT

analysis resulted in a CVRE value of 0.716, which is similar to values

reported in previous studies (Kanagaraj et al., 2011; Punchi-Manage

et al., 2013). Our study found that four habitat classifications

covered most of the observed topographical variation. Given the

spatial distribution of ecological factors (e.g., light, temperature, soil

moisture, and soil nutrients), the differentiation of topography

creates diverse habitats that contribute to distinct patterns of
Frontiers in Ecology and Evolution 05
plant diversity and spatial distribution (Sorensen et al., 2006; John

et al., 2007; Kanagaraj et al., 2011). On steep slopes, sunlight is more

likely to penetrate the forest floor, thereby facilitating the

regeneration and survival of a larger number and more diverse

species. As a result, we found that steep slopes had the highest

diversity index among the four habitat types assessed, whereas

depressions tended to be more suitable for a small number of shade-

tolerant plants (Table 1).
4.2 Habitat associations of species and the
importance of topographical factors

We conducted torus-translation tests to examine the association

between species with a DBH ≥ 1 cm and a density higher than 25

individuals in the 25-ha MNNR plot. The result showed that 84

(98.8%) species were significantly associated with at least one

habitat type, with 65 (75.6%) and 79 (91.9%) species showing

positive and negative associations, respectively. Values of 98.8%

were compared with significant species–habitat association in the
FIGURE 2

Number and percent of species in different stages positively and negatively associated with the four habitat types. (A) Whole, (B) evergreen, and (C)
deciduous species. “+” and “−” indicate positive and negative, respectively.
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TABLE 2 Canonical correspondence analysis (CCA).

R2 Permutation test p-value
Individual % of total explained variation

ELE SLO ASP CON ROC STK TWI ACH

All species

0.800 0.001 28.83% 24.58% 4.69% 15.25% 8.49% 8.83% 4.58% 4.58%

0.721 0.001 28.72% 28.72% 4.36% 16.07% 9.66% 8.46% 5.56% 4.27%

0.719 0.001 29.58% 21.53% 5.28% 12.57% 10.69% 9.58% 6.18% 4.24%

0.810 0.001 29.17% 23.43% 4.80% 14.80% 9.31% 8.82% 5.15% 4.61%

Evergreen species

0.730 0.001 31.01% 22.63% 3.79% 16.16% 9.19% 7.68% 4.04% 5.25%

0.569 0.001 31.37% 20.51% 4.02% 15.90% 10.94% 8.29% 4.96% 4.19%

0.466 0.001 31.28% 19.30% 4.07% 10.12% 13.37% 9.53% 6.86% 5.70%

0.754 0.001 31.00% 21.95% 3.90% 15.57% 10.10% 8.00% 4.57% 5.00%

Deciduous species

0.500 0.001 27.30% 26.80% 5.20% 18.30% 4.50% 8.50% 6.10% 3.00%

0.445 0.001 29.64% 25.42% 6.51% 16.99% 5.42% 9.64% 5.30% 1.57%

0.616 0.001 31.33% 22.66% 6.78% 13.43% 8.25% 10.70% 4.20% 2.38%

0.711 0.001 28.45% 26.96% 6.52% 15.25% 5.75% 9.50% 5.47% 2.21%

, topographic wetness index; ACH, altitude above channel.
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Total inertia Variation explained CCA1 (%) CCA2 (%)

Sapling stage 6.019 17.9% 0.700 (12.53) 0.226 (4.05)

Juvenile stage 9.311 11.7% 0.672 (7.86) 0.250 (2.93)

Mature stage 7.590 14.3% 0.671 (9.60) 0.250 (3.58)

Whole stage 5.228 20.4% 0.683 (13.93) 0.230 (4.69)

Sapling stage 5.738 19.7% 0.726 (14.30) 0.246 (4.85)

Juvenile stage 9.986 11.7% 0.704 (8.24) 0.288 (3.37)

Mature stage 13.933 8.6% 0.696 (5.99) 0.304 (2.61)

Whole stage 5.416 21.0% 0.715 (15.02) 0.254 (5.33)

Sapling stage 5.783 10.1% 0.378 (3.82) 0.114 (1.15)

Juvenile stage 8.634 8.4% 0.487 (4.09) 0.163 (1.37)

Mature stage 6.105 14.3% 0.602 (8.61) 0.194 (2.77)

Whole stage 4.140 18.2% 0.513 (9.34) 0.157 (2.86)

ELE, average elevation; SLO, slope; ASP, aspect; CON, convexity; STK, soil thick; ROC, rock outcrop ratio; TW
I

https://doi.org/10.3389/fevo.2023.1148910
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Su et al. 10.3389/fevo.2023.1148910
BCI, Sinharaja in the tropics, and Gutianshan in the subtropics at

33%, 79%, and 86%, respectively (Harms et al., 2001; Gunatilleke

et al., 2006; Lai et al., 2009). However, our study found a lower

percentage of positive associations (75.6%) when compared to

Nonggang (85.1%), a tropical karst area in the same region (Guo

et al., 2017). Only P. weinmannifolia J. Poisson ex Franch showed

no clear habitat associations, likely due to its rapid growth and

adaptability. Furthermore, we found that the distribution of 24

dominant species with importance > 1 was significantly correlated

with habitat type (Du et al., 2017). These results suggest that species

distribution in karst forests is strongly influenced by their responses

to the environment, promoting strong habitat filtering. However,

Baldeck et al. (2013) suggested that habitat filtering is stronger

during the early stages of growth (DBH < 1 cm), leading to an

underestimation of the percentages of species–habitat associations.

In this study, we found that most of the assessed species

demonstrated a stronger species–habitat association on steep slopes,

gentle slopes, and hilltops, whereas species growing in depressions

were less common (Figure 2). Although the extent of the depression in

the study plot was greater than that of hilltops (Table 1), the lack of

sunlight in depressions limits plant survival, resulting in only a large

number of shade-tolerant plants such as C. microcarpa F. N. Guo et al.

(2017) suggested that the greater dependence of karst species on

sunlight and their higher adaptability for higher elevations contribute

to the higher abundance and diversity of species on slopes and hilltops.

Consistent with this premise, we observed a greater number of

species–habitat associations on steep slopes, which are characterized

by greater sunlight exposure and a larger number of niches.

The number of species positively associated with hilltops

increased from the sapling stage to the mature stage (Figure 2),

indicating that while hilltops in karst areas are suitable for the

growth and survival of trees, the greater abundance of pioneer

species will be gradually replaced by other species during

succession. Webb et al. (2002) and Wu et al. (2017) found that

seed dispersal and seedling establishment are more likely to occur in

moist habitats in a Bornean rainforest. In contrast, we recorded the

highest number of species positively associated with steep slopes in

the sapling stage, suggesting that species–habitat associations vary
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significantly according to different life stages (Battaglia et al., 2000;

Dovciak et al., 2003). Negative density dependence in survival is

incompatible with genetic shifts in resource requirements (Lusk,

2004; Comita et al., 2007). Our results show that the percentage of

deciduous species at the mature stage was higher than that of

evergreen species on steep slopes. This is because deciduous tree

species have a greater requirement for sunlight, leading to higher

tree height (Brando, 2018). Additionally, the crown coverage of

dense species assemblages in depressions tends to create

unfavorable conditions for deciduous tree growth (Malhi et al.,

2010). Contrastingly, we found that both evergreen and deciduous

species had the highest number in the mature stage on gentle slopes

and depression, consistent with the result of the hilltops, which

further shows that the germination of species was under strong

environmental stress. These findings are generally consistent with

those of previous studies (Comita et al., 2007; Bagchi et al., 2011; Hu

et al., 2012), suggesting that species–habitat associations are largely

influenced by the size class in a heterogeneous environment.

Based on our observations, there is little difference in the

species–habitat associations of deciduous and evergreen species,

except for a higher percentage of deciduous species growing on

steep slopes at the mature stage (Figure 2). However, those observed

differences may be attributed to the uniqueness of the karst study

plot and strong niche differentiation (Guo et al., 2017).

Furthermore, the results of CCA (Table 2) indicated that while

topographical factors can explain the lower variation at juvenile

trees, the distributions of the sapling, juvenile, and mature stages

were relatively similar, further confirming the strong habitat

filtering association with the karst ecosystem. Similar studies have

suggested that seed dispersal may be the main driver of habitat

change among different species (Comita et al., 2007; Kanagaraj

et al., 2011). Therefore, in further studies, it is necessary to pay more

attention to seed dispersal and seedling distribution. Furthermore,

given the ecological fragility of karst areas and the fact that plants

are primarily adapted to porous limestone bedrock and are highly

sensitive to human activities, it is imperative to develop sound land-

use regulations to protect biodiversity and prevent the further

degradation of karst habitats.
FIGURE 3

CCA diagram showing the relationship of species with the eight topographic factors. The black dots represent species. The percentage on the CCA
axis represents the fraction of total explained variation. ELE, average elevation; SLO, slope; ASP, aspect; CON, convexity; STK, soil thick; ROC, rock
outcrop ratio; TWI, topographic wetness index; ACH, altitude above channel; CCA, canonical correspondence analysis.
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5 Conclusion

Our study reveals that habitat heterogeneity plays an important

role in maintaining diversity in the evergreen–deciduous broadleaf

karst forests. The association between species and their habitats was

found to be the strongest on slopes and hilltops and the weakest in

depressions. Hilltops were suitable for tree growth and survival to

maturity. Our results show that the proportion of evergreen species

at the sapling stage was the highest on steep slopes, while deciduous

species were dominant at the mature stage. Moreover, ELE emerged

as the most important topographical factor affecting species

distribution in the MNNR plot.
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