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Diabetic foot ulcer (DFU) is a major complication of diabetes and is associated

with a high risk of lower limb amputation and mortality. During their lifetime,

19%–34% of patients with diabetes can develop DFU. It is estimated that 61% of

DFU become infected and 15% of those with DFU require amputation.

Furthermore, developing a DFU increases the risk of mortality by 50%–68% at

5 years, higher than some cancers. Current standard management of DFU

includes surgical debridement, the use of topical dressings and wound

decompression, vascular assessment, and glycemic control. Among these

methods, local treatment with dressings builds a protective physical barrier,

maintains a moist environment, and drains the exudate from DFU wounds. This

review summarizes the development, pathophysiology, and healing mechanisms

of DFU. The latest research progress and the main application of dressings in

laboratory and clinical stage are also summarized. The dressings discussed in this

review include traditional dressings (gauze, oil yarn, traditional Chinese medicine,

and others), basic dressings (hydrogel, hydrocolloid, sponge, foam, film agents,

and others), bacteriostatic dressings, composite dressings (collagen,

nanomaterials, chitosan dressings, and others), bioactive dressings (scaffold

dressings with stem cells, decellularized wound matrix, autologous platelet

enrichment plasma, and others), and dressings that use modern technology

(3D bioprinting, photothermal effects, bioelectric dressings, microneedle

dressings, smart bandages, orthopedic prosthetics and regenerative medicine).

The dressing management challenges and limitations are also summarized. The

purpose of this review is to help readers understand the pathogenesis and

healing mechanism of DFU, help physicians select dressings correctly, provide

an updated overview of the potential of biomaterials and devices and their

application in DFU management, and provide ideas for further exploration and

development of dressings. Proper use of dressings can promote DFU healing,

reduce the cost of treating DFU, and reduce patient pain.
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1 Introduction

Patients with diabetes are prone to complications of the kidney,

retina and nervous system, and approximately 34% of patients have

diabetic foot ulcer (DFU). A DFU is defined as a break of the

epidermis and at least part of the dermis in a person with diabetes

(1). DFU is associated with numerous risk factors and has complex

mechanisms and insignificant clinical manifestations. Its pathogenesis

is roughly categorized into peripheral neuropathy, Peripheral arterial

disease and infection. The pathophysiology of ulcers is also categorized

into pre-ulcer, ulcer phase, and ulcer recurrence based on the

chronological order of their appearance. DFU is often not detected

until it has progressed to an irreversible ulcer. There are about 4

million new DFU patients in China every year, and according to

statistics, there is one amputation due to DFU every 30 seconds,

accounting for 68% of the non-traumatic amputation population.

Moreover, DFU is often accompanied by severe infection, resulting in

long-term wound nonhealing, and approximately half of patients with

DFU experience lower limb amputation (2). Patients with DFU have a

higher risk of death compared to diabetic patients without comorbid

DFU (3). The shortened lifespan of DFU patients places a heavy

burden on public health and on health care systems. Progress in the

development of modern dressings for DFU continues to be driven by

the seriousness and urgency of the above situation as well as by

extensive clinical and laboratory experience.

The concept of moist wound healing has been accepted by

clinical researchers since the 1970s. A humid environment

promotes autolytic debridement, stimulates collagen production,

promotes the migration of keratinocytes to the wound surface, and

supports the function of growth factors in the wound

microenvironment, thereby reducing pain, inflammation,

necrosis, and scarring. This has led to the rapid development of a

variety of wet dressings, including hydrogels, hydrocolloids, films,
Frontiers in Endocrinology 02
alginates, and foams (4, 5). Clinical practice has become

increasingly reliant on wet dressings, and wet dressings are

gradually replacing dry dressings such as gauze and bandages.

Second, based on the poor prognosis of DFU after multiple

microbial infections, the progress of antibacterial dressings will

also be reviewed separately. Moreover, wet dressings are becoming

increasingly microscopic and have begun to integrate the modern

technology used in drug delivery systems.

Nanodressings, microneedle dressings, bioactive dressings, and

dressings produced by 3D printing and photoelectric effects have

been developed. Furthermore, modern dressings focus on the

monitoring and response of wounds in real time rather than

simply on therapy. In fact, prior to the advent of wet dressings,

early forms of bioactive dressings such as allografts and xenografts

were used. We classify dressings according to their active

ingredients (Figure 1).
2 Pathogenesis of DFU

There are many risk factors for DFU, and its pathogenesis is

very complex. Its pathogenesis can be divided into three categories:

peripheral neuropathy, peripheral arterial disease, and infection

(6) (Figure 2).
2.1 Peripheral neuropathy

Diabetic peripheral neuropathy (DPN) is defined as the

presence of symptoms and/or signs of peripheral nerve

dysfunction in patients with diabetes (7). Neurological disorders

associated with diabetes can be classified as sensory, motor

or autonomic neuropathy (8). In diseased nerve cells, high
FIGURE 1

Diagram showing the structure of this review.
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concentrations of glucose increase the activities of aldose reductase

and sorbitol dehydrogenase, leading to intracellular conversion of

glucose to sorbitol and fructose, compounds that affect nerve

conduction (9). At the same time, conditions such as

hyperglycemia, dyslipidemia and insulin resistance lead to

dysregulation of metabolic pathways, and this in turn leads to an

imbalance in mitochondrial redox status that results in excessive

formation of reactive oxygen species in mitochondria and in the

cytoplasm. These conditions lead to loss of axon energy storage and

axonal damage, and this aggravates peripheral nerve lesions and

causes damage to the nerves in the foot (10). As a result of

neuropathy, damage to the lower extremity is often not felt in

time, and the lesion remains subject to repeated stress (including

prolonged walking or loading). Moreover, neuropathy leads to

imbalances in the muscle tissue and to muscle atrophy in the feet

of patients with diabetes. Over time, foot deformities such as foot

drop, claw foot, and equinus deformity may occur, leading to or

aggravating DFU. Autonomic neuropathy affects perspiration and

causes abnormal blood circulation in the foot. With the decrease in

foot perspiration and the dysfunction of sebaceous glands, the skin

becomes dry and keratinized and is more likely to become cracked,

leading to infection (11).
2.2 Peripheral arterial disease

The high blood glucose concentrations that occur in individuals

with diabetes lead to increased oxidative stress responses, increased

matrix protein glycosylation, and accumulation of advanced glycation

end products (AGEs). With the accumulation of AGEs, protein

structure and function change, leading to microvascular and

macrovascular disease (12). Studies have confirmed that AGEs

cause collagen to form abnormal crosslinks; this leads to vascular
Frontiers in Endocrinology 03
stiffness and decreased nitric oxide release from endothelial cells, and

the modification of lipoproteins leads to the formation of foam cells.

The formation of AGE/AGER (AGE receptor) complexes in

endothelial cells induces the production of nuclear factor kB (NF-

КB). Thus, the expression of vascular cell adhesion protein 1

(VCAM-1) and proinflammatory cytokines increases. Eventually,

endothelial cell function is disrupted, affecting the normal

constriction of blood vessels and causing platelet aggregation,

endothelial cell proliferation, and atherosclerosis. Vascular lesions

affect the supply of blood and oxygen to tissues. Ischemic hypoxia can

lead to poor wound healing, worsening of the condition, ulceration,

and, in severe cases, avascular necrosis and even amputation (13).
2.3 Infection

DFU occurs when normal barrier function is lost and there is an

increased risk of foot infection. The bacteria most often associated

with DFU include not only gram-positive bacteria such as S. aureus

(MSSA—methicillin-susceptible Staphylococcus aureus, and MRSA

—methicillin-resistant Staphylococcus aureus), Streptococcus b-
hemolytic and C. striatum but also gram-negative bacteria such as

P. aeruginosa, E. coli, A. baumannii, Proteus spp., and Enterobacter

spp. and some anaerobic bacteria that reside more deeply in the

wounds, such as Bacteroides spp., Prevotella spp., Clostridium spp.,

and Peptostreptococcus spp (14). Microorganisms gather in specific

areas within DFU wounds, where they and grow and multiply,

wrapping themselves with extracellular polymers containing

polysaccharides and lipids. The polymeric substances (EPS)

secreted by the cells embedded in the ulcer include proteins,

lipids, nucleic acids, polysaccharides and other components that

aggregate with microorganisms to form biofilms. These films give

bacteria the ability to adhere to both biotic and abiotic surfaces.
FIGURE 2

The mechanism of DFU.
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Because biofilms are resistant to antimicrobial agents and to

immune and chemical attacks, they delay wound healing and cause

chronic inflammation and repeated infections (15). Hyperglycemia

reduces leukocyte function, most notably the function of

neutrophils, and this is reflected in reduced production of

chemokines, increased production of reactive oxygen species, and

reduced phagocytosis and migration of cells caused by complement

system dysfunction (16). At the same time, keratinocyte migration

in DFU wounds is impaired, and this is one of the reasons for slow

wound healing (17).
3 Pathophysiology of DFU

According to the sequence of appearance of diabetic foot ulcers,

their pathophysiology can be roughly divided into pre-ulcer, ulcer

phase, and recurrent ulcer phase (18). First, abnormal blood glucose

levels in diabetic patients can cause sensory, motor or autonomic

neuropathy. The clinical manifestations are loss of sensation,

muscle atrophy and deformation, and dry skin. This period is the

preliminary stage of foot ulcer development and is also an extremely

dangerous period, which can very easily lead to the development of

diabetic foot ulcers if not managed properly (e.g., improper patient

education). Entering the second stage, ulcers develop due to the loss

of self-protection of the patient’s foot and peripheral vascular

lesions caused by abnormal blood glucose concentrations, in the

presence of a large number of repeated traumas and injuries. The

clinical manifestation is the development of foot ulcers, which are

very prone to wound infection. Therefore, management during this

period is particularly important, and the choice of appropriate

adjuvant and surgical approach is a key factor in determining the

patient’s prognosis. Finally, as the ulcer heals, the clinical

manifestations resolve, but diabetic patients are at an extremely

high risk of recurrence. Although surgical or pharmacological

treatment can improve the blood supply to the trauma, a

complete level of control cannot be achieved for the most

fundamental causative factors such as neuropathy, peripheral

vascular lesions, and infection. Consequently, diabetic patients in

this stage often relapse and develop chronic wounds that do not heal

over time. And the correct use of appropriate adjuvants can reduce

the recurrence rate and improve the quality of life of patients.
4 Standard management of DFU

The ultimate goal of DFU therapy is to bring about wound

healing and prevent wound infection, amputation, and decreased

quality of life. The standard management of DFU primarily involves

surgical debridement, topical dressings, wound decompression,

vascular assessment, and glycemic control, among others.
4.1 Surgical debridement

Surgical debridement is the surgical removal of nonviable or

necrotic tissue from the wound bed and drainage of abscesses, if
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present. In addition to surgery, there are other methods of

debridement such as mechanical debridement, enzymatic

debridement and biological debridement, with surgical

debridement being the effective and preferred method. Surgical

debridement promotes wound healing by accelerating granulation

tissue formation and re-epithelialization. Surgical debridement

also plays an important role in infection control because necrotic

tissue provides a breeding ground for bacterial proliferation. The

experts made two recommendations: (a) Patients with diabetes-

related foot ulcers should not be sent to the operating room

for unnecessary surgical debridement if appropriate sharp

debridement can be performed on an outpatient basis, as this is

more expensive and resource-intensive, and may actually delay

debridement if it can be performed chair-side. (b) Patients with

diabetes-related foot ulcers with limb- or life-threatening features

(e.g. extensive necrosis, oozing fluid or gas infection) must always

be referred urgently for expert surgical opinion to assess the need

for surgical intervention to avoid the risk of further deterioration

and worsening prognosis (19). Surgical debridement is very

commonly used in clinical practice. However, due to the

complexity of the pathomechanisms of DFU, monotherapy

strategies will result in very low levels of recovery, and

combination therapy is more effective. A case report states that

a 63-year-old male patient with a DFU was treated and managed

with a combination of surgical debridement, maggot therapy,

negative pressure wound therapy, and a combination of silver

foam dressings. After 3 months and 10 days, the patient’s ulcer

had completely healed and was discharged from the hospital in

good and stable condition (20).
4.2 Topical dressings

Dressings are an integral part of the DFU treatment process.

Traditional optimal dressings should have the ability to help

relieve symptoms, protect DFU wounds and promote wound

healing. A currently accepted wound dressing should also (i)

have the ability to promote the tissue reconstruction process by

providing thermal insulation, gas exchange, increased drainage,

and debris removal; (ii) be biocompatible and not cause allergic

or immune reactions; (iii) prevent secondary wound infection;

and (iv) be easily removable without causing trauma (21). Because

there are different types of wounds and the characteristics of each

phase of wound healing differ, there is no single dressing that

meets all requirements for use with DFU and can be effectively

applied in all cases. There are different types of dressings, and

each has its own characteristics. Appropriate application of

dressings increases the rate of DFU healing, thereby reducing

hospitalization and healing time, and reducing the cost of treating

DFU (22). Wound type, patient requirements, and cost should be

considered when selecting a dressing. Presently available dressings

for DFU can be divided into two categories: traditional dressings

and current dressings. Table 1 presents a comparison of the

dressings in these two categories.
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4.3 Wound decompression

The most common pathway to DFUs is the application of

excessive mechanical pressure to the non-sensory foot. If the

mechanical stress is excessive, it can lead to inflammation, DFU

development, and prolonged DFU healing time, which in turn

increases the risk of infection, hospitalization, and amputation.

Reducing excessive mechanical stress using offloading interventions

is a major goal and important prerequisite for promoting healing

outcomes and preventing ulceration (23). This process involves

reducing the load on the affected areas of the foot by redistributing

additional pressure to other areas. Bed rest, wheelchairs, crutches to

assist with gait, surgical decompression, total contact casts (TCCs),

removable cast walkers (RCWs), and offloading shoes are all

common methods. Strong evidence supports the use of non-

removable knee-high offloading devices (either TCC or non-

removable walker) as the first-choice offloading intervention for

healing plantar neuropathic forefoot and midfoot ulcers (24).

Despite being the gold standard offloading treatment for plantar

DFU, these devices remain underutilized in clinical practice.
4.4 Vascular assessment

Up to 50% of patients with diabetes and foot ulcers have

coexisting peripheral artery disease (PAD), which leads to a

significantly higher risk of adverse limb events and cardiovascular

disease (25). Early identification of PAD in patients with diabetic

foot ulcers (DFUs) is important because the presence of PAD is

associated with an increased risk of nonhealing ulcers, infections,

and major limb amputations, as well as cardiovascular

complications and increased overall mortality. Assessment of

PAD by palpation of the pedal pulse or ankle-brachial index

(ABI) is recommended for patients with DFU. An ABI below 0.7

is associated with some degree of arterial insufficiency, and patients

with an ABI below 0.4 have severe PAD (26). Patients with

noncompressible vessels should undergo additional tests,

including toe systolic blood pressure, pulse volume recording,

transcutaneous oximetry, or dual-function ultrasound.
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Abnormalities on any of these secondary tests reliably confirm

the diagnosis of PAD.
4.5 Glycemic control

The close relationship between blood glucose levels and the

progression of diabetic complications has been widely reported in

the literature. It has been reported that enhanced glycemic control

in patients with diabetes mellitus delays the onset of retinopathy,

peripheral neuropathy and nephropathy, which are the major risk

factors for DFU, and is therefore positively associated with wound

healing (23). It has been shown that proper glycemic control will aid

in wound healing during the treatment of diabetic foot ulcers. The

study by Xiang et al. suggests that reasonable glycated hemoglobin

(HbA1c) targets (ranging from 7.0% to 8.0% during treatment) can

promote ulcer healing in patients with DFUs without increasing

mortality, especially in patients with better glycemic control on

admission (27).
5 Classification and active ingredients
of dressings

5.1 Traditional dressings

Traditional dressings, also known as inert dressings, such as

gauze, cotton pads and bandages. It is the most widely used dressing

in clinical practice due to its low cost and simple manufacturing

process (28). As one of the earliest systems used in the treatment of

DFU wounds, traditional dressings provide cushioning that reduces

pressure, prevents abrasion, protects the wound, and absorbs small

amounts of exudate.

Traditional dressings such as dry gauze, oil gauze, cotton gauze

and bandages have played a landmark role in the history of dressing

development as effective topical treatments (29–31). These

dressings are mainly used to prevent direct contact between the

wound and contaminants and to absorb exudate, but they do not

directly promote wound healing. In addition, dry dressings tend to
TABLE 1 Comparison of traditional and current dressings.

Traditional dressings Current dressings

Easy access to the raw materials needed for preparation Excellent insulation ability

Simple preparation process Promote rapid wound healing

Low cost Reduce reactive oxygen species in wounds

Fast replacement frequency
Prone to tissue adhesion

Slow replacement frequency, long-lasting effect
Less prone to tissue adhesion

Extremely likely to carry pathogens
Absorption of wound exudate affects the efficacy of the treatment, and exudate leaks rapidly from the
dressing
Slow deposition of granulation tissue
Less effective in relieving pain
Local dryness, unable to maintain a humid microenvironment
Tends to damage the wound and aggravate pain during replacement
Slow onset of action, longer treatment course

Excellent antibacterial effect, can reduce bacterial
infections
High ability to absorb wound exudate
Rapid deposition of granulation tissue
Effective in relieving wound pain
Excellent moisturizing ability
Improves microcirculation and shrinks wounds
Rapid onset of action and shortened course of treatment
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adhere to the wound, causing secondary damage to the wound

when the dressing is replaced and extending the healing time (30,

32, 33). However, as one of the basic dressings, traditional dressings

are still widely used in clinical practice.

Traditional dressings are of great significance, and there would

be no advancement in modern dressings without the most basic of

dressings. Although traditional dressings do not provide effective

healing of the wound. However, it can be used to control diabetic

foot infections and to prevent diabetic foot ulcers from continuing

to develop. It is the most basic treatment and deserves to be

emphasized by primary care doctors, especially for remote and

poor areas. So we list three of the most basic and representative

dressings, dry gauze, oil gauze and traditional Chinese medicine.

And they are described in detail.
5.1.1 Dry gauze
In the treatment of DFU wounds, dry gauze has the effect of

covering the wound and isolating it frommicroorganisms, but it has

no antimicrobial activity and does not significantly promote wound

healing (34). In addition, dry dressings may cause secondary injury

to wounds, and current research in this area tends to focus on the

use of multidrug combination therapy to reduce the negative impact

of dry dressings on wounds. It is more effective for superficial clean

ulcerated wounds.

Studies report that it has been possible to compensate for the

shortcomings of dry dressings by functionalizing gauze in ways that

give it moisturizing and antibacterial properties. For example,

carboxymethylated chitosan that exhibits water solubility,

biocompatibility and antimicrobial activity has been synthesized

by direct alkylation. Calcium alginate and modified chitosan have

also been used as hygroscopic polymerizing agents. The two

polymers were applied to the surface of cotton gauze, woven with

40s Ne cotton thread using a mat drying method (35). Studies have

also shown that application of a mixture of deacetylated chitosan

and petrolatum to sterile gauze followed by drying can be used to

prepare chitosan-vaseline gauze (CVG) dressings. CVG dressings

are soluble, noncytotoxic and antimicrobial. CVG dressing therapy

also increases angiogenesis and the microvascular density of

wounds and is therefore a highly promising dressing for wound

treatment (36). Thus, the comprehensive function and superior

performance of dry gauze play an important role in the treatment

of DFU.
5.1.2 Oil yarn
Compared with dry gauze, oil gauze has a unique advantage in

that it does not adhere to the wound during the healing process.

Dong et al. randomly assigned 22 patients with diabetes to a silver

ion dressing group and an oil gauze-silver group. The dressings

were changed twice weekly until the DFU healed. The healing

outcomes and speed of healing were used as clinical therapeutic

indices. The results showed that compared with silver ion dressings,

silver-gauze dressings showed better clinical efficacy in the

treatment of DFU, especially with respect to ulcer healing

speed (37).
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Oil yarn has a degree of moisturising power and isolates bacteria

and promotes wound healing. However, if it is too thick, it can

restrict the exchange function of the skin. This prevents the

excretion of metabolic waste, prevents the skin from absorbing

oxygen and hinders the skin’s metabolism, which then prevents the

wound from healing. Moreover, oil yarn is ineffective in preventing

wound infection and has certain limitations related to its ability to

manage osmotic fluid leakage.

5.1.3 Traditional Chinese medicine
Traditional Chinese medicine (TCM) foot baths have a long

history in the treatment of wounds and are widely used to treat

surgical wounds, especially infected wounds. Chinese medicine

tonics, which are the essence of TCM, have unique advantages

over Western medicine in that they affect multiple targets and have

significant clinical efficacy and fewer adverse effects (38). The foot

bath decoction (FBD), which is designed for used in a foot bath, is

one of the TCM formulas. Its main ingredients are raw rhubarb

(Shengdahuang), Coptidis Rhizoma (Huanglian), Fructus Forsythia

(Lianqiao), aluminum potassium sulfate (Kufan), and

Pseudobulbus Cremastrae Seu Pleiones (Shancigu). All of these

TCM have a wide range of pharmacological activities that include

anti-inflammatory, antibacterial, and metabolism-promoting

activity and improvement of the microcirculation (39). At the

same time, certain other TCM adjuvant treatments such as

external application, acupuncture, massage, acupoint injection,

fumigation and moxibustion also have a certain therapeutic

potential for DFU (28). Recent progress in research on TCM-

assisted treatment of DFU is summarized in Table 2.

In summary, traditional dressings are mainly used to control

diabetic foot infections and thus prevent the development of

diabetic foot ulcers. Based on previous studies, we conclude that

these dressings are suitable for patients with Wagner classification

of 2 and 3. The Wagner system assesses ulcer depth and the

presence of osteomyelitis or gangrene by using the following

grades: grade 0 (pre- or postulcerative lesion), grade 1 (partial/full

thickness ulcer), grade 2 (probing to tendon or capsule), grade 3

(deep with osteitis), grade 4 (partial foot gangrene), and grade 5

(whole foot gangrene) (39).
5.2 Basic dressings

To overcome some of the shortcomings of traditional dressings,

basic dressings have been developed. Basic dressings are made of

polymers crosslinked to form a compound with a certain structure.

It has better biocompatibility, degradability, and moisture retention

and a dressing with strong exudate absorption. As mentioned

earlier, dressings with a certain spatial structure facilitate the

maintenance of a relatively constant local temperature and

humidity in the wound, providing conditions similar to the

internal environment of the body (45). Interestingly, basic

dressings may avoid re-injury of new granulation tissue due to

scar formation and promote cell proliferation, differentiation and

epithelial cell migration. In particular, they may play a role in
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avoiding wound contact with external bacteria and effectively

preventing cross-infection (46). Basic dressings have a strong

ability to absorb exudate. In addition, they are insulating and

impermeable to water and bacteria, making them more

comfortable to wear. Moreover, basic dressings do not stick to

wounds, making it possible to avoid secondary damage to the

wounds during dressing changes and reducing pain. Basic

dressings also require fewer changes than conventional dressings

(47). Basic dressings include hydrogel dressings, alginate dressings,

films (permeable films and membrane dressings), hydrocolloid

dressings, sponge foam dressings, capillary‐action dressings, and

odor‐absorbing dressings (48). All of these dressings are widely used

and effective in DFU treatment. One of the most widely used basic

dressings is hydrogel. We describe it in detail and give a brief

overview of other basic dressings.

5.2.1 Hydrogel dressings
As a new biomaterial, hydrogels are essentially insoluble

hydrophilic polyurethane polymers. They are widely used in the

treatment of DFU wounds because of their moisturizing properties,

biocompatibility and similarity to living tissue, properties that allow

hydrogels to produce the best wound healing effect. The

hydrophilicity of a hydrogel, which is a three-dimensional (3D)

network structure with high water content, depends on the degree

of crosslinking of its polar functional groups. The hydrogel is in

direct contact with the wound surface, and its three-dimensional

network structure promotes the absorption and retention of water.

This long-term moistening of the wound environment helps

maintain gas exchange, cell migration and tissue regeneration

within the wound and promotes wound healing (49–52). At the

same time, hydrogels do not adhere to wounds, are easy to apply

and remove without secondary damage and are considered ideal

DFU dressings (53–56) (Figure 3). Moreover, based on the special

structure of hydrogels, precise regulation of the DFU wound

microenvironment can be achieved by adding functional

polymers or bioactive substances, and these modifications can

help accelerate wound healing and promote the healing of

difficult-to-heal wounds (57). When used as drug delivery

systems, hydrogels can improve the efficiency of drug delivery

while minimizing the toxic damage to wounds that is sometimes

caused by drugs (58). However, the drug delivery systems that can
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be created using hydrogels are also somewhat flawed. If only a single

extracellular matrix (ECM) component (gelatin, collagen, or

hyaluronic acid) is present in the gel, the potential to provide the

optimal microenvironment for the wound is limited.Existing

hydrogel dressings cannot meet all the requirements for DFU

wound treatment; therefore, different drugs must be used at

various stages of wound healing (59, 60). The functional

h yd rog e l s we r e d e s i gn ed by s imu l a t i n g th e ECM

microenvironment. According to the characteristics of functional

hydrogels, functional hydrogels can be divided into anti-

inflammatory hydrogels, antioxidant hydrogels (AOH),

antibacterial hydrogels (ABH), and proangiogenic hydrogels.

According to the meta-analysis, early treatment with AOH

followed by ABH a week later could be an advanced strategy for

future DFU treatment. This information is important for

researchers and/or physicians considering the alternative

application of hydrogel dressings (61).

It is well known that the inflammatory response is an important

obstacle to the healing of DFU wounds. Hydrogels can be classified

as those that contain anti-inflammatory agents, those that are based

on anti-inflammatory materials and those that contain anti-

inflammatory biological components (62, 63). For example,

hydrogels containing ibuprofen (IBU), a nonsteroidal anti-

inflammatory drug (NSAID) that acts as an anti-inflammatory

agent by inhibiting immune cell aggregation and platelet

aggregation, have been widely used (64). Research shows that

sacran hydrogel membranes can improve skin barrier function,

regulate the production of anti-inflammatory cytokines, and

achieve anti-inflammatory effects and that they therefore have

potential value in promoting wound healing (65–67). Hydrogels

that contain biological components, such as fibrin hydrogels,

counteract the inflammatory response by forming porous fibrous

network scaffolds through fibrin crosslinking; these scaffolds

promote infiltration by and aggregation of anti-inflammatory

macrophages (68).

The paragraph above discussed the use of anti-inflammatory

hydrogel dressings in the treatment of chronic wounds.

The following paragraph discusses the application of AOH

dressings and proangiogenic hydrogels to chronic wounds. Some

researchers have designed functional hydrogels that simulate the

ECM microenvironment. As functional hydrogels, antioxidant
TABLE 2 Overview of DFU-assisted therapy with traditional Chinese medicine.

Type Active ingredient Mechanism of action Clinical application

Massage (40) Administered at specific locations Changes nerve conduction velocity Adjunctive therapy for diabetic peripheral
neuropathy (DPN) and early DFU.

External
application
(41, 42)

Compound Phellodendron liquid, ARCC
[Angelica sinensis (A), Radix Rehmanniae
(R), calcined gypsum (C), and calamine (C)]

Upregulates VEGF and PDGF expression in wound
tissues to promote angiogenesis, cell proliferation
and inhibition of local inflammatory responses

Compound Phellodendron liquid, ARCC

Acupuncture
(43)

Acupoint stimulating control Promotes cell proliferation and angiogenesis, induces
extracellular matrix remodeling and reduces
inflammation

Encircling needling, Bangci (focal center-side
needling), auricular acupuncture, pestle
needling therapy, and traditional acupuncture

Moxibustion
(44)

Smoke and heat Promotes the formation of collagen fibers,
granulation tissue and capillaries and inhibits
inflammation

Moxibustion treatment
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hydrogels exert antioxidant effects through the presence of

curcumin (an antioxidant drug) or other bioactive substances

within the hydrogel (69). Vascularized hydrogels that contain

bioactive components such as epidermal growth factor or vascular

endothelial growth factor can promote the regeneration of blood

vessels and subsequently promote the healing of DFU (70). In

addition, the three-dimensional network structure of the

extracellular matrix simulated by hydrogels can provide shelter

for stem cells in the inflammatory microenvironment and maintain

the survival and vitality of stem cells in DFU wounds. Compared to

treatment with mesenchymal stem cells (MSCs) grown under

standard conditions, wounds treated with MSC-seeded hydrogels

showed significantly accelerated healing and a return of skin

appendages (71). Interestingly, some drugs can also be released by

hydrogels as gases. Junpeng Chen et al. developed an all-in-one CO

gas therapy-based versatile hydrogel dressing (ICOQF) that

produces CO by rapidly removing reactive oxygen from wounds.

CO causes oxidative stress, inhibits the synthesis of adenosine

triphosphate, exerts antimicrobial effects, inhibits phagocyte

proliferation, promotes M1-to-M2 phenotype polarization, and

produces anti-inflammatory effects. ICOQF hydrogel is a

nonantibiotic antimicrobial dressing that is of great significance

considering that global antibiotic resistance is increasing

yearly (72). A new study has developed hydrogels based on

chitosan (CHT) and the polymer of b cyclodextrin (PCD).

Cinnamaldehyde (CN) can be delivered locally at DFU.

Antibacterial and antibiofilm activity (Staphylococcus aureus and

Pseudomonas aeruginosa) were evaluated. It was found that the

bacteria were reduced by about 99.99% (73).

The hydrogel is hydrophobic, biocompatible, similar to living

tissue and does not adhere to the wound. It maintains a moist

wound environment and can be used in conjunction with secondary

dressings. The precise regulation of the DFU wound

microenvironment can be achieved by adding functional
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polymers or bioactive substances. The addition of antimicrobial

components allows it to inhibit bacterial growth and accelerate

wound healing. These make hydrogel dressings very versatile and

effective for most types of DFU. However, it has some limitations,

with its low absorption capacity, poor bacterial barrier and

sometimes poor mechanical stability. And it can lead to the

accumulation of exudate can lead to wound maceration and

bacterial proliferation, requiring the use of different medications

at different stages of wound healing, which is more costly. By

reviewing the relevant research literature, we learned that

hydrogel-based dressings are indicated for patients with Wagner

grade 2, 3 or 4 DFU lasting at least 4 weeks. Patients with other

high-risk factors were excluded (74).

5.2.2 Other types of basic dressings
Due to their strong ability to resist infection and promote local

tissue and cell growth, multifunctional combination dressings are

now commonly used clinically (75, 76). Basic dressings other than

hydrogels, such as alginate dressings, films (permeable films and

membrane dressings), hydrocolloid dressings, sponge foam

dressings, capillary-action dressings, and odor-absorbent

dressings, are shown in Table 3.
5.3 Bacteriostatic dressings

For the DFU, an infection would be a catastrophe. Eighty

percent of DFU patients have a poor prognosis due to concurrent

infection (18). Furthermore, microorganisms infecting DFU

wounds are becoming increasingly complex and often resistant to

drugs, such as MRSA, which poses a huge challenge to the clinical

treatment of DFU. Biofilm formation in a variety of microbial

infections protects bacteria from antimicrobial agents and immune

responses and is a cause of wound healing failure. It can lead to
FIGURE 3

Schematic diagram showing antibacterial dressings, nanodressings and hydrogel dressings.
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wound enlargement requiring surgical intervention or even life-

threatening. Therefore, there is an urgent need for dressings with

anti-infective properties to address this dilemma (92).

To promote wound healing, several drugs (or bioactive agents)

are added to the matrix of the dressing preparation, most

commonly antimicrobials (93). This has driven the research and

application of Bacteriostatic dressings. Combining different

antibacterial agents and biological materials to make new

antibacterial dressings is currently an active area of research in

modern skin tissue engineering. Honey, antibiotics, metals, and

metal oxides are the most common pharmaceutical ingredients with

antibacterial properties. Biomaterials come in many forms and

structures, including thin films, hydrogels, sponges, nanofibers,

and other types of structures (94).

In a meta-analysis of 767 patients, patients treated with honey

dressings were better than the control group in terms of complete

healing rate (RR=1.32, 95% CI: 1.10-1.57, P=0.003), bacterial

complete clearance (RR=2.56, 95% CI: 1.33-4.92, P=0.005), mean

healing time (SMD=-1.12, 95%CI: -2.06~-0.19, P=0.02). No serious
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adverse effects were observed (95). Clinical trials have shown that

honey contains active enzymes such as glucose oxidase, which

produces hydrogen peroxide and inhibits microbial growth (96).

Compared to conventional dressing techniques such as iodine

voltammetry, honey dressing treatment can significantly better

than the control group in terms of pain score, wound pH

reduction, antibacterial effect and other aspects (P<0.05), and

does not cause blood glucose fluctuations. Clinical confirmation:

In the control group, 50 patients with DFU were treated with

routine dressing changes. In the treatment group, 50 patients added

topical application of honey to this basis. On the 20th day of

dressing change, 25 cases of infection occurred in the control group

and 18 cases in the treatment group (P<0.05) (97). Therefore, honey

dressings can be used clinically as effective and safe antibacterial

dressings. The use of a combination of debridement and silver ion

hydrogel dressings is another representative anti-infective therapy.

Clinically, both nonmechanical (autolysis, enzymatic) and

mechanical methods (sharps surgery, wet-to-dry debridement,

water-based hyperbaric lavage, ultrasound, negative pressure
TABLE 3 Other types of basic dressings.

Type of dres-
sing Constituents Experimental model Mechanism of action Clinical effects

Hydrocolloid (77–
79)

Semipermeable
membranes, foam
materials, or nonwoven
polyester fibers and
hydrophilic biocompatible
gel proteins or
polysaccharides

Randomized controlled clinical
trials involving 535 subjects

Absorbs wound exudate, creates a wet local
environment, has a buffer effect

Easy to use, conducive to
wound debridement, long
maintenance time

Alginate with
chlorhexidine
hexametaphosphate
(CHX-HMP) (80,
81)

CHX-HMP

Wound pathogens were
evaluated in vitro in terms of
total viable count (TVC) and an
agar diffusion zone of inhibition
(ZOI) model

Absorbs a large amount of wound exudate,
prevents leakage, and provides a moist
healing environment for the wound surface

At baseline, silver alginate
was more effective than
CHX-HMP alginate in the
TVC test, but CHX-HMP
alginate was more effective in
the ZOI test

Rubidium-
containing calcium
alginate hydrogel
(82)

Rubidium, calcium alginate
hydrogels

In vitro experiments on human
umbilical vein endothelial cells
(HUVECs) and in vivo
experiments on male SD rats
with type II diabetes mellitus
were conducted

Kills and inhibits the growth of bacteria,
increases the secretion of vascular endothelial
growth factor and improves activation of the
nuclear factor (erythroid-derived 2)-like 2
(NRF2)/heme-oxygenase-1 (HO-1) signaling
pathway

Promotes the migration of
fibroblasts and keratinocytes,
accelerates neovascularization
and epithelial reformation,
and improves collagen
deposition

Fibracol collagen-
alginate wound
dressing (83)

Fibracol collagen, calcium
alginate

Seventy-five patients with foot
ulcers participated in a clinical
trial

Absorbs the wound exudate to form a local
wet environment and prevents leakage

Collagen-alginate wound
dressing is more effective and
safer than gauze dressing

Sponge foam (84–
86)

Various types of polymers
and foam plastics

Clinical trials were conducted
on six patients with venous leg
ulcers

The sponge foam is pressed by the bandage
to achieve even and optimal pressure on the
wound bed

Mainly used for mild or
high- consumption wounds;
can protect and integrate into
the skin

Silver-releasing
foam dressings (87–
89)

Silver
Adult patients diagnosed with
type 2 diabetes were selected

Anti-inflammatory and antibacterial

Silver-releasing dressings can
significantly reduce the ulcer
area in patients with lower
limb ulcers and improve the
cure rate

Films (48, 90, 91)

Film inclusions
(commonly used
preservatives such as
silver-based compounds,
gentamicin sulfate, and
other compounds)

Preliminary tests were
performed using microspheres
with a diameter of 0.71 microns

The inclusion kills bacteria and prevents
systemic infection

Single films are only suitable
for wounds with a small
amount of exudate; the
clinical efficacy of combined
films is better
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wound therapy (NPWT), and biosurgery/maggot debridement

therapy) are used to debride wounds (98). In NPWT, negative

pressure is applied to the wound tissue; this reduces the area of

wound exposure and accelerates wound healing by promoting

adhesion to the surrounding tissue. The filler used with NPWT is

also important; silver ion hydrogel dressings have significantly

higher antimicrobial activity than gauze and foam dressings (99).

The antimicrobial mechanism of silver ion dressings may be related

to their degradation of bacterial cell walls and the promotion of

bacterial content outflow. Silver ions also affect the metabolic

activity of bacteria by altering the structure of their cell

membranes, leading to the death of bacteria that are in an active

but nonculturable state (100). Despite this, the use of silver ion

dressings for long periods often results in local irritation and

decreased compliance among patients. It is therefore necessary to

optimize silver nanoparticles (SNPs) for use in wound dressings.

The researchers found that sericin- and chitosan-capped silver

nanoparticle (S/C-SNP)-loaded hydrogel were more acceptable to

patients, and the antimicrobial activity and wound closure exhibited

by S/C-SRP were confirmed by histopathological results (101).

The development of antimicrobial dressings based on active

polymeric biomaterials has produced unexpected effects. Injectable

adhesion-thermosensitive polysaccharide-based dressings (FEPs)

deliver exosomes from adipose stromal cells and thereby promote

the repair of DFU wounds. The antimicrobial activity of FEP

dressings is one of their primary functional properties, especially in

cases in which drug-resistant bacteria are present in wounds (102). In

addition, a copper (Cu)-containing bioactive glass nanocoating with

uniform nanostructure that continuously releases copper ions was

prepared on a natural eggshell membrane using pulsed laser

deposition (PLD) technology. Copper ions significantly inhibit the

survival of bacteria, especially methicillin-resistant Staphylococcus

and E. coli. The presence of copper ions effectively slows the

process of bacterial infection (103). A dressing that can be used to

rapidly sterilize wounds has also been described in the literature. It

contains Ag/Ag@AgCl/ZnO heterogeneous nanostructures

embedded in a hydrogel. Exposure of this hydrogel system to

simulated visible light kills 95.95% of E. coli and 98.49% of S.

aureus within 20 minutes. In this system, the production of

reactive oxygen species is enhanced by exposure to visible light,

allowing the Ag/Ag@AgCl nanostructure to enhance the

photocatalytic and antibacterial activity of ZnO. The slow release of

Ag+ and Zn2+ stimulates the immune system, resulting in the

production of large numbers of white blood cells and neutrophils.

It also produces synergistic antibacterial effects and accelerates wound

healing (104). Cross-linked double-network hydrogel biodressings

consisting of polyethylene glycol diacrylate (PEGDA) and sodium

alginate (ALG) have potent antimicrobial activity and promote

healing without any biological agents or drugs. In this innovative

dressing design, biomaterials rather than biologics provide

antimicrobial activity (105). In summary, the development of

antibacterial dressings is aimed at designing and producing safer

and more efficient antibacterials.

Typical antibacterial dressings are mainly honey dressings and

silver ionomer dressings. The weak acidity of honey inhibits the

growth of pathogenic bacteria, thus acting as a cleansing and anti-
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infective agent, and it also has a strong ability to promote ulcer

healing (22). In recent years the use of honey dressings has become

more widespread and has proven to be effective. There are many

different types of honey and its complex composition needs to be

further explored in the future to better guide its clinical application.

Silver ion dressing improves wound hygiene and has antibacterial

activity. It may cause silver staining on wounds, and silver allergy in

some patients limits its use.
5.4 Composite dressings

Composite dressing refers to the improvement on the basic

dressing by adding polysaccharides, proteins, polymers and other

bioactive substances to make the dressing function more perfect.

Crosslinking polysaccharides and proteins on top of the base

dressing (hydrogel, alginate, film) can form a porous structure. It

has many advantages, such as allowing oxygen, drugs, nutrients and

metabolic wastes to move in and out of the cell (106). It provides

better quality conditions for the healing of DFU. We list the three

most commonly used materials for composite dressings and

describe them in detail.

5.4.1 Collagen dressings
Normal human skin contains a large amount of collagen, which

gives it a tight, intact structure. However, the skin tissue of

diabetic individuals contains elevated levels of human matrix

metalloproteinases (MMPs) and lysine oxidase (LOX). And the

collagen it contains is sparse, disorganized, and prone to breakage.

Consequently, the dermal collagen structure is compromised, and

the skin appears rough. This abnormal collagen microenvironment

may be a risk factor for DFU (107). Therefore, based on the

pathological alterations, the development of direct collagen

dressings or dressings that promote normal collagen synthesis has

great prospective clinical value. In the study, a multifunctional nano

and collagen-based materials was designed and applied to animal

models of diabetes. When applied to wounds, the antimicrobial

nanoparticles first form a layer that prevents bacterial proliferation

and eliminates biofilms. After it has been applied, the

thermosensitive collagen matrix is plasticized so that it conforms

to the wound shape and adheres closely to the wound surface (108).

The tensile strength, porosity, and biocompatibility of collagen and

its ability to support cell proliferation can be increased using

electrochemical deposition methods. Exposure of wounds to

thermosensitive collagen increases granulation tissue, epidermal

thickness, and reconstruction of tissue. All of these effectively

promote wound repair, regardless of whether it binds to adipose-

derived mesenchymal stem cells (109). In addition, a porous

dressing is made from novel collagen (COL-SPG). In that study,

the in vivo evaluation of the COL-SPG 3D sponge exhibited with

enhanced collagen synthesis and aids in faster reepithelialization

(110). In a new study, a bionic, double-layer antibacterial collagen

scaffold is reported. It consists of an epidermal anti-bacterial

collagen used to prevent wound infections combined with a

dermal collagen-glycosaminoglycan scaffold. The dressing exhibits

a structure similar to that of natural skin, successfully inhibiting
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bacterial growth and promoting angiogenesis. This dressing is an

excellent candidate for enhancing diabetic wound healing (111).

Collagen is a biocompatible structural protein that is

biodegradable and biomimetic, making it an ideal source of

biomaterials for tissue engineering and regenerative medicine.

Collagen dressings significantly improve wound closure, positively

affect unhealed DFU, highly promote angiogenesis and rapid re-

epithelialisation (112). There is insufficient evidence to demonstrate

the superiority of specific collagen biological sources or

combinations. Wound dressings containing collagen appear to

have some benefit in the treatment of diabetic foot ulcers and

should be carefully considered by the clinician managing

the wound.

5.4.2 Chitosan dressings
Chitosan (CS) has received a lot of attention in the field of

medical research because of its antibacterial activity, antioxidant

activity, high safety, biodegradability, and biocompatibility. CS

exists in many forms, such as gels, thin films, and nanoparticles

(113, 114). After modification or coupling to other substances,

chitosan becomes a wound dressing and a drug delivery system

when loaded with active substances (115, 116). The value of

chitosan in the treatment of DFU is closely related to its anti-

infective and antioxidative properties. For example, hydrogels

prepared from chitosan and agarose have pore sizes (90-400 mm)

that are compatible with cell internalization and proliferation.

Hydrogels containing more than 188 mg/mL chitosan exhibit

strong antibacterial properties (50). The antibacterial activities of

two types of antimicrobial composite films (CH2CuO-CH and

CH2Cu-CH) made of nanocopper oxide or encapsulated in

nanocopper and covered with chitosan (CH) were compared. The

results showed that both inhibits the growth of Escherichia coli and

Bacillus. The CH2CuO-CH suppression circle values were 1.0 cm

and 0.75 cm, respectively. The suppression circle values of CH2Cu-

CH were 0.6 cm and 0.5 cm, respectively. Thus, the nanocomposite

CH2CuO-CH film shows stronger antimicrobial activity and can be

used in antimicrobial applications (117). However, the biological

effectiveness of chitosan requires its solubility in water or other

solutions, and this limits its widespread use. Ways in which chitosan

can be modified to avoid these limiting conditions and enhance its

original activity is a focal area of current research. For example, a

new family of cationic hydrogels based on arginine-based poly

(ester urea urethane) (Arg-PEUU) and glycidyl methacrylate-

modified chitosan (CS-GMA) is currently being developed. This

modified chitosan dressing accelerates the healing of infected

wounds by activating RAW 264.7 macrophages and causing them

to increase their release of NO and TNF-a (118). A novel

antibacterial hydrogel dressing made of poly(aminoethyl)-

modified chitosan (PAEMCS) has also been reported. In

antibacterial experiments on Escherichia coli, Staphylococcus

aureus, Pseudomonas aeruginosa and Salmonella, PAEMCS had

higher antibacterial activity than CS at the same concentrations.

Experiments have shown that the increase in the number of amino

groups increases the antibacterial activity of CS (119). An injectable

chitosan-based POSS-PEG hybrid hydrogel has been reported. It
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contains polyhedral oligosilsesquioxane (POSS), a nanoparticle

with excellent stability and biocompatibility. In addition, the

effect of hydrogel as a wound repair material in diabetic mice was

s y s t ema t i c a l l y and compr eh en s i v e l y e v a l u a t e d by

histomorphological analysis using a full-thickness diabetic wound

model. The results showed that the hydrogel-treated wound showed

faster epithelial tissue regeneration, fewer inflammatory cells, more

collagen deposition and higher VEGF expression levels (120). In

one study, a novel supramolecular photothermal nanoparticles

(MCC/CS NPs) were reported. It consists of mono-carboxyl

corrole (MCC) and CS. MCC molecules have good photothermal

properties and achieve a photothermal conversion efficiency of

66.4%. Under near-infrared laser irradiation, diabetic wound

models of bacterial infection confirmed that MCC/CS NPs can

effectively kill drug-resistant bacteria, accelerate wound healing and

angiogenesis, and exhibit good biocompatibility (121). Chitosan

dressings play an important role in the antimicrobial treatment

of DFU.

5.4.3 Nanodressings
Nanomaterials are materials at least one dimension of which (in

three-dimensional space) is between 1 and 100 nm in size; this is

approximately equivalent to the scale of 10~1000 atoms closely

aligned together. Nanoparticles have the property of penetrating the

barrier with a small particle size and a high specific surface area.

Nanoparticles can interact with biological constituents and infiltrate

wound sites. Nanomaterials possess the ability to effectively

transport and deliver various pharmacological agents, such as

nucleic acids, growth factors, antioxidants, and antibiotics, to

specific tissues (122). Specific nanodrug delivery systems can

enter the cytoplasmic space or activate specific transport

mechanisms, improving drug retention. The incorporation of

bioactive molecules prevents drug degradation and enhances

therapeutic effects. By using biocompatible and biodegradable

nanomaterials, drug delivery systems can be designed to enhance

wound healing and provide sustained drug release. Furthermore,

nanomaterials can be tailored to meet specific requirements for

wound healing, such as enhanced cellular and tissue penetration,

antibacterial properties, and controlled mechanical properties. In

addition, appropriate antimicrobial action can be achieved by

controlling the size and shape of nanopreparations. In wound

healing, nanomaterials have shown the potential to promote cell

proliferation, migration, angiogenesis, and extracellular matrix

remodeling and prevent infections (123). Therefore, nanoparticles

are more suitable for many purposes than macroscopic materials.

Nano silver, nano copper, nano copper oxide, nano zinc oxide

and nano gold have been widely used in research (124). With the

advancement of nanotechnology, it is possible to produce nanoscale

sterling silver particles. Silver nanoparticles (AgNPs) is non-toxic to

eukaryotic cells but highly toxic to prokaryotic cells. This allows

nanosilver to show powerful antibacterial activity. In addition, the

antibacterial activity of copper nanoparticles is similar to that of

silver nanoparticles. The antibacterial activity of ZnNPs is generally

lower than that of AgNPs and Copper NPs. AuNPs have been found

to be effective against gram-negative bacteria but less effective
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against gram-positive bacteria. In a groundbreaking study, the

AgNPs were incorporated into carrageenan to develop nanosilver

acticoat. In vivo, in vitro and in silico three-mode studies were

carried out. In vivo studies showed that dressing with Carrageenan

silver nanoparticles (CAgNPs) acticoat promoted wound healing

and had good reepithelialization and dense collagen deposition

capabilities. In vitro experiments were tested against Escherichia coli

and Staphylococcus aureus . Computer analysis provides

information about the drug similarity of the dressing and

predictions related to human health hazards. The application

potential of this dressing in DFU was emphasized (125).

Compared with ordinary silver dressing, nano-silver dressing has

a larger contact surface and stronger bactericidal effect. In a clinical

observation of 160 patients, the patients were randomly divided into

groups that received treatment with either epidermal growth factor,

a nanosilver dressing, a nanosilver dressing combined with

epidermal growth factor, or saline alone, and the time required

for wound repair to each healing stage was recorded. The results

showed that the wound repair time of the combined nanosilver and

epidermal growth factor group was shorter than the repair times of

the epidermal growth factor group and the control group, and the

differences were statistically significant (126).

Another category of nanomaterials is represented by organic

nanomaterials such as self-assembled peptide (SAP) hydrogels

made from natural amino acids. SAP hydrogels can be used to

create extracellular matrix (ECM)-like nanostructures that mimic

the human cellular microenvironment and improve the local lesion

state of DFU (127). In the section in which we reviewed collagen

dressings, we stated that elevated levels of MMPs in diabetes lead to

abnormal collagen deposition. To address this problem, a 3D

polycaprolactone (PCL)/collagen (PC) nanofiber dressing (3D-

PC) was created that contained the MMP inhibitor doxycycline

hydrochloride (DCH) and the antibacterial agent cefadroxiride

(CEX). MMPs inhibitors can limit the overexpression of MMPs

in DFU wounds to avoid delayed wound healing (128). Multiplex

nanoenzymes are another important organic nanomaterial.

However, research has been slow due to the incompatible

reaction microenvironments of these nanoenzymes and the

unsuitability of conventional assembly strategies. Notably, a

recent study reported that a fiber-based compartmentalization

strategy could be used to provide the preferred microenvironment

for each nanozyme. The development of this integrated platform

promotes the use of multiplexed nanozymes in DFU therapy (129).

Furthermore, a bilayer nanofiber scaffold has been developed (130).

The first layer of the multifunctional bilayer nanofiber scaffold

(DLS) consists of mupirocin and lidocaine hydrochloride uniformly

doped into PCL; the function of this layer is to provide an initial

“burst” release of lidocaine hydrochloride followed by slow release

of mupirocin. The second layer consists of chitosan. DLS nanofibers

are thermally stable, have high antibacterial activity and are

nontoxic to fibroblasts (131). In addition to chemicals, herbal

extracts have shown unique advantages for use in nanodressings.

A study reported the incorporation of Calendula officinalis extracts

into an electrospun fiber scaffold. The electrospun fiber scaffold

consisted of poly(ϵ-caprolactone) (PCL), maize alcoholic

protein (Zein), and gum arabic (GA). It exhibits desirable
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mechanical properties and degradability suitable for skin tissue

engineering (132).

Clinical response to wound infections is still dominated by

antibiotic therapy. Antibiotic treatment increases microbial

resistance over time and often leads to a poor prognosis. It is

worth mentioning that nanofiber dressings that do not use

antibiotic therapy as a means of treatment are gradually gaining

attention. For example, electrospun hyaluronic acid/polyvinyl

alcohol/polyethylene oxide blends encapsulated with new ZnO

NPs/cinnamon essential oil (CEO) have demonstrated advantages

such as good antimicrobial effects, promotion of rapid healing of

traumatic injuries, and high safety (133). The remaining inorganic

and organic nanodressings are summarized in tabular form in

Tables 4, 5.

In conclusion, nanomaterials have the following advantages.

High surface/volume ratio allows for small filler size and inter-fill

distance. Improved mechanical properties, high strength.

Resistance to scratches. In addition, metal ion nanomaterials can

be repeatedly sterilised to better control wound infection and

promote wound healing. However, current nano dressings also

have certain shortcomings that need to be further optimized. It

still suffers from high resistance to cell infiltration and multiple

dressing changes. Insufficient understanding of formulation

properties. Structural relationship, need for easier exfoliation of

particles, and dispersion. Cost-efficiency (123).
5.5 Bioactive dressings

Bioactive materials are biomaterials that cause a specific

biological or chemical reaction by the surface of the material that

promotes or influences the connection between the tissue and the

material, induces cellular activity or regenerates new tissue. Natural

biomaterials derived from cells, cytokines, and even plants and their

biological derivatives (e.g. exosomes) have particular advantages in

biomedical applications. Most of them can, for example, by

activating the immune system, also exhibit specific tissue and

organ tropisms. And for some living cells (e.g. stem cells) have a

strong ability to penetrate tissue and biological barriers. These

properties provide an opportunity to construct large molecule

drug carriers that can cross physiological barriers and have good

efficacy against DFU (148). While smart nanomaterials cause

changes in the bacterial cell membrane in wounds by regulating

different particle shapes, compositions, sizes and surface charges. It

includes compositional changes and reactive oxygen species (ROS)

production, lipid peroxidation, loss of respiratory activity, etc. This

ultimately allows biofilm disruption and promotes healing of the

DFU (149).

We enumerate the use of cells, cytokines, enzymes and

inhibitors, outer membrane vesicles, and smart nanomaterials in

DFU dressings.

5.5.1 Scaffold dressings with stem cells
Individuals with DFU have usually been in a state of

hyperglycemia for a long time, and the affected blood vessels and
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tissue cells produce different degrees of lesions. A number of animal

experiments have shown that stem cell transplantation is effective in

promoting hemodynamic reconstruction and regeneration as well

as in regulating the secretion of inflammatory factors, growth

factors, and immunomodulatory factors. These effects, which are

due to the unique paracrine properties of stem cells, give the

method great clinical potential for the treatment of DFU.

Conventional stem cell transplantation techniques such as

systemic intravenous or local intradermal injection have resulted

in low cell survival rates. Intravenously injected cells are also rarely
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effective because they do not target the lesion (150). If stem cells are

inoculated into biomaterials such as nanomaterial scaffolds and

collagen scaffolds, cell survival and therapeutic potential can be

improved, and targeted delivery can be achieved (151). Therefore,

the scaffold delivery method plays a key role in determining the

efficacy of cell therapies. These material delivery systems can be

used to build in vivo cell banks that gradually release stem cells that

fill defects and participate in the regeneration of vascular networks

(152). Overall, stem cells (SCs) have many advantages. It can

express many cytokines and a variety of nerve growth factors that
TABLE 4 Summary of other inorganic nanodressings.

Inorganic nanotype Mean parti-
cle size (nm)

Synthesis
method

Carrier Microbial species affected

Polydopamine-assisted silver
nanoparticles (134)

300-500 Chemical
reduction

Sericin (SS)/AGAR composite
membrane

E. coli and Staphylococcus aureus

Silver nanoparticles (AgNPs) (135) 35-65 In situ synthesis Polydopamine-coated sericin/
polyvinyl alcohol (PVA) composite
film

E. coli and Staphylococcus aureus

Silver nanoparticles (AgNPs) (136) —— In situ synthesis Sericin/polyvinyl alcohol (PVA)
blend film

E. coli and Staphylococcus aureus

Copper oxide nanoparticles (CuONPs)
(137)

88-97 Electrospinning Polycaprolactone (PCL) film Pseudomonas aeruginosa, Klebsiella
acidogenes and Staphylococcus aureus

4,6-diamino-2-pyrimidine mercaptan
functionalized gold nanoparticles (138)

2.44 Chemical
reduction

Fibroin (SF) mixed matrix
membrane

MDR E. coli

4,6-diamino-2-pyrimidine mercaptan
(DAPT) gold nanoparticles (139)

—— —— Bacterial cellulose E. coli and Pseudomonas aeruginosa

Zinc oxide nanoparticles (ZnO (NPs)
(140)

60-120 Polydopamine
(PDA) helps
modify

Sericin (SS)/polyvinyl alcohol (PVA) E. coli and Staphylococcus aureus

Zinc oxide nanoparticles (ZnO (NPs)
(141)

—— Electrospinning
technology

Chitosan-polyvinyl alcohol (PVA)
nanofibers

E. coli, Pseudomonas aeruginosa,
Bacillus subtilis and Staphylococcus
aureus
TABLE 5 Summary of other organic nanodressings.

Active ingredient Fiber
diameter
(nm)

Synthesis
method

Carrier Effect

Curcumin (CUR) and
tetracycline hydrochloride
(TCH) (142)

360-770 Electrospinning
technology

Poly-ϵ-caprolactone (PCL)/AV
hybrid nanofiber scaffold

Promotes fibroblast proliferation; antibacterial,
nontoxic

Aloe vera (AV) (143) 131.6 ± 27.5 Double-nozzle
electrospinning
technology

Gelatin (gel) and poly
(ϵ-caprolactone) (PCL) mixed
scaffold

Improves cell activity, sterilizes; nontoxic

Polyurethane and propolis
ethanol extract (PU/EEP) (144)

237.3 ± 65.1 Electrospinning
technology

Polycaprolactone/gelatin (PCL/gel)
nanofiber scaffold

Promotes collagen deposition, inhibits the growth of
Staphylococcus epidermidis, Staphylococcus aureus, and
other species

Propolis ethanol extract (EEP)
(145)

—— Electrospinning
technology

Polyurethane-hyaluronic acid (PU-
HA) nanofiber wound dressing

Improves dermal development and collagen
deposition; antibacterial

Cinnamon essential oil (CEO)
and nano cerium dioxide
(nCeO2) (146)

178.5 ± 34.3 Double-spinneret
electrospinning
technique

Polyurethane (PU) and polyvinyl
alcohol-gelatin (PVA/gel) nanofiber
scaffolds

Improves cell count; antibacterial

ZM essential oil (147) 218 ± 58 Glutaraldehyde
vapor chemical
crosslinking

Polyvinyl alcohol-based nanofiber
pad

Inhibits the growth of Staphylococcus aureus,
Pseudomonas aeruginosa and Candida albicans
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modulate immune function in wounds. It can also accelerate DFU

healing by promoting angiogenesis, cell proliferation and nerve

growth as well as modulating the inflammatory response. SCs are

promising for research as they can solve the problem of low stem

cell viability and accelerate wound healing by scaffolding drug

delivery systems. Many types of SCs are used in the treatment of

skin wounds, such as bone marrow mesenchymal SCs (BMMSCs),

umbilical cord mesenchymal SCs (UCMSCs), peripheral blood SCs

(PBSCs), adipose-derived mesenchymal SCs (AMSCs), placenta-

derived mesenchymal SCs (PMSCs), human amniotic fluid-derived

stem cells (AFMSCs), and human gingival-derived mesenchymal

SCs (GMSCs). Currently, BMMSCs are the most frequently used

type (153). These pluripotent stem cells could differentiate into

several types of fibroblasts, osteoblasts, chondrocytes, adipocytes,

vascular endothelial cells, epithelial cells.

The process by which these useful cells promote DFU healing is

also very interesting. Significantly, these cells can promote

endogenous angiogenesis through microenvironmental regulation

and expression of vascular hemophilic factor (vWF) and vascular

endothelial growth factor (VEGF). At the same time, they stimulate

epithelial stem cell recruitment through the secretion of tumor

necrosis factor-a (TNF-a) and reduce lymphocyte function and

interferon gamma (IFN-g) activity in the inflammatory response

(154). Secondly, these cells promote the production of cytokines

such as IGF-1, EGF, MMP-2, MMP-9, and the tissue inhibitors of

the extracellular receptor kinase (Erk) signaling pathway,

metalloproteinase (TIMP)-1 and -2, by human keratinocytes

(155). Moreover, they secrete mitogens that stimulate the

proliferation of keratin-forming cells, dermal fibroblasts and

epithelial cells in vitro (156).

Dressings in which stem cells are used as active therapeutic

substances have been extensively reported. For example, on the

treatment of diabetic rabbit ear ulcers, circulating angiogenic cells

(CACs) were isolated from the peripheral blood mononuclear cell

fraction. Osteopontin is a stromal cell protein involved in wound

healing and acts as a scaffold for the delivery of CACs. This design

increases the angiogenic potential of CACs (150). It has also been

reported that incorporation of allogeneic nondiabetic bone

marrow-derived mesenchymal stromal cells (MSCs) into collagen

scaffolds promotes the healing of diabetic rabbit ear ulcers. The

efficacy of this dressing is related to the amount of MSCs in the

dressing. If a collagen dressing containing 1,000,000 MSCs is used

for treatment, a total neovascular length of 270731 ± 146549 mm

can be observed. However, collagen dressings containing 100,000 or

50,000 MSCs were used for treatment, and the total length of

neovascularization was only 231849 ± 90588mm and 250521 ±

80213mm, respectively. At the same time, the radial diffusion

distance of nutrients from capillaries to damaged tissue was

significantly shortened to about 5.4 ± 0.7 mm (157). In a study of

the tissue-engineered skin substitutes, a three-dimensional bionic

scaffold of collagen-chitosan sponge carrying bone marrow-derived

mesenchymal stem cells (BM-MSCs) was designed. BM-MSCs

secrete collagen and upregulate the expression of proangiogenic

factors such as HIF-1a, VEGF and PDGF. These combined effects

promoted ulcer healing in diabetic rats (158).
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Other stem cell dressings are summarized in tabular form

according to the types of delivery scaffolds they employ (Table 6).

SCs express many cytokines and a variety of nerve growth

factors and regulate immune function in wounds and may

accelerate DFU healing by promoting angiogenesis, cell

proliferation and nerve growth as well as modulating

inflammatory responses. These investigations have demonstrated

that stem cell dressings are unique and that they have better efficacy

than other dressings. At this point in time, most stem cell dressings

are still being evaluated in animal experiments and have not been

directly applied in clinical practice. Research on stem cell dressings

has provided clinical experience and potential for the treatment of

DFU. It is expected that stem cell dressings will benefit patients in

the clinic over time.

5.5.2 Cytokine dressings
Cytokines (CK) are low molecular weight soluble proteins

induced by immunogens, mitogens, or other stimulants to be

produced by a wide range of cells, and have a variety of functions,

including regulation of intrinsic and adaptive immunity,

hematopoiesis, cell growth, APSC pluripotency, and repair of

damaged tissues. Cytokines suggested to be effective in DFU

dressings are Basic Fibroblast Growth Factor (bFGF), Vascular

Endothelial Growth Factor (VEGF), and Platelet−Derived Growth

Factor (PDGF), among others (164).

Basic fibroblast growth factor (bFGF) can be involved in many

biological processes such as angiogenesis, wound healing,

neurogenesis, cellular differentiation and migration, and it can

bind to all receptors (165). It has been found that the prepared

bFGF-gel dressing effectively promotes wound healing in rats.

Through histological and immunohistochemical analyses, it was

found that bFGF-gel dressing could promote the proliferation of

traumatic cells, reduce traumatic inflammation and enhance

capillarization (166). It suggests that basic fibroblast factor can be

applied to DFU excipients.

The vascular endothelial growth factor (VEGF) family is an

important family of growth factors that are key players in the

process of angiogenesis. In recent years, VEGF has also been found

to have neuroprotective and trophic roles and to be an important

signaling molecule for nerve repair and regeneration (167). One

study showed that decreased VEGF expression was associated

with poor wound healing and an increased ratio of matrix

metalloproteinase-9 to tissue inhibitor of metalloproteinase-1 in

infected DFUs, thus suggesting that VEGF could be applied to DFU

dressing disease to promote wound healing (168).

5.5.3 Exosomes dressings
Exosomes are nanoscale lipid bilayer-enclosed structures

carrying proteins, lipids, RNAs, metabolites, growth factors, and

cytokines that can play key roles in mediating intercellular

communication both locally and systemically (169). A study

showed that the application of autologous mesenchymal stem cell

exosomes to treat high glucose-induced HUVECs or DFU mice

revealed that mmu_circ_0001052, an exosome of Adipose-derived

stem cells (ADSC), had a better effect in promoting wound healing
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and improving wound area. And the mechanism of action of

mmu_circ_0001052-miR-106a-5p-FGF4 mRNA network in DFU

angiogenesis was verified (170). Another study showed that

exosomes isolated from platelet-rich plasma (PRP-exos) had a

promising therapeutic effect on DFU wounds and verified the

involvement of MALAT1-mediated signaling in the treatment of

DFU wound healing by PRP-exos. This may help to identify the best

targets and effective therapies for DFU treatment (171).

In conclusion, exosomes have a high targeting capacity, which

improves the efficiency of drug use and reduces the frequency of

drug use. It also has the advantages of high drug-carrying capacity

and high loading efficiency. And it can promote low

immunogenicity and reduce body clearance. It has high temporal

stability and can produce combined and synergistic therapeutic

effects (172).

5.5.4 Autologous platelet-rich plasma dressings
In recent years, an increasing number of studies have

demonstrated the unique clinical advantages of autologous

platelet-rich plasma (PRP) dressings (173–175). It has been

confirmed that autologous platelets are enriched with more than

1100 different protein types and contain more than 1500 protein-

based bioactive factors (176). The most abundant proteins in

platelets are signaling proteins, including growth factors

(epidermal growth factor (EGF), vascular endothelial growth

factor (VEGF), transforming growth factor-b (TGF-b), insulin-
like growth factor-1 (IGF-1), chemokines and other cytokines

(interleukin-1b, platelet basic protein, platelet factor 4, and C-C

chemokine ligand 5), adhesion proteins (vitamin d-binding

proteins, fibrinogen, fibrinogen, fibronectin, and vitreous
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connecting proteins), proteases, and antiproteases (177). On the

other hand, platelets contain amino acids, hormones (insulin,

estradiol, adrenocorticotropic hormone, androgens, estrogen,

progesterone, and human growth hormone), corticosteroids,

thyroxine, serotonin, adrenaline, histamine, enzymes, vitamins,

organic acids, pigments, ions, dissolved gases, nutrient molecules,

and metabolic products (178). Wound healing can be accelerated

and supplied with substances through Autologous platelet-rich

plasma dressings due to the many active ingredients enriched

in platelets.

In one study, 90 patients with DFU were randomly divided into

a local injection of PRP supplemented by hydrogel coverage group

(Group A), a PRP gel and hydrogel dressing coverage wound group

(Group B), and a hydrogel dressing covering wound group (Group

C). The wound healing rate in Group A was 93.2% ± 0.8%,

approximately 41.1% and 71.9% higher than the healing rates in

Group B and Group C, respectively. The mean duration of

hospitalization for Group A patients was 40.5 ± 1.8 days,

approximately 21 days and 48 days shorter than those of Groups

B and C, respectively. There were significant differences both in

wound healing rate and in duration of hospitalization (179). The

most important mechanism responsible of PRP dressings is that

these dressings release growth factors in proportions that optimally

promote gene expression in target cells. Thus, they increase collagen

synthesis and promote cell division and proliferation. In addition,

because white blood cells and platelets have similar sedimentation

rates, PRP obtained by centrifugation contains a certain

concentration of white blood cells, improving its local anti-

infection ability. Since PRP is extracted from the patient, it is low

in immunogenicity and high in safety (180). At the same time, it has
TABLE 6 Summary of cell dressings created using various delivery scaffolds.

Type of bracket Type of
cell

Animal
model

Mechanism of action Curative effect

Type 1 collagen scaffold (159) Mouse BM-
MSCs and
AD-MSCs

Diabetic
C57BL/6
mice
induced by
STZ

Promotes new blood vessel formation and reepithelialization;
effectively accelerates wound healing. Notch signaling is upregulated.
Increased concentration of macrophages in the wound.

Mouse ADSC can enhance
diabetic wound healing, and
the therapeutic effect is
similar to that of BMSC.

Silk fibroin (SF)/chitosan (CS)
scaffold (160)

Rat adipose
stem cells
(ADSCs)

Stz-induced
diabetic
Sprague
−Dawley
rats

Secretes EGF, fibroblast growth factor, insulin-like growth factor and
other important cytokines that repair keratinocytes. ADSCs
participate in the establishment of a neovascularization bed.

The wound closure rate of
treated animals was
significantly improved.

Gellan gel - hyaluronic acid
(GG-HA) scaffold (161)

Human
adipose stem
cells (hASC)

Diabetic
CD1-ICR
mice
induced by
STZ

Reduces the number of macrophages at the wound site and promotes
healing from the inflammatory stage to the proliferative stage.
Promotes the re-epithelialization of keratinocytes.

Accelerates wound closure.
Increases the thickness of
new epidermis.

Type 1 collagen rolling
scaffold (162)

MSC of
mouse bone
marrow origin

Diabetic
C57BL/6
mice
induced by
STZ

The hypoxic core environment of the rolling scaffold activates MSCs
to promote cell survival and produce VEGF. Enhances wound
angiogenesis.

Cell proliferation increases.
Enhanced wound healing.

N-carboxyethyl chitosan and
diacylhydrazine adipate
crosslinked scaffold with
hyaluronate aldehyde (163)

Bone marrow
mesenchymal
stem cells
(BM-MSCs)

Stz-induced
SD rats

BM-MSCs secrete growth factors, inhibit the expression of M1
macrophages and promote the expression of M2 macrophages.
Promotes granulation tissue formation, collagen deposition, nucleated
cell proliferation, and new blood vessel formation.

Promotes diabetic wound
healing
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also been reported that PRP can be uniformly incorporated directly

into collagen-glycosaminoglycan (collagen-gag) scaffolds. This

loaded scaffold releases key growth factors that promote wound

healing. It can be used to overcome the bottleneck created by

collagen-gag scaffolds that rely only on local endogenous signals to

promote healing (181). For the reasons discussed above, PRP

dressing therapy is widely popular in the clinic and can greatly

reduce the long-term medical burden of patients with DFU.

Platelets release growth factors, cytokines and interleukins,

which have a critical impact on healing mechanisms, including

angiogenesis, cell migration and proliferation and ECM protein

synthesis (182). The efficacy of Autologous platelet-rich plasma

dressings appears to cover a wide range of indications. The use of

autologous PRP improved wound healing in a shorter period of

time compared to traditional wound care. Platelet-rich plasma may

be an effective and promising treatment for chronic DFU, with PRP

being able to heal in a shorter period of time. However, the

mechanism of action of these products has not been fully elucidated.

5.5.5 Acellular wound matrix
Decellularized extracellular matrix (dECM) is obtained from

human or fish skin by decellularization technologies that include

chemical methods, physical methods, enzymatic treatment, and

osmotic treatment (183–186). Unlike the aforementioned collagen

dressings, dECM contains approximately 75% natural collagen but

also includes fibrin, fibritin, proteoglycans, glycosaminoglycans,

stromal cell protein, and other proteins (187, 188). Current

studies have shown that dECM not only anchors cells but also

has activities that affect cell survival, proliferation and function.

Various components of dECM with specific functions interact with

each other to promote wound healing (188). Decellularized fish skin

matrix is rich in a large number of lipids that are omega-3 fatty

acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic

acid (DHA). These compounds regulate wound healing processes,

form bacterial defense barriers, and alter skin physiology at the

cellular and molecular levels (189). Another advantage of using

decellularized matrix therapy in cases of dermal trauma is that

dECM is almost cell-free and weakly immunogenic. The ECM is a

major component of the skin and is critical for chronic wound

healing. Thus, dECM is an emerging research target for the clinical

application of bioactive dressings. A randomized clinical trial

showed that wound dressings containing human decellularized

dermal matrix (ADM) exhibited a trend toward better wound

healing and greater wound area reduction compared to

conventional care in a controlled trial involving 168 DFU

patients (190).

ECM compositions are emerging bioactive wound dressings due

to their ability to modify cellular properties in healing wounds.

Despite the excellent biological properties of conventional ECM

membranes and their demonstrated efficiency in the clinical

treatment of skin wounds, there are still some drawbacks that

prevent their widespread use. Considering that most ECM

membranes do not possess antimicrobial properties, the risk of

potentially transmitting fungal, bacterial, or viral infections should

be carefully addressed to avoid any unfavourable complications. In
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addition, due to the heterogeneity of biologically derived materials,

the development of standard protocols to improve the consistency

of ECM membranes is necessary for future clinical applications.

5.5.6 Smart nanomaterials dressings
Smart polymer nanomaterials are able to dynamically sense

changes in environmental stimuli and respond accordingly by

changing their physicochemical properties, similar to the self-

regulation and adaptive ability of biological systems in nature

(191). If the molecular structure is applied to the diabetic foot

ulcer dressing after careful design, the dressing can respond to a

variety of stimuli such as changes in ambient temperature, pH, light,

ions, molecules, electric and acoustic fields, which is more

conducive to the healing of DFU wounds. The most introduced

smart nanomaterials are nanoemulsions and nanoparticles.

Nanoemulsions are kinetically stabilized emulsions with

nanoscale droplet sizes (192). It is a widely used formulation in

diabetic wound healing applications due to its excellent

physicochemical properties and high patient tolerability. It was

found that the synergistic effect of insulin-loaded nanoemulsion

and homogenized aloe vera gel given to diabetic rats resulted in

faster wound closure (193). And it proved to be an effective and

promising treatment for diabetic wounds. A naringenin

nanoemulsion gel enriched with tocotrienols has been formulated

for the treatment of diabetic foot ulcer wounds. The droplet

size, surface charge, spreadability, polydispersity index, viscosity,

in vitro release kinetics and mucosal adhesion properties of the

stabilized nanoemulsion gel were evaluated by several metrics.

The results showed that an increase in polymer concentration of

the nanoemulsion gel increased the mucosal adhesion properties

and decreased the drug release rate (194). Thus, the use of

nanoemulsion gels is a promising approach to wound

management associated with diabetic complications.

Nanoparticles with small size and large surface area to volume

ratio are effective in increasing penetration and biological

interactions at the wound site. It triggers cell proliferation, cell

signalling, cell-cell interactions, vascularisation and epithelialization

(195). Therefore, it is ideal for topical drug delivery applications. It

has been reported that gelatin nanoparticles were constructed to test

the therapeutic effect on diabetic foot ulcers by in vitro model

human endothelial cells and in vivo model diabetic foot ulcer rats.

It was found that the nanoparticles showed higher wound

healing rate, cell proliferation, blood vessel formation and

epithelialization (196).

In summary, nanomaterials, especially smart nanomaterials, have

outstanding performance and great research prospects in diabetic

foot ulcer treatment. In the future, smart nanomaterials will appear in

diabetic foot ulcer dressings with outstanding performance.
5.6 Dressings and modern technology

Current academic research on the development of dressings for

chronic wounds is not limited to the simple mixing of various

biological materials. Current designs are more individualized and
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are based on the wounds of the patient. Dressings that are based on

the specific wound morphology and the condition of the lesion

eliminate the mismatch between the wound and the dressing size

and improve the patient’s fitness. Moreover, this multidisciplinary

approach integrates physics, zoology, and intelligent technology.

Functions such as real-time dynamic monitoring and wound

response can be added to the treatment.

5.6.1 3D bioprinting technology
3D printing (3DP) is a technology that uses a digital model file

as the basis for constructing an object by printing layer by layer

using a bondable material such as powdered metal or plastic. For

the medical field, it is undoubtedly a great boon. the maturity of

3DP technology has largely inspired the rapid development of

reconstructive bionics. Especially for chronic wounds such as

DFU, its emergence has given hope to diabetic foot ulcer patients.

Currently, the most established 3DP technology is Drop-on-

demand (DOD), which offers the advantages of low cost, fast

printing speed, high resolution, and the ability to change the

concentration gradient (197). However, there are drawbacks such

as low inoculum density and impaired cell viability and function

due to cross-linking and gelation processes. The study reports the

use of 3D bioprinting to fabricate implantable multilayer

vascularized bioengineered skin grafts. The graft is formed using

one bioink containing human foreskin dermal fibroblasts (FBs),

human endothelial cells (ECs) derived from cord blood human

endothelial colony-forming cells (HECFCs), and human placental

pericytes (PCs) suspended in rat tail type I collagen to form a dermis

followed by printing with a second bioink containing human

foreskin keratinocytes (KCs) to form an epidermis. In vitro, it has

biological and morphological functions comparable to those of

natural human skin (198). Provide solid evidence for the use of

3DP technology in DFU. The current research hotspot is more

inclined on how to design innovative, individualized and versatile

3DP technology and apply it with diabetic foot ulcer wounds. For

innovative technologies, the design of novel 3D printed biomaterials

with mechanical, rheological and biological properties that match

those of the target tissue is a key factor. In the case of individualized

techniques, each patient’s condition and physical functioning is

different. In the future, precision medicine will be a big trend. The

3D bioprinting technology converts the raw material for preparing a

variety of dressings into a bio-ink, which can then quickly seal skin

defects according to the contours of the wound. Specifically, when

diabetic foot ulcers occur, the wound site is scanned to prepare an

accurate 3D model for 3D printing. Once the 3D model is obtained,

it is transferred to a printer with the corresponding bioink and

converted to a 3D printed toolpath. The printed scaffold is then

crosslinked and applied to the wound site. The design of

personalized adjuncts based on the size and shape of the wound

in diabetic foot ulcer patients adapts to the patient’s unique wound

topology to ensure complete wound coverage and better aesthetics

after healing (199, 200).

Acellular dermal matrix (ADM) and gelatin methacrylamide

(GelMA) bioinks with shear-thinning properties print simulated

full-layered skin. This not only enhances cell viability and
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proliferation but also supports in vitro epidermal reconstruction

and improves wound healing quality (201). Another report

describes a digital light processing (DLP)-based 3D printing

technique that prints functional living skin (FLS). It used gelatin

methacrylate (GelMA), hyaluronic acid (HA-NB), and

photoinitiator phenyl lithium-2,4,6-trimethylbenzoyl phosphite

(LAP) as bioink. This method allows precise targeting of human

skin fibroblast (HSF) and human umbilical vein endothelial cell

(HUVEC) clusters with high cell viability and thereby promotes

skin regeneration and neointima formation (202). Research has

designed a biomaterial that can be 3D printed. It contains

functionalized sodium alginate (FSA), biomineralized silica, and

DNA from salmon sperm. And investigated the chronic wound

healing ability of DNA-bSi30@FSA dressings in mouse models of

diabetes. On the 6th day of local wound monitoring, the residual

wound in the DNA-bSi30@FSA dressing group was significantly

reduced (50.5%). The wound area in the control group, FSA, DNA@

FSA and Si30@FSA dressing groups was still 89.7%, 87.3%, 66.8%

and 61.9%, respectively. Finally, on day 15, the wounds treated with

the DNA‐bSi30@FSA, Si30@FSA, and DNA@FSA dressing groups

showed faster healing than those of the saline and FSA dressing

groups. Thus, the 3D‐printed DNA‐bSi30@FSA dressing could

significantly enhance wound healing in a chronic wound in

diabetic mice by enhancing the synergistic bioactive functions of

DNA and biomineralized silica nanotherapeutics (203).

3D oprinting has emerged as a promising technology designed

to rapidly close skin defects according to their contours. The 3D

bioprinted skin substitute has a strictly layered structure with

controlled cell type and density localisation, enhancing homology

with natural human skin. It also offers better cost and time

efficiency. However, 3D bioprinting still has some limitations and

requires long-term evaluation studies in large animal models to

confirm its future clinical potential. Its precise molecular

mechanisms have not yet been elucidated.

5.6.2 Light, heat and electrical effects
Scholars have focused considerable attention on the auxiliary

effects of light, heat, and electricity in dressing applications in recent

years (204). Multicolor light irradiation in the near infrared region

(NIR) is most commonly reported. Physical stimulation and

photoactivation can increase the biological effects of a variety of

materials (205). Photothermal therapy (PTT) mainly destroys

bacterial cell membranes and biofilms by light-induced heat

generation. NIR laser irradiation also has a bactericidal effect

through its effects on ROS levels, ATP levels, lipid peroxidation,

glutathione and adenosine triphosphate accumulation, and

bacterial membrane disruption; through these mechanisms, it

appears to assist in eradicating multidrug resistant bacteria and

accelerating wound healing in MRSA-infected diabetic models

(206–208). In DFU treatment, PTT can be combined with

chemobacteriological therapy to form a synergistic antibacterial

strategy. At present, metal nanoparticles, non-metallic

nanoparticles, organic dyes, etc. have been found to be used as

photothermal conversion agents. Among them, black phosphorus

(BP) showed high photothermal conversion efficiency. In one study,
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BP modified with bismuth oxide (Bi2O3) and ϵ-polylysine (ϵ-PL)
was reported. When BP/Bi2O3/ϵ-PL is infiltrated into the hydrogel,

NPs@gel-2 is obtained. NIR irradiation triggers the photothermal

conversion capability of BP/Bi2O3. ϵ-PL generates high

temperatures to further damage bacterial cell membranes and

lead to leakage of intracellular substances, achieving sterilization

and preventing biofilm formation. In the in vitro antimicrobial test,

NPs@gel-2+NIR was 100% inhibited against Pseudomonas

aeruginosa, Staphylococcus aureus and Escherichia coli. And on

day 14 of the infected wound model monitoring in diabetic animals,

the wound shrinkage rates of each group are sorted as follows:

NPs@gel-2+NIR (98.8%) > Control (−) (refers to an uninfected

wound) (94.2%) > NPs@gel-2 (88.1%) > Blank gel (81.2%) >

Control (+) (71.7%) (209).

After the wound appears, the movement of ions begins to repair

the wound and create an endogenous electrodynamic field.

Endogenous and exogenous electric fields can provide the earliest

signals needed to initiate cell proliferation, migration, and eventual

wound epithelialization. Changes in the electric field then direct

cells, molecules, and drive the wound healing process. The final

charge and bioelectric dynamic field penetrates into several stages of

wound healing, driving cells and molecules and maintaining the

flow of oxygen and nutrients necessary for wound healing. Many

treatments can promote wound healing by influencing electrical

factors. For example, exogenous electric fields such as pulsed

electromagnetic fields (PEMF), pulsed high-voltage stimulation

(PHVS), and low-level laser therapy (LLLT) promote wound

healing. LLLT can produce electrical action because it increases

the yield of ATP, thereby improving the efficiency of the sodium-

potassium pump. The potential difference between the inside and

outside of the battery is guaranteed (210). Microfabricated

electrodes, pH-sensitive hydrogels, and controlled electronic

circuits can be added to dressings. And the release of the drug by

applying a voltage to change the pH near the electrode. This results

in a dressing that allows flexible stimulus-response drug delivery

(211). Therefore, not only can an electrical stimulus be applied to

the dressing, a low voltage can also be applied directly to the wound,

providing a new treatment that accelerates wound healing.

Electrodynamic fields direct the migration of fibroblasts,

keratinocytes, macrophages, and epithelial cells and influence

blood rheology and microcirculation to promote wound healing.

For example, microbattery-impregnated bioelectric dressings

(BEDS) allow an animal’s wound to close completely within 4

weeks without infection or transplantation. Bioelectric dressings are

therefore a promising wound dressing for DFU (210, 212). In

addition, a pulsed capacitive coupled electric field (PCCEF)

platform has been researched and developed. When the pulse

width ≥ 10 ms, PCCEF significantly promoted the migration and

proliferation of human dermal fibroblasts and HaCaT cells,

enhanced M2-type polarization of macrophages, and promoted

wound healing in mouse models (213).

Light, heat and electricity are excellent aids in dressing

application. Physical stimulation and photoactivation can enhance

the biological effects of a wide range of materials. Light stimulation

of platelets has great potential for platelet activation and fibroblast
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stimulation. The electric field directs the migration of fibroblasts,

keratinocytes, macrophages and epithelial cells, affecting blood

rheology and microcirculation, thereby promoting wound healing.

However, relevant studies are currently inadequate, limiting its

widespread clinical use.

5.6.3 Microneedling dressings
A painless and simple drug delivery system known as

microneedling (MN) has been developed since the turn of the 21st

century. The MNs used in this system contain porous structures with

continuous nanometer- or micron-scale pores that transport drugs or

biofluids through capillary action. Changing the porosity of these

structures affects the internal fluid flow, and this in turn adjusts the

mechanical strength of the MN device (214). The stratum corneum

(SC) is the outermost keratinizing layer of the skin, and only

molecules smaller than or equal to 500 Da (dalton) in size can

move freely in the skin. Microneedles can create microchannels

through the SC of the skin without stimulating proprioceptive pain

nerves (215). And there are numerous studies showing that MNs can

successfully deliver both small and large molecule drugs (e.g., insulin,

vaccines, proteins, and chemotherapeutic agents) through the skin.

Compared with conventional bandages and hydrogels, MNs have the

advantage of transporting drugs through deeper layers of skin and

improving drug delivery efficiency (216). The chances of infection

when using MN are much smaller than with traditional hypodermic

needles. There is great interest in the development of MN dressings

for DFU. Inspired by the structure of mosquito mouthparts, MN

devices with fixed and liquid transfer parts have been developed. In

addition, the dressing as a whole features an ultrafine needle tip, a

personalized pattern design, and programmable needle length and

can be prepared with a variety of mechanical strengths to realize

intelligent painlessness (217). Inspired by the flat and sloping

structure of shark teeth, MN patches are designed to provide stable

adhesion. MN can also be combined with MXene electronics to

provide sensitive monitoring of the motion of the dressing (218).

Inspired by the highly folded structure of insect wings, the versatile

three-dimensional (3D) origami MN patch features an ultrafine

needle structure, microfluidic channels, and circuits. It promotes

wound healing by releasing drugs in a controlled manner and

monitoring exercise (219). In one study, a near-infrared (NIR)-

responsive hair microneedle patch was reported. It contains

hierarchical microparticle (HMP), ZnO, vascular endothelial

growth factor and basic fibroblast growth factor. It delivers drugs

to the extremities painlessly, accurately and controllably under NIR

irradiation. Among them, hair-derived HMP exhibits the ability to

clear ROS, thereby preventing damage to blood vessels. At the same

time, zinc oxide (ZnO) nanoparticles confer excellent antibacterial

activity on the MN patch, and the photothermal effect of HMP under

near-infrared radiation can further enhance this activity. In vivo, it

significantly raises the temperature of the fingertips of diabetic rats

and promotes collagen deposition and angiogenesis during wound

healing (220). In addition, the development of hydrogel dressings in

the form of microneedles exhibits better sustained release of drugs,

adequate mechanical properties, and better biocompatibility than

traditional dressings (221, 222).
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Microneedling can safely and sustainably deliver large amounts

of therapeutic agents through the skin without compromising

painless injections. And does not increase the risk of infection.

Microneedle dressings accelerate the healing process of diabetic

wounds, reduce the inflammatory response, promote collagen

deposition at regenerated tissue sites, and improve glycaemic

control in animals. However, once the microneedle dressing

adheres to the skin, it is difficult to peel off from the skin. And

there are still individual differences in side effects such as skin

redness, irritation, or skin allergies. If high doses are required for

treatment, the MN patch may be underloaded, so the MN patch

must be used multiple times. It is effective in diabetic wound

management and has great potential in the treatment of other

chronic skin injuries.

5.6.4 Intelligent bandages
The smart bandage is a product of wearable technology for the

treatment of DFU. With the development of the Internet of Things,

and emerging biomaterials, wearable sensing and information and

communication technologies are key steps in driving the

transformation of health care services to a new model of

connected health (CH) care (223). In the clinical diagnosis and

treatment of DFU, the healing stage of the wound and the existence

of complications such as infection are usually judged only by

medical evaluation and by the naked eye. The use of such rough

wound assessment and fixed dressing change patterns not only

frequently results in missing of the optimal treatment time but also

leads to unnecessary dressing changes and increased medical costs.

Smart bandages solve this problem. Smart bandages based on

wearable technology are mainly used for integrated wound

identification, real-time dynamic monitoring of wounds in which

information on important parameters is collected, and early

prediction of infection. In addition to 3D printing, online wound

image scanning and recognition technologies such as image

recognition, computer modeling, nanomaterial fabrication and

modifica t ion , combined wi th offl ine smart mater ia l

manufacturing, can further promote the individualized design of

wound dressings (224). Smart bandages monitor pH, sodium,

potassium, calcium and uric acid levels, and wound temperature

in real time to provide quantitative diagnosis (225). The basic

principle on which they work is that the wound exudes fluid into

the sensing area or excites the pH response current, resulting in flow

analysis results through voltage changes and potential conversions

(226, 227). In a pioneering study, a flexible bioelectronic system was

developed. It facilitates the integration of current smart bandage

technology with sensors and stimulators. This system consisting of

wirelessly powered, closed-loop sensing and stimulation circuits

with skin-interfacing hydrogel electrodes capable of on-demand

adhesion and detachment. The system continuously monitors skin

impedance and temperature and provides electrical stimulation

depending on the wound environment. Across preclinical wound

models, the treatment group healed ~25% more rapidly and with

~50% enhancement in dermal remodeling compared with control
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(228). In addition, a smart disinfection bandage based on wirelessly

powered ultraviolet C (UVC) radiation has been reported. The

induction coil is seamlessly hidden in a fabric bandage and coupled

to the rectifier circuit. This system can effectively eradicate Gram-

negative bacteria and Pseudoalteromonas sp (229). Nowadays, a

wide variety of mobile applications are widely used worldwide in

many areas of daily activities, which greatly improve the quality of

human life. Meanwhile, mobile applications for DFU monitoring

and care are being developed. Cassidy et al. developed the first

mobile app capable of accurate DFU detection using AI and cloud-

based technologies. This system was tested in a 6-mo clinical

evaluation at two UK National Health Service hospital sites

(Lancashire Teaching Hospitals and Salford Royal Hospital) and

is currently being further developed to improve functionality and

accuracy (230). The success of this type of program development

also provides some guidance in the selection of dressings.

5.6.5 Orthopedic prosthetics and regenerative
medicine

An orthopedic prosthesis is a medical device designed to replace

missing or damaged bones and joints, thereby restoring mobility

and function to individuals with musculoskeletal injuries or

conditions. But improving the biocompatibility of orthopedic

prostheses to promote better integration with natural tissues is an

urgent problem. Regenerative medicine focuses on how to induce

human tissue regeneration and identify instructive cues that direct

refractory tissues down a regenerative path (231). This suggests the

potential of regenerative medicine to use natural tissue repair and

regeneration to improve the biocompatibility of prostheses and

potentially replace lost tissue. Cells, growth factors, and

biomaterials can be used to stimulate the body’s natural

regenerative ability to repair damaged tissue. Therefore, by using

regenerative medicine techniques, we can develop orthopedic

prostheses that are more compatible with natural tissues. Its

application to ulcer defects in DFU patients is expected to reduce

the risk of various complications (such as infection, inflammation,

rejection) and improve long-term outcomes for patients. In

addition, as mentioned earlier, patients with DFU have a high

rate of amputation. For these patients, orthopedic prostheses are

undoubtedly a huge boon. Sensory neuroprosthetic devices have

been designed to provide individuals with the sensation of natural

feet, enabling them to walk more confidently and controllably (232).
6 Healing of diabetic foot ulcers

The healing of DFU is complicated. At the cellular level, it is the

result of multiple cells working together. At the molecular level, it

can affect the activities of various cell types through the activation of

many signaling pathways. With continuous improvements in

science and technology, the healing process of DFU is gradually

becoming clear, and this has a very significant effect on clinical

treatment (Figure 4).
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6.1 Diabetic foot ulcer healing at the
cellular level

Wound healing is normally a dynamic process. It occurs in four

main stages: hemostasis, inflammation, proliferation and

remodeling. These stages usually occur in a specific order.

Hemostasis occurs immediately after injury; it is characterized by

recruitment of platelets and circulating clotting factors to the

wound site to initiate clotting. When platelet recruitment occurs,

damaged cells release signaling factors that activate resident

macrophages and damage-related molecular patterns. At the same

time, stimulated polymorphonuclear neutrophils (PMNS) enter

from the vasculature to defend against pathogens. When PMNs

begin to migrate to the wound, they initiate the inflammatory phase.

Neutrophils release chemokines that recruit circulating monocytes

from the peripheral blood to the wound site. The recruited

monocytes differentiate into macrophages and dendritic cells.

They perform key steps in the inflammatory phase of wound

healing. The proliferative stage begins with the recruitment and

activation of keratinocytes and fibroblasts. At this stage, growth

factors stimulate keratinocytes to re-epithelialize the wound.

During this time, the temporary matrix established by platelets

during hemostasis is replaced by granulated tissue. Fibroblasts

secrete proteases and matrix metalloproteinases (MMPs) that

degrade the temporary matrix. They also secrete collagen and

other extracellular matrix (ECM) proteins into the granulation

tissue. The final phase, the remodeling phase, begins as soon as

granulation tissue appears. Here, fibroblasts differentiate into

wound contraction myoblasts, and the collagen III that was

deposited in the ECM during the proliferation stage is exchanged

for collagen I, which has greater tensile strength (233, 234).
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6.2 Diabetic foot ulcer healing at the
molecular level

6.2.1 HIF-1a/VEGF signaling pathway
Vascular endothelial growth factor (VEGF) is a highly specific

endothelial growth factor. It can promote increases in vascular

permeability, extracellular matrix degeneration, vascular

endothelial cell migration, proliferation and angiogenesis. Serum

levels of miR-217, HIF-1a, and VEGF were measured in patients

with DFU, in patients with simple diabetes mellitus (DM), and in

healthy controls. Rat models of DFU were also established and

treated with miR-217 inhibitors and/or with HIF-1a siRNA. It was

found that inhibition of miR-217 upregulated the HIF-1a/VEGF
pathway, promoted angiogenesis and decreased inflammation in

DFU rats, thus effectively promoting healing of ulcer sites (235).

Zhu et al. confirmed that activation of the HIF-1a/VEGF/VEGFR2
pathway promotes angiogenesis and showed that increasing

angiogenesis has a therapeutic effect on wound healing in

DFU (236).

6.2.2 Wnt/b-catenin signaling pathway
b-catenin is an important downstream factor in the Wnt

pathway and is a multifunctional protein. It is closely related to

skin damage and healing. When the Wnt/b-catenin pathway is

activated, phosphorylation of b-catenin in the cytoplasm is

inhibited, degradation is reduced, and b-catenin accumulates

continuously. When the amount of b-catenin reaches a certain

level, it enters the nucleus and interacts with T-cell transcription

factors and lymphoid-enhancing transcription factors to form

protein complexes. In this way, it can promote the expression of

downstream target genes, facilitate the generation of epidermis and
FIGURE 4

The healing mechanism of DFU.
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keratinocytes, and promote wound healing (237). Panax

notoginseng has been used to treat diabetic models. It was found

that PN improves albuminuria and podocyte EMT in diabetic rats

by inhibiting the Wnt/b-catenin signaling pathway, providing

experimental support for novel treatment options for diabetic

neuropathy (238).

6.2.3 PI3K/AKT signaling pathway
Protein kinase B, Akt, also known as PKB or Rac, plays an

important role in cell survival and apoptosis. The PI3K/AKT

signaling pathway regulates many critical cellular processes,

including nutrient uptake, anabolic response, cell growth,

differentiation and survival, proliferation, and cell motility (239).

It was found that when the miR-138 inhibitors IGF-1 and LY294002

were administered to DFU rat models, the resulting downregulation

of miR-138 alleviated the animals’ inflammatory responses and

promoted healing of DFU by stimulating the PI3K/AKT pathway

and hTERT (240). Use of the plasma ED-EV method to treat

diabetic mice has also been described in the literature, and it has

been confirmed that this method of treatment slows the aging of

mouse fibroblasts and accelerates wound healing by promoting

YAP nuclear translocation and activating the PI3K/Akt/mTOR

pathway (241).

6.2.4 TGF-b/Smad signaling pathway
Transforming growth factor-b (TGF-b) is considered to a

polymorphic signaling pathway that is involved in many

processes in both mature organisms and developing embryos,

including cell growth, differentiation, apoptosis, the epithelial-

mesenchymal transition, and extracellular matrix production.

Smad proteins act downstream of the TGF-b family of receptors

and carry signals from the cytoplasm to the nucleus resulting from

the binding of TGF-b and its receptors. The TGF-b/Smad signaling

pathway plays a key role in regulating extracellular matrix

remodeling and wound healing (242). By observing wound

healing in DFU mouse models, researchers found that the

number of WDR74 and M2 macrophages in the wound tissue of

DFU mice was decreased. Activation of the TGF-b/Smad pathway

increased the expression of M2 macrophage markers (argininase-1

and YM1) and IL-4 while decreasing the expression of M1

macrophage markers. TGF-b/Smad pathway activation also

promoted ECM production and facilitated wound closure in

diabetic mice. Overexpression of WDR74 increased Smad2/3

phosphorylation, increased the number of M2 macrophages and

the production of ECM, and alleviated DFU (243).

6.2.5 MAPK signaling pathway
Mitogen-activated protein kinases (MAPKs) are a group of

evolutionarily conserved serine/threonine protein kinases. They

are involved in various biological processes such as cell growth,

apoptosis, hormone signaling, the immune response, and the

inflammatory response. MAPK genes can be divided into three

main subfamilies, namely, extracellular signal-regulated kinases

(ERKs), Jun N-terminal kinases (JNKs) and p38 MAPKs (244).

Zhu et al. used bioinformatics methods to screen for novel genes
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that play an active role in diabetes-related fibroblasts. The results

showed that the MAPK signaling pathway plays a key role in the

regulation of diabetic wound healing. MAPKAPK3, HSPA2 and

TGFBR1 are potential key genes in this regulatory process. ETV4

and NPE2 play a potential role in the regulation of wound

regeneration in DFU (245).

6.2.6 NF-kB signaling pathway
Nuclear factor-kB (NF-kB) is an important cellular kernel

transcription factor that is involved in many physiological and

pathological processes, such as inflammatory responses, immune

responses, cell survival, and apoptosis. The NF-kB pathway is the

most typical proinflammatory signaling pathway because it is

activated to express a large number of proinflammatory factors,

including cytokines, chemokines and adhesion molecules (246). Sun

et al. treated a rat model of diabetic foot ulcers with paeoniflorin

and found that paeoniflorin effectively inhibited NLRP3- and NF-

kB-mediated inflammation in DFU by inhibiting CXCR2. Wound

inflammation in DFU rats was greatly reduced, and wound healing

improved (247).

6.2.7 Nrf2 signaling pathway
Nuclear transcription factor-erythroid 2-related factor 2 (Nrf2)

belongs to the Cap-n-Collar family of alkaline leucine zipper

proteins and is part of the most significant antioxidant stress

signaling pathway. The imbalance of free radicals and

antioxidants that occurs in DFU patients may lead to excessive

production of ROS, resulting in tissue damage and refractory

wound healing (248). Sun et al. established streptozotocin (STZ)-

induced diabetic rat models and human immortalized keratinocytes

treated with high glucose (HG). Both models were treated with

paeoniflorin. It was found that STZ-induced diabetic rats had

delayed wound healing compared with normal rats. The animals

are characterized by severe oxidative DNA damage, low expression

of vascular endothelial growth factor (VEGF) and transforming

growth factor b1 (TGF-b1), and increased apoptosis. Treatment

with PF activated the expression of Nrf2 and improved wound

healing in DFU rats. In vitro experiments have also shown that PF

accelerates wound healing, alleviates oxidative stress, increases cell

proliferation and migration, reduces apoptosis, and increases the

expression of VEGF and TGF-b1 through the Nrf2 pathway under

hyperglycemic conditions (249).
7 Perspectives

This review summarizes the properties of different dressings to

help healthcare professionals better select dressings, summarizes the

healing mechanisms of diabetic foot ulcers at the cellular and

molecular levels, and serves as a reference for researchers trying

to develop dressings that target specific mechanisms. DFU is a

devastating complication of diabetes mellitus associated with

infection, amputation and death and are affecting an increasing

number of diabetic patients. Dressings play a very important role in

the management of DFU, and different categories of dressings each
frontiersin.org

https://doi.org/10.3389/fendo.2023.1221705
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Jiang et al. 10.3389/fendo.2023.1221705
have their own advantages and disadvantages. The correct use of

dressings can improve the healing rate of DFU and lower the cost of

treating DFU. However, due to the complex pathogenesis of DFU,

susceptibility to infection, long duration of the disease, and the

possibility of recurrence, treating DFU is a major challenge for

physicians and patients. Currently, there are some challenges and

limitations regarding the research and application of dressings.

At the laboratory stage, healing of rat skin wounds is very

different from that of mouse wound healing models compared to

human wound healing, and some of the available experimental data

have been obtained from small randomized controlled trials with a

high risk of bias. In addition, due to the complex pathogenesis of

DFU, it is difficult to understand how certain dressings promote

skin regeneration and how they interact with wound tissue cells.

At the clinical trial stage, many dressings are in dire need of

well-designed randomized controlled trials to validate efficacy, and

robust clinical trials are lacking. Despite the complexity and high-

hazard nature of DFU, clinical trial research has accelerated the

development of ideal dressings that offer hope to DFU patients. We

should pay attention to promote the clinical application of emerging

dressings to truly benefit patients.

At the stage of clinical application, at present, the types of

clinically applied dressings are still relatively small, and they need to

be changed frequently, and the replacement process consumes a lot

of manpower, material and financial resources, and the effect is

poor, which consumes the energy and confidence of doctors and

patients. Poor patient compliance, the price of dressings is too high

will also affect the clinical application of dressings.

For patients, inexpensive dressings with better efficacy, fewer

potential complications, and the ability to reduce pain are more

likely to be accepted.

For physicians, the quality of wound care depends largely on the

correct choice of dressing. This requires medical staff to have a good

understanding of the properties of different dressings to select the

right dressing and change it regularly. The selection of wound

dressings should be based on the specific conditions of the patient

and the unique advantages of the dressing to maximize the benefits

to the patient, so that the individual application of the dressing can

be achieved. However, there is no standardized set of guidelines for

dressing selection that can be referred to.

DFU is a prevalent and serious global health problem,

suggesting future research into higher-quality clinical dressings

and a more comprehensive and systematic evaluation of the

effectiveness of dressings. Current dressings have their limitations,

and research into the “ideal” multifunctional dressing could benefit

patients with DFU. The ideal dressing should have good moisture

balance, protease barrier, growth factor stimulation, antimicrobial

activity, oxygen permeability, and the ability to promote autolytic

debridement. Based on the recognition of the above issues, the

future development of dressings should focus on intelligence,

personalization, multi-target coverage, combined application of

multiple dressings and accelerated clinical translation. Current

research on dressings in DFU management lacks clear evidence-

based guidelines and robust clinical trials on their effectiveness.
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There is no standardized set of guidelines for dressing selection that

can be referenced. Two major strategies are key to improving overall

outcomes. The first is a significant investment in conducting high-

quality clinical trials, which is necessary to improve the evidence

base for clinical dressing care. The second is to ensure that

healthcare professionals using DFU dressings adhere to existing

evidence-based guidance on the selection of appropriate dressings,

and guidelines are needed to encourage clinicians to adopt those

treatments that have been shown to be effective in robust studies,

primarily in randomized controlled trials.
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