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Objective: To develop and validate the model for predicting benign and

malignant ground-glass nodules (GGNs) based on the whole-lung baseline CT

features deriving from deep learning and radiomics.

Methods: This retrospective study included 385 GGNs from 3 hospitals,

confirmed by pathology. We used 239 GGNs from Hospital 1 as the training

and internal validation set; 115 and 31 GGNs from Hospital 2 and Hospital 3 as the

external test sets 1 and 2, respectively. An additional 32 stable GGNs from

Hospital 3 with more than five years of follow-up were used as the external

test set 3. We evaluated clinical and morphological features of GGNs at baseline

chest CT and extracted the whole-lung radiomics features simultaneously.

Besides, baseline whole-lung CT image features are further assisted and

extracted using the convolutional neural network. We used the back-

propagation neural network to construct five prediction models based on

different collocations of the features used for training. The area under the

receiver operator characteristic curve (AUC) was used to compare the

prediction performance among the five models. The Delong test was used to

compare the differences in AUC between models pairwise.

Results: The model integrated clinical-morphological features, whole-lung

radiomic features, and whole-lung image features (CMRI) performed best

among the five models, and achieved the highest AUC in the internal validation

set, external test set 1, and external test set 2, which were 0.886 (95% CI: 0.841-

0.921), 0.830 (95%CI: 0.749-0.893) and 0.879 (95%CI: 0.712-0.968), respectively.

In the above three sets, the differences in AUC between the CMRI model and
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other models were significant (all P < 0.05). Moreover, the accuracy of the CMRI

model in the external test set 3 was 96.88%.

Conclusion: The baseline whole-lung CT features were feasible to predict the

benign and malignant of GGNs, which is helpful for more refined management

of GGNs.
KEYWORDS

ground-glass nodules, lung cancer, deep learning, radiomics, tomography,
X-ray computed
1 Introduction

With large-scale lung cancer screening implementation

worldwide, more and more ground-glass nodules (GGNs) are

detected, and the management pressure is also increasing (1–3).

Persistent GGNs on computed tomography (CT) are usually the

earliest stage in the development of lung adenocarcinomas (2). For

newly detected GGNs, the Fleischner Society, American College of

Radiology, and NELSON study gave corresponding management

recommendations according to the size and volume of nodules,

respectively (4–8). Physicians usually review CT scans after a

specific interval (3 months, 6 months, or even one year) to

observe the change in GGNs and then decide whether to

intervene or continue to follow up according to the growth rate.

However, multiple scans undoubtedly increase the cost of

screening and radiation dose on patients. Moreover, anxiety may

present throughout the follow-up period and affect life. In addition,

the pathological aggressiveness of GGNs may not match the

morphological features observed on CT images. For example,

some researchers reported that invasive lesions accounted for

more than 50% of their cohort of subcentimeter (≤1cm) pure

ground-glass nodules (pGGNs), and the traditional conservative

treatment recommendations for small pGGNs may miss timely

intervention of such lesions (9). Therefore, qualitative diagnosis of

GGNs at baseline CT scans, identification of malignant GGNs, and

prompt treatment would be beneficial to improve the efficiency of

lung cancer screening and reduce the financial and mental burden

on patients.

In recent years, many studies have achieved the prediction of

benign and malignant pulmonary nodules based on radiomics, and
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most of them only extract the local radiomics features of the

nodules for modeling (10–12). Some studies have also used the

information of the surrounding microenvironment of nodules

(usually expanding the range of radiomics feature extraction by 2-

15mm) for prediction (13, 14). However, there is currently no

unified standard for the range of extracted features related to the

lung parenchyma around the nodule. Meanwhile, previous studies

have proved that features from the whole lung can be used for

prognosis prediction or differential diagnosis of local lesions in the

lung (15–17). Thus, features that include a more comprehensive

range of lung parenchyma may also be used to predict the benign

and malignancy of GGNs. Moreover, to ensure the accuracy of

lesion segmentation, most current radiomics studies of pulmonary

nodules are still carried out by manual or man-machine

collaborative semi-automatic methods, which is not only time-

consuming and laborious but also subjective factors lead to inter-

observer differences in segmentation results (18–20). Inter-observer

differences may lead to changes in the extracted radiomics features,

affecting the final prediction performance.

With the in-depth development of deep learning (DL)

technology in chest imaging, automatic lung segmentation and

pulmonary nodule feature extraction can be performed on routine

chest CT images (21–23). Besides, to our knowledge, few studies use

whole-lung information to predict benign or malignant GGNs.

Therefore, to extract the maximum range of lung features and

reduce the influence of inter-observer variability, in the present

study, we explored the feasibility of using whole-lung baseline CT

features deriving from deep learning and radiomics to predict

benign and malignant GGNs.
2 Materials and methods

2.1 Patient inclusion and allocation

The GGNs with pathological confirmation were retrospectively

collected from the three medical institutions from January 2019 to

December 2021 (Hospital 1), January 2016 to December 2018

(Hospital 2), and January 2020 to June 2022 (Hospital 3). The

inclusion criteria were as follows (1): Maximum axial diameter of

GGNs on baseline CT between 5mm and 30mm; (2) Baseline thin-
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slice (≤ 1.5mm) chest CT scans; (3) Surgery was performed within

one month after the last scan; (4) For multiple GGNs, only the

nodule with the highest risk of malignancy or the largest initial

diameter was included. The exclusion criteria were as follows: (1)

Preoperative anti-cancer therapy; (2) Loss of clinical information or

thin slice image data; (3) Artifacts or any other factors affecting the

display of GGNs. All CT images in this study were plain scan

images. Our criteria for benign and malignant evaluation were

based on the 2021 edition of the World Health Organization

classification recommendations (24); therefore, the precursor

glandular lesions (i.e., atypical adenomatous hyperplasia, AAH,

and adenocarcinoma in situ, AIS) were classified as benign.

Finally, 385 GGNs (149 benign and 236 malignant) of 385

patients were included (Figure 1). To maximize the training effect,

we divided the data of Hospital 1 (239 patients, 239 GGNs) into a

training set and an internal validation set at a ratio of 6:4 according

to the composition of benign and malignant GGNs. Two

independent external test sets were from Hospital 2 (115 patients,

115 GGNs) and Hospital 3 (31 patients, 31 GGNs). In addition, to

further verify our model’s generalization, we screened 32 GGNs

from Hospital 3 that were followed up over five years and still stable

from January 2015 to January 2023 to form an independent external

test set 3 (Figure 2). None of the GGNs in the external test set 3 had

been pathologically confirmed to be benign or malignant, and given

their prolonged stable state, they were treated as benign GGNs for

analysis. The ethics committee of Hospital 2 approved the study,

and the patient’s informed consent was waived because of the

study’s retrospective nature.
Frontiers in Oncology 03
2.2 Image acquisition

All CT images were retrieved from the picture archiving and

communication system (PACS) and saved in digital imaging and

communications in medicine (DICOM) format. The image

acquisition equipment is as follows: GE MEDICAL SYSTEMS

Discovery HD750 CT, GE MEDICAL SYSTEMS Optima CT670,

Philips Brilliance iCT, Philips Ingenuity CT, Siemens SOMATOM

Force and Siemens SOMATOM Sensation 64 (detailed scan and

reconstruction parameters are shown in Table 1).
2.3 Evaluation of clinical-
morphological features

All patients’ clinical information was collected from the

electronic medical record system. Four clinical items were

collected, including sex, age, smoking status, and family history of

lung cancer. All CT morphological features were evaluated with

mediastinal window (window width: 400 Hu, window level: -40

HU) and lung window (1400 Hu, -600 HU) settings. Two chest

radiologists (WH and JZ, with seven years and 15 years of chest CT

diagnostic experience, respectively) were independently evaluated

and then checked by another radiologist (LF, with 20 years of chest

CT experience). In case of disagreements, a consensus was reached

through consultation. All radiologists were blinded to the

pathological findings.
FIGURE 1

The inclusion and allocation of patients with pathological results.
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CT morphological features included location, size, attenuation,

shape, margin, nodule-lung interface, internal features, and

adjacent structures. In addition to the lobe in which the nodule

was located, we also classified the nodule into three location types

based on quantitative definitions of central lung cancer: inner 1/3,

middle 1/3, and outer 1/3 (25). The size included the maximum and

minimum diameters perpendicular to each other on the axial

section. The attenuation was classified into two subtypes

according to the presence of solid components or not: pGGNs

and mixed ground-glass nodules (mGGNs). The pGGNs were

defined as an area of hazy increased lung attenuation with

distinct margins of underlying vessels and bronchial walls; the

mGGNs were defined as nodules with both ground-glass and

solid components. Shapes were classified as irregular or round/

oval. Margin features included lobulation, spiculation, and spine-

like process. The spine-like process is the structure that extends

from the lesion but differs from the boundary of the lung

parenchyma by having at least one convex border (26). The

nodule-lung interface was classified into three subtypes:
Frontiers in Oncology 04
ill-defined, well-defined and smooth, and well-defined but coarse

(27). The interior features included bubble lucency, cavity, air-

containing space, calcification, bronchial cut-off, and distorted/

dilated bronchus (26, 27). The adjacent structures included

pleural indentation and vascular convergence. In addition, the

status of the bronchial wall and emphysema of the whole lung

was evaluated.
2.4 Whole lung segmentation and
radiomics features

Bilateral lung segmentation, separating lung tissue from the

chest wall and mediastinum, was automatically carried out with a

publicly available 3D deep learning model (23). A manual revision

was performed to guarantee accurate segmentation when necessary.

The radiomics features were extracted from left, right, and bilateral

lung tissues separately with the Pyradiomics library (version 3.0)

with the Shukun Medical research platform (Shukun (Beijing)

Network Technology Co., Ltd.) (28). All radiomics feature

extraction adhered to the Image Biomarker Standardization

Initiative (IBSI) recommendations to ensure reproducibility (29).

In order to eliminate the variances caused by different scanner

acquisitions, the acquired images are preprocessed: normalization,

resample to a voxel size of 1×1×1 mm3 using B-Spline interpolation

and gray-level discretization with a fixed bin width of 25. One

hundred seven features extracted from original images consisted of

14 shape-based, 18 first-order statistics features, 24 gray-level

cooccurrence matrix features, 14 gray-level dependence matrix

features, 16 gray-level run-length matrix features, 16 gray-level

size zone matrix features, and 5 neighboring gray-tone difference

matrix features. Besides, 14 image filters were applied to the original

images, thus yielding derived images based on which additional

features were extracted. Finally, a total of 1409 radiomics features

were extracted.
TABLE 1 CT scan and reconstruction parameters.

Scanning
equipment

GE Philips Siemens SOMATOM

Discovery HD750 Optima CT670 Brilliance iCT Ingenuity CT Force Sensation 64

Hospital 1 1 2 2 3 3

Tube voltage 120kVp 120kVp 120kVp 120kVp 120kVp 120kVp

Tube current 260mA 200mA AEC AEC 200mA 200mA

Pitch 1.375 1.375 0.8 1.02 2.0 0.8

Collimation 0.625mm×64 0.625mm×64 0.625mm×128 0.625mm×128 0.6mm×96 0.75mm×64

Rotation time 0.7s/rot 0.6s/rot 0.5s/rot 0.33s/rot 0.25s/rot 0.35s/rot

SFOV 50cm 50cm 35cm 35cm 50cm 50cm

Slice thickness of reconstruction 1.25mm 1.25mm 0.6/1mm 0.6/1mm 0.6/1mm 1/1.5mm

Slice interval of reconstruction 1.25mm 1.25mm 0.6/1mm 0.6/1mm 0.6/1mm 1/1.5mm

Reconstruction algorithm STND STND LUNG LUNG Medium sharp Medium sharp
AEC: dose modulation with automatic exposure control.
FIGURE 2

The inclusion and allocation of patients without pathological results.
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2.5 Construction of the neural network

2.5.1 Data preprocessing
We cleaned and processed text items (clinical data,

morphological features) and whole-lung radiomics features before

feeding them into the network. In order to facilitate the input into

the network, all text items were replaced by numbers. Then z-score

standardization was used to process the whole-lung radiomics

features with huge data dispersion to prevent the situation that it

was challenging to obtain features or fit because of the large

dispersion when entering the network.

2.5.2 The first-order neural network
We used the back-propagation neural network (BPNN) as the

first-order network for the DL model based on clinical-

morphological features and whole-lung radiomics features. The

BPNN consists of a convolutional block and a fully connected

block. The first-order BPNN computed correlations between

features from the input data and then used the fully connected

block network to compute a 2*2*2 matrix based on the computed

correlations and Rectified Linear Unit.

The number of network layers was determined according to the

complexity of the input data: we used a 25-layer neural network for

morphological features with more items and a 5-layer neural

network for clinical features with fewer items. For the vast

number of whole-lung radiomics features, we used the BPNN to

match the features among them. After learning the training set, the

appropriate features were selected automatically, and the

relationship between features was adjusted. Using BPNN to adjust

the relationship between features automatically will facilitate fitting

the proper relationship between features.

We designed a convolutional neural network (CNN) with 26

layers as the first-order network of our DL model based on whole-

lung images. The CNN comprises eleven convolutional layers,

eleven pooling layers, and four fully connected blocks. The seed

point algorithm was used to fill the lung to obtain the internal

structure of the lung, and then the whole lung image and its internal

tissue features were extracted. According to the description of the

location of the patient’s nodules in the morphological features, the

corresponding side lung sample was selected. Subsequently, the

samples were formatted to whole-lung images of 256*256*256

pixels. After all the images were collected, each formatted whole-

lung image was input into the CNN. The decoder network of the

fully connected block was used to calculate a 2*2*2 matrix based on

the features extracted by the encoder and the Sigmoid function.

2.5.3 The second-order neural network
The second-order neural network was still constructed using

BPNN, and the 2*2*2 matrices generated by the first-order network

were input into it in batches and multiple times. BPNN

automatically calculated the correlations and weights in each

matrix and outputted a single value in the range [0, 1] to indicate

the probability that the nodule is malignant. Then the benign or

malignant nodules were judged by comparing the value with the

threshold obtained during training. Those with a value above the
Frontiers in Oncology 05
threshold were classified as malignant, and below were classified as

benign. We used cross-entropy as a loss function during model

training. Weights were optimized using an Adam optimizer with an

initial learning rate 1e-3.

2.5.4 Prediction models
According to the different data collocations used for the second-

order neural network training, we constructed five DL models to

predict the benign and malignant GGNs, which are as follows: the

model based on clinical-morphological features (CM), the model

based on whole-lung radiomics features (WR), the model combined

clinical-morphological features and whole-lung radiomics features

(CMR), the model combined clinical-morphological features and

whole-lung image features (CMI), and the model integrated

clinical-morphological features, whole-lung radiomics features,

and whole-lung image features (CMRI). The performance of the

models was validated in an internal validation set and tested in two

external test sets. We plotted the model’s receiver operator

characteristic (ROC) curves, calculated the area under the curve

(AUC), and compared the difference between AUCs. The overall

workflow of this study is presented in Figure 3.
2.6 Statistical analysis

All statistical analyses were performed using SPSS 23.0 software

for Windows (SPSS, Chicago, USA) and Python software (version

3.6.8, Python Software Foundation, USA). The chi-square or

Fisher’s exact test was used for qualitative variables, and the

Mann-Whitney test was used for quantitative variables. The AUC

was used to evaluate the performance of prediction models, and the

DeLong test was used to compare the differences in AUC between

models pairwise. P<0.05 was considered statistically significant.
3 Results

3.1 Clinical and morphological
features of pathologically confirmed
GGNs in three hospitals

385 GGNs (243 pGGNs, 142 mGGNs) of 385 patients (268

females, mean age 56.26 ± 11.30 years, range 20-83 years) were

collected retrospectively from 3 hospitals. The pathological findings

were composed as follows: precursor glandular lesions (N=138,

35.85%), minimally invasive adenocarcinoma (MIA, N=74,

19.22%), invasive adenocarcinoma (IAC, N=161, 41.82%), fibrous

or chronic inflammatory nodules (N=6, 1.56%), organizing

pneumonia (N=2, 0.52%), tuberculosis (N=1, 0.26%), hamartoma

(N=1, 0.26%), pulmonary sclerosing hemangioma (N=1, 0.26%)

and squamous cell carcinoma (N=1, 0.26%).

In all three hospitals, compared with benign GGNs, patients

with malignant GGNs were older, had larger baseline diameters,

and were more likely to show lobulation, spiculation, pleural

indentation, and vascular convergence. However, there were no
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significant differences in sex, family history of lung cancer, and the

location of nodules. In addition, some clinical and morphological

differences between benign and malignant GGNs were only

observed in some hospitals: (1) significant differences in shape

and nodule-lung interface were observed in Hospital 1; (2)

significant differences in smoking status, bubble lucency, cavity,

and air-containing space were observed in Hospital 2; (3) significant

differences in emphysema, bronchial wall, spine-like process,

bronchial cut-off, and distorted/dilated bronchus were observed in

Hospitals 1 and 2 but not in Hospital 3. Table 2 and Supplementary

Table 1 shows the detail of differences in clinical and morphological

features between benign and malignant GGNs in each hospital.
3.2 Prediction performance of different
models in sets with pathologically
confirmed GGNs

In all three sets, the CMRI model showed the best prediction

performance, with an AUC of 0.886 (95% confidence interval[CI]:

0.841~0.921) in the internal validation set (Hospital 1), 0.830 (95%

CI: 0.749~0.893) in the external test set 1 (Hospital 2), and 0.879

(95% CI: 0.712~0.968) in the external test set 2 (Hospital 3). WR

model performed slightly worse than the other models in the

internal validation set (AUC=0.815) and the external test set 2

(AUC=0.825). The CM model performed marginally worse in the

external test set 1 (AUC=0.803). Figure 4 and Table 3 show the
Frontiers in Oncology 06
details. In addition, we present a malignant GGN in Figure 5

predicted by the CMRI model successfully based on baseline CT

but failed by the other models.
3.3 Pairwise comparison of AUC between
five models in sets with pathologically
confirmed GGNs

In the internal validation set, the differences in AUC between all

five models were significant. In the external test set 1, there was no

significant difference in AUC between the CMI and the CMR

models (P=0.1048), and the AUC differences between the other

models were statistically significant. In the external test set 2, there

was no significant difference in AUC between the CMI and the WR

models (P=0.1092), and the AUC differences between the other

models were statistically significant. Table 4 shows the details.
3.4 Predictive performance of stable
GGNs with long-term follow-up

A total of 32 GGNs (32 patients, 23 females, median age 40

years, range: 24-68 years) with follow-up over five years and

remaining stable were collected as the external test set 3. The

median follow-up time was 2175 days (range 1855-2895 days).

The axial section’s median maximum and minimum diameters
FIGURE 3

The overall workflow of this study The white square of CNN is the first-order neural network based on the whole-lung image features; the white
block of BPNN is the first-order neural network based on clinical-morphological features and whole-lung radiomics features. CNN: convolutional
neural network, BPNN: back-propagation neural network, CM: the model based on clinical-morphological features, CMR: the model combined
clinical-morphological features and whole-lung radiomics features, CMI: the model combined clinical-morphological features and whole-lung
image features, CMRI: the model integrated clinical-morphological features, whole-lung radiomics features, and whole-lung image features, WR: the
model based on whole-lung radiomics features.
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were 5.1 mm and 3.8 mm, respectively. Tables 2 and 3 show the

detailed clinical and morphological features.

Since all 32 GGNs were considered benign cases, and malignant

cases used for comparison were lacking, we only evaluated the

accuracy of the prediction results of the model. The prediction

accuracy of the five models was 100% (32/32, CM), 93.75% (30/32,

WR), 96.88% (31/32, CMI), 96.88% (31/32, CMR), and 96.88% (31/

32, CMRI), respectively. The CMI, CMR, and CMRI models

incorrectly predicted the same nodule. The WR model incorrectly

predicted two nodules, one of which was the same nodule as the

other models incorrectly predicted. We showed in Figure 6 the CT

images of the initial and the most recent follow-up of the nodule

that only the WR model incorrectly predicted.
4 Discussion

Lung cancer remains the leading cause of cancer death globally

(30). The high malignant probability of GGNs necessitates detailed

management recommendations (31, 32). At the same time, the slow

growth and atypical morphological characteristics of GGNs also
Frontiers in Oncology 07
make the differentiation between benign and malignant GGNs

more challenging (33–35). Currently, most artificial intelligence

(AI) models for predicting benign and malignant pulmonary

nodules were built based on the nodules’ local features or

combined with the feature within a specific range around the

nodule. Unlike these studies, we chose the DL model based on

whole-lung CT features (radiomics and image features) for benign

and malignant prediction of GGNs.

Our results showed that the WR model, based on whole-lung

radiomics features, could predict benign and malignant GGNs, and

the AUC in three sets was 0.815, 0.826, and 0.825, respectively.

However, the WR model showed no significant advantage over the

other models, and the CM model even performed slightly better in

the internal validation (AUC=0.851) and the external test set 1

(AUC=0.833). Furthermore, the CMR and CMI models performed

better than the CM models in three pathological confirmed sets,

respectively. Previous studies (36, 37) have shown that the presence

of diseases such as emphysema and fibrosis are generally associated

with poor prognosis and are considered precancerous diseases.

These precancerous diseases often involve a more extensive range

of lung parenchyma than lung nodules. Therefore, the features of
B CA

FIGURE 4

Performance of different models in the prediction of benign and malignant GGN in sets with pathologically confirmed GGNs The ROC curves of five
different models in each set are shown in the figure: (A) internal validation set, (B) external test set 1, and (C) external test set 2.
TABLE 2 Clinical information of patients in each set.

Clinical information Training and internal
validation set

(Hosp. 1, N=239)

External test set 1
(Hosp. 2, N=115)

External test set 2
(Hosp. 3, N=31)

External test
set 3

(Hosp. 3,
N=32)

Benign
(n=60)

Malignant
(n=179)

P Benign
(n=73)

Malignant
(n=42)

P Benign
(n=16)

Malignant
(n=15)

P

Sex
Male
Female

15 (25.0)
45 (75.0)

52 (29.1)
127(70.1)

0.55 22 (30.1)
51 (69.9)

16 (38.1)
26 (61.9)

0.38 6 (37.5)
10 (62.5)

6 (40.0)
9 (60.0)

1.00* 9 (28.1)
23 (71.9)

Age (Years) 58.00
(12.00)

60.00 (12.00) 0.04# 50.00
(18.00)

55.00 (12.00) 0.02# 43.50
(20.00)

55.00 (22.00) 0.01# 40.00 (23.75)

Smoking status
Current/Former
Never

9 (15.0)
51 (85.0)

25 (14.0)
154 (86.0)

0.84 7 (9.6)
66 (90.4)

10 (23.8)
32 (76.2)

0.04 3 (18.8)
13 (81.3)

4 (26.7)
11 (73.3)

0.69* 7 (21.9)
25 (78.1)

Lung cancer family history
Yes
No

3 (5.0)
57 (95.0)

5 (2.8)
174 (97.2)

0.42* 1 (1.4)
72 (98.6)

3 (7.1)
39 (92.9)

0.14* 0 (0.0)
16(100.0)

0 (0.0)
15(100.0)

NA 0 (0.0)
32 (100.0)
Age is shown as the median, with the interquartile range in parentheses; other data are shown as the number of patients, with the percentage in parentheses. Fisher exact probability test was used
for P values with “*”, Mann-Whitney test was used for those with “#”, and chi-square test was used for those without markers. P values in bold indicate statistical significance. NA, not applicable.
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relevant pathological regions may be helpful information in the

massive lung features to make the benign and malignant prediction

of GGNs and further improve the prediction performance.

The CMRI model combining all features achieved the best AUC

in the three sets, with an improvement of 7.1% (internal validation

set), 2.7% (external test set 1), and 5.4% (external test set 2)

compared to the lowest AUC model in each set, respectively. The

results of the Delong test showed that the AUC of the CMRI model

in three sets was significantly different from those of other models in

the same set, further indicating that the whole-lung features indeed

improved the discrimination ability of the models. Masquelin et al.

proposed a standardized method for extracting features around

nodules based on secondary pulmonary lobules (14). The

performance of the malignant tumor prediction model that

integrated nodules and surrounding lung parenchyma features

(within the range of 10 mm or 15 mm) was higher than that of

using nodule features or surrounding features alone. The

improvement in prediction performance was also independent of

the type of machine learning algorithm. The range of whole-lung

features we extracted included the secondary lobules, which

obtained similar good predictive performance.

Moreover, one study proposed a DL-based local-global model

(including nodule and whole-lung information) to differentiate

nodular cryptococcosis from lung cancer (16). The effect

(AUC=0.88) of the local-global model was better than the model

only based on the nodule’s features (AUC=0.84). Another study

found that image features mined from the whole lung were related

to multiple critical gene pathways related to drug resistance or

cancer progression mechanisms, which could provide additional

prognostic information for targeted lung cancer therapy (17). All

these studies have shown the additional diagnostic and predictive
Frontiers in Oncology 08
value of a broader range of lung parenchymal features for

local lesions.

The clinical and morphological features of the GGNs help

distinguish benign from malignant nodules. Patients with

malignant GGNs were older in all three hospitals, mostly

mGGNs, and had larger initial diameters. Previous studies have

shown that age and larger diameter are risk factors for malignant

GGN growth, consistent with our results (38–41). The appearance

of MIA on CT images is usually mGGNs, and the solid component

indicates the extent of tumor invasion (38). In this study, the

proportion of malignant lesions in mGGNs was 93.75%, 64.71%,

and 76.92% in three hospitals, respectively, confirming that mGGNs

were more likely to be malignant. Lobulation, spiculation, pleural

indentation, and vascular convergence occurred more frequently in

malignant GGNs from three hospitals, consistent with the previous

studies (26, 27).

However, some clinical and morphological differences between

benign and malignant GGNs were inconsistent in the three

hospitals. For example, smoking and family history are

recognized risk factors for lung cancer, but we observed this

difference only in Hospital 3. Female is closely related to lung

cancer (42), but there is no significant sex difference between benign

and malignant GGNs in the three hospitals. Some features were

significantly different only in Hospitals 1 and 2 but not in Hospital

3. The following reasons may be relevant: 1) the origin of cases in all

hospitals is different, and there is a selection bias; 2) the proportion

of benign GGNs in Hospital 2 (63.5%, external test set 1) was

significantly higher than that in the other two hospitals (25.1% and

51.6%); 3) the number of GGNs (N=31) in Hospital 3 (external test

set 2) is less. The higher proportion of benign GGNs may explain

why the AUC and accuracy of the model in the external test set 1
TABLE 3 Prediction performance of different models in sets with pathologically confirmed GGNs.

Sets Model AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV

Internal validation
Set (Hosp. 1)

CM 0.851 (0.803-0.892) 81.7% 67.5% 87.4% 68.4% 87.0%

WR 0.815 (0.763-0.859) 78.7% 62.3% 85.3% 84.0% 69.8%

CMR 0.867 (0.821-0.905) 78.7% 62.3% 85.3% 63.2% 84.9%

CMI 0.855 (0.807-0.894) 81.0% 66.2% 86.9% 67.1% 86.5%

CMRI 0.886 (0.841-0.921) 82.5% 68.8% 88.0% 69.7% 87.5%

External test
set 1 (Hosp. 2)

CM 0.803 (0.719-0.870) 75.4% 80.3% 66.7% 81.3% 65.1%

WR 0.826 (0.746-0.890) 70.3% 76.3% 59.5% 63.2% 84.9%

CMR 0.821 (0.746-0.890) 73.7% 78.9% 64.3% 80.0% 62.8%

CMI 0.818 (0.737-0.883) 78.8% 82.9% 71.4% 84.0% 69.8%

CMRI 0.830 (0.749-0.893) 77.1% 81.6% 69.0% 82.7% 67.4%

External test
set 2 (Hosp. 3)

CM 0.833 (0.656-0.942) 77.4% 75.0% 80.0% 80.0% 75.0%

WR 0.825 (0.647-0.937) 70.9% 68.8% 73.3% 73.3% 68.8%

CMR 0.863 (0.691-0.959) 83.9% 81.3% 86.7% 86.7% 81.3%

CMI 0.850 (0.676-0.952) 71.0% 75.0% 73.3% 73.4% 68.8%

CMRI 0.879 (0.712-0.968) 83.9% 75.0% 80.0% 86.7% 81.3%
frontie
AUC, area under the receiver operator characteristic curve; 95%CI, 95% confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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were weaker than those in the other two sets. In addition, previous

studies (43, 44) have shown conflicting results on the relationship

between the interface of GGNs and malignancy, with both well- and

ill-defined interfaces appearing to be significantly associated with

malignant GGNs. In the present study, we only observed a higher

frequency of well-defined but coarse interfaces in malignant GGNs
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from Hospital 1. In addition to the above reasons, differences in the

observer’s subjective evaluations of interfaces are also related.

Furthermore, subjective differences also show the limitation of

differentiating benign and malignant GGNs based on

morphological features. Hence, a more extensive and balanced

database of nodules is the key to improving the model.
B C

D E F

A

FIGURE 5

A case of malignant GGN was predicted successfully by the CMRI model The nodule was from the external test set 2. (A) A 69-year-old male
presented with a small pGGN in the right upper lobe on baseline CT scan(white arrow). (B) The first review was performed after 293 days of follow-
up and the lesion was slightly enlarged(white arrow). (C) A second examination was performed 691 days after follow-up, and the lesion was
significantly enlarged and heterogeneous in density(white arrow). Sixteen days after the second review(for a total follow-up of 707 days), the nodule
was surgically removed and pathologically confirmed the minimally invasive adenocarcinoma. (D–F) Heatmaps generated by GRAD-CAM for
baseline, first review, and second review. Red or yellow areas represent high importance or strong activation, while blue or green areas indicate low
importance or weak activation. The prediction scores of CM, WR, CMI, CMR and CMRI models were 0.667, 0.670, 0.718, 0.727 and 0.783,
respectively. Compare these prediction scores with the threshold (0.764) calculated by the neural network: those with a value above the threshold
were classified as malignant, and below were classified as benign. So, The CMRI model predicted this malignant nodule successfully based on the
baseline CT features, whereas none of the CM, CMR, CMI, and WR models predicted correctly.
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The results of the Delong test showed that the differences in

AUC between CMI and CMR models in the external test set 1 and

between CMI and WR models in the external test set 2 were not

statistically significant. The fact that the AUCs of the CMI

(AUC=0.818) and CMR (AUC=0.821) models were too close may

be the reason for the non-significant difference. In the external test

set 2, although the AUC of the CMI model was 2.5% higher than

that of the WR model, this may occur by chance due to the small

sample size of this set and the increased weight of individual data on

the influence of the model.

In the current study, we used 32 long-term (≥ 5 years) stable

GGNs without pathological confirmation for models’ further

validation. Fleischner Society recommends no routine follow-up

for subsolid nodules with a size < 6mm (4). Even in subsolid

nodules ≥ 6mm, the growth rate after five years of stabilization is

only 2%, and the growth of these nodules has no clinical effect (45).

So we considered these GGNs benign based on their long-term

stable state and smaller initial size (median maximum diameter,

5.1mm). Surprisingly, the CMmodel achieved 100% accuracy, while

the other four models based on whole-lung radiomics features and

whole-lung image features showed prediction accuracies ranging

from 93.75% to 98.68%. The high accuracy of the CMmodel may be

related to the smaller size and fewer positive CT morphologic

features. Errors in the other four models may be the combined

effects of incorporating whole-lung features. In addition, there may

be an overestimation of the accuracy exhibited by all models due to

the lack of pathological results. Some studies have found that the

indolent growth nature of GGNs determines that the final

pathological result may still be malignant even after maintaining

long-term stability (33, 34, 46). The WR model (only based on
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whole-lung radiomics features) incorrectly predicted without

combining clinical and morphological features may also suggest

the presence of information in the whole-lung features to

differentiate the entirely benign or malignant of this type of

GGNs. Lee et al. also found that 13% (27/208) of subsolid

nodules grew after five years of stability, and about 95% of these

nodules were less than 6mm in size (47). Therefore, despite the bias

in the external test set 3 results, it further illustrates the feasibility of

the method for predicting benign and malignant GGNs based on

whole-lung features and the generalization potential of the

DL model.

Technically, we solved the following problems. The first is to

design a second-order neural network to effectively integrate

clinical-morphological, image, and radiomics features. The

second-order neural network better fitted the relationship

between the three features and restored their genuine connection

as much as possible. Second, we encountered the problem of fewer

samples during training. We used the data enhancement method,

similar to some previous studies (44, 48), in which samples were

shifted and rotated to increase the diversity of samples, improve the

accuracy and generalization ability of the model, reduce over-fitting,

and improve the accuracy and robustness of the model.

Our study has several limitations. First, the present study was

retrospective. Most GGNs (92.3%, 385/417) were confirmed by

postoperative pathology. These nodules were already biased toward

a malignant probability diagnosis, and final benign GGNs are less

than malignant ones, so selection bias was inevitable. Second, our

model did not compare with the model based on the local features

of the nodule. It is still being determined whether the model based

on whole-lung features has an advantage over the model based on
TABLE 4 Pairwise comparison of AUC between five models in sets with pathologically confirmed GGNs.

Database Model CM WR CMR CMI CMRI

Internal validation
Set (Hosp. 1)

CM NA – – – –

WR 0.0373 NA – – –

CMR 0.0144 0.0374 NA – –

CMI 0.0423 0.0478 0.0269 NA –

CMRI 0.0181 0.0001 0.0245 0.0153 NA

External test
set 1 (Hosp. 2)

CM NA – – – –

WR 0.0071 NA – – –

CMR 0.0030 0.0285 NA – –

CMI 0.0009 0.0416 0.1048 NA –

CMRI 0.0085 0.0208 0.0365 0.0245 NA

External test
set 2 (Hosp. 3)

CM NA – – – –

WR 0.0152 NA – – –

CMR 0.0372 0.0196 NA – –

CMI 0.0325 0.1092 0.0132 NA –

CMRI 0.0099 0.0226 0.0142 0.0116 NA
The data in the table are the P values of the difference in AUC between the models, and the data with no significant difference are shown in bold. AUC, area under the receiver operator
characteristic curve; NA, not applicable.
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local features of the nodule, and further research is needed. Third,

other smaller GGNs may exist in the ipsilateral lung where the

target GGN is located, and the features of such small GGNs may

affect the predictive performance of the model. Finally, a common

issue for AI is that the features that entered the model for the

differentiation of benign and malignant GGNs needed to be clarified

due to the complexity and multidimensionality of DL. Fortunately,
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we have shown that whole-lung features can be used to predict

benign and malignant GGNs.

In conclusion, predicting the benign and malignant GGNs by

the features extracted from the whole lung is feasible. The CMRI

model that integrated clinical-morphological features, whole-lung

radiomics features, and whole-lung image features had the best

classification performance. The DL model based on whole-lung CT
B

C D

A

FIGURE 6

The long-term stable GGN that incorrectly predicted by the WR model The nodule was from the external test set 3 (without pathologically
confirmed, all considered benign GGNs). (A, B) Are chest CT images of a 45-year-old female with a slice thickness of 1.5mm and 1.25mm,
respectively. (A) Baseline CT showed a faint pGGN (white arrow) in the right upper lobe. (B) Follow-up CT of 2609 days (7.1 years) after baseline
showed that the nodule was stable. This nodule was correctly predicted by four models other than the WR model. (C, D) Show the baseline and the
follow-up heatmaps generated by GRAD-CAM, respectively. The prediction scores of CM, WR, CMI, CMR and CMRI models were 0.114, 0.799,
0.082, 0.103 and 0.094, respectively. Only the WR model had a prediction score above the threshold (0.764); therefore, This nodule was correctly
predicted by four models other than the WR model. Although the nodule has not changed significantly after 7.1 years of follow-up, the heatmaps
(D) activity is still increased compared with that of (C), which may indicate its slow progression.
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features can provide non-invasive and low-cost prediction and save

the time of nodule segmentation. In addition, using the whole lung

information to explore the local lesions is helpful to supplement

new information beyond the characteristics of the nodules

themselves. At the same time, there is also the possibility of

multi-task collaboration with other situations that need to be

applied to the whole-lung CT features, which is helpful for the

more scientific and satisfactory management of GGNs.
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