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Three rat sarcoma (RAS) gene isoforms, KRAS, NRAS, and HRAS, constitute the

most mutated family of small GTPases in cancer. While the development of

targeted immunotherapies has led to a substantial improvement in the overall

survival of patients with non-KRAS-mutant cancer, patients with RAS-mutant

cancers have an overall poorer prognosis owing to the high aggressiveness of

RAS-mutant tumors. KRAS mutations are strongly implicated in lung, pancreatic,

and colorectal cancers. However, RAS mutations exhibit diverse patterns of

isoforms, substitutions, and positions in different types of cancers. Despite

being considered “undruggable”, recent advances in the use of allele-specific

covalent inhibitors against the most common mutant form of RAS in non-small-

cell lung cancer have led to the development of effective pharmacological

interventions against RAS-mutant cancer. Sotorasib (AMG510) has been

approved by the FDA as a second-line treatment for patients with KRAS-G12C

mutant NSCLC who have received at least one prior systemic therapy. Other

KRAS inhibitors are on the way to block KRAS-mutant cancers. In this review, we

summarize the progress and promise of small-molecule inhibitors in clinical

trials, including direct inhibitors of KRAS, pan-RAS inhibitors, inhibitors of RAS

effector signaling, and immune checkpoint inhibitors or combinations with RAS

inhibitors, to improve the prognosis of tumors with RAS mutations.
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1 Introduction

Rat sarcoma (RAS) genes have been recognized as the major oncogenes undergoing

mutation for several decades (1, 2). Among the three isoforms (KRAS, NRAS, and HRAS),

Kirsten rat sarcoma viral oncogene homolog (KRAS) is the common oncogene in a large

percentage of cancers, including pancreatic cancer, non-small cell lung cancer (NSCLC),

and colorectal cancer (3–6). Mutations in RAS lead to the dysfunction of its small GTPase

activity, preventing it from properly breaking down GTP. The molecule remains in a
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constant active state that triggers downstream pathways,

including the mitogen-activated protein kinase (MAPK) and

phosphatidylinositol 3-kinase (PI3K) pathways, leading

to oncogenesis.

Attempts to develop effective agents that inhibit RAS mutations

have been a failure for a long time (7, 8). In recent years, with the

discovery of a new binding site beneath the effector binding switch-

II region in RAS protein, several small-molecule agents targeting the

KRAS-G12C single-nucleotide mutation (glycine-to-cysteine

substitution at codon 12) have been developed and have shown

promising efficacy in clinical trials (9–12). Sotorasib (AMG510) has

been approved by the FDA as a second-line treatment for patients

with KRAS-G12C mutant NSCLC who have received at least one

prior systemic therapy (13, 14). Given that several excellent reviews

have summarized the role of RAS signaling in oncogenesis and the

advances in RAS inhibitors for anti-tumor therapy, we herein focus

on KRAS mutations and summarize the promising new

treatment options.
2 RAS mutations in human cancers

RAS mutations may represent the early onset of tumorigenesis

and are essential for tumor maintenance, which has been validated

by considerable evidence (15–17). The RAS mutation rates in

various cancer types are shown in Supplemental Figure 1.

Different single-base missense mutations result in different amino

acid substitutions of the RAS oncogene (Figure 1A). KRAS, HRAS,

and NRAS are the three most commonly mutated RAS isoforms
Frontiers in Immunology 02
with varying mutation rates in different cancers (18). KRAS

mutations, more than 80% of which are G12 mutations, are

frequently found in pancreatic ductal adenocarcinoma (> 90%),

colorectal adenocarcinoma (> 40%), and lung adenocarcinoma

(approximately 30%). NRAS mutations, which occur less

frequently than KRAS mutations, mainly occur at codon 61 and

are found in nearly 30% of cutaneous skin melanomas. HRAS

mutations occurring at codon 12 or 61 are only found in a small

subset of bladder urothelial carcinoma, head and neck squamous

cell carcinoma, and thyroid carcinoma (19–21). The top ten

predominant substitutions and frequencies with which they occur

in the three RAS isoforms according to tissue type in common

cancers are shown in Figure 1B. For pancreatic ductal

adenocarcinoma and colorecta l adenocarcinoma, the

predominant amino acid substitution is G12D in KRAS. For lung

adenocarcinoma, the predominant amino acid substitution is G12C

in KRAS. However, for melanoma, the predominant substitution is

Q61R in NRAS.

As the most frequently mutated isoform of the RAS family,

KRAS has two splice variants, KRAS4A and KRAS4B, which differ

in their fourth exon and encode two different proteins that differ

only in their C-terminal membrane-targeting regions (22, 23).

KRAS4B is the main mutant isoform in human cancer, whereas

KRAS4A is commonly expressed in various cancer cell lines and

colorectal cancer (24, 25). Certain mutations in the amino acid

sequence of KRAS often result in distinct transformation properties

and biological behaviors (26). For instance, KRAS-G12V mutations

are associated with worse outcomes than KRAS-G12D mutations in

patients with lung cancer. Over the last 30 years, the correlation
B
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A

FIGURE 1

(A) An alignment of the carboxy terminus of the three RAS isoforms is shown. The RAS subtypes are highly conserved (~90%) with respect to the
entire amino terminal GTPase domain (amino acids 1–166), which contains the GTP-GDP binding site and the interaction site of the effector protein;
however, the carboxy terminal part differs and is called the hypervariable zone. (B) Percentages of KRAS mutations in codon 12 and NRAS mutations
in codon 61 by tissue type for common cancers. (C) The canonical nature of RAS is characteristic of a small GTPase that usually circulates between
the GTP-bound active state and GDP-bound inactive state, which is partly promoted by the GTP hydrolysis-stimulating GTPase activation protein
(GAP). However, when the RAS protein is mutated, impaired GAP stimulation promotes the formation of a persistently GTP-bound RAS. (D) An
overview of the general biochemical destruction of hydrolysis and guanine exchange after mutation of codon 12 or 61.
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between biological behavior and specific RAS mutations has

remained unclear (27–29). KRAS mutations are significantly

associated with poor outcomes in patients with lung cancer (30,

31). However, a recent study suggested that for stages I-III, there

was no statistical difference in overall survival (OS) between the

mutant- and wild-type-carrying patients with NSCLC (32).
3 Domains and regions of KRAS

The RAS protein, cycling between inactive and active GDP-

bound conformations, comprises three major domains: G-domain,

C-terminal, and C-terminal CAAX motifs (33, 34). The G-domain

is a highly conserved domain that includes switches I and II, which

are responsible for the GDP-GTP exchange (33). The C-terminal

region containing the CAAX motif varies considerably among

different members of the RAS family. However, this motif is

essential for post-translational modification (35). RAS is activated

by guanine nucleotide exchange factors (GEFs) and transduces

signals to downstream pathways.

KRAS encodes a membrane-bound GTPase that is inactive

when bound to GDP and active when bound to GTP. The

transition of KRAS to its active state is facilitated by GEFs such

as SOS1. Once activated by extracellular stimuli, the active form of

KRAS acts as a cellular switch, triggering downstream signaling

pathways involved in fundamental cellular processes. Mutations in

RAS block the binding of GTP to RAS and cause aberrant activation

of downstream pathways (Figure 1C). RAS mutations may affect the

intrinsic GTPase and GDP–GTP exchange rates (Figure 1D) (36).

Mutations in KRAS at codons 12, 13, and 61 inhibit the ability of

GTPase activation protein (GAP) to stimulate GTP hydrolysis.
Frontiers in Immunology 03
However, KRAS-G13D displays heightened intrinsic exchange

activity compared to the wild-type RAS protein (37, 38). Despite

the reduced p120 GAP-mediated hydrolysis rate, KRAS-G12C

mutant exhibits almost wild-type intrinsic GTPase activity and

has been used to develop covalent inhibitors (39).
4 KRAS inhibitors for patients
with cancer

Despite over three decades of intensive efforts, no effective

regimen to inhibit RAS-driven oncogenesis has been developed

because of its inaccessible binding surface and picomolar affinity for

GTP/GDP (7, 40). The high affinity of the RAS for cytoplasmic GTP

renders competitive inhibition difficult to achieve. The absence of a

drug-binding groove on the smooth surface of the RAS poses a

challenge for targeted inhibitors. Multiple upstream and

downstream regulators of RAS pathways contribute to drug

resistance mechanisms and bypass signals, further limiting the

effectiveness of combination strategies (41).

These complexities underscore the challenges in targeting RAS

mutations. In 2013, with the identification of a new covalent pocket

of the KRAS-G12C mutation located beneath the effector-binding

switch-II region, Shokat et al. reported a novel strategy for

overcoming these difficulties in a mutant-specific targeting

manner (42). A series of small-molecule agents could irreversibly

bind to the KRAS-G12C mutation and disrupt switch-I and switch-

II to bind the mutation in the GDP-bound state, thereby blocking

the association with Raf and other downstream tyrosine

kinases (Figure 2).
FIGURE 2

RAS mutation activates the protein, and the complex formed with GTP binds to the Ras-binding domain of the effector protein (RAF, PI3K, and
RALGDS) to activate the MAPK and PI3K signaling pathways, respectively. The signals are transduced into the nucleus to regulate gene expression,
thereby affecting cell proliferation and survival. Inhibition of SOS or SHP2 reduces the exchange rate between GDP and GTP and reduces the GTP-
bound RAS population. Mutated RAS proteins accumulate in the GTP-bound state. Many inhibitors have been developed to directly inhibit RAS,
including covalent allele-specific inhibitors that bind to KRAS-G12C.
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4.1 Sotorasib (AMG510)

Sotorasib (AMG510) is an oral small-molecule inhibitor that

specifically and irreversibly inhibits the KRAS-G12C mutation (43).

A preclinical study showed that sotorasib potently impaired the

viability of two KRAS-G12C mutant cell lines NCI-H358 and MIA

PaCa-2. Xenograft models have shown that AMG-510 can induce

the regression of KRAS-G12C mutant tumors (9). The CodeBreak

100 phase I/II clinical trial evaluated the efficacy, safety, tolerability,

and pharmacokinetics of sotorasib in patients with KRAS-G12C-

mutant solid tumors (10). Of the 129 patients who participated in

the phase I cohort study, 73 (56.6%) experienced mainly low-grade

adverse events related to treatment (10). No treatment-related death

or dose-limiting toxic effects were observed. The objective response

rates (ORR) were 32.2% and 7.1% in NSCLC and colorectal cancer,

respectively, indicating a promising anti-tumor activity for

sotorasib in NSCLC.

The phase II cohort-based study revealed that out of 126

individuals diagnosed with advanced KRAS-G12C-mutant

NSCLC, sotorasib treatment resulted in confirmed ORR and

disease control rates (DCR) of 37.1% and 80.6%, respectively. The

median response time during treatment was 10 months (44). A

phase III clinical trial designed to compare the efficacy of sotorasib

when administered alone versus docetaxel administration in

previously treated patients with KRAS-G12C-mutant NSCLC is

ongoing (NCT04303780). The progression-free survival (PFS) times

for sotorasib-treated cohort were significantly higher than those of

docetaxel-treated cohort (p=0.0017); a more favorable safety profile

was also observed (45). Currently, sotorasib (AMG510) is approved

by the FDA as a second-line treatment for patients with KRAS-

G12C-mutant NSCLC who have received at least one systemic

therapy (13, 14).
4.2 Adagrasib (MRTX849)

Adagrasib (MRTX849) is a KRAS-G12C inhibitor (46).

According to preclinical studies, adagrasib effectively and

consistently blocks KRAS-dependent signaling pathways with

long-lasting effects, resulting in substantial tumor regression in 17

out of 26 (65%) KRAS-G12C-positive cell line- and patient-derived

xenograft models (47). In a phase I/II clinical study, the KRYSTAL-

1 trial evaluated the safety, tolerability, and clinical activity of

adagrasib in patients with advanced solid tumors and a KRAS-

G12C mutation (NCT03785249). Preliminary results showed that

adagrasib monotherapy exhibited promising clinical activity and an

acceptable safety profile in pretreated patients with advanced solid

tumors (48). Particularly, for patients with NSCLC, among 51

patients evaluated for its clinical activity, ORR was 45% (23/51)

and DCR was 96% (49/51). According to the present data from

Mirati Therapeutics, patients with NSCLC with active brain

metastases experienced a 63% reduction in the size of the primary

lesion, and some lesions even disappeared after several cycles of

adagrasib monotherapy. Among 18 patients with colorectal cancer,

the ORR and DCR were 17% (3/18) and 94% (17/18), respectively.
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Interestingly, some coexisting mutations, including those in TP53,

STK11, and KEAP1, may influence the efficacy of this anti-tumor

agent. Preliminary results of KRYSTAL-1 showed that patients with

advanced NSCLC and co-mutations of KRAS-G12C and STK11

had an ORR of 64% (9/14) across the pooled cohorts of phase I/Ib

and II studies. A phase III study evaluating the efficacy of adagrasib

versus docetaxel in previously treated patients with metastatic

NSCLC and KRAS-G12C mutation is ongoing (NCT04685135).
4.3 Other KRAS inhibitors

Another KRAS inhibitor MRTX1133 selectively and reversibly

inhibits KRAS-G12D and is currently being investigated in

investigational new drug (IND)-enabling studies. Preclinical

models have demonstrated the selective inhibition of cell viability

in KRAS-G12D mutant tumor cells with a long predicted half-life

(~50 h) (48). JNJ-74699157 (ARS-3248), a new-generation KRAS-

G12C inhibitor, was developed based on ARS-1620 (11). A phase I

clinical trial to determine the preliminary anti-tumor activity and

safety in patients with advanced solid tumors and KRAS-G12C

mutation showed that no significant clinical benefit was observed,

with the best response to stable disease in four patients (40%).

Moreover, an unfavorable safety profile prevented further

enrollment and clinical development (49). The ARS-853 is a

version of the ARS-1620 (50). Although they both inhibit cell

growth and downstream signaling of the MAPK pathway in

KRAS-G12C mutant tumor cell lines, ARS-853 is not suitable for

use in animal models because of its lack of chemical and metabolic

stability (11). JDQ-443 is another KRAS-G12C inhibitor currently

in phase Ib/II clinical trial that evaluates the safety and tolerability

of monotherapy in combination with other treatment drugs

(spartalizumab and TNO155) in patients with advanced solid

tumors and KRAS-G12C mutation (NCT04699188). Other

KRAS-G12C inhibitors, GDC-6036 (NCT04449874), RG6330,

and D-1553 (NCT04585035), are under phase I/II clinical trials,

and their results have not been published. BPI-421286, GH35,

BEBT-607, and JAB-21000, are all the KRAS inhibitors used in

IND-enabling studies (51). The clinical developments of single-

agent RAS inhibitors are summarized in Table 1.

With the development of new small-molecule inhibitors,

previously undruggable mutant KRAS could be targeted.

However, the complexity of the RAS pathway makes the

treatment of RAS-mutant tumors challenging. The heterogeneity

of the response to the same KRAS inhibitor among different tumor

types forces researchers to consider the difference in the same

mutation isoform in downstream signaling pathways and the

feedback effects of the various tumors (52), as not only are cells

intrinsic factors but the tumor microenvironment, particularly

inflammation, also has the potential to modify susceptibility to

oncogenic RAS mutations. It has been observed that certain cells

can have an anti-neoplastic response against oncogenic RAS due to

the activation of tumor suppressor pathways, while others cannot.

The role of cell lineage in this response is of significant importance

(53). Moreover, one possible explanation for the heterogeneity is the
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TABLE 1 RAS inhibitor single agents and combination therapy in clinical development.

Drugs Targets ClinicalTrials.gov
Number

Disease Study
Phase

Status Interventions

Adagrasib
(MRTX849)

KRAS-
G12C

NCT03785249 Advanced solid tumors I/II Recruiting Adagrasib

NCT04685135 Advanced NSCLC III Recruiting Adagrasib vs Docetaxel

MRTX1133 KRAS-
G12D

/ / / Preclinical study

JNJ-74699157
(ARS-3248)

KRAS-
G12C

NCT04006301 Advanced solid tumors I Completed JNJ-74699157

LY3499446 KRAS-
G12C

NCT04165031 Advanced solid tumors I/II Terminated LY3499446

LY3537982 KRAS-
G12C

/ / / Preclinical study

JDQ-443 KRAS-
G12C

NCT04699188 Advanced solid tumors Ib/II Recruiting JDQ443

GDC-6036 KRAS-
G12C

NCT04449874 Advanced solid tumors I Recruiting GDC-6036

RG6330 KRAS-
G12C

/ / I Recruiting RG6330

D-1553 KRAS-
G12C

NCT04585035 Advanced solid tumors I/II Recruiting D-1553

BPI-421286 KRAS-
G12C

/ Advanced solid tumors / IND study

GH35 KRAS-
G12C

/ Advanced solid tumors / IND study

BEBT-607 KRAS-
G12C

/ NSCLC and colorectal
cancer

/ IND study

JAB-21000 KRAS-
G12C

/ Advanced solid tumors / IND study

Combination therapy of RAS inhibitor

Sotorasib
(AMG510)

KRAS-
G12C

NCT03600883 Advanced solid tumors I/II Active Sotorasib+PD-1/PD-L1 inhibitor

Adagrasib
(MRTX849)

KRAS-
G12C

NCT04613596 Advanced NSCLC II Recruiting Adagrasib+ Pembrolizumab

NCT03785249 Advanced solid tumors I/II Recruiting Adagrasib+ Pembrolizumab/Afatinib
(advanced NSCLC)
Adagrasib+Cetuximab (Colorectal cancer)

NCT04330664 Advanced solid tumors I/II Active Adagrasib+TNO155

NCT04793958 Colorectal cancer IIII Recruiting Adagrasib+Cetuximab

LY3499446 KRAS-
G12C

NCT04165031 Advanced solid tumors I/II Terminated LY349944+ Abemaciclib/
Cetuximab/Erlotinib/Docetaxel

JDQ443 KRAS-
G12C

NCT04699188 Advanced solid tumors I/II Recruiting JDQ443+TNO155/
Spartalizumab/TNO155+
Spartalizumab

GDC-6036 KRAS-
G12C

NCT04449874 Advanced solid tumors I/II Recruiting GDC-6036+Atezolizumab (NSCLC)
GDC-6036+Cetuximab
(Colorectal cancer)
GDC-6036+Bevacizumab
(Advanced solid tumors)
GDC-6036+Erlotinib
(NSCLC)

D-1553 KRAS-
G12C

NCT04585035 Advanced solid tumors I/II Recruiting D-1553+other
F
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existence of different signaling dependencies in different tumor

types. While some tumors heavily rely on KRAS signaling for

growth and survival, others may have acquired alternative

signaling pathways to compensate for KRAS inhibition. These

alternative pathways can bypass the need for KRAS signaling,

rendering the KRAS inhibitor less effective. Moreover, the co-

occurring genetic alterations in different tumor types can

contribute to the heterogeneity of response (54).

In addition, most KRAS inhibitors have been developed to

target the KRAS-G12C mutation, which constitutes only a portion

of the KRAS mutations and is commonly found in lung cancer (55).

Therefore, new approaches are warranted to effectively treat other

KRAS mutations such as KRAS-G12D and KRAS-G12V.
5 Evidence for pan-RAS inhibitors in
RAS-mutant cancers

Although covalent inhibitors that directly target specific KRAS

mutations exhibit promising efficacy, inhibiting other RAS

mutations is challenging. New inhibitors have been developed,

regardless of the type of RAS mutation or protein. A multivalent

small molecular inhibitor compound 3144 was designed to interact

with adjacent sites on the KRAS surface and disrupt interactions

between RAS proteins and their effectors (56). Preclinical models

showed that compound 3144 was capable of binding to HRAS,

KRAS, and NRAS and inhibited RAS signaling. Xenograft models

also indicated that 3144 could prevent the growth of RAS-mutant

mouse cancer xenografts derived from tumor cell lines and patients.

Satchell et al. developed a pan-RAS biologic inhibitor by fusing the

RAS-RAP1-specific endopeptidase to the diphtheria toxin, which

could irreversibly cleave and inactivate intracellular RAS at

picomolar concentrations and terminate downstream signaling

and induce tumor shrinkage in mouse xenograft models driven

by either wild-type or mutant RAS (57). Furthermore, a compound

named cmp4 selectively binds to the Switch II pocket of both HRAS

and KRAS proteins with different mutations. By interfering with the

binding of RAS to GEFs and Raf effectors, cmp4 effectively reduced

the intrinsic and GEF-mediated nucleotide dissociation and

exchange processes of the Ras protein, ultimately leading to the

inhibition of the mitogen-activated protein kinase signaling

pathway and a decrease in cell viability. According to a

mathematical model of the RAS activation cycle, cmp4 when

combined with cetuximab reduces the proliferation of cetuximab-

resistant cancer cell lines. However, the affinity of cmp4 for RAS is

unsatisfactory, and this limits its application as an ideal clinical

drug (58).

Unfortunately, all these compounds that could function as pan-

RAS inhibitors have only been tested in preclinical studies. Given

the essential role of RAS in normal cell signaling, it is unclear

whether pan-RAS inhibitors are tolerated. Previous studies have

revealed that homozygous deletion of KRAS is embryonically lethal

in mice (59–61). Therefore, the toxicity of pan-RAS inhibitors

should be investigated in future studies. In addition, acquired

resistance to RAS inhibitors often prevents further clinical
Frontiers in Immunology 06
benefits. Awad et al. compared the genomic and histological

landscapes of pretreatment samples and those obtained after the

development of resistance. Acquired KRAS alterations included

G12D/R/V/W, Q61H, R68S, and high-level amplification of the

KRAS-G12C allele. Bypass mechanisms involve MET amplification,

mutations in NRAS and BRAF, and the oncogenic fusion of ALK

and RET. Loss-of-function mutations in NF1 and PTEN have been

previously reported. Consequently, new therapeutic strategies are

necessary to overcome and delay drug resistance in patients with

cancer (62).
6 KRAS mutations and
immune landscape

Specifically, mutant KRAS not only alters the behavior of cancer

cells but also affects various cells in the tumor microenvironment

(TME). KRAS activation increases the production of the neutrophil

chemokines CXCL1, CXCL2, and CXCL5 (63). The upregulation of

intercellular adhesion molecule 1 (ICAM1) by KRAS promotes the

recruitment of pro-inflammatory M1 macrophages (in contrast, co-

activation of KRAS and MYC increases the recruitment of anti-

inflammatory M2 macrophages by releasing CCL9 and IL-23).

KRAS-mediated secretion of TGFb and IL-10 leads to the

differentiation of immunosuppressive regulatory T cells (Tregs). It

also enhances tumor-infiltrating myeloid-derived suppressor cells

(MDSCs) through GM-CSF-dependent and IRF2/CXCL3-

dependent mechanisms (64).

Moreover, different co-mutation statuses of KRAS can affect the

TME and response to immune checkpoint inhibitors (ICIs). For

example, tumors with KRAS/STK11 co-mutations often exhibit

deficiencies in CD8+ T lymphocytes and a high abundance of T-

regulatory cells in the microenvironment. In contrast, tumors with

KRAS/p53 co-mutations tend to have an inflamed TME

characterized by a higher number of CD8+ T lymphocytes. This

can be attributed to p53 mutations, which tend to increase somatic

tumor mutations and potentially lead to the development of tumor

neoantigens (65).

A detailed understanding of these pleiotropic effects will

facilitate the rational design of curative combination therapies.

Leidner et al. reported a patient with metastatic pancreatic cancer

who received a single infusion of genetically engineered autologous

T-cells targeting mutant KRAS-G12D. This led to a 72% partial

response at 6 months according to the currently ongoing

Response Evaluation Criteria in Solid Tumors version 1.1.

Engineered T cells constitute over 2% of the circulating T cells

(66). The occurrence of distinct co-mutations affects the clinical

efficacy of immunotherapies. In another study involving 536

patients with KRAS-mutant lung adenocarcinoma, both STK11

and KEAP1 mutations in the presence of a KRAS mutation were

associated with poor response rates to anti-PD-L1 inhibitors.

Median PFS and OS were significantly shorter for KRAS-mutant/

STK11-mutant NSCLC (2.0 and 6.2 months, respectively) than that

for KRAS-mutant/STK11-wildtype (4.8 and 17.3 months,

respectively; HR 2.04, 95% CI 1.66–2.51, p < 0.0001) varieties.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1223433
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2023.1223433
Similarly, patients with KRAS-mutant/KEAP1-mutant NSCLC had

lower PFS and OS (1.8 and 4.8 months, respectively) than those

with KRAS-mutant/KEAP1-wildtype variety (4.6 and 18.4 months,

respectively; HR 2.05, 95% CI 1.63–2.59, p < 0.0001) (67).
6.1 Immunotherapy in
KRAS-mutant cancers

Immunotherapy has revolutionized the landscape of cancer

therapy, especially ICIs, which have been aggressively tested in

almost all cancer types. The discovery of immune checkpoints,

including cytotoxic T lymphocyte protein 4 (CTLA4), PD-1, and

PD-L1, was a breakthrough in cancer immunotherapy. Data

obtained from human cancer studies and transgenic mouse

models suggest that immune responses aimed at safeguarding the

host can be overcome in RAS-driven cancers (47). A KRAS-G12D-

induced mouse model also demonstrated that the initial immune

response was inhibited, eventually leading to immune evasion.

Therefore, resuscitation of the depressed immune surveillance

system may be an efficient approach for the treatment of RAS-

mutant cancers.

A good immunotherapy response is predicted by a high

mutational burden, elevated PD-L1 expression, and an increased

prevalence of tumor-infiltrating lymphocytes (TILs). KRAS-mutant

NSCLC cells display a high mutational burden and are densely

infiltrated by T-cells. In addition, a meta-analysis of 26 studies

(n=7,541 patients) indicated that tumors with KRAS mutations had

higher levels of PD-L1 than tumors without KRAS mutations; odds

ratio (OR) =1.45, 95% CI, 1.18-1.80, P= 0.001) (68). Further, KRAS

mutations can induce the upregulation of PD-L1. According to

Coelho et al., PD-L1 expression in tumor cells can be influenced by

activating the oncogenic RAS pathway, which is accomplished

through post-transcriptional regulation of PD-L1 mRNA (69).

Thus, immunotherapy for KRAS-mutant lung cancer may show

potential. A subgroup analysis of CheckMate-057 exhibited

prolonged outcomes with ICIs than with docetaxel in patients

with KRAS-mutant NSCLC (mean OS, 12.2 vs 9.4 months;

P=0.002) (70). The exploratory analysis of KEYNOTE-042

revealed pembrolizumab monotherapy as the first-line therapy,

which exhibited more pronounced benefits over chemotherapy in

patients with KRAS mutations (mean OS, 28 vs 11 months; hazard

ratio, 0.42; 95% CI, 0.22-0.81) than those with KRAS wild type

(mean OS, 15 vs 12 months; hazard ratio, 0.86; 95% CI, 0.63-1.18).

Recently, a retrospective study evaluated the correlation of KRAS

status with outcomes following immunotherapy in patients with

PD-L1≥50%. Among patients treated using ICI monotherapy, the

KRAS variant was related to a superior survival than did KRAS

wild-type (mean OS, 21.1 vs 13.6 months; P =0.03). The CCTG

PA.7 study compared gemcitabine and nab-paclitaxel, with and

without durvalumab and tremelimumab, in metastatic pancreatic

ductal adenocarcinoma. Combination immunotherapy did not

improve survival among the unselected patient population but

improved survival for patients with wild-type KRAS tumors

(NCT02879318) (71).
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Many patients with KRAS-mutant NSCLC receive ICIs as first-

line treatment because of their limited approval for second-line use.

Combining KRAS inhibitors with ICIs is logical given the diverse

mechanisms of mutant KRAS during immune response. Mouse

models treated with sotorasib and ICIs showed pro-inflammatory

changes in the TME and synergistic tumor cell killing. Adagrasib

also induces a pro-inflammatory state and enhances immune cell

infiltration. Combination therapy resulted in lasting anti-tumor and

memory immune cell responses in mice. Future studies should

explore combination therapies, predictive biomarkers, and

mechanisms of resistance in KRAS-mutant cancers (9).
7 Combination therapy of RAS
inhibitors for RAS-mutant cancers

In preclinical models, combination treatment with AMG510

caused regression of KRAS-G12C-mutant tumors and improved the

anti-tumor efficacy of targeted agents and chemotherapy (9). When

combined with immunotherapy, AMG510 induces complete and

durable tumor regression. The improved efficacy of the

combination therapy may be attributed to increased immune cell

infiltration and activation. In preclinical models, the AMG510

monotherapy and combination therapy groups demonstrated a

notable increase in CD8+ T cell infiltration, which was not

observed in the anti-PD-1 monotherapy group. Additionally,

AMG510 treatment increased the infiltration of macrophages and

CD103+ cross-presenting dendritic cells, which play vital roles in T-

cell priming, activation, and recruitment. Furthermore, the

combination of AMG510 and anti-PD-1 therapy promoted the

establishment of a memory T cell response and enhanced antigen

recognition. Phase I/II clinical trials evaluating the efficacy and

safety of sotorasib in combination with PD-1/PD-L1 inhibitors in

patients with advanced solid tumors and KRAS-G12C mutations

are ongoing (CodeBreaK 100/101).

Preclinical models have also demonstrated that human

epidermal growth factor receptor (EGFR) family inhibitors, SHP2

inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and

inhibition of CDK4/6 could enhance the anti-tumor activity of

MRTX849 and inhibit KRAS-dependent signaling pathways (46).

Clinical trials were conducted to evaluate the efficacy and safety of

combination therapy of adagrasib with pembrolizumab (a PD-1

inhibitor) or afatinib (an HER family inhibitor) in patients with

NSCLC, with cetuximab in patients with colorectal cancer, and with

TNO-155 in patients with advanced solid tumors. Preliminary

results showed that more than 50 patients were treated with

adagrasib in combination with either pembrolizumab (a PD-1

inhibitor) for NSCLC, cetuximab (an anti-EGFR antibody) for

colorectal cancer, or TNO-155 (an SHP-2 inhibitor) for NSCLC

or colorectal cancer. All the combination therapies were well

tolerated by patients (48). A phase I-II clinical trial evaluated the

efficacy and safety of adagrasib monotherapy or in combination

with cetuximab in heavily pretreated patients with metastatic

colorectal cancer and mutant KRAS-G12C. The results revealed

that 19% of the 43 evaluated patients in the monotherapy group
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responded, with a median response duration of 4.3 months and a

median PFS of 5.6 months. However, the combination therapy

group had a higher response rate (46%), with a median response

duration of 7.6 months and a median PFS of 6.9 months (72). A

phase II clinical trial evaluated the efficacy of adagrasib in patients

with KRAS-G12C-mutant NSCLC previously treated with

platinum-based chemotherapy and anti-PD-1 or PD-L1 therapy.

The results showed that 48 of the 112 enrolled patients had a

confirmed objective response, with a median response duration of

8.5 months and a median PFS of 6.5 months. The median OS was

12.6 months (73).

A phase Ib/II clinical trial to characterize the safety and

tolerability of JDQ443 in combination with TNO155,

spartalizumab (a PD-1 inhibitor), or TNO155 and spartalizumab

in patients with advanced solid tumors and KRAS-G12C mutations

is ongoing (NCT04699188) (74). Another phase I trial to assess the

safety and preliminary activity of GDC-6036 in combination with

atezolizumab (a PD-L1 inhibitor) or erlotinib in patients with

NSCLC, cetuximab in patients with colorectal cancer, or

bevacizumab in patients with advanced solid tumors is underway

(NCT04449874). D-1553 is also the regimen used in clinical trials to

assess the anti-tumor activity of combination therapy of RAS

inhibitors with other treatments (NCT04585035). However, the

results of these studies have not been reported. The combination

therapies for RAS inhibitors used in clinical development are shown

in Table 1.
8 Inhibitors of KRAS and associated
molecular pathways

8.1 Upstream RAS pathways and
KRAS inhibitors

Normal RAS upstream signaling requires activation by GEFs,

membrane localization, effector binding, and nucleotide exchange

and processing (75). Therefore, the disruption of any of these steps

could indirectly inhibit RAS activation. Son of Sevenless (SOS) is a GEF

that activates important cell signaling pathways and acts as a

pacemaker for the RAS (76). Elimination of SOS1 specifically

induces a decrease in the survival rate of tumor cells carrying a

KRAS mutation, while exhibiting no significant impact on those with

wild-type KRAS (77). BAY293, BI-3406, and BI-1701963 are SOS1

inhibitors developed to inhibit the protein-protein interactions of

KRAS-SOS1 (78–80). However, preclinical studies have shown that

BAY 293 only demonstrates modest antiproliferative effects, and no

significant difference between KRAS mutation and wild-type was

observed (78). BI-3406 exhibited more encouraging anti-tumor

activity. It not only selectively inhibited the proliferation of KRAS-

mutant cancer cells but also blocked the negative feedback reactivated

by SOS1 (79). BI-1701963, an improved version of BI-3406, is currently

in three phase I trials to determine the safety, tolerability, and

pharmacokinetic parameters of BI-1701963 monotherapy or in

combination with trametinib, BI-3011441 (a MEK inhibitor), or

irinotecan in patients with KRAS-mutated cancers (NCT04111458,

NCT04835714, and NCT04627142).
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As a non-receptor protein tyrosine phosphatase, SHP2 is

encoded by PTPN11, plays an important role in signal

transduction downstream of various growth factors, and increases

RAS nucleotide exchange by binding to GRB2 and SOS1 (81). The

complete activation of the RAS-MAPK pathway requires SHP2;

thus, the essential role of SHP2 in oncogenic signaling is established.

The inhibition or deletion of SHP2 delays tumor progression in

established tumors. SHP-099 and RMC-4550 are both potent and

selective SHP2 allosteric inhibitors (82, 83). Both reduced cell

proliferation, but the sensitivities differed among different KRAS-

mutated cancer cells. Another study revealed that IACS-13909, a

potent and specific allosteric inhibitor of SHP2, effectively inhibited

tumor cell proliferation in vitro and caused regression of tumors in

vivo in NSCLC models that exhibited resistance to osimertinib due

to EGFR mutations (84). However, the anti-tumor activity of IACS-

13909 against KRAS-mutant cancer cells has not yet

been established.

Although SHP2 inhibitors offer a potential therapeutic solution

for receptor tyrosine kinase-driven cancers, they may not

adequately suppress tumor growth in KRAS-mutated cells when

administered alone (83). In KRAS-mutant tumors, resistance to

MEK inhibition is common owing to the activation of the receptor

tyrosine kinase signaling pathway. However, combination

treatment with MEK and SHP2 inhibitors resulted in the

continued regression of tumor growth in xenograft models of

pancreatic cancer and NSCLC derived from patients, indicating

the clinical efficacy of dual SHP2/MEK inhibition for KRAS-mutant

cancers (85).

RMC-4630 (SAR442720) is an SHP2 inhibitor under phase I/II

trial that evaluates the safety, MTD, and RP2D of RMC-4630 in

combination with cobimetinib in patients with relapsed/refractory

solid tumors and combination with osimertinib in patients with

EGFR-mutant local ly advanced or metastat ic NSCLC

(NCT04000529). Another two phase I trial evaluating the safety

of RMC-4630 monotherapy (NCT03634982) and in combination

with pembrolizumab (NCT04418661) in advanced solid tumor

patients presented in the AACR ANNUAL MEETING 2020

showed that the combination of RMC-4630 with cobimetinib has

acceptable tolerability, and tumor reduction was observed in three

of eight patients with KRAS-mutant colorectal cancer, including

one unconfirmed PR at the data cut-off (86). TNO155

(NCT03114319 , NCT04000529 , NCT04330664 , and

NCT04699188), JAB-3068 (NCT04721223, NCT03518554, and

NCT03565003 ) , and JAB-3312 (NCT04121286 and

NCT04045496) are all SHP2 inhibitors currently in clinical trials.

However, the results of these studies have not yet been published.

In addition, complete RAS activation requires a post-

translational process to associate with the membrane, protein

oligomerization or dimerization, and effector binding. RAS can

also self-associate to enhance scaffolding and signaling activities via

dimerization. Disruption of any of these steps appears to effectively

block RAS signaling. However, there remains a challenge that needs

to be overcome. Enzymes involved in the post-translational process

also process other membrane-associated proteins that can cause

intolerable toxicity. Owing to the challenges in reconstituting RAS

dimers and oligomers in vitro, the study of the molecular intricacies
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1223433
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2023.1223433
of RAS-RAS interactions has been limited to a combination of

computational modeling and experimental validation of

protein interactions.
8.2 Downstream effectors of RAS pathways
and KRAS inhibitors

Once activated, RAS interacts with a diverse array of

downstream effectors, each of which plays a unique role in signal

transduction. Some key effector pathways include the RAF-MEK-

ERK, PI3K-AKT-mTOR, and RalGDS pathways. The RAF-MEK-

ERK pathway is one of the most well-studied RAS effector

pathways. It involves the activation of RAF kinases (such as

ARAF, BRAF, and CRAF), which phosphorylate and activate

MEK1/2. MEK1/2 then phosphorylates and activates ERK1/2,

leading to the regulation of gene expression and cellular

processes, such as proliferation, differentiation, and survival. The

PI3K-AKT-mTOR pathway is an important RAS effector pathway.

RAS activates phosphoinositide 3-kinase (PI3K), leading to the

production of phosphatidylinositol-3,4,5-trisphosphate (PIP3).

PIP3 recruits and activates protein kinase B (AKT), which

regulates multiple downstream effectors involved in cell growth,

metabolism, and survival. AKT also regulates the mammalian target

of the rapamycin (mTOR) pathway, thereby influencing protein

synthesis and cell proliferation. The RalGDS pathway involves the

activation of the Ral guanine nucleotide dissociation stimulator

(RalGDS) by RAS. RalGDS activates Ral GTPases that participate in

diverse cellular processes, including cytoskeletal organization,

membrane trafficking, and cell transformation. These downstream

effectors represent only a fraction of the intricate network of

signaling pathways regulated by RAS. The complexity and

diversity of RAS signaling indicate its fundamental importance in

cellular physiology and its role in various diseases, particularly

cancer (87, 88).

Downstream effectors of the RAS pathway, particularly those in

the RAF-MEK-ERK and PI3K-AKT-mTOR signaling pathways,

have become attractive targets for anti-RAS mutation treatment.

Numerous inhibitors targeting different constituents of the RAF-

MEK-ERK and PI3K-AKT-mTOR effector pathways have been

developed and are currently undergoing clinical assessment;

however, their effectiveness appears to be limited (89–91). The

RAF pathway plays a significant role in the promotion of RAS-

driven cancer growth. Studies conducted in mouse models have

indicated that only the constituents of the RAF-MEK-ERK pathway

can compensate for the loss of RAS function and revive the growth

of RAS-deficient mouse embryonic fibroblasts. However, inhibition

with a single-component RAF, MEK, or ERK could lead to negative

feedback, which might explain poor efficacy (92). Although the

PI3K pathway may have a minimal effect on promoting RAS-

dependent cancer growth, it complements the RAF-MEK-ERK

cascade. Therefore, resistance to RAF pathway inhibitors may be

mediated via the PI3K pathway. Thus, a combination strategy with

other inhibitors as mentioned previously or immunotherapy might

be required to completely suppress the signaling pathway as an

effective strategy for RAS-mutant cancer.
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Although the clinical data of immunotherapy are limited in

other solid tumors with RAS mutations, the efficacy of a

combinational strategy of immunotherapy with RAS inhibitors or

inhibitors of downstream effectors of the RAS pathway, particularly

the MAPK pathway, is worth anticipating, and the possible reason

has been discussed previously. Clinical trials are ongoing, as

previously discussed. The adoptive cell approach and cancer

vaccines, two other immunotherapeutic approaches to treat RAS-

driven cancers, have shown certain efficacy, but further research is

still needed (93, 94).
9 Discussion

KRAS mutations have long been considered attractive targets

for cancer therapy. After decades of effort, KRAS mutations are no

longer considered undruggable. KRAS-G12C allele-specific

inhibitors exhibit promising efficacy in clinical trials and have the

potential to alter the treatment status of RAS-mutant cancers.

Sotorasib and adagrasib have shown promising results in

inhibiting KRAS-G12C and controlling tumor growth. Disease

control was observed in a significant percentage of patients, and

tumor shrinkage was also noted. However, some patients developed

resistance mechanisms, such as mutations activating RAS or the

RAS pathway, which rendered the drugs less effective. Combining

KRAS-G12C inhibitors with other targeted therapies, like

cetuximab or SHP2 inhibitors, has shown enhanced activity in

preclinical studies. Resistance mutations were more frequent in

patients with lung or colorectal cancer treated with adagrasib.

Multiple types of lesions were identified, including mutations

preventing drug binding, non-G12C activation of RAS, KRAS

amplification, and activation of other pathway components. The

presence of multiple and diverse resistance mechanisms poses a

challenge to the efficacy of RAS inhibitors. However, similar

mechanisms have been observed in resistance to other targeted

therapies, indicating the need for further investigation. Despite

these challenges, KRAS-G12C inhibitors have demonstrated

clinical benefit and are likely to be useful as second-line

treatments for lung cancer. Continued research and development

are expected to lead to improved drugs and combination therapies

that can enhance tumor-cell death and prevent adaptive resistance.

Additionally, a new G12C inhibitor that targets active RAS-GTP is

being developed and has shown effectiveness against KRAS-G12C

tumor cells with resistance to previous inhibitors.

Even though the inhibition of the RAS pathway, including the

MAPK and PI3K pathways, showed poor efficacy after

monotherapy, a combinational strategy could be useful to

improve efficacy. Patients with KRAS-mutant NSCLC can benefit

from immunotherapy, and clinical trials evaluating the efficacy of

adoptive cell therapy and cancer vaccines are ongoing.

Agents inhibiting RAS post-translational modifications during

development have also been researched. Posttranslational

modifications of RAS proteins include palmitoylation and

depalmitoylation. Palmitoylation attaches palmitic fatty acids to

specific amino acid residues, thereby promoting membrane

associations and functionality. Depalmitoylation removes these
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groups and redistributes RAS proteins to the active membrane sites.

Inhibition of depalmitoylation has been proposed to hinder RAS

membrane binding and functionality. Other modifications such as

phosphorylation, nitrosylation, ubiquitination, and acetylation also

regulate RAS localization and function. These modifications are

potential targets for the development of anti-RAS drugs; however,

their mechanisms of action and therapeutic relevance are still

controversial. Further research is required to validate their

feasibility and specificity for anticancer therapy (8).

Given the encouraging efficacy of KRAS-G12C allele-specific

inhibitors, specific inhibitors may be the most promising

therapeutic options. However, in addition to KRAS-G12C, other

mutations, such as KRAS-G12D and KRAS-G12V, account for a

large proportion of KRAS mutations. Therefore, the development of

inhibitors targeting specific RAS mutations to provide personalized

medicine may be a future direction. However, according to the

presented results, the efficacy of sotorasib differs in NSCLC and

colorectal cancer and drug resistance is inevitable (10, 52). In

addition, combination therapies involving immunotherapy and

other targeted therapies or chemotherapies may be worth

exploring. The studies discussed in previous sections have shown

promising outcomes when KRAS inhibitors were combined with

ICIs or other targeted agents. Further investigations should focus on

optimizing the treatment regimens, identifying predictive

biomarkers, and understanding the mechanisms underlying the

synergistic effects observed in preclinical models. Furthermore,

understanding the TME and the role of immune cells in KRAS-

mutant cancers is crucial. Exploring the factors influencing immune

cell infiltration, activation, and recruitment can help in designing

strategies to enhance anti-tumor immune responses. Investigating

the mechanisms underlying immunotherapy resistance in KRAS-

mutant cancers is an important area for future research. This

knowledge can guide the development of novel therapeutic

approaches to overcome drug resistance and improve patient

outcomes. To address these unresolved issues, developing a

comprehensive model that integrates the complex interactions

between KRAS signaling, the immune system, and the tumor

microenvironment would be valuable. Such a model could help
Frontiers in Immunology 10
explain the observed heterogeneity in treatment responses and

potentially predict personalized treatment regimens and

responses. This could also guide the design of clinical trials and

treatment strategies. Therefore, exploring combination strategies

for patients with distinct tumors is vital.
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