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Rapid, non-destructive and automated salt tolerance evaluation is particularly

important for screening salt-tolerant germplasm of alfalfa. Traditional evaluation

of salt tolerance is mostly based on phenotypic traits obtained by some broken

ways, which is time-consuming and difficult to meet the needs of large-scale

breeding screening. Therefore, this paper proposed a non-contact and non-

destructive multi-index fuzzy comprehensive evaluation model for evaluating

the salt tolerance of alfalfa from Light Detection and Ranging data (LiDAR) and

HyperSpectral Image data (HSI). Firstly, the structural traits related to growth

status were extracted from the LiDAR data of alfalfa, and the spectral traits

representing the physical and chemical characteristics were extracted from HSI

data. In this paper, these phenotypic traits obtained automatically by

computation were called Computing Phenotypic Traits (CPT). Subsequently,

the multi-index fuzzy evaluation system of alfalfa salt tolerance was

constructed by CPT, and according to the fuzzy mathematics theory, a multi-

index Fuzzy Comprehensive Evaluation model with information Entropy of alfalfa

salt tolerance (FCE-E) was proposed, which comprehensively evaluated the salt

tolerance of alfalfa from the aspects of growth structure, physiology and

biochemistry. Finally, comparative experiments showed that: (1) The multi-

index FCE-E model based on the CPT was proposed in this paper, which could

find more salt-sensitive information than the evaluation method based on the

measured Typical Phenotypic Traits (TPT) such as fresh weight, dry weight, water

content and chlorophyll. The two evaluation results had 66.67% consistent

results, indicating that the multi-index FCE-E model integrates more

information about alfalfa and more comprehensive evaluation. (2) On the basis

of the CPT, the results of the multi-index FCE-E method were basically

consistent with those of Principal Component Analysis (PCA), indicating that

the multi-index FCE-E model could accurately evaluate the salt tolerance of
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alfalfa. Three highly salt-tolerant alfalfa varieties and two highly salt-susceptible

alfalfa varieties were screened by the multi-index FCE-E method. The multi-

index FCE-E method provides a new method for non-contact non-destructive

evaluation of salt tolerance of alfalfa.
KEYWORDS

alfalfa, hyperspectral image, LiDAR data, phenotypic traits, the evaluation of salt
tolerance, fuzzy
1 Introduction

Alfalfa is an important supplementary crop and plays an

important role in animal husbandry. However, saline-alkali land

has a serious impact on the growth and development of alfalfa

(Munns and Tester, 2008). Therefore, it is of great practical

significance to accurately evaluate the salt tolerance of alfalfa

(Zhang et al., 2013; Reddy et al., 2022). However, it is a complex

task to accurately evaluate the salt tolerance of alfalfa. Traditional

phenotypic survey methods are limited by the number of samples

and time costs, and cannot comprehensively evaluate the structural,

physical and chemical indicators of alfalfa (Munns and Tester, 2008;

Hanin et al., 2016; Ismail and Horie, 2017). Therefore, it is of great

significance to comprehensively evaluate the salt tolerance of alfalfa

by using modern plant phenotypic techniques to understand the

salt tolerance mechanism of alfalfa, improve alfalfa varieties and

increase agricultural production in saline-alkali areas (Hu and

Schmidhalter, 2023).

Phenotypic traits of plant salt tolerance refer to all traits that

reflect the physical, physiological and biochemical properties of

plant salt tolerance influenced by genes or environment. Studies

have been carried out in China and abroad to evaluate the salt

tolerance of alfalfa using the phenotypic traits of indicator plant

individuals or populations (Houle et al., 2010; Chunjiang, 2019; Al-

Tamimi et al., 2022; Singh and Bhutia, 2022). However, considering

the wide planting range of alfalfa, there are many drawbacks in the

phenotype based on manual measurement. For example, large-scale

monitoring will make the measurement cycle long and the

timeliness of data low; point monitoring will make the data lack

of overall representativeness, and it is difficult to meet the needs of

regional breeding work. In addition, in breeding experiments,

laboratory chemical analysis is often used to obtain physiological

and biochemical parameters of alfalfa, which greatly increases the

experimental cost. In order to promote the study of modern plant

phenotypes, this paper proposes the concept of computing

phenotypic traits. Computing phenotypic traits refer to the digital

phenotypic traits that characterize the growth and development,

physiology and biochemistry of plant individuals or populations

extracted by comprehensive computer technology, image analysis

technology and other modern science and technology. With the

development of non-contact information collection methods such

as computer vision, HSI technology, and 3D laser technology, more

and more plant CPT have been extracted, which provides technical
02
support for real-time and non-destructive evaluation of alfalfa salt

tolerance (Tmusǐć et al., 2020; Brook et al., 2021; Singh et al., 2021;

Li et al., 2022).

When alfalfa is subjected to salt stress, it first affects the physical

and chemical parameters. The spectral absorption and reflection

characteristics of plants can be used to characterize their

physiological and biochemical characteristics (Tucker, 1977).

Spectral indices can highlight phenotypic traits such as plant

biomass, leaf water content, pigment content and salt stress index

through band combination, and reduce the negative impact of

spectral redundancy on trait extraction (El-Hendawy et al., 2022).

The RGB and multispectral sensors have lower spectral resolution,

fewer bands, and discontinuous spectral coverage, which results in a

limited availability of spectral index features. HSI can describe the

interaction between alfalfa physicochemical traits and the

environment in more detail through its fine spectral superiority

and spatial information, and shows a strong advantage in the

extraction of alfalfa computational phenotypic traits (El-Hendawy

et al., 2019a; Xiaofeng et al., 2020; Jin et al., 2021b). The

hyperspectral narrow band vegetation index can more

comprehensively characterize the content of crop stress resistance

components through band combination (Post et al., 2007; Wu et al.,

2008; Ullah et al., 2012; Thenkabail et al., 2013; El-Hendawy et al.,

2019b), which provides an effective means for the study of alfalfa

stress resistance phenotypic traits, breeding screening and

implementation of precision agriculture (Hunt et al., 2013; Kasim

et al., 2017). With the cumulative change of physical and chemical

parameters, the growth, development and structural parameters of

alfalfa were also affected and changed (Hanin et al., 2016). LiDAR

technology measures the distance between the sensor and the target

object by laser irradiation and is widely used in plant reconstruction

and morphological structure extraction (M et al., 2021; Shaochen

et al., 2023). Sun et al. used LiDAR technology to monitor the

maximum canopy height, projected canopy area and plant volume

of cotton plants with good results (Shangpeng et al., 2018). With the

advancement of technology, the use of LiDAR point cloud data to

obtain plant structural phenotypic traits has been widely recognized

(Jimenez-Berni et al., 2018; Jin et al., 2021a). Secondly, LiDAR is an

active remote sensing technology. Compared with spectral imaging

technology, it is not affected by light and shooting angle, and can

realize all-day monitoring. The true morphology of alfalfa was

restored to the greatest extent by a high-precision three-

dimensional point cloud, so as to extract its structural phenotypic
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traits (Shaochen et al., 2023). These structural phenotypic traits are

essential for evaluating the salt tolerance of alfalfa. In this paper,

plant height, canopy leaf area and volume extracted from LiDAR

data, and special indicators extracted from HSI data were called

computing phenotypic traits.

The salt tolerance response mechanism of alfalfa is complex.

The evaluation of salt tolerance is based on the overall performance

of various physiological processes, and any single trait can’t directly

represent its salt tolerance level. It is more scientific and reasonable

to use a multi-index system to comprehensively evaluate alfalfa

(Shaohua et al., 2022; Sun et al., 2022). Some scholars have proposed

that the method of a comprehensive evaluation of multiple

indicators, such as cluster analysis, principal component analysis

and the membership function value method, is the best method for

screening salt-tolerant alfalfa (Hu et al., 2018; Xiangfeng et al.,

2018). However, these evaluation methods are easily affected by

subjective factors. Fuzzy Comprehension Evaluation (FCE) is a

method based on the fuzzy transformation principle in fuzzy

mathematics (Zadeh., 1965). Based on the principle of

membership, the algorithm scientifically and objectively

synthesizes a multi-index problem into a single-index result

containing multi-index information, to realize multi-factor

comprehensive evaluation in one-dimensional space (Robati and

Rezaei, 2021). The basis of constructing a comprehensive evaluation

model of salt tolerance by the FCEmethod is to establish a scientific,

reasonable, comprehensive and objective evaluation index system.

Xu et al. proposed a comprehensive yield evaluation index that

reflected leaf area index, leaf biomass, leaf moisture content and leaf

nitrogen content (Xu et al., 2021). However, the measurement of

these indicators has low efficiency, serious subjectivity, large

measurement error, and poor plant adaptability when repeated

measurement of a single plant, which make it difficult to meet the

requirements of modern agricultural production practice. In

addition, these indicators focus on the estimation of yield and

cannot represent the salt tolerance of alfalfa growth. Wu et al.

discussed the contribution of morphological structure,

physiological and biochemical phenotypic trait indicators to the

screening of alfalfa germplasm. The results showed that the

structural phenotypic traits associated with alfalfa growth and

development and the phenotypic traits characterized by

physicochemical characteristics were important parameters for

evaluating the salt tolerance of alfalfa (Duan et al., 2008; Tilly

et al., 2013; Tilly et al., 2015; Xinming et al., 2018; Duo et al., 2021;

Penglei et al., 2021; Guiza et al., 2022). However, phenotypic traits

based on manual measurement and chemical analysis are expensive

and limited. Therefore, the application of remote sensing

technology to the evaluation of salt tolerance can not only extract

more phenotypic traits to characterize alfalfa salt tolerance more

efficiently but also avoid irreversible damage to alfalfa caused by

measurement in indicators.

Another focus of the FCE method is the weight distribution of

the evaluation indicators. The traditional method of determining

the weight mostly adopts the expert scoring method, which has

strong subjective defects (Du et al., 2019). Therefore, it is necessary

to improve the FCE method to more objectively reflect the salt
Frontiers in Plant Science 03
tolerance level of alfalfa. In summary, the screening of salt-tolerant

varieties is based on the comprehensive evaluation of their

phenotypic traits. However, most of the current research on the

salt tolerance evaluation of alfalfa relies on TPT (Roy et al., 2014;

Ismail and Horie, 2017), and few studies have applied remote

sensing technology to the screening of alfalfa salt tolerant

varieties. Moreover, the construction of the comprehensive

evaluation model of salt tolerance is mostly affected by subjective

factors (Song et al., 2021). Therefore, the purpose of this study is to

conduct a rapid and non-destructive comprehensive evaluation of

alfalfa salt tolerance at flowering date based on HSI and LiDAR

data, and to improve the FCE method to enhance the automation

ability of the salt tolerance evaluation model. The specific research

objectives of this study are as follows: (1) To construct a digital and

non-destructive evaluation index system of alfalfa salt tolerance that

characterizes the growth, development and physicochemical

characteristics of alfalfa; (2) It is proven that the CPT can capture

more salt sensitive information than the TPT and is more

comprehensive and robust in evaluating the salt tolerance of

alfalfa. (3) The FCE method was optimized to develop an

automated comprehensive evaluation model for salt tolerance of

alfalfa with strong portability. (4) Compared with the PCA method,

the multi-index FCE-E model is more suitable for screening and

breeding research. This study not only helps to enhance the

understanding of the salt tolerance mechanism of alfalfa, but also

provides new ideas and approaches for the evaluation of the salt

tolerance of alfalfa, and provides valuable references for research

and practice in related fields.
2 Materials and methods

2.1 Design of experiment

In this experiment, six alfalfa varieties of WL343HQ, Gibraltar,

Gold Empress, Zhongmu No. 3, Aohan, and Cangzhou were studied

at flowering date. To compare the effects of salt stress on the growth

status of alfalfa, a salt stress (NaCl) group and a control (CK) group

were set up on the material, and a repeat experiment was set up at

the same time. In the pre-experiment, it was found that the

differences between alfalfa varieties were not prominent in the salt

stress treatment of 100 mmol/L; with 150 mmol/L of salt stress,

there were obvious differences between alfalfa varieties. All varieties

survived in two pre-experiments. Therefore, the NaCl group in this

study was treated with salt stress of 125 mmol/L, and the CK group

was treated with clean water.

To avoid the effect and damage caused by watering impulse on

alfalfa roots, 9 plants of the same variety of alfalfa were evenly planted

uniformly in a 20 cm × 20 cm porous pot, and 6 porous pots were

placed in a 40 cm × 60 cm non-porous box (Figure 1). The irrigation

treatment was in the non-porous box. Porous pots could enable

alfalfa connections to be placed in a habitat, reducing the generation

of variables. Except for different treatment methods, the other growth

environments of the sample materials were consistent, which met the

experimental conditions of the single variable method.
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To construct a comprehensive evaluation model of salt tolerance

based on non-destructive monitoring, before measuring the measured

phenotypic traits such as fresh weight and dry weight of alfalfa at

flowering date, HSI data and LiDAR data were collected, and the

spectral and structural phenotypic traits were analyzed and extracted.
2.2 Methods of research

To construct a salt tolerance evaluation model of alfalfa and

screen the salt-tolerance alfalfa germplasm resources, it is necessary to

establish a multi-index salt tolerance evaluation system for alfalfa.

The experimental process is shown in Figure 2, which mainly consists

of four main parts: (1) Data collection: To achieve rapid and non-

destructive evaluation of alfalfa’s salt tolerance, HSI data and LiDAR

data of alfalfa at flowering date were collected. In addition, four
A

B DC

FIGURE 2

A workflow diagram of the experimental design, feature extraction, and modeling. (A) data collection; (B) data preprocessing for original data;
(C) phenotypic traits extraction; (D) improved FCE method and model construction.
FIGURE 1

Schematic diagram of alfalfa planting.
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typical traits of alfalfa, including Fresh Weight (FW), Dry Weight

(DW), Water Content (WC) and Chlorophyll (SPAD, CHL), were

collected after mowing. (2) Data preprocessing for original data: In

order to improve the accuracy of extracting structural phenotypic

traits from the LiDAR data, the outliers, denoising and invalid points

were removed from the LiDAR data, and then the structural

phenotypic traits of alfalfa were extracted; The radiometric

calibration of the HSI data was carried out by using the software of

the hyperspectral imager, and then the spectral phenotypic traits of

alfalfa were extracted (Figure 3). (3) Phenotypic traits extraction:

Construct the CPT using the structural phenotypic traits extracted

from the LiDAR data and the spectral phenotypic traits extracted

from the HSI data. (4) Improved FCE method and model

construction: Firstly, the subjectivity of the FCE method is

improved by the entropy weight method and adaptive adjustment

of the critical point of the fuzzy membership function. Then, on the

basis of the CPT (step 3), comprehensive evaluation models for salt

tolerance of alfalfa in the CK group and NaCl group were constructed

by the multi-index FCE-E method, to obtain the salt tolerance rating

of alfalfa and screen out the salt tolerance germplasm resources.

2.2.1 Acquisition of measured data
This experiment was based on the “Descriptors and Data

Standard for Medic (Medicago Linn.) (Hongyan and Zongli, 2007)”

investigated and extracted four typical phenotypic traits of alfalfa at

flowering date, including FW, DW,WC, and CHL. First, the material

was cut from 1cm above the ground in a non-porous box, and the

alfalfa samples in each box were loaded into a mesh bag of the same

specification. The FW was obtained by directly weighing each box of

alfalfa plants and mesh bags using an electronic scale (± 0.01g). The

DW was obtained by weighing the plant and drying it in a mesh bag

at 120°C to a constant weight. The WC was the difference between

FW and DW. The CHL was the average value of more than 15

measurements by the SPAD instrument.
Frontiers in Plant Science 05
2.2.2 Acquisition and preprocessing of
hyperspectral data

In this study, the SOC710VP hyperspectral imager with a

spectral range of 400-1000 nm was used to collect hyperspectral

data with a spectral resolution of 4.6875 nm. HSI data were acquired

by setting up a darkroom and illuminating it with a full-band lamp.

At the same time of data collection, a standard gray plate as high as

alfalfa was placed next to alfalfa for radiometric calibration of

HSI data.

The HSI preprocessing process is shown in Figure 3A. The

original image has radiation errors, so radiation calibration was

performed before use. Because the HSI data was collected indoors,

the influence of the atmosphere on the calibration did not need to

be considered. The relationship between the calibration data of the

hyperspectral imager and the actual measured radiance brightness

of each band is established by the software of the instrument to

achieve the purpose of radiation correction.

In order to extract the spectral phenotypic traits characterizing

the physical and chemical characteristics of alfalfa, this paper first

distinguishes alfalfa and non-alfalfa regions based on HSI data, and

then the average value of the alfalfa imaging range was taken as the

value of this trait. The experimental results have shown that the

Triangular Vegetation Index (TVI, Table 1) could better distinguish

between alfalfa and non-alfalfa in hyperspectral images (Figure 4).

TVI is closely related to chlorophyll content. It is constructed

according to the difference in light radiation energy of pigments

in green, red and near-infrared radiation energy. A robust “triangle”

spectral space is formed by the reflection peak of green light, the

absorption valley near red light, and the red edge of the near-

infrared. Vegetation and non-vegetation regions can be

distinguished according to this spectral signature.

In the experiment, it was found that in the TVI image, the TVI

values of alfalfa and non-alfalfa areas were quite different, while the

TVI values in the alfalfa area were similar. The threshold
A B

FIGURE 3

The processing flow chart of HSI data and LiDAR data. (A) is the HSI data, (B) is the LiDAR data.
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segmentation method was the simplest and the most appropriate

method for extracting alfalfa. Through the experimental method,

10.6 was set as the threshold of TVI to distinguish alfalfa and non-

alfalfa areas. After alfalfa extraction, the average value of alfalfa

imaging range after band calculation was used as the value of

spectral traits to provide parameters for the multi-index salt

tolerance evaluation model of this study.

2.2.3 Acquisition and preprocessing of
LiDAR data

In this study, a FARO Focus M70 laser scanner with a

wavelength of 1550nm was used to obtain LiDAR point cloud

data, and the point cloud was preprocessed according to the process

shown in Figure 3B. LiDAR uses scanning to obtain three-

dimensional information such as the structure, position and
Frontiers in Plant Science 06
shape of the target object, and inevitably produces some noise. In

this experiment, the target object was cut first, and then the point

cloud data of the target object was preprocessed by removing

outliers, redundant points and mixed points. First of all, when the

LiDAR scanned and recorded the information of the measured

object, random noise would be generated, or some objects were not

completely scanned. In order to make the point cloud structure

characteristics of the alfalfa group clearer, this paper used the

statistical filtering of the standard deviation multiple to eliminate

outliers. Secondly, the LiDAR scanned the same area repeatedly

during the scanning process, resulting in redundant point clouds,

which require high data storage space and hardware equipment.

According to the growth characteristics of the alfalfa population,

this paper performed voxel filtering on the point cloud below the

canopy, which reduced the number of point clouds on the basis of
A B C

FIGURE 4

TVI Index distinguishing alfalfa and non-alfalfa. (A) is the RGB image synthesized by hyperspectral data, (B) is the TVI index image, (C) takes TVI =
10.6 as the threshold, the area with TVI greater than 10.6 is the alfalfa, and the area with TVI less than 10.6 is the other.
TABLE 1 Selected spectral traits.

Parameters VI Formular Reference

Chlorophyll

Simple Ratio Index SR680=R800/R680 (Sims and Gamon, 2002)

Pigment-specific Simple Ratio PSSRb=R800/R635 (Blackburn, 2010)

Datt Index Datt=(R850-R710)/(R850-R680) (Datt, 2010)

Modified Normalized Difference Vegetation Index mNDVI=(R750-R705)/(R750+R705-2*R445) (Sims and Gamon, 2002)

BN Index BN=Log(R800/R550) (Buschmann and Nagel, 2007)

Anthocyanin Anth Reflectance Index ARI=1/R550-1/R700 (Gitelson et al., 2001)

Carotenol Carotenoid Reflectance Index CRI=(1/R510)-(1/R550) (Gitelson et al., 2002)

LAI
Simple Ratio Index Srapa=R900/R680 (Aparicio et al., 2002)

Triangular Vegetation Index TVI=0.5*(120*(R750-R550)-200*(R670-R550)) (Broge and Leblanc, 2001)

Water
Water Index WI=R900/R970 (Penuelas et al., 2010)

Salinity and Water Stress Indices SWSI=(R803-R681)/((R905+R972)**0.5) (Hamzeh et al., 2013)

Stress Index

Simple Ratio Vegetation Index SRVI=R830/R660 (Wang et al., 2010)

Carter Indices CTR=R695/R420 (Carter, 2007)

Normalized Difference Vegetation Index NDVIlut=(R913-R711)/(R913+R711) (Luther and Carroll, 1999)

Normalized Difference Red Edge Index NDRI=(R790-R720)/(R790+R720) (Barnes et al., 2000)

Biomass Normalized Difference Vegetation Index NDVI=(R800-R670)/(R800+R670) (Tucker, 1979)
Where R * is the reflectivity of the corresponding wavelength.
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ensuring the geometric characteristics of point clouds, saved storage

space and improved the efficiency of parameter extraction. Finally,

in order to highlight the spatial characteristics of the alfalfa point

cloud and ensure the smooth surface of leaves, aiming at the

characteristics of high overlap, small leaves, and serious inter-

species interleaving in the alfalfa population, this paper used the

moving least squares smoothing algorithm to fit the surface by

setting the radius range and projecting the mixed points to the

surface to remove the mixed points. The above preprocessing work

enabled the point cloud data to more accurately reflect the true

information of alfalfa and provided a high-quality data basis for the

subsequent extraction of structural phenotypic traits.
2.3 The construction of the multi-index
fuzzy evaluation system

The effects of salt stress on alfalfa are mainly manifested in two

aspects: (1) effects on the structural growth and development of alfalfa;

and (2) effects on physiological and biochemical characteristics of

alfalfa. Therefore, a multi-index fuzzy evaluation system was

constructed by CPT combining spectral phenotypic traits based on

HSI data and structural phenotypic traits based on LiDAR data.

The structural phenotypic traits related to the growth and

development of alfalfa were extracted with three typical indexes:

plant height, canopy leaf area and volume (Figure 3B). The change in

plant height can reflect the change in alfalfa stem length, which is an

important indicator of alfalfa growth; The change in canopy leaf area

can reflect the speed of leaf growth. Alfalfa leaves provide nutrients

for alfalfa growth through photosynthesis, which is very important

for the growth and development, chlorophyll content and health

status of alfalfa; Volume is the space occupancy of alfalfa growth,

which is closely related to alfalfa biomass. In this paper, the bottom of

alfalfa was used as the benchmark of point cloud data. Alfalfa was

divided into 0.5cm grids, and the highest points in all grids were

counted, and the average value was taken as the average plant height

of alfalfa (Figure 5A). The sum of all grid areas was used as the

canopy leaf area of the alfalfa population (Figure 5B). Alfalfa volume

was calculated by constructing a convex hull (Figure 5C).

The spectral phenotypic traits were extracted by analyzing the

spectral curve principle to characterize the phenotypic traits of alfalfa

chlorophyll, anthocyanin, carotenol, leaf area index, water content,

stress index and biomass (Figure 3A). Chlorophyll is involved in the

absorption, transmission and transformation of light energy, which is
Frontiers in Plant Science 07
an important basis for the growth of alfalfa. Water content is an

important index in the evaluation of salt tolerance. Excessive salt

accumulation in the soil will cause a decrease in soil water potential,

making it difficult for alfalfa to absorb water, resulting in

physiological drought and osmotic stress. The salt stress index is a

comprehensive response to salt stress. Studies have shown that

hyperspectral data can well reflect plant physiology and

biochemistry information through a variety of linear or non-linear

combination band operations (Saric et al., 2022). From the existing

studies, a total of 16 vegetation indices were screened in this paper

(Table 1, Figure 6), Among them, 5 indexes were extracted to

characterize chlorophyll, 1 index was extracted to characterize

anthocyanin, carotenol and biomass, 2 indexes were extracted to

characterize leaf area index and leaf water content, and 4 indexes were

extracted to characterize stress index. The vegetation index was

calculated using the Python language GDAL library, and the alfalfa

area extracted in the Section 2.2.2 was used as a mask, and the mean

values of the alfalfa area of the vegetation indexes was used as the

spectral phenotypic traits of this study.
2.4 The construction of fuzzy
comprehensive evaluation model

Based on the multi-index fuzzy evaluation system (in section

2.3), the evaluation model of alfalfa salt tolerance was constructed

by FCE-E method. This algorithm was completed on Matlab

(Figure 7). The algorithm steps are as follows:

1. Input of the algorithm;

Let the evaluation index system be X = ½X1 X2 ⋯ Xm �, where
Xm is the mth evaluation index. In this paper, the fuzzy evaluation

index system for salt tolerance (in section 2.3) was used as the factor

set, and the data from the factor set was used to construct a two-

dimensional matrix A, where Xnm was the value of the mth index of

the nth group of alfalfa.

A =

X11 X12 ⋯ X1m

X21 X22 ⋯ X2m

⋮ ⋮ ⋱ ⋮

Xn1 Xn2 ⋯ Xnm

2
666664

3
777775

(1)

Let the evaluation set be U = ½u1   u2  ⋯   un�, where un is the nth
evaluation level. In this paper, the evaluation set was set U =

½Very tolerant   Intermidiate   Susceptible  Very susceptible �
A B C

FIGURE 5

Structural phenotypic traits diagram. (A) is the plant height, (B) is the canopy leaf area, (C) is the volume.
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according to the “Descriptors and Data Standard for Medic

(Medicago Linn.) (Hongyan and Zongli, 2007)”.

2. Decide whether the evaluation index is positive or negative;

With yield as the evaluation reference, the evaluation index was

positively correlated with yield, and the index was defined as a

positive index. On the contrary, the evaluation index was negatively
Frontiers in Plant Science 08
correlated with the yield, so the evaluation index was defined as a

negative index.

3. The entropy weight method is used to calculate the weight

distribution of the evaluation index system;

Due to the different contributions of each evaluation index to

salt tolerance evaluation, different weights should be assigned to
FIGURE 6

Spectral phenotypic traits diagram.
FIGURE 7

The construction of fuzzy comprehensive evaluation model.
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each factor involved in the evaluation. The entropy weight method

is an objective weight method that determines the index weight

according to the variation degree of each index value.

First, the index data was standardized and converted into a

range between 0-1. The evaluation of salt tolerance focused on the

difference in phenotypic traits among different alfalfa varieties

under salt stress, and the weight of indexes was determined

according to the different information contained in phenotypic

traits. Therefore, the information entropy E (X) was calculated to

measure the amount of information, and then the weightW (X) was

determined according to the information entropy of each index, and

finally the weight matrix Wof the evaluation index system was

constructed.

E(X) = −S P(Xi)* log2 (P(Xi))ð Þ (2)

W(X) =
1 − E(X)

S(1 − E(X))
(3)

W = ½w1 w2 … wm � (4)

Where, X is the index, Xi is the value of the index X of each

sample, and P(Xi) is the probability of each value of the index Xi.W

(X) is the weight of the index X.

4. Construct membership function;

Each evaluation index presents different rules for the

evaluation level. This study used the most commonly used

trapezoidal membership function to set membership rules, and

the parameters of membership function are set by adaptive

parameter adjustment method. Firstly, the positive and negative

indicators were uniformly standardized to the interval [0,1], to

avoid the influence of outliers and extreme values indirectly

through centralization, and to be basis of adaptive parameter
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adjustment method. Secondly, the sample was divided into four

ratings. When setting the upper and lower indices of the

trapezoidal membership function, 0.25, 0.5 and 0.75 were taken

as the critical values of four equal fractions. For example, there was

a fuzzy evaluation of plant height at 0.24 and 0.26, so the fuzzy

boundary was set as 0.1, that is, the fuzzy boundary of 0.25 was

0.2-0.3. The trapezoidal membership function of positive

indicators of ‘Very tolerant’, ‘Intermediate’, ‘Susceptible’ and

‘Very susceptible’ are shown in formula 5-8 and Figure 8. x1, x2,

x3, x4, x5, x6 are 0.2, 0.3, 0.45, 0.55, 0.7, and 0.8, respectively. The

negative indicators are the opposite.

V(x) =

0, x < x5
x−x5
x6−x5

, x5 ≤ x ≤ x6

1, x6 < x

8>><
>>:

(5)

V(x) =

x−x3
x4−x3

, x3 ≤ x < x4

1, x4 ≤ x < x5
x6−x
x6−x5

, x5 ≤ x < x6

0, x < x3 or x6 < x

8>>>>><
>>>>>:

(6)

V(x) =

x−x1
x2−x1

, x1 ≤ x < x2

1, x2 ≤ x < x3
x4−x
x4−x3

, x3 ≤ x < x4

0, x < x1 or x4 < x

8>>>>><
>>>>>:

(7)

V(x) =

1, x < x1
x2−x
x2−x1

, x1 ≤ x ≤ x2

0, x2 < x

8>><
>>:

(8)
A B

DC

FIGURE 8

The fuzzy membership functions of the positive indicators were presented. (A–D) shows the fuzzy membership functions of four salt tolerance
ratings: ‘Very tolerant’, ‘Intermediate’, ‘Susceptible’ and ‘Very susceptible’, respectively.
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5. The fuzzy comprehensive evaluation matrix rPi of m

indicators of each sample was calculated, and the membership

degree r = ½ r1 r2 r3 r4 � of each factor to the evaluation grade was

calculated according to the membership function constructed by

step 4.

rpi =

r11 r12 r13 r14

r21 r22 r23 r24

⋮ ⋮ ⋮ ⋮

rm1 rm2 rm4 rm4

2
666664

3
777775

(9)
6. For each sample, the fuzzy operator of multiplication and

addition was used for fuzzy transformation, and the weight and

fuzzy comprehensive evaluation matrix were synthesized into a

fuzzy vector b. The fuzzy operator of multiplication and addition

has a strong degree of synthesis, reflects the weight function

obviously, and makes full use of the information of membership

degree, which belongs to the weighted average type synthesis

operator method.

bpi =o
m

j=1
wj · rj pið Þ
� �

(10)
Where, wj is the weight of the jth evaluation index of pi sample,

rj(pi) is the fuzzy comprehensive evaluation matrix of the jth

evaluation index of pi sample, and bpi is the fuzzy vector of

pi sample.

7. The maximum membership principle was used to judge the

salt tolerance of the samples.

Uk(pi) = ∨
4

k=1
bk(pi) (11)
Where, bk(pi) is the membership degree of pi sample belonging

to the kth evaluation level, Uk(pi) is the membership degree of pi
sample belonging to the kth evaluation level of the evaluation set,

and ∨ is the operation of “taking large” in fuzzy mathematics. In

this paper, the scores of 100, 75, 50 and 25 were set to represent four

evaluation ratings of ‘very tolerance’, ‘intermediate’, ‘susceptible’

and ‘very susceptible’, respectively.
Frontiers in Plant Science 10
3 Results

3.1 Statistical analysis of phenotypic traits

Firstly, the phenotypic traits were statistically analyzed to explore

the sensitivity of salt tolerance phenotypic traits to different statistical

indicators, so as to determine weightingmethod of the FCE-E. Tables 2,

3 show the coefficient of variation, information entropy and variance

contribution rate of TPT and CPT under CK and NaCl conditions,

respectively. It could be seen from Table 2 that the variation coefficient

and information entropy of FW, DW and WC were significantly

higher than that of chlorophyll and the variation coefficient was above

0.3 after processing of two modes, which showed that different varieties

of alfalfa in fresh weight, dry weight and water content of salt tolerance

level had great differences and had a greater contribution in salt

resistance evaluation. In addition, compared with the CK group, the

coefficient of variation of chlorophyll increased, which also showed that

chlorophyll had an indicative effect on alfalfa’s salt tolerance, which

could be used for salt tolerance identification of alfalfa. It could be seen

from Table 3 that compared with the CK group, the coefficient of

variation of the computing phenotypic traits in the NaCl group also

changed to different degrees. Due to the influence of salt stress, most

indexes increased and they were mainly concentrated in the indicators

that represented structural growth, chlorophyll, stress index and

biomass, and the information entropy of these indexes accounted for

a larger proportion, indicating that these indexes could capture the salt

tolerance of alfalfa more sensitively. In addition, the results showed that

compared with the TPT, the CPT could find more salt

tolerance phenotypes.

It was worth noting that in different treatment conditions or

different evaluation index systems, the variance contribution rate was

relatively average in all phenotypic traits, while the information entropy

showed a differential distribution. Information entropy was more able

to find the difference of different phenotypic characters of alfalfa under

salt stress. Therefore, the FCE-E method in this paper allocated weight

proportionally according to the size of information entropy.
3.2 Comprehensive evaluation of
salt tolerance based on the typical
phenotypic traits

In order to verify the evaluation ability of the multi-index FCE-

E model based on the CPT in this paper, the four TPT of FW, DW,
TABLE 2 Statistical analysis of the typical phenotypic traits.

Index system Traits
CK NaCl

CV H Var CV H Var

Typical phenotypic traits

FW 0.35 0.34 0.25 0.35 0.29 0.28

DW 0.33 0.29 0.23 0.40 0.36 0.28

WC 0.36 0.36 0.25 0.34 0.28 0.28

CHL 0.05 0.01 0.27 0.17 0.07 0.16
CV is the coefficient of variation, H is the information entropy, and Var is the variance contribution rate.
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WC and CHL were used as the evaluation index system, and the salt

tolerance evaluation of alfalfa was carried out by the FCE-E method.

The alfalfa was divided into four grades, and the results are shown

in Figures 9A, B. Under NaCl condition, the growth of other alfalfa

varieties was affected, except that the salt tolerance rating of Aohan,

Gibraltar and Gold Empress were improved compared with the CK

condition. Aohan had a poor rating under CK conditions, on the

contrary, it was rated as intermediate salt tolerance under NaCl,

indicating that the variety was not suitable for cultivation in

undamaged land and was more suitable for cultivation and

improvement promotion in saline-alkali land. Cangzhou had a

poor rating under salt stress conditions, indicating that the

variety of alfalfa was not suitable for cultivation on saline-

alkali land.
3.3 Comprehensive evaluation of salt
tolerance based on the computing
phenotypic traits

Using the CPT as the multi-index evaluation system of salt

tolerance, the FCE-E method was used to construct a non-

destructive evaluation model of salt tolerance of alfalfa. Alfalfa

was divided into four grades (Figures 9C, D) and compared with the

evaluation result of salt tolerance based on TPT (in section 3.2).
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Under the condition of salt stress (Figure 9D), WL343HQ and

Gibraltar were rated as salt-tolerant alfalfa varieties, Aohan and

Gold Empress were rated as intermediate salt-tolerant alfalfa

varieties, all Zhongmu No. 3 were rated as susceptible salt-

sensitive alfalfa varieties, and Cangzhou were all highly salt

susceptible varieties. Therefore, 3 highly tolerant, 4 intermediate,

3 susceptible and 2 highly susceptible materials were screened in

this paper.

Compared to section 3.2, a total of 66.67% had consistent

results. Among them, in the CK group, there were 75% consistent

results; there were 58.33% consistent results in the NaCl group.

Affected by salt stress, the physical and chemical characteristics of

alfalfa would change in varying degrees. Compared with TPT, the

CPT could find more salt-sensitive information. Therefore, the

consistency rate of the two results in the NaCl group is reduced.
3.4 Comprehensive evaluation of salt
tolerance by PCA method

To further explore the reliability of the multi-index FCE-E

model, the PCA method was compared with the FCE-E method.

The results are shown in Table 4. In the CK group, the first principal

component accounted for 87.03% based on the PCA results of TPT,

and 85.43% based on the CPT. In the NaCl group, the first principal
TABLE 3 Statistical analysis of the computing phenotypic traits.

Index system Traits
CK NaCl

CV H Var CV H Var

Computing phenotypic traits

Height 0.15 0.06 0.06 0.21 0.07 0.06

Leaf-area 0.15 0.06 0.02 0.25 0.10 0.05

Volume 0.18 0.08 0.05 0.25 0.10 0.06

SR680 0.17 0.07 0.06 0.20 0.06 0.07

PSSRb 0.19 0.10 0.06 0.23 0.08 0.06

Datt 0.07 0.01 0.06 0.17 0.04 0.07

mNDVI 0.07 0.01 0.05 0.20 0.06 0.07

BN 0.09 0.02 0.06 0.16 0.04 0.07

ARI 0.14 0.05 0.04 0.13 0.03 0.04

CRI 0.17 0.07 0.05 0.16 0.04 0.06

Srapa 0.17 0.07 0.06 0.21 0.07 0.07

TVI 0.10 0.03 0.06 0.08 0.01 0.06

WI 0.02 0.00 0.05 0.01 0.00 -0.02

SWSI 0.07 0.01 0.06 0.10 0.01 0.06

SRVI 0.18 0.09 0.06 0.22 0.07 0.06

CTR 0.26 0.18 0.05 0.22 0.07 -0.03

NDVIlut 0.11 0.03 0.06 0.23 0.08 0.07

NDRI 0.13 0.05 0.06 0.23 0.08 0.06

NDVI 0.03 0.00 0.06 0.06 0.01 0.06
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component based on TPT accounted for 88.19%, and the first

principal component based on the CPT accounted for 79.43%.

The first principal component had good explanatory power, so only

the first principal component was extracted as the composite score.

The results of Figures 9, 10 showed that the results of PCA were

basically consistent with the results of the multi-index FCE-E, but

the results of PCA could only rank the salt tolerance of the samples,

and could not determine the salt tolerance level. Therefore, the

results of the multi-index FCE-E model are more reliable

and intuitive.
4 Discussion

The problem of soil salinization is becoming more and more

serious worldwide, and screening and promoting salt-tolerant

forage is the main way to improve and rationally use salinized

soils (Singh et al., 2018). At present, the salt tolerance of maize

(Fortmeier and Schubert, 1995), rice (Kumar et al., 2012) and other

major crops has been deeply studied. Alfalfa, as the most widely

planted and salt-tolerant forage, has high research value, so it has

been studied in term of growth monitoring, salt tolerance

mechanism and salt tolerance screening of alfalfa. However, for
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the non-destructive screening of alfalfa salt tolerance, there is still a

lack of an accurate and systematic salt tolerance evaluation method.

Miao et al. comprehensively evaluated the survival rate, plant

height, number of green leaves, number of wilted leaves, number

of branches and aboveground biomass of alfalfa seedlings by the

membership function method (Lihong et al., 2016). Wu et al.

explored the genetic diversity of alfalfa germplasm resources by

using morphological indexes, agronomic traits and quality traits.

The results showed that the agronomic traits of different alfalfa

germplasm had the largest variation, followed by morphological

traits and quality traits (Xinming et al., 2018). In this paper, based

on previous studies, the CPT of alfalfa was constructed using HSI

data and LiDAR data. The multi-index FCE-E model was used to

evaluate the salt tolerance of 24 alfalfa materials, so as to obtain

highly salt-tolerant and highly salt-susceptible varieties.
4.1 Advantages of computing phenotypic
traits in comprehensive evaluation of
salt tolerance

Combiningmultiple indicators to screen for salt-tolerantmaterials

is the most reliable research method today (Hu et al., 2018).
A

B D

C

FIGURE 9

Salt tolerance evaluation results based on FCE-E. (A, B) are the results of salt tolerance evaluation were based on typical phenotypic traits. (A) for the
CK groups, and (B) for the NaCl groups. (C, D) are the results of salt tolerance evaluation are based on computing phenotypic traits. (C) for the CK
groups, and (D) for the NaCl groups. The scores of 100, 75, 50 and 25 represented the ratings of ‘very tolerance’, ‘intermediate’, ‘susceptible’
and ‘very susceptible’, respectively.
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TABLE 4 PCA salt tolerance rating results of CK and NaCl groups.

Treatment Sample TPT Rank CPT Rank Treatment Sample TPT Rank CPT Rank

CK

WL343HQ-1 2.66 2 6.98 1

NaCl

WL343HQ-3 -1.45 3 -3.83 3

WL343HQ-2 3.45 1 6.56 2 Zhongmu No.3-3 1.49 10 3.35 10

Zhongmu No.3-1 1.26 3 2.95 3 Zhongmu No.3-4 0.06 8 0.53 8

Zhongmu No.3-2 0.57 5 1.16 4 Zhongmu No.3-5 0.07 9 1.24 9

Aohan-1 -0.64 8 -0.33 8 Aohan-3 -0.26 6 -0.61 6

Aohan-2 -2.85 12 -5.40 11 Aohan-4 -0.66 4 -0.35 7

Gibraltar-1 -0.01 6 0.25 6 Gibraltar-3 -0.10 7 -4.98 2

Gibraltar-2 -0.09 7 0.88 5 Gibraltar-4 -3.21 1 -5.87 1

Cangzhou-1 -2.23 10 -4.26 10 Cangzhou-3 3.44 12 6.91 12

Cangzhou-2 1.01 4 -0.32 7 Cangzhou-4 3.18 11 6.44 11

Gold Empress-1 -2.40 11 -6.30 12 Gold Empress-3 -0.30 5 -0.96 5

Gold Empress-2 -0.73 9 -2.19 9 Gold Empress-4 -2.26 2 -1.87 4
F
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FIGURE 10

Salt tolerance evaluation results based on PCA. (A, B) are the results of salt tolerance evaluation were based on typical phenotypic traits. (A) for the
CK groups, and (B) for the NaCl groups. (C, D) are the results of salt tolerance evaluation are based on computing phenotypic traits. (C) for the CK
groups, and (D) for the NaCl groups.
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However, the traditional method of obtaining phenotypic traits has

the disadvantages of low measurement flux, time-consuming and

labor-consuming, and data acquisition is difficult, especially for large-

scale measurements. At present, the traditional phenotypic traits can

no longer meet the needs of the rapidly developing plant stress

resistance research, which seriously hinders the excavation of alfalfa

salt-tolerant germplasm, so the high-throughput CPT have emerged

(Wu et al., 2021). A series of changes occurred in its internal

physiological components and external morphological structure

after alfalfa was treated with salt stress.

Firstly, different spectral bands of HSI can capture the

differences in various pigments, moisture content and biomass in

alfalfa. Hyperspectral imaging technology was used to supplement

and expand the TPT. For example, the contents of pigments such

as anthocyanin and salt stress index of alfalfa were non-

destructively extracted by using spectral phenotypic traits

compared with the measured TPT. Taking the chlorophyll

phenotypic trait SR680 vegetation index of alfalfa as an example,

Figure 11 visually shows the difference between alfalfa in CK
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groups and NaCl groups. It could be seen from the figure that

the chlorophyll content of alfalfa in the CK groups were

significantly higher than that in the NaCl groups. In the single-

basin canopy scale, the chlorophyll content in the leaf center was

higher than that in the leaf edge.

Secondly, LiDAR technology can accurately obtain its 3D

structure information. In order to evaluate the accuracy of the

structural phenotypic traits extracted from the LiDAR data, we

conducted a correlation analysis between the number of pixels

representing the alfalfa area extracted from the HSI data and the

canopy leaf area extracted from the LiDAR data. The correlation

coefficient (R2) was found to be 0.7434, indicating a good quality of

the canopy leaf area extracted from the LiDAR data.

Finally, it could be found from Figure 11 that the CPT combine

spectral and spatial dimension information, which can sensitively

capture the differences of alfalfa under salt stress, and contribute to

more comprehensive and lower cost evaluation of salt tolerance and

germplasm screening of alfalfa. The results of salt-tolerant

germplasm screening of alfalfa based on the CPT were similar to
FIGURE 11

The schematic diagram of SR680 vegetation index of alfalfa in CK groups and NaCl groups. The left two columns are CK groups, and the right two
columns are NaCl groups.
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those of the TPT, and the results of the former were more consistent

with those of manual screening, which provided a basis for

automatic, low-difficulty and high-time-based salt-tolerance

evaluation and breeding (Figure 9). Since more components were

not detected in this material, they were not reflected in the TPT.

More typical phenotypic traits should be added in future

comprehensive rating experiments as an evaluation reference.
4.2 Portability and sensitivity of the multi-
index FCE-E model

In the CK and NaCl groups, different phenotypic traits were

affected by the growth environment to different degrees. Salt stress

can hinder the growth of alfalfa, reduce the rate of leaf

differentiation, slow down photosynthesis, and lead to different

degrees of decrease or increase in phenotypic traits. The multi-index

FCE-E model in this paper determined the weight of each trait in

the evaluation of salt tolerance according to the information

entropy of each factor. The smaller the information entropy of

each trait was, the smaller the weight and the contribution to the salt

tolerance rating would be. The PCA method determined the weight

according to the variance contribution rate of each trait. The smaller

the variance contribution rate was, the smaller the assigned weight

and the smaller the contribution to salt tolerance rating would be.

According to Tables 2, 3, the variance contribution rate of each

phenotypic trait in the CK and NaCl groups were relatively

balanced, and the information entropy presented a differential

distribution. Therefore, compared with the variance contribution

rate, the information entropy could better capture the response

difference of phenotypic traits under salt stress. On the one hand,

the entropy weight method could objectively assign weights to

different phenotypic traits. On the other hand, it could adapt to

the influence of different phenotypic traits on the salt tolerance

evaluation model in different treatment conditions and increase the

portability of the model. In addition, the FCE-E method in this

paper adopted the method of adaptive adjustment when setting the

membership function parameters, which also increases the

portability of the model.

To test the sensitivity of the multi-index FCE-E model in

evaluating the salt tolerance of alfalfa, the CK and NaCl groups

were combined, and the multi-index FCE-E comprehensive ratings

were performed on the same sample set. The results of salt tolerance

evaluation of 24 samples (Figure 12) showed that the growth status

of all varieties of the NaCl group was worse than that of the CK

group, indicating that the multi-index FCE-E model based on the

CPT could effectively characterize the salt tolerance of alfalfa.

Therefore, according to section 3.3 (Figures 9C, D), the salt

tolerance of 12 sample materials in the NaCl group was

determined, and 3 highly salt-tolerant, 4 intermediate, 3

susceptible and 2 highly susceptible materials were obtained. In

addition, as shown in Figure 9, WL343HQ had better growth
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performance in both the CK and NaCl groups, indicating that

WL343HQ had more stable salt tolerance and could be cultivated

and promoted in more regions.
4.3 Comparison of the multi-index FCE-E
and the PCA

The results of the comprehensive evaluation of salt tolerance of

alfalfa by the multi-index FCE-E method and the PCA method

proposed in this paper (Figures 9, 10) showed that the two methods

got relatively consistent results, and the multi-index FCE-E method

could select salt-tolerant and highly salt-susceptible materials more

intuitively, while the PCA method could only get the ranking of salt

tolerance degree of alfalfa, and the selection of salt-tolerance

materials could not be directly derived from the results. In

addition, subjective factors are involved in the determination of

the contribution rate of principal components in the comprehensive

evaluation of salt tolerance using the PCA method.

The multi-index FCE-E method proposed in this paper was

based on the probability and statistical theory of fuzzy mathematics,

and the method could objectively evaluate the salt tolerance of

alfalfa by using adaptive parameter settings. The results of multi-

index FCE-E were the rating of salinity tolerance of alfalfa, the

results of which intuitively gave the corresponding level in all

materials. The better the result was, the better its growth status

and tolerance to salt stress would be. Moreover, the results of salt

tolerance evaluation based on the two evaluation index systems

were similar, so the growth status of alfalfa could be evaluated and

its salt tolerance could be judged by nondestructive CPT.
4.4 Application of the FCE-E method in
large-scale breeding programs

For plant breeders, the FCE-E method can help them make

many improvements in large-scale breeding programs. First, plant

breeders can evaluate the salt tolerance of different alfalfa varieties

based on this method. According to this method, the high-quality

varieties with the highest salt tolerance score of alfalfa were

determined, and the varieties for in-depth breeding or

commercial promotion were preliminarily screened. Secondly,

this method can help plant breeders determine more important

phenotypic traits in different batches of alfalfa. By analyzing the

weights assigned to each trait, breeders can explore potential

breeding advantages and defects, and focus on the most critical

traits, which can improve the accuracy and efficiency of breeding.

Finally, the use of LiDAR and HSI data can shorten the breeding

time and reduce the breeding cost. Through non-destructive

measurement, breeders can simultaneously evaluate large

areas of alfalfa, thereby quickly optimizing breeding strategies. In

general, this method can help breeders select the best varieties and
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breeding strategies through systematic evaluation of physiology,

biochemistry and structure, and improve the efficiency and

effectiveness of large-scale breeding programs.
5 Conclusions

Through the improved fuzzy comprehensive evaluation

method, the salt tolerance of 6 alfa l fa variet ies was

comprehensively evaluated in this study, and the following main

conclusions were obtained: Firstly, the multi-index FCE-E method

proposed in this paper can accurately evaluate the response ability

of alfalfa to salt stress. Secondly, this method combines entropy

method and fuzzy comprehensive evaluation method to capture the

differential performance of alfalfa phenotypic traits in response to

salt stress in a more objective and sensitive way. In addition, the

method uses the calculated phenotypic traits as the data source,

which can more quickly and comprehensively find the differences
Frontiers in Plant Science 16
and changes of alfalfa physical and chemical parameters and

structural parameters.
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