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Low soil available phosphorus
level reduces cotton fiber
length via osmoregulation

Miao Sun1†, Cangsong Zheng1†, Weina Feng1, Jingjing Shao1,
Chaoyou Pang1, Pengcheng Li1* and Helin Dong1,2*

1State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research,
Chinese Academy of Agricultural Sciences, Anyang, China, 2Western Agricultural Research Center,
Chinese Academy of Agricultural Sciences, Changji, China
Introduction: Phosphorus (P) deficiency hinders cotton (Gossypium hirustum L.)

growth and development, seriously affecting lint yield and fiber quality. However,

it is still unclear how P fertilizer affects fiber length.

Methods: Therefore, a two-year (2019-2020) pool-culture experiment was

conducted using the split-plot design, with two cotton cultivars (CCRI-79;

low-P tolerant and SCRC-28; low-P sensitive) as the main plot. Three soil

available phosphorus (AP) contents (P0: 3 ± 0.5, P1: 6 ± 0.5, and P2 (control)

with 15 ± 0.5 mg kg−1) were applied to the plots, as the subplot, to investigate the

impact of soil AP content on cotton fiber elongation and length.

Results: Low soil AP (P0 andP1) decreased the contents of the osmotically active solutes in

the cotton fibers, including potassium ions (K+), malate, soluble sugar, and sucrose, by 2.2–

10.2%, 14.4–47.3%, 8.7–24.5%, and 10.1–23.4%, respectively, inhibiting the vacuoles from

facilitating fiber elongation through osmoregulation. Moreover, soil AP deficiency also

reduced the activities of enzymes participated in fiber elongation (plasma membrane H+-

ATPase (PM-H+-ATPase), vacuole membrane H+-ATPase (V-H+-ATPase), vacuole

membrane H+-translocating inorganic pyrophosphatase (V-H+-PPase), and

phosphoenolpyruvate carboxylase (PEPC)). The PM-H+-ATPase, V-H+-ATPase, V-H+-

PPase, and PEPC were reduced by 8.4–33.0%, 7.0–33.8%, 14.1–38.4%, and 16.9–40.2%,

respectively, inhibiting the transmembrane transport of the osmotically active solutes and

acidified conditions for fiber cell wall, thus limiting the fiber elongation. Similarly, soil AP

deficiency reduced the fiber length by 0.6–3.0mm,mainly due to the 3.8–16.3% reduction

of the maximum velocity of fiber elongation (VLmax). Additionally, the upper fruiting branch

positions (FB10–11) had higher VLmax and longer fiber lengths under low soil AP.

Discussion: Cotton fibers with higher malate content and V-H+-ATPase and V-

H+-PPase activities yielded longer fibers. And the malate and soluble sugar

contents and V-H+-ATPase and PEPC activities in the SCRC-28's fiber were

more sensitive to soil AP deficiency in contrast to those of CCRI-79, possibly

explaining the SCRC-28 fiber length sensitivity to low soil AP.
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1 Introduction

Phosphorus (P) is one of the three nutrient elements essential

for cotton (Gossypium hirustum L.) growth and development (Sun

et al., 2022). It can stimulate budding and flowering in the middle

growth stage and promote the maturity and weight increase of

cotton bolls in the late growth stage, thus directly affecting the lint

yield and fiber quality (Sun et al., 2018). According to statistics,

there are 5.7×109 ha of land with AP deficiency on earth, which

affects agricultural production (Cordell et al., 2009; Xu et al., 2020),

and about 30% of China’s farmland has only 3−5 mg kg-1 of AP

(Gao et al., 2019). Cotton production is concentrated in Xinjiang

and the saline-alkali areas in China. The soil types of these cotton

growing areas are mostly calcareous, with a high P fixation capacity.

Coupled with drought and limited rain, the lack of available

phosphorus (AP) in the soil is a major problem in these cotton-

growing areas (Wang et al., 2010). Therefore, applying a large

quantity of P fertilizer is necessary to ensure a high yield and quality

of cotton and reduce P fertilizer utilization efficiency in cotton fields

(Chen et al., 2020). However, there is a shortage of high-grade P

rock resources and a low mining recovery rate of P in China, which

may cause a P fertilizer shortage in the future (Zhou et al., 2021).

Cotton is the major industrial crop for natural fiber production

(Yang et al., 2023), and cotton textiles are produced primarily in China,

which is the world’s largest producer of cotton. The cotton industry

provides economic income for cotton farmers and rawmaterials for the

textile industry, thus playing a vital role in the national economy (Yu,

2018). There is increasing demand for high cotton fiber quality. Thus,

the cotton plants need sufficient P supply during the whole growth

period to ensure lint yield and fiber quality (Chen et al., 2020).

Compared with the cotton plants supplied with 40.3 kg·P2O5 ha
-1,

the cotton fiber length, strength, and micronaire value of the plants

without P treatment decreased by 1.6%, 1.0%, and 2.6%, respectively

(Sarkar and Majumdar, 2002). P deficiency (no P) reduced the length

(Gutstein, 1970) and strength (Li et al., 2020) of cotton fibers but

increased the micronaire value (Li et al., 2020) compared to applying

superphosphate or triple superphosphate. However, the P application

rate of 0−90 kg·P2O5 ha-1 did not affect the cotton fiber quality

indicators (length, strength, and micronaire value) (Mukundan et al.,

1990; Tewolde and Fernandez, 2003). In summary, the effects of P

fertilizers on cotton fiber quality are inconsistent, probably due to the

different cotton varieties (Mukundan et al., 1990; Tewolde and

Fernandez, 2003) or the amount/type of P fertilizer used (Gutstein,

1970; Mukundan et al., 1990; Li et al., 2020). These differences might

also be related to the soil AP content of the experimental sites.

The leaves subtending cotton bolls provide 60% to 87% of carbon for

the cotton bolls, seriously affecting their growth and development
Abbreviations: AP, available phosphorus; FB, fruiting branch; K+, potassium ion;

PM-H+-ATPase, plasma membrane H+-ATPase; V-H+-ATPase, vacuole

membrane H+-ATPase; V-H+-PPase, vacuole membrane H+-translocating

inorganic pyrophosphatase; PEPC, phosphoenolpyruvate carboxylase; CV,

coefficient of variation; L, fiber length; Lmax, theoretical maximum fiber length;

VLmax, maximum velocity of fiber elongation; Lobs, the observed final fiber length;

TB, beginning time of rapid elongation; TF, finishing time of rapid elongation; TL,

rapid elongation duration.
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(Ashley, 1972; Constable and Rawson, 1980; Wullschleger and

Oosterhuis, 1990). Thus, the leaves and bolls are the primary “sources”

and “sinks” of photosynthetic products. Cotton yield and quality are

influenced by the “subtending leaves - cotton bolls” association (Liu et al.,

2014). Our earlier research found that by decreasing sucrose synthesis

and transportation in the leaves subtending cotton bolls, there is a

decrease in cotton boll biomass and lint yield for two cotton cultivars

(CCRI-79; low-P tolerant and SCRC-28; low-P sensitive) when the soil

AP content is low (Sun et al., 2022). However, the regulatory

mechanisms of fiber quality remain poorly understood.

Cotton fiber cells begin transitioning from expansion elongation

(non-polar) to polar elongation at two days post-anthesis (DPA). The

fiber cell elongation determines the length of cotton fibers, an

important parameter in the textile industry (Yang et al., 2023).

Vacuolar turgor supports the elongated fiber cells, and the elongation

direction is determined by both turgor pressure and cell wall structure

(Mao, 2019). There are four predominant osmotically active solutes in

fiber cells: potassium ion (K+), malate, soluble sugar, and sucrose. After

entering the vacuoles through the reverse content gradient, these

solutes exert osmoregulation, causing water to enter the vacuoles and

fiber cells during elongation (Ruan et al., 1997; Ruan et al., 2001). The

plasmamembrane (PM)H+-ATPase (PM-H+-ATPase) pumps out H+,

forming transmembrane ion gradients to provide the initial power for

the transmembrane transport of osmotically active solutes. Meanwhile,

the acidification of the surrounding environment facilitates cell wall

expansion. Vacuolar membrane H+-ATPase (V-H+-ATPase) and H+-

translocating inorganic pyrophosphatase (H+-PPase) play similar roles

(Smart et al., 1998). Low P significantly increased sucrose content in

cotton leaves (Liu et al., 2021) and the H+-ATPase activity of rice roots

(Zhang, 2011). Phosphoenolpyruvate carboxylase (PEPC) is the rate-

limiting enzyme for malate synthesis in fiber cells (Smart et al., 1998);

however, its transcript levels greatly vary under low P conditions. The

PEPC gene was up-regulated in tobacco (Toyota et al., 2003) but down-

regulated in Arabidopsis (Wu et al., 2003) under low P conditions.

Thus, there is a need to further investigate whether low P would affect

the osmotically active solutes’ contents (K+, malate, soluble sugar, and

sucrose) and the related enzymes’ activities (PM-H+-ATPase, V-H+-

ATPase, V-H+-PPase, and PEPC) of cotton fiber cells through the

“subtending leaves (source) - cotton fiber (sink)” association.

Determining whether these effects impact the cotton fiber length and

the mechanisms involved is also important.

Therefore, this research explored (1) elongation and length of

cotton fibers in the presence of soil AP deficiency; (2) the

relationship between osmotically active solute contents and linked

enzymes activities during fiber elongation and leaf P content of

subtending leaves; (3) the key osmotically active solutes and

enzymes when soil AP is low. Our findings provide a reference

for further research on improving fiber qualities in low AP soil.
2 Materials and methods

2.1 Description of the experimental site

In Anyang (36°06′ N and 114°21′ E), Henan, China, Chinese

Academy of Agricultural Sciences’ Institute of Cotton Research
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carried out a two-year pool-culture study from 2019 to 2020. Each

pool was 3.6-m-long, 4-m-wide and 1.5-m-high. The experimental

soil type is classified as Inceptisols (USDA Soil Taxonomy). Clay

loam was the soil used in the experiment (Li et al., 2017). Among

soil layers within 0−20 cm, the organic matter, total nitrogen, and

available nitrogen, phosphorus, and potassium were respectively

12.9 g kg−1, 0.86 mg kg−1, 64.4 mg kg−1, 3.1 mg kg−1, and 163.6 mg

kg−1 in 2019 and 13.1 g kg−1, 0.85 mg kg−1, 63.3 mg kg−1, 3.0 mg

kg−1, and 180.4 mg kg−1 in 2020. Meteorological data of the cotton

growing seasons in 2019 and 2020 are presented in Table 1.
2.2 Management of experimental fields and
design of experiments

The research used the split-plot design, with the main plot

consisting of the low-P-tolerant cotton cultivar CCRI-79 and the

low-P-sensitive cultivar SCRC-28, selected in the previous study

(Sun et al., 2022). The subplots contained three soil AP levels; 3 ±

0.5 mg kg-1 (P0, extreme soil AP deficiency), 6 ± 0.5 mg kg-1 (P1,

moderate soil AP deficiency), and 15 ± 0.5 mg kg-1 (P2, control).

The soils from 20–40 cm depth in the field were chosen to develop

P-deficiency in pool soil. Soil AP levels were regulated using triple

superphosphate (44% P2O5) (Sun et al., 2022). The P fertilizer

amount of 0, 50.6, and 202.4 g pool−1 was applied in P0, P1, and P2
during both years. The nitrogen fertilizer used was 225 kg N ha-1

(urea, 46% N), and 50% of the fertilizer was used for basal

application before sowing (April 23, 2019, and April 15, 2020),

while the other 50% for topdressing in the early flowering stage (July

22, 2019, and July 6, 2020). Furthermore, the potassium fertilizer

used was 150 kg K2O ha-1 (potassium sulfate, 51% K2O) and was

applied as basal fertilizer (Li et al., 2017). We applied the base

fertilizer 7 days before sowing, and we watered the soil to dissolve it.

An analysis of soil samples at the 0−20 cm soil layer was conducted

one month after the application of base fertilizer at the surface level

of the soil, after which the samples were dried and sieved at a

fineness of 1 mm. The soil AP contents were determined by the

Olsen-P method (Yang and Jacobsen, 1990). Thereafter, cotton

seeds were planted through manual drilling (April 30, 2019, and
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April 24, 2020). Five rows of 80 cm spacing were used in each

experimental plot with an area of 14.4 m2 and a density of 52,500

plants per hectare. Every treatment was conducted in three

replicates, and field management was in accordance with the

management measures for high-yielding cotton cultivation.
2.3 Sampling and handling

During the flowering period of cotton plants, 8−10 cotton bolls

of the first fruit node in the lower fruiting branches (FB2-3), middle

fruiting branches (FB6-7), and upper fruiting branches (FB10-11)

were collected at 5, 10, 15, 17, 24, 31, 38, and 45 DPA (8:00-9:00

a.m.). The harvested cotton bolls were placed on ice, and the cotton

fibers were peeled off from the cotton seeds within one hour.

Thereafter, we analyzed the malate content and enzyme activity

of one third (1/3) of the cotton fibers that were frozen in liquid

nitrogen and held at -80°C. Another 1/3 was dried at 70°C to a

constant weight to determine K+ and carbohydrate contents. The

remaining 1/3 was used for fiber length measurement.
2.4 Measuring K+, malate, and
carbohydrate contents of the cotton fibers

After crushing with a disintegrator, dried cotton fiber samples

were sieved at 0.5 mm. Thereafter, K+ was extracted from the

samples using the H2SO4-H2O2 digestion method, and its content

was determined by an atomic absorption spectrometer

(NOVAA400P, Analytik Jena GmbH, Jena, Germany) at 769.9 nm.

After snap-freezing in liquid nitrogen, 50 mg of frozen fiber

samples were ground into powder, and a 1-hour extraction at 80°C

was performed on the powder using 1.5 ml of the buffer containing

1.2 ml of absolute ethanol, 100 mM Hepes-KOH (pH 7.1), and 20

mM MgCl2 to obtain the crude extract. We centrifuged the crude

extract at 12000×g (5 min), and the supernatant was collected and

mixed with 150 ml of active carbon (100 mg ml-1). The mixture was

centrifuged under the same conditions, and the supernatant was

collected. Finally, 5 ml of the supernatant was transferred into a
TABLE 1 Anyang experimental station weather data for the growing seasons of 2019 and 2020.

Month Sunshine duration (h) Average temperature (°C) Precipitation (mm)

2019 2020 2019 2020 2019 2020

April 193.6 284.4 14.4 14.2 70.4 28.8

May 297.7 294.3 22.0 22.2 5.0 39.5

June 256.7 206.5 27.9 26.2 55.4 50.4

July 260.2 204.4 28.5 26.0 42.0 29.2

August 186.6 196.4 25.5 26.0 116.1 156.1

September 213.7 226.3 22.0 21.9 51.3 3.6

October 139.9 123.1 15.4 14.4 51.5 9.9

Average/total 1548.4 1535.4 22.2 21.6 391.7 317.5
fro
During the experiments, all weather data was collected from an automatic weather station 4 kilometers away.
ntiersin.org

https://doi.org/10.3389/fpls.2023.1254103
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2023.1254103
10 ml cuvette, and 1 ml of Tris-HCl (0.2 mol L-1 Tris, 0.2 mol L-1

HCl, and pH 5.36) was added and mixed. Incubate for 15 min with

distilled water topped up to 25 ml. The malate contents were

measured on the spectrophotometer (SPECORD 40, Analytik

Jena GmbH, Jena, Germany) at 656 nm using the colorimetric

method (Zhang et al., 2017).

Weighed (0.1 g) cotton fibers were placed in a 10 ml centrifuge

tube with 5 ml of 80% ethanol (v/v) and incubated at 80°C for

carbohydrates extraction (30 min). The extracts were centrifuged

(10000×g, 5 min), and a 25 ml volumetric flask was used to collect

the supernatant. Repetition of the extraction procedure was

performed, and the obtained supernatant was topped up to 25 ml

with ethanol (80%, v/v). In accordance with Hendrix et al. (1993),

we measured the soluble sugar and sucrose contents.
2.5 PEPC, PM-H+-ATPase, V-H+-ATPase,
and V-H+-PPase activities in cotton fibers

Hu et al. (2018) method was used to measure PEPC, V-H+-

ATPase, and V-H+-PPase activities. Briefly, the fiber powder was

extracted with 5 ml of the buffer containing 30 mMHepes-Tris (pH

7.4), 250 mM mannitol, 3 mM ethylenediaminetetraacetic acid

(EDTA), 1 mM phenylmethylsulfonyl fluoride (PMSF), 1.5% (w/

v) polyvinylpyrrolidone (PVP) 4000, 1 mM dithiothreitol (DTT),

and 0.1% (w/v) bovine serum albumin (BSA). In a centrifuge

operated at 4°C, the homogenate was centrifuged (480×g, 10 min)

and the supernatants were stored to measure the enzyme activities.

The reaction solution (1100 µl) for PEPC activity assay contained

800 ml of the reaction buffer (30 mM Hepes-Tris (pH 7.5), 10 mM

MgCl2, 10 mM NaHCO3, and 0.5 mM DTT), 100 ml of crude

enzyme solution, 100 µl of malate dehydrogenase (EC 1.1.1.37, 100

U ml-1, SIGMA), and 100 µl of 30 mM PEP. The PEPC activity was

measured using the colorimetric method at 340 nm. For V-H+-

ATPase activity determination, the reaction solution (500 µL)

contained 400 ml of the reaction buffer (30 mM Hepes-Tris (pH

7.5), 3 mM MgSO4, 50 mM KCl, 0.5 mM NaN3, 0.125 mM (NH4)2
MoO4, and 0.125 mM Na3VO4), 50 ml of crude enzyme solution,

and 50 ml of 20 mM ATP-Tris. Half-hour was spent incubating the

mixed solution at 30°C. In order to terminate the reaction, 1 ml of

the stop solution (5% (NH4)2MoO4: 5 M H2SO4: H2O=1: 1: 3) was

added. Finally, 200 ml of chromogenic agent (0.25 g of aminophenol

sulfonic acid in 100 ml of 1.5% Na2SO3 (pH 5.5) mixed with 0.5 g of

Na2SO3) was added and the mixture was incubated for 20 min at

37°C. The V-H+-PPase activity was also determined using the

colorimetric method at 660 nm. Its reaction solution (500 µl)

contained 400 ml of the reaction buffer (30 mM Hepes-Tris (pH

7.5), 3 mM MgSO4, 50 mM KCl, 0.5 mM NaN3, and 0.125 mM

(NH4)2 MoO4), 50 ml of crude enzyme solution, and 50 ml of 20 mM

PP-Tris. The following measurement steps were the same as those

employed to determine V-H+-ATPase activity. PM-H+-ATPase was

isolated using Hu et al.’s method (2018). In brief, frozen fiber tissues

were ground in an ice bath with 5 ml of cold buffer comprising 50

mM Hepes-Tris (pH 7.0), 300 mM sucrose, 8 mM EDTA, 2 mM

PMSF, 1.5% (w/v) PVP 4000, 4 mM DTT, and 0.2% (w/v) BSA. In

4°C, the homogenate was centrifuged (10000×g, 20 min). In order
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to analyze enzyme activity in the supernatants, the supernatants

were stored. The reaction solution (500 µL) for PEPC activity assay

contained 400 ml of reaction buffer (30 mM Hepes-Tris (pH 6.5), 3

mMMgSO4, 50 mM KCl, 0.5 mMNaN3, 0.125 mM (NH4)2 MoO4),

50 ml of crude enzyme solution, and 50 µl of 20 mM ATP-Tris. The

subsequent measurement processes were in accordance with those

of V-H+-ATPase activity determination.
2.6 Cotton fiber length

Boiling cotton bolls formed before 30 DPA in 0.1% (v/v) HCl

separated fibers from cotton seeds (Schubert et al., 1973). The fibers

were stretched through the flowing water method (Thaker et al.,

1989), and their lengths were measured using a vernier caliper.

For cotton bolls formed after 30 DPA, the fibers were peeled and

incubated at 60°C (30 min) and then at 40°C (2 h). The fibers were

finally incubated in a standard assay chamber for 48 h, with

temperature and humidity set at 20 ± 2°C and 65 ± 5%,

respectively. The fiber length was then determined using a

photoelectric stapler (Y-146, Taicang Electron Apparatus Co.,

Ltd., China) (Yang et al., 2016).

The fibers were obtained by ginning seed cotton from cotton

bolls harvested on September 15, 2019, and September 15, 2020.

After drying the cotton fiber samples to a constant weight at 35°C,

the fiber length was analyzed at the Supervision, Inspection, and

Test Center of Cotton Quality, Ministry of Agriculture and Rural

Affairs, China.
2.7 Statistical analysis

In order to calculate means, standard errors, and coefficients of

variation (CV, %), Microsoft Excel 2007 (Microsoft Corp.,

Redmond, WA, USA) was used. The SPSS statistical software

Version 23.0 (IBM Corp., New York, NY, USA) was used to

conduct a variance analysis for all treatments at a 5% significance

level, applying the least significant difference (LSD). In order to

analyze each variable’s specific relevance, Pearson correlation

coefficient was used.
3 Results

3.1 Osmotically active solute
contents of the fibers

Low soil AP levels (P0 and P1) decreased the fiber K+ contents

(Figure 1). Under P1 and P0, the average fiber K
+ contents reduced

by 7.3−8.8% and 10.3−12.3% in CCRI-79 and 10.6−22.7% and 20.8

−33.1% in SCRC-28, respectively, at the 3 fruiting branch positions

(FBPs) compared to P2. Low soil AP had less effect at the FB10–11
compared to FB2–3 and FB6–7 (Figure 1). For all soil AP levels,

CCRI-79 and SCRC-28 had average fiber K+ contents of 11.2-12.7

mg g-1 and 9.5-12.9 mg g-1, respectively. However, SCRC-28 had a

higher CV (15.3%) than CCRI-79 (6.3%). CCRI-79 had fiber K+
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contents 6.9 and 18.0% higher than SCRC-28 in P1 and P0, but 1.5%

lower in P2 (Figure 1).

The fiber malate content increased at 5−10 DPA and decreased at 10

−31 DPA (Figure 2). Under the P1 and P0 treatments, the malate content

decreased by 14.4–17.0% and 20.2–22.5% for CCRI-79, and 20.7–30.0%

and 35.4–47.3% for SCRC-28, respectively, across the three FBPs in 2019

and 2020. SCRC-28 had a greater CV of 25.6% compared to CCRI-79’s

CV of 6.3%. Additionally, In P1 and P0, CCRI-79 had malate contents

that were 7.9% and 26.5% higher than SCRC-28, respectively, but in P2,

they were 3.3% lower. At the same soil AP level, fibers from FB6–7 and

FB10–11 had higher malate content in contrast with FB2–3 (Figure 2).

According to the above data, SCRS-28 (low-P sensitive) had greater

reductions of K+ and malate contents in fibers than CCRI-79 (low-P

tolerant) under low soil AP treatments (P0 and P1).
Frontiers in Plant Science 05
Nevertheless, the soluble sugar content of fibers from the three

FBPs declined with the development of cotton bolls, especially at

10–31 DPA compared to 5–10 DPA (Figure 3). Compared to P2, the

soluble sugar content reduced by 9.1−9.6% and 16.5−20.9% for

CCRI-79, in P1 and P0 at the three FBPs, respectively, over the two

years. A similar change pattern was observed for SCRC-28, with an

8.7−12.4% and 16.5−24.5% decrease under the same

conditions (Figure 3).

Interestingly, the fiber sucrose content had a similar trend with

the soluble sugar content during the fiber elongation progress

(Figure 4). During the course of 24 months, under P1 and P0, the

sucrose content at the three FBPs was reduced by 10.1−14.2% and

19.0−20.4% in CCRI-79 and by 10.1−13.2% and 19.3−22.2% in

SCRC-28, respectively. Moreover, the fibers of FB10–11 registered
FIGURE 1

Cotton fiber potassium ion (K+) content in relation to soil available phosphorus (AP) levels in 2019 and 2020. FB: fruiting branch. P0: 3 ± 0.5 mg kg−1.
P1: 6 ± 0.5 mg kg−1. P2: 15 ± 0.5 mg kg−1. The cotton fibers were collected at 5, 10, 17, 24, and 31 days post-anthesis (DPA) (8:00-9:00 a.m.). Error
bars indicate SE (n = 3).
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lower decline rates of the sucrose content than FB2–3 and FB6–7 for

CCRI-79 but higher decline rates for SCRC-28 in 2019 and

2020 (Figure 4).
3.2 Relationship between P contents and
osmotically active solutes contents

Positive relations existed between the osmotically active solutes

involved in fiber elongation, especially the K+ and soluble sugar

contents, and P content of subtending leaves of both cultivars at 10

−31 DPA (p<0.05) (Figure 5). Significantly positive correlations

were also observed between these contents from 10 to 24 DPA

(p<0.05) (except for malate content of CCRI-79 at 24 DPA). The

correlation between the P content of the leaves and the sucrose
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content of the fibers were all significantly positive (p<0.05) at 10

DPA for SCRC-28 and 31 DPA for CCRI-79 (Figure 5).
3.3 Activities of enzymes associated with
fiber elongation

The PM-H+-ATPase (Figure 6), V-H+-ATPase (Figure 7), and

V-H+-PPase (Figure 8) activities of fiber presented similar trends

reaching its maximum at 17 DPA and declining with increasing soil

AP content. Under P1 and P0, the PM-H+-ATPase activity increased

by 8.4−10.5% and 11.3−14.4% for CCRI-79 and by 14.9−20.5% and

21.8−33.0% for SCRC-28, respectively at all the FBPs in the two

years compared to P2 (Figure 6). As compared to SCRC-28, CCRI-

79 exhibited 8.5 and 15.8% higher activity of fiber PM-H+-ATPase
FIGURE 2

Cotton fiber malate content in relation to soil available phosphorus (AP) levels in 2019 and 2020. FB: fruiting branch. P0: 3 ± 0.5 mg kg−1. P1: 6 ± 0.5
mg kg−1. P2: 15 ± 0.5 mg kg−1. The cotton fibers were collected at 5, 10, 17, 24, and 31 days post-anthesis (DPA) (8:00-9:00 a.m.). Error bars indicate
SE (n = 3).
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under P1 and P0, but 0.6% lower under P2 (Figure 6). The V-H+-

ATPase activities reduced by 7.0−9.8% and 5.9−10.4% for CCRI-79,

and by 12.4−18.6% and 23.4−33.8% for SCRC-28 under P1 and P0,

respectively, in contrast with P2 treatments throughout the FBPs

and growing seasons (Figure 7). Nevertheless, under P1 and P0, the

V-H+-PPase activities decreased by 14.1−19.4% and 17.2−20.5% in

CCRI-79, and by 18.3−23.7% and 28.5−38.4% in SCRC-28,

respectively, in contrast with P2 treatments throughout the FBPs

and the two years (Figure 8).

The fiber PEPC activity presented a single-peaked curve during

fiber elongation and reached its climax at 17 DPA (Figure 9).

Compared to P2, the PEPC activity for CCRI-79 reduced by 16.6

−21.7% and 22.6−23.4% in P1 and P0 at the three FBPs in 2019

−2020. Similarly, in P1 and P0, the PEPC activity reduced by 20.9
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−26.5% and 30.0−40.2% for SCRC-28. Low soil AP levels (P1 and

P0) reduced the PEPC activities of fibers in the FB10–11 compared to

FB2–3 and FB6–7 in SCRC-28 but had less effect on the three FBPs of

CCRI-79. Obviously, the variations in the four enzymes involved in

fiber elongation of SCRC-28 were greater than those of CCRI-79

under low-P-stress.
3.4 Interrelationship between P contents
and key enzymes activities

Among the two cultivars, the enzymes involved in fiber

elongation and P content were positively correlated, peculiarly

PM-H+-ATPase and PEPC activities (p<0.01), during fiber
FIGURE 3

Cotton fiber soluble sugar content in relation to soil available phosphorus (AP) levels in 2019−2020. FB: fruiting branch. P0: 3 ± 0.5 mg kg−1. P1: 6 ±
0.5 mg kg−1. P2: 15 ± 0.5 mg kg−1. The cotton fibers were collected at 5, 10, 17, 24, and 31 days post-anthesis (DPA) (8:00-9:00 a.m.). Error bars
indicate SE (n = 3).
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FIGURE 4

Cotton fiber sucrose content in relation to soil available phosphorus (AP) levels in 2019−2020. FB: fruiting branch. P0: 3 ± 0.5 mg kg−1. P1: 6 ± 0.5
mg kg−1. P2: 15 ± 0.5 mg kg−1. The cotton fibers were collected at 5, 10, 17, 24, and 31 days post-anthesis (DPA) (8:00-9:00 a.m.). Error bars indicate
SE (n = 3).
FIGURE 5

Relationship between osmotically active solute content engaged in fiber elongation and phosphorus (P) contents of the subtending leaves in 2019
−2020. The P content data of the subtending leaves were referred from Sun et al. (2022). * and ** represent significant differences at p<0.05 and
p<0.01. n=18, R 0.05 = 0.468, R 0.01 = 0.590.
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elongation (Figure 10). The positive correlations between P

contents, and the V-H+-ATPase activities and V-H+-PPase were

very significant (p<0.01) at 10−31 DPA in SCRC-28, and significant

(p<0.05) at 10−17 DPA in CCRI-79 (Figure 10).
3.5 Dynamic changes in the fiber length on
the different fruiting branches

The lack of AP in soil seriously hindered the growth and

development of cotton plants (Figure 11A), thereby affecting fiber

length (Table 2). The fiber length changes formed an “s-shape”

curve during the development of cotton bolls, which could be fitted

using the logistic equation (Yang et al., 2016) as follows:
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L =
Lmax

1 + a� eb�DAP (1)

L means the fiber length (mm), Lmax means the theoretical

maximum fiber length, and a and b mean parameters.

The maximum velocity of fiber elongation (VLmax), the

beginning time of rapid elongation (TB), the finishing time of

rapid elongation (TF), and the rapid elongation duration (TL=TF-

TB) of cotton fibers were calculated using formulas (2), (3), and

(4), respectively.

VLmax =
-b� Lmax

4
(2)

TB =
1
b
� ln

2 +
ffiffiffi

3
p

a
(3)
FIGURE 6

The H+-ATPase activities of the cotton fiber plasma membrane (PM) (PM-H+-ATPase) in relation to soil available phosphorus (AP) levels in 2019
−2020. FB, fruiting branch. P0: 3 ± 0.5 mg kg−1. P1: 6 ± 0.5 mg kg−1. P2: 15 ± 0.5 mg kg−1. The cotton fibers were collected at 5, 10, 17, 24, and 31
days post-anthesis (DPA) (8:00-9:00 a.m.). Error bars indicate SE (n = 3).
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TF =
1
b
� ln

2 −
ffiffiffi

3
p

a
(4)

The rapid elongation stage of the fibers started from 10 to 24

DPA, after which the fiber length tended to stabilize (Figure 12). Low

soil AP levels (P0 and P1) decreased the VLmax, but increased the TL,

ultimately reducing the fiber length. The fiber length variation was

consistent for CCRI-79 and SCRC-28 over the two years (Table 2).

VLmax had higher sensitivity to soil AP deficiency than TL. Compared

to P2, the fiber length reduced by 2.2–3.6% and 3.9–6.3% in P1 and P0
for CCRI-79, mainly because VLmax declined by 3.8–5.9% and 5.9–

9.8% in 2019 and 2020 across the FBPs. For SCRC-28, the fiber length

reduced by 2.2–3.8% and 6.7–10.2% at P1 and P0 in contrast with P2
due to the fact that VLmax reduced by 4.1–6.1% and 12.2–16.3% for

both years at the three FBPs. In P1 and P0, CCRI-79 had a fiber length
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that was 2.3 percent and 5.2 percent longer than SCRC-28. However,

CCRI-79 fiber length was 2.1% longer than SCRC-28 over the two-

year under P2 treatment. Moreover, there were longer fibers for

CCRI-79 than those for SCRS-28 in soil AP deficiency.

The CVs of fiber length were lower in FB10–11 than in FB2–3 and

FB6–7 for both cultivars, and the values were even smaller for CCRI-

79. Cultivar (C) (p<0.01) and AP (p<0.01) had the greatest impacts

on fiber length (Table 2).
3.6 Correlation between physiological
parameters and fiber length

We determined the cotton fiber lengths and their relationship

with the contents of the osmotically active solutes and the activities
FIGURE 7

The H+-ATPase activities of the cotton fibers vacuole membrane (V-H+-ATPase) in relation to soil available phosphorus (AP) levels in 2019-2020.
FB, fruiting branch. P0: 3 ± 0.5 mg kg−1. P1: 6 ± 0.5 mg kg−1. P2: 15 ± 0.5 mg kg−1. The cotton fibers were collected at 5, 10, 17, 24, and 31 days post-
anthesis (DPA) (8:00-9:00 a.m.). Error bars indicate SE (n = 3).
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of the enzymes engaged in fiber elongation. The results showed that

fiber lengths had significant positive correlations (p<0.05) with the

contents of all osmotically active solutes (K+, malate, soluble sugar,

and sucrose) in SCRC-28 but correlated only with malate contents

in CCRI-79 (p<0.01) (Figure 13). Moreover, fiber lengths were

significantly positively correlated (p<0.01) with the V-H+-ATPase

and V-H+-PPase activities in CCRI-79 (Figure 13). There was a

remarkable positive correlation between fiber length and related

enzyme activities in SCRC-28 as well (p<0.05) (Figure 13).
4 Discussion

P application on cotton fiber length may have varying effects

(Mukundan et al., 1990; Tewolde and Fernandez, 2003; Li et al.,
Frontiers in Plant Science 11
2020), possibly due to the influence of soil AP content. We analyzed

soil nutrient data and found that soil AP content is the main factor

affecting fiber development and length; therefore, we used low soil

AP levels to induce P deficiency stress in cotton plants. Our

previous study showed that low soil AP affects sucrose transport

and synthesis in the subtending leaves, thereby reducing cotton boll

biomass and lint yield (Sun et al., 2022). Therefore, the current

research explored the soil AP content’s effect on cotton fiber

elongation and length, which could more precisely illustrate the P

status of the cotton bolls and the subtending leaves.

P fertilizer increased the K+ content of cotton plants (including

roots, stems, and leaves) (Luo et al., 2017) and the root malate

content of alfalfa seedlings (Wang et al., 2021). In the experiment,

the K+ contents of cotton fibers decreased by 2.9 and 6.5% under P1
and P0 conditions, respectively, compared to P2 (Figure 1). It
FIGURE 8

The H+-translocating inorganic pyrophosphatase (H+-PPase) activities of the cotton fibers vacuole membrane (V-H+-PPase) in relation to soil
available phosphorus (AP) levels in 2019−2020. FB, fruiting branch. P0: 3 ± 0.5 mg kg−1. P1: 6 ± 0.5 mg kg−1. P2: 15 ± 0.5 mg kg−1. The cotton fibers
were collected at 5, 10, 17, 24, and 31 days post-anthesis (DPA) (8:00-9:00 a.m.). Error bars indicate SE (n = 3).
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FIGURE 9

The phosphoenolpyruvate carboxylase (PEPC) activities of the cotton fibers in relation to soil available phosphorus (AP) levels in 2019 and 2020. FB,
fruiting branch. P0: 3 ± 0.5 mg kg−1. P1: 6 ± 0.5 mg kg−1. P2: 15 ± 0.5 mg kg−1. The cotton fibers were collected at 5, 10, 17, 24, and 31 days post-
anthesis (DPA) (8:00-9:00 a.m.). Error bars indicate SE (n = 3).
FIGURE 10

Interrelationship between the activities of the enzymes engaged in fiber elongation and phosphorus (P) contents of the subtending leaves in 2019
−2020. The P content data of the subtending leaves were referenced from Sun et al. (2022). * and ** show significant differences at p<0.05 and
p<0.01. n=18, R 0.05 = 0.468, R 0.01 = 0.590.
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indicated that soil AP deficiency hindered K absorption, thereby

reducing the K+ content of fibers, as reported in a previous study

(Luo et al., 2017). However, some studies have shown that excessive

P application can reduce the K+ content of lettuce (Chen et al.,

2015) and grass (Sabreen et al., 2022) due to the diluting effects

caused by increased plant yield. The malate contents of the cotton

fibers reduced by 19.7 and 30.6% in P1 and P0, compared to P2
(Figure 2), indicating that low soil AP limited the malate synthesis,

consistent with previous reports (Fernandez Del-Saz et al., 2017).

Compared with 2019, the changes in soluble sugar content were

greater under three soil AP levels in 2020. It may be related to

precipitation (Table 1), and drought can exacerbate the impact of

low-P-stress (Singh et al., 2006a; Singh et al., 2006b). Low soil AP

limited the transportation of photosynthetic products to cotton

bolls (lower sucrose transformation rate) (Sun et al., 2022), further

reducing the soluble sugar and sucrose contents of the fibers

(Figures 3, 4). K+, malate, soluble sugar, and sucrose are

important osmotically active solutes facilitating fiber elongation

(Ruan et al., 1997; Ruan et al., 2001). The K+, malate, soluble sugar,

and sucrose contents of the cotton fibers were positively correlated

with the P content of the subtending leaves at 10−31 DPA

(Figure 5). This indicates that low soil AP reduces the contents of

osmotically active solutes in the fibers by affecting P content and

sucrose metabolism in the subtending leaves, further influencing

fiber vacuoles which facilitate fiber elongation through

osmoregulation (Yang et al., 2016).

Low-P-stress increases root PM-H+-ATPase activities (Shen

et al., 2006) and promotes organic acid secretion (Yan et al.,

2002) to enhance P absorption capacity in crops. However, in our

experiment, the activities of fiber PM-H+-ATPase declined by 13.4

and 19.5% under P1 and P0 (soil AP deficiency), respectively,

compared to P2 (Figure 6). A significant positive correlation

(p<0.01) was found between the fiber PM-H+-ATPase activity and

the P content of the subtending leaves during the period of 10–31

DPA (Figure 10), similar to the report by Salinas et al. (2013). This

indicated that soil AP content has an important regulatory effect on

PM-H+-ATPase activity. It also points out that there are differences

in the response of PM-H+-ATPase activity to low-P-stress among
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crop species, and PM-H+-ATPase is mainly responsible for

generating transmembrane electrochemical gradient to drive the

transportation of many substances, which may be related to higher

P levels (Chang et al., 2009). Additionally, the responses of fiber V-

H+-ATPase, V-H+-PPase, and PEPC activities (Figures 7–9) to soil

AP deficiency were similar to that of PM-H+-ATPase activity

(Figure 6). The P content of the subtending leaves affects the

activity of enzymes related to cotton fiber elongation in various

ways. P levels can alter the affinities between enzymes and substrates

(Xu et al., 2008), and low-P-stress can affect enzyme activities

through the sucrose signaling pathways (Wang and Ruan, 2013;

Ruan, 2014). Moreover, the impact of low-P-stress on the “source

(subtending leaf)” may lead to insufficient sucrose supply in the

“sink (cotton fiber)” (Sun et al., 2022). This may trigger sucrose

signaling leading to downregulation of the upstream genes coding

for the related enzymes involved in fiber elongation (Wang and

Ruan, 2013; Ruan, 2014), thus limiting the catalytic abilities of the

enzymes at the genetic level. In our study, we verified that low soil

AP level play the osmoregulation role in fiber elongation through

the P content of subtending leaves (Figure 11B) (Yang et al., 2016).

After analyzing the two-year VLmax and TL data for the CCRI-79

and SCRC-28, we found that the CVs (6.0%) of the VLmax were

greater than twice that of TL (2.8%) (Table 2), indicating that soil

AP deficiency mainly reduces fiber length (Figure 12) by decreasing

the VLmax (Yang et al., 2016). Soil AP deficiency limited the

transportation of the osmotically active solutes from subtending

leaves to fibers, reducing the activity of related enzymes involved in

fiber elongation, thus inhibiting fiber elongation and ultimately

reducing fiber length. Moreover, low-P-stress, especially the P0
treatment, highly impacted the fiber length of FB2–3 more than

FB10–11. This was because the CVs of the osmotically active solutes

(K+, malate, soluble sugar, and sucrose) and related enzymes

engaged in fiber elongation (PM-H+-ATPase, V-H+-ATPase, V-

H+-PPase, and PEPC) were lower at FB10–11 than at FB2–3.

The agronomic and yield traits of different cotton varieties have

different sensitivities to low P (Iqbal et al., 2020; Li et al., 2020);

however, it is unclear whether cotton fiber length also has varying

sensitivities to low P. In our research, soil AP deficiency
FIGURE 11

The growth phenotype of CCRI-79 and SCRC-28 under three soil available phosphorus (AP) levels (A) and the schematic diagram shows the
mechanism of how soil AP deficiency affects fiber elongation (B).
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significantly impacted the contents of the osmotically active solutes

(Figure 5), activities of related enzymes involved in fiber elongation

Figure 10), and fiber length (Figure 12; Table 2) of SCRC-28 and

CCRI-79. Furthermore, the responses of these parameters to soil AP
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deficiency showed that SCRC-28 had higher sensitivity to low-P-

stress compared to CCRI-79. Among all the osmotically active

solute contents, fiber K+ content was the most correlated with leaf P

content in CCRI-79 and SCRC-28; whereas, the interrelationship
TABLE 2 Elongation eigenvalues influenced by soil phosphorus availability (AP) in 2019−2020.

2019 2020

Cultivar FBP AP Treatment R2 VLmax TL Lmax Lobs R2 VLmax TL Lmax Lobs

(mm d-1) (d) (mm) (mm) (mm d-1) (d) (mm) (mm)

CCRI-79 FB2-3 P0 1.000 2.4 7.6 28.0 27.8b 0.999 2.2 8.4 27.6 27.6b

P1 1.000 2.5 7.5 28.6 28.7ab 0.999 2.3 8.2 28.6 28.3ab

P2 0.999 2.7 7.4 30.2 29.6a 0.999 2.4 7.9 29.4 29.5a

CV (%) 0.1 6.0 1.3 3.9 3.1 0.0 4.3 3.1 3.2 3.4

FB6-7 P0 1.000 2.5 7.6 28.3 28.3b 0.999 2.2 8.4 28.6 28.6b

P1 0.999 2.6 7.2 28.9 29.3a 0.999 2.4 8.2 29.3 29.3ab

P2 0.999 2.7 7.3 29.9 29.6a 0.999 2.5 7.9 30.1 30.3a

CV (%) 0.1 3.8 2.8 2.8 2.4 0.0 6.5 3.1 2.6 2.9

FB10-11 P0 1.000 2.5 7.6 28.3 28.1b 0.999 2.3 8.4 28.9 28.9b

P1 1.000 2.5 7.5 28.0 28.8a 0.999 2.4 8.2 29.9 29.6ab

P2 0.999 2.6 7.4 29.5 29.3a 0.999 2.5 7.9 30.0 30.1a

CV (%) 0.1 2.3 1.3 2.8 2.0 0.0 4.2 3.1 2.1 2.1

SCRC-28 FB2-3 P0 0.998 2.0 8.3 25.2 25.4b 0.999 2.1 8.4 26.9 26.7b

P1 0.994 2.4 7.9 28.1 28.2a 1.000 2.3 8.3 28.2 28.1a

P2 0.995 2.5 7.8 29.4 29.1a 0.999 2.4 7.9 29.2 28.9a

CV (%) 0.2 11.5 3.3 7.8 6.9 0.1 6.7 3.2 4.1 4.1

P0 0.998 2.1 8.3 26.7 26.9c 0.999 2.2 8.4 28.1 27.8 b

P1 0.994 2.3 7.9 27.9 28.0b 1.000 2.3 8.4 29.5 29.3ab

P2 0.995 2.5 7.7 29.2 28.9a 0.999 2.5 7.9 30.0 29.7 a

CV (%) 0.2 8.7 3.8 4.5 3.6 0.1 6.5 3.5 3.4 3.5

FB10-11 P0 0.998 2.1 8.3 26.6 26.8b 0.999 2.2 8.4 27.7 27.4b

P1 0.994 2.3 7.9 27.2 27.3b 1.000 2.3 8.3 28.9 28.8a

P2 0.996 2.4 7.8 28.8 28.6a 0.999 2.5 7.9 29.5 29.2a

CV (%) 0.2 6.7 3.3 4.1 3.4 0.1 6.5 3.2 3.2 3.3

Significance

Cultivar (C) ** **

FBP NS **

AP ** **

C×FBP NS NS

C×AP * NS

FBP×AP * NS

C×FBP×AP NS NS
frontie
FBP, fruiting branch position; CV, coefficient of variation; VLmax, the maximum velocity of fiber elongation; TL, fiber rapid elongation duration; Lmax, theoretical maximum fiber length; Lobs,
observed final fiber length. Different letters within a column represent significant differences at p=0.05. * and ** represent significant differences at p<0.05 and p<0.01. NS represents
nonsignificance at p = 0.05.
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between fiber malate, soluble sugar contents, and fiber length

differed between the cultivars (Figure 5). The outcomes may

elucidate the reason that SCRC-28 was more sensitive to low-P-

stress compared to CCRI-79 (Table 2), suggesting higher fiber

malate content might be critical for fiber length (Figure 13) (Ruan

et al., 1997; Yang et al., 2016).

In the experiment, the fibers’ V-H+-ATPase and V-H+-PPase

activities were more sensitive to P contents of the subtending leaves

of SCRC-28 than CCRI-79 (Figure 10). Moreover, the relationship

between PM-H+-ATPase and PEPC activities and fiber length had

differences in the two cultivars (Figure 13). The V-H+-ATPase activity

decreased by 5.9–10.4% for CCRI-79 and 12.4–33.8% for SCRC-28 in

P1 and P0 at all the FBPs. Moreover, the V-H+-ATPase and V-H+-

PPase activities of the fibers had significant positive correlations with

the fiber length (p<0.05) in both cultivars. Compared with P2, in P1 and
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P0 the PEPC activity in fibers reduced by 16.6–23.4% for CCRI-79 and

20.9–40.2% for SCRC-28, respectively, over the course of the three FBPs

and two years. And the above results revealed that the SCRC-28’s V-

H+-ATPase and PEPC activities had higher sensitivity to low soil AP

levels, explaining the sensitivity of the fiber length of the low-P sensitive

cultivars to soil AP deficiency.
5 Conclusions
1. Low soil AP levels (P0 and P1) inhibited the fiber cell

elongation leading to reduced VLmax and fiber length,

mainly due to lower malate content and V-H+-ATPase

and V-H+-PPase activities.
FIGURE 13

Correlation between the contents of the osmotically active solutes and the activities of enzymes engaged in fiber elongation and fiber length in
2019−2020. * and **represent significant differences at p<0.05 and p<0.01. n=18, R 0.05 = 0.468, R 0.01 = 0.590.
FIGURE 12

Dynamic changes of cotton fiber lengths in relation to soil available phosphorus (AP) levels in 2019−2020. FB, fruiting branch. P0: 3 ± 0.5 mg kg−1.
P1: 6 ± 0.5 mg kg−1. P2: 15 ± 0.5 mg kg−1. The cotton fibers were collected at 5, 10, 15, 17, 24, 31, 38, 45 and 52 days post-anthesis (DPA) (8:00-9:00
a.m.). Error bars indicate SE (n = 3).
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Fron
2. Reduced osmotically active solute contents (K+, malate,

soluble sugar, and sucrose) and the activities of the related

enzymes (PM-H+-ATPase, V-H+-ATPase, V-H+-PPase, and

PEPC) involved in fiber elongation was lower at FB10–11 than

FB2–3 under soil AP deficiency (especially P0), suggesting

that the longer fiber lengths on the upper FBPs (FB10–11)

could adapt to low soil AP compared to lower FBPs (FB2–3).

3. Compared to CCRI-79, the fiber malate and soluble sugar

contents and V-H+-ATPase and PEPC activities of SCRC-

28 were more affected strongly by subtending leaves’ P

content, which may elucidate that SCRC-28 shows greater

sensitivity to soil AP deficiency.

4. Analyzing the impact of soil low AP on fiber osmoregulation

is beneficial for developing low-P-tolerant cotton cultivars.

Furthermore, it is necessary to investigate the effects of low-P

on fiber gene expression and protein synthesis.
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