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Preventing self-fertilization:
Insights from Ziziphus species
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French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for
Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
The fitness of self-progeny individuals is inferior to that of their outcrossed

counterparts, resulting in a reduction in a plant population’s ability to survive and

reproduce. To prevent self‐fertilization, angiosperms with hermaphrodite

flowers may exploit a variety of mechanisms, including synchronous

dichogamy and self-incompatibility. Synchronous dichogamy involves two

flowering morphs, with strict within-morph synchronization, thereby

preventing not only autogamy and geitonogamy but also intra-morph mating.

Self-fertilization is also prevented by self-incompatibility, a genetic mechanism

that allows the identification and rejection of “self” pollen, thereby preventing

both autogamy and geitonogamy. Here, I seek to provide a perspective of

flowering in Ziziphus species exhibiting both synchronous (i.e., “Early” morph

flowers open in the morning and “Late” morph flowers open in the afternoon)

protandrous dichogamy (i.e., pollen dispersal before the stigma becomes

receptive) and self-incompatibility.

KEYWORDS

dioecism, pre-or post-pollination mechanisms, self-incompatibility, synchronous
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Introduction

Most angiosperm species produce hermaphrodite flowers, with both male and female

organs in the same flower (Ainsworth, 2000; Renner, 2014). Hermaphroditism appears to

increase pollination efficiency and fruit and seed set via self-pollination, i.e., transfer of

pollen grains from the anther of one flower to the stigma of the same flower (autogamy) or

to a genetically similar flower (geitonogamy), thus ensuring seed production. However,

self-progeny plants exhibit reduced fitness, i.e., lower levels of heterozygosity, than their

outcrossed counterparts, giving rise to a phenomenon known as inbreeding depression or a

reduction in a population’s ability to survive and reproduce (Barrett, 1998; Kelly, 2005). To

prevent self-pollination and hence self‐fertilization, plant species with hermaphrodite

flowers often develop morphological, molecular and/or phenological adaptations (Lloyd

and Webb, 1986; Bertin, 1993; Barrett, 1998; Opedal, 2018) that are exploited in pre- or

post-pollination mechanisms [see Narbona et al., 2011 and references within).
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The pre-pollination mechanisms are herkogamy and

dichogamy. These two mechanisms are similar in that they both

facilitate a separation of the presentation of mature anthers and

stigmas and hence prevent self-fertilization (Lloyd and Webb, 1986;

Wang H, et al., 2021). In herkogamy, morphological barriers

provide a spatial separation of sexual functions, which reduces

the possibility of intra-flower self-pollination; for example,

hermaphrodite flowers may have long stamens and short styles or

short stamens and long styles (Webb and Lloyd, 1986; Opedal,

2018). In contrast, in dichogamy, the maturation sequence of the

sex organs in hermaphrodite flowers (Stout, 1928 and references

within) results in a temporal separation of male and female

functions. As such, there is no overlap between staminate and

pistillate maturity in any particular flower, and that flower will thus

be functionally male or female at a specific developmental time.

Dichogamy, being a phenological adaptation that facilitates a

temporal separation of male and female reproductive functions

within each flower, is thus also referred to as “temporal dioecism”

(Cruden, 1988; Molano-Flores, 2001). The term “protandrous

dichogamy” is used when the male organs mature first, and

“protogynous dichogamy,” when the first phase is female.

Protandry is considered less effective in preventing self-

fertilization, because pollen may often remain in the anthers and

allow self-fertilization when stigmas become receptive

(Bertin, 1993).

Dichogamy can be expressed at the whole plant level. As such,

flower maturation and anthesis are synchronized at the whole plant

level (synchronous dichogamy), meaning that pollen grains are

released or stigmas mature within a small window of time (a few

hours) in all the flowers on the plant (Narbona et al., 2011; Endress,

2020), producing two morphs with a reciprocal timing of male and

female sexual functions. In other words, this developmental

synchronization results in a “female” or “male” plant phase at a

specific time of the day.

The post-pollination mechanism for preventing self-

fertilization is the molecular mechanism of self-incompatibility,

which is a genetic mechanism that is controlled by one or more

multi-allelic loci and that relies on a series of cellular interactions to

prevent self-fertilization (Allen and Hiscock, 2008; Fujii and Kubo,

2016). The self-incompatibility mechanism involves a process of

self- and non-self-recognition between the pollen grain and the

pistil, which will lead to inhibition of the fertilization of the self-

pollen grain (Takayama and Isogai, 2005; Fujii and Kubo, 2016).

Self-incompatibility enforces outcrossing, playing a vital role in

species diversity in flowering plants (Goldberg et al., 2010).

While each one of the above-described adaptations is in itself

thought to effectively prevent self-fertilization, some species have

more than one mechanism, as is manifested in the model for this

perspective—the hermaphroditic self-incompatible protandrous

dichogamous flowers of Ziziphus. Since in protandrous flowers

the possibility of self-fertilization by geitonogamy is higher than

in protogynous, self-incompatibility may have evolved in response

to geitonogamy (Porcher and Lande, 2005).

Here, I review the current literature addressing the role of

synchronous dichogamy and self-incompatibility in preventing self-

fertilization in Ziziphus species.
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Preventing selfing—Ziziphus
as a case study

The diversity of mechanisms allowing/preventing sexual

reproduction (reproductive strategies) in the short-lived (two-day)

flowers of species of Ziziphus (Rhamnaceae) (Figure 1) is well

illustrated in studies of the morphology, physiology, genetics and

reproduction of Ziziphus (Galil and Zeroni, 1967; Lyrene, 1983;

Weekley et al., 2002; Tel-Zur and Schneider, 2009; Asatryan and

Tel-Zur, 2014; Cerino et al., 2015). Protandrous synchronous

dichogamy was first reported in the evergreen species, Z. spina-

christi (L.) Willd., commonly known as Christ’s thorn (Galil and

Zeroni, 1967). Later, it was also reported in Z. jujuba, Z. mucronata

and Z. mauritiana, all Old World Ziziphus species (Islam and

Simmons, 2006). In these species, protandrous dichogamy is

synchronized at the tree level, i.e., the flowers of each individual

plant mature in synchronization, with little or no overlap between

the sexual stages (Galil and Zeroni, 1967; Lyrene, 1983; Zietsman

and Botha, 1992; Tel-Zur and Schneider, 2009; Wajnberg et al.,

2019; Tel-Zur and Keasar, 2020). This rigid synchronization

generates two genotype-specific morphs (Table 1)—one in which

the male phase occurs in the morning (type A or “Early morph”)

and the other in which the male phase occurs in the afternoon (type

B or “Late morph”)—in a ratio of 1:1 in wild populations (Galil and

Zeroni, 1967; Renner, 2001). The offspring of a hand pollination

trial between the genotypes A and B segregated according to a ratio

of 1:1 (“Early morph”: “Late morph”) (Supplementary Data),

supporting the assumption that a single pair of alleles controls

this trait (Renner, 2001 and references within).

In controlled hand self-pollination studies, a mechanism of self-

incompatibility was identified in three Ziziphus species; in these

trials, Z. mauritiana and Z. spina-christi produced fruits that

dropped off soon after pollination or before maturation, while in

Z. jujuba some flowers set small fruits lacking viable seeds (Galil

and Zeroni, 1967; Lyrene, 1983; Asatryan and Tel-Zur, 2013; Wang

F, et al., 2021). The presence of binucleate pollen grains and the

cessation of pollen tube growth in the style observed in these three

Ziziphus species support the assumption of a gametophytic self-

incompatibility system (Asatryan and Tel-Zur, 2013). Self-

incompatibility was also reported in Z. mucronate and Z. celata

(Zietsman and Botha, 1992; Weekley and Race, 2001; Weekley et al.,

2002; Cerino et al., 2015).

Two other Ziziphus species, both native to the New World, Z.

mistol (Islam and Simmons, 2006) and Z. celata, also exhibit

protandrous dichogamy, but the sexual phases overlap, i.e., there

is a lack of synchronization at the plant level, thus potentially

allowing geitonogamy and fertilization within a morph (Weekley

et al., 2002; Cerino et al., 2015). In Z. celata, geitonogamy can occur,

but self-fertilization is prevented by self-incompatibility (Weekley

et al., 2002). In contrast, Z. mistol sets fruits and viable seeds after

self-pollination, showing that this species is self-compatible, but a

higher fruit set in obtained after cross-pollination (Cerino et al.,

2015). Porcher and Lande (2005) developed a theoretical model to

explain the breakdown of the gametophytic self-incompatibility

system, showing that the spread of the self-compatible genotypes is

favored by low or high selfing rates, a low number of S-alleles and
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pollen limitation. The fact that cross-pollination results in a higher

fruit set in Z. mistol suggest a partial self-fertility, as reported in

Acca sellowiana (Ramıŕez and Kallarackal, 2017). In Leavenworthia

alabamica self-compatible plants were backcrossed into a self-

incompatible population showing that self-compatible plants

produced more seeds but those are less viable than outcrossed

seeds, evoking that seed discounting and inbreeding depression may

explain the fact that self-incompatibility are wide maintained also

after selfing mutations in a population (Layman et al., 2017).

Synchronous dichogamy is a very effective mechanism to prevent

self-fertilization, geitonogamy, and fertilization within a morph

(Lyrene, 1983; Asatryan and Tel-Zur, 2013). However, a

breakdown of the synchronization has been observed in natural

populations of Z. spina-christi at the end of the flowering season
Frontiers in Plant Science 03
(Galil and Zeroni, 1967), potentially allowing fertilization within a

morph (but not via geitonogamy due to the self-incompatibility

system) and thereby temporarily changing the species’ reproductive

strategy to create a “window” for producing more seeds. To test this

premise, Tel-Zur and Keasar (2020) investigated the outcome of hand

cross pollination within trees of the samemorph in a natural Z. spina-

christi population. Fruit set was obtained, but at a significantly lower

rate than open pollination. Important to note that the breakdown of

the synchronization at the tree level was later reported in “Early

morph” trees at the start of the flowering season, but it was

particularly marked in both morphs at the end of the flowering

season (Tel-Zur and Keasar, 2020), as was also reported by Galil and

Zeroni (1967). A similar behavior was observed in the self-

incompatible protandrous Aconitum grossedentatum (Ida and

Minato, 2020). The collapse of the flower synchronization at the

end of the flowering season suggests that synchronous protandry

reduces only pre-pollination (selfing) events while post-pollination is

blocked by the self-incompatibility system; showing that the benefit

of the synchronous protandry decreases over the flowering season

(Ida and Minato, 2020). Along with the breakdown of the flower

synchronization in Ziziphus species, many of the flowers did not

make the transition to the female phase due to the failure of the style

to elongate and non-maturation of the stigma (Galil and Zeroni,

1967; Tel-Zur and Schneider, 2009; Tel-Zur and Keasar, 2020),

resulting in a higher proportion of male-phase flowers. This
B

C D

A

FIGURE 1

Floral developmental stages in Ziziphus jujuba. (A) Flower bud before opening. (B) Flower opening. (C) Male phase: erect stamens, open anthers, and
short style. (D) Female phase: elongated pistil and developed stigma. Stamens recurve between the sepals. The developmental stages, i.e., anthesis
and flower maturation, are synchronized at the whole plant level. Scale bar: 1 mm.
TABLE 1 Synchronous dichogamy morphs. “Early” morph and “Late”
morph in Z. spina-christi [in a ratio of 1:1 in wild populations, see Galil
and Zeroni (1967)].

Day 1 Day 2

Morph A

Morning Afternoon Evening Morning Afternoon

♂ ♀ ♀

Morph B ♂ ♀ ♀
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phenomenon together with the breakdown of synchronization

described above led to a marked alteration in the ovule:pollen grain

ratio; which can contribute to the evolution of dioecy.
Discussion

Since dichogamy has been interpreted as a mechanism for

preventing inbreeding depression, the combination of dichogamy

and self-incompatibility elicits questions about the functional

significance of synchronous dichogamy. According to Bertin

(1993), a study of angiosperm families revealed that the

prevalence of dichogamy was similar in self-incompatible and

self-compatible species, i.e., it was found in 73% of 239 self-

incompatible species (from 59 families) and in 75% of 673 self-

compatible species (from 89 families). Thus, Bertin postulated that

– even if it can prevent self-fertilization – the main role of

synchronous dichogamy does not lie in preventing self-

fertilization but rather in other evolutionary mechanisms, such as

preventing pollen-pistil interference or reducing pollen waste. It

would thus appear that synchronous dichogamy provides only

partial protection from self-fertilization (as evidenced by the

breakdown of synchronization described above), whereas self-

incompatibility provides complete protection. With this notion in

mind, Routley et al. (2004) used published data to construct a

phylogenetic framework. They did indeed show positive

correlations between protandry (male function first) and self-

incompatibility (as in Ziziphus species) and also between

protogyny (female function first) and self-compatibility, leading

to the conclusion that protandry probably evolved to reduce pollen-

pistil interference, and protogyny, to reduce inbreeding. Therefore,

it may be suggested that the principal function of synchronous

dichogamy is to reduce anther-stigma interference, thus promoting

efficient pollen dispersal (Lloyd and Webb, 1986; Harder et al.,

2000). Notwithstanding this notion regarding the improved

pollination efficiency in dichogamous species (which remains to

be confirmed in future studies), it is clear that the temporal

separation of floral sex morphs per se prevents, or strongly

reduces, selfing. Indeed, the simultaneous occurrence of three

mechanisms that prevent inbreeding, namely, dichogamy,

synchronization of anthesis at the whole tree level, and self-

incompatibility, seems to indicate complementary and redundant

mechanisms to prevent self-pollination. For example, in a study of

two Euphorbia species, geitonogamy was prevented in the self-

compatible species E. nicaeensis due synchronized protogyny, but in

E. boetica selfing was prevented due to partial self-incompatibility

(Narbona et al., 2011). The authors of that study concluded that

synchronous dichogamy and self-incompatibility cannot occur in

the same species, since a single mechanism is sufficient to prevent

(or strongly reduce) self-fertilization. However, the data collected in

Ziziphus species stands in contradiction to this conclusion: in

Ziziphus the functions of self-incompatibility and synchronous

protandrous dichogamy do overlap (at least in part), although

these redundant mechanisms relax at the breakdown of

synchrony (Galil and Zeroni, 1967; Tel-Zur and Keasar, 2020),
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thus increasing the pool of potential reproductive partners for

within-morph crossing. In keeping with this idea, trials using

marker genes and floral manipulations have supported the

assumption that herkogamy and dichogamy reduce self-

pollination and promote pollen dispersal (Barrett et al., 2003).

The literature does not offer any clues to the evolutionary origin

of the mechanisms that serve to prevent self-fertilization. However,

the fact that some Ziziphus species have ‘abandoned ’

synchronization and are self-compatible may be connected to the

notion that synchronous dichogamy will probably lead to dioecy,

i.e., to facilitating the evolution of separate sexes (Renner, 2001 and

references within). In this regard, a pioneering study in Z. spina-

christi used an evolutionary probabilistic model to test the possible

role of insect pollinators in driving such an evolutionary process

(Wajnberg et al., 2019). In that study, flower development patterns,

floral food rewards, pollinator visits and fruit production were

compared between “Early” and “Late” morphs. The data showed

that the “Early” morph functions mainly as the pollen donor, while

the “Late”morph sets more fruit (Wajnberg et al., 2019), suggesting

that “Early” and “Late”morphs will specialize into male and female

plants, respectively.

The molecular and genetic regulation of synchronous

dichogamy are not yet understood. Further research is needed to

uncover the specific genetic and molecular components that control

synchronous dichogamy by studying the expression patterns of

candidate genes, analyzing genetic mutants, and exploring the

influence of environmental cues on reproductive success. The

specific genes and molecular pathways involved in the timing and

coordination of reproductive organ development remain to be

elucidated. Further phylogenetic research aiming to understand

the evolution and diversification of synchronous dichogamy would

trace the evolutionary relationships among different plant species

and identify patterns of trait evolution, including the presence or

absence of self-incompatibility. In conclusion, synchronous

protandrous dichogamy flowering may thus play a more complex

role than previously appreciated in regulating the reproductive

system in Ziziphus and other species.
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