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Phosphorus use efficiency (PUE) is a complex trait, governed by many minor

quantitative trait loci (QTLs) with small effects. Advances in molecular marker

technology have led to the identification of QTLs underlying PUE. However, their

practical use in breeding programs remains challenging due to the unstable

effects in different genetic backgrounds and environments, interaction with soil

status, and linkage drag. Here, we compiled PUE QTL information from 16

independent studies. A total of 192 QTLs were subjected to meta-QTL (MQTL)

analysis and were projected into a high-density SNP consensusmap. A total of 60

MQTLs, with significantly reduced number of initial QTLs and confidence

intervals (CI), were identified across the rice genome. Candidate gene (CG)

mining was carried out for the 38 MQTLs supported by multiple QTLs from at

least two independent studies. Genes related to amino and organic acid

transport and auxin response were found to be abundant in the MQTLs linked

to PUE. CGs were cross validated using a root transcriptome database (RiceXPro)

and haplotype analysis. This led to the identification of the eight CGs (OsARF8,

OsSPX-MFS3, OsRING141, OsMIOX, HsfC2b, OsFER2, OsWRKY64, and

OsYUCCA11) modulating PUE. Potential donors for superior PUE CG

haplotypes were identified through haplotype analysis. The distribution of

superior haplotypes varied among subspecies being mostly found in indica but

were largely scarce in japonica. Our study offers an insight on the complex

genetic networks that modulate PUE in rice. The MQTLs, CGs, and superior CG

haplotypes identified in our study are useful in the combination of beneficial

alleles for PUE in rice.

KEYWORDS
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1 Introduction

Phosphorus (P) is one of the most important macronutrients in

plants and is required in large quantities. Inorganic phosphate (Pi)

is a crucial component of phospholipids and plays a significant role

in deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)

synthesis and other nucleotide-containing molecules. Moreover, P

present in adenosine triphosphate (ATP), adenosine diphosphate

(ADP), and nicotinamide adenine dinucleotide phosphate

(NADPH), provides plant cells with energy required for

metabolic and catabolic cellular processes (Heuer et al., 2017). In

rice (Oryza sativa), P deficiency substantially decreases overall

productivity by reducing plant height, tiller number, panicle

length (Irfan et al., 2020) and suppresses the root growth (Liu,

2021). Delayed maturity, high sterility, and poor grain quality

(Ismail et al., 2007) have also been reported.

Approximately 5.7 billion hectares of land lack plant-available P

due to its immobility in soil (Dobermann and Fairhurst, 2000). P

tends to get fixed in soils with extreme levels of pH due to the

complexation of P by aluminum (Al) or iron (Fe) in acidic

conditions and by calcium (Ca) in alkaline soils (Haefele et al.,

2014). Unlike N, which has an unlimited source due to its

abundance in the atmosphere thanks to the Haber-Bosch process

(Lynch, 2011), P fertilizer sources are finite, mainly consisting of

phosphate rocks that are estimated to last for only 300~400 years

(Shimizu et al., 2004; Van Kauwenbergh, 2010).

Plants have evolved to cope with P-starvation by undergoing

physiological changes in their root morphology, such as the

promotion of lateral root and root hair growth, and the inhibition

of primary root development. Additionally, plants foster symbiosis

between their roots and arbuscular mycorrhizal fungi to scavenge Pi

from the soil (Péret et al., 2011). The uptake of P in plants is

determined by three primary factors: (1) root morphology; (2) P

uptake efficiency; and (3) internal P-use efficiency. Among these

mechanisms, genetic variations in root morphology are the primary

causal factor of P uptake, whereas P uptake efficiency and internal

P-use contribute less (Ismail et al., 2007). Consequently, enhancing

root morphology through breeding efforts may lead to the

development of rice varieties with high phosphorus use

efficiency (PUE).

Development of P-efficient rice varieties can be achieved

through improved uptake of phosphate from soil (P-acquisition

efficiency) (Mori et al., 2016) and improved biomass and/or yield

per unit P taken up [internal P-utilization efficiency/P-use

efficiency] (PUE) (Rose and Wissuwa, 2012). Developing P-

efficient rice genotypes has gained significant attention to

breeders. The major PUE quantitative trait locus (QTL), Pup1,

has been extensively utilized due to its large additive effect. The QTL

was mapped from a backcross population derived from a cross

between the P-deficiency intolerant Nipponbare and P-deficiency

tolerant Kasalath and is located on the long arm of chromosome 12.

The use of Pup1 in molecular marker-assisted backcrossing

(MABC) has proven successful (Chin et al., 2011). The Pup1 QTL

harbors the Kasalath-derived OsPSTOL1 gene, encoding a protein

kinase that enhances early-stage root morphology in rice (Gamuyao

et al., 2012). Similarly, a minor QTL on the long arm of
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chromosome 6 (Shimizu et al., 2004) where three of the known

rice Pi-responsive regulatory genes OsERF3, OsTHS1 (Wasaki et al.,

2003), and OsPTF1 (Yi et al., 2005) collocate, has been mapped but

is yet to be implemented in large-scale breeding programs. In

addition, numerous promising genes that are involved in PUE

have been identified through overexpression and knockout studies

in rice and are now undergoing advanced testing in cereal crops

(Heuer et al., 2017). These genes include AVP1 (Yang et al., 2014),

PHO1 (Khan et al., 2014), OsPHT1;6 (Ai et al., 2009), and SPX-MFS

(Wang et al., 2015). Moreover, the next-generation sequencing

(NGS) has facilitated the development of high-density rice linkage

maps, which have been utilized to identify QTLs associated with

various rice traits, including PUE. Several studies have used SNP-

based linkage maps to identify PUE QTLs (Koide et al., 2013;

Ogawa et al., 2014; Navea et al., 2017; Fu et al., 2019; Ranaivo et al.,

2022; Wang K et al., 2014).

Despite the progress in ascertaining QTLs and genes underlying

PUE, their practical utility in breeding programs remain elusive due

to their unstable effects across different genetic backgrounds and

environments (Arcade et al., 2004; Daware et al., 2017; Navea et al.,

2022) as well as their complex relationship with soil status (Heuer

et al., 2017) and linkage drag (Kumar et al., 2020). It is therefore

necessary to identify genomic regions conferring robust and stable

effects across a wide range of genetic background and

environments, as well as QTLs with small CI to increase the

efficiency and precision of genomics-assisted breeding (Collard

and Mackill, 2008).

Meta-QTL analysis is a powerful tool that can help achieve

breeding precision by compiling QTLs identified from various

mapping populations used in independent studies. It can also

provide target genomic regions with considerably small CI

(Goffinet and Gerber, 2000; Khahani et al., 2021). Previous

studies successfully identified the meta-QTL ’s (MQTL)

underlying yield (Khahani et al., 2021; Aloryi et al., 2022),

nitrogen-use efficiency (Sandhu et al., 2021), salinity tolerance

(Islam et al., 2019), grain zinc content (Joshi et al., 2023), drought

(Selamat and Nadarajah, 2021), and grain traits (Selamat and

Nadarajah, 2021) in rice. However, to date, MQTLs associated

with PUE remain to be explored in rice. The present study aims

to fill this gap by identifying promising MQTLs through an

extensive literature search on previous PUE QTLs mapped in

various independent studies and identify potential rice donors for

pyramiding of the beneficial alleles of the candidate genes (CGs)

identified within the MQTLs.
2 Materials and methods

2.1 Compilation of PUE QTLs from
various studies

An exhaustive literature search on rice QTLs linked to PUE

from studies published between 1998 and 2022 was performed

using the publicly available QTL databases, such as PubMed

(https://pubmed.ncbi.nlm.nih.gov), Google scholar (https://

scholar.google.com), and Gramene QTL database (https://
frontiersin.org
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archive.gramene.org). QTLs and traits associated with PUE were

defined as traits contributing to biomass and yield (Rose and

Wissuwa, 2012) under low P condition, such as shoot dry weight

(SDW); absolute value of root traits (RT); root-shoot ratio (RSR);

total dry biomass (BM); seed P content (SPC); relative response to P

(RRP); internal P translocation (IPT); and yield component (YLD).

QTLs identified under low P input were chosen for the meta-QTL

(MQTL) anlaysis. Additionally, only QTL mapping studies carried

out under field conditions were selected. Sixteen independent

studies were used to perform the MQTL analysis. A total of 192

PUE QTLs mapped from 15 non-overlapping bi-parental

populations were utilized in the analysis. Information on the type

of parental lines, population types, size of the mapping population,

type of molecular markers, number of QTLs, and trait types were

recorded. Individual QTLs were assessed for QTL names, type of

mapping population, trait class, year of study, linkage group,

logarithm of odds (LOD) scores, phenotypic variance explained

(PVE), peak position (cM), and CI. These attributes were used to

generate the “QTL file”. The peak positions were inferred from the

midpoint between two flanking markers whenever information on

the peak position was lacking. An LOD threshold of 3.0 was set

when LOD scores were not supplied. Missing CI values were

estimated using the following formulas proposed in a previous

study (Darvasi and Seller, 1997; Weller and Soller, 2004):

(I)CI =
163

N x PVE
   (II)CI =

530
N x PVE

Where N = population size and PVE = phenotypic variance

explained. Equation I was used to estimate CI in recombinant

inbred lines (RILs) whereas equation II was used for populations

derived from F2, backcross inbred lines (BILs), and chromosome

substitution lines (CSSLs). Missing PVE values were calculated

using the following formula (Nagelkerke, 1991):

PVE = 1 − 10 ( −
2LOD
N

)

2.2 Construction of consensus map and
QTL projection

A high-density consensus map was constructed by integrating

SNPmarkers from the 6K Infinium SNP array (Thomson et al., 2017)

and the flanking markers of 192 QTLs. The physical locations of the

flanking markers were determined by aligning their sequences to the

Nipponbare reference genome (IRGSP v. 1.0) using the Basic Local

Alignment Tool (https://www.ncbi.nlm.nih.gov).Then, the closest

markers from the Infinium SNP array were used to project QTLs

on the consensus map. Markers were arranged according to their

physical positions. The consensus map was created by converting the

physical position into centimorgan units (cM) using the conversion

factor of 1 cM = 250 kb (Raghavan et al., 2017). An individual “map

file” for each chromosome was generated, containing information on

linkage group, marker name, and the genetic position in centimorgan

(cM). The QTL and map files were used as input files to project the

consolidated QTLs on the consensus map.
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2.3 Meta-QTL analysis

After QTL projection, MQTL analysis was performed using

Biomercator v4.2.3 software (Arcade et al., 2004; Sosnowski et al.,

2012). Two different approaches were applied based on the number

of QTLs on each chromosome, namely the Goffinet and Gerber

method when the number of QTLs was ≤ 10, and the Veyrieras

approach when the number of QTLs was > 10 (Goffinet and Gerber,

2000; Veyrieras et al., 2007). The algorithms and statistical

procedures for both methods were previously described in detail

(Sosnowski et al., 2012). The “true” number of MQTLs per

chromosome was defined from the model with the lowest Akaike

information criterion (AIC) value, which was selected as it

contained the least amount of information loss (Akaike, 1987).

The PVE value for each MQTL were estimated using that of its

“initial QTL” members. The best model, along with its

corresponding AIC values, MQTL peak positions, 95% CI, and

physical positions, are presented in (Table 1). Additionally, only

MQTLs with an average PVE value of ≥ 5% and supported by QTLs

identified in at least two independent studies were selected for

further analysis. The QTLs identified under P-deficient or P-non-

supplied conditions were categorized into the following traits: 1)

shoot dry weight (SDW); 2) absolute values of root traits (RT); 3)

root-shoot ratio (RSR); 4) total dry biomass (BM); 5) seed P content

(SPC); 6) relative response to P (RRP); 7) internal P translocation

(IPT); and 8) yield components (YLD).
2.4 Identification of CGs underlying
PUE in rice

After identifying MQTLs with an average PVE value of ≥ 5%

and support from at least two independent studies using the model

with the lowest AIC value, we aimed to mine CGs associated with

PUE in rice. To this end, we utilized the physical position of

markers flanking the MQTLs as query terms in the Rice

Annotation Project Database (IRGSP v1.0 and MSU 7) to batch

download functionally annotated gene models within the MQTLs.

All genes within the MQTLs were initially considered as CGs, which

were further filtered based on gene ontology (GO) terms and/or

keywords related to PUE such as P homeostasis, phosphate,

inorganic phosphate (Pi) transporter, crown root, root hairs,

phosphorus translocation, phosphorus uptake, abiotic stress, and/

or secondary traits associated with PUE, as described in a review

article by Heuer et al. (2017).

To identify P-responsive genes, we conducted in silico analysis

on the CGs identified in the previous step. We used a microarray

dataset (RXP_5002, available at https://ricexpro.dna.affrc.go.jp)

containing root gene expression data of 7-day-old seedlings

grown under P-deficient and control conditions. Details of the

plant growth conditions and treatments can be found on the

RiceXPro website (https://ricexpro.dna.affrc.go.jp/RXP_5002/

details-of-methods.html). Briefly, 7-day-old Nipponbare seedlings

were exposed to P-non-supplied and control (P-supplied)

conditions. Root samples were collected at 6- and 24-hour (h)

post-treatment for RNA extraction. The RNA was labeled with Cy3
frontiersin.org
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TABLE 1 QTL studies used in the QTL meta-analysis for PUE in rice.

Parents
(Subspecies or

species)

Population
typea

Population
size

Type of
markerb

Number
of

marker

Number
of

QTLs
identified

Traitsc
LOD

scores/
PVEd (%)

Country of
experiment

Year Reference

Zhonghui9308 x
Xieyou9308

(indica x indica)
CSSL 75

SSR +
InDel

120 7
SDW, RT, SDW,

BM.
2.00~3.32
10.82~18.46

China 2018
Anis et al.,

2018

ZYQ8 x
JX17

(indica x
japonica)

DH 127 RFLP 444 6 RRP, RT, RSR
2.03~6.79
8.8~25.2

China 2000
Ming et al.,

2000

GH128 x
W6827
(indica x
japonica)

F2 262 SNP 25,117 21
BM, RRP, YLD,

SPC, IPT
2.53~9.50
1.56~8.19

China 2019
Fu et al.,
2019

IR20 x
IR55178

(indica x indica)
RIL 284

AFLP +
RFLP

178 6 RRP
3.40~9.10
13~21

China 2001
Hu et al.,
2001

Wazuhophek x
Samba Mahsuri
(indica x indica)

RIL 330 SSR 78 15
SDW, YLD, RT,
BM, RSR, SPC

5.29~5.84
2.25~21.84

India 2021
Kale et al.,

2021

Nerica10 x
Hitomebore
(indica x
japonica)

F2:3 91
SNP +
SSR

128 15
SDW, YLD, BM,

IPT
2.60~4.90
12~23.7

Japan 2013
Koide et al.,

2013

Mizukagami x
OHA15

(japonica x
indica)

CSSLs +
F2

35 + 176 SSR
9 (Chr. 6
only)

3 YLD, RT, SDW
2.20~12.70
5.5~27.5

Japan 2022
Kokaji et al.,

2022

Dasanbyeo x
TR22183
(indica x
japonica)

RIL 172 SNP 236 30 YLD
3.15~12.76
8.9~22.52

Philippines/
Korea

2017
Navea et al.,

2017

IR20 x
IR55178

(indica x indica)
RIL 285 AFLP 217 10 SDW, BM, RRP

2.42~16.98
6.8~19.5

Philippines 1998
Ni et al.,
1998

Curinga x
IRGC105491
(O. sativa x O.
rufipogon)

CSSL 48 SNP 238 3 RT
3.0
1.25

Colombia 2014
Ogawa et al.,

2014

IRAT109 x
Yuefa

(indica x
japonica)

DH 116
RFLP
+SSR

165 17 YLD
3.02~5.13
2.65~20.78

China 2008
Ping et al.,

2008

DJ123 x
Nerica4

(aus x indica)
BIL 201 SNP 1578 10 RT, SDW, BM

4.46~7.65
1.5~19.2

Japan and
Madagascar

2022
Ranaivo

et al., 2022

Gimbozu x
Kasalath

(japonica x
indica)

F2:3 82 SSR 97 11
SDW, BM, RSR,

RRP
3.50~6.46
9.1~24.6

Japan 2004
Shimizu

et al., 2004

Zhenshan 97 x
Minghui 63

(indica x indica)
RIL 113 SNP 1,619 36

BM, YLD, PUP,
SPC

3.0
1.4~15.8

China 2014
Wang W
et al., 2019

(Continued)
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and subjected to hybridization using the Agilent one-color

microarray analysis system. The resulting gene expression profile

was presented in terms of raw signal intensity. We carried out gene

ontology (GO) enrichment analysis using the Shiny GO 0.76

database (Ge et al., 2020) to determine the most enriched

biological pathways in the P-responsive genes with at least 1.5-

fold change in expression (P-non-supplied/control condition). We

used all the unfiltered genes within the MQTLs as the background

against the P-responsive genes in the GO enrichment analysis. In

the next step, we further filtered the CGs to those that were

responsive to P at both 6- and 24-h post-treatment, with a

consistent direction of regulation at both time points, and at least

a 2-fold change in expression levels at 24-h post-treatment (P-non-

supplied relative to control).
2.5 Statistical analysis

Statistical analysis was performed using the two-tailed t-test to

determine the significance of differences in the root gene expression

levels at different P application at P<0.10, P<0.05, and P<0.01 using

Minitab release v.14.
2.6 Identification of potential donors for
the pyramiding of beneficial CG alleles

Haplotype analysis carried out for the PUE CGs with significant

responses to P treatment was performed using the SNP Seek

database’s built-in tool (Mansueto et al., 2016) in the 3K Rice

Genome Project (RGP) database. The database included all rice sub-

populations with Nipponbare as the reference genome. PUE CGs

with non-synonymous SNPs, at least a 2-fold change in gene

expression under P-deficient vs. control conditions, and with at

least two haplotypes were utilized in the analysis. The number of

haplotypes were determined using the default parameters with the

Calinski criterion for determining the optimal number of groups

(Caliñski and Harabasz, 1974). Haplotypes with fewer than three

genotypes were excluded. Genotypes with more than 20% missing
Frontiers in Plant Science 05
SNPs or heterozygous loci were filtered out from the data set.

Haplotypes identical to those of the beneficial allele donors

(whenever available in the 3K RGP dataset) in the QTL studies

used in the MQTL analysis were regarded as superior haplotypes.

The abundance of superior haplotypes across the subpopulations

was calculated, and rice accessions with superior haplotypes in

indica, japonica, and aus backgrounds from the 3K RGP were

identified. These lines were considered as potential donors for

pyramiding superior CG haplotypes for improving PUE in rice.
3 Results

3.1 Features of the QTL studies used in
MQTL analysis

The key features of the PUE QTL studies used in the PUE

MQTL analysis are presented in (Table 1). A total of 192 QTLs from

16 independent studies published between 1998 and 2022 were used

to identify PUE MQTLs. These QTLs were mapped from 15 non-

overlapping bi-parental populations, including CSSLs

(chromosome segment substitution lines) (3), DH (doubled

haploids) (2), F2 (2), RILs (recombinant inbred lines) (5), F2:3
(F2-derived F3) (2), and BILs (backcross inbred lines) (3). The

markers employed in mapping PUE QTLs included SNP (single

nucleotide polymorphism) (6); AFLP (amplified fragment length

polymorphism) (2); SSR (simple sequence repeat) (6); RFLP

(restriction fragment length polymorphism) (4); and InDel

(insertion/deletion polymorphism) (1). The numbers of the initial

QTLs per trait group were as follows: SDW (n=18); RT (n=25); RSR

(n=4); BM (n=31); SPC (n=10); RRP (n=24); PUE (n=36); YLD

(n=44). The distribution of the initial QTLs varied widely across

chromosomes (Figure 1). There were largest numbers of QTLs

located on chromosomes 2 (n=32) and 6 (n=33). On the other hand,

only seven and five QTLs were located on chromosomes 3 and 9,

respectively. The PVE values and LOD scores had ranges of 1.25%

~27.9% and 2.0~16.98, respectively. More than half (51%) of the

PVE values were between 3 and 6% (Figure 2A), whereas most of

the LOD scores were less than five (Figure 2B).
TABLE 1 Continued

Parents
(Subspecies or

species)

Population
typea

Population
size

Type of
markerb

Number
of

marker

Number
of

QTLs
identified

Traitsc
LOD

scores/
PVEd (%)

Country of
experiment

Year Reference

Nipponbare x
Kasalath

(japonica x
indica)

BIL 98 RFLP 245 13 PUP, SDW, YLD
2.82~10.74
5.8~30

Japan 1998
Wissuwa
et al., 1998

Shuhui527 x
Yetuozai

(japonica x
indica)

BIL 60 SSR 96 20 RT, RSR, YLD
3.78~6.81
3.6~15.9

China 2015
Zhang et al.,

2014
f

a CSSL, chromosome substitution lines; DH, doubled haploid lines; RIL, recombinant inbred lines; F2,3, F2-derived F3 lines; BIL, backcross inbred lines.
b SSR, single sequence repeats; RFLP, restriction fragment length polymorphism; AFLP, amplified fragment length polymorphism; SNP, single nucleotide polymorphism.
c SDW, shoot dry weight; RT, absolute value of root traits; RSR, root-shoot ratio; BM, total dry biomass; SPC, seed P content; RRP, relative response to P; IPT, internal P translocation; YLD,
yield component.
d LOD,logarithm of odds; PVE, phenotypic variation explained.
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3.2 The rice consensus map and
QTL projection

The consensus map included a total of 5,694 markers,

comprising both SNPs from the 6K Infinium SNP array and the

flanking markers of the QTLs used in the MQTL analysis. They

were well-distributed across the twelve chromosomes. The SNP

density per 500 kb window is presented in (Figure S1). In addition,

the positions of known PUE genes, such as OsPSTOL1, OsPTF1,

OsERF3, and OsTHS1, were incorporated onto the consensus map.

The cumulative length of the consensus map was 1,637 cM. The

average distance between the adjacent markers was 0.29 cM.

Chromosomes 1 (171.9 cM) and 6 (160 cM) were the longest,

while chromosomes 9 (108.5 cM) and 10 (92.2 cM) were the

shortest. The number of markers varied from 332 to 653 per

chromosome. Chromosomes 1 and 2 had the highest counts of

653 and 574 markers, respectively, while chromosomes 9 (n=354)

and 10 (n=332) were the least saturated. We projected the PUE

QTLs onto the consensus map using both the physical position of

the QTLs and the SNP markers (Figure 3). The number of QTLs

ranged from 5 to 33. Chromosomes 6 (n=33), 2 (n=32), and 1

(n=25) were the most saturated regions, while chromosomes 9

(n=5), 7 (n=5), and 3 (n=7) had the fewest.
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3.3 MQTL analysis

MQTL analysis of the 192 initial PUE QTLs resulted in the

identification of 60 MQTLs (Table 2; Figure 3). The distribution of

MQTLs across chromosomes was uneven. The highest number of

MQTLs were detected on chromosomes 1 (n=9) and 5 (n=8), while

chromosomes 3 (n=2), 7 (n=2), and 9 (n=2) had the least.

Reductions in MQTL CI were observed, with fold reductions

ranging from 2.8 to 11.4 with an overall average reduction of 9.7

cM (Figure 4). The CI for MQTLs located on chromosomes 3, 5, 7,

9, and 10 were at least five times smaller than their corresponding

initial QTLs, while those on chromosomes 1, 2, 6, and 11 were at

least twice as small. Chromosomes 4 and 12 exhibited the least

reduction in CI, with fold change values of 1.7 and 1.02,

respectively. The MQTLs had PVE values from 2.3 to 20.3.

Subsequently, we selected MQTLs that had an average PVE

value of at least five and were supported by QTLs from at least two

independent studies (Table 3). This resulted in 38 MQTLs, with the

number of QTL members ranging from 2 to 11. MQTL1.1,

MQTL8.1, and MQTL8.2 had the most QTLs (n=11), while

MQTL3.1, MQTL4.1, and MQTL10.1 had only two initial QTLs.

The MQTLs had CI ranging from 0.2 to 9 cM, with an average of 3.5

cM per MQTL. The smallest CI (0.2~2 cM) were observed on
FIGURE 1

Phenotypic trait classes and chromosome-wise distribution of QTLs utilized in the MQTL analysis for PUE in rice.
BA

FIGURE 2

Features of the PUE QTLs used in the MQTL analysis. (A) Distribution of LOD scores (B) Distribution of PVE values of the initial PUE.
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MQTL1.7, MQTL2.1, MQTL3.1, MQTL4.5, MQTL5.1, MQTL6.1,

MQTL6.2, MQTL6.3, MQTL8.2, MQTL8.3, MQTL10.2,

MQTL10.3, and MQTL11.4, while the largest CI (7~9 cM) were

observed on MQTL6.7, MQTL6.4, MQTL11.3, MQTL12.1, and

MQTL12.2. The initial QTL members per MQTL varied from two

to six per MQTL. MQTL1.5, MQTL1.6, MQTL1.7, and MQTL6.4

had the greatest number of initial QTL at n=6. Interestingly,

MQTL2.1 had only one initial QTL (RRP). MQTL1.5, MQTL1.6,

and MQTL1.7 had the colocalizing QTLs underlying BM, SCP,

RSR, PUE, YLD, and RRP. Initial QTLs modulating BM, RRP, PUE,

SPC, and YLD were all collocated on MQTL6.1, MQTL6.2, and
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MQTL6.3. YLD and BM were the most abundant traits in the

MQTLs, present in 66% and 61% of the total MQTLs, respectively.

In contrast, RSR was the least abundant trait, present in only 23% of

the MQTLs.
3.4 Identification of CGs underlying PUE in
rice and functional analysis

The MQTLs harbored a total of 4,370 non-redundant genes.

The number of genes per MQTL varied widely, from seven to 355,

with MQTL11.4 (n=355) and MQTL12.1 (n=303) having the

highest number of genes, while MQTL6.1 and MQTL8.2 having

the fewest genes involved (seven and nine genes, respectively)

(Table 3). After filtering for PUE-related terms, we identified 273

CGs (Table S1), of which 238 had root expression data available in

the RiceXPro database (Table S2). Further analysis of CGs revealed

that 209 genes had consistent direction of regulation under P non-

supplied condition (184 upregulated, 25 downregulated) across the

two time-points (6h and 24h) post-treatment (Table S3). The

number of CGs had a strong positive correlation (R2 = 64%) with

CI (Figure S3), with exceptions on some MQTLs. In some MQTLs

with small CI values, high number of PUE CGs were investigated,

say, MQTL2.7 (CI=4.57 cM, n CGs=24), MQTL4.3 (CI=2.7 cM, n

CGs=31), MQTL11.4 (CI=0.33 cM, n CGs=16). In contrast,

MQTL4.1 (CI=6.6 cM, n CGs=4), MQTL10.1 (CI=4.9 cM, n

CGs=1), MQTL11.3 (CI=9 cM, n CGs=7) had a relatively larger

CI but fewer CGs.

To understand the biological pathways involved, we conducted

gene ontology (GO) enrichment analysis using the 103 PUE CGs.

Amino acid transmembrane transport, organic transport, and

response to auxin were the most enriched biological pathways

with five, five, and six gene members, respectively. Transcription,

DNA templated, nucleic acid-templated transcription, and

regulation of nucleobase-containing compound metabolic process
FIGURE 3

PUE MQTLs identified across 12 rice chromosomes.
TABLE 2 Number of initial QTLs and MQTLs identified on
rice chromosomes.

Chromosome No. of the
Initial QTLsa

No. of
MQTLs

1 25 9

2 32 8

3 7 2

4 18 7

5 14 8

6 33 5

7 5 2

8 15 3

9 5 2

10 8 3

11 18 6

12 12 5

Total 192 60
a Initial QTLs: QTLs used for MQTL analysis.
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had the most gene members (20, 21, and 21, respectively) (Figure 5).

To identify genes that are responsive to P treatment, we set a

threshold of a 1.5-fold change in expression (P non-supplied

condition vs. control), which narrowed down the list of CGs to

103 (Table 4), of which 86 were upregulated and 17 were

downregulated (Figure 6).
3.5 Haplotype analysis and identification of
potential donors

We performed haplotype analysis on the selected PUE CGs and

identified potential donors for pyramiding the beneficial PUE CG

alleles. We found 25 genes with at least a 2-fold change in

expression levels at 24h post-treatment (Table S6). Among these,

the eight genes (OsARF8, OsSPX MFS3, OsRING141, OsMIOX,

HsfC2b, OsFER2, OsWRKY64, and OsYUCCA11) (Figure 7) had

at least two haplotypes in the 3K RGP (Table 5) and were therefore

used for further analysis. The number of synonymous SNPs ranged

from three to nine (Table S7). OsARF8, OsSPX-MFS3, and HSfC2b

had five SNPs, while OsYUCCA11 had the most with nine SNPs.

OsRING141, OsMIOX, OsFER2, OsWRKY64 had four SNPs. The

number of haplotypes ranged from two to six (Table S8). Four CGs

had four haplotypes each (OsARF8, OsMIOX,HSfC2b, OsFER2, and

OsWRKY64). Two CGs had six haplotypes each (OsSPX-MF3 and

OsYUCCA11). OsRING141 had only two haplotypes.

We inferred the superior haplotypes from the beneficial allele

donors in the original QTLs used in MQTL analysis. Kasalath and

IR20, which were donors of the beneficial alleles in MQTLs from

which the eight PUE CGs were located, had haplotype information

in the 3K RGP. Thus, we used them to infer superior haplotypes.

The Kasalath-types were regarded as the superior haplotype for

OsARF8 (Haplotype 2), OsRING141 (Haplotype 4), OsSPX-MFS3

(Haplotype 4), and HSfC2b (Haplotype 2). IR20-types were selected

for OsMIOX (Haplotype 1) OsFER2 (Haplotype 2), OsWRKY64

(Haplotype 2), and OsYUCCA11 (Haplotype 2) (Table S8). The

abundance of the superior haplotypes was evaluated in the 3K RGP

(Table S9; Figure 8). Superior haplotypes were found most

abundant in the indica variety group. The frequency of superior
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alleles in japonica was considerably lower than that of the other

subpopulations; in fact, superior haplotype for OsSPX-MFS3 was

completely absent. We identified rice accessions from the 3K RGP

that cover the beneficial haplotypes for the eight CGs (Table 6).

Four accessions were identified as the potential donors for the

indica breeding programs, whereas two and three accessions were

selected for the PUE breeding programs for aus and japonica,

respectively. The population development using only Kasalath

and IR20 can be suggested to pyramid the superior haplotypes of

the eight PUE CGs.
4 Discussion

The development of rice varieties requiring less agricultural

inputs is essential in the face of a changing climate and the rising

cost of agricultural inputs such as fertilizers. Unlike N fertilizers, P

fertilizer sources are estimated to last for only another four to five

generations (Shimizu et al., 2004; Van Kauwenbergh, 2010). This is

further complicated by the lack of plant-available P, despite

fertilizer application due to the inherently low PUE in rice (Rose

et al., 2011). It is therefore vital to utilize genetic variation in rice to

address these issues. PUE-related QTLs and genes have been

previously studied and mapped. However, their practical breeding

utility has been hampered by their unstable effect across

environments, genetic backgrounds, QTL to QTL or gene to gene

interactions, and linkage drag caused by the large introgression size

of QTLs that have not undergone fine-mapping. One example is the

instability of the Kasalath-derived major PUE QTL Pup1, which

confers tolerance to low P application as well as to mild drought.

Pup1 improves yield under low P in several indica varieties such as

IR64, IR74, Situ Bagendit, Batur, and Dodokan under tropical

conditions (Chin et al., 2011). However, Pup1 introgression into

Dasanbyeo, a Tongil-type indica, neither improved phosphorus

uptake nor yield under low P application in temperate regions

(Navea et al., 2022). In addition, a study has revealed the inability of

Pup1 to confer tolerance to low P in early shoot growth when

introgressed simultaneously with the submergence tolerance major

QTL Sub1 into IR64 (Shin et al., 2021). The inconsistencies in QTL
FIGURE 4

Comparison of average CI between initial the QTLs and MQTLs on the 12 rice chromosomes. Values on top of the lines represent the reduction in
the average CI.
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TABLE 3 Summary of rice PUE MQTLs supported by multiple QTLs from at least two independent studies and with at least 5% average PVE values.

Left
Marker

Right
Marker

Physical
Position
(Mb)

Number of anno-
tated genes

underlying MQTL

SNP144359 SNP163177 4.49 – 5.17 85

SNP193627 id1005232 6.13 – 6.9 104

SNP222467 SNP245712 7.12 – 7.92 127

SNP255699 SNP298163 8.30 – 9.88 217

SNP337593 SNP368391
11.16 –

11.94
82

SNP513565 SNP528131
15.57 –

16.03
32

SNP634609 SNP642207
18.89 –

19.09
22

id2005182 SNP1717430
11.00 –

11.23
24

id2011296 SNP2252638
25.77 –

26.88
159

NP2491701 SNP2492869 0.40 – 0.47 8

NP3933751 SNP3993698 7.17 – 8.84 118

id4009413 id4010200
28.56 –

30.27
272

NP4511040 SNP4543652
24.10 –

25.44
246

NP4715080 id4010985
31.78 –

32.04
46

id5000043 SNP4821710 0.10 – 0.63 96

id6000911 SNP5865517 1.38 – 1.42 9

NP5883472 SNP5895767 2.13 – 2.61 108
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MQTL Chromosome

AIC
value
(Model)

a

No. of
QTLs

involved

Initial QTL
average PVE

(%)

Traits
Involved b

Position
(cM)

95%
CIc.
(cM)

Start
(cM)

Stop
(cM)

MQTL1.1 1

230.18
(10)

11 12.3
YLD, BM, RRP, SPC,
RSR, BM

19.51 3.10 17.96 21.06

MQTL1.2 1 7 13.0 BM, YLD, SPC, RSR 26.14 3.39 24.45 27.84

MQTL1.3 1 7 12.5
PUP, YLD, BM, SPC,
RSR

30.25 4.55 27.98 32.53

MQTL1.4 1 7 12.3
YLD, BM, SPC, RSR,
IPT, BM

36.07 5.79 33.18 38.97

MQTL1.5 1 6 8.9
YLD, BM, SPC, RSR,
IPT, RRP

46.33 3.29 44.69 47.98

MQTL1.6 1 7 8.3
BM, SPC, RSR, IPT,
YLD, RRP

63.29 2.12 62.23 64.35

MQTL1.7 1 5 9.3
BM, SPC, RSR, IPT,
YLD, RRP

75.62 1.20 75.02 76.22

MQTL2.1 2
278.41
(3)

3 9.5 RRP 44.31 1.09 43.77 44.86

MQTL2.7 2 7 11.7 SPC, BM, IPT, RT 105.31 4.57 103.03 107.60

MQTL3.1 3
35.98
(4)

2 9.3 BM, RT 0.88 1.77 0.02 1.79

MQTL4.1 4

124.61
(4)

2 9.1 RT, BM 31.98 6.60 28.68 35.28

MQTL4.3 4 3 8.5 RT, YLD 73.19 2.47 71.96 74.43

MQTL4.4 4 3 10.0 SDW, YLD 99.15 5.63 96.34 101.97

MQTL4.5 4 3 8.0 BM, IPT, YLD 127.50 0.20 127.40 127.60

MQTL5.1 5
144.34
(8)

3 7.0 SPC, RT 1.33 1.92 0.37 2.29

MQTL6.1 6 305.93
(5)

7 10.7
BM, RRP, IPT, SPC,
YLD

5.63 0.50 5.38 5.88

MQTL6.2 6 9 6.5 9.62 1.71 8.77 10.48
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TABLE 3 Continued

Left
Marker

Right
Marker

Physical
Position
(Mb)

Number of anno-
tated genes

underlying MQTL

SNP5895767 SNP5903052 2.61 – 2.87 47

SNP5980679 SNP6051078 5.71 – 7.58 278

id6005608 SNP6147112 8.73 – 10.2 138

SNP6294233 SNP6351040
13.73 –

14.94
62

SNP6613416 SNP6686237
20.83 –

22.52
179

SNP6889734 SNP6906770
28.69 –

29.33
95

SNP7468473 id7002392
14.11 –

15.01
57

id8001299 SNP8007342 0.12 – 0.82 126

id8002025 wd8001250 2.52 – 2.69 7

SNP8545780 SNP8550504
14.05 –

14.18
10

SNP9600918 SNP9623212
13.15 –

13.79
53

SNP9898598 SNP9941068 0.15 – 1.01 70

id10000881 SNP10063204 3.02 – 3.4 21

NP10309364 id10002487 8.40 – 8.83 19

NP10840785 SNP10859595 0.81 – 1.42 94

NP10987441 SNP11075456 5.70 – 7.86 239

id11005058 id11007108
15.45 –

19.35
355
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MQTL Chromosome

AIC
value
(Model)

a

No. of
QTLs

involved

Initial QTL
average PVE

(%)

Traits
Involved b

Position
(cM)

95%
CIc.
(cM)

Start
(cM)

Stop
(cM)

BM, RRP, IPT, SPC,
YLD

MQTL6.3 6 8 8.9
BM, RRP, IPT, SPC,
YLD

10.98 0.82 10.57 11.39

MQTL6.4 6 6 20.4
SDW, RRP, IPT,
SPC, YLD, RT

26.18 8.12 22.12 30.24

MQTL6.5 6 5 13.0 RT, YLD, BM 37.87 4.42 35.66 40.08

MQTL6.6 6 5 13.5 BM, RT 57.20 4.68 54.86 59.54

MQTL6.7 6 5 13.3 RRP, BM 86.61 6.91 83.16 90.07

MQTL6.8 6 7 14.2 RRP, BM, RT 116.04 2.61 114.74 117.35

MQTL7.2 7
34.17
(3)

3 9.3 PUP, SPC 58.54 3.31 56.89 60.20

MQTL8.1 8

95.18
(3)

11 8.5
YLD, SPC, BM, RSR,
RT

1.87 2.80 0.47 3.27

MQTL8.2 8 11 15.1
YLD, SPC, BM, RSR,
RT

10.43 0.68 10.09 10.77

MQTL8.3 8 4 9.0 IPT, RRP 56.46 0.70 56.11 56.81

MQTL9.2 9
37.81
(4)

4 13.0 YLD, RRP 54.08 2.55 52.81 55.36

MQTL10.1 10

48.96 (4)

2 9.4 IPT, RT 2.45 4.90 0.00 4.90

MQTL10.2 10 3 11.5 IPT, RRP 13.07 0.78 12.68 13.46

MQTL10.3 10 7 9.2 RRP, IPT, SDW, RT 34.54 2.05 33.51 35.56

MQTL11.1 11

148.94
(6)

5 6.3 RT, YLD, IPT 4.52 2.48 3.28 5.76

MQTL11.3 11 4 14.0 IPT, RT, YLD 27.36 9.00 22.86 31.86

MQTL11.4 11 6 14.0 YLD, RT, RRP 36.00 0.33 35.84 36.17
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effects necessitate the identification of fine-mapped genomic

regions related to PUE that are effective across diverse genetic

backgrounds and environments.

We conducted an MQTL analysis on 192 PUE QTLs identified

in 16 independent studies, in 15 non-overlapping bi-parental

mapping populations. MQTL analysis offers the benefit of

identifying reliable and robust genomic regions with reduced

numbers of QTLs and narrower introgression sizes (Goffinet and

Gerber, 2000; Kumari et al., 2021; Aloryi et al., 2022; Anilkumar

et al., 2022; Joshi et al., 2023). To the best of our knowledge, our

study is the first attempt to identify MQTLs underlying PUE in rice.

Initially, we identified 60 PUE MQTLs and further selected 38

MQTLs that were supported by at least two independent studies

and had PVE values of at least 5%. The majority of QTLs underlying

these MQTLs had small PVE values ranging from 3% to 6%,

implying that PUE in rice is controlled by many minor loci. This

observation is consistent with results from several PUE QTL

mapping studies (Navea et al., 2017; Wang et al., 2014). The

distribution of the initial QTLs largely varied throughout the

whole chromosome (Figure 1). However, it is not largely

attributable to the SNP density (Figure S2). This is in contrast to

the results from other MQTL studies in rice (Khahani et al., 2021;

Selamat and Nadarajah, 2021; Aloryi et al., 2022; Joshi et al., 2023),

wherein the uneven distribution of the initial QTLs mostly

depended on the number of markers used in constructing the

consensus map. Chromosome 6 was the chromosome with the

largest number of initial PUE QTLs, as reported in the various

previous PUE studies in rice (Ismail et al., 2007; Wissuwa et al.,

2015; Heuer et al., 2017).

Linkage drag, due to the large CI of the QTLs utilized in

breeding programs, is one of the hindrances in achieving

successful in marker-assisted breeding (MAB) and genomic

selection (GS) programs (Collard and Mackill, 2008; Kumar et al.,

2020). Here, the average CI of the PUE MQTLs was reduced

compared to their initial QTL members (Figure 4), except in case

of chromosomes 4 and 12. MQTL analysis was not able to narrow

down the CI on chromosomes 4 and 12 partly due to the small

number of the initial QTL members as well as the already small CI

of the QTLs. With the exceptions of the MQTLs detected on

chromosomes 4 and 12, the average CI was reduced from 14.04

cM to 2.70 cM, suggesting the power of MQTL analysis in

identifying precise genomic segments modulating a trait of
FIGURE 5

The most enriched biological pathways in the PUE CGs.
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TABLE 4 P-responsive candidate genes underlying PUE MQTLs supported by multiple QTLs from at least two independent studies and with at least
5% average PVE values.

MQTL MSU ID RAP ID Symbol Description

MQTL1.1

LOC_Os01g09550 Os01g0191300 ONAC003 Similar to NAC-type transcription factor;NAC transcription factor, Drought resistance.

LOC_Os01g09700 Os01g0192900 OsACS5 1-aminocyclopropane-1-carboxylic acid synthase, Submergence response.

LOC_Os01g09850 Os01g0195000 OsIDD2
Zinc finger and indeterminate domain (IDD) family transcription factor, Regulation of secondary
cell wall formation.

MQTL1.2

LOC_Os01g11520 Os01g0213400 OsRFPH2-8 Zinc finger, RING/FYVE/PHD-type domain containing protein.

LOC_Os01g12260 Os01g0222500 OsVHA-E3
Similar to Vacuolar ATP synthase subunit E (EC 3.6.3.14) (V-ATPase E subunit) (Vacuolar proton
pump E subunit).

LOC_Os01g12400 Os01g0223700 SDRLK-68
S-Domain receptor like kinase-68, Partial S-domain containing protein, Response to drought in
tolerant rice genotypes

LOC_Os01g12440 Os01g0224100 OsERF#053 Similar to DNA binding protein-like protein; Similar to DNA binding protein-like protein.

MQTL1.3 LOC_Os01g13030 Os01g0231000 OsIAA3
Similar to Auxin-responsive protein (Aux/IAA) (Fragment). Similar to Auxin-responsive protein
(Aux/IAA) (Fragment).

LOC_Os01g13770 Os01g0239200 OsTPT1 Triose phosphate/phosphate translocator

MQTL1.4

LOC_Os01g14870 Os01g0252200 OsC3H3 Zinc finger, CCCH-type domain containing protein.

LOC_Os01g15300 Os01g0256800 OsC3H4 Similar to zinc finger helicase family protein. Hypothetical conserved gene.

LOC_Os01g16260 Os01g0268100 OsZIFL1 Similar to Major facilitator superfamily antiporter.

LOC_Os01g16940 Os01g0276500 –

Similar to Histidine biosynthesis bifunctional protein hisIE, chloroplast precursor; Phosphoribosyl-
ATP pyrophosphatase (EC 3.6.1.31) (PRA-PH)].

LOC_Os01g17240 Os01g0279700 OsPT21 Phosphate transporter 4;1;Major facilitator superfamily protein.

MQTL1.5

LOC_Os01g20930 Os01g0311400 OsRING108 Zinc finger, RING/FYVE/PHD-type domain containing protein.

LOC_Os01g20940 Os01g0311500 OsPHS1a
Similar to PHS1 (PROPYZAMIDE-HYPERSENSITIVE 1); phosphoprotein phosphatase/protein
tyrosine/serine/threonine phosphatase.

LOC_Os01g21120 Os01g0313300 OsERF#068 Similar to EREBP-3 protein (Fragment).

MQTL2.7

LOC_Os02g41800 Os02g0628600 OsARF8 Similar to Auxin response factor 8.

LOC_Os02g42690 Os02g0639800 OsRDCP2 Hypothetical gene. Zinc finger, RING/FYVE/PHD-type domain containing protein.

LOC_Os02g42990 Os02g0643800 OsSAUR11 Auxin-responsive protein, Negative regulation of deep sowing tolerance, Mesocotyl elongation.

LOC_Os02g43170 Os02g0646200 OsBBX6 Zinc finger, B-box domain containing protein.

LOC_Os02g43620 Os02g0652800 OsGlpT1 Major facilitator superfamily MFS_1 protein.

LOC_Os02g43790 Os02g0654700 OsERF#091 AP2/ERF family protein, Abiotic stress response.

LOC_Os02g43820 Os02g0655200 OsERF#095 Similar to Ap25. ERF family protein, Transcriptional regulator, Salt stress tolerance.

LOC_Os02g43940 Os02g0656600 OsERF#032 Similar to Dehydration responsive element binding protein 2B (DREB2B protein).

LOC_Os02g44090 Os02g0658200 – Zinc finger, PHD-type domain containing protein.

LOC_Os02g44120 Os02g0659100 OsDLN62 Zinc finger, C2H2-type domain containing protein.

MQTL4.4

LOC_Os04g41350 Os04g0490900 OsAAP11G Similar to OSIGBa0130B08.4 protein.

LOC_Os04g42090 Os04g0498600 SamDC
S-adenosylmethionine decarboxylase, Polyamine biosynthesis, Salt and drought stresses, Abiotic
stress.

LOC_Os04g42570 Os04g0504500 OsPLT4 Similar to protein BABY BOOM 1.

MQTL4.3

LOC_Os04g48050 Os04g0568900 OsRINGzf1 RING zinc finger protein, E3 ubiquitin ligase, Regulation of drought resistance.

LOC_Os04g48170 Os04g0570000 OsCYP87A3 Cytochrome P450 87A3, Auxin signaling in the regulation of coleoptile growth.

LOC_Os04g48410 Os04g0573200 SOD
Copper chaperone for superoxide dismutase, Target of miR398b, Resistance to rice blast disease;
Similar to OSIGBa0147H17.7 protein.

LOC_Os04g49000 Os04g0579200 OsRING328 Zinc finger, RING/FYVE/PHD-type domain containing protein.
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TABLE 4 Continued

MQTL MSU ID RAP ID Symbol Description

LOC_Os04g49410 Os04g0583500 OsEXPA10 Expansin, Al-inducible expansin, Root cell elongation;Similar to Expansin-A10.

LOC_Os04g49510 Os04g0584600 OsCDPK13
Similar to Calcium dependent protein kinase. Group I calcium-dependent protein kinase, Cold and
salt/drought tolerance.

LOC_Os04g49620 Os04g0585700 OsFLZ12 Protein of unknown function DUF581 family protein.

LOC_Os04g49650 Os04g0585900 OsFLZ13
Protein of unknown function DUF581 family protein. Protein of unknown function DUF581 family
protein.

LOC_Os04g49660 Os04g0586000 OsFLZ14 Protein of unknown function DUF581 family protein.

LOC_Os04g49670 Os04g0586100 OsFLZ15 Protein of unknown function DUF581 family protein.

LOC_Os04g49680 Os04g0586200 OsFLZ16 Similar to H0307D04.13 protein.

LOC_Os04g51890 Os04g0608300 OsSAUR20 Auxin responsive SAUR protein domain containing protein.

LOC_Os04g52900 Os04g0620000 OsABCC1
C-type ATP-binding cassette (ABC) transporter, Arsenic (As) detoxification, Reduction of As in
grains.

MQTL4.5 LOC_Os04g53612 Os04g0628000 OsISC40 Protein of unknown function DUF794, plant family protein.

MQTL5.1

LOC_Os05g01610 Os05g0106700 OsPRAF2 Similar to PRAF1; Ran GTPase binding/chromatin binding/zinc ion binding.

LOC_Os05g01990 Os05g0110500 OsRH17
Similar to DEAD-box ATP-dependent RNA helicase 17. DEAD-box RNA helicase protein, Stress
responses.

LOC_Os05g02050 Os05g0111100 – Zinc finger, Tim10/DDP-type family protein.

MQTL6.1
LOC_Os06g03860 Os06g0129400

OsSPX-
MFS3 Splicing variant of SPX-MFS protein 3. Vacuolar phosphate efflux transporter, Pi homeostasis.

MQTL6.2

LOC_Os06g04920 Os06g0141200 OsZFP1 Putative zinc finger protein, Negative regulation of salt stress response.

LOC_Os06g05110 Os06g0143000 SodB Iron-superoxide dismutase;Splicing variant of the iron-superoxide dismutase.

LOC_Os06g05160 Os06g0143700 OsSultr3;4
SULTR-like phosphorus distribution transporter, Control of the allocation of phosphorus to the
grain.

MQTL6.4

LOC_Os06g11450 Os06g0218300 OsRING342 Zinc finger, RING-type domain containing protein.

LOC_Os06g11860 Os06g0222400 OsERF#120 Similar to DRE-binding protein 2.

LOC_Os06g11980 Os06g0223700 OsFLZ20 FCS-like zinc finger (FLZ) protein 20, Submergence response.

LOC_Os06g12160 Os06g0225900 – Similar to ATP binding/ATPase/nucleoside-triphosphatase/nucleotide binding.

LOC_Os06g12370 Os06g0229000 OsFtsH6 Similar to FtsH protease (VAR2) (Zinc dependent protease).

LOC_Os06g12610 Os06g0232300 PIN1C
PIN protein, Auxin efflux carrier, Auxin transport and signaling, “Root, shoot and inflorescence
development”.

LOC_Os06g12640 Os06g0232700 – Similar to SWIM zinc finger family protein.

MQTL6.5

LOC_Os06g16060 Os06g0271600 OsRING141 Zinc finger, RING/FYVE/PHD-type domain containing protein.

LOC_Os06g17280 Os06g0283200 OsRFP Zinc finger, RING/FYVE/PHD-type domain containing protein.

LOC_Os06g17410 Os06g0284500 OsDof20 Zinc finger, Dof-type family protein.

MQTL6.6 LOC_Os06g23530 Os06g0343100 –

Similar to ATP-dependent helicase DHX8 (RNA helicase HRH1) (DEAH-box protein 8). Similar to
predicted protein.

LOC_Os06g24850 Os06g0355300 OsIAA22 Similar to Auxin-responsive protein IAA22.

MQTL6.7

LOC_Os06g35960 Os06g0553100 HSfC2b Similar to Heat stress transcription factor C-2b.

LOC_Os06g36210 Os06g0556200 OsAAP12B Similar to amino acid permease 1.

LOC_Os06g36560 Os06g0561000 OsMIOX Myo-inositol oxygenase, Drought stress tolerance.

LOC_Os06g37450 Os06g0571800 OsGATA16 Similar to GATA transcription factor 20. Similar to GATA transcription factor 3 (AtGATA-3).

LOC_Os06g37750 Os06g0575400 SDRLK-5
S-Domain receptor like kinase-5, Response to drought in a tolerant genotype, Response to
submergence.
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TABLE 4 Continued

MQTL MSU ID RAP ID Symbol Description

MQTL6.8

LOC_Os06g47290 Os06g0687400 –

Similar to auxin-independent growth promoter-like protein. (Os06t0687400-01);Similar to auxin-
independent growth promoter-like protein.

LOC_Os06g47590 Os06g0691100 OsERF#121 Pathogenesis-related transcriptional factor and ERF domain containing protein.

LOC_Os06g47840 Os06g0693500 – Zinc finger, C2H2-like domain containing protein.

MQTL8.2
LOC_Os08g05030 Os08g0145600 – Similar to cDNA clone:J023091L02, full insert sequence.

LOC_Os08g23410 Os08g0323400 OsISC42 Similar to Rubredoxin (Rd).

MQTL9.1 LOC_Os09g23140 Os09g0394600 – Endonuclease/exonuclease/phosphatase domain containing protein.

MQTL10.2 LOC_Os10g06030 Os10g0151100 OsWAK103 Similar to Protein kinase domain containing protein, expressed.

MQTL10.3
LOC_Os10g16974 Os10g0317900 OsCYP75B4

Chrysoeriol 5’-Hydroxylase, Flavonoid B-ring hydroxylase, Tricin biosynthesis; Similar to Flavonoid
3-monooxygenase.

MQTL11.1
LOC_Os11g03420 Os11g0128300 OsMIF1

Mini zinc finger protein, A member of the ZF-HD (zinc finger-homeodomain) family, Negative
regulation of deep sowing tolerance, Mesocotyl elongation.

MQTL11.3 LOC_Os11g10590 Os11g0211800 OsDT11 Cysteine-rich peptide, Short-chain peptide, ABA-dependent drought tolerance.

MQTL11.4

LOC_Os11g29870 Os11g0490900 OsWRKY72
WRKY transcription factor 72, ABA response with respect to germination and abiotic stresses, ABA
signaling and auxin transport

LOC_Os11g30484 Os11g0498400 – Zinc finger, C2H2-like domain containing protein.

LOC_Os11g30560 Os11g0499600 drp7 Hydroxysteroid dehydrogenase, Cuticle formation, Lipid homeostasis, Submergence tolerance.

LOC_Os11g31340 Os11g0512100 ONAC127 NAC (NAM, ATAF1/2, CUC2) transcription factor, Heat stress response, Regulation of grain filling.

LOC_Os11g32100 Os11g0523700 OsbHLH002
bHLH transcription factor, Positive regulation of chilling tolerance, Control of stomatal initiation,
Regulation of mature stoma differentiation.

LOC_Os11g32110 Os11g0523800 OsARF1 Similar to Isoform 3 of Auxin response factor 23. Auxin response factor 1.

LOC_Os11g32290 Os11g0525900 – Zinc finger, GRF-type domain containing protein.

MQTL11.6

LOC_Os11g36480 Os11g0573200 – Similar to Zinc knuckle family protein, expressed.

LOC_Os11g36960 Os11g0578100 OsDjC76 Heat shock protein DnaJ, N-terminal domain containing protein.

LOC_Os11g37000 Os11g0578500 OsDjC77 Heat shock protein DnaJ family protein.

MQTL12.1

LOC_Os12g01530 Os12g0106000 OsFER2 Ferritin, Iron storage protein, Iron homeostasis.

LOC_Os12g02100 Os12g0112300 – ADP/ATP carrier protein domain containing protein.

LOC_Os12g02450 Os12g0116700 OsWRKY64
WRKY transcription factor 64, Response to the rice pathogens, Regulation of root elongation under
iron excess, Iron stress tolerance.

LOC_Os12g02980 Os12g0123500 –

Similar to Apyrase precursor (EC 3.6.1.5) (ATP-diphosphatase) (Adenosine diphosphatase)
(ADPase) (ATP-diphosphohydrolase).

LOC_Os12g03670 Os12g0130500 SDRLP-6 S-Domain receptor like protein-6, Response to submergence.

LOC_Os12g03830 Os12g0132500 OsZIFL9 Similar to Major facilitator superfamily antiporter.

LOC_Os12g03950 Os12g0133300 OsZIFL13 Similar to Carbohydrate transporter/sugar porter/transporter.

MQTL12.2

LOC_Os12g07700 Os12g0176200 OsISC14 Similar to Nitrogen fixation like protein.

LOC_Os12g08070 Os12g0181300 – Similar to TRAF-type zinc finger family protein.

LOC_Os12g08090 Os12g0181500 OsAAP11A Amino acid permease, Transport of amino acids.

LOC_Os12g08130 Os12g0181600 OsAAP11B Amino acid transporter, transmembrane domain containing protein.

LOC_Os12g08780 Os12g0189500 OsYUCCA11
Flavin-containing monooxygenase, Auxin biosynthesis, Endosperm development, Regulation of grain
filling.

LOC_Os12g08820 Os12g0190100 – Similar to Auxin-independent growth promoter-like protein.

LOC_Os12g09300 Os12g0194900 OsAAP10B
Amino acid permease, A member of the amino acid transporter (AAT) family, Regulation of
tillering and grain yield, Regulation of neutral amino acid transport

LOC_Os12g09590 Os12g0197700 – Region of unknown function, putative Zinc finger, XS and XH domain containing protein.
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interest. Our results are consistent with the observations in previous

MQTL studies on various traits in cereal crops (Chen et al., 2017;

Venske et al., 2019; Soriano et al., 2021; Miao et al., 2022).

The successful integration of pleiotropic QTLs into breeding

programs has been documented in rice (Ookawa et al., 2010; Yan

et al., 2011; Vishnukiran et al., 2020). In this study, we categorized

QTLs identified under field conditions, based on traits well-

distributed throughout the rice growth stages. These included

seedling stage (RT, RSR, RRP), vegetative stage (SDW, BM, IPT),

and reproductive stage traits (SPC and YLD). This enabled us to

identify PUE MQTLs that may have pleiotropic effects, as observed

in MQTL1.5, MQTL1.6, and MQTL1.7, on multiple traits including

BM, SCP, RSR, IPT, YLD, and RRP. This can aid in a more efficient

improvement of PUE in rice through the accumulation of beneficial

PUE MQTL alleles. Among the QTLs used in this study, genomic

regions regulating root traits under P deficient conditions were the

least abundant across rice chromosomes, which can be attributed to

the challenges in establishing reliable and high-throughput root

phenotyping techniques under field conditions (Heuer et al., 2017),

as well as the lack of genetic diversity (Ismail et al., 2007). It is worth

noting that the number of PUE CGs underlying MQTL2.7,

MQTL4.3, and MQTL11.4 are relatively large despite their

narrow CI. This is unlike the observations in previous MQTL

studies in rice, wherein the number of CGs underlying an MQTL

had a strong positive correlation with the size of the CI (Daware
Frontiers in Plant Science 15
et al., 2017; Islam et al., 2019; Khahani et al., 2021; Selamat and

Nadarajah, 2021; Aloryi et al., 2022; Anilkumar et al., 2022; Joshi

et al., 2023). These MQTLs have the potential to be effective

genomic targets for use in the MAB after being validated in a

wide range of genetic backgrounds and environments by utilizing

the aforementioned linked flanking markers (Table 3).

We identified CGs underlying the PUE MQTLs using GO terms

directly related to PUE traits, as well as for the secondary PUE traits.

We further selected genes that could be validated through the root

expression data under control and P deficient/non-supplied

conditions. Most of the PUE CGs (83%) were upregulated

(Figure 6F), implying that genes underlying the PUE MQTLs

confer an active response to nutrient deficiency, rather than

conservation of resources. This agrees with the pattern of gene

regulation under nutrient deficiency in previous studies in various

plants (López-Bucio et al., 2003; Chen et al., 2022; Wang M et al.,

2019). The results of our GO analysis give an insight into the

complexity of PUE in rice. CGs underlying PUE MQTLs were

heavi ly enriched with genes involved in amino acid

transmembrane transport, organic acid transport, and response to

auxin. Amino acid transporters in rice, although not reported to be

directly involved in PUE, have been associated with the regulation of

flowering time and defense against abiotic stresses and pathogen

attack (Guo et al., 2021). In particular, the genes involved in the

amino acid transport pathways function in various plant species
FIGURE 6

Schematic representation of the distribution patterns of PUE QTLs, MQTLs, and PUE CGs on rice chromosomes. The outermost circle represents the
rice karyotype. The second circle outlines the consensus map SNP density (500kb window). The third circle display the initial PUE QTLs used in the
MQTL analysis. The fourth inner circle represents the MQTLs supported by QTLs from at least 2 independent studies and with a PVE value of ≥ 5%. The
fifth and sixth inner circle represent the P-responsive CGs and the fold change in gene expression (P non-supplied vs. control treatment), respectively.
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defending against both biotic and abiotic stresses through the

regulation of the salicylic acid pathway (Kan et al., 2017),

including drought, salinity, UV radiation, heavy metals, and

pathogens (Szabados and Savouré, 2010). In plants, organic acid

transporters are upregulated by Al and/or P deficiency (Yu et al.,
Frontiers in Plant Science 16
2016). This is caused by enhanced phosphorylation levels of the

plasma membrane H+-ATPase, which creates an electrochemical

potential across the cell membrane. This leads to an increase in the

activity of the organic acid transporters and the passive release of

organic anions from root tips. Ultimately, this process causes organic
FIGURE 7

PUE-MQTL candidate genes showing significant responses to P application at 6- and 24-hours post-treatment. Asterisks denote significance using
two-tailed t-test, *P<0.10; **P<0.05, ***P<0.01.
TABLE 5 PUE-related candidate genes used for the haplotype analysis in the rice 3K genome panel.

MSU ID RAP ID MQTL Description/function Gene Symbol Reference

LOC_Os02g41800 Os02g0628600 MQTL2.7 Similar to auxin response factor 8 OsARF8 –

LOC_Os06g03860 Os06g0129400 MQTL6.1
Splicing variant of SPX-MFS protein 3,
vacuolar phosphate efflux transporter, Pi homeostasis

OsSPX-MFS3 Wang et al., 2015

LOC_Os06g16060 Os06g0271600 MQTL6.5
RING-type E3 ubiquitin ligase 141; Zinc finger,
PHD-type domain containing protein

OsRING141 Park et al., 2019

LOC_Os06g36560 Os06g0561000 MQTL6.7 Myo-inositol oxygenase, drought stress tolerance OsMIOX Duan et al., 2012

LOC_Os06g35960 Os06g0553100 MQTL6.7 Similar to heat stress transcription factor C-2b. HSfC2b Xiang et al., 2013

LOC_Os12g01530 Os12g0106000 MQTL12.1
Ferritin 2, iron storage protein,
iron homeostasis

OsFER2 Paul et al., 2012

LOC_Os12g02450 Os12g0116700 MQTL12.1
Similar to WRKY transcription factor 64,
response to the rice pathogens; iron stress tolerance

OsWRKY64 Viana et al., 2017

LOC_Os12g08780 Os12g0189500 MQTL12.2
Flavin-containing monooxygenase, auxin biosynthesis,
Endosperm development, regulation of grain filling

OsYUCCA11 Xu et al., 2021
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acids to exude from the roots and form a stable complex with Al,

which allows P to become soluble for plant assimilation (Ligaba et al.,

2004). Plant root architecture undergoes adaptive changes, including

the inhibition of primary root growth and the increase in the number

and length of lateral roots (Péret et al., 2011) modulated by the

change in sensitivity of auxin receptors such as TIR1, under a P

deficient condition (Wu et al., 2023). Upregulation of auxin

receptors degrades auxin repressors, releasing auxin response

factor, ARF19, which then leads to the activation of genes related

to lateral root morphogenesis (Pérez-Torres et al., 2008).

We further narrowed down the PUE CGs to eight genes and

investigated their natural variation in a diverse set of rice (3K RGP).

These genes included OsARF8, OsSPX-MFS3, OsRING141, OsMIOX,

HsfC2b, OsFER2, OsWRKY64, and OsYUCCA11 (Figure 7). OsSPX-

MFS3 is a member of the rice SPX-MFS family which mediates Pi

transport between the cytosol and vacuole (Yang et al., 2017). OsSPX-

MFS3 plays a major role in the transport of Pi from the cytosol to

vacuole (Guo et al., 2023) and is downregulated under P deficiency.

The regulation pattern of OsSPX-MFS3 is consistent with the

observation in the microarray data utilized in this study. It is worth

noting that, except for OsSPX-MFS3, the rest of the CGs did not have

GO terms directly related to PUE but were nevertheless associated to

secondary PUE traits and other abiotic stresses. Auxin is one of the

phytohormones that regulate root architecture modifications in

response to Pi deficiency (Nacry et al., 2005). In this study, we

identified two CGs, namely OsARF8 and OsYUCCA11, implicated in

auxin response and which were significantly downregulated under P

non-supplied condition. OsARF8 is a member of the ARF family

implicated in the crosstalk between auxin signaling and P status (Wang

S et al., 2014).

Genes under the zinc-finger family may play an important role

in the regulation tolerance to multiple stresses in rice (Deng et al.,

2018). The present study identified a P-deficiency-upregulated zinc-

finger gene, OsRING141, among the genes subtending MQTL6.5.

Similarly, previous studies found two C2H2- type zinc finger

protein genes, ZOS3-12 and ZOS5-08, to be responsive to P and

N deficiencies (Huang et al., 2012). MQTL12.1 harbors two genes

modulating iron (Fe) homeostasis (OsFER2) and iron stress

tolerance (OsWRKY64). Both genes were significantly upregulated

in the P non-supplied condition. Previous studies have shown that

the reduction of Fe concentration can lead to the recovery of
Frontiers in Plant Science 17
primary root elongation under low P conditions, suggesting that

Fe may play a role in the Pi deficiency-induced reduction of primary

root growth (PRG) (Ward et al., 2008). Moreover, research on

Arabidopsis has demonstrated that when Fe is deposited in the root

tip meristem, it can trigger the accumulation of reactive oxygen

species (ROS) and callose, likely through LPR1-dependent redox

signaling (Müller et al., 2015). The accumulation of ROS and callose

can interfere with cell-to-cell communication that is essential for

maintaining the stem cell niche and inhibiting PRG (Müller

et al., 2015).

MQTL6.7 harbors two abiotic stress-related genes, namely

OsMIOX (drought) and HSfC2b (heat). A previous study reported

that the overexpression of OsMIOX in transgenic rice greatly

improved growth performance under drought conditions by

decreasing oxidative damage (Duan et al., 2012). Severe

phosphorus deficiency can lead to changes in the photosynthetic

apparatus, such as decreased rates of carbon dioxide assimilation,

reduced expression of photosynthesis-related genes, and

photoinhibition at the photosystem II level. These changes can

potentially cause photo-oxidative stress, which can damage the

plant’s cells. By preventing oxidative damage, the plant may be

able to better tolerate the effects of phosphorus deficiency on its

photosynthetic apparatus (Hernández and Munné-Bosch, 2015).

Therefore, as OsMIOX may prevent oxidative damage, it might be

beneficial to phosphorus-starved plants. A heat shock factor (HSF)

member, HSfC2b, harbored within MQTL6.7, was upregulated

under P deficient condition. The first attempt to elucidate the

genome wide expression of these HSFs was conducted by

Chauhan et al. (2011). HSF encoding genes showed significant

upregulation in abiotic stresses such as cold, drought, and salinity.

Our study is the first to show the link between an HSF gene and

PUE in rice. In Arabidopsis, the overexpression of HSFs in

transgenic plants confer simultaneous tolerances to multiple

abiotic stresses such as heat and anoxia (Banti et al., 2010).

Nevertheless, further study is needed to elucidate the relationship

between HSF and PUE in rice.

The use of NGS-based genotyping methods have aided in the

identification of SNPs associated with agronomic traits in rice.

However, the applicability of SNPs in breeding programs is

constrained by their bi-allelic nature by cross breeding, the

presence of uncommon alleles, and the abundance of linkage drag
FIGURE 8

Abundance of superior PUE CG haplotypes in the rice 3K rice genome panel. Values indicate the number of accessions.
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(Annicchiarico et al., 2017). Considering the gene haplotypes for

genome-wide analysis will help overcome SNP marker’s limitation.

Haplotypes are specific combinations of jointly inherited nucleotides

or DNA markers from polymorphic sites in the same chromosomal

segment (Stephens et al., 2001; Lu et al., 2010). Haplotype-based

breeding holds a promise in accumulating beneficial alleles for a trait

of interest in living organisms. This can be achieved through the

identification of haplotypes for different genes and utilizing them

through techniques such as allele mining, pyramiding, or GS. This

approach has resulted in genetic gains in crops (Abbai et al., 2019;

Anandan et al., 2022; Du et al., 2022). We identified subspecific-wise

potential donors of the superior haplotypes for PUE CGs: OsARF8,

OsSPX-MFS3, OsRING141, OsMIOX, HsfC2b, OsFER2, OsWRKY64,

and OsYUCCA11 (Table 6). We inferred the superior haplotypes for

these genes based on the haplotype of beneficial allele donors

(Kasalath and IR20) in the initial QTL studies used for the meta-

QTL analysis. The frequencies of superior haplotypes differed among

sub-populations, with particular groups exhibiting a higher

prevalence (Figure 8; Table S9). Similarly, previous studies have

suggested that the distribution of haplotypes is influenced by

evolutionary and population genetic factors, such as rates of

mutation and recombination, as well as selection pressures (Magwa

et al., 2016; Sinha et al., 2020). Superior haplotypes for almost all the

CGs were predominant in indica subspecies. The frequency of the

superior haplotypes in japonica was considerably smaller, compared

to that of other subspecies. As mentioned, OsSPX-MFS3 was

completely absent in japonica varieties in 3K RGP. This implies a

big opportunity to improve PUE in the japonica varieties using the
Frontiers in Plant Science 18
donors identified in this study. Our results suggest that indica

varieties are a rich source of PUE CG superior haplotypes and

could be utilized in the genomics-assisted breeding programs for

PUE in rice. In the case of the japonica, it is necessary to generate pre-

breeding lines that encompass the superior PUE CG haplotypes.

We identified potential CGs associated with PUE as well as

superior haplotypes that could be used to accumulate beneficial

alleles to improve PUE in rice. However, it should be noted that the

PUE CG mining pipeline used in the present study was limited by

the availability of P-supplied and P-non-supplied root

transcriptome data. Initially, we identified 273 PUE genes (Table

S1), but we could only analyze 238 CGs (Table S2) that had gene

expression data in the RiceXPro database. Therefore, a complete set

of transcriptome data would provide offer higher precision in the

identification of PUE CGs in rice. Another limitation of our pipeline

is the limited scope of the reference genome used in both the

annotation of genes and the root expression analysis. We utilized

gene annotation from the IRGSP v. 1.0 (Nipponbare) reference

genome, a widely used reference genome for rice research, to

identify PUE CGs. Here, it was not possible for us to identify

genes that were absent in the reference genome and therefore were

possibly neglected in our analysis. For instance, the P uptake gene

OsPSTOL1 harbored in the P uptake major QTL Pup1 is absent in

the reference genome Nipponbare, as well as in the genomes of

several other commonly used rice varieties (Chin et al., 2011;

Gamuyao et al., 2012). Similarly, Sub1A, a gene conferring

submergence tolerance in rice, was not found in the fully

sequenced genome of Nipponbare (Xu et al., 2006). The limited
TABLE 6 Suggested donors based on a haplotype-based selection for the pyramiding of favorable PUE CG alleles.

Subspecies or varietal
group Line OsARF8

OsSPX-
MFS3 OsRING141 OsMIOX HSfC2b OsFER2 OsWRKY64 OsYUCCA11

Superior haplotype controls
IR20 + + + + +

Kasalath + + + + +

indica

IRGC
132300

+ + + + + + + +

IRGC
132300

+ + + + + + + +

IRIS 313-
9415

+ + + + + + + +

IRGC
126983

+ + + + + + + +

aus

IRGC
127181

+ + + + +

IRGC
135811

+ + + +

japonica

IRGC
128463

+ + +

IRGC
135811

+ + + + +

IRGC
121959

+ + +
‘+’ represents the presence of superior haplotype of each gene Figure 1. Phenotypic trait classes and chromosome-wise distribution of QTLs utilized in the MQTL analysis for PUE in rice.
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availability of gene information from the reference genome may fail

to precisely capture the genetic variability linked to PUE.

Consequently, it is important to generate supplementary reference

genomes, or a “rice meta-genome,” that encompass diverse rice

varieties and species to address this limitation. Nevertheless, our

approach provides breeders with valuable information regarding

the selection of optimal donors for their desired traits from the gene

bank. However, the assumed genetic gains resulting from the

accumulation of superior haplotypes of PUE CGs require

validation in practical breeding programs.
5 Conclusion

We identified 38 meta-QTLs (MQTLs) for phosphorus use

efficiency (PUE) that were supported by multiple QTLs from

independent studies, which had a phenotypic variation explained

(PVE) value of at least 5%. We subjected the 38 PUE MQTLs to

candidate gene (CG) mining. The genomic regions associated with

PUE MQTLs were found to be enriched with genes involved in the

transmembrane transport of amino acids and organic acids, as well

as genes involved in the response to auxin. Some superior

haplotypes containing eight CGs for PUE could be considered for

the genomics-assisted breeding in rice.
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