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Tumor-associated macrophages (TAMs) are essential components of the immune
cell stroma of hepatocellular carcinoma. TAMs originate from monocytic
myeloid-derived suppressor cells, peripheral blood monocytes, and kupffer
cells. The recruitment of monocytes to the HCC tumor microenvironment is
facilitated by various factors, leading to their differentiation into TAMs with unique
phenotypes. TAMs can directly activate or inhibit the nuclear factor-κB,
interleukin-6/signal transducer and signal transducer and activator of
transcription 3, Wnt/β-catenin, transforming growth factor-β1/bone
morphogenetic protein, and extracellular signal-regulated kinase 1/2 signaling
pathways in tumor cells and interact with other immune cells via producing
cytokines and extracellular vesicles, thus affecting carcinoma cell proliferation,
invasive and migratory, angiogenesis, liver fibrosis progression, and other
processes to participate in different stages of tumor progression. In recent
years, TAMs have received much attention as a prospective treatment target
for HCC. This review describes the origin and characteristics of TAMs and their
mechanism of action in the occurrence and development of HCC to offer a
theoretical foundation for further clinical research of TAMs.
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Introduction

Hepatocellular carcinoma (HCC) accounts for roughly 90% of all cases of primary liver
carcinoma, making it the most prevalent form. It ranked as the 6th most common
carcinoma and the 3rd most common cause of cancer-related fatalities in 2020. It was
projected that HCC caused 906,000 new cases and 830,000 deaths worldwide due to HCC
(Sung et al., 2021; Ding et al., 2022). HCC is associated with inflammation and can be
caused by various factors, including environmental and genetic risk factors (Giraud et al.,
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2021). Chronic infection caused by hepatitis C virus (HCV),
hepatitis B virus (HBV), and non-alcoholic fatty liver disease/
non-alcoholic steatohepatitis (NAFLD/NASH) are the leading
etiologies of liver cirrhosis, which can significantly increase the
likelihood of progression to HCC (Kew, 2014). Chronic liver injury
triggers reparative mechanisms aimed at restoring its form and
function. However, this persistent inflammation can lead to
ongoing regenerative repair of hepatocytes, which may
contribute to the emergence and advancement of HCC (Endig
et al., 2016; Gao et al., 2019). The malignant level of a tumor is
related to the characteristics of cancerous cells and different
components in the tumor microenvironment (TME) (Wang
et al., 2014; Ge and Ding, 2020). These constituents have a
pivotal function in connecting inflammatory mediators and
tumors (Chen et al., 2022). The TME is a significant site for the
interaction between carcinoma cells and the human immune
system. It contains neoplastic cells, immune cells, blood vessel
cells, tumor-associated fibroblasts, other non-tumor cells,
extracellular matrix, and various cytokines (Li et al., 2018). In
recent years, the immune microenvironment has gained an
increasing focus, and it is indicated that the TME can facilitate
tumor progression. Research has indicated that the high
infiltration of tumor-associated macrophages (TAMs) in liver
cancer is strongly tied to a negative prognosis for patients (Li
et al., 2018b). Compared to other organs, the liver has a greater
percentage of macrophages (van der Heide et al., 2019). Kupffer
cells (KCs), as a stationary tissue-resident macrophage subset of
the liver, are positioned in the blood sinuses, which is pivotal in
maintaining homeostasis (Lopez et al., 2011; Scott et al., 2016).
Inflammation in the liver or depletion of KCs leads to recruiting
monocyte-derived macrophages into the stem tissue (Mossanen
et al., 2016; Surewaard and Kubes, 2017). Tumor cells secrete
different cytokines that can induce monocyte differentiation into
TAMs, thereby altering the functional phenotype of macrophages
(Mφ) in the TME (Rabold et al., 2017). These mutual
transformations are a common occurrence in cancer and are
correlated with tumor occurrence and development. The
dysregulation of the two types of TAMs polarization is
frequently involved in the development of pathological
complications (Qian and Pollard, 2010). Interactions between
tumor cells, TAMs, and other immune cells in the immune
microenvironment affect the proliferation, invasion, migration,
liver fibrosis, and immune killing of tumor cells through the
secretion of cytokines and exosomes and changes in the
expression of related proteins, ultimately affecting the
progression of HCC. The mechanisms and signaling pathways
involved are very complex. Therefore, this article provides a review
of the definition, source, and polarization of TAMs and the
mechanisms of interaction among TAMs, tumors, and other
immune cells in HCC.

Definition of TAMs in HCC

Mφ are one of the most significant components of the HCC
TME. The liver, as an immune-exempt organ, contains a significant
number of Mφ, including resident KCs and recruited Mφ
(MacParland et al., 2018; Mattos Â et al., 2022). Based on

protein expression, secreted cytokines, and function, TAMs are
typically divided into two subgroups (Zhou et al., 2022): classical
activated TAMs (M1-TAMs) and alternative activated TAMs (M2-
TAMs) (Lin et al., 2019). M1-TAMs are mainly present in the tumor
adjacent tissue, while M2-TAMs are mainly present in the liver
cancer tissue (Luo et al., 2017; Englinger et al., 2019). M1-TAMs
promote more inducible nitric oxide synthase (iNOS) and mainly
secrete interleukin (IL)-1β, tumor necrosis factor (TNF)-α, highly
expressed cluster of differentiation (CD)80, and CD86. M2-TAMs
decreased the protein expression of CD80 and CD86, while elevating
the expression of CD163, CD206, and arginase (Arg)-1. They also
secreted less TNF-α and IL-1β, but more transforming growth factor
(TGF)-β and IL-10 (Dong et al., 2016; Minami et al., 2018; Li et al.,
2021; Sen et al., 2022). Moreover, CD68 was identified as a reliable
marker for pan-Mφ or M1-TAMs (Minami et al., 2018).
Additionally, the M2-TAMs could be further classified into four
subsets (M2a, M2b, M2c, and M2d) based on the type of stimulus
(Yang et al., 2019). When stimulated with interferon-gamma (IFN-
γ) or IFN-γ integrated with lipopolysaccharide (LPS), Mφ become
classically activated Mφ or M1-TAMs. Unlike M1-TAMs, which are
polarized by proinflammatory stimuli, IL-4, IL-13, IL-10, and TGF-β
can induce Mφ polarization into M2-TAMs, also known as
alternatively activated Mφ. These Mφ highly express mannose
receptor (MR) and Arg-1, which are connected to anti-
inflammatory Th2 immunoreaction and can promote HCC
progression (Yang et al., 2018a). Both M1-TAMs and M2-TAMs
can be converted into each other in certain conditions and with
specific stimuli (Xiang et al., 2021). M1-TAMs appear to eliminate
HCC cells in the primary stages of tumorigenesis, but as tumor
progression advances, M1-TAMs are replaced by M2-TAMs (Yao et
al., 2018). Specifically, Mφ that infiltrate tumors tend to exhibit
M2 phenotypes that promote tumor growth, rather than
M1 phenotypes that have antitumor effects (Chen et al., 2018).
Currently, many studies have found that the phenotype and function
of TAMs are very complex, and it is limited to classify TAMs simply
as M1 and M2 phenotypes. Therefore, there are many studies to
distinguish different TAM subgroups through the special phenotype
expression of TAMs and to investigate the impact of different
subgroups on the progression of HCC. Intra-tumoral TAMs in
HCC are often characterized by low expression of CD169 and high
expression of CD204. Reversing this trend can improve patient
prognosis (Li et al., 2017). The pro-inflammatory response induced
by a high-fat diet leads to an increase in TNF-α+ Mφ infiltration,
promoting the early onset of HCC (de Oliveira et al., 2019).
Chemokine (CC motif) receptor (CCR)2+ monocytes and
triggering receptor expressed on myeloid cells (TREM) 2+ Mφ in
the TME can terminally differentiate to matrix metalloproteinase
(MMP)9+ TAMs to promote the progression of HCC by stimulating
the peroxisome proliferator-activated receptor (PPAR)γ signal (Lu
et al., 2022). Siglec-10hi TAMs have characteristics and functions
similar to M2-TAMs and can inhibit the function of CD8+ T cells
(Xiao et al., 2021). These phenotypic TAMs play an
immunosuppressive role in the TME of HCC. By contrast,
CD38hi Mφ in the TME can secrete more IFN-γ, which helps
CD8+ T cells to kill tumors (Ng et al., 2020). In addition,
forkhead box O1 (FOXO1) expressed in TAMs inhibits the
expression of IL-6 through the interferon regulatory factor (IRF)-
1/nitric oxide (NO) axis and ultimately suppresses the progression
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of HCC (Cui et al., 2023). Furthermore, loss of FOXO1 leads to a
decrease in major histocompatibility complex (MHC)-II expression,
which weakens the antigen-presenting ability of TAMs and hinders
the ability of immune cells to kill tumor cells. The hypoxic
microenvironment in HCC induces the downregulation of
FOXO1 expression in TAMs (Yang et al., 2018b). Typically, the
majority of TAMs within the TME display an immunosuppressive
type, and these TAMs promote immune suppression and facilitate
tumor progression (Allavena et al., 2008). To further elaborate,
TAMs refer to immunosuppressive Mφ in the HCC TME in a
narrow sense.

Origin of TAMs in HCC

TAMs originate from peripheral blood monocytes, M-MDSCs,
and KCs. Under normal conditions, Mφ can be distinguished from
peripheral monocytes in tissues. However, during inflammation and
cancer, peripheral monocytes derived from the bone marrow (BM)
were one of the principal sources of Mφ, particularly TAMs. Under
the stimulation of inflammatory and tumor signals, circulating
monocytes can mobilize and infiltrate in the TME, where they
transform into tissue Mφ (Shi and Pamer, 2011; Nowarski et al.,
2013). HCC produces extracellular vesicles (EVs) containing PKM2,
which induce phosphorylation of the signal transducer and activator
of transcription 3 (STAT3) in monocytes, promoting their
differentiation into TAMs (Hou et al., 2020). Chronic liver injury
is closely related to the infiltration of M2-TAMs derived from
monocytes (Delire et al., 2018). Most TAMs are derived from
CCR2 + monocytes in BM (Cheng et al., 2022). Monocytes are
attracted to the TME through the (CC motif) ligand 2 (CCL2)/
CCR2 axis, transformed into TAMs, polarized toward M2-TAMs,
and involved in the HCC progression (Sahin et al., 2010; Li et al.,
2017). CCR2+ myeloid cells are necessary for senescence
surveillance, and CCR2 ablation leads to HCC outgrowth (Eggert
et al., 2016). The TME causes the overexpression of dynamin-related
protein 1 (Drp1) in the HCC cells, which stimulates mitochondrial
fission and induces cytoplasmic mitochondrial DNA (mtDNA)
stress, activating the TLR9-mediated NF-κB signaling pathway
and promoting the nuclear translocation of phosphorylated P65,
thereby promoting the secretion of chemokine CCL2 (Bao et al.,
2019). Additionally, the expression level of APOBEC3B (A3B) is
upregulated in HCC cells, and A3B interacts with polycomb
repressive complex 2 (PRC2), leading to reduced occupancy of
H3K27me3 on the CCL2 promoter to recruit massive TAMs
(Wang et al., 2019). Meanwhile, the expression of CCL2 by
tumor cells is also regulated by Yes-associated protein (YAP)/
TEA domain family member 4 (TEAD4) dependence (Thomann
et al., 2021). Blocking CCL2/CCR2 and cysteine-X-cysteine motif
chemokine ligand (CXCL)1/CXCR2 can inhibit the infiltration
levels of Mφ and neutrophils in the TME (Tian et al., 2022).
Meanwhile, the high expression of hsa_circ_0003410 in HCC
induces the secretion of CCL5, activating and recruiting M2-
TAMs (Cao et al., 2022). The upregulation of MMP-21
expression in tumor cells promotes the secretion of CCL14,
which induces the recruitment of monocytes through binding to
CCR1 on these cells (Zhou et al., 2022). CSF1 is a chemotactic factor
for monocytes and can facilitate recruitment of monocytes and

polarization of Mφ to M2-TAMs (Zhu et al., 2019; Jiang et al., 2022).
The colony-stimulating factor 1 receptor (CSF-1R) is mainly
expressed by TAMs and monocyte-restricted cells (Jiang et al.,
2020). TAMs promote Mφ migration by upregulating the
expression of M-CSFR and CXCR4 through hypoxia inducible
factor (HIF)-2α mediation (Imtiyaz et al., 2010). Prostaglandin E
(PGE)2 secreted by TAMs stimulates the expression of UHRF1 in
tumor cells, which in turn induces the upregulation of
CSF1 expression (Zhang et al., 2022). IL-1β secreted by TAMs
induces the upregulation of solute carrier family 7 member 11
(SLC7A11) expression in HCC. SLC7A11 upregulation promotes
HIF-1α expression by reducing α-ketoglutarate (αKG) levels, which
in turn promotes the expression of programmed death ligand 1 (PD-
L1) and CSF1 in tumor cells (He et al., 2021). Circular RNA
(circRNA) CircASAP1 competes with tumor suppressor miRNAs
(miR-326 and miR-532-5p) that target CSF1, also promoting the
expression of CSF1 (Hu et al., 2020). The overexpression of
stanniocalcin-1 (STC1) in tumor cells inhibits the expression of
monocyte chemokine receptors chemokine CCR2, CCR4, and
colony-stimulating factor 1 receptor (CSF1R), thereby
suppressing the recruitment of monocytes to the TME (Leung
and Wong, 2020).

TAMs can also originate from myeloid-derived suppressor cells
(MDSCs), which also come from BM. MDSCs are composed of two
major groups: granulocytic or polymorphonuclear (PMN-MDSCs
and Ly6C− Ly6G+) and monocytic (M-MDSCs and Ly6C+ Ly6C−)
(Tcyganov et al., 2018). PMN-MDSCs share similar characteristics
with neutrophils, while M-MDSCs are more akin to monocytes
(Gabrilovich et al., 2012). In the context of tumor tissues, M-MDSCs
have the ability to quickly differentiate into TAMs and inflammatory
dendritic cells (DCs).

Although bone marrow-derived monocytes were previously
regarded as the only origin of TAMs, recent research studies
indicated that tissue-determined Mφ can infiltrate tumors and
transform into TAMs in specific tumors (Zhu et al., 2017; Conte,
2022). Liver-resident Mφ, like KCs (Matsuda and Seki, 2020), can
stem from erythro-myeloid progenitors (EMPs) in the embryonic
liver or the yolk sac, which express the Mφ CSF1R (Laviron and
Boissonnas, 2019; Cheng et al., 2022). These Mφ can self-renew, but
recent studies have shown their input from the bone marrow as well
(Gomez Perdiguero et al., 2015; Hoeffel et al., 2015; Scott et al.,
2016). As one of the subsets of TAMs, KCs can also facilitate the
progression of HCC while participating in anti-tumor immunity
(Yang et al., 2011). Signals from the local microenvironment
stimulate immunogenic KCs and induce their functional
differentiation. Danger signals in HCC can activate the
inflammatory regulation of KCs and promote drawing immune
cells to the liver. The production of CCL2 by tumor cells leads to the
absence of embryonic KCs in tissue and promotes the infiltration of
monocyte-derived KCs and immature monocytes (M0) (Thomann
et al., 2021; Vanderborght et al., 2023). Myeloid precursor cells are
recruited to infiltrate HCC, and the TME blocks its maturation
process. The loss of Shp2 expression in KCs results in apoptosis of
KCs and exacerbate the recruitment and differentiation of CCR2+

monocytes into TAMs, reshaping the immunosuppressive
microenvironment (Du et al., 2023). However, some studies
suggest that activated KCs also produce TNF-a, and IL-1,
inducing the expression of IL-8 in HCC cells and promoting Mφ
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recruitment (Thornton et al., 1991). Expressing neurotensin (NTS)
in tumor cells activates the mitogen-activated protein kinase
(MAPK)/nuclear factor (NF)-κB signaling pathway, inducing the
production of IL-8 (Xiao et al., 2018). In addition, the upregulation
of AlkB homolog 5 (ALKBH5) promotes the upregulation of
MAP3K8 expression in tumor cells, which induces the
phosphorylation of the c-Jun N-terminal kinase (JNK)/
extracellular signal-regulated kinase (ERK) pathway, resulting in
the upregulation of IL-8 expression. IL-8 promotes the recruitment
of PD-L1+TAMs and polarization of M2-TAMs (You et al., 2022).
TAMs originate not only from the recruitment of monocytes or
MDSCs but also from the proliferation of TAMs themselves residing
in the TME. Tumor cells stimulates TAMs to secrete granulocyte-
macrophage colony stimulating factor (GM-CSF), which induces the
upregulation of A2A receptor expression in TAMs. This process
synergistically stimulates the proliferation of TAMs in coordination
with small molecules of adenosine produced by tumor cells, leading
to increased infiltration of TAMs (Wang et al., 2021).

Cancer-associated fibroblasts (CAFs) express endosialin
(CD248/TEM1) and interact with CD68, inducing the
recruitment of Mφ. Meanwhile, this process induces
GAS6 expression in CAFs, promoting the polarization of TAMs
toward M2-TAMs (Yang et al., 2020). M2-TAMs secrete the
hepatocyte growth factor (HGF) to help recruiting Mφ, and
promote the infiltration of M2-TAMs (Dong et al., 2019).
Infiltrating monocytes in HCC stimulate the production of TNF-
α through the NF-κB signaling pathway, inducing the expression of
their own c-Met. When interacting with HGF, this enhances their
migration ability (Zhao et al., 2015). Autophagy inhibition in Mφ
induces self-recruitment through the activation of the CCL20/
CCR6 signaling pathway (Gao et al., 2023). However, in HCC
cells, interferon regulatory factor (IRF8) inhibits the transcription
of activator protein-1(AP1) signal (c-fos), resulting in a decrease in
the expression of CCL20 and the inhibition of TAMs recruitment,
thereby suppressing tumor progression (Wu et al., 2022). In M1-
TAMs, the extracellular matrix protein SPON2 activates RhoA/
Rac1-Hippo signaling through α4β1 integrin, leading to F-actin
reorganization. The upregulation of F-actin expression inhibits large
tumor suppressor kinase 1 (LATS1) phosphorylation and promotes
YAP nuclear translocation, promoting the recruitment of M1-TAMs
and inhibiting HCC progression. The specific mechanism by which
YAP affects Mφ migration remains unclear (Zhang et al., 2018).
However, the high expression of YAP in tumor cells induces an
increase in IL-6 secretion, which plays an opposite role in tumor
progression (Zhou et al., 2018). Hepatic stellate cells activated within
tumors exhibit high expression of fatty acid-binding protein 4
(FABP4), inducing NF-κB nuclear translocation and promoting
the secretion of IL-6 and IL-1A (Chiyonobu et al., 2018). By
activating the IL-6-IL6R/STAT3 signaling pathway in Mφ, IL-6
induces the recruitment of Mφ and polarization toward the
M2 phenotype (Guo et al., 2017; Yang and Xing, 2021). Hypoxia
leads to the expression of high-mobility group box 1 (HMGB1),
which induces the infiltration of TAMs and an increase in IL-6
expression through HIF-1α (Jiang et al., 2018). (Figure 1)

In the TME, tumor cells, KCs, TAMs with different phenotypes,
hepatic stellate cells, and CAFs can produce multiple cytokines that
promote the generation of TAMs. These chemokines play a
significant role in recruiting and infiltrating macrophages into

tumor tissues. The recruitment and chemotaxis of TAMs play a
promoting part not only in liver cancer (Shieh et al., 2009) but also in
many malignant tumors. How to inhibit the recruitment and
chemotaxis of Mφ has gradually become one of the hotspots in
the therapy of HCC.

TME affects the polarization of TAMs

The tumor immune microenvironment contains cytokines and
extracellular vesicles secreted by tumor cells, which can induce the
polarization of TAMs. The polarization of TAMs is also related to
the transport of zinc and ferritin, as well as the metabolism of
carbohydrates and lipids. As liver cancer advances, pro-tumorigenic
factors stimulate tissue-resident Mφ, leading to a phenotypic shift
and the development of TAMs (Cheng et al., 2022). In HCC, IL-37 is
highly expressed in M1-TAMs and lowly expressed in M2-TAMs.
IL-37 promotes the polarization of M2-TAMs toward M1-TAMs in
HCC by inhibiting IL-6/STAT3 signaling in TAMs (Zhang et al.,
2020a). The high expression of B7 homolog 3 (B7-H3) in HCC
polarizes TAMs toward the M2 direction by the activation of
STAT6 signaling (Kang et al., 2015). The Wnt ligand produced
by tumor cells activates theWnt/β-catenin signaling pathway inMφ,
promoting the nuclear translocation of β-catenin and
transcriptional upregulation of C-MYC, inducing M2-
TAMs polarization (Yang et al., 2018). In HCC cells, the lncRNA
LINC00662 can competitively bind to miR-15a, miR-16, and miR-
107, upregulating WNT3A secretion (Tian et al., 2020). Tumor cells
secrete EVs containing miR4458H, which induces the upregulation
of Arg1 expression in TAMs, promoting M2-TAMs polarization (Ye
et al., 2023). Receptor-interacting protein 140 (RIP140) is
overexpressed in TAMs, which inhibits the alternative activation
of Mφ and has an inhibitory effect on the progression of HCC by
suppressing the NF-κB/IL-6 axis (Hu et al., 2017). IL-17+ cells
induce epithelial cells to secrete CXCL9, CXCL10, and CXCL11,
recruiting CXCR3+B cells and promoting their maturation.
CXCR3+B cells polarize M2b through IgG signaling (Liu et al.,
2015). TREM1 is highly expressed in M2 TAMs. The
downregulation of TREM1 expression reverses M2-TAMs into
M1-TAMs by inhibiting the PI3K/AKT/mTOR signaling pathway
(Chen et al., 2021). HCC produces HMGB1, which activates the
Toll-like receptor 2 (TLR2)/NADPH oxidase 2 (NOX2)/autophagic
axis in TAMs. NOX2 induces reactive oxygen species (ROS)
production, which induces autophagy. The autophagic process
degrades NF-κB p65 through the p62/SQSYM1 signaling
pathway, inhibiting the secretion of IL-12 (which has anti-tumor
effects) and promoting polarization of Mφ toward the
M2 phenotype. Meanwhile, TLR2 mediates the phosphorylation
and activation of ERK1/2, promoting the degradation process of NF-
κB p65 and synergistically promoting the polarization of TAMs
toward the M2 direction (Chang et al., 2013; Shiau et al., 2020). The
expression loss of liver cell zinc finger protein Miz1 activates the NF-
κB signaling pathway, promoting Mφ polarization toward the pro-
inflammatory phenotype and promoting the progression of HCC
(Zhang et al., 2021). Zinc/iron-regulated transporter-like protein
(Zip) 9, which is associated with zinc uptake, is highly expressed in
M2-TAMs of HCC and promotes M2 polarization by activating the
STAT6 signaling pathway, while inhibiting M1 polarization by
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inhibiting IκBα/β signaling (Gou et al., 2022). The ferrous iron
content in M1-TAMs is higher than in M2-TAMs. The high
expression of transferrin in HCC cells leads to insufficient iron
uptake by TAMs, which promotes the polarization of M2-TAMs
through the upregulation of HIF-1α (Sun et al., 2021). (Figure 2)

Abnormalities in glucose and lipid metabolism in HCC affect the
function and polarization of TAMs, accelerating tumor progression.
In HCC, aerobic glycolysis promotes the activation of M1-TAMs, but
the hypoxic microenvironment and insufficient glucose in the tumor
lead to an increase in fatty acid oxidation (FAO) and a decrease in
aerobic glycolysis. This promotes the expression of ROS in TAMs and
induces TAMs to transform into an M2 phenotype through nuclear
factor (erythroid-derived 2)-like 2 (Nrf2) mediation (Feng et al.,
2018). The hypoxic microenvironment of HCC leads to abnormal
glucose metabolism in tumor cells, with an increase in anaerobic
glycolysis and lactate secretion. However, even in the presence of
sufficient oxygen, tumor cells preferentially undergo anaerobic
glycolysis, exhibiting the Warburg effect. The overexpression of
pH-regulating molecule V-ATPase in M2-TAMs induces hypoxic
and acidic metabolism, reshaping the immunosuppressive
microenvironment (Kuchuk et al., 2018). The expression of
receptor-interacting protein kinase 3 (RIPK3) in HCC is closely

related to glucose and lipid metabolism. The downregulation of
RIPK3 activates the PPAR signaling pathway to promote fatty acid
metabolism and FAO, inducing M2 polarization, which depends on
the mediation of ROS-caspase1 (Wu et al., 2020). The downregulation
of sirtuin (SIRT)5 expression in liver cancer induces the production of
bile acids (BAs) (Sun et al., 2022). Abnormal BAs metabolism induces
M2-TAMs polarization, and the excessive production of BAs reshapes
the immunosuppressivemicroenvironment. On the contrary, (SIRT)1
promotes the polarization of Mφ toward the M1 direction, inhibiting
the progression of HCC (Zhou et al., 2019). Therefore, targeting these
processes and signaling pathways can alter the polarization process of
TAMs in the TME and reverse the immune-suppressive
microenvironment.

TAMs impact the malignant biological
behaviors of HCC

Many studies have indicated that Mφ infiltrating HCC affect the
progression of the disease by secreting cytokines, chemokines, and
matrix metalloproteases and releasing EVs containing non-coding
RNA that have an impact on HCC cells, including proliferation,

FIGURE 1
Recruitment of peripheral blood monocytes in HCC. Tumor cells secrete cytokines or chemokines such as CCL2, CXCL1, CCL14, CCL20, and CSF1,
which recruit monocytes into the TME via the CCL2/CCR2, CXCL1/CXCR2, CCL14/CCR1, and CSF1/CSF-1R axes. The apoptosis of KCs promotes the
recruitment of monocytes through the CCL2/CCR2 axis. IL-1, and TNF-α secreted by KCs act on HCC cells, promoting the secretion of IL-8 and, thus,
recruiting monocytes. IL-1β secreted by TAMs can promote HCC cells to secrete CSF1. HGF secreted by TAMs is closely related to monocyte
recruitment in HCC cells. At the same time, TAMs can also secrete CCL20 to achieve self-recruitment.
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apoptosis, angiogenesis, cancer stem cell properties, invasion and
migration abilities, liver fibrosis progression, and the immune
microenvironment. Proteins, lipids, and RNAs are contained in
exosomes, which mediate intercellular communication between
different cell types, thus affecting the progression of cancer
(Colombo et al., 2014). There have been reports that
demonstrated that some signaling pathway-mediated crosstalk
between Mφ and HCC cells cause M2-TAM polarization, leading
to HCC growth, migration and metastasis, such as IL-6/STAT3,
Wnt/β-catenin, and NF-κB (Mano et al., 2013; Yan et al., 2015; Yang
et al., 2018).

TAMs could affect the level of cancer stem
cells in HCC

The transformation of HCC cells into stem-cell like entities
is facilitated by alterations in the TME. Consequently, HCC cells
can acquire characteristics including self-renewal,

differentiative capacity, and rejection of treatment, which are
the stemness of cancerous cells (DeLuca and Saleh, 2023). The
multiplication of HCC cells is corresponding to the cancer stem
cells (CSCs). Patients with high stemness scores presented a
higher infiltration level of TAMs, implying the presence of an
immunosuppressive microenvironment (Zhang et al., 2022).
Furthermore, CSCs high-risk patients with CD133 as a
marker may exhibit immune liver homeostasis disorder (Yu
et al., 2020). In addition, there is a positive interrelation
between the infiltration of CD68+ TAMs and the number of
OV6+ CSCs or EpCAM+ CSCs in HCC (Yao et al., 2016). The
infiltration of these three types of cells is related to inferior
overall survival (OS) and progression-free survival (PFS) of
individuals with HCC (Fan et al., 2014; Wang et al., 2022).
M2-TAMs could secrete CXCL1 and CXCL2 as potential
paracrine factors. In addition to their CSCs properties,
CXCL1 and CXCL2 were found to stimulate the transcription
of BCL-2 while suppressing the transcription of BAD and BAX.
BCL-2 is an optimistic target for eliminating CSCs in HCC

FIGURE 2
Polarization of TAMs in HCC. The local cytokine environment can determine the polarization of macrophages. Based on protein expression,
secreted cytokines, and function, TAMs are typically divided into two subgroups: classical activated TAMs (M1-TAMs) and alternative activated TAMs (M2-
TAMs). HCC cells secrete Wnt3A ligands and extracellular vesicles containing miR4458H, which can induce the polarization of Mφ toward M2-TAMs. IL-
17+ cells stimulate hepatocytes to secrete CXCL9, CXCL10, and CXCL11, promoting the recruitment of CXCR3+B cells and inducing the polarization
of Mφ towards M2-TAMs through the IgG pathway. IL-12, which has anti-tumor effects, reduces secretion and indirectly promotes the polarization of Mφ
toward M2-TAMs. Conversely, when stimulated with IFN-γ, or IFN-γ integrated with LPS, Mφ become classically activated Mφ, or M1-TAMs. Additionally,
in the TME, IL-37 can induce M2-TAMs to reverse into M1-TAMs.
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(Wang et al., 2022). The targeting of CD90 by miR-125a/b was
found to have a central impact on HCC CSCs. TAMs exosomes
with reduced ranks of miR-125a and miR-125b facilitate HCC
cell multiplication and stemness (Wang et al., 2019). It was
observed that CD163+ TAMs expressed arachidonic acid 5-
lipoxygenase (5-LOX) and generated LTB4 and LTC/D/E4 in
a mouse model of HCC. These molecules were found to facilitate
oncogenesis and CSCs properties by activating the
phosphorylation of ERK1/2 and CSCs-associated genes
(Nosaka et al., 2023). In vitro research studies have confirmed
that CD44+ cells derived from both HCC specimens and cell
lines exhibit CSCs actions. Furthermore, the secretion of IL-6 by
TAMs were found to facilitate the expansion of CSCs in HCC
and boost the migration process (Mano et al., 2013; Wan et al.,
2014). It is indicated that IL-6 produced by cocultured Mφ
activated STAT3 signaling of Hep1-6 cells induced the
invasion of HCC cells in the hypoxic environment (Jiang
et al., 2018). TAMs can secrete S100 calcium-binding protein
A9 (S100A9) to induce the pro-inflammatory milieu in HCC.
This upregulation occurs in a Ca2+-dependent manner and
activates the NF-κB pathway via the advanced glycosylation
end product-specific receptor (AGER). This activation
enhances the stemness of HepG2 and MHCC-97H cells (Wei
et al., 2021). Therefore, TAMs promote their M2 polarization
and proliferation by expressing relevant proteins through
paracrine cytokines and EVs.

CSCs existing in HCC are closely bound to enhanced invasion
and migration, which contributes to the aggressive nature of this
cancer, besides unrestrained cell replication in cancer. The
releasement of TNF-α by M2-TAMs has been shown to facilitate
EMT and CSCs via the Wnt/β-catenin signaling (Chen et al., 2019).
Additionally, M2-TAMs secrete CCL17 to enhance the stemness
and epithelial–mesenchymal transition (EMT), as well as TGF-β1
and Wnt/β-catenin signaling transduction of HCC cells (Zhu et al.,
2016). In addition to cytokines, EVs from M2-TAMs could also
affect the CSCs-like characteristics and invasive migration ability of
HCC cells (Liang et al., 2016; Cheng et al., 2022). The miR-17-
92 cluster, deriving from EVs of M2-TAMs, was observed to disrupt
balance in the TGF-β1/bone morphogenetic protein (BMP)-
7 signaling in cancerous cells. This was achieved by inhibiting
the post-translational ubiquitylation of activin A receptor type 1
(ACVR1) and inducing the post-transcriptional silencing of TGF-β
type II receptor (TGFBR2) through the targeting of Smad
ubiquitylation regulatory factor 1 (Smurf1). Creating a
disturbance in the TGF-β1/BMP-7 pathways can effectively
enhance the incursion and CSCs properties of malignant cells by
upregulating the inhibitor of differentiation 1 (ID1) expression
(Ning et al., 2021). Specifically, TAMs facilitate the development
of CSC-like characteristics through TGF-β1-induced EMT, and they
could potentially aid in the study of HCC prognosis (Fan et al.,
2014). Targeting CSCs may, therefore, be a promising strategy for
preventing HCC metastasis and improving patient outcomes.

TAMs affect the proliferation of HCC cells

Long non-coding RNAs (lncRNAs) are a type of RNA that
exceed 200 bases in length (Han et al., 2019). TAMs secrete

exosomes containing M2 Mφ polarization associated lncRNA
(lncMMPA). In HCC cells, lncMMPA has been found to interact
with miR-548s, increasing the mRNA level of ALDH1A3, and
induce cell glycolysis and proliferation (Xu et al., 2022). HBeAg,
an antigen associated with HBV, resulted in an increased level of
lncRNA MAPKAPK5_AS1 (MAAS) of M2-TAMs via boosting the
N6-methyladenosine adjustment of MAAS through the action of
methyltransferase-like 3. M2 macrophage-derived exosomes
containing MAAS facilitated the stimulation of cyclin-dependent
kinase 4 (CDK4), CDK6, and S-phase kinase-associated protein
2 transcription that were induced by the MYC proto-oncogene
(c-Myc), via sustaining the c-Myc protein, leading to the facilitation
of G1/S transition. The multiplication of HBV-positive HCC cells
was attributed to this phenomenon (Tao et al., 2022). The levels of
exosomes containing microRNA (miR)-375 derived from TAMs
subjected to IL-2 (ExoIL2−TAM) were higher than those TAMs not
subjected to IL-2 (ExoTAM). These exosomes could decrease HCC
cells multiplication and metastasis and facilitate apoptosis both in
vivo and in vitro (Chen et al., 2022).

Promoting M1-TAMs polarization increased propensity for cell
killing and phagocytosis (Lujambio et al., 2013). Nonetheless, a
single investigation revealed that M1-TAMs augmented the NF-κB
p-p65/p65 ratio in HCC cells, thereby facilitating the nuclear
translocation of p65. This, in turn, led to an elevated amount of
malignant liver cells in the phases of the cell cycle known as S and
G2/M, as well as the upregulation of CDK1, CDK2, and cyclin
D1 expression. These studies indicated that M1-TAMs increased
tumor cell proliferation. It is noteworthy that inhibiting the nuclear
translocation of p65 brought on the reversal of alterations in the cell
cycle, anti-apoptotic capacity, and protein expression induced by
M1-TAMs of HCC (Sharen et al., 2022).

The M2-TAMs overexpressed IL-17 in HCC, particularly upon
oxaliplatin treatment. Activation of the IL-17 receptor and
lysosome-associated membrane protein 2A is crucial for
chaperone-mediated autophagy induction by IL-17 in HCC cells.
This, in turn, hinders apoptotic processes in response to oxaliplatin
treatment (Guo et al., 2017). A significant increase in T cell
immunoglobulin and mucin-domain containing protein-3 (Tim-
3) expression was observed in TAMs of HCC patients. By activating
NF-κB in Mφ, Tim-3 promotes IL-6 releasing, and the
multiplication of liver cancer cells is, therefore, enhanced.
However, receptor interacting protein 140 (RIP140), which is
expressed in TAMs, exerts the opposite effect (Yan et al., 2015;
Hu et al., 2017). STAT3 phosphorylation promoted cell proliferation
and migration after IL-6 stimulation (Mano et al., 2013).
Additionally, the progression of tumors in relation to alcohol
consumption has been linked to a crucial mechanism involving
IL6-STAT3 signaling (Zhao et al., 2019). The production of
CXCL8 by TAMs resulted in an increase in the miR-17 cluster,
comprising miR-18a and miR-19a. These two miRNAs were
observed to stimulate tumor metastasis and cell proliferation in
HCC and were related to elevated metastasis and prolonged survival
in HCC patients during clinical investigations (Yin et al., 2017).
According to a research study, the creation of insulin-like growth
factor-1 (IGF-1) by M2-TAMs could boost the expansion and
spread of HCC cells (Sprinzl et al., 2015).

Dectin-3, a C-type lectin receptor (CLR), is responsible for
inducing the apoptosis of tumor cells and inhibiting their
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proliferation by regulating the glycolysis of Mφ. Mφ deficient in
Dectin-3 were found to significantly facilitate the proliferation of
H22 cells and suppress their apoptosis (Qu et al., 2022). Releasing
complement C1q from Mφ present in the inflammatory milieu was
regarded as an unorthodox mechanism for activating the β-catenin
pathway in periportal hepatic progenitor cells, which results in the
enlargement and de-differentiation (Ho et al., 2020). The finding
highlights the function of Mφ in triggering the pathway activation in
the hepatic progenitor cells. TAMs induce proliferation of HCC cells
through these mechanisms. Targeting these pathways or inhibiting
the secretion of TAMs cytokines and exosomes is an effective way to
suppress the proliferation of HCC cells.

TAMs have the potential to influence
invasion, migration, and angiogenesis
in HCC

EMT is responsible for inducing a temporary and reversible loss
of differentiation in epithelial cells, leading to the development of a
mesenchymal-like or mesenchymal phenotype (Giannelli et al.,
2016). This allows them to detach from the original tumor and
migrate to distant locations, leading to metastasis. Activated Mφ
promotes the invasion, migration, and angiogenesis of HCC (Wu
and Zheng, 2012). There are multiple signaling pathways that
regulate EMT, like TGF-β and Wnt/β-catenin, and entail the
activation of transcriptional regulators, namely, Snail, Slug, and
Twist. Low expression of CD86+, overexpression of CD206+, and
oncoprotein-induced transcript 3 (OIT3) in TAMs are significantly
associated with tumor invasion abilities such as multifocal tumors
and late-stage tumor lymph node metastasis (TNM) (Jiang et al.,
2021; Yang et al., 2022). M2-TAMs can facilitate the process of EMT
and proliferation in liver cancer (Li et al., 2018b; Xiao et al., 2018;
Jiang et al., 2021), while M1-TAMs act opposite to the action of M2-
TAMs (Zhang et al., 2020; Chen et al., 2021). Of note, CD68+ human
leukocyte antigen (HLA)-DR+ M1-TAMs promoted carcinoma cell
movement through the activation of NF-κB/focal adhesion kinase
(FAK) signaling (Wang et al., 2014). During the polarization process
of U937 Mφ from the M2-TAM to M1-TAM type, lnc-Ma301 was
found to be overexpressed. This overexpression led to an interaction
between lnc-Ma301 and caprin-1 and then ultimately inhibited the
metastasis of HCC and EMT through the AKT/ERK1 signaling (Luo
et al., 2021). M2-TAM leads to a significant increase in expressing
the mesenchymal-associated markers N-cadherin and vimentin of
malignant liver cells, along with Snail, Twist, and ZEB1. At the same
time, it decreases the ratio of E-cadherin/N-cadherin in cancerous
cells (Zhu et al., 2015; Li et al., 2019; Jiang et al., 2021). Carbonic
anhydrase XII (CA12) expressed in TAMs stimulates the production
of significant quantities of CCL8, which promoted cancer cell EMT
(Ning et al., 2022). Additionally, M2-TAMs promote the process of
EMT through paracrine releasing vascular endothelial growth factor
(VEGF), IL-10, and CCL18 (Wang et al., 2017; Li et al., 2018c; Feng
et al., 2018). The TGF-β1 secreted by TAMs initiated activate Gli2/
IGF-II/ERK1/2 pathway in HCC cells (Liu et al., 2020). In addition,
TGF-β1 inhibiting HCC miR-28-5p expression could be a vicious
cycle (Zhou et al., 2016). The aforementioned signals were
demonstrated to stimulate the multiplication, invasiveness, and
migratory potential of HCC cells. M2-TAMs facilitated the

attaching Smad2/3 to the miR-362-3p promoter, bringing about
an upregulation of miR-362-3p, which was attributed to the release
of TGF-β. The maintenance of EMT was regulated by miR-362-3p
through the modulation of CD82, a significant member of the
tetraspanin family (Zhang et al., 2019). M2-TAMs have been
shown to release IL-1β, which stimulates the production of HIF-
1α in cancerous cells through cyclooxygenase-2 (COX-2) (Zhang
et al., 2018; Zhang et al., 2018; Gao et al., 2023). Additionally, IL-1
was shown to facilitate EMT in HCC cells via activating the IL-1R1/
IκB/IKK/NF-κB pathway (Wang et al., 2020; Meng et al., 2022).
Inflammatory cytokines secreted by activated macrophages can
cause a reduction of E-cadherin expression in HCC. This is
achieved through activating NF-κB/Slug signaling and
destabilizing the E-cadherin/β-catenin complex. The instability of
the E-cadherin/β-catenin complex was caused by phosphorylating
β-catenin and E-cadherin with tyrosine kinases c-Src and EGFR (Lin
et al., 2006; Wang et al., 2014). TAMs secreted CXCL12 to bind with
CXCR4 of HCC cells, activating the ERK and AKT pathways,
promoting HCC proliferation and metastasis (Song et al., 2021).
Activated macrophages, known as TAMs, can trigger the EMT of
HCC cells. This process is mediated by the JAK2/STAT3/Snail
pathway, which is activated by the inflammatory cytokine IL-8
(Fu et al., 2015). The diminishment in the G protein-coupled
receptor kinase 2 (GRK2) expression of M2-polarized
macrophages, which are stimulated by β2-adrenoceptors (β2-
ARs), induces the activation of the cyclic adenosine
monophosphate (cAMP)/protein kinase A/cAMP response
element binding protein and cAMP/IL-6/STAT3 signaling
pathways. This decrease in GRK2 expression contributes to the
release of associated cytokines, such as VEGF, MMP-9, and IL-6.
Ultimately, this leads to the enhancement of malignant biological
activity in cancer cells (Wu et al., 2019). MiR-15b expression was
upregulated in M2-TAMs and transferred to HCC cells through
EVs. This transfer of miR-15b in EVs suppressed the activation of
the Hippo pathway through LATS1. LATS1-mediated
ubiquitination and degradation of YAP1 were suppressed. The
displacement of YAP1 to the nucleus stimulates the upregulation
of oncogenes, leading to increased multiplication, invasion, and
propagation of neoplastic liver cells (Li et al., 2021). The interplay
between TAMs and EMT is intricate and can facilitate the
advancement and metastasis of cancer. Targeting these processes
can be a hopeful approach for cancer treatment.

In well-differentiated HCC, there exists a correspondence
between the number of TAMs and tumor blood vessels (Fujita
et al., 2014; Wang et al., 2020). TAMs are linked to the
promotion of neovascularization, and the count of tumor
micro-vessels (MVs) is related to carcinoma invasion and
metastasis (Peng et al., 2005). One mechanism is the
production of MMP-9 by TAMs, which contributes to tumor
angiogenesis, extracellular matrix (ECM) remodeling, and
cancer cell invasion through the ECM, ultimately promoting
cancer cell metastasis (Wu et al., 2019; Wang et al., 2020). VEGF
is generally regarded as one of the most significant angiogenic
factors released by Mφ (Zhou et al., 2017). Abnormal
angiogenesis was linked to the activation of platelets by
tissue factor (TF) secreted by invading Mφ and endothelial
cells. Tumoral angiogenesis is significantly influenced by HIF-
1α, VEGF, and TF (Dupuy et al., 2003; Zang et al., 2018). In
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tumor tissues, the presence of M-CSF, also known as CSF1,
promotes carcinoma growth and angiogenesis by a paracrine
effect on the CSF1R (Awasthi et al., 2023). The absence of
functional polarization, as indicated by the M0 signature and
the heightened presence of CCL2 receptors such as CCR2 and
CX3CR1, as well as pro-angiogenic factors, were observed. The
M0 signature was found to be linked with adverse clinical
results, while the expression of CCL2 was linked to YAP and
the formation of vascular networks (Thomann et al., 2021). The
promotion of TAMs on EMT and angiogenesis are all important
processes in carcinoma growth and metastasis, and
understanding the interactions between these processes may
lead to the emergence of novel cancer treatments.

TAMs possess the capability to impact
hepatic fibrosis in HCC

Hepatic stellate cells are responsible for hepatic fibrosis by depositing
extracellular matrix proteins. These cells are activated, in part, by TAMs.
Exacerbation of liver fibrotic changes, as well as induction of neighboring
epithelial cells transformed intoHCC, occurs when the aging response in
hepatic stellate cells, which relies on p53, is eliminated (Lujambio et al.,
2013). Long-term alcohol abuse facilitates the TAMs infiltration inHCC,
exacerbating inflammation, fibrosis, and EMT in the disease process of
HCC (Yan et al., 2017). In vitro experiments have demonstrated that
glucagon-like peptide-1 (GLP-1) can suppress the proinflammatory
characteristics of Mφ (Kawakubo et al., 2020). M2-TAMs engage in
the procedure of hepatic fibrosis in HCC advancement and aremanaged
via the PI3K-AKT-mTOR signaling (Zhang et al., 2022). Activation of
the Notch signaling pathway in Mφ promotes hepatic fibrosis by
upregulating NF-κB via cylindromatosis (CYLD) (He et al., 2015). In
TAMs with autophagy defects, mitochondrial ROS enhances the NF-κB
signaling and increases the releasement of IL-1α/β. NOX enzymes were
the principal source of ROS. NOX1 and secretion of IL-1α/β and TNF-α
facilitated the advancement of hepatic fibrosis and inflammation
(Amano et al., 2017; Sun et al., 2017; Vandierendonck et al., 2021).
Targeting the phenotype of TAMs and the cytokines they secrete is the
key to blocking the progression of the fibrotic liver into HCC (Table 1).

Interplay between TAMs and other immune
cells reshapes the immune
microenvironment in HCC

The TME contains various immune cells, such as TAMs, T cells,
B cells, and NK cells, whose secretion of cytokines leads to cellular
interactions and ultimately reshapes the immune
microenvironment, affecting the progression of the tumor. The
TME often experiences hypoxia, a common phenomenon in
various cancer types. This hypoxia can negatively impact
cytotoxic T cells’ actions and promote recruiting regulatory
T cells (Tregs), ultimately inducing a reduction in the tumor’s
immunogenicity (Wu et al., 2022). In hypoxic tumor
microenvironments, Tregs can impair the function of cytotoxic
T cells. This is due to the induction of TREM1 in TAMs by HIF-
1α under hypoxic conditions. The increase in TREM1 activates the
ERK/NF-κB pathway as a reaction to oxygen starvation and cancer-

specific metabolites, resulting in the increased expression of CCL20.
This leads to the accumulation of CCR6+Foxp3+ Tregs (Wu et al.,
2019). CD69+ T cells could trigger TAMs to produce indoleamine
2,3-dioxygenase (IDO), while TAMs can secrete IL-12 to activate
T cells. Furthermore, IL-12 can also enhance the expression of IDO,
which subsequently brings about Tregs expansion and the
suppression of T cells’ reactions and proliferation (Zhao et al.,
2012; Ye et al., 2016). The presence of CD74+ Mφ in HCC was
discovered to have a correlation with more CD8+ cytotoxic T
lymphocyte (CTL) infiltration, which displayed improved effector
capabilities (Xiao et al., 2022). CD169+ Mφ were observed to
significantly augment the multiplication, cytotoxic potential, and
cell secretory product generation of CD8+ T cells in a manner relying
on CD169. The downregulation of CD169 expression in these cells is
linked to autocrine TGF-β secretion. This is opposite to the survival
prognosis tendency of the entire amount of CD68+ macrophages
(Zhang et al., 2016). In non-responders, the TME is typical to the
close proximity of CD8+ T cells and Arg1hi TAMs, rather than CD4+

T cells (Mi et al., 2022). M2-TAMs suppress the activity of NK cells
(Xu et al., 2021).

As a type of co-inhibitory molecule, PD-L1 can bind to the
programmed death-1 (PD-1) receptor on the surface of T cells to
regulate immune responses and inhibit immune cells from killing
tumor cells, and is closely related to T-cell exhaustion and tumor
immune evasion. PD-L1 can be expressed in tumor cells, TAMs, and
vascular endothelial cells, but PD-L1 expression was predominantly
witnessed on CD68+ TAMs rather than HCC cells in the TME.
Additionally, high expression of PD-L1 was detected on TREM-1+

TAMs (Wu et al., 2019; Park et al., 2021). Abnormal levels of
cytokines such as HGF, VEGF, TNF-α, and IL-6 are often detected in
the serum of HCC patients and are closely related to liver cancer
prognosis. Among them, elevated levels of IL-6 in serum lead to the
downregulation of protein tyrosine phosphatase receptor O
(PTPRO) expression in monocytes and Mφ. A depletion of
PTPRO mediates high expression of PD-L1 in monocytes and
Mφ through the JAK2/STAT1 and JAK2/STAT3/C-MYC
pathways (Zhang et al., 2020). Changes in the expression of
enzymes related to abnormal glycolipid metabolism can also
affect the expression of PD-L1 in TAMs. The overexpression of
key glycolytic enzyme PFKFB3 in themonocytes of the TME induces
high expression of PD-L1 through mediation of the NF-κB signaling
pathway (Chen et al., 2019). Monocytes upregulate IL-10 secretion
through the expression of lipid-binding protein FABP5 and
inhibition of the PPARα pathway, and IL-10 can promote the
expression of PD-L1 in Tregs and TAMs (Liu et al., 2022),
ultimately resulting in immunosuppression. Abnormal
metabolism of tumor cells can lead to increased secretion of IgA.
Stimulation of IgA signaling induces M2 polarization and
upregulates PD-L1 expression through YAP, leading to reduced
CD8+ T-cell infiltration (Sung et al., 2022). Upregulating PD-L1 in
TAMs was also found to be mediated by STAT3, which is induced by
tumor-derived Sonic hedgehog (Shh) signaling (Petty et al., 2021).
Tumor cells activate the hedgehog (Hh) signaling pathway to
suppress Mφ to produce CXCL10 and CXCL9 (Petty et al.,
2019). CXCL10 secreted by Mφ attaches to CXC motif
chemokine receptor (CXCR)3 on B cells, causing them to
differentiate into IgG-producing plasma cells. IgG stimulates Fc
receptors onMφ, which in turn release cell secretory product like IL-
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TABLE 1 Mechanisms of TAMs influencing the progression of HCC. (↑ means promoting the process to promote HCC progression, and ↓ means inhibiting HCC
progression by inhibiting the process.)

Effect on HCC progression Mechanisms in TAMs Mechanisms in carcinoma cells

Cancerous cell stemness↑ Secretion of CXCL1 and CXCL2 Upregulation of the expression of BCL-2 and downregulation of BAX and BAD

Cancerous cell stemness and proliferation↑ Expression of 5-LOX, production of LTB
and LTC/D/E

Activation of ERK1/2

Cancerous cell stemness, proliferation,
migration, and invasion↑

Secretion of IL-6 Activation of STAT3

Cancerous cell stemness↑ Secretion of S100A9 Activation of NF-κB

Cancerous cell stemness, migration, and
invasion↑

Secretion of TNF-α Activation of Wnt/β-catenin

Cancerous cell stemness, migration, and
invasion↑

Secretion of CCL17 Activation of TGF-β1 and Wnt/β-catenin

Cancerous cell stemness, migration, and
invasion↑

Secretion of exosome contained miR-
17-92

Targeting Smurf1to break the balance of TGF-β1/BMP-7

Cancerous cell proliferation↑ Secretion of exosome contained MAAS Stability of c-MYC, transcriptional activation of CDK4, CDK6, and S-phase kinase
associated protein 2, and facilitation of G1/S transition

Cancerous cell proliferation ↑or↓ - Upregulation of the NF-κB p-p65/p65 ratio and the expression of CDK1, CDK2,
cyclin D1, or inhibition of nuclear translocation of P65

Cancerous cell proliferation↑ Secretion of IL-17 Activation of IL-17R and lysosome-associated membrane protein 2A

Cancerous cell proliferation, migration, and
invasion↑

CXCL8 Upregulation of the miR-17 cluster (miR-18a and miR-19a)

Cancerous cell proliferation↑ IGF-1 -

Cancerous cell proliferation↑ Dectin-3 regulating the glycolysis of
macrophages

-

Cancerous cell proliferation↑ Secretion of complement C1q Activation of Wnt/β-catenin

Cancerous cell motility↑ - Activation of NF-κB/FAK

Cancerous cell invasiveness and migratory
potential↓

Overexpression of lnc-Ma301 Inhibition of AKT/ERK1

Cancerous cell invasiveness and migratory
potential↑

High expression of CA12 and secretion
of CCL8

Activation of EMT

Cancerous cell invasiveness and migratory
potential↑

Secretion of VEGF, IL-10, and CCL18 Activation of EMT

Cancerous cell invasiveness and migratory
potential↑

Upregulation of the expression of
TGF-β1

Activation of the Gli2/IGF-II/ERK1/2 pathway

Cancerous cell proliferation, invasiveness, and
migratory potential↑

Secretion of TGF-β1 Inhibition the miR-28-5p expression

Cancerous cell invasiveness and migratory
potential↑

Secretion of TGF-β High expression of miR-362-3p maintained EMT

Cancerous cell invasiveness and migratory
potential↑

Secretion of IL-1β Upregulation of HIF-1α facilitated EMT

Cancerous cell invasiveness and migratory
potential↑

Secretion of IL-1 Stimulation of IL-1R1/IκB/IKK/NF-κB facilitated EMT

Cancerous cell invasiveness and migratory
potential↑

Secretion of inflammatory cytokines Activation of NF-κB/Slug and destabilization of the E-cadherin/β-catenin
complex

Cancerous cell proliferation and migratory
potential↑

Secretion of CXCL12 Activation of ERK and AKT

Cancerous cell proliferation and tumor
angiogenesis↑

Secretion of CSF1 Activation of CSF1/CSF-1R

Cancerous cell proliferation, invasiveness, and
migratory potential↑

Secretion of EVs contained miR-15b Inhibition of the Hippo pathway by targeting LATS1

Tumor angiogenesis↑ Secretion of MMP-9 Remodeling ECM

(Continued on following page)
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10, IL-6, and CCL20, causing a diminish in the recruitment and
response of antineoplastic CD8+ effector cells (Wei et al., 2019). The
secretion of CXCL9 by TREM2+ TAMs was reduced, while Galectin-
1 (Gal-1) secretion was increased. This resulted in PD-L1 highly
expressing in vascular endothelial cells, which impeded the

recruiting and infiltration of CD8+ T cells into the TME (Tan
et al., 2023). The high levels of DNA damage in HCC cells
activate the cyclic GMP–AMP synthase (cGAS)–stimulator of
interferon genes (STING) signaling, leading to PD-L1 expression
in M1-TAMs through the STING-IRF3-STAT1 pathway. This

TABLE 1 (Continued) Mechanisms of TAMs influencing the progression of HCC. (↑ means promoting the process to promote HCC progression, and ↓ means
inhibiting HCC progression by inhibiting the process.)

Effect on HCC progression Mechanisms in TAMs Mechanisms in carcinoma cells

Tumor angiogenesis↑ Secretion of CCL2 YAP protein

Hepatic fibrosis↑ Downregulation of the expression of
CYLD

Activation of NF-κB

Hepatic fibrosis↑ Secretion of IL-1α/β and TNF-α -

FIGURE 3
Interplay between TAMs and other immune cells reshapes the immune microenvironment in HCC. TREM1+TAMs secrete CCL20 to recruit
CCR6+Foxp3+ Tregs and exert immunosuppressive function. CD69+ T cells can stimulate TAMs to produce IDO, and TAMs can secrete IL-12 to activate
T cells. In addition, IL-12 can enhance IDO expression, leading to Treg expansion and inhibition of T-cell response and proliferation. CD74+ TAMs induce
stronger effector function in CD8+ CTLs. CD169+ TAMs significantly enhance the proliferation, cytotoxic potential, and secretion of CD8+ T cells in a
CD169-dependent manner. M2-TAMs can to inhibit NK-cell activity. Monocytes-secreted IL-10 promotes PD-L1 expression in Tregs and TAMs. TAMs
could secret CXCL9 and CXCL10. CXCL10 stimulates CXCR3+B cells to differentiate into IgG-producing plasma cells. IgG stimulates Fc receptors on
TAMs, leading to the secretion of IL-10, IL-6, and CCL20 to inhibit the recruitment and function of CD8+ T cells.
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promotes immunosuppression, facilitating oncogenesis and
malignant development. Additionally, M1-TAMs with a
stimulated cGAS–STING signaling can enlist T lymphocytes via
the STING-IRF3 signaling (Ma et al., 2023). The IL-27 secreted by
Mφ leads to the phosphorylation of STAT1 and reproduces an IFN-
γ-like reaction in cancer cells, which is similar to the effect of IFN-γ,
leading to the upregulation of TAP2 and MHC-I proteins, thereby
increasing the immune clearance rate. Simultaneously, it induces
T-cell exhaustion by promoting PD-L1 expression and IDO secretion
(Rolvering et al., 2018). Furthermore, as antigen-presenting cells, the
infiltration of MHC IIlow TAMs is positively correlated with the
progression of HCC (Wang et al., 2011). The overexpression of PD-
L1 in HCC is also related to the inhibition of PD-L1 ubiquitination and
degradation processes in tumor cells and TAMs. Golgi membrane
protein 1 (GOLM1) in HCC cells inhibits the ubiquitination and
degradation of PD-L1 by COP9 signalosome 5 and promotes the
secretion of EVs containing PD-L1 in HCC cells, upregulating the
expression of PD-L1 in TAMs (Chen et al., 2021). The lack of GSK3β in
TAMs can also inhibit the ubiquitination and degradation of PD-L1
(Sun et al., 2022). On one hand, high expression of PD-L1 can reshape
the immune inhibitory microenvironment. However, on the other
hand, increased levels of PD-L1 expression can facilitate the
treatment of PD-1 inhibitors (Figure 3).

Conclusion

TAMs originate from peripheral blood monocytes, M-MDSCs,
and KCs. The cytokines and EVs secreted by tumor cells, stromal cells
including TAMs, and other interstitial cells within the tumor tissue
can induce the recruitment of peripheral monocytes. Meanwhile,
TAMs in the tumor tissue can also increase their infiltration by
proliferation. Altered glucose and lipid metabolism in HCC and
cytokines secreted by tumor cells induce Mφ polarization and
functional phenotype changes. However, due to the influence of
the TME, TAMs often exert immunosuppressive functions,
inducing the occurrence of malignant behavior in HCC. TAMs
directly activate or inhibit the NF-κB, IL-6/STAT3, Wnt/β-catenin,
TGF-β1/BMP, and ERK1/2 signaling pathways in HCC cells by
producing cytokines and exosomes and overexpressing related
proteins, affecting carcinoma cell proliferation, invasion and
migration ability, angiogenesis, and liver fibrosis progression, thus
affecting the progression of HCC. Additionally, the coordination

between TAMs and immune cells reshapes the immune-
suppressive microenvironment within cancer. Among them,
elevated PD-L1 expression in TAMs suppresses the stimulation of
CD8+ T cells, induces CTL exhaustion, and promotes Treg
recruitment, which is one of the key mechanisms for inhibiting
CD8+ T-cell killing of HCC cells. The resistance mechanism of the
small-molecule targeted drug sorafenib used in HCC treatment is also
linked with TAMs. Therefore, focusing on the mechanism of TAMs
interacting with tumor and immune cells in HCC helps to target
relevant pathways to inhibit the progression of HCC.
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