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Ewing sarcoma (ES) is the second most common malignant bone tumor in 
children and has a poor prognosis due to early metastasis and easy recurrence. 
Necroptosis is a newly discovered cell death method, and its critical role in tumor 
immunity and therapy has attracted widespread attention. Thus, the emergence 
of necroptosis may provide bright prospects for the treatment of ES and deserves 
our further study. Here, based on the random forest algorithm, we  identified 
6 key necroptosis-related genes (NRGs) and used them to construct an NRG 
signature with excellent predictive performance. Subsequent analysis showed 
that NRGs were closely associated with ES tumor immunity, and the signature 
was also good at predicting immunotherapy and chemotherapy response. Next, a 
comprehensive analysis of key genes showed that RIPK1, JAK1, and CHMP7 were 
potential therapeutic targets. The Cancer Dependency Map (DepMap) results 
showed that CHMP7 is associated with ES cell growth, and the Gene Set Cancer 
Analysis (GSCALite) results revealed that the JAK1 mutation frequency was the 
highest. The expression of 3 genes was all negatively correlated with methylation 
and positively with copy number variation (CNV). Finally, an accurate nomogram 
was constructed with this signature and clinical traits. In short, this study 
constructed an accurate prognostic signature and identified 3 novel therapeutic 
targets against ES.
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1. Introduction

Ewing sarcoma (ES) is the second most frequent aggressive bone or soft tissue tumor in 
children and is characterized by early metastatic spread, a high recurrence rate, and a poor 
5-year survival rate. Now, multimodal treatment of ES, including surgical resection, local 
radiotherapy, and intensive multi-agent chemotherapy, has been established (1). Despite 
comprehensive treatment, 30–40% of patients experience recurrence or metastasis (2). 
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Furthermore, due to the lack of accurate prognostic statistical tools 
(3), diagnosing and treating ES patients remains difficult. Therefore, 
it is urgent for us to develop novel, effective treatment strategies and 
construct a reliable prognostic signature to improve the prognosis of 
ES patients.

Necroptosis is a caspase-independent and regulated cell death 
mechanism which primarily mediated by receptor-interacting 
kinase (RIPK) and mixed lineage kinase domain-like protein 
(MLKL) that has been connected to the formation and progression 
of many cancers and inflammatory illnesses (4–6). One study 
revealed that necroptosis might trigger and amplify antitumor 
immunity in malignancy immunotherapy (7). And another study 
also reported that induction of other cell death mechanisms, such 
as necroptosis, is gradually becoming a promising therapeutic 
strategy against malignancy (8). However, a study also reported that 
many cancer cells could induce endothelial necroptosis to facilitate 
extravasation and metastasis (9). These pieces of evidence suggest 
that necroptosis plays a complex role in cancer development. Thus, 
necroptosis-related genes (NRGs) may play an important role in the 
prognosis of ES. However, few studies have systematically used 
NRG signatures to predict the prognosis of ES patients and explored 
novel ES targets derived from NRGs. We conducted this research to 
address the aforementioned issue.

In the current study, we first developed a novel prognostic NRG 
signature to predict the prognosis of ES patients. Subsequent 
analyses revealed that the signature performed exceptionally well 
in terms of prognosis and immunotherapy and chemotherapy 
response. Meanwhile, 3 genes were identified as potential 
therapeutic targets and put into the Cancer Dependency Map 
(DepMap, https://depmap.org/portal/) and the Gene Set Cancer 
Analysis (GSCALite, http://bioinfo.life.hust.edu.cn/GSCA/) 
databases for further analysis. Finally, an accurate nomogram was 
also developed to assist clinicians in determining the prognosis of 
ES patients.

2. Materials and methods

2.1. Data collection and preprocessing

The train cohort (GSE17679 dataset) and validation cohort 
(GSE63157 dataset) were obtained from the Gene Expression 
Omnibus (GEO, www.ncbi.nlm.nih.gov/geo/). The list of NRGs was 
collected from several published articles (4, 7, 10) and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG, https://www.kegg.jp) 
database. Both cohorts’ clinical data and NRGs expression matrix are 
located in Supplementary File 1.

2.2. Cell lines and cell culture

The human ES cell line (A673) and human bone marrow 
stroma cell line (HS5) were obtained from the America Type 
Culture Collection (ATCC, United States). And we cultured these 
cells in DMEM (HyClone; Cytiva) supplemented with 10% FBS 
(Shanghai ExCell Biology, Inc.) and 1% penicillin–streptomycin 
(100 IU/mL, Hyclone, Cytiva) in a humidified atmosphere with 
5% CO2 at 37°C.

2.3. Construction of a prognostic NRG 
signature

Here, the univariate Cox analysis was used for preliminary 
screening, and NRGs with a value of p <0.05 were considered 
prognosis-related candidate genes. The random survival forest 
algorithm was then used to reduce the dimension of candidate genes 
by variable importance (VIMP) and minimal depth (MD). VIMP is a 
key index for random survival forest to evaluate the importance of 
variables, which is defined as the difference between the prediction 
error rate of the new model and the old model after replacing a variable 
with an arbitrary value, so the higher the VIMP value, the stronger the 
importance of the variable (11). MD is also a variable importance 
evaluation index. In the random forest, the closer the variable node is 
to the root node, the higher the value of the variable in the prediction, 
so the smaller the MD, the higher the variable importance (12). Finally, 
we utilized multivariate Cox analysis to screen out key genes from the 
top 10 genes in both VIMP and MD, and an optimal prognostic NRG 
signature was established based on key genes.

2.4. Validation of the prognostic NRG 
signature

Each patient was given a risk-score and divided into high-risk and 
low-risk groups based on the median risk-score. The calculation 
formula for risk-score is as follows (ho(t) is the model baseline risk 
coefficient, β is the risk coefficient of different genes calculated by the 
model, and X is the gene expression level):

 
" "log exprisk-score h t X X Xn n= ( )∗ + +…+( )( )0 1 1 2 2β β β

Then, we analyzed differences in survival time, survival status, and 
expression of key genes among patients in different risk groups. 
Additionally, the Kaplan–Meier (K-M) survival analysis and the receiver 
operating characteristic (ROC) curve were performed to validate the 
accuracy of the signature. Finally, to evaluate the signature’s generalization 
ability, we used the other independent dataset, GSE63157, as validation 
data and followed the same procedure as described above.

2.5. Functional enrichment and GSEA 
analysis

To investigate the potential biological functions of NRGs in ES, 
we  used the “clusterProfiler” R package (13) to perform Gene 
Ontology (GO) and KEGG enrichment analysis. Meanwhile, gene-set 
enrichment analysis (GSEA) was performed to investigate the 
difference in activated/inactivated biological pathways between the 
high- and low-risk groups.

2.6. Immunotherapeutic and 
chemotherapeutic response prediction

Immunotherapy has always been a hot topic in cancer treatment. 
Hence, we  explored the potential of the signature in clinical 
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immunotherapeutic response prediction. To explore the differences in 
immune microenvironment between high- and low-risk groups, 
we used the single-sample gene-set enrichment analysis (ssGSEA) 
algorithm to quantify the extent of infiltration of 28 immune cell 
species in each sample. The marker gene list was collected from a 
published article (14). Meanwhile, we explored the differences in the 
expression levels of eight recognized immune checkpoints between 
the high- and low-risk groups (15). To further investigate the 
difference in response to immunotherapy between distinct risk 
groups, one immunotherapeutic cohort from the “IMvigor210” R 
package, which investigated the efficacy of anti-PD-L1 antibody in 
patients with advanced urothelial cancer, was also included in our 
study as an external validation dataset.

As we know, chemotherapy is the most conventional treatment for 
ES. Hence, we  also evaluated the predictive performance of the 
signature in terms of clinical response to 5 commonly used 
chemotherapeutic agents for ES. The “oncoPredict” is an R package 
(16) that predicts the half-maximal inhibitory concentration (IC50) 
of different chemotherapy drugs in each ES patient using the Cancer 
Therapeutics Response Portal (CTRP) and the Genomics of Drug 
Sensitivity in Cancer (GDSC) databases, allowing researchers to 
investigate the sensitivity differences of ES’s classic chemotherapeutics 
drugs in different risk groups.

2.7. Comprehensive analysis of key genes

To further explore these key genes, we performed a comprehensive 
analysis. First, we explore the difference in the expression level of each 
gene in tumor and normal tissue, as well as in the high- and low-risk 
group. Next, we separately performed correlation analysis between key 
genes, immune checkpoints, and clinical features, and the high 
prognosis value genes were performed for further analysis. Based on 
the median expression level of these genes, we divided the patients 
into high and low expression groups to perform a K-M analysis. 
Meanwhile, we explore whether these molecules are essential for ES 
cell line growth through the DepMap, a resource of genome-wide 
CRISPR-Cas9 knockout screens in hundreds of cancer cell lines. 
Finally, in order to further explore the function of these genes in 
pan-cancer, we  utilized the GSCALite database (17) to perform 
genome-wide and pathway activity analysis. This web server is a tool 
for gene set cancer analysis and contains data from 33 types of cancers 
in the TCGA database, which provides researchers with a flexible way 
to analyze the complicated relationship between a gene set and single 
or multiple cancer types.

2.8. Real-time quantitative PCR (RT-qPCR)

In order to verify the accuracy of the analytical results, we carried 
out RT-qPCR experiments. Total RNA was isolated after 48 h of cell 
culture using the TRIzol (Invitrogen, United States) according to the 
manufacturer’s protocol. Reverse transcribed into cDNA using a 
reverse transcriptase kit (TaKaRa, Japan), and the expression levels of 
key genes were amplified by real-time fluorescence quantitative PCR 
(Bio-Rad, United States). GAPDH is the internal reference, with 2-ΔΔ CT 
value indicating the relative expression level of target gene mRNA. All 
the primer sequences are shown in Table 1.

2.9. Construction and evaluation of the 
nomogram

At the end of the study, we performed univariate and multivariate 
Cox regression analyses on the clinical data (including age, gender, 
and state) and risk-score to evaluate whether the signature could 
be utilized as an independent prognostic factor. Then, based on these 
variables, we constructed a predictive nomogram using the “rms” R 
package and evaluated the accuracy of the nomogram by creating a 
calibration curve.

2.10. Statistical analysis

Statistical analyses were conducted using R (version 4.03) and 
GraphPad Prism Software (version 8.2.1, United States). The student 
T-test and Wilcoxon signed-rank test were performed to compare 
group differences. K-M survival analysis was used to evaluate the 
survival differences between stratified patients. The area under the 
curve (AUC) was calculated from the ROC curve using the ‘timeROC’ 
R package. A value of p < 0.05 was considered statistically different 
unless otherwise specified.

3. Results

3.1. Construction of a prognostic NRG 
signature

In total, 126 NRGs expression profiles were obtained from the 
GSE17679 and GSE63157 cohorts. Based on the univariate Cox 
analysis, 44 NRGs with a value of p < 0.05 were considered prognosis-
related genes (Supplementary Figure S1). Then, we fed these NRGs 
into the random survival forest to compute the corresponding value 
of MD and VIMP. By performing cross-analysis between the top 10 
genes of MD and the top 10 genes of VIMP, 9 NRGs were screened out 
(Figures 1A,B). Next, we subjected these 9 genes to multivariate Cox 
analysis, and 6 genes (JAK1, DNM1L, PYGB, CHMP7, GSDMD, and 
RIPK1) were identified as key genes. Finally, we used the 6 key genes 
to construct a valid prognostic signature (Figure 1C).

3.2. Validation of the prognostic NRG 
signature

To validate the accuracy of the signature, we divided the patients 
into low- and high-risk groups based on the median risk-score. As 
shown in Figure  2A, the prognosis of the corresponding patient 
worsens as the risk-score rises, and there are also significant 
differences in the expression levels of key genes between the low- and 
high-risk groups. Meanwhile, the results of the K-M survival analysis 
(value of p <0.0001) showed that patients in the high-risk group 
owned worse survival time (Figure 2B) than those in the low-risk, and 
the AUC value of the ROC curve for 1, 3, and 5 years were 0.93, 0.90 
and 0.93, respectively (Figure 2C). Additionally, the same trend was 
also observed in the GSE63157 cohort (Figure 2D). And as shown in 
Figures 2E,F, the K-M survival analysis (value of p = 0.014) and the 
AUC value of the ROC curve (1-year 0.90, 3-year 0.76, 5-year 0.72) 
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were equally satisfactory. Therefore, all results demonstrate that this 
signature possesses excellent prediction ability.

3.3. Functional enrichment and GSEA 
analysis

The GO and KEGG analysis results are shown in Figures 3A,B. And 
we also found that NRGs enriched in some immune-related signaling 
pathways, such as PD-L1 expression and PD-1 checkpoint pathway in 
cancer, T cell receptor signaling pathway, and B cell receptor signaling 
pathway (Supplementary Table S1). Furthermore, the GSEA analysis 
revealed that the IL-17 signaling pathway, cell cycle, DNA replication, 

and homologous recombination were significantly enriched (value of 
p <0.05) in the high-risk group (Figure 3C), while the focal adhesion, 
chemical carcinogenesis - DNA adducts, and herpes simplex virus 1 
infection were significantly enriched (value of p <0.05) in the low-risk 
group (Figure 3D).

3.4. Immunotherapeutic and 
chemotherapeutic response prediction

Many studies have discovered that necroptosis is related to tumor 
immunity, and the functional enrichment analysis results of our study 
also support this. Therefore, the application potential of the signature in 

TABLE 1 Sequences of primers used in the present study.

Gene Forward primer (5′-3′) Reverse primer (5′-3′)

RIPK1 TGGGCGTCATCATAGAGGAAG CGCCTTTTCCATGTAAGTAGCA

JAK1 CCACTACCGGATGAGGTTCTA GGGTCTCGAATAGGAGCCAG

CHMP7 AAGCCTCTCAAGTGGACTCTT ACAGACGATACACCTCCTCAG

GADPH GGCTGCCCAGAACATCAT CGGACACATTGGGGGTAG

FIGURE 1

Gene selection and signature construction process. (A) The top 10 genes with MD values. (B) The top 10 genes with VIMP values. (C) The forest map of 
the multivariate Cox analysis on the 6 prognostic NRGs.
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immunotherapy deserves further study. Here, we first investigated the 
differences in immune cell infiltration patterns between the high- and 
low-risk groups. As shown in Figure 4A, ten kinds of immune cells were 

significantly higher infiltration in the high-risk group, including type 2 T 
helper cell and macrophage, which were related to immunotherapy 
resistance. And 3 types of immune cells were significantly higher in the 

FIGURE 2

Validation of the efficacy of the signature. GSE17679 and GSE63157 cohort: (A) (D) the risk-score, survival status, and 6 key genes expression heatmap; 
(B,E) Kaplan–Meier survival analysis; (C,F) time-dependent ROC curves of the signature.

FIGURE 3

Functional enrichment and GSEA analysis. (A) Gene Ontology; (B) Kyoto Encyclopedia of Genes and Genomes; The GSEA enrichment reveal different 
activated signaling pathways in high-risk group (C) and low-risk group (D).
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low-risk group than in the high-risk group. Meanwhile, we also found 
that 9 kinds of immune cell infiltrating degrees were significantly 
correlated with risk-score (Supplementary Figure S2). In addition, the 
expression levels of 3 (TIGIT, PD-1, and TIM-3) immune checkpoints 
were significantly higher in the high-risk group than those in the low-risk 
group (Figure 4B). The above results have shown that there may exist 
differences in response to immunotherapy for patients in distinct 
subgroups. Therefore, the IMvigor210 cohort receiving anti-PD-L1 
immunotherapy was utilized in the current study to validate the 
signature’s ability to predict patients’ immunotherapeutic response. 
We found that, in the IMvigor210 cohort, the prognosis of patients in the 
low-risk group is significantly better than that of the patients in the high-
risk group (Figure 4C). Meanwhile, the low-risk group patients’ clinical 
response to PD-L1 blockade therapy was also significantly better than 
that in the high-risk group (Figure 4D). Hence, patients in the high-risk 
group may had poorer immunotherapy effects than those in the 
low-risk group.

Improving the efficacy of chemotherapy and avoiding severe drug 
toxicity has always been a major goal of researchers. The “oncoPredict” 
results showed that 5 common drugs were more sensitive to ES 
patients in the low-risk group than those in the high-risk group 
(Figure 5). Hence, patients in the low-risk group are more likely to 
benefit from chemotherapy.

3.5. Comprehensive analysis of key genes

The different expressions of 6 key genes between tumor and 
normal tissues or between distinct risk groups are shown in 
Figures 6A,B. The correlation analysis revealed that several immune 
checkpoints are closely associated with key genes (Figure  6C). In 
addition, we also found that 3 genes (RIPK1, JAK1, and CHMP7) 
showed a strong correlation with both OVS (overall vital survival) and 
event (Figure 6D), and the results of 3 genes’ K-M analysis were also 
satisfactory (Figures 6E–G). Meanwhile, the DepMap results revealed 
that CHMP7 plays an essential role in ES cell growth (Figure 6H).

Then the in-depth analysis results of the 3 genes by the GSCALite. 
The results of the genome-wide analysis revealed that JAK1 had the 
highest mutation frequency, followed by RIPK1, and CHMP7 had the 
lowest (Figure 7A). Meanwhile, the pathway activity study discovered 
that RIPK1 was significantly associated with RAS / MAPK and RTK 
pathway activation, while JAK1 was significantly associated with cell 
cycle pathway inhibition (Figure  7B). In addition, as shown in 
Figures 7C,D, we discovered that the mRNA expression of all 3 genes 
was negatively correlated with methylation expression and positively 
correlated with the percentage of copy number variation (CNV). 
Based on the above findings, 3 genes will probably become novel 
therapeutic targets for ES.

FIGURE 4

Immunotherapeutic response prediction. (A) Different infiltrating abundances of 28 immune cell types between high/low-risk group (*p  <  0.05; 
**p  <  0.01; ***p  <  0.001; ****p  <  0.0001); (B) Different expression level of 8 immune checkpoints between subgroups; (C) Kaplan–Meier analysis of 
patients in the IMvigor210 cohort between high- and low-risk groups, and (D) the proportion of response to anti-PD-L1 immunotherapy between 
high- and low-risk groups (CR: complete response; PR: partial response; SD: stable disease; PD: progressive disease).
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3.6. Validation of expression level of three 
key genes in ES cell

The above analysis showed that RIPK1, JAK1, and CHMP7 are all 
significantly highly expressed in tumor tissue compared to normal 
tissue. To verify the accuracy of the analysis in this study, we performed 
RT-qPCR to compare the expression levels of 3 key genes between 
bone marrow stroma and ES cells. As shown in Figures 8A–C, the 
expression of RIPK1, JAK1, and CHMP7 in the A673 cell line was 
significantly higher than in the HS5 cell. Therefore, this cell 
experiment further verified the reliability of the results of this 
bioinformatics analysis.

3.7. Construction and evaluation of the 
nomogram

We discovered that the risk-score has significant significance in 
both univariate and multivariate Cox regression analyses at the end of 
this study, proving that the signature is a reliable, independent 
prognostic factor (Figures  9A,B). Then, we  built a nomogram to 
predict 1-, 3-, and 5-year survival time of ES patients (Figure 9C). 

And, according to calibration plots, we  found that the mortality 
estimated by the nomogram was close to the actual mortality 
(Figure 9D), confirming the nomogram’s excellent accuracy.

4. Discussion

Systematic treatments are the routine or even the only choice for 
cancer patients. Chemotherapeutics and target therapeutics are 
common systemic treatments, but treatment failure and side effects 
are frequently reported (18). Hence, there is an urgent need to find a 
new exploitable and safe systemic treatment mode. The emergence of 
tumor immunotherapy has greatly transformed the cancer treatment 
landscape. However, immune resistance has always been a challenge 
in immunotherapy. In most cancers, only one-third of patients 
respond to immune checkpoint inhibitors. In addition, resisting 
programmed cell death and the tumor lacking preexisting immunity 
can also cause this phenomenon (8, 19, 20). Thus, researchers were 
increasingly interested in inducing other cell death mechanisms or 
developing novel immunotherapy targets to treat cancers.

Necroptosis, a novel mechanism of programmed cell death, was 
discovered just over a decade ago (4). And with its crucial role in 

FIGURE 5

Differentially sensitive of ES’s classic chemotherapeutic drugs between high-risk group and low-risk group. (A) Vincristine; (B) Doxorubicin; 
(C) Cyclophosphamide; (D) Etoposide; (E) Dactinomycin. **p < 0.01; ****p < 0.0001.
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inflammation, necroptosis has attracted widespread attention from 
researchers. An article reported that necroptosis could enhance 
antitumor immunity by activating RIPK1/3 within the tumor 

microenvironment (TME). And in another study, a necroptotic cancer 
cell-mimicry nano-vaccine potentiated antitumor immunity in mice 
by promoting the expansion of NKG2D+ natural killer cells and CD8+ 

FIGURE 6

Comprehensive analysis of key genes. Different expression level of 6 key genes in the tumor/normal tissue (A) and high- / low-risk group (B). 
Correlation analysis of the expression levels of 6 key genes with immune checkpoints (C) and clinical features (D). Kaplan–Meier curves of patients with 
high and low expression of (E) RIPK1, (F) JAK1 and (G) CHMP7. (H) The boxplot shows the Chronos dependency score of 3 genes (a score of 0 
indicates a gene is not essential and a lower Chronos score indicates a higher likelihood the gene is essential in a cell line).
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T cells (8). Based on the double attribute of necroptosis (novel cell 
death mechanism and the important role in the immune), we may find 
a novel way to improve the prognosis of ES.

In the present study, to lower the dimension of 126 NRGs in the 
current study, we used the univariate Cox analysis, random survival 
forest method, and multivariate Cox analysis. Finally, 6 key genes 
(JAK1, DNM1L, PYGB, CHMP7, GSDMD, and RIPK1) were 
identified to construct the prognostic signature. Here, the reason why 
we adopted the random survival forest algorithm rather than LASSO 
regression analysis is as follows: First, VIMP and MD, as two tested 
quantitative indicators, could be  used for key gene identification. 
Second, it can balance errors within unbalanced data sets (11).

Previous studies have demonstrated the role of the immune 
microenvironment in tumor biology (21–24). The functional 
enrichment and GSEA analysis results in the current study also 

showed that NRGs were significantly linked to various immune-
related pathways. Hence, we performed a comprehensive immune-
related analysis to assess the potential of the signature for application 
in immunotherapy. The results indicated that there were substantial 
differences in the degree of immune cell infiltration among ES patients 
from different risk groups, and 8 immunological checkpoints were 
also differentially expressed in different ones. Furthermore, according 
to the IMvigor210 cohort, we found that low-risk patients showed a 
significant therapeutic advantage with stronger clinical responses and 
longer survival compared with high-risk patients. These results 
demonstrate the great potential of this signature in predicting clinical 
immunotherapy response. Surprisingly, the signature also performed 
well in predicting clinical chemotherapy response. Consequently, the 
signature is also beneficial for formulating chemotherapy and 
immunotherapy treatment strategies.

FIGURE 7

Genome-wide and pathway activity analysis. (A) Waterfall plot, shows the mutation frequency of 3 genes in 33 types of cancers. (B) The global activity 
of 3 genes in 33 types of cancers (the degree to which 3 genes contribute to activation/inhibition of 10 tumor-related pathways in 33 types of cancers). 
(C) The relation between methylation and gene expression. (D) The relation between CNV and gene expression.

FIGURE 8

Validation of mRNA expression of 3 key genes in cell lines. (A) RIPK1; (B) JAK1; (C) CHMP7. **p < 0.01; ***p < 0.001.
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In order to further explore the influence of 6 key genes on the 
prognosis of ES, we performed a comprehensive analysis. And results 
showed that all genes are associated with prognosis and immune 
checkpoints. The 3 genes (RIPK1, JAK1, and CHMP7) play a more 
critical role in the occurrence and development of ES and maybe the 
potential targets for ES. Subsequent analysis confirmed the hypothesis. 
The DepMap results showed that CHMP7 is critical for the growth of 
ES cells. Moreover, the GSCALite results showed that JAK1’s mutation 
frequency was the highest, JAK1 was significantly associated with cell 
cycle pathway inhibition, RIPK1 was significantly associated with RAS 
/ MAPK and RTK pathway activation, and all 3 genes were negatively 
correlated with methylation. Meanwhile, we also found that 3 genes 
(especially CHMP7) were all positively correlated with CNV, 
suggesting that CNV regulated their expression to some extent. 
Meanwhile, cell experiments also confirmed the accuracy of the 
analysis results. Hence, the 3 genes deserve in-depth exploration.

Receptor-interacting kinase 1 (RIPK1) is an important drug target 
not only due to its vital role in controlling the balance between cell 
survival and cell programmed death (apoptosis and necroptosis) (4, 
10, 25) but also because its molecular structure is highly amenable for 
developing specific pharmacological small-molecule inhibitors (26). 
Numerous studies have shown that RIPK1 inhibitors present a 
potential therapeutic alternative for the management of a wide variety 
of inflammatory and degenerative diseases in humans, including 
colitis, dermatitis, traumatic brain injury, amyotrophic lateral sclerosis 
(ALS), multiple sclerosis (MS), etc. (5). However, the prognosis of 
different types of cancer is affected differently by RIPK1 (27). Low 
expression of RIPK1 is linked to a bad prognosis in head and neck 
squamous cell carcinoma and liver cancer (28, 29), whereas high 
expression of RIPK1 is linked to a poor prognosis in breast cancer 
(BC) and glioblastoma (30, 31). In the present study, we found that ES 
patients with higher levels of RIPK1 expression typically survive 
longer than those with lower levels. Coupled with the pivotal role of 

RIPK1 in necroptosis. Therefore, this gene is likely to be a therapeutic 
target for ES.

Janus kinases are a family of non-receptor tyrosine kinases whose 
members include TYK2, JAK1, JAK2, and JAK3 (32). Studies have 
revealed that a number of illnesses, including malignant tumors, 
involve the JAK/STAT pathway. This pathway suppresses antitumor 
immunity while promoting tumor survival, angiogenesis, and 
metabolism (33, 34). Moreover, among the JAK family kinases, JAK1 
is a major driver of STAT3 phosphorylation (35). In the present study, 
we found that JAK1 was significantly associated with prognosis in ES 
patients, and genome-wide analysis also showed that JAK1 was 
significantly associated with inhibiting the cell cycle pathway. This 
finding suggests that JAK1 may be a potential therapeutic target for ES.

Charged multivesicular body protein 7 (CHMP7) is a critical 
member of the endosomal sorting complex required for transport 
(ESCRT) system and plays a crucial role in the endosomal sorting 
process pathway (36–38). ESCRT system is essential molecular 
machinery for sorting membrane proteins in eukaryotic cells, and its 
primary function is to promote the degradation of ubiquitin-tagged 
membrane proteins (39–41). CHMP7 and ESCRTIII can form a 
complex to jointly complete the contraction process, shear bud neck, 
and final membrane shedding (37). Therefore, aberrant CHMP7 
expression in a variety of tissues can result in ESCRT system 
dysfunction, which in turn causes impaired protein degradation and 
consequent disease. A pan-cancer study shows that CHMP7 is low 
expressed in most tumor tissues, and patients with low expression have 
a poor prognosis (42). Nevertheless, in our study, the result is just the 
opposite. CHMP7 is highly expressed in ES tumor tissues when 
compared to normal tissues, and the high-expressing group has a poor 
prognosis. The results were also verified in subsequent cell experiments. 
Meanwhile, the DepMap results also revealed that CHMP7 is related 
to ES cell growth. Hence, these results enlighten us that CHMP7 plays 
a unique role in ES, which is worthy of our in-depth study.

FIGURE 9

Construction and evaluation of the nomogram. (A) Univariate Cox regression analysis and (B) multivariate Cox regression analysis. (C) The nomogram 
constructed to predict the probability of patient mortality (State: N means progression no; Y means progression yes). (D) The calibration plot of 
nomograms between predicted and observed 1-, 3- and 5-year outcomes.
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Our study has significant clinical application value, and the 
constructed signature can be used as a reliable tool for predicting the 
prognosis of ES patients as well as helpful for the formulation of 
immunotherapy and chemotherapy strategies. Meanwhile, 3 potential 
therapeutic targets were identified, providing new treatment options 
for ES. The transformation of “cold tumors” into “hot tumors” has 
become an important direction of tumor research. Consequently, 
targeting these 3 key molecules to alter the infiltration of immune cells 
and high expression of immune checkpoints may help develop new 
immune combinations or novel immunotherapy drugs and promote 
personalized tumor immunotherapy.

Of course, our research also has some limitations. First, although 
we used different datasets to verify the accuracy of the signature, it is 
still a retrospective study in nature and is susceptible to the inherent 
biases of this research paradigm. Secondly, due to the bias in the 
sequencing results measured by different sequencing platforms, it is 
difficult to define the absolute threshold in the clinic. Finally, the PCR 
experiment of 3 key genes could be considered an external validation 
in a sense, but we only used one ES cell line, which is also a limitation 
of our study. Finally, we only conducted PCR experiments on 3 key 
genes and did not conduct more experiments for in-depth verification. 
This is also the limitation of our research and needs to be explored in 
depth in follow-up research.

5. Conclusion

In conclusion, our study constructed a reliable signature for 
predicting ES patients’ prognosis and therapeutic response. The 
subsequent analysis also screened out 3 potential therapeutic targets 
against ES, providing new options for treating ES patients. The 
nomogram constructed at the end of the study can help clinicians 
comprehensively evaluate the survival time of patients.
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