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Abstract: 24 
Risk of bias assessment is a critical step of any metanalysis or systematic review.  Given the low sample 25 
count of many microbiome studies, especially observational or cohort studies involving human subjects, 26 
many microbiome studies have low power.  This increases the importance of performing metanalysis 27 
and systematic review for microbiome research in order to enhance the relevance and applicability of 28 
microbiome results.  This work proposes a method based on the ROBINS-I tool to systematically consider 29 
sources of bias in microbiome research seeking to perform metanalysis or systematic review for 30 
microbiome studies.  31 

 32 

Introduction: 33 
The most common experimental design used to evaluate the effects of gut microbiome (GMB) genomic 34 
or taxonomic post-exposure remodeling has been cohort studies using either animal or human models. 35 
Randomized controlled trials (RCTs) for microbiome interventions are less common because we are still 36 
characterizing microbiome post-exposure remodeling to identify promising markers or targets for 37 
microbiome intervention that would warrant subsequent evaluation by RCTs. Therefore, results from a 38 
systematic review with quantitative or pooled metanalysis are essential in identifying candidates for 39 
RCTs.  40 

A diligent risk of bias (ROB) assessment is a key step in systematic review or metanalysis to determine 41 
the likelihood that features of the study design or conduct of the study will give misleading results. GMB 42 
research is highly heterogeneous in its methods, reporting, and attempts to address bias. This 43 
manuscript and its associated rubric (table 1) are based on the Risk of Bias in Non-randomized Studies - 44 
of Interventions (ROBINS-I) tool, and are meant to be used as a GMB-specific adjunct to ROBINS-I. This 45 
manuscript and its associated rubric together form a tool that was developed to help standardize ROB 46 
assessment in metanalyses and systematic reviews of GMB studies. A small-scale validation test by first-47 
time ROB assessors produced consistently similar ROB determinations, suggesting that this tool can 48 
successfully guide consistent ROB determinations. This tool may allow for improved ROB assessment 49 
when evaluating studies for metanalyses and systematic reviews of the GMB. 50 

 51 

Using This Tool:  52 
This manuscript and its associated rubric provide a framework for assessing ROB specific to GMB 53 
research. This tool strives to provide insight and reduce variability between individual researchers and 54 
groups conducting systematic reviews of the GMB. We do not seek to suggest best practices. Instead, 55 
we aim to indicate potential sources of bias that may significantly impact GMB studies and are thus vital 56 
when considering the strength of evidence for systematic review and metanalysis. The essential criteria 57 
in this manuscript are summarized in table 1, which was compiled to act as a rubric in guiding ROB 58 
determination.  59 

Table 1, “the rubric,” guides the determination of low, moderate, or high ROB across seven domains. In 60 
each cell of the rubric, there are signaling statements to help guide low, moderate, or high ROB 61 
determination in that domain. Two additional ROB determinations are not included on the rubric as they 62 
are to be used at the judgement of the person assessing ROB in a study. They are “critical ROB” and “no 63 
information”. Critical ROB can be determined when a reviewer believes a study to be too problematic to 64 
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provide useful evidence on the effect of an intervention. As such, a study determined to be of critical 65 
ROB in any one domain should not be included in any synthesis. A determination of no information 66 
applies to domains where there is no clear evidence of a critical ROB and a lack of information to judge 67 
ROB otherwise.  68 

 69 

1 – Confounding  70 

1.1 Demographic Differences   71 
Important demographic considerations in GMB studies are sex and age. Substantial differences in the 72 
gut microbiota are attributable to sex differences in mammals (Org et al. 2016, Kim et al. 2020). Because 73 
of this, any study which includes one sex in one arm and a different sex in another should be classified 74 
as having a high risk of bias. In addition to the risk of bias from sex, other demographic factors may also 75 
introduce confounding bias into the studies being examined. The GMB changes with age across 76 
numerous conditions, disease models, and species impacting microbial diversity and biome composition 77 
(Ticinesi  et al. 2019, Liu et al. 2020). Therefore, age differences between cohorts and study arms should 78 
be assessed. If the study being examined uses organisms of one age in one arm and a different age in a 79 
second arm, it should be classified as having a high risk of bias. The age gap which introduces significant 80 
confounding bias, varies by organism. An example of an age gap that would introduce a high risk of bias 81 
is 8-week-old mice versus 1-year-old mice (Yoon et al. 2021).  82 

 83 

1.2 Habitat Stability  84 
The habitat in which organisms are kept substantially impacts their GMB (Singh et al. 2021). Mice, 85 
common subjects of microbiome research, are known to have highly variable microbiomes on arrival at 86 
a facility, likely because of transportation stress on the microbiome itself and the immune system and 87 
hormonal functions of the host organism (Lipinski et al. 2021, Montonye et al. 2018, Capdevila et al.  88 
2007). Studies that do not allow for microbiome stabilization before research begins risk confounding 89 
bias due to a lack of habitat stability. Organisms should be acclimated to the study condition before 90 
baseline measurements or interventions are performed. However, an extensive acclimation period risks 91 
microbiome drift occurring due to the increasing age of the organism or other unknown factors, so 92 
habitat stabilization must be time limited (Hoy et al. 2015). Additional bias would also be introduced if 93 
the acclimation period is included in the interventional period of the research.    94 

 95 

1.3 Genotype, Familial, & Source Differences:   96 
Subject genotype, degree of familial relation, and in the case of animal models, the source can 97 
significantly impact GMB composition. Differences in the genotype of animal models have been found to 98 
impact the diversity and abundance of organisms (Campbell et al. 2012, McKnite et al. 2012, Leamy et 99 
al. 2014). For this reason, if the study being evaluated uses organisms of significantly different 100 
genotypes, such as the use of different strains of mice from the Collaborative Cross, where the effect of 101 
genotype difference is not the target of the study, it should be classified as having a high risk of bias. 102 
Suppose the study uses a similar genotype between treatment groups, such as the same strain of inbred 103 
animal model or monozygotic twin subjects. In that case, it should be considered a low risk of bias for 104 
confounding due to the genotype effect.  105 
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Regarding familial relation, genetically related subjects have been demonstrated to share a core of 106 
similar GMB for up to three generations in the female line (Turnbaugh et al. 2008, Valles-Colomer et al. 107 
2021). With animal models, breeding within familial relations is often used to maintain genotypically and 108 
GMB homogeneity (Hufeldt et al. 2010 ). A caution regarding inbreeding is that while selective breeding 109 
between siblings can create a more stable and uniform GMB composition, the effects of genetic drift can 110 
also introduce confounders across multiple generations that may affect experimental reproducibility 111 
with subsequent generations (Laukens et al.  2016).  112 

Additionally, with animal models, an organism's litter of origin impacts the gut microbiota (Vilson et al.  113 
2018, Fujiwara et al. 2008). This may relate not only to parent genetics but also to the host of maternal 114 
factors that can affect the development of progeny GMB, including mode of delivery, maternal diet, 115 
maternal stress, and maternal antibiotic use (Friwell et al. 2010, Walker et al. 2017, Stokholm et al. 116 
2014, Golubeva et al. 2015, Bailey et al. 2004, Zhang et al. 2021). For these reasons, if the study being 117 
examined utilizes organisms from differing litters (from separate mothers or separate deliveries from 118 
the same mother) that have not yet reached their mature adult development and are not randomly 119 
assorted between research arms, it should be classified as having a high risk of bias. Suppose a study 120 
uses organisms from the same mother and litter or randomly assorts progeny from different mothers 121 
and litters. In that case, it should be classified as having a low risk of bias.  122 

Regarding sourcing of animal models, subjects sourced from different vendors have substantial 123 
differences in GMB at baseline (Rasmussen et al. 2019, Long et al. 2021, Wolff et al. 2020). The 124 
microbiological or physiological basis of these effects is unknown but may be due to differential 125 
exposures to environmental or infectious factors between vendors (Mandal et al. 2020).  126 

 127 

1.4 Extreme Diet   128 

Dietary differences have been shown to alter the abundance of most gut microbes (Daniel et al. 2014, 129 
Ang et al. 2020, Li et al. 2021, Do et al. 2018). Because of this, maintaining the diet of interest is 130 
essential to avoid introducing confounding bias to the study. However, it may not always be possible to 131 
strictly control diet. This is especially relevant to clinical studies involving humans. In this situation, an 132 
evaluation of bias must note how a study documented these diet variations.  133 

 134 

1.5 GMB Normalization   135 

It is important to assure organisms being studied in research have similar baseline GMB. This allows for 136 
more definitive inference as to the effect of the intervention. Several strategies have been used to make 137 
the GMB as similar as possible over time. Removal of the entire GMB through the use of germ-free mice 138 
can allow for artificial seeding of a select group of organisms (Kennedy et al. 2018, Yi and Li 2012). 139 
However, the use of these mice necessarily limits the generalizability of a study. For this reason, 140 
research often uses organisms with populated GMBs and rely instead on antibiotics to homogenize the 141 
microbiome. The use of antibiotics introduces additional risks of bias which must be considered when 142 
evaluating a study (Theriot et al. 2016).The most significant risk of bias arises from beginning the 143 
intervention of interest before the gut microbiota has stabilized after normalization with antibiotics. The 144 
GMB continues to fluctuate unpredictably for long periods following antibiotic administration 145 
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(Merenstein et al. 2021). This variance has been found for at least a year after antibiotic usage in 146 
humans and for times ranging between one week and 16 weeks in mice depending on the length of the 147 
course of antibiotics used (Elvers et al. 2020, Rashid et al. 2015, Zhu et al. 2021). However, short, or 148 
single doses of antibiotics such as those often used to normalize the microbiome allow for substantial 149 
stabilization of the GMB within 7 days (Gu et al. 2020).   150 

A third method used to standardize the GMB is to intermix the bedding of multiple cages and then 151 
redistribute it (Miyoshi et al. 2018). This method is less invasive than antibiotic usage and has a lower 152 
risk of long-term impact on the GMB than the use of antibiotics. The use of homogenization of the 153 
bedding allows for similar microbiomes to develop in more mice than can be practically housed in a 154 
single cage, where the organisms also share all of their bedding (McCafferty et al. 2013).  155 

Because of the impact of different methods of GMB normalization, it is critical to note the method that 156 
was used to normalize the GMB and how long before the intervention this normalization was 157 
completed.  158 

 159 

2 - Selection Bias   160 

2.1 Extreme genotype  161 

Host genotype shows a stable and heritable impact on GMB composition (Goodrich et al. 2016). In the 162 
context of GMB research, extreme genotype selection refers to the selection of GMB subjects with 163 
genotypes that vary significantly between subjects within a study. Selection of subjects with identical or 164 
similar genetic make-up limits genotype confounding effects. A subject with an established history of 165 
use along with maximized genetic correlation can be considered a low risk of selection bias. For 166 
example, while inbred Balb/C mice do have an extreme genotype, they also have a long-established 167 
history of use in immune modulation studies with their known Th2 immune response wherein they 168 
exhibit low IFNy and high IL-4 production (Khan et al. 2022, Mills et al. 2000, Watanabe et al. 2004). 169 
Furthermore, prior literature has established the correlation between subject genetics and variation in 170 
the GMB population and subsequent disease states (Xu et al. 2020).   171 

 172 

2.2 Randomization or Demographic Balancing Sufficiently Applied  173 

Randomization is essential in ensuring subject-level differences between participants in the intervention 174 
and control groups can be attributed to chance alone. It is a standard method that attempts to create 175 
the necessary pre-intervention equivalence between groups, allowing for conclusions based on the 176 
effect of the intervention. In trials where randomization was not appropriately utilized, the outcome 177 
was overestimated by up to 40% compared to trials where randomization was utilized (Suresh, 2011). If 178 
randomization was not applied, implementing demographic balancing is an appropriate measure to 179 
ensure adequate control and intervention arms distribution. Any demographic balancing performed 180 
should be sufficiently described in the study. This method focuses on ensuring each group is 181 
demographically balanced at baseline to lessen the difference between groups and utilize randomization 182 
if no subject background information is available (Saint, 2015). Both randomization and demographic 183 
balancing can be applied to human and animal model studies. For example, in studies utilizing syngeneic 184 
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mice, randomization must be performed outside the scope of human intervention in that random 185 
number generators should assign mice numbers which can then correlate to intervention and control 186 
groups, hence this places randomization outside the scope of human influence, limiting bias to a 187 
maximum degree. In syngeneic animals, demographic balancing would have a limited impact on the 188 
bias, however, wherein studies utilize genetically unrelated animals, the need for implementation of 189 
both randomization and demographic balancing is necessary for limiting substantial bias (Hirst et al. 190 
2014). Similar principles apply in human studies. Given a majority of human studies utilize genetically 191 
unrelated subjects, randomization is required to avoid high risk of bias. In human studies, a step beyond 192 
randomization should be taken, i.e., implementing blinded randomization with description of the 193 
randomization protocol to give the reader the ability to discern breaks in randomization or similar bias 194 
control methods within the study (Chalmers et al. 1983).  195 

 196 

3 - Classification of Intervention   197 

3.1 Intervention Bias   198 

Bias in intervention can occur when interventions or outcomes are inappropriately selected for or 199 
measured. In non-differential misclassification, test subjects’ exposures are misidentified, and they are 200 
categorized into the wrong group (McCoy, 2017). This misclassification can dilute the effect of the 201 
intervention causing effect estimates to favor the null (LaMorfe, 2016). The probability of non-202 
differential misclassification is equal across all groups. Bias may be reduced by ensuring a proper 203 
background check on test subjects and equalizing any differences. On the other hand, differential 204 
misclassification occurs when misclassification of exposure or outcome is not equal between subjects 205 
and is less easily predictable in whether it will bias results towards or away from the null. Therefore, the 206 
probability of assigning subjects to the wrong group differs based on the individual. This may also 207 
introduce recall bias towards recalling specific exposures because the subject has the disease state 208 
versus a subject that does not. In GMB studies, this may present in the form of researchers explaining 209 
results that show a significant effect as attributed to specific causes but leaving out explanations for 210 
non-significant results.  Because this type of misclassification is more applicable in case studies, it is less 211 
relevant for animal studies but can be prominent in human studies (Spencer et al. 2018).  212 

 213 

3.2 Validation of Method  214 

The establishment of an effective intervention is imperative for a successful study. Before the 215 
experiment, researchers must verify that their chosen intervention method will produce the intended 216 
effect. In studies where this is not done, the produced results may or may not be relied on because the 217 
protocol was never validated. Verification can be internal (tested and proved by the researchers) or 218 
external (via other established studies). If the study calls for a particular disease state to be expressed, it 219 
must be validated that the test subjects have the disease state. In studies that call for a specific 220 
procedure, there can be potential bias in how the readers know the procedure was correctly obtained if 221 
it is not reported. For example, in microbiome hypertension studies, animal subjects were tested based 222 
on blood pressure measurements by a well-established method, tail-cuff plethysmography (Marques et 223 
al. 2019). If a lesser-known and validated method was used, it could introduce a high risk of bias if 224 
researchers did not verify that their method was accurate.  When testing for the effect of a disease state 225 
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as influenced by the microbiome, it is helpful to transplant the experimental group microbiome into a 226 
germ-free animal model to confirm the effect. This reduces an intermediate risk of bias by 227 
demonstrating that the effect of the intervention is associated with the levels of change in the 228 
microbiome (Gottfredson et al. 2015).   229 

 230 

4 – Deviation from Intervention   231 

It is well understood that experiments that deviate from their initial protocol have an increased 232 
potential for bias in their study should they decide to include data prior to the deviation. Therefore, all 233 
deviations from the protocol should be well documented with time stamps, and the data included in the 234 
study should also include the time at which it was collected—either post-protocol or pre-protocol 235 
addendum. Rationale and limitations should also be included should researchers decide to include data 236 
from any time the protocol was different.  237 

 238 

5 - Missing Data  239 

Missing data is prevalent in many academic disciplines, from the social to biomedical sciences, and may 240 
contribute to bias in any given study. GMB research likewise suffers from inadequate consideration of 241 
missing data and the statistical methods to address it. To begin, two types of missing data should be 242 
distinguished: missing data due to patient drop-out in clinical, longitudinal studies and missing data as a 243 
result of inadequate sequencing depth leading to “false zeroes” in the microbiome genetic data. Both 244 
have potential to increase ROB. 245 

5.1 Cause/Category of Missing Data  246 

Missing data falls into multiple categories based on the mechanism of missingness: Missing Completely 247 
at Random (MCAR), Missing at Random (MAR), and Missing Not at Random (MNAR) (Groenwold and 248 
Dekkers 2020). These categories apply assumptions to missing data based on the cause. MCAR assumes 249 
that data is missing due to a factor entirely unrelated for the study. MAR assumes data is missing due to 250 
observed variables relevant to the study. MNAR assumes data is missing based on unknown or not 251 
quantifiable variables to the authors. MAR and MNAR are most relevant to clinical research, specifically 252 
in regard to patient drop-out, including clinical GMB trials (Pugh et al. 2021). Sampling zeroes in 253 
microbiome data are a more generalized form of missing data but are primarily reminiscent of MAR 254 
(Kaul et al. 2017, Kaul et al. 2017). Each of these areas will be further discussed in the following sections. 255 
Under MAR, studies may utilize various statistical imputation techniques to replace missing data, though 256 
the most well-known and effective method is multiple imputations (Spineli et al. 2015). With MNAR, 257 
various statistical modeling techniques may address missing data. Such techniques are further discussed 258 
in relation to GMB studies in the section “Sequencing Depth and Sampling Zeroes.” The distinction 259 
between MAR and MNAR also indicates whether bias related to missing data is entirely removable in 260 
analysis - the former can, while the latter cannot (Mack et al. 2018). This should not be confused with 261 
the notion that MNAR assumptions immediately denote a study as biased. If the missingness in MNAR or 262 
MAR is independent of the outcome, then the study may be unbiased in regard to missing data. Thus, a 263 
study with MNAR data is not necessarily high ROB.  264 
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Notably, a significant number of studies do not clearly state the mechanism of missingness or adjust for 265 
missing data (Carpenter and Smuk, 2021). It is important that studies distinguish mechanism of 266 
missingness or explain relevant missing data. If a study does not acknowledge missingness in data or 267 
ensures the absence of missing data, the study may be considered high ROB. If a study acknowledges 268 
missing data but does not adequately address it through MAR/MNAR distinction and proper statistical 269 
techniques related to its missing data category, then the study may be considered intermediate ROB. If a 270 
study demonstrates all of this, it may be considered low ROB.  271 

 272 

5.2 Subject Drop-out   273 

Missing data in the form of patient drop-out has a marked effect on statistical power, type 1 error, and 274 
various outcome measures (Fiero et al. 2016, Cai et al. 2020, Thompson et al. 2011). In traditional 275 
clinical research, missing data has a clear effect on useful measures, such as relative risk and risk ratio 276 
calculations. Further, although researchers attempt to minimize drop-out and its statistical effects, drop-277 
out ratios were reported to be greater than 40% depending on the study and the degree of 278 
unpleasantness in medical interventions to the patient (Schnicker et al. 2013, Li et al. 2021). 279 
Consequently, it has been proposed that a 20% drop-out ratio is reasonable (Furlan et al. 2009, Cramer 280 
et al. 2016). Interestingly, it has been shown that fecal sampling of patients in GMB studies has not been 281 
a significant reason for drop-out, suggesting typical sources of patient non-retention (Vandeputte et al. 282 
2017). The effect of drop-out on statistical measures is expected to be the same in clinical GMB trials. 283 
Despite drop-out being common in clinical studies, its effect on outcome measures involving microbial 284 
compositional data (e.g., beta diversity) is not currently well described in clinical GMB studies. However, 285 
it is expected that such measurements relying on consistent analysis from a wide array of samples will 286 
be biased if there is inadequate sampling size. 287 

The effect of bias comes into effect when there is interpretation between samples, in that missing data 288 
prevents consistent interpretation of genetic data through a larger body of samples. For example, 289 
microbiome samples stratified by disease state versus control should be held to higher statistical power, 290 
similar to traditional clinical studies. Yet, the complexity of GMB genetic analysis often prevents large 291 
sample sizes from being a practical implementation due to costs unless utilizing less-expensive protocols 292 
such as those involving qPCR to monitor microbial composition at high taxonomic levels (i.e., phyla) 293 
(Koliada et al. 2020). Some studies demonstrate shallow shotgun metagenomic sequencing as an 294 
alternative methodology for large, longitudinal GMB studies (Xu et al. 2021). Nonetheless, making 295 
interpretations in GMB data between samples stratified by host conditions may need to be more 296 
consistent and accurate when samples are unavailable from a patient drop-out. Based on the literature 297 
of other areas in clinical research as discussed, it is again reasonable to assert that drop-out will 298 
influence outcome measures if authors make interpretations across hosts of varying condition states.  299 

Due to few clinical studies analyzing the effect of drop-out on GMB outcomes, it is reasonable to use a 300 
20% patient drop-out ratio, as many clinical trials traditionally utilize. GMB studies that have a high 301 
patient dropout are considered high ROB. GMB studies that have low patient drop-out are considered 302 
low ROB.  303 

 304 
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5.3 Sequencing Depth and Sampling Zeroes   305 

GMB researchers should consider sequencing depth as a contributor to missing data and subsequent 306 
bias. It is established that low-sequencing depth (2000 single-end reads per sample) can adequately 307 
predict the same diversity patterns as high-depth sequencing (on the scale of millions of reads per 308 
sample) (Caporaso et al. 2011, Lundin et al. 2012, Xiao et al. 2018). Experiments that quantify GMB 309 
outcome measures (like alpha and beta diversity) should utilize the same depth for all samples. Bias 310 
would be introduced if different sequencing depths are used for a set of samples. It should be noted, 311 
however, that false zeroes influence microbiome genetic data at both high and low depth. While true 312 
zeroes (or biological zeroes) represent true taxonomic absences, false zeroes (or sampling zeroes) 313 
represent a lack of sequencing depth to adequately detect certain microbial taxa. Notably, low 314 
sequencing depth, as is often the case of 16S rRNA sequencing, may not detect low abundance taxa or 315 
low taxa (subspecies) due to lower resolution. Though whole genome sequencing (WGS), such as 316 
shotgun metagenomic sequencing, utilizes high sequencing depth to sequence entire genomes, 317 
sampling zeroes still persist (Pereira-Marques et al. 2019).  318 

At the time of writing, this issue of zero-inflation – or the excess of sampling zeroes at high and low 319 
depth – and the resulting bias in GMB genetic data is an active area of research. Interestingly, relatively 320 
few studies utilize any statistical modeling to correct for such missing data. Yet, various modeling 321 
techniques were recently developed to address zero-inflation (Deek and Li, 2021, Zhang et al. 2020, Ha 322 
et al. 2020). Similar to modeling techniques, imputation is a method traditionally used to address 323 
missing data in the form of patient drop out, but a promising imputation method is recently available to 324 
also deal with GMB sampling zeroes. Previous studies showed an increase of Pearson correlation from 325 
0.59 (between 16S and WGS in non-corrected data) to 0.64 (between 16S and WGS in corrected data) 326 
(Jiang et al. 2021). There were also marked differences in mean and standard deviation of abundances 327 
per taxon between corrected and non-corrected data. This suggests greater homogeneity of samples 328 
across sequencing methods if imputation is utilized to correct data. However, as our article focuses on 329 
the role of bias in GMB research, we do not yet place best-practice recommendations for a particular 330 
method of missing data correction. 331 

As of date, few GMB studies utilize statistical techniques to correct for sampling zeroes. Furthermore, 332 
common bioinformatics pipelines (such as QIIME2) do not incorporate such techniques into data-333 
correction programs.  334 

As such, the available literature suggests future GMB studies that do not consider sampling zeroes and 335 
lack a statistical technique for missing data correction may be considered high ROB. Studies that utilize 336 
missing data correction may be considered low ROB. These data correction methods, once more, include 337 
various modeling techniques or imputation.  338 

 339 

6 – Measurement of Outcomes   340 

6.1 Sample collection   341 

Currently, there is no standard method for sample collection for GMB studies. While biopsy of the lower 342 
intestine provides a controlled sampling site and an accurate microbiota account, it is expensive, time-343 
consuming, and unsuitable for healthy control groups. In contrast, fecal collection is non-invasive and 344 
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cost-effective (Tang et al. 2020). Thus, it is a standard sampling method in both clinical and research 345 
applications. However, fecal collection introduces temporal inconsistency that is a risk of bias when 346 
unaccounted for.   347 

Fecal samples collected at different times of the day are at risk for inaccurate representation of the 348 
absolute abundance of gut microbiota (Caporaso et al. 2011). Specifically for mouse studies, the 349 
snapshots of the microbiota provided by fecal samples is more accurate and consistent within treatment 350 
groups when collected in the morning due to the nocturnal feeding nature of mice (Jones et al. 2021). 351 
For studies involving subjects with unpredictable and inconsistent bowel movements, samples should be 352 
preserved immediately after defecation as oxidation of the outer layer can alter the microbiota (Pepper 353 
and Rosenfeld, 2012). Specifically, Firmicutes and Bifidobacteria Spp. are two known phylum that are 354 
unstable in the outer microenvironment when exposed to oxygen (Gorselak et al. 2015). Therefore, to 355 
minimize the differential errors, the methods of measurement must be consistent between control and 356 
intervention groups.   357 

 358 

6.2 Blinding   359 

In a GMB study, the primary outcome is based on definitive and objective genetic sequencing. 360 
Therefore, assessor bias is typically negligible, and a low risk of bias is expected (Higgins et al. 2022).    361 

 362 

7 – Reporting of Results 363 

7.1 Selection of Reported Results 364 
Selective reporting of results can lead to biased interpretations of significance and or non-significance 365 
via particular selection of results from multiple outcome measures in estimating outcome effect. Bias in 366 
selection of reported results can be difficult to detect without access to a protocol from which one can 367 
compare pre-specified intended outcomes of interest to the outcomes analyzed in the published paper 368 
(Heneghan et al. 2019). Often, results are selected for significance, omitted for non-significance, or 369 
omitted for adverse effect of intervention (Dwan et al. 2013, Hedin et al. 2016, Van der Steen et al. 370 
2019).  371 

 372 

Validation Test  373 
Four medical students with no prior experience in ROB assessment were recruited to test this tool by 374 
using it to independently assess ROB on three selected studies of similar length in a predetermined 375 
sequence (Wu et al. 2017, Mohammed et al. 2020, Saunders et al. 2020). Subjects were provided with 376 
the manuscript and ROB rubric. They were asked to track time to completion per study and complete 377 
the ROB rubric for each study. Subjects assessed ROB in an average of 44.75 minutes per study with time 378 
to completion generally decreasing from the first study assessed to the last study assessed.  379 

Inter-rater variability was assessed by assigning values of 1, 2, and 3 to low, medium, and high ROB in 380 
order to construct visual representations of rater scores in each sub-domain of bias and to compare 381 
summed ROB scores between raters for each study. Figures 1.1-1.3 demonstrate variability within a 382 
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study in each subdomain of bias assessed by this tool between raters. The figures demonstrate similar 383 
ROB judgements between at least three of four raters in the majority of subdomains across the three 384 
studies assessed.  385 

Figure 2 demonstrates variation in summed ROB score by rater for each of the three studies.  It shows 386 
the decreasing magnitude of difference between raters’ summed ROB scores with each subsequent use 387 
of the tool from a max-score min-score difference of six points in study1 and study3, and of four points 388 
in study2 out of 45 possible points. One way ANOVA test of rater subdomain scores across all 389 
subdomains for each study returned p-values of 0.554, 0.568, and 0.399 for study1, study2, and study3 390 
respectively indicating no significant difference between overall ROB assessment scores between raters 391 
of the same study. First time ROB assessors using this tool showed a relatively high degree of 392 
concordance in ROB determination at the subdomain level and in magnitude of summed ROB score.  393 

 394 

Conclusion 395 
Risk of bias assessment is a crucial step in systematic review and metanalysis to assess quality of 396 
information being collected. By outlining common sources of bias that can impact GMB research 397 
following the structure of the ROBINS-I tool, this tool can serve as an adjunct to improve and 398 
standardize ROB assessment of GMB studies. A standardized ROB assessment for GMB studies will 399 
improve accuracy of risk assessment, improve reproducibility between researchers, and promote the 400 
inclusion of high-quality information in systematic reviews and metanalyses of the GMB. 401 

  402 
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Figure Captions:  412 

Figure 1.1 - Inter-rater variability in ROB determinations by subdomain for validation test study 1, 413 
"Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing 414 
to the therapeutic effects of the drug" by Wu et al. 2017, where "1" on the y-axis indicates that the rater 415 
determined the study to be at low ROB for the subdomain indicated on the x-axis; "2" indicates medium 416 
ROB and "3" indicates a high ROB determination by the individual rater.  417 

 418 

  419 
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Figure 1.2 - Inter-rater variability in ROB determinations by subdomain for validation test on study 2, 420 
"Protective effects of Δ9-tetrahydrocannabinol against enterotoxin-induced acute respiratory distress 421 
syndrome are mediated by modulation of microbiota" by Mohammed et al. 2020, where "1" on the y-422 
axis indicates that the rater determined the study to be at low ROB for the subdomain indicated on the 423 
x-axis; "2" indicates medium ROB and "3" indicates a high ROB determination by the individual rater.  424 

 425 

 426 

  427 
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Figure 1.3 - Inter-rater variability in ROB determinations by subdomain for validation test on study 3, 428 
"Gut microbiota manipulation during the prepubertal period shapes behavioral abnormalities in a mouse 429 
neurodevelopmental disorder model" by Saunders et al. 2020, where "1" on the y-axis indicates that the 430 
rater determined the study to be at low ROB for the subdomain indicated on the x-axis; "2" indicates 431 
medium ROB and "3" indicates a high ROB determination by the individual rater.  432 

 433 

  434 
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Figure 2 – Visual representation comparing summed ROB score (as determined by assigning point values 435 
of 1, 2, and 3 to low, medium, and high ROB respectively) by rater for each of the three studies assessed 436 
in the validation test where each increasingly large concentric triangle indicates an increase of 5 points.  437 

 438 

  439 
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Domain High ROB  Moderate ROB Low ROB  
1 - Confounding    
1.1 Demographic 
Differences  

- Age: consistently different between 
study arms  

- Sex: consistently different between 
study arms  

- Age: mixed ages within a study arm, 
but equal in distribution between 
study arms  

- Sex: mixed sexes within a study 
arm, but equal in distribution 
between study arms 

- Age: consistently similar between 
study arms 

- Sex: consistently similar between 
study arms 

 

1.2 Habitat Stability  - No acclimation period, or 
acclimation period <2 days  

- Acclimation period included in the 
interventional period 

- Acclimation period ≥2 days but <5 
days 

 

- Acclimation period ≥5 days and <9 
weeks 

1.3 Genotype, 
Familial, and Source 
Differences 

- Significantly different subject 
genotypes between study arms 
(where genotype effect is not the 
target of investigation)  

- Non-matured animal models from 
different litters and/or mothers 
without random assortment into 
study arms   

- Comparison of animal subjects from 
different source or vendor between 
study arms 

- Animal subjects from same vendor, 
but from separate and temporally 
spaced orders without random 
assortment into study arms 

- Adequately similar genotypes used 
between study arms (where host 
genotype effect is not the target of 
study)  

- Animal subjects from same litter  

- Animal subjects from same vendor 
and same order  

- Adult animal subjects from 
different litters/mothers/vendors 
randomly assorted into study arms  

https://doi.org/10.1017/gmb.2023.12 Published online by Cambridge University Press

https://doi.org/10.1017/gmb.2023.12


Accepted Manuscript 

  
 

1.4 Extreme Diet - No statement of dietary standards 
or documentation of dietary 
variation  

- Major deviations from stated diet 

- Study uses human subjects outside 
of a highly controlled environment 
(for example an inpatient healthcare 
setting) 

- Use of identical diet between study 
arms where diet is not the target of 
study  

1.5 GMB 
Normalization  

- No documented means of verified 
GMB normalization methods 
employed prior to intervention  

- Use of different normalization 
methods between study arms or use 
of non-validated technique 

- Antibiotic normalization employed 
< 7 days prior to intervention 

- Antibiotic normalization employed 
≥7 days prior to intervention  

- Validated technique of GMB 
normalization employed 

 

2 – Selection Bias    
2.1 Extreme Genotype - Subjects of known extremely 

different genotypes  

- Subjects with no established history 
of use 

 

- Syngeneic subjects with limited 
established history of use     

- Syngeneic subjects with established 
history of use 

2.2 Randomization or 
Demographic 
Balancing Sufficiently 
Applied  

- Absence of both RCT and 
implementation of consistent host 
demographic across study  

- Utilization of RCT or 
implementation of consistent host 
demographics across study  

- Utilization of RCT and 
implementation of consistent host 
demographics across study 

3 - Classification of 
Intervention 

   

3.1 Intervention Bias  - Differential misclassification of 
intervention or test subject based on 
exposures present or suspected 

- n/a  - Differential misclassification of 
intervention or test subject based on 
exposures absent or not suspected 

3.2 Validation of 
Method 

- No validation that treatment 
method produces intended effect  

- n/a  - Documented use of validated 
methods  
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- Use of new method without 
internal validation 

 

- Use of a new method with 
adequate internal validation 

 
4 – Deviation from 
Intervention  

   

4.1 Deviation from 
Intervention  

- Large deviations to protocol 
without adequate time stamps, 
rationale, and limitations noted  

- Slight deviations to protocol with 
adequate time stamps, rationale, and 
limitations noted  

- Intervention successfully carried 
out without protocol deviation  

5 - Missing Data    
5.1 Cause or Category 
of Missing Data  

- Does not address missing data 
qualitatively or quantitatively 

- Or, does not ensure to readers the 
absence of missing data 

 

- Acknowledges missing data 
qualitatively or quantitatively 

- Inadequate MAR/MNAR distinction 
or proper statistical correction 

- Addresses missing data qualitatively 
or quantitatively, or ensures absence 
of missing data. 

- Adequate MAR/MNAR distinction 
or proper statistical correction 

5.2 Subject Dropout - Subject drop-out exceeds 20% n/a - Subject drop-out is equal to or less 
than 20% 

5.3 Sequencing Depth 
and Sampling Zeroes  

- Does not address sampling zeroes 
with statistical correction 

n/a  - Addresses sampling zeroes with 
statistical correction 

6 – Measurement of 
Outcomes 

   

6.1 Sample Collection  - Inconsistent collection time - Animal models: Collected at same 
time, not in the morning  

- Human models: Inconsistent 
collection time, but preserved 
immediately after defecation 

- Animal models: Collected at same 
time, in the morning  

- Human models: Consistent 
collection time & preserved 
immediately after defecation 
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6.2 Blinding  - No double blinding when the 
primary measurement is subjective   

n/a  - Primary outcome is objective 
measure such as genetic sequencing 
not subject to bias by the subject or 
investigator  

- Primary outcome is subjective and 
double or greater blinding employed  

7 – Reporting of 
Results 

   

7.1 Selection of 
Reported Results  

Any of:  
- Omission of stated outcomes that 
are unfavorable or statistically 
insignificant  

- Addition of outcomes not in initial 
protocol  

- Results reported are only on a 
subset of data  

- Changing outcome(s) of interest 

- Any of the above, but with valid and 
satisfactory explanation provided 

- Inclusion of relevant null and 
significant findings as stated in 
protocol  

Table 1 – Rubric of domains and subdomains of bias with signaling statements to guide risk of bias assessment of gut microbiome studies.  679 
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