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Background: Cellular senescence occurs throughout life and can play beneficial

roles in a variety of physiological processes, including embryonic development,

tissue repair, and tumor suppression. However, the relationship between cellular

senescence-related genes (CSRGs) and immunotherapy in esophageal

carcinoma (ECa) remains poorly defined.

Methods: The data set used in the analysis was retrieved from TCGA (Research

Resource Identifier (RRID): SCR_003193), GEO (RRID: SCR_005012), and CellAge

databases. Data processing, statistical analysis, and diagram formation were

conducted in R software (RRID: SCR_001905) and GraphPad Prism (RRID:

SCR_002798). Based on CSRGs, we used the TCGA database to construct a

prognostic signature for ECa and then validated it in the GEO database. The

predictive efficiency of the signature was evaluated using receiver operating

characteristic (ROC) curves, Cox regression analysis, nomogram, and calibration

curves. According to the median risk score derived from CSRGs, patients with

ECa were divided into high- and low-risk groups. Immune infiltration and

immunotherapy were also analyzed between the two risk groups. Finally, the

hub genes of the differences between the two risk groups were identified by the

STRING (RRID: SCR_005223) database and Cytoscape (RRID: SCR_003032)

software.

Results: A six-gene risk signature (DEK, RUNX1, SMARCA4, SREBF1, TERT, and

TOP1) was constructed in the TCGA database. Patients in the high-risk group had

a worse overall survival (OS) was disclosed by survival analysis. As expected, the

signature presented equally prognostic significance in the GSE53624 cohort.

Next, the Area Under ROC Curve (AUC=0.854) and multivariate Cox regression

analysis (HR=3.381, 2.073-5.514, P<0.001) also proved that the risk signature has

a high predictive ability. Furthermore, we can more accurately predict the

prognosis of patients with ECa by nomogram constructed by risk score. The
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result of the TIDE algorithm showed that ECa patients in the high-risk group had

a greater possibility of immune escape. At last, a total of ten hub genes (APOA1,

MUC5AC, GC, APOA4, AMBP, FABP1, APOA2, SOX2, MUC8, MUC17) between

two risk groups with the highest interaction degrees were identified. By further

analysis, four hub genes (APOA4, AMBP, FABP1, and APOA2) were related to the

survival differences of ECa.

Conclusions: Our study reveals comprehensive clues that a novel signature

based on CSRGs may provide reliable prognosis prediction and insight into new

therapy for patients with ECa.
KEYWORDS

cellular senescence, esophageal carcinoma, prognosis signature, immunotherapy,
bioinformatic analysis
Introduction
Esophageal carcinoma (ECa) is a highly aggressive malignancy

and a healthcare problem with global impact. It ranks tenth in the

incidence of malignancies worldwide and sixth in deaths from

cancer (1). In 2020, 604,100 people (3.1% of new cancer cases)

worldwide were diagnosed with ECa and 544,076 people (5.5% of

new death cases) died from this disease (1). The course of treatment

for ECa has changed significantly over the past decades. Early ECa is

generally treated by endoscopy, and locally advanced ECa is

routinely treated with neoadjuvant chemoradiotherapy before

surgical treatment (2). However, for cervical ECa, chemotherapy

and radiotherapy are the preferred treatment options (2). Despite

the diversity of treatment options for ECa, the survival rates for ECa

remains poor, mainly due to the late stage of the disease when first

diagnosed and the high recurrence rate even in cases of localized

disease. Consequently, it is vital for us to explore the appropriate

therapeutic targets and novel prognostic biomarkers for ECa

patients to enhance the clinical outcome.

Cellular senescence is characterized by a state of persistent cell

cycle arrest in which cells remain merely metabolically active (3, 4).

It is not only related to the aging process of organisms but also plays

an important role in the whole life process from embryonic

development to the end of life (5–7). One of the key features of

senescent cells is the senescence-associated secretory phenotype

(SASP), comprising three main features such as loss of proliferative

or regenerative capacity, resistance to apoptosis, and accumulation

of pathological metabolic wastes (8, 9). In recent years, more and

more scholars have shown great interest in the intricate relationship

between cellular senescence and cancers (10, 11). Previous studies

have shown that cellular senescence acts as a double-edged sword at

different stages of malignancy development (7, 12, 13).

Consequently, abolishing accumulated deleterious cellular

senescence and inducing acute cellular senescence are now being

investigated as targets for treating disease. Recent research indicates

that tumor cells might experience senescence as an evolutionary
02
process, which involves both tumor intrinsic traits and external

immunological load (14, 15). Notably, the negative consequences of

SASP outweigh its positive features (16). Therefore, we

hypothesized that with the accumulation of senescent cells, SASP

remodels the tumor microenvironment by recruit ing

immunosuppressive cells, thereby promoting tumor cell evasion

of immune surveillance, leading to poor clinical prognosis in

tumors. To facilitate studies focused on cell senescence, the

researchers developed CellAge, a database of genes associated

with cell senescence. Developer manually-curated data is based on

gene manipulation experiments in different human cell types. A

gene expression signature of cellular senescence is also available. By

integrating these and other datasets developers performed a systems

biology analysis of cell senescence. At present, there are few studies

on CSRGs in ECa, but a number of studies have shown that CSRGs

signature can play a prognostic role in hepatocellular carcinoma,

gastric cancer, bladder cancer, renal cell carcinoma, and colon

cancer (17–21). However, the expression characteristics and

prognostic significance of CSRGs in ECa remain unclear.

Therefore, the study of cellular senescence in ECa is crucial.

In our study, a risk signature based on six CSRGs was

constructed and validated in The Cancer Genome Atlas (TCGA)

cohort and Gene Expression Omnibus (GEO) cohort, respectively.

The actual prognostic value of risk signature in patients with ECa

has also been fully explored. Based on the risk groupings, we next

focused on the differences in clinical features, immune infiltration,

and immunotherapy response between the two risk groups. Finally,

we hope that our study can broaden the mind for prognostic

prediction and individualizing immunotherapy of ECa.
Materials and methods

Data collection

The gene expression profiles and clinical data of patients with

ECa were extracted from the TCGA public database (https://
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portal.gdc.cancer.gov) and used as the training cohort. A total of

194 patients (12 normal esophageal tissue samples and 182 ECa

samples) were included in the TCGA database. Independent probe

matrix file (GSE53624) and platform file (GPL18109) containing

179 samples were derived from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/) and served as validation sets.

According to the probe sequence of the platform file, the gene

names were obtained by chip re-annotation technology, to obtain

the corresponding relationship between the probe matrix and the

gene names. Finally, we selected a list of 279 CSRGs

(Supplementary Table S1) from the CellAge database (https://

genomics.senescence.info/cells/). The flow diagram of this study is

depicted in Figure 1.
Identification of differentially expressed
CSRGs in ECa

The expression differences of CSRGs between 12 normal

esophageal tissues and 182 ECa tissues were analyzed by the

“limma” R package. The data were analyzed strictly according to

the screening criteria of false discovery rate (FDR)<0.05 and |log2
(fold change, FC)|>0.585. Next, differentially expressed CSRGs were
Frontiers in Oncology 03
visualized by plotting heat map and volcano map with the

“pheatmap” package of the R software system.
Development and verification of a
prognostic-related CSRGs signature

We first combined the expression data in TCGA-ECa with the

survival data and then analyzed and obtained the expression levels

of differentially expressed CSRGs in ECa samples. Then, the CSRGs

related to the prognosis of ECa were obtained by univariate Cox

regression analysis, and the screening criteria was P<0.05. Finally,

the Least Absolute Shrinkage and Selection Operator (lasso)

regression analysis with the “glmnet” package in R was executed

to pick up the preliminary hub CSRGs. The calculation formula of

CSRGs-related risk scores was as follows: risk scores =Si

(Lasso_Coefi*GeneExpi). “Lasso_Coef”, Lasso regression

coefficient; “GeneExp”, amount of gene expression. According to

the median risk score derived from CSRGs, patients with ECa were

divided into high- and low-risk groups.

The effectiveness of the risk signature was demonstrated by

principal component analysis (PCA), Kaplan–Meier survival

curves, and receiver operating characteristic (ROC) curves. In
FIGURE 1

The detailed flow diagram in our study.
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order to verify the independence of the risk signature in prediction,

univariate and multivariate Cox analyses on clinical variables and

risk scores were generated using the “survival” package of R. The

selected clinical variables are mainly indicators that have important

prognostic significance for patients with ECa, such as age, gender,

clinicopathological grade, and TNM stage. The “ggpubr” package of

R was used to investigate whether there were differences in clinical

variables and immune subtypes among different risk groups.
RNA isolation and quantitative
real-time PCR

Total RNA was extracted from 12 paired human ECa tissues

and adjacent non-tumorous esophageal tissues using TRIzol

Reagent (Abcam, China). The reverse transcription was

conducted with TransScrip All-in-One SuperMix for qPCR

reagent Kit (TaKaRa, Japan). Real-time fluorescent PCR was

performed by SYBR Green assay. The experiment adopted a 20mL
reaction system, Tip Green qPCR SuperMix (TaKaRa, Japan),

cDNA template, upstream and downstream primers were

successively added into 8 reaction tubes, and 3 repeated

experiments were performed for each sample. We used

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as the

internal reference, and the data were analyzed using the 2–DDCt

approach. The sequences of primers were listed in Supplementary

Table S2.
Construction of a nomogram

In order to predict the survival rate of patients with ECa at 1, 2,

and 3 years, clinicopathological factors and risk score integrated

nomogram was generated using the”regplot” and “rms” packages in

R. Subsequently, by generating a calibration curve, we evaluated the

preliminary consistency between the survival rate of ECa predicted

by the nomogram and the actual survival rate. The ROC curve was

utilized to explore the accuracy of the nomogram and clinical

features in predicting the survival rate of patients with ECa. At

last, univariate and multivariate Cox analyses were utilized to

explore the potential of the nomogram to independently predict

prognosis in ECa.
Investigation of the immunotherapy
response

R software combined with the CIBERSORT algorithm was used

to explore the differences of 22 kinds of human immune cell

subpopulations between the two risk groups in TCGA-ECa.

Immediately after, we explored the differences in pathway

enrichment between the two risk groups by gene set variation

analysis (GSVA). The TIDE (Tumor Immune Dysfunction and

Exclusion) algorithm was used to evaluate the weight of

immunological rejection in two risk groups via an online website

(http://tide.dfci.harvard.edu/).
Frontiers in Oncology 04
Functional and pathway enrichment
analysis

Firstly, the “limma” package of R software was used to screen

the differentially expressed genes (DEGs) between different groups,

and the screening criteria were FDR<0.05 and |log2FC|>1.

Subsequently, we performed GO and KEGG analysis on the two

risk groups to explore the differences in their potential biological

functions and pathways.
Gene set enrichment analysis

Using the curated gene set (kegg.v7.4.symbols.gmt), broad

GSEA v.4.2.3 was applied to detect high- and low-risk group

correlation pathways with the criteria: NOM P<0.05 and |NES|

>1 (22).
Construction of the PPI network

The STRING online database (https://string-db.org/) was first

applied to obtain the PPI (protein-protein interaction) information

(interaction score >0.70) of the DEGs between different groups.

Next, we visualized the PPI network using the Cytoscape software

(version 3.9.1). In addition, the plugin of cytoHubba in Cytoscape

was utilized to screen the hub genes with the most complex

connections in the PPI network. Finally, the clinical significance

of hub genes in ECa was further explored.
Statistical analysis

Data processing, statistical analysis, and diagram formation were

all conducted in R software (version R-4.2.2), GraphPad Prism

(version 9.0), and Cytoscape software (version 3.9.1). The Kaplan–

Meier curve plotted by the “survminer” package of R was used to

compare differential survival probability. Univariate and multivariate

Cox regression analyses of independent prognostic factors were

performed using the “forestplot” package of R. ROC curve plotted

by the “timeROC” package of R was used to assess the predictive

efficacy of the CSRGs prognostic signature and nomogram. Results

with two-sided P<0.05 were deemed statistically significant.
Results

Identification of differential CSRGs in ECa

In TCGA data, among 279 CSRGs, 119 were differentially

expressed between ECa samples and normal esophageal samples

(FDR <0.05, |log2FC| > 0.585), including 15 downregulated genes

and 104 upregulated genes in the ECa tissue samples. These above

differences are displayed in the heat map and volcano map

(Figures 2A, B).
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Construction of a prognostic signature and
signature gene analysis

Based on univariate Cox regression analysis of the TCGA-ECa

cohort, 7 CSRGs that significantly affect the prognosis of ECa were

disclosed, such as TERT (Figure 3A). Subsequently, in order to

develop a CSRGs signature for survival prediction of ECa, the 6 OS

(overall survival)-associated CSRGs were analyzed using the LASSO

analysis. Finally, a total of 6 genes (DEK, RUNX1, SMARCA4,

SREBF1, TERT, TOP1) were built (Figures 3B, C). The risk scores

for all patients were calculated as follows: risk score =

(0.486102936551265×DEK level) + (-0.466577382724787×RUNX1

l e v e l ) + ( - 0 . 379803436002195×SMARCA4 l e v e l ) +

(-0.216260668499574×SREBF1 level) + (0.326358456240447×TERT

level) + (0.126266167208409×TOP1 level) (Supplementary Table S3).

The results of our further analysis of the expression levels of signature

genes in ECa and normal esophageal tissues are as follows. Compared

with the normal esophageal tissues group, DEK, RUNX1, SMARCA4,

SREBF1, TERT, and TOP1 all showed elevated expression abundance

in the ECa tissues group (Figures 3D-I).
Validating the expression levels of
signature genes in ECa patients

Real-time fluorescence quantitative PCR (RT-qPCR) was

performed to verify the mRNA level of the six signature genes in

12 paired ECa tissues and adjacent normal esophageal tissues. The

results indicated that the expression of DEK, RUNX1, SMARCA4,

SREBF1, TERT, and TOP1 were all up-regulated in ECa tissues than

that in adjacent normal tissues (Figures 4A-F). These results were

consistent with the expression tendencies of the previous signature

genes in esophageal cancer and normal esophageal tissues.
Validation of a CSRGs prognostic signature

It was found by PCA that our constructed CSRGs signature can

accurately divide ECa samples into high- and low-risk groups
Frontiers in Oncology 05
(Figures 5A, B). Similar to the results obtained from the training

cohort, patients in the high-risk group of the testing cohort were

more likely to encounter a worse prognosis (Figure 5C). The results

of univariate Cox regression analysis combined with multivariate

Cox regression analysis in the TCGA-ECa cohort and GEO-ECa

cohort suggested that the risk score based on CSRGs remained an

independent risk factor affecting the prognosis of ECa (Figures 5D,

E). In predicting survival, the risk score had a larger area under the

ROC curve than other clinical features in the TCGA-ECa cohort

and GEO-ECa cohort, suggesting that the risk score could serve as a

more accurate prognostic factor (Figure 5F). Afterward, ROC

analysis was employed to assess the risk signature in OS, with

AUC values of 0.779, 0.720, and 0.761 at the 1-, 2-, and 3-year in

TCGA-ECa cohort and 0.705, 0.721, and 0.745 at the 1-, 2-, and 3-

year in the GEO-ECa cohort, respectively (Figure 5G).
Clinicopathological characteristics and
prognostic value in different risk groups

Based on the results of risk grouping, we are interested in

whether there are differences in clinical features among different

risk groups and conducting further analysis. We found a

significantly increased risk in patients older than 65 years and in

patients with grade G3 (Figures 6A, B). However, other clinical

features did not show statistical significance between the different

risk score groups (Supplementary Figure S1). Thorsson et al.

performed an extensive immunogenomic analysis of over 10,000

tumors comprising 33 diverse cancer types utilizing data compiled

by TCGA (23). Across cancer types, they identified six immune

subtypes by RNA sequencing: C1-Wound Healing, C2-IFN-g
Dominant, C3-Inflammatory, C4-Lymphocyte Depleted, C5-

Immunologically Quiet, and C6-TGF-b Dominant (23). Next, we

also found that the risk score between the different immune

subtypes was also not statistically different (Figure 6C). Finally,

we investigated the prognostic value of CSRGs risk score signature

in different subgroups of patients with ECa (Figures 6D–H). CSRGs

risk score can accurately determine prognosis in ECa patients with

either aged less than 65 years (P<0.001) or M0 stage (P<0.001), as
BA

FIGURE 2

(A, B) Heat map and volcano map of differential CSRGs in ECa and normal esophageal tissues. Green, downregulated; red, upregulated.
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well as in patients with ECa in T1&T2 stages (P=0.007) or T3&T4

stages (P=0.003) or N0 stage (P=0.015) or N1&N2&N3 stages

(P=0.006) or pathological stage I & II (P=0.003) or pathological

stage III & IV (P=0.004). However, CSRGs risk score signature was

not a good predictor of prognostic outcome for ECa patients aged

more than 65 years (P=0.170).
Construction of a clinical nomogram

In order to broaden the application of the CSRGs in ECa

patients, we developed a quantitative nomogram to compute OS

at 1, 2, and 3 years in the TCGA-ECa cohort and GEO-ECa cohort

(Figure 7A). In the TCGA-ECa cohort, when the prognostic

parameters’ point is 255, the predicted OS of patients with ECa is

0.544 at 1 year, 0.186 at 2 years, and 0.054 at 3 years. The OS

prediction lines of the nomogram are close to the 45° standard curve

of the calibration analysis in the TCGA-ECa cohort and GEO-ECa

cohort, demonstrating that the established clinical nomogram
Frontiers in Oncology 06
performs excellent (Figure 7B). It confirmed the high predictive

efficiency of the nomogram in OS of patients with ECa. We also

found that the AUC value of the nomogram in the ROC curve

reached 0.808, suggesting that the nomogram was a better predictor

of survival than other prognostic indicators of ECa patients in the

TCGA cohort (Figure 7C). In addition, the results of univariate Cox

regression analysis combined with multivariate Cox regression

analysis (Figures 7D, E) suggested that the nomogram

(HR=1.164, 1.097-1.235, P<0.001) based on risk score remained

an independent risk factor affecting the prognosis of ECa in

TCGA cohort.
Relationship of the CSRGs signature with
tumor immunotherapy

By performing GSVA (Gene Set Variation Analysis), we

evaluate the relative expression difference of the pathways

between two risk groups. Many differentially expressed pathways
B C

D E F

G H I

A

FIGURE 3

Develop a prognostic signature and signature gene analysis. (A) Forest plot. The 7 CSRGs associated with ECa prognosis. (B) LASSO coefficient
profiles of 7 CSRGs. (C) The numbers on the graph represent the number of genes associated with the prognosis of ECa; Cross-validation for tuning
parameter selection to filter the key genes. (D-I) Expressed divergence of signature genes between ECa tissues and normal esophageal tissues. **P <
0.01, *** P < 0.001.
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were enriched by GSVA analysis and finally visualized by heatmap

(Figure 8A). Compared with the low-risk group, the expression of

pathways associated with metabolism and transport of cellular

processes were remarkably activated in the high-risk group,

whereas the expression of tumor and genetic information

processing associated pathways were significantly lower. Analysis

of immune cell infiltration revealed higher naïve B cells and

regulatory T cells (Tregs) in the high-risk group, however,

activation of M0 macrophages and activated memory CD4+ T

cells was higher in the low-risk group (Figure 8B). In addition,

compared with the high-risk group, immune function analysis

displayed that APC_co_inhibition and type_II_IFN_response

were more activated in the low-risk group (Figure 8C). Finally,

the TIDE algorithm showed that the high-risk group has a greater

risk of immune escape during immunotherapy, which also implied

that the low-risk group of ECa patients may benefit from

immunotherapy (Figure 8D).
Functional enrichment analysis and gene
set enrichment analysis

We screened 747 DEGs between the two risk groups. GO and

KEGG analysis further elucidated differences in biological functions
Frontiers in Oncology 07
and pathways between the two risk groups. The biological process

(BP) modules of GO analysis are mainly focused on epidermis

development, digestion, epidermal cell differentiation, digestive

system process, and so on (Figures 9A, B). However, the human

papillomavirus infection, protein digestion and absorption,

metabolism of xenobiotics by cytochrome P450, and tight junction

pathways were observably enriched in the KEGG analysis

(Figures 9C, D). To explore the different biological functions of 6

cellular senescence-related signature genes in two risk groups, the

GSEA (gene set enrichment analysis) analysis was used to identify the

top five pathways. GSEA analysis showed that complement and

coagulation cascades, glycerolipid metabolism, maturity-onset

diabetes of the young, PPAR signaling pathway, and tryptophan

metabolism were enriched in high-risk groups (Figure 9E). However,

dilated cardiomyopathy, ECM receptor interaction, hedgehog

signaling pathway, pathways in cancer, and regulation of actin

cytoskeleton were enriched in low-risk groups (Figure 9F).
Identification of 10 hub candidate genes
with the PPI network

In order to screen the differential hub genes that are involved in

two risk score groups from the interaction level, the expression
B C

D E F

A

FIGURE 4

The relative RNA level of DEK (A), RUNX1 (B), SMARCA4 (C), SREBF1 (D), TERT (E), and TOP1 (F) in ECa tissues and adjacent normal esophageal
tissues. Data are presented as Mean with SD, **P < 0.01, *** P < 0.001.
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profiles of DEGs were visualized by the STRING database and

Cytoscape software. Proteins encoded by 293 differential genes were

used to construct the PPI network, which included the interaction

relationship of 177 up-regulated genes and 116 down-regulated

genes (Figure 10A). Finally, the 10 hub genes (APOA1, MUC5AC,

GC, APOA4, AMBP, FABP1, APOA2, SOX2, MUC8, MUC17)

with the highest interaction degrees were identified by Cytoscape

(Figure 10B). By further analysis, 4 hub genes (APOA4, AMBP,

FABP1, and APOA2) with survival differences were identified

(Figure 10C; Supplementary Figure S2). The results demonstrated

that patients with ECa with high expression of the above 4 genes

had a lower probability of survival.

We further analyzed the relationship between the expression

level of these 4 genes and the clinical features of ECa. In ECa

patients with grade G2 and G3, the expression level of APOA4 was

significantly higher than that in grade G1 patients (Supplementary

Figure S3). With the increase of G grade level in patients with ECa,

the expression of AMBP gradually increased with statistical

significance (Figure 10D). In ECa patients over 65 years old, the

FABP1 expression level was significantly higher than that below 65

years old (Supplementary Figure S4). Finally, the relationship

between the expression levels of these 4 genes and different
Frontiers in Oncology 08
immune cells was further explored. The AMBP and FABP1 high

expression groups had higher resting CD4 memory T cells

infiltration, suggesting that those groups of patients are more

suitable for immunotherapy (Figure 10E; Supplementary

Figure S5).
Discussion

Because patients with ECa do not feel any discomfort early on,

the prognosis of patients with ECa is relatively poor. In the past

diagnosis of ECa, early-stage cancer only accounts for about 5%

(24). Due to the strong aggressiveness of ECa, when symptoms such

as dysphagia appear, most of the patients are already at an advanced

stage, resulting in a very poor prognosis for patients. However,

despite the diversity of treatment options for ECa, the 3- and 5-year

survival rates of patients fluctuate between 6% to 35% (24).

Although the treatment strategy and individualized treatment of

patients with ECa have improved, a considerable proportion of

patients who receive comprehensive treatment still gained

disappointing improvements in survival (25). It can be seen that

the current effective clinical treatment for patients with ECa is quite
B C

D E

F G

A

FIGURE 5

Validation of risk score signature and implications for prognosis. (A, B) PCA chart. High- and low-risk groups were differentiated by CSRGs and
signature genes, respectively. (C) K-M curves for the OS of the prognostic signature in the TCGA-ECa cohort and GEO-ECa cohort, respectively.
(D, E) Univariate and multivariate Cox regression analyses of prognostic factors in TCGA-ECa cohort and GEO-ECa cohort, respectively. (F) The AUC
values of the risk signature were the highest in the TCGA-ECa cohort and GEO-ECa cohort. (G) ROC analysis was employed to evaluate the capacity
of the risk signature in OS in the TCGA-ECa cohort and GEO-ECa cohort.
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limited. Therefore, it is greatly important to develop models for

optimizing decision-making strategies for ECa management.

Cellular senescence refers to a state of persistent growth arrest

induced by a variety of endogenous and exogenous stress (26).

Accumulative evidence points to several common hallmarks of

cellular senescence including high expression of the cell cycle

inhibitor p16Ink4a, and a unique SASP involving matrix

metalloproteinases, cytokines, growth factors, chemokines, and

angiogenic factors (27). An increasing number of investigations

have indicated that cellular senescence plays a considerable role in

tumor microenvironment remodeling and tumor proliferation (28,

29). Considering that there are few studies on cellular senescence in

ECa, this study explores the value of CSRGs in the prognosis and

treatment of ECa. Finally, six genes, including DEK, RUNX1,

SMARCA4, SREBF1, TERT, and TOP1 were filtered out to

construct the prognostic signature. Intriguingly, previous studies

have found that these landmark genes have been identified as

playing an important role in the biological processes of

various malignancies.

DEK encodes a protein consisting of 275 amino acids with a

molecular weight of about 43 kDa (30). Multiple studies have shown

that DEK is upregulated in a variety of malignant conditions, such

as acute myelocytic leukemia(AML) (31–33), melanoma (34),

hepatocellular carcinoma (35), retinoblastoma (36, 37), urinary
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bladder cancer (38, 39), glioblastoma (40), and oral squamous cell

carcinoma (SCC) (41). Matrka et al. revealed for the first time that

overexpression of DEK in mice contributes to an increase in the

overall incidence of ECa and a trend toward increased cell

proliferation was detected in adjacent normal esophageal tissues

(42). There are three RUNX (including RUNX1, 2, and 3) family

members in mammals, and different RUNX proteins have different

tissue-specific expressions and exhibit different biological

significance (43). Many studies in the past have confirmed that

RUNX1 played a central role in epithelial tumorigenesis through

the RUNX1-Stat3 axis (44, 45). SMARCA4 is considered to play a

critical role in cell growth arrest and cellular senescence and is

hypothesized to be a tumor suppressor gene in lung cancer (46, 47).

SREBF1 has been shown to have a strong tumorigenic role in many

malignant types including hepatocellular carcinoma, prostate

cancer, and breast cancer (48). Li et al. also found that SREBF1 is

an underlying therapeutic target and prognostic indicator in ECa

(49). TERT gene, located in human chromosome 5p15.33, is the

catalytic subunit of telomerase, is an indispensable and important

part of telomerase-holoenzyme, and can play a crucial role in the

formation of carcinoma through telomere-dependent or

independent mechanism (50). Topoisomerase 1 (TOP1) can

release topological stress due to natural processes such as

replication and transcription and is an essential enzyme for life
B C D

E
F
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FIGURE 6

(A-C) Box plots of different risk groups at different ages, grades and, immune subtypes. Subgroup survival analysis of M0 stage (D), age (E), T stage
(F), N stage (G), and pathological staging (H) between high- and low-risk score groups.
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processes (51). If endogenous or exogenous DNA damage is not

repaired by TOP1, it will ultimately contribute to cell death

resulting from the accumulation of cytotoxic double-strand

breaks (DSB) (52, 53). This regulatory mechanism has also been

used in the anti-cancer treatment of various tumors, such as

colorectal cancer (54), lung cancer (55), and ovarian cancer (56).

Based on the evidence of the above findings, it further indicates that

CSRGs may predict the prognosis of ECa.

By searching the TCGA database, we developed a prognostic

risk signature for patients with ECa using CSRGs. In order to

comprehend the underlying function of the signature in ECa, PCA

analysis was first performed by us. The results revealed that patients
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with ECa could be more accurately segmented into two risk groups

based on six CSRGs, which further proved the superiority of the

signature. Survival analysis demonstrated that patients in the high-

risk score group had a significantly poorer OS. We further rebuilt

the signature with the same criteria in the validation cohort to verify

the stability of the previously constructed risk signature. As

expected, consistent with the prognostic result obtained in the

TCGA, patients with higher risk scores of the GEO also exhibited

worse OS. Furthermore, the results of multivariate Cox analysis

verified that the risk signature based on CSRGs remained an

independent risk factor affecting the prognosis of ECa in the

TCGA-ECa cohort and GEO-ECa cohort. The CSRGs risk score
B

C D E

A

FIGURE 7

Construction and verification of a Nomogram. (A) Nomogram for forecasting the 1-, 2-, and 3-year mortality in the TCGA-ECa cohort and GEO-ECa
cohort. (B) Calibration curve of the prediction efficiency of Nomogram in TCGA-ECa cohort and GEO-ECa cohort. (C) The AUC value of the
nomogram was the highest at 0.808 in the TCGA cohort. (D, E) Univariate and multivariate Cox regression analyses of prognostic factors associated
with OS in TCGA cohort, including Nomogram.
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can accurately determine prognosis in ECa patients with either aged

less than 65 years or M0 stage, as well as in patients with ECa in

T1&T2 stages or T3&T4 stages or N0 stage or N1&N2&N3 stages or

pathological stage I & II or pathological stage III & IV. These results

further demonstrate the practicability of our signature in the clinic.

Immediately afterward, in order to broaden the application of the

CSRGs in ECa patients, we developed a quantitative nomogram to

compute OS at 1, 2, and 3 years. The OS prediction lines of the

nomogram are close to the 45° standard curve of the calibration

analysis, demonstrating that the established clinical nomogram

performs excellent. Encouragingly, we also found that the AUC

value of the nomogram in the ROC curve reached 0.808 in the

TCGA cohort, suggesting that the nomogram was a better predictor

of survival than other prognostic indicators of ECa patients. At last,

the results of univariate Cox regression analysis combined with

multivariate Cox regression analysis suggested that the nomogram

based on risk score remained an independent risk factor affecting

the prognosis of ECa.

With the development of medicine, more and more treatments are

available for ECa (57). The core of tumor immunotherapy is to regulate

the disordered immune function of the body, relying on the immune

system to function to kill cancer cells and tumor tissues (58). This often
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leads to the abuse of immunotherapy drugs as it is currently unclear

which patients with ECa benefit from immunotherapy in practice.

Therefore, we conducted a further analysis using the available signature

to distinguish which patients with ECa would benefit more from

immunotherapy. Analysis of immune cell infiltration revealed higher

regulatory T cells (Tregs) (tumor-promoting cells) in the high-risk

group, however (59), activation of M0 macrophages and memory CD4

+ T cells (anti-tumor cells) activated was higher in the low-risk group

(60). In addition, compared with the high-risk group, immune function

analysis displayed that APC_co_inhibition and type_II_IFN_response

weremore activated in the low-risk group. APC-co-inhibition describes

an important mechanism of interaction between antigen-presenting

cells (APC) and T cells. In this interaction, co-stimulatory molecules on

the surface of antigen-presenting cells, such as CD80/86, bind to CD28

on the surface of T cells, initiating a T-cell immune response (61).

Other molecules, such as CTLA-4, competitively bind CD80/86 to

inhibit the T-cell immune response, known as APC-co-inhibition (61).

Therefore, APC-CO-inhibition is not an independent immune

pathway, but an immunomodulatory mechanism that can play a role

in a variety of immune pathways, such as the TCR signaling pathway

and NF-kB signaling pathway (61). The research results of Liu et al.

revealed that “type_II_IFN_response” is an immune-related function
B

C
D

A

FIGURE 8

Risk score guides immunotherapy. (A) Heat map of GSVA analysis for two risk groups. (B, C) Box plot of immune signature analysis between two risk
groups. (D) Violin plot of TIDE score distribution between two risk groups. * P < 0.05, **P < 0.01.
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associated with anti-tumor (62), which coincides with the results of our

study. Based on these findings, we speculated that the low-risk group

had a more effective response to immunotherapy than the high-risk

group. Finally, the TIDE algorithm showed that the high-risk group

had a greater risk of immune escape during immunotherapy, which

also implied that the low-risk group of ECa patients may benefit from

immunotherapy. On the whole, the prognostic signature of CSRGs that

we constructed can not only predict the prognosis of ECa patients but

also identify immunotherapy-sensitive patients.

In view of the significant differences in prognosis between the two

risk groups, it is necessary to conduct in-depth research on the

differential genes. We screened out 10 hub genes (APOA1,
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MUC5AC, GC, APOA4, AMBP, FABP1, APOA2, SOX2, MUC8,

MUC17) by constructing a PPI network. Subsequently, by survival

analysis, we observed that AMBP, APOA2, APOA4, and FABP1 were

negatively correlated with the prognosis of ECa. At last, we also found

higher immune infiltration (resting CD4 memory T cells) in the high-

expression group of AMBP and FABP1, while macrophages M2

showed higher infiltration in the low-expression group of AMBP and

FABP1. M2 macrophages, contrary to M1 cells that are pro-

inflammatory and cytotoxic, are immunosuppressive and favor

angiogenesis and tissue repair (63). Many studies have shown that

tumor-associated M2 macrophages improve tumor cell growth and

survival and stimulate angiogenesis and metastases (63, 64). A recent
B
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FIGURE 9

Enrichment analysis of DEGs between two risk groups and GSEA analysis of 6 signature genes in high- and low-risk groups. (A, B) GO enrichment
analysis of DEGs between two risk groups. (C, D) KEGG enrichment analysis of DEGs between two risk groups. (E, F) GSEA analysis of the top five
pathways enriched by 6 signature genes in high- and low-risk groups.
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study has demonstrated that resting CD4 memory T cells were the

protective factor for CRC (colorectal cancer) and could act as an

independent prognostic factor based on a large sample analysis of 879

CRC patients (65). Moreover, some studies showed that resting CD4

memory T cells were associated with increased overall survival in

various cancers (66, 67). It suggested that patients with high expression

of AMBP and FABP1 might be more suitable for immunotherapy.
Conclusion

In the present study, our work identified and validated a CSRGs

signature with independent prognostic significance for patients with

ECa. The prognostic signature based on CSRGs established in this

study is helpful to predict the survival rate of patients with ECa and

guide clinical treatment. Patients with a low-risk group of the

CSRGs signature may have a better immunotherapy effect.

Therefore, our findings might facilitate the understanding of

cellular senescence in ECa and provide certain guiding

significance for immunotherapy. However, the current signature

should be further explored and may provide some new insights into

the mechanisms behind CSRGs in ECa.
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