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Environmental pollution with potentially toxic elements (PTEs) has become one of
the critical and pressing issues worldwide. Although these pollutants occur
naturally in the environment, their concentrations are continuously increasing,
probably as a consequence of anthropic activities. They are very toxic even at very
low concentrations and hence cause undesirable ecological impacts. Thus, the
cleanup of polluted soils and water has become an obligation to ensure the safe
handling of the available natural resources. Several remediation technologies can
be followed to attain successful remediation, i.e., chemical, physical, and
biological procedures; yet many of these techniques are expensive and/or may
have negative impacts on the surroundings. Recycling agricultural wastes still
represents the most promising economical, safe, and successful approach to
achieving a healthy and sustainable environment. Briefly, biochar acts as an
efficient biosorbent for many PTEs in soils and waters. Furthermore, biochar
can considerably reduce concentrations of herbicides in solutions. This review
article explains the main reasons for the increasing levels of potentially toxic
elements in the environment and their negative impacts on the ecosystem.
Moreover, it briefly describes the advantages and disadvantages of using
conventional methods for soil and water remediation then clarifies the reasons
for using biochar in the clean-up practice of polluted soils andwaters, either solely
or in combination with other methods such as phytoremediation and soil washing
technologies to attain more efficient remediation protocols for the removal of
some PTEs, e.g., Cr and As from soils and water.
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1 Introduction

Pollution is a global challenge that negatively affects life on Earth
(Huang et al., 2019; Chen et al., 2020; Zheng et al., 2020). It is
responsible for spreading many diseases and approximately 16% of
premature death worldwide (Münzel et al., 2022). Since soil is the
main terrestrial ecosystem (Qi et al., 2023) then soil pollution can
threaten its biodiversity (Lu et al., 2020). Saving soil is essential to
save the whole Earth (Gautam et al., 2023). This may take place via
monitoring levels of contaminants in the environment and following
up effective remediation routes to attain better environmental
conditions.

Many contaminants undergo biodegradation while others are
relatively stable in soil and water such as potentially toxic elements
(PTEs) (Matin et al., 2020). Thus, these contaminants persist in soils
for years (Zhang et al., 2020; Zhong et al., 2020) and can have
devastating consequences on human health and the surrounding
ecosystem (Gui et al., 2023), particularly on children (Egendorf et al.,
2020). A point to note is that PTEs may further have negative
impacts on female fertility and reproduction (Rashtian et al., 2019).

Environmental risks related to soil pollutants with PTEs should
not be appraised only through soil screening levels but also by
assessing their bio-available contents in soil (Galán et al., 2019).
Mobile fractions of PTEs find their way to the groundwater (Farid
et al., 2020) and transfer long distances via the hydraulic continuity
of groundwater over vast areas to reach new lands which are not
directly subjected to soil pollutants (Bassouny et al., 2020; Farid
et al., 2020). Thus, following effective remediation methods could
eliminate further environmental contamination with PTEs (Liu
et al., 2020). These procedures include physical and chemical
remediation methods, e.g., soil washing, encapsulation, soil
replacement electrokinetic methods (Chen et al., 2020), amending
soils with iron nanomaterials (Baragaño et al., 2020) or
hydroxyapatite (Ibrahim et al., 2020)

Water pollution is also of growing concern (Kumar et al., 2019;
Dar and Bhat, 2020) because it is a vital resource for all living
organisms (Saini et al., 2020). Its decontamination is a requirement
to attain better environmental conditions (Singh et al., 2020)
following effective and safe remediation procedures (Sahoo and
Swain, 2020), e.g., membrane filtration, reverse osmosis, and
chemical precipitation (Saini et al., 2020). In spite of that, many
of these methods are expensive (Koffi and Okabe, 2020). Otherwise,
introducing low-cost materials of high sorptivity might be the
optimum choice for water decontamination (Tauqeer et al.,
2020). For example, biochar (Zheng et al., 2020) can effectively
remove PTEs from contaminated waters within short time periods
(Senthilkumar et al., 2020). Its mode of action is via 1) decreasing the
solubility of inorganic pollutant ions in soil (Zheng et al., 2020) and
water (Shaheen et al., 2019b) because of its alkaline nature (Shi et al.,
2020) and it may also form metal ion-chelators (Naveed et al., 2020)
of high solubility (Elshony et al., 2019); 2) binding contaminants
with the functional groups of biochar to become less mobile or even
immobile (Bandara et al., 2020); 3) increasing glomalin-related soil
protein (GRSP) content in soil (Dubey et al., 2020) which sustains
soil quality and minimizes contaminants transfer from soil to
aquatic ecosystems (Wang et al., 2020); and 4) stimulating the
activity of soil bacteria (Lévesque et al., 2020), especially
endophytes (Waqas et al., 2017), to assist host plants to survive

under high levels of organic and inorganic pollutants in soil (He
et al., 2020).

More details on the advantages and disadvantages of the
conventional physical and chemical remediation techniques that
are used in decontaminating soils and waters are discussed further.
This review also addresses the feasibility of using biochar as a safe
organic resource to remediate contaminated soils and water and
possible challenges that may affect PTEs binding with biochar to
attain successful remediation procedures.

2 Environment

The environment is defined as “the sum of all surroundings,
including natural resources and other factors that may affect growth
and development of living organisms. It is the place (soils, water, air
and food) that needs to be protected and restored.” However,
unmanaged handling of the environmental resources has resulted
in their contamination with PTEs (Abdelhafez and Li, 2014;
Abdelhafez and Li, 2015; Abdelhafez et al., 2016; ElShazly et al.,
2019a; ElShazly et al., 2019b; Ali et al., 2023; Farid et al., 2023).

2.1 Environmental contamination with PTEs

The term “environmental contamination” signifies the existence
of unwanted constituents (contaminants) of any type from
industrial, municipal, and agricultural wastes in the natural
environment (Katayama et al., 2010). They usually originate from
anthropogenic sources. Heavy metal “is a general collective term,
which refers to the group of metals and metalloids of atomic density
greater than 4,000 kg m-3, or in other terms their densities are five
times more than water” (Nagajyoti et al., 2010). These contaminants
are not biodegradable and thus adversely affect the environment
(Jinping et al., 2010; Abbas and Abdelhafez, 2013; Abdelhafez and Li,
2014). Generally, most heavy metals are non-essential, e.g., Pb, Cd,
Cr, Hg, and As while others, e.g., Fe, Cu, and Zn, are essential for
several organisms (known as trace elements). Thus, the term “heavy
metals” is vague and meaningless with no chemical or toxicological
basis (Duffus, 2002). Alternatively, the term “Potentially Toxic
Elements, PTEs” is in use, which is applicable only to the non-
essential elements, e.g., Pb and Cd (Nagajyoti et al., 2010).

2.2 Sources of contamination with PTEs

The major sources of environmental pollution are probably
anthropogenic activities that result from unmanaged practices
(Yaron et al., 2012; Abdelhafez and Li, 2014).

2.2.1 Natural sources of PTEs
During rock weathering, many contaminants find their way to

surface water and/or groundwater hence possessing potential threats
to the surroundings (Ma et al., 2019).

2.2.2 Agricultural practices and PTEs
Agricultural agrochemicals for fertilization and pesticides are

widely used worldwide in food production (Abdelhafez et al., 2012)
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to satisfy the needs of the growing population (Abbas and Meharg,
2008; Abdelhafez et al., 2012; Eid et al., 2019; Mohamed et al., 2019;
Abdelhafez et al., 2021). These agrochemicals contaminate
agricultural soils with PTEs (Nagajyoti et al., 2010), representing
potential ecological risk factors. Likewise, organic fertilizers such as
animal manures and sewage sludge enrich soils withMn, Zn, Cu, Co,
Cr, Pb, Ni, and Cd upon their extensive use as fertilizers or
amendments (Verklejim, 1993).

2.2.3 Industrial sources of PTEs
Rapid urbanization and industrialization, particularly in

developing countries discharge PTEs into rivers and soils. These
effluents may change the physical, chemical, and biological
conditions of water bodies (Sangodoyin, 1991) while increasing
the potential risk associated with using these waters. In the Jinxi
River in China, anthropogenic activities were the major source of
contamination of water streams with PTEs (Abdelhafez and Li,
2014; Abdelhafez and Li, 2015). Table 1 shows the abundance of
metals in effluents from different industrial activities (Abdelhafez
et al., 2009; Abdelhafez et al., 2010).

Other activities such as mining, refining, smelting, and metal
grinding may bring considerable concentrations of PTEs to the
surrounding environment (Herawati et al., 2000; Yanqun et al.,
2005; Abdelhafez et al., 2016; Mohamed et al., 2018).

Metal ions may be emitted into the atmosphere in the forms of
particulates and vapor when subjected to high temperatures and
then react with water vapors forming aerosols which finally find
their way to soil and water through dry deposition (dispersion by
wind) or wet deposition (precipitated in rainfall). In shooting range
and smelting operation soils, the levels of Pb sometimes exceeded 1%
(Abdelhafez et al., 2014; Abdelhafez et al., 2016).

2.2.4 Soil pollution in relation to domestic and
industrial effluents

Many water streams have become contaminated with PTEs via
the discharge of industrial and domestic wastes. These contaminants
find their way to the topsoil of the surrounding arable lands. Once
they come in contact with soil particles, they become sorbed and this
process is controlled by diffusion (Abbas and Bassouny, 2018).
Considerable amounts of PTEs may go deeper into the soil
through common agricultural practices, e.g., plowing and tillage
(Hashim et al., 2017). Moreover, hydraulic continuity that exists
between ground waters transfers contaminants to locations not
directly irrigated with wastewater (Farid et al., 2020).

2.2.5 Aerosols and PTEs
Tiny solid or liquid particles suspended in the Earth’s

atmosphere are known as aerosols (Seinfeld and Pandis, 2016).

TABLE 1 Occurrence of metals or their compounds in effluents from various industries.

Industry Metal

Al Ag As Cd Co Cr Cu Fe Hg Mn Mo Pb Ni Zn

Mining operations and ore processing × - × × - - - - × × × × - -

Metallurgy and electroplating - × × × - × × - × - - × × ×

Chemical industries × - × × - × × × × - - × - ×

Dyes and pigments × - × × - - × × - - - × - -

Ink manufacturing - - - × - × × × - - - × -

Pottery and porcelain - - × - - × - - - - - - - -

Alloys - - - - - - - - - - × - -

Print - - - - - - - - - - - - ×

Photography - × - - × - - - - - × - -

Glass - - × × × - - - - - - - × -

Paper mills × - - - × × - × - - × - -

Leather training × - × - - × × × × - - - - ×

Pharmaceuticals × - - - - × × × - - - - -

Textiles × - × × - - × × × - - - × -

Nuclear technology - - × - - - - - - - - - -

Fertilizers × - × × - × × × × - × × × ×

Chlor alkali production × - × × - × - × × - × × - ×

Wood preservations - - × - - × × - - - - - - -

Petroleum refining × – × × - × - × × - - - × ×

Data obtained from Nagajyoti et al. (2010); Abdelhafez et al. (2012) and Abdelhafez et al. (2016).
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Generally, aerosols are of special importance on a global scale. In this
concern, volcanic eruptions are a geothermal source of atmospheric
contamination (Gudmundsson et al., 2019). The transportation and
deposition of these aerosols increase the potentiality of PTE
dispersion in the environment (Soltani et al., 2017). The
transmitted fine particulates may be blown over a great distance
and accelerated by downpours or snowfall (Behera et al., 2015;
ElShazly et al., 2019a).

2.2.6 Other sources of environmental pollution
with PTEs

Burning, landfills, incineration, and transportation
(automobiles, diesel-powered vehicles, and aircraft) are
additional sources of environmental pollution that add Cd,
Co, Zn, Cr, Cu, Pb, Hg, Mn, Ni, Al, Fe, and Ti to the
environment (Verklejim, 1993; Al-Hiyaly et al., 1998; Hashim
et al., 2017). Chromated copper arsenate (CCA) treated wood
structures are another source of PTEs when CCA is used as a
wood preservative against bacteria, fungi, and termites
(Abdelhafez et al., 2009; Abdelhafez et al., 2010).

3 Plant response to PTEs

Plants stop growing or even die when grown on soils highly
contaminated with PTEs. High levels of PTEs increase the
formation of free radicals and reactive oxygen species that
cause oxidative stress and cellular damage in plants (Goyal
et al., 2020). To survive under such stressful conditions, plants
secrete low molecular mass substances such as organic acids and
glutathione that bind with PTEs and lessen their mobility in
soil. Also, pectin in plant cell walls limits PTE absorption by
plants (Feng et al., 2021). Once contaminants enter plant cells,
they become sequestered within cellular compartments such as
vacuoles and limit their translocation to areal plant parts (Goyal
et al., 2020). Tolerant or even hyperaccumulator plants display
further mechanisms for controlling these contaminants,
nevertheless, they exhibit very slow growth rates and small
biomasses (Khan, 2020). Instead, using plant growth-
promoting bacteria and mycorrhizae can further improve
plant-based remediation strategies (Khan, 2020). Bacteria
such as Alcaligenes faecalis, Bacillus cereus, and A. faecalis
(Zainab et al., 2021) stimulate the activities of anti-oxidative
enzymes such as catalase, peroxidase, and superoxide dismutase
(El-Meihy et al., 2019) which scavenge reactive oxygen species
(Kaur et al., 2021) and thus help plants to cope with PTE stress
and enhance plant growth (Zainab et al., 2021). Non-enzymatic
antioxidants, e.g., ascorbate, and metal-binding peptides may
also help to lessen metal toxicity within plants (Kaur et al.,
2021). Mycorrhizae also retain contaminants in roots and
decrease their translocation within plants (Adeyemi et al.,
2021).

Phytohormones are chemical messengers that sustain plant
growth under PTE stress (Sytar et al., 2019). For example, indole
acetic acid (IAA) increases energy trapping capacity in photosystem
II (PSII) reaction centers (Ouzounidou and Ilias, 2005). Salicylic acid
decreases the levels of free oxygen radicals while increasing plant
chlorophyll content (Sytar et al., 2019).

4 Impact of PTEs on human health

4.1 PTEs exposure pathways

Humans are exposed to PTEs through different routes: i)
ingestion (oral), which includes drinking water, intake of fruit,
vegetables, meat and dairy products, and fish and shellfish; ii)
inhalation of dust and chemicals volatilized in the air; and iii)
dermal contact between human skin and chemicals or soil
(Abdelhafez and Li, 2015; Megido et al., 2017). According to
Chan et al. (1995), PTEs transmit to humans mainly through
inhalation and ingestion routes.Figure 1.

Ingestion is a common exposure route to PTEs (Abdelhafez
et al., 2012; Abdelhafez and Li, 2015). It is worth noting that
previous studies did not include the distribution pattern of PTEs
within the fine fractions of agricultural soil, which presents
potential hazards for human health. In this context, fine soil
particles of diameters of 10 or 2.5 µm may adhere easily to the
skin, carrying PTEs to the human body (Madrid et al., 2008; Kong
et al., 2012; Abdelhafez and Li, 2015). These contaminants settle
in the higher respiratory tract and the alveolar areas of the lungs
(Ajmone-Marsana et al., 2008).

4.2 Health effects of PTEs on human health

When these contaminants enter the food chain they have
negative implications even at very low levels (Memon and
Schröder, 2009). For more details see Table 2. The most
problematic PTEs for human health are As, Cr, Cd, Cu, Pb, Zn,
Cu, Hg, and Sn (Ghosh, 2010). In particular, As and Cr cause cancer,
and Cd, Pb, and Ni lead to kidney failure and other symptoms
(Kurniawan et al., 2006; Tripathi et al., 2007; Abbas and Bassouny,
2018). Accordingly, proper remediation protocols should be
followed to improve and sustain the environment.

5 Remediation technologies of PTEs-
contaminated water and soils

5.1 Remediation technologies of PTEs-
contaminated water

There are several remediation protocols that can be followed
for decontaminating wastewater, i.e., chemical (chemical
precipitation and ion exchange and adsorption), physical
(filtration and clarification), and biological (biosorption,
biodegradation, and phytoremediation) remediation
technologies. These techniques should be applied before water
disposal from industries and municipalities into the surrounding
environment.

5.1.1 Chemical remediation
Chemical precipitation protocols are broadly utilized for

decontaminating wastewater containing high levels of PTEs.
These procedures change the soluble contaminants into insoluble
forms, thereby enabling their subsequent removal from the liquid
phase by physical means, such as clarification and filtration (Arora

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Zhang et al. 10.3389/fbioe.2023.1258483

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1258483


et al., 2008). For instance, coagulants and flocculants enable the
formation of particulate-sized aggregates, and their quantities
depend on the pH and alkalinity of the treated water
(Nomanbhay and Palanisamy, 2005). Granulated lime and
calcium carbonate are efficient coagulants for the removal of As,
Ni, Zn, and Cd from groundwater (Song et al., 2005; Lee et al., 2007).
In addition, clay minerals can be used effectively to decontaminate
aqueous solutions (ElShazly et al., 2019b).

Surface functional groups play an important role in removing
metal ions from water by using specific sorbent materials. Table 3
shows some of these functional groups. Herein, more natural and
artificial biosorbent materials are examined as adsorbents for the
removal of different PTEs from aqueous solutions. Table 4 presents
the adsorbent capacities of different biosorbents for PTEs. The
adsorption efficiency depends on the pH, sorbent dosage, contact
time, temperature, and concentration of metal ions (Abdelhafez and
Li, 2016; ElShazly et al., 2019b). Under low pH value, H+ competes
with metal ions on surface functional groups of the sorbent material
hence the removal efficiencies of metal ions decrease considerably
(Arief et al., 2008).

5.1.2 Physical remediation
Water decontamination can take place via using filtration, air

stripping, granular activated carbon absorption, or their
combination (Wilson and Clarke, 1993). However, more
attention should be paid when using washing technology to
remove PTEs due to the leachability of major nutrients (N, P,
and K).

5.1.3 Biological remediation
The use of biological remediation technologies is thought to be

the optimum tool for remediating contaminated waters/soils.
In this regard, the use of bacteria, fungi, and algae is economical,

eco-friendly, and gives good results (Valls and Lorenzo, 2002). These
microbes remove contaminants from water in their bodies (Ozdemir
et al., 2003; Zouboulis et al., 2004; Congeevaram et al., 2007). Also,
plant-induced phytoremediation can degrade or eliminate PTEs in
contaminated water/soil. Phytoremediation exploits the plant’s
innate biological mechanisms for removing PTEs or eliminates
its adverse effects through different mechanisms (Ghosh and
Singh, 2005) (Figure 2) as follows.

FIGURE 1
Schematic diagram of PTEs exposure routes.

TABLE 2 Harmful effects of some PTEs on human health.

PTEs Harmful effect References

As Carcinogenic and interferes with essential cellular processes such as oxidative phosphorylation and ATP synthesis Tripathi et al. (2007)

Cd Kidney damage, renal disorder, Itai-Itai (excruciating pain in the bone), hepatic damage, cancer, and hypertension Kurniawan et al. (2006)

Cr Carcinogenic, hair loss and has an adverse potential to modify the DNA transcription process Vilar et al. (2007)

Pb Renal failure; increased risk for development of cardiovascular disease, encephalopathy, seizures and intellectual disability Padmavathiamma and Li (2007)

Ni Dermatitis, nausea, chronic asthma, coughing, bronchial hemorrhage, gastrointestinal distress, weakness and dizziness Dahiya et al. (2008)

Cu Brain, liver and kidney damage, insomnia Kurniawan et al. (2006)

Zn High dosages can cause dizziness and fatigue Plum et al. (2010)
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TABLE 3 Surface functional groups found in different biomasses.

Biomass Surface functional group Wavenumber (cm-1) References

Sugar can and orange peel
biochars

C-OH stretch 3,448 and 3,430 Abdelhafez and Li (2016)

C=O stretch 1637

C-C stretch 1384

C-O stretch 1101

C-OH stretch 1101

Green taro OH stretch 3,763 Elangovan et al. (2008)

NH2 stretch 2325

Several bands from overtone and combination 1920

C=O stretch 1707, 1624

Ring stretch 1487

Antisym stretch 1404

C–O stretch 1281

SO3 stretch 1184

C–O stretch 1019

C–CO–C bend 655

Lignin Stretching vibrations of aromatic and aliphatic OH groups 3,412 Guo et al. (2008)

C–H stretching 2925, 2849

Carboxyl and carbonyl stretching 1703, 1648

Aromatic skeletal vibrations 1600, 1514, 1425

Aromatic methyl group vibrations 1463

C–O stretching 1329, 1217

Syringyl units 1114, 827

Olive solid residue ɣ(O –H) 3,400 Salem and Allia (2008)

ɣ(C –H) 2900

ɣ(–NH) 1500

ɣ(C=C) 1700

ɣ(COO–,C=O) 1037

Sawdust from Arundo
donax

–OH group 3,600–3,000 Cukierman (2007)

C– O, C–C and C–OH bonds 1000–1300

Seed hulls –OH group 3,600–3,000

C– O, C–C and C–OH bonds 1000–1300

Sour orange residue –OH groups 3,423 Khormaei et al. (2007)

CH stretching 2925.88

C=O band 1631

C–O carboxyl band 1257–1244

Sugarcane bagasse –OH group 3,600–3,000 Cukierman (2007)

C– O, C–C and C–OH bonds 1000–1300
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i) Phytoextraction: the ability to grow plants to absorb and
accumulate toxic metals from water

ii) Phytovolatilization: evaporating certain metals through the
above-ground parts of the plant

iii) Rhizofiltration: the use of plant roots to remove PTEs from
contaminated waters.

5.2 Soil remediation technologies

Soil remediation is performed to achieve one of the following goals: 1)
removal/extraction of the PTEs from contaminated soils by electrokinetic
and/or washing procedures, which is an expensive procedure and might
not be applicable for decontaminating vast areas of contaminated soils
(Ko et al., 2006; Dermont et al., 2008) or 2) reducing metal mobility with
“in situ” technologies such as stabilization by different amendments
(organic or inorganic) (Chen et al., 2006; Sunarso and Ismadji, 2009) but
the contaminants still exist in the soil. Overall, in situ soil remediation
technologies are directed toward reducing the risk of PTEs in soils and
can be classified into four main categories.

5.2.1 Excavation
Excavation is the oldest remediation technology for

decontaminating soils, in which contaminated soil layers are
replaced by clean ones (Lanphear et al., 2003). However, this
method leads to the transfer of contaminants from one place to
another, the spread of dust particles, and the transport of
contaminated soil to other regions. As a matter of fact,
excavation is considered the most expensive method of soil
remediation (Lambert et al., 2014; González-Martínez et al.,
2019).

5.2.2 Soil washing
Soil washing is a common technique for remediating soils

contaminated with PTEs (Khan et al., 2004) in the presence of
synthetic complexing agents, using chelators such as ethylene di
amine tetra acetic acid (EDTA) and nitrilotriacetate (NTA) to
enhance further removal efficiencies of soil contaminants
(Arwidsson et al., 2010). However, the low decomposition rates
of chelators in soil may cause toxicity and stress to soil biota
(Nowack, 2002).

TABLE 4 Adsorption capacity of heavy metals by using different sorbents.

Biosorbent Metal pH T, (°C) Initial concentration, (mg L–1) Adsorption capacity mg g-1 References

Arca shell Pb(II) 1–7 25 ± 2 10–500 NA Dahiya et al. (2008)

Cu(II)

Ni(II)

Co(II)

Cs(I)

Cactus leaves Cr(VI) 1–10 30 20–1000 NA Yuncu et al. (2006)

Crab shell Cu(II) 3.5–6 NA 500–2000 243.9 Vijayaraghavan et al. (2006)

Co(II) 322.6

Exhausted coffee Cu(II) 5.2 20 ± 1 5–300 11.6 Eseudero et al. (2008)

Ni(II) 7.25

Grape stalk Cu(II) 5.2 20 ± 1 5–300 42.92

Ni(II) 38.31

Maize bran Cr(VI) 1.4–8 20–40 20–300 NA Hasan et al. (2008)

Treated sour orange residue Cu(II) 4.5 28 300 52.08 Khormaei et al. (2007)

Orange peel Pb(II) 1–7 NA 103.5–2070 NA Xuan et al. (2006)

Palm kernel fiber Pb(II) 3–8 36 ± 3 120 NA Ho and Ofomaja (2006)

Tea waste Cr(VI) 2–5 25–60 50–400 54.65 Malkoc and Nuhoglu (2007)

Ulva lactuca Pb(II) 2–8 20–50 10–400 34.7 Sari and Tuzen (2008)

Cd(II) 29.2

Dairy manure biochar Cu(II) NA NA 63.53–317.7 48.4–54.4 Xu et al. (2013)

Zn(II) 65.38–326.9 31.6–32.8

Cd(II) 112.41–562.05 31.9–51.4

Crop straw biochar Cu(II) NA 25 ± 1 773.36 NA Tong and Xu (2013)
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5.2.3 Phytoremediation
Some plants can take up and accumulate contaminants in their

aboveground parts (Ebrahimbabaie et al., 2020; Lee et al., 2021), thus
limiting their negative consequences to the surroundings

(Tusher et al., 2021). This green technology is preferable to other
conventional methods because it preserves substrate fertility and, at
the same time, reduces the costs of remediation (Riaz et al., 2022).
Moreover, it is a suitable eco-friendly solution for remediating large

FIGURE 2
Schematic diagrams of main techniques/strategies of phytoremediation in water and soil.

TABLE 5 Phytoextraction results of PTEs from contaminated soils.

Plant species Contaminant Its feasibility References

Achillea millefolium Mercury Phytovolatilization of Hg may cause public fear Wang et al.
(2012)

Eupatorium perfoliatum Polycyclic aromatic hydrocarbons in soil Not feasible because of its low bioavailability Ahn et al. (2005)

Hemp (Cannabis sativa L.) Potentially toxic elements,
radionuclides, and organic
contaminants and as a feedstock

Feasible for bioenergy production Rheay et al.
(2021)

Ryegrass (Lolium perenne L.) Potentially toxic metals Washing with chelating agents (HCl, EDTA, and
NTA) coupled phytoremediation is feasible for metal-
contaminated soil remediation

Xiao et al. (2019)

Maize (Zea mays) Arsenic Arsenic phytoremediation potential of the maize
plants was found to be economical for sandy loam soil
with a 1% compost level and for clay loam soil at a
2.5% compost level

Mehmood et al.
(2021)

S. alfredii and oilseed rape Cadmium Dry weights of S. alfredii and oilseed rape were
enhanced under intercropping pattern and decreased
the remediation period

Zhang et al.
(2021)

Rosularia adenotricha, Catharanthus roseus, Allium
griffithianum, Himalaiella heteromalla, Stellaria
media, Salvia moorcroftiana and Marrubium vulgare

Chromium Efficient phytoextractors of Cr from soil Sajad et al.
(2020)

aromatic plants from families—Poaceae, Lamiaceae,
Asteraceae, and Geraniaceae

Potentially toxic elements Feasible for the phytoextraction process Pandey et al.
(2019)
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areas, besides being economical (Saxena et al., 2019). The major
techniques of phytoremediation are phytostabilization,
phytoextraction, and phytovolatilization.

Many plant species have been shown to be efficient in remediating
soils and waters contaminated with inorganic (Saxena et al., 2019; Edgar
et al., 2021) and organic pollutants (Karaś et al., 2021) (Table 5) yet this
process requires long time periods to lessen contaminants to attain
acceptable public levels (Mustafa et al., 2022). Adding chelation agents
could help in improving the efficiency of this process (Gavrilescu, 2022).
Generally, edible crops are not suitable as phytoextractors for potentially
toxic elements from contaminated sites (Saxena et al., 2019).
Alternatively, aromatic plants can absorb and accumulate high
concentrations of PTEs in the harvestable foliage while their oil is free
from the risk of PTE accumulation (Lajayar et al., 2017). Also, plants
grown for biofuel production are guaranteed for the phytoextraction
process of PTEs from soils (Edgar et al., 2021; Rheay et al., 2021).

The removal of PTEs from soil takes place by selecting tolerant plants
which have the ability to accumulate PTEs within their aboveground
tissues (shoots) (Ali et al., 2013), at concentrations exceeding 0.1% for Cu,
Cr, Ni, or Pb, or >1% forMn or Zn (Yoon et al., 2006). PTEsmay also be
physically stabilized in soil and this method lessens their translocations to
areal plant parts (phytostabilization). Otherwise, PTEs can be
transformed into a gaseous form via leaves (phytovolatilization). The
main mechanisms of the phytoremediation technique for remediating
PTEs contaminated soils are shown in Figure 2.

5.3 Stabilization/solidification (S/S)

The stabilization/solidification method is used to lessen the
solubility of PTEs using non-toxic materials (organic or
inorganic) (Chen et al., 2006; Sunarso and Ismadji, 2009;
Abdelhafez et al., 2014), especially in land with high
contamination levels. Sorption and/or precipitation are the main
routes for decreasing PTE bioavailability in soil (Basta and
McGowen, 2004). These amendments include organic additives,
phosphates, alkaline agents, and biosolids (Table 6).

Table 7 shows a comparison between the conventional
remediation technologies. Clearly, the stabilization/solidification
(S/S) technique seems to be one of the most efficient methods
because it is a cost-effective method that has rapid outcomes
(USEPA, 2004). It is therefore recognized as the “best
demonstrated available technology (BDTA)” by the USEPA for
land disposal of most PTEs (Singh and Pant, 2005) in highly
contaminated soil. From the aforementioned information, it
seems obvious that the reuse of organic wastes is essential to
remediate the PTE-contaminated water and soils.

6 Organic wastes and biochar

Every year, a huge amount of organic waste is produced annually
without being properly recycled, especially in developing countries. For
example, the amount of sugar cane and orange waste which is produced
annually in China is estimated to be 123 and 32.7 million mega-grams
(Abdelhafez et al., 2016). The corresponding amounts produced
annually in Egypt exceed 44.0 million mega-grams. These residues
should be recycled to be used in sustaining the environment rather than
polluting it. In particular, biochar is a carbon-rich material product
manufactured through pyrolysis of plant residues, i.e., wood or plant
leaves at a relatively low temperature (<700°C) in the absence of oxygen
or under limited oxygen conditions (Abdelhafez et al., 2014; Lehmann
and Joseph, 2015; Abdelhafez et al., 2016; Abdelhafez and Li, 2016; Farid
et al., 2022; Khalil et al., 2023).

6.1 Biochar for CO2 mitigation and
improving soil fertility

Biochar has gained significant attention within the last few years
because of its positive role in lessening CO2 emissions when used as an
amendment to improve soil quality (Jeffery et al., 2011; Kookana et al.,
2011; Abdelhafez et al., 2014; Abdelhafez et al., 2016). It is thought that
biochar significantly reduces the readily available C fraction to microbes,

TABLE 6 Some amendments used for the stabilization of heavy metals in contaminated soils.

Amendment Heavy metal References

Flyash Pb Ciccu et al. (2003)

Cyclonic Ash Cd, Pb, and Zn Brown et al. (2005)

Cement and rice husk ash Pb Yin et al. (2006)

Phosphate amendment Pb Cao et al. (2009)

Phosphogypsum Pb Rodríguez-Jorda et al. (2010)

Zeolite Cd Lin et al. (1998)

Lime Cu, Fe, and Zn Khan and Jones (2009)

Zeolite Cu and Zn Fawzy (2008)

Mono calcium phosphate- Calcium carbonate Cd, Cu, Ni, Pb, and Zn Wang et al. (2001)

Phosphate rock and phosphoric acid Zn, Cu, and Pb Cao et al. (2009)

Biochar derived from Stems of willow Cd, Cu, Pb, and Zn Trakal et al. (2011)

Biochar derived from hardwoods As, Cd, and Zn Beesley and Marmiroli (2011)
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thus, it slightly or insignificantly induces the activities ofmicrobes and soil
enzymes. This, in turn, enhances long-term carbon sequestration. Also,
the dominance of aromatic organic carbon, which is very stable in the
environment, guarantees its long-term existence in soil (Lehmann, 2007;
Abdelhafez et al., 2017). For years, extensive human activities have caused
degradation in soil quality and fertility. This negatively affects food
production in many regions around the world. Accordingly,
improving soil characteristics is necessary to overcome the lack of
food production, especially in sub-Saharan Africa and South Asia,
where the malnutrition percentages ranged from 32% to 22% of the
total population, respectively (FAO, 2019). The solution is biochar as it
can be used successfully to restore soil fertility and improve the soil’s
physical, chemical, and hydrological properties (Novak et al., 2009; Free
et al., 2010).

6.2 The potentiality of biochar for
remediating PTE-contaminated water and
soils

The role of biochar in improving soil fertility is not well-
identified and is still being intensively studied. Only limited
studies have investigated the potentiality of biochar derived from
different organic sources in remediating soil and water
contaminated with PTEs. Because of its porous structure

(Abdelhafez et al., 2017), high cation exchange sites density, and
net negative charge (Jing et al., 2019) biochar has a high capability to
sorb PTEs (Jing et al., 2019) which diffuse into its micropores
(Nguyen et al., 2008). This may further contribute to PTE
precipitation in soils (Jing et al., 2019). The stabilization of PTEs
in soil owing to biochar application can be attributed to the alkaline
nature of biochar (Abdelhafez et al., 2017; Buss et al., 2019) which
allows the functional groups of biochar to protonate and dissociate,
replacing H+ in the solution with cationic PTEs (e.g., Pb and Cd)
(Shaheen et al., 2019b). Also, increasing pH decreases the solubility
and mobility of PTEs in soil (Shaheen et al., 2019b). With time, the
exchangeable forms of PTEs co-precipitate in the form of inner-
sphere complexes (Abdelhafez et al., 2016; Abdelhafez et al., 2017;
Penido et al., 2019; Yuan et al., 2019) and change into less labile
organic and residual fractions (Mohamed et al., 2018; Matin et al.,
2020).

Although, this organic source may contain PTEs, the elevated
pyrolysis temperature transforms PTEs into more stable and less
toxic forms (de Souza et al., 2019). Thus, biochar acts as an
efficient biosorbent for PTEs in contaminated soil (Mohamed
et al., 2018) and water (Shaheen et al., 2019b). Biochar can also
remove high amounts of herbicides from solutions by coating the
dissolvable surfaces. It can therefore be used effectively to boost
the health and nutrient status of the soil, particularly in the arid
calcareous soil. Recent studies have shown the success of utilizing

TABLE 7 Comparison of conventional remediation technologies of heavy metal contaminated soils.

Remediation technology Advantages Disadvantages

Excavation and soil capping (Physical) -Effective -High costs

-Short treatment time -Loss of highly fertile surface soil

-Heavy metals were removed permanently from the site -Generation of dust and vapor during the excavation,
which may cause air pollution

-Groundwater controls may be needed

Soil washing sand flushing (Physical and chemical)< -Effective -Less effective when the soil contains high contents of silt,
clay, and organic matter

-Can be done onsite by using portable equipment -Wastewater generated needs to be treated and residue
disposed of

-The treated soils can be returned again to place

-Ability of metal recovery

-Highly applicable in coarse soils

Phytoremediation (Biological) -Does not require expensive equipment and low costs -Long time period required

-The plants can be easily monitored -Remediation extends only to the depth of the root zone

-The possibility of the recovery and re-use of valuable
metals

-Not effective for highly contaminated soils

-Climatic conditions are limiting factors

-Slow growth and low biomass require a long-term
commitment

Stabilization/solidification (Chemical) -Low costs -Depth of contaminants may limit some types of
application processes

-Time to complete the remediation is relatively short -The solidified material may affect future uses of soil

-Treatment needs to be renewed periodically

Data obtained from Behm et al. (1997); Mulligan et al. (2001); Khalid et al. (2017).
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biochars in remediating water and soils contaminated with PTEs
(Table 8).

The effect of biochar application on mobilizing metal ions in soil
is confusing, for example, Abdelhafez et al. (2010; 2016) found that
biochar increased the availability of Cu and As in biochar-treated
soil. In addition, Alaboudi et al. (2019) explained that the addition of
wood biomass biochar led to the transformation of Cr(III) into
Cr(VI) due to increasing soil pH; consequently, its uptake was
increased by maize plants. Furthermore, Shaheen et al. (2019a)
reported that biochar applications increased the mobility of some
PTEs in soil, such as Cu and As, through association with dissolved
organic carbon. However, Lomaglio, et al. (2016) found that the
addition of biochar decreased the labile concentration of Pb while
increasing As and Sb solubility. Therefore, the role of biochar in
stabilizing PTEs is still not well understood.

The degree of biochar stability depends mainly on the dose of
applied biochar in addition to its mode of action period (Wang et al.,
2019). In this regard, microbial and enzymatic activities
(dehydrogenase, acidic and alkaline phosphatase, and urease)
were higher in soils mixed with aged biochar than in fresh
biochar soil (Yadav et al., 2019).

A point to note is that application of biochar not only increases
the non-enzymatic antioxidants (soluble phenolic compounds and
free proline) that increase plant tolerance to PTE stress (Kumar

et al., 2022) but also stimulates the activities of metal-tolerant plant
growth promoting rhizobacteria (Zhou et al., 2022) andmycorrhizae
(Ortaş, 2016). Moreover, biochar increases plant growth promoting
hormones to alleviate salt stress (Farhangi-Abriz and Torabian,
2018). This could be useful to increase the phytohormones which
are responsible for alleviating PTE stress in plants.

Thus, future studies are required to investigate the effects of
aging (from fresh to old) on the physiochemical properties of
biochars in soils (differing in types) under field conditions. In
addition, the effect of biochar on PTE solubility, especially, Cr,
Cu, and As, is still a matter of concern.

7 Feasibility of the biochar/
phytoremediation technique as a
sustainable approach to manage PTEs
polluted soils

Phytoremediation utilizes the natural ability of plants to uptake
and accumulate contaminants from the media. Plants can
hyperaccumulate PTEs, and certain species have shown
remarkable tolerance and efficacy in remediating contaminated
soils (Zheng et al., 2020). With the application of biochar, the
efficiency of the phytoremediation process increases, e.g., its

TABLE 8 Different types of biochar for the remediation of PTE-polluted soil and water.

Biochar Media PTEs References

Wheat straw Soil Zn, Cd Qian et al. (2019)

Sugar cane Soil Pb Abdelhafez et al. (2016)

Orange peel, sugarcane bagasse Soil Pb, As Abdelhafez et al. (2014)

Rice straw Soil Pb, Cu Wang et al. (2019)

Sugar cane straw Soil Zn, Pb, and Cd Puga et al. (2015)

Orchard prune residue Soil Cd, Cr, Cu, Ni, Pb, and Zn Fellet et al. (2011)

Hardwood Soil As,Cd, Cu, and Zn Beesley and Marmiroli (2011)

Chicken manure and green waste Soil Cd, Cu, and Pb Park et al. (2011)

Chicken manure Soil Cr Choppala et al. (2012)

Sewage sludge Soil Cu, Ni, Zn, Cd and Pb Méndez et al. (2012)

Rice straw Soil Cu, Pb, and Cd Jiang et al. (2012)

Quail litter Soil Cd Suppadit et al. (2012)

Wood and bark Water Cd and Pb Mohan et al. (2007)

Sugar cane bagasse and orange peel Water Pb Abdelhafez and Li (2016)

Dairy manure Water Pb Cao et al. (2009)

Dairy waste and sugar beet Water Pb, Cu, Ni, and Cd Inyang et al. (2012)

Dairy manure Water Cu, Zn, and Cd Xu et al. (2013)

Crop straws Water Cu Tong and Xu (2013)

Digested sludge Water Pb and Cd Ni et al. (2019)

Rice straw Water Pb Shen et al. (2019)

Algae Water Co Bordoloi et al. (2017)
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application enhanced plant growth, and increased metal
sequestration. The biochar/phytoremediation technique operates
through various mechanisms. Biochar improves soil properties by
enhancing water retention, increasing nutrient availability, and
stabilizing soil pH (Park et al., 2011). It acts as a sorbent for
PTEs, reducing their mobility and bioavailability. In combination
with plants, biochar provides a stable environment for root
development and facilitates the uptake and translocation of PTEs
by plants. It is worth noting that the biochar/phytoremediation
technique offers several environmental benefits. It promotes carbon
sequestration, as biochar remains longer in soils. This helps mitigate
climate change by reducing greenhouse gas emissions. Additionally,
the technique minimizes soil erosion, enhances soil fertility, and
promotes biodiversity by creating a favorable habitat for soil
organisms. Despite its promise, the biochar/phytoremediation
technique faces certain challenges. The selection of suitable plant
species, biochar properties, and application rates requires careful
consideration (Cao et al., 2009). Long-term monitoring is essential
to evaluate the persistence of remediation effects. Furthermore, the
economic feasibility and scalability of the technique need to be
assessed to encourage its widespread implementation.

8 Precautions while selecting
appropriate remediation technology
for PTEs

The selection of the appropriate remediation method is a
function of several factors as follows.

i) Soil pH is a very important factor affecting the bioavailability of
PTEs which decrease under alkaline conditions (Abdelhafez
et al., 2012). In addition, soil texture and organic matter
contents play significant roles in this concern, i.e., the higher
the fine particles (clay and silt) contents in soil, the harder the
metal extraction, since extracted PTEs might be adsorbed by
iron-manganese oxides and located on the surfaces of those soil
particles (Bradl, 2004). Furthermore, site conditions such as
bedrock, large boulders clays, moisture content, and oily patches
affect the solidification/stabilization and vitrification
remediation technologies (Mulligan et al., 2001).

ii) Types of contaminants to be removed (organic/inorganic): some
metals such as arsenic (As), chromium (Cr-VI), and mercury
(Hg) do not form hydroxides (less soluble). Therefore,
solidification/stabilization seems to not be appropriate for
ameliorating soils contaminated with these types of PTEs
(Mulligan et al., 2001). Furthermore, the high levels of Pb
concentrations in shooting range and metal smelter-
contaminated soils, which may exceed 1% (Yanqun et al.,
2005; Levonmaki et al., 2006; Hashimoto et al., 2009),
decrease the efficiency of remediating such soils by using the
phytoremediation approach. The vitrification method is
probably more suitable in areas containing low volatile
metals with high glass solubility such as Pb, Cr, As, Zn, Cd,
and Cu-contaminated soils (Smith et al., 1995). Unlike solid
metals, Hg is characterized by its high volatility and low glass
solubility, therefore, the vitrification method is unsuitable for

remediating Hg-contaminated soils owing to the toxic gasses
emitted during the vitrification process (Mulligan et al., 2001).

iii) The end use of contaminated soil: the future use of the soil should
be considered before the remediation process to avoid unnecessary
expenditures. Ok et al. (2010) showed that the pH of soil increased
up to 12.5 when amended by calcined oyster shell powder in order
to stabilize Cd and Pb. These types of remediated soils become
unsuitable for agricultural purposes due to their high soil pHwhich
limits the availability of nutritive elements.

9 Future outlook and conclusion

Potentially toxic metals are released into the environment
mainly through anthropogenic activities as well as geological
sources. These contaminants are responsible for spreading many
diseases and almost 16% of premature deaths worldwide. A number
of remediation techniques can therefore be followed to ameliorate
PTE-contaminated soil and water, among which the immobilization
technique is considered the best approach due to its easy availability
and cost-effectiveness. In particular, the immobilization or removal
of PTEs from soil and water with biochar has several advantages
owing to its specific surface area, porous structure, and high
selectivity for all the PTEs. We have reviewed more than
200 articles to compare the efficiency of existing technologies and
biochar application in the remediation of contaminated soils and
waters. Generally, the major mechanisms involved in PTE binding
with biochar are complexation, precipitation, and adsorption.

Biochar acts as an efficient biosorbent for many PTEs in soil and
water. It may, however, increase the mobility of other PTEs such as Cu
and As via association with dissolved organic carbon. The degree of
stability of biochar-PTEs in soil depends on the dose of applied biochar
as well as its aging. More research is therefore needed to clarify this
relationship in both soil and water. Furthermore, biochar can remove
high amounts of herbicides from solutions. Thus, future studies should
focus on the role of functional groups of biochar in the PTE remediation
process, considering successive applications and long-term field
investigations. The combination of different immobilizing agents in
improving the phytoremediation efficiency of PTEs with biochar and
also their consequences on the growth of plants by adding the required
essential elements could be a matter of concern in future research.

Overall, the biochar/phytoremediation technique could have a
significant impact as a sustainable approach for managing PTEs-
polluted soils Its synergistic effects enhance PTE immobilization,
reduce environmental risks, and promote ecosystem restoration.
Although challenges exist, ongoing research and technological
advancements are expected to address these limitations, further
improving the feasibility and effectiveness of this technique.
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