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Abstract. This study develops a lightning data assimilation
(LDA) scheme for the regional, convection-permitting nu-
merical weather prediction (NWP) model AROME-France.
The LDA scheme intends to assimilate total lightning, i.e.,
cloud-to-ground (CG) and inter- and intra-cloud (IC), of the
future Meteosat Third Generation (MTG) Lightning Imager
(LI; MTG-LI). MTG-LI proxy data are created, and flash ex-
tent density (FED) fields are derived. An FED forward obser-
vation operator (FFO) is trained based on modeled, column-
integrated graupel mass from 24 storm days in 2018. The
FFO is successfully verified for 2 independent storm days.
With the FFO, the LDA adapts a 1-dimensional Bayesian
(1DBay) retrieval followed by a 3-dimensional variational
(3DVar) assimilation approach that is currently run opera-
tionally in AROME-France for radar reflectivity data. The
1DBay retrieval derives relative humidity profiles from the
background by comparing the FED observations to the FED
inferred from the background. Retrieved relative humidity
profiles are assimilated as sounding data. The evaluation of
the LDA comprises different LDA experiments and four case
studies. It is found that all LDA experiments can increase the
background integrated water vapor (IWV) in regions where
the observed FED exceeds the FED inferred from AROME-
France outputs. In addition, IWV can be reduced where spu-
rious FED is modeled. A qualitative analysis of 6 h accumu-
lated rainfall fields reveals that the LDA is capable of locat-
ing and initiating some local precipitation fields better than

a radar data assimilation (RDA) experiment. However, the
LDA also leads to rainfall accumulations that are too high at
some locations. Fractions skill scores (FSSs) of 6 h accumu-
lated rainfall are overall similar for the developed LDA and
RDA experiments. An approach aiming at mitigating effects
due to differences in the optical extents of lightning flashes
and the area of the corresponding cloud was developed and
included in the LDA; however, it does not always improve
the FSS.

1 Introduction

Convective weather phenomena such as thunderstorms
threaten society by producing severe weather and related
impacts, e.g., flash floods, large hail, tornadoes, and strong
winds. Cloud electrification and subsequent lightning dis-
charges are caused by interactions of different ice particles
inside convective clouds. The process makes lightning an ef-
fective tracer of deep convection. The new type of lightning
locating systems (LLSs) on geostationary (GEO) satellites
allows for continuous large-scale monitoring of total, i.e.,
cloud-to-ground (CG) and inter- and intra-cloud (IC), light-
ning activity. The Geostationary Lightning Mappers (GLMs)
on the GOES-R series satellites cover the Americas and the
adjacent oceans (Goodman et al., 2013). A similar instru-
ment, the Lightning Imager (LI), was launched in December
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2022 on board the first Meteosat Third Generation (MTG;
MTG-LI) satellite to monitor lightning over Europe, Africa,
and large portions of the Atlantic Ocean, among other re-
gions (Dobber and Grandell, 2014). High-quality GEO data
are also available in data-sparse regions with limited access,
such as over oceans and mountainous terrain as well as coun-
tries without radar networks. GEO lightning data may be-
come important for numerical weather prediction (NWP),
potentially improving the initial state of the model and the
accuracy of the predicted storm location, timing, and inten-
sity. Lightning data assimilation (LDA) addresses this objec-
tive.

However, LDA is not trivial. Operational models, e.g.,
the Application of Research to Operations at Mesoscale
(AROME) model (Brousseau et al., 2016), the regional op-
erational model of Météo-France, do not include any ex-
plicit representation of lightning. Other difficulties of light-
ning data assimilation include the ephemeral nature of light-
ning relative to the life cycle of thunderstorms, and time–
space shifts between observations and the background, which
are usual at the storm scale, challenge up-to-date data assim-
ilation systems (zero-spread, zero-gradient problems) (e.g.,
Janisková and Lopez, 2013). Background errors are not
Gaussian, and lightning is more related to lower-impact vari-
ables such as hydrometeor content and vertical velocity than
to thermodynamic variables. Despite those difficulties, pre-
vious studies have shown the benefits of LDA for forecasts
of convection and related phenomena.

Early LDA studies used NWP models that parametrize
convection. Lightning data controlled the activation of the
convective parametrization scheme (CPS). Often nudging
techniques were applied to modify the model humidity and
wind fields (e.g., Papadopoulos et al., 2005; Mansell et al.,
2007; Lagouvardos et al., 2013; Giannaros et al., 2016) or
latent heat (e.g., Pessi and Businger, 2009). These studies re-
ported positive effects of LDA on the score of precipitation
forecasts, especially for the location and quantity of heavy
rain.

When NWP models resolve convection (< 3 km horizontal
resolution), so-called lightning proxies can be used to relate
NWP output to lightning observations. Some previous stud-
ies suggested and tested cloud top height, cloud top pressure,
and cold cloud depth as predictors to estimate the lightning
density (e.g., Price and Rind, 1992, 1993; Allen and Picker-
ing, 2002; Wong et al., 2013; Giannaros et al., 2015; Kara-
giannidis et al., 2019).

Recent developments corroborate the use of cloud dy-
namics or ice hydrometeors, e.g., graupel, for reliable light-
ning proxies. Indeed, field campaigns like those reported by
Deierling et al. (2008) found a strong correlation between
lightning activity and ice mass fluxes. Deierling and Petersen
(2008) showed a robust relationship between total lightning
rate and updraft characteristics, especially the updraft vol-
ume. Buiat et al. (2017) analyzed CloudSat Cloud Profiling
Radar (CPR) to relate cloud ice water content (IWC) and ef-

fective radius (ER) to LINET (Betz et al., 2009) lightning
strokes. They found that high IWC and high ER are favor-
able to CG strokes. Graupel contributes to both high IWC
and high ER. Strong on-going updrafts can cause high IWC.
Hence, the findings agree with the studies of Deierling et al.
(2008) and Deierling and Petersen (2008).

Various lightning proxies have been tested in NWP stud-
ies. McCaul et al. (2009) related domain-wide peaks of prox-
ies based on ice-phase hydrometeor fields, one related to up-
ward fluxes and the second related to vertically integrated
ice content, to peaks of the flash rate density and suggested
a blended solution using both proxies. Yair et al. (2010) in-
troduced a lightning potential index (LPI) that is calculated
using the simulated grid-scale vertical velocity and simulated
hydrometeor mass mixing ratios of liquid water, cloud ice,
snow, and graupel. Barthe et al. (2010) concluded that none
of precipitation ice mass, ice water path, ice mass flux prod-
uct, updraft volume, maximum vertical velocity, and cloud
top height could predict the lightning flash rates and trends
well for both of their two cases. However, more recent studies
of Formenton et al. (2013), Federico et al. (2014), and Bovalo
et al. (2019) confirm a key role of graupel in the cloud elec-
trification and use ice and/or graupel content for the lightning
simulation and proxy definition.

With the lightning proxies, lightning observation operators
are created to compare the model output to the lightning ob-
servations and assimilate the lightning data. Most of the re-
cent LDA schemes use lightning operators based on ice hy-
drometeors or updraft characteristics, e.g., graupel mass or
updraft volume. In the following, a brief overview of LDA
techniques is presented, with the focus on 3-dimensional
variational (3DVar) LDA and studies to assimilate GLM data.

Fierro et al. (2012) put forward a widely used (e.g., Dixon
et al., 2016; H. Wang et al., 2017; Federico et al., 2017;
Y. Wang et al., 2017) concept of lightning proxy, calculat-
ing water vapor mixing ratio from simulated graupel mass
and observed flash rates. They then increased the water va-
por mixing ratio in the 0 to−20 ◦C layer where lightning was
observed and the relative humidity (RH) of the background
was less than 81 %. Precipitating convection was better cor-
related with observed reflectivity fields for the LDA than for
the control experiment. The method was further tested by
Fierro et al. (2014) using 10 min flash extent density (FED).
Lynn et al. (2015) and Marchand and Fuelberg (2014) refined
the nudging technique of Fierro et al. (2012) to increase the
virtual temperature perturbation and favor static instability
or to warm the source layer of the convective updraft, respec-
tively. Lynn et al. (2015) also introduced an extension to sup-
press spurious convection. Other nudging-based LDAs make
use of ice-phase particle mixing ratios (e.g., Qie et al., 2014;
Wang et al., 2018) and radar reflectivity pseudo-observations
(Wang et al., 2014).

Mansell (2014) and Allen et al. (2016) assimilated syn-
thetic GLM total lightning represented as FED using an en-
semble Kalman filter (EnKF). Mansell (2014) used both the
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simulated flash rate and a linear relationship between total
lightning and graupel volume as observation operators. Allen
et al. (2016) recommend a linear best fit operator based on
graupel mass and graupel volume. In preparation of a hy-
brid variational–ensemble LDA technique for GLM, Apo-
daca et al. (2014) assimilated World Wide Lightning Loca-
tion Network (WWLLN) data in the Weather Research and
Forecasting (WRF) model. However, the use of WWLLN as
a GLM proxy is debatable as WWLLN mainly detects CG
flashes, whereas GLM detects total lightning.

A 3DVar LDA was applied by Y. Wang et al. (2017) us-
ing the relationship given by Fierro et al. (2012) and assimi-
lated pseudo-RH profiles in the form of sounding data. They
noted increased forecast skills in general but also that the
method still needs improvement to suppress spurious con-
vection. Fierro et al. (2016) replaced their previous nudg-
ing by a 3DVar LDA with 10 min FED. They found that
the radar data assimilation (RDA) yielded better forecasts of
convective cells during the first 30 min of the forecast, while
the LDA gave better storm structures 1 h into the forecast.
The combination of both RDA and LDA provided the high-
est forecast skill. Fierro et al. (2019) tested the 3DVar LDA
technique developed for ground-based data with GLM total
lightning observations. It adjusts the water vapor mass mix-
ing ratio (qv) in regions of lightning by setting RH to 95 %
in a layer 3 km above the lifted condensation level (LCL) if
the background RH is less than 95 %. Both LDA and RDA
improved the short-term accumulated precipitation and radar
reflectivity composite. Hu et al. (2020) adopted the tech-
nique of Fierro et al. (2019) and found, as also previously
reported, a wet bias in the model that increased with the fore-
cast time. The method still misses a suppression of spurious
convection in regions without lightning. They also conducted
a layer depth sensitivity study with similar results for adding
qv in layers of 2 to 10 km depth. Kong et al. (2020) present
an LDA of real GLM data in an EnKF framework. FED at
10 km pixel resolution is assimilated using both graupel mass
and graupel volume-based observation operators, with posi-
tive results on the convection forecasts. The LDA of Chi-
nese satellite Fengyun-4 (FY4) lightning data was realized
by Liu et al. (2020) through creating pseudo-RH profiles and
by Chen et al. (2020) through retrieving maximum proxy-
reflectivity and finally pseudo-reflectivity profiles from the
lightning data.

The main goal of this work is to develop a 3DVar LDA for
MTG-LI data to improve analyses and forecasts, especially
in convective situations. Pseudo-observations of the MTG-
LI are generated to form the lightning database (Sect. 3).
A novel LDA scheme is developed for the regional, oper-
ational, convective-scale model AROME-France of Météo-
France. Various approaches in which FED is assimilated to-
gether with or without radar reflectivity and Doppler wind are
compared to assess the added value of the developed LDA.
Recent Var LDAs using GLM data, e.g., Fierro et al. (2019)
and Hu et al. (2020), cannot suppress spurious convection.

Figure 1. AROME-France physical domain and model topography.
The AROME-France horizontal grid is equidistant at 1.3 km resolu-
tion.

Our LDA of GEO lightning data should promote convection
if needed and also suppress spurious convection.

The NWP model configuration and lightning data as used
for this work are briefly explained in Sects. 2 and 3, respec-
tively. Section 4 introduces the lightning observation opera-
tor developed for this study. Then, our LDA method and the
model experiments are explained in Sects. 5 and 6. Section 7
describes the AROME-France analysis resulting from LDA.
One of four case studies is detailed using different assimi-
lation experiments, including the new LDA. Finally, Sect. 9
concludes this work.

2 Model configuration

AROME-France is the convective-scale, limited-area model
run operationally by Météo-France since 2008 (Seity et al.,
2011). It provides 36 to 42 h forecasts five times a day (00:00,
03:00, 06:00, 12:00, 18:00 UTC). After an update in 2015,
the model grid comprises 1440×1536 grid points in the hor-
izontal with uniform 1.3 km horizontal resolution. The physi-
cal model domain and model topography are shown in Fig. 1.
In the vertical, the lowest model level is situated at around
5 m above ground. Each column extends up to the pressure
level of 10 hPa. The vertical resolution is refined homoge-
neously from top to bottom by a factor of 1.5. In total, 90
vertical levels (33 levels below 2000 m) are computed. Model
time steps equal 50 s. Model dynamics are non-hydrostatic,
semi-implicit, and semi-Lagrangian. Lateral boundary condi-
tions (LBCs) are extracted from the global model ARPEGE
(Bouyssel et al., 2022). AROME-France features a Davies re-
laxation (Davies, 1976) coupling and ARPEGE synchroniza-
tion. The initial conditions rely on a 3DVar data assimilation
technique (Sect. 5).

Deep convection is expected to be mostly resolved on the
model grid (Fischer et al., 2018). Parametrization of sub-
grid-scale shallow convection is based on Pergaud et al.
(2009). AROME-France uses a mixed-phase microphysi-
cal scheme with riming processes and graupel (Seity et al.,
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2011). In particular, the microphysics scheme of AROME-
France separates five prognostic hydrometeor variables that
are specific contents of precipitating species rain (qr), snow
(qs), and graupel (qg) and the two non-precipitating species
ice crystals (qi) and cloud droplets (qc). In addition, the wa-
ter vapor specific content qv (also termed specific humidity)
is computed. Hail is assumed to behave as large graupel par-
ticles. Overall, more than 25 processes are parametrized into
the microphysics scheme (Lascaux et al., 2006). AROME-
France physics include a 1-dimensional (1D) turbulence
parametrization as a combination of a prognostic turbu-
lent kinetic energy (TKE) equation with a diagnostic mix-
ing length. An externalized surface (SURFEX) scheme and
the European Center for Medium-Range Weather Forecasts
(ECMWF) radiation parametrization are other components
of AROME-France model physics. Details can be found in
Seity et al. (2011) and Brousseau et al. (2016).

3 Lightning data

This work adapts the GEO lightning pseudo-observation gen-
erator as developed by Erdmann et al. (2022). It was trained
using low-frequency (LF) ground-based National Lightning
Detection Network (NLDN) records collected over the south-
east US. The LF ground-based lightning observations in this
study are provided by the French network Meteorage (Schulz
et al., 2016; Pédeboy, 2015) as input. Meteorage locates to-
tal lightning with a discrimination between CG strokes and
IC pulses. They are clustered to the flash level data using the
same method as Erdmann et al. (2020), i.e., a spatiotemporal
clustering with criteria of 20 km and 0.4 s. To verify Mete-
orage data as suitable input to the generator, Meteorage and
NLDN observations were compared to space-borne ISS-LIS
data as common reference (Erdmann, 2020): the flash detec-
tion efficiency (DE) of NLDN relative to ISS-LIS was about
76 %. ISS-LIS detected about 59 % of the NLDN flashes. In
France, Meteorage flash DE relative to ISS-LIS was about
83 %, while ISS-LIS detected about 57 % of the Meteorage
flashes. It should be mentioned that the low-earth-orbit, op-
tical ISS-LIS observes lightning in a different way than the
ground-based LF networks, with different detection efficien-
cies for CG and IC flashes (e.g., Erdmann et al., 2020; Zhang
et al., 2019). The statistical evaluation of general flash char-
acteristics revealed that NLDN and Meteorage flashes fea-
ture similar distributions of flash extent (average of about
7.0 km), flash duration (average of about 0.2 s), and stroke
and/or pulse number per flash (average of about 3.6). Meteor-
age, with shorter baseline distance than NLDN, recorded on
average higher LF currents for the occurring flashes (average
of 9.5 and 8.3 kA for Meteorage and NLDN, respectively).
In all cases, flashes with a large extent, long duration, or a
high number of ISS-LIS events or LF strokes and/or pulses
were more likely detected by both LLSs than the small, short-
duration flashes. Overall, Meteorage was validated as a suit-

able input to the GEO lightning pseudo-observation gener-
ator. Pseudo-observations of MTG-LI are then generated on
a regular latitude–longitude grid with an average pixel res-
olution of 7 km, which approximates the expected MTG-LI
resolution over France (Bartolomeo Viticchiè, personal com-
munication, 2020). FEDs are calculated per 5 min interval
that can then be summed as needed for the assimilation. This
work uses a 10 min interval of FED data in the LDA that is
centered at the time of the analysis (as done by Fierro et al.,
2016; Hu et al., 2020). The short period around the analysis
reduces displacement errors in the analysis. The domain is
limited to 40 to 51◦ N and 5.5◦W to 10◦ E, which is inside the
AROME-France physical model domain. The pseudo-MTG-
LI FED is referred to as FED observation hereafter to avoid
confusion with the pseudo-observations (POs) created by the
1-dimensional Bayesian (1DBay) retrieval.

An example of simulated MTG-LI is provided in Fig. 2a
for the entire study domain, and Fig. 2b is a zoomed-in
image of the FED maximum on 9 August 2018, 13:55 to
14:00 UTC. The regular latitude–longitude grid of the FED
is obvious in Fig. 2b. Throughout the domain, the FED pix-
els have a size of roughly 7 km× 7 km.

Figure 2c superimposes the zoomed-in simulated FED and
the Meteorage CG strokes and IC pulses that were used as in-
put to the GEO lightning pseudo-observation generator. The
vast majority of strokes and pulses lies within the area of
non-zero FED. Figure 2d illustrates that the simulated MTG-
LI flash centroids are situated within the corresponding Me-
teorage stroke and pulse distribution.

4 Lightning observation operator

Previous studies suggest that graupel is a reliable proxy for
lightning (see Sect. 1). Our observation operator is trained
using the relationship found between MTG-LI FED observa-
tions and simulated graupel mass (mg) from the 1 h forecast
of AROME-France for 24 d in 2018 (2 d per month). FED
time periods of 10 min are used (e.g., as in Fierro et al., 2016;
Hu et al., 2020) centered at the corresponding time of the
AROME-France analysis. The mg profile is extracted from
the AROME-France grid point closest to the FED pixel cen-
ter. Thus, one specificmg profile is related to one FED value.
This gives an equal count of FED and column-integrated mg
values that are used to train and validate our observation op-
erator. Following Deierling et al. (2008), mg is taken from
layers where the temperature was below −5 ◦C. As a re-
minder, AROME-France graupel mass combines graupel and
hail. All FED and column graupel mass values are further
processed as climatological distributions (see Fig. 3) regard-
less of observation location and time. This approach is dif-
ferent from Deierling et al. (2008) and Barthe et al. (2010),
who used storm-based relationships of case studies, and from
McCaul et al. (2009), who used the domain-wide peak val-
ues. Pixel-to-pixel mg and FED were barely correlated in
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Figure 2. Simulated MTG-LI FED in the entire domain (a) and zoomed-in region of the maximum FED value (b) on a 7 km× 7 km grid.
The Meteorage strokes and pulses that were used to generate the MTG-LI flashes are superimposed on the FED in (c). Simulated MTG-LI
flash centroids and the corresponding Meteorage strokes plus pulses in (d). Example for the period from 9 August 2018, 13:55 to 14:00 UTC.

our study, with about a 0.09 Pearson correlation coefficient,
likely as a consequence of a typical displacement of convec-
tion in the model by more than the FED spatial resolution of
7 km. The second approach with domain-wide peak values
was not further tested as it reduces the sample size for a re-
gression analysis drastically. Our observation operator uses
a simple linear regression between observed FED and simu-
lated column graupel mass. It is unbiased by definition. Our
approach optimizes both the slope factor and the y intercept
of the regression, whereas, e.g., McCaul et al. (2009) only
used a proportionality between FED and a proxy.

Figure 3 presents the analyzed linear relationship between
FED and column-integrated graupel mass mg. The functions
are obtained after sorting both the FED and mg data indi-
vidually. Paired data points in Fig. 3 are geographically in-
dependent values as described in Combarnous et al. (2022).
It should be noted that all pixels with either FED equal to
zero or mg equal to zero are removed from the data. The ob-
servation operator represents the cases when lightning was
actually observed. The training data (24 d) results are shown
in Fig. 3a, and the results for 6 and 7 October 2018 as vali-
dation period can be seen in Fig. 3b. The Pearson correlation

coefficient equals 0.97 for the training data and 0.92 for the
validation data (0.96 combined).

Analyzing the training data, the linear relationship fits the
majority of the data well. A discrepancy is identified for the
largest graupel mass and FED values (Fig. 3). Here, the ob-
servation operator tends to underestimate the FED for a given
graupel mass. The high values (of both FED and graupel
mass) are rare relative to the lower values as indicated by
the colored pixels in Fig. 3a. Hence, this observed discrep-
ancy has little effect on the Pearson correlation coefficient. It
should still be considered that high FED values are system-
atically underestimated. It is further noted that the y inter-
cept is negative, meaning that statistically a certain mass of
graupel is required to initiate lightning. This result is well in
accordance with the widely accepted non-inductive charging
as the main electrification process in extratropical storms.

The validation data (Fig. 3b) roughly follow the regression
line inferred from the training data. One can see, however,
that the slope is smaller than that of the black regression line;
i.e., observed values of FED are always lower for a given mg
than the training data imply. The number of FED–mg pairs
is significantly lower for the 48 h validation case than for the
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Figure 3. The observed FED, per 10 min and on 7 km× 7 km pixels, climatological distribution versus the climatological distribution of
AROME-France graupel mass mg at model grid points closest to each FED observation. The graupel mass is integrated vertically over the
AROME-France grid point for a 1.3 km× 1.3 km pixel. Grid points with any FED or mg equal to zero are not considered. Panel (a) shows
the training of a linear regression for 24 d in 2018, and (b) shows the results of a validation for independent data of 2 additional days in 2018.
Colors indicate the number of samples, the white circles plot the data points, and black dots applied the mg values in the linear regression
equation (see figure legend).

24 d training dataset. Furthermore, the validation data com-
prise one single meteorological situation, while the training
data include several weather situations in different seasons.
The observed discrepancy is considered during the evalua-
tion of results.

5 The 1DBay plus 3DVar assimilation method

FED cannot be assimilated directly since lightning is not pre-
dicted by AROME-France. The previously described obser-
vation operator relates the FED observations to the prognos-
tic variables of the NWP model and allows for comparing
background and observations. The final step prior to the as-
similation creates pseudo-observations that can be ingested
in the 3DVar system. Unlike Fierro et al. (2019), Hu et al.
(2020), and others who used an empirical method to adjust
moisture in thunderstorms, the expected water vapor PO is
retrieved for each model grid column (applying Bayes’ theo-
rem) in a 1DBay approach. This allows us to (i) replace the
humidity field in spurious convection areas with that of their
convection-free environment and thus in principle abolish the
wet bias that results from data assimilation techniques that
only consider the occurrence of lightning (e.g., Fierro et al.,
2012, 2019; Hu et al., 2020) and (ii) make use of the FED
value to modulate the humidity field in observed lightning
areas by leveraging the model’s ability to create consistent,
flow-dependent humidity and graupel profiles near the obser-
vation. Technically speaking, synthetic profiles are created
and assimilated as sounding data.

5.1 The 1DBay retrieval

All FED values are transformed to units of decibels (dB) as
10 · log10(FED/(7km× 7km10min)−1) to account for the
large range of scales, referred to as dBFED. FED equal
to zero is transformed to dBFED of −10 dB. In general,
dBFED below 0 dB means linear FED less than 11 (7km×
7km10min)−1, i.e., no lightning activity. The 1DBay re-
trieval of POs of relative humidity RH, yRH

po , is defined as

yRH
po =

∑
i

xRH
i

Wi∑
jWj

, (1)

with the weights Wi for each point as

Wi = exp

{
−

1
2

[dBFED− dBFFO(xi)]2

σ 2
o

}
, (2)

where i and j are counters for the grid points within the de-
fined area, referred to as vicinity, FFO means the FED for-
ward operator as a specific observation operator, and σo is the
standard deviation of the 1DBay retrieval. Then dBFFO(xi)
defines the simulated AROME-France dBFED by converting
the output of the FFO to decibel units.

Equations (1) and (2) can be used with different model
variables or diagnostics; e.g., the sensitivity test for σo as de-
scribed in the following used xFED

i rather than xRH
i .

Each RH PO is the best estimation from a weighted lin-
ear combination of RH profiles taken from the model back-
ground in the vicinity of the FED observation.

1Non-integer FED values are possible when applying the obser-
vation operator.
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The method was proposed by Caumont et al. (2010), used
in the operational model AROME-France (Wattrelot et al.,
2014), and applied by Borderies et al. (2019) for radar re-
flectivity data and Duruisseau et al. (2019) for microwave
radiances. Here, weights are calculated based on differences
between observed and simulated FED. The 1DBay retrieves
the best estimate of RH at the center of each observed FED
pixel from the background using Bayes’ theorem. It is ex-
pected that the model can predict a quantity similar to the
observations within a certain area in most cases. The vicin-
ity is initially fixed to a square of 160 km× 160 km centered
at the observation. This size follows the suggestion of Bor-
deries et al. (2018, 2019). However, the FED pixels (about
7 km) are significantly larger than the radar reflectivity pix-
els (about 1 km), and a given vicinity contains less FED than
radar data points to retrieve the expected profile. Hence, the
vicinity is adapted to the specifications of the FED data. The
1DBay vicinities of 160, 320, and 500 km were tested regard-
ing the RMSE between observed FED and retrieved FED
(not shown). It was found that larger vicinities give lower
overall RMSE as there are more background profiles to feed
the retrieval and to find grid points that are similar to the FED
observation. In consequence, all LDA experiments presented
in the following use a 1DBay vicinity of 500 km.

The database comprises model forecasts at the observation
time and in the vicinity of the observation location. Since
FED has no vertical dimension, the covariance matrix is re-
duced to a single value of variance, σ 2

o , which is assumed
to be constant. A small σo means that the retrieval favors
columns with values close to the FED observation. This can
produce accurate retrievals; however, no retrieval can be cre-
ated when the difference between all simulated FEDs in the
vicinity and the observed FED is large relative to σo (see
Eq. 2 where weights approach 0 in that case). Large values
of σo cause smoothing over all grid points in the vicinity of
the observation. In that case, the likelihood to retrieve POs is
high, at the cost of a less accurate retrieval potentially inde-
pendent of the observation.

An assumption of the Bayesian retrieval is that differences
between the observation and the model background, referred
to as innovations, are Gaussian distributed. Figure 4 shows
the PDF of innovations (FED observation minus AROME-
France background FED – AROME_FED) for the 24 h as-
similation cycles on 8 August 2018. The distribution is bell-
shaped and centered at 0. It is symmetric, and the skewness
is close to 0. Although the kurtosis is higher than for a clas-
sical Gaussian distribution, this distribution of innovations
sufficiently fulfills the assumption of the 1DBay method to
justify its use in this study.

The value for the standard deviation σo of the observa-
tion and observation operator is inferred from a sensitiv-
ity study. It aims at minimizing the root mean square error
(RMSE) between observed and retrieved pseudo-FED for the
24 training days also used in Sect. 4. Pixel-to-pixel RMSE is
used for all non-zero FED pixels and 10 min intervals cen-

Figure 4. Innovations of FED observation minus AROME_FED for
the 24 h assimilation cycles on 8 August 2018. Skewness, kurtosis,
and the sample size N are given. The red line shows the Gaussian
fit on the PDF of the innovations.

tered at each full hour. The pseudo-FED is computed from
the joint use of the observation operator and the 1DBay re-
trieval. Figure 5a shows the curve of the RMSE between the
dBFED observation (from pseudo-MTG-LI) and retrieved
pseudo-dBFED from the 1DBay retrieval for different σo.
The RMSE between AROME-France background dBFED
(AROME_dBFED) that was obtained from the observation
operator without an additional 1DBay is shown as reference.
Including the 1DBay retrieval (blue curve in Fig. 5a) pro-
duces pseudo-dBFED much closer to the dBFED observa-
tion, i.e., lower RMSE, than the AROME_dBFED (orange
curve in Fig. 5a). The minimum RMSE for the retrieval is
found at σo of 2.0 dB. This value is used for retrieving the
pseudo-RH profiles in the following.

Case studies of fields of observed, background, and re-
trieved dBFED are conducted to visualize the effect of σo
on the pseudo-dBFED. The example of 7 October 2018,
00:00 UTC, is presented in Fig. 5b–d. The dBFED observa-
tion in Fig. 5b shows lightning activity mainly in the south
center of the domain. Figure 5c indicates positive back-
ground dBFED in the region of lightning observations; how-
ever, it is also widespread near the center of the domain
and over western France. The map of the 1DBay-retrieved
pseudo-dBFED in Fig. 5d demonstrates that the method ef-
fectively reduces the spurious dBFED in these regions (re-
trieved dBFED below 0, grey and marine blue). In some re-
gions, the 1DBay retrieves pseudo-dBFED to completely re-
move the spurious lightning, e.g., over western France and
for some grid points over Switzerland. Spurious high values
of AROME_dBFED near the center of the domain (Fig. 5c)
are effectively decreased to negative dBFED (marine blue
in Fig. 5d), in other words no lightning activity, similar to
the observations in that region (Fig. 5b). Furthermore, the
pseudo-dBFED values and areas of positive pseudo-dBFED
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Figure 5. (a) The sensitivity test for standard deviation σo of the 1DBay retrieval as inferred from the pixel-to-pixel RMSE between the
dBFED observation and the AROME_dBFED (background), as well as the 1DBay-retrieved pseudo-dBFED (pseudo). The 7 October 2018,
00:00 UTC, case with the MTG-LI dBFED observation (b), the model background AROME_dBFED (c), and the 1DBay-retrieved pseudo-
dBFED with a σo of 2 (d). Grey color means no lightning.

in the south center of the domain closely match the dBFED
observation. The observed, weak dBFED over the Gulf of
Genoa could not be reproduced by the 1DBay retrieval as
the background does not provide any positive dBFED in the
retrieval vicinity.

An additional method, the humidity adjustment (HA), is
applied if lightning (i.e., positive FED) is observed but all
background FED values in the vicinity are zero. In this case,
there is no estimated profile at this point, and all Wi in the
vicinity equal zero. The HA is also applied if all background
dBFED values within the vicinity of the FED observation
are at least 10 dB smaller than the observed dBFED value.
Although the sum of Wi can become greater than zero in
this case, the retrieval would generate a profile that is too dry
with respect to the FED observation. To produce RH POs,
the layer between LCL and 13 km is saturated (i.e., RH set
to 100 %) at all levels where the modeled RH is less than
100 %. This is conceptually similar to the method of Fierro
et al. (2019), among others. However, the HA is only applied
for a few pseudo-RH profiles where the 1DBay method did
not retrieve POs. For instance, the HA only contributes to

1.6 % of almost 20 000 assimilated profiles during 8 August
2018, the study case that is detailed below.

Another case with Eqs. (1) and (2) equal to 0 for all
weights may occur if the observed FED equals 0 and the
background FED is positive for all grid points in its vicinity.
This behavior was observed for the initial 160 km vicinity but
not within the 320 and 500 km vicinities. Thus, if the vicinity
has a sufficient size, there are background grid points with-
out lightning activity that can be used in the 1DBay retrieval.
If, however, the specified vicinity were too small, one would
need to artificially remove spurious FED, i.e., convection and
humidity, from the model.

Eventually, no pseudo-RH profiles are created if both the
observed FED and the closest (in space) AROME-France
background FED equal zero.

It should be mentioned that the 1DBay retrieval method
was initially developed and applied to retrieve humidity and
cloud profiles from passive and active remote sensing data
(e.g., Olson et al., 1996; Kummerow et al., 2001). Caumont
et al. (2010) brought this approach forward by restricting the
1DBay method to use model profiles at the forecast time and
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in the neighborhood of the observation. This approach was
successfully applied by Wattrelot et al. (2014) and Borderies
et al. (2019) for radar reflectivity assimilation in AROME-
France. However, a 1DBay has not yet been used to retrieve
humidity profiles from FED data. Whereas an FED greater
than zero is always related to the presence of graupel and
thus a RH profile with a cloud, an FED equal to zero does
not necessarily mean a location without cloud coverage. It is
the same problem which is faced for radar reflectivity but is
presumably more marked than for the centimeter wavelength
radars (Caumont et al., 2010) and even more than for the mil-
limeter wavelength radars which are even more sensitive to
the small hydrometeors (Borderies et al., 2019). In addition,
FED is a 2-dimensional (2D) variable without vertical extent,
while the 1DBay retrieves vertical RH profiles. The use of in-
tegrated column graupel mass as a proxy addresses the latter
aspect by converting the 3D AROME-France outputs into a
2D variable comparable to FED. RH profiles are assimilated
since assimilating hydrometeor contents when VAR is able
to update these variables often results in poor performances
because the cross correlations with key variables such as tem-
perature and humidity are poorly represented in climatolog-
ical B matrices. To mitigate this effect, some recent studies
assimilate humidity along with hydrometeor contents (see,
e.g., Wang et al., 2013, and Do et al., 2022, for radar reflec-
tivity).

5.2 3DVar assimilation

The retrieved pseudo-RH profiles are assimilated as sounding
data in the 3DVar assimilation system of AROME-France.
AROME-France uses a 1 h assimilation window. The short
assimilation cycles aim at partially overcoming the miss-
ing temporal dimension and at allowing the assimilation of
more high-frequency observations that can improve the ini-
tial conditions especially on the convective scale. AROME-
France operationally assimilates surface (e.g., ground sta-
tions, ships, buoys) and aircraft measurements, Global Posi-
tioning System (GPS) zenith tropospheric delay (ZTD) data,
satellite brightness temperatures of several polar orbiting
satellites and from Meteosat Second Generation (MSG) SE-
VIRI, satellite-based atmospheric motion vectors, and radar
velocity and reflectivity data (Seity et al., 2011; Brousseau
et al., 2016). The control variables are temperature, specific
humidity, surface pressure, and horizontal wind components.
The 3DVar system minimizes the 3DVar cost function J of
the state vector x:

J (x)=
1
2
(x− xb)

TB−1(x− xb)

+
1
2
[yo−H (x)]TR−1

[yo−H(x)], (3)

with the state vector of the background xb, the observa-
tion vector yo, the observation operator H , and the obser-
vation error covariance matrix R. The climatological back-

Table 1. Simulation and assimilation techniques of the different
AROME-France experiments. They differ by the use of radar data
assimilation (RDA) and lightning data assimilation (LDA), as well
as the application of the noCloud (nC) filter as described in the text.

Experiment Assimilation noCloud filter

R (CTRL) Reference (control) No
RDA CTRL + RDA No
LDA CTRL + LDA No
LDAnC CTRL + LDA Yes
RDA_LDA CTRL + RDA + LDA No
RDA_LDAnC CTRL + RDA + LDA Yes

ground error covariance matrix B is inferred from offline
AROME-France ensemble assimilation as a multivariate set
of calculations for the control variable covariances and cross-
covariances (Brousseau et al., 2014).

6 Experimental setup

This section evaluates the effect of LDA relative to RDA.
Since the application of the 1DBay retrieval for FED
data constitutes a new approach, different experiments of
AROME-France with respect to LDA are conducted. All ex-
periments are initiated at 00:00 UTC and run for a forecast
period of 30 h until 06:00 UTC the following day.

Table 1 lists the six different assimilation experiments.
First, there is a control experiment used as reference without
RDA, without Doppler wind velocity assimilation, and with-
out LDA. It is called CTRL. The second experiment includes
the use of radar data and is similar to the current operational
AROME-France. It is referred to as RDA. All RDA exper-
iments shown here assimilate both reflectivity and Doppler
wind velocity.

While analyzing first LDA experiments, it was evident that
the use of all FED observations led to incorrect results; i.e.,
the changes to the AROME-France background humidity
contradicted the assimilated pseudo-RH profiles (not shown).
This behavior is known to occur because the R matrix is di-
agonal, whereas observation error cross-correlations are ac-
tually present, which leads to sub-optimal solutions (e.g., Ra-
bier, 2006). It could be mitigated by reducing the number
of assimilated observations (thinning; Järvinen and Undén,
1997). In this work, FED data are thinned by a factor of 2
in latitude and longitude directions – i.e., one in four ob-
servations are assimilated – so that no observations of ad-
jacent FED pixels are used. Tests revealed that this thinning
was sufficient to eliminate the FED observation error corre-
lations. For comparison, 1 in 64 radar observations, with a
higher horizontal resolution than our FED data, are assimi-
lated in AROME-France (Michel, 2018). The thinning, thus,
prevents assimilating observations with correlated observa-
tion errors, which would contradict the assumption of a diag-
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onal R matrix. The resulting LDA experiment without RDA
is labeled “LDA”.

The second LDA experiment without RDA, LDAnC, adds
a so-called noCloud filter. This noCloud filter is utilized
for locations where the observed FED equals zero but the
AROME_FED exhibits lightning activity. Then, the distance
to the closest positive FED observation, dFED, is computed.
If dFED remains within 21 km, i.e., a maximum of three FED
pixels, it is assumed that the profile is still situated within the
same thundercloud responsible for the observed FED greater
than zero. In this case, the RH profile of the background is
kept to avoid reducing the RH if the observed FED equals
zero but the location is likely associated with a cloud. In
the case where dFED exceeds 21 km, AROME-France profiles
within 21 km are not considered in the 1DBay as they prob-
ably belong to spurious simulated thunderclouds. Hence, the
noCloud filter should help to effectively reduce background
humidity in spurious convection.

The two remaining experiments combine both LDA
methods with RDA. They are labeled RDA_LDA and
RDA_LDAnC.

All model experiments are initiated 1 d prior to the start of
the model forecast. During the first 24 h, the 3DVar assimi-
lation system of AROME-France creates 23 analyses (there
is no analysis for the time of initialization). The reference,
LDA, and RDA experiments are conducted for 23 h prior
to the evaluated analysis. This time period has been cho-
sen because convection was continuously observed inside the
model domain. In addition, the long assimilation period al-
lows AROME-France to efficiently ingest all available ob-
servations.

7 The AROME-France analysis and forecast
assimilating FED observations

This section describes the LDA ability to modify and up-
date the model background. The following sections briefly
introduce the four test cases, detail one case, and discuss
(i) the LDA effects on the AROME-France background and
(ii) AROME-France rainfall forecasts for this selected case.
AROME-France simulations are mainly analyzed for the first
12 h of the forecast since the strongest impacts of RDA and
LDA are expected during these forecast hours, as seen in
Fierro et al. (2019), for example. The influence of the lateral
boundary conditions becomes predominant after 12 h (Vié
et al., 2011).

7.1 Case 1: 8 to 10 August 2018

Strong convection and lightning activity were observed over
France on 7 August, and the electrical cells were still active
over northern France and Belgium during the early hours of
8 August. Moist and warm air created unstable conditions
over southeastern France where lightning was observed dur-

ing the entire day. Whereas a dominant southwest flow was
present aloft, winds in lower levels were calm but caused
slight warm air advection. The 2 m temperatures reached
up to 33 ◦C, while the dew point temperatures exceeded
20 ◦C over southwestern France. CAPE values far beyond
1000 J kg−1 indicated the potential for widespread deep con-
vection and thunderstorm activity. Figure 6a and b show the
500 hPa map and surface analysis, respectively, on 8 August
2018, 12:00 UTC. The amplifying trough over the Atlantic is
evident, and the major cold front was about to enter the study
domain at this time. In the evening of 8 August, the trough
that was situated over the Atlantic amplified and the associ-
ated cold front started to impact the weather in the domain.
Strong convective cells formed over Spain and propagated all
the way over France to Belgium and western Germany fol-
lowing the air mass boundary and the eastward movement
of the trough. The storms left the study domain in the after-
noon of 9 August. At that time, new cells formed over south-
eastern France and remained quasi-stationary until the end of
the day. Then, only a few cells developed over the northern
Mediterranean Sea until the end of the forecast period. The
30 h forecast starts 9 August 2018, 00:00 UTC, preceded by
a 24 h period with hourly data assimilation.

7.1.1 AROME-France analysis

Details to create the AROME-France analysis are pre-
sented in Fig. 7 for experiment LDAnC on 8 August 2018,
23:00 UTC. The first row of the figure (Fig. 7a–c) includes
(a) the AROME_dBFED, (b) the 1DBay dBFED, and (c) the
dBFED observation. AROME-France could not predict most
of the lightning activity over the Bay of Biscay and south-
western France (Fig. 7a and c; see Fig. 1 for the loca-
tions of the regions of interest). The region of the highest
observed dBFED is correctly predicted, however, with un-
derestimated dBFED values (Fig. 7a and b versus c). The
1DBay dBFED (Fig. 7b) shows positive dBFED patterns that
match the observed dBFED (Fig. 7c) despite the fragmented
dBFED in the AROME-France background (Fig. 7a). Hence,
Fig. 7g shows that integrated water vapor (IWV) is added to
the background in regions where the AROME-France back-
ground underestimates the dBFED. Over southern France,
the marine blue spots in Fig. 7b indicate that the 1DBay re-
trieval succeeds in reducing the spurious AROME_dBFED
(Fig. 7a versus c). Hence, IWV should be reduced here by the
assimilation. Consequently, the PO IWV (Fig. 7e) clearly de-
creases compared to the background IWV (Fig. 7d), as shown
in Fig. 7g. In addition, the LDA experiment reduces the
model IWV at the rare locations where the AROME_dBFED
exceeded the observed dBFED, e.g., due to a slight spatial
shift in the local dBFED maxima at about 44.3◦ N and 0.8◦ E
(compare Fig. 7a, c, and g at this location).

The 1DBay method aims at finding the profiles that are
physically consistent with FED observations in terms of rel-
ative humidity. Indeed, the analysis (Fig. 7f) adds humidity to
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Figure 6. (a) Météo-France 500 hPa analysis of geopotential height (in geopotential meters, gpm, solid lines) and temperature (in ◦C,
dashed lines) with centers of low (“B”) and high (“H”) geopotential, and (b) Météo-France surface analysis with low- and high-pressure
centers shown as “D” and “A”, respectively, on 8 August 2018, 12:00 UTC. Maps from the Météo-France daily weather bulletin archive
https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=129&id_rubrique=52 (last access: 19 October 2022).

Figure 7. (a) The background AROME_dBFED, (b) the 1DBay-retrieved dBFED, (c) the MTG-LI dBFED observation, (d) the AROME-
France background IWV, (e) PO IWV merged with the background where no profiles were retrieved, (f) the IWV of the analysis, (g) the
difference between the PO IWV minus the background IWV, (h) the 1DBay-only IWV including only points where RH was retrieved, and
(i) the difference in the IWV of the analysis and background. Results for 8 August 2018, 23:00 UTC, and model experiment LDAnC.
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the background over the southwestern regions and to the cell
over eastern France. It can also be seen in the difference be-
tween analysis IWV and background IWV (Fig. 7i), where
LDA reduces model IWV where spurious lightning activ-
ity was predicted. In addition, Fig. 7h displays the IWV as
output of the 1DBay retrieval method where no background
IWV is included. It is intended that the 1DBay retrieves com-
plete profiles, whereas the HA only adds humidity to certain
layers. A smaller IWV from pure PO (Fig. 7h) than from
background plus PO (Fig. 7e) means that the HA method was
used. The comparison of Fig. 7e and h shows the same IWV
values for most points with PO. This result means that the
HA is rarely used, and the preferred 1DBay method that re-
trieves flow-consistent PO profiles is mostly used to get the
POs.

Figure 8 illustrates the RH vertical structure at 44◦ N lati-
tude between 4◦W et 5◦ E at the same time as fields in Fig. 7
are taken. AROME-France background RH (Fig. 8a) and the
difference of analysis minus background (Fig. 8b) are in-
cluded. The latitude was chosen as the analysis increases and
decreases the background IWV here (Fig. 7i). The latitude
also exhibits regions where AROME-France over- and un-
derestimated the FED (Fig. 7a, c). In Fig. 8b, higher RH in
the analysis than the background (positive values) from 4 to
2◦W (−4 to −2 in the figure) corresponds well with Fig. 7g
and i where humidity as evidenced by IWV was added to
the background since AROME_FED was lower than the FED
observation. RH is reduced in columns near 4◦ E where spu-
rious AROME_FED was found (Fig. 7a, c). Figure 8 also
shows that the RH was not changed when observed FED was
higher than AROME_FED but the background RH was at
least 100 % (e.g., altitudes up to 4 km and from 4 to 2◦W).
All in all, the vertical cross-section shows that changes in-
duced by the LDA result in physically consistent analysis in
the vertical structure.

7.1.2 AROME-France rainfall forecasts

The Antilope rainfall accumulation (RA) combines the data
of the operational radar network of Météo-France and rain
gauges on a 0.01◦ resolution grid at each hour (Laurantin,
2008, 2013). RA maps for the first 6 h of the forecast are
shown in Fig. 9a to e for (a) Antilope and the experiments
(b) CTRL, (c) RDA, (d) LDA, and (e) LDAnC.

Three major thunderstorm tracks, labeled 1 to 3 from north
to south hereafter, produce the bands of high RAs over the
northwestern part of the domain (Fig. 9a). The local maxi-
mum with very high RA up to 150 mm per 6 h over southern
France is caused by a quasi-stationary thunderstorm develop-
ment. The AROME-France experiments (Fig. 9b–e) predict
the RA of track 1 relatively well. Experiment CTRL (Fig. 9b)
and the two LDA experiments (Fig. 9d, e) underestimate the
area of high RA in the northwest of the domain for track 1.
Experiments RDA (Fig. 9c) and LDA (Fig. 9d) overestimate
the maximum RA over this region by about 20 mm and 5 mm,

respectively. Track 2 is best predicted by experiment LDA,
with good agreement in maximum RA and area of high RAs
to the observations (Fig. 9a). Experiment LDAnC (Fig. 9e)
also predicts the extent of the RAs related to track 2 but un-
derestimates the RA amounts especially for the northern part
of the track, i.e., most recent storm location to the predic-
tion time. Experiment CTRL and the experiment using RDA
without LDA poorly predict the high RAs related to track 2.
It is not clear whether the storm is modeled at all or placed
too far south. RAs of track 3 are similarly predicted by the
RDA and LDA AROME-France experiments that all under-
estimate the RA of the southern part, i.e., during the begin-
ning of the forecast period, and overestimate the RA of the
northern part of the track, i.e., the most recent RA. Exper-
iment CTRL predicts the southern part of track 3 arguably
better than the RDA and LDA experiments. The 6 h RAs re-
lated to the local thunderstorm over southern France are best
predicted by CTRL and RDA. Both LDA experiments some-
what underestimate the local RA maximum and the area of
high RAs. In addition, the LDA experiment produces a spu-
rious, local, high-RA cluster over northeastern Spain.

This case study implies that LDA without both RDA and
the noCloud filter of FED has the highest fraction skill score
(FSS, not shown; see Sect. 8) for predicting heavy precipita-
tion. In that it differs from the other three case studies where
the noCloud filter improves the LDA experiment skill, a fu-
ture analysis might detail why the RDA and LDA with no-
Cloud filter have lower skill than the LDA. Such an analysis
is beyond the present proof-of-concept scope.

7.2 Cases 2, 3, and 4

All case studies are summarized in Table 2. Besides the de-
tailed case 1, the other case studies analyzed a cyclone with
mainly frontal precipitation in autumn (case 2), shallow con-
vection in winter (case 3), and widespread deep convection
in late spring (case 4). The evaluation of these three cases
revealed that the RDA and LDA improve the RA forecast
skill for convection within the study domain over western
Europe. Once RDA and once LDAnC provide the best RA
forecast. Experiments combining RDA and LDA exhibit FSS
values between RDA and LDA and thus mean the best trade-
off overall. In the future, a coupled assimilation of RDA and
LDA could be tested. For example, PO RH profiles could be
retrieved from a weighted product that includes both radar
reflectivity and FED, thereby adapting the 1DBay.

In situations where convection from the Atlantic Ocean is
advected into the study domain from the west, i.e., case 3,
RDA and LDA could not improve the control run. Both RDA
and LDA currently rely on ground-based observations with
limited coverage over the Atlantic Ocean. It is expected that
the real MTG-LI observations will help to predict cloud sys-
tems forming over the ocean with higher efficiency than the
LDA using the generated MTG-LI observations derived from
ground-based observations.
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Figure 8. Vertical cross-sections along 44◦ N of (a) the AROME background RH and (b) the difference of analysis minus background RH.
Sawtooth features visible at 4◦ E are interpolation artifacts caused by the grid’s irregularity. Results for 8 August 2018, 23:00 UTC, and
model experiment LDAnC.

Table 2. Summary of the four case studies.

Case Dates (2018) Weather conditions Main precipitation source

1 8 to 10 August Instability, warm and moist low levels Deep convection, cold front
2 6 to 8 October Dissipating cyclone Cold front
3 1 to 3 February Trough and baroclinic wave Shallow convection, cold front
4 27 to 29 May Unstable conditions, low-level moisture Deep convection, mesoscale system

8 Quantitative skill of AROME-France RA forecasts

This section compares the predicted 6 h RAs of different
AROME-France experiments (Table 1) and the observations
in a statistical way. The forecast skill is quantified calculat-
ing fractions skill scores (FSSs). The FSS was introduced
by Roberts and Lean (2008): the FSS can be calculated as
the skill score from the mean squared error (MSE) for the
observed and forecast fraction O(n) and M(n), respectively,
from a neighborhood of length n as

FSS(n) = 1−
MSE(n)

MSE(n)ref
, (4)

with

MSE(n) =
1

NxNy

Nx∑
i=1

Ny∑
j=1

[
O(n)i,j −M(n)i,j

]2
,

MSE(n)ref =
1

NxNy

 Nx∑
i=1

Ny∑
j=1

O2
(n)i,j +

Nx∑
i=1

Ny∑
j=1

M2
(n)i,j

 ,
and

O(n)i,j =
1
n2

n∑
k=1

n∑
l=1

IO
[
i+ k− 1−

n− 1
2

,j + l− 1−
n− 1

2

]
,

M(n)i,j =
1
n2

n∑
k=1

n∑
l=1

IM
[
i+ k− 1−

n− 1
2

,j + l− 1−
n− 1

2

]
,

with the observation and forecast binary fields IO and IM that
equal 0 if the field value is smaller than the threshold and
1 otherwise. Our implementation uses the fast calculation of
FSS in Python as proposed by Faggian et al. (2015). The FSS
is calculated hourly for 6 h RAs with a sliding 6 h time win-
dow for the 30 h forecast period. Forecasts are initiated at
00:00 UTC. The FSS can be generalized to yield an average
score if the numerator and denominator are averaged sepa-
rately, and then the FSS is calculated (Faggian et al., 2015).
This allows us to achieve overall FSSs including forecasts of
all four case studies.

Here, 6 h RA thresholds of 0.1, 1.0, and 10.0 mm are used
to represent different RA categories. An FSS neighborhood
of 0.5◦ is used. Figure 10 shows the FSSs for the entire fore-
cast period of 30 h and combination of the four cases.

FSSs of 0.8 to 0.9 during the first 15 h of the forecast for
the RA thresholds 0.1 and 1.0 mm (Fig. 10a and b, respec-
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Figure 9. The 6 h rainfall accumulations (RAs) for the period until 9 August 2018, 06:00 UTC, i.e., the first 6 h of the 30 h forecast. (a) RA
observations and the AROME-France experiments (b) CTRL, (c) RDA, (d) LDA, and (e) LDAnC. Three main thunderstorm tracks are
labeled with black numbers 1 to 3 in (a).

tively) indicate that regions with precipitation were equally
well identified by all six AROME-France experiments. RDA
or LDA effects on the FSS diminish beyond 12 h of the fore-
cast as the effect of the boundary conditions becomes pre-
dominant. The LDA without RDA and without the noCloud
filter (LDA) gains the highest FSS for the high-RA thresh-
old and during the first 12 h of the forecast (Fig. 10c). This
finding demonstrates the high potential of LDA in AROME-

France. The noCloud filter cannot always improve the LDA.
RDA exhibits the lowest FSS during the first 6 h of the fore-
cast due to a low skill during the August case where high RAs
of storm track 2 over the Pays de la Loire region in France
were not predicted (see also Fig. 9). The combination of LDA
and RDA (RDA_LDA) gives FSSs between the skill of RDA
and LDA.
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Figure 10. FSS average of 6 h RAs calculated hourly for a sliding window during the 30 h forecast initiated at 00:00 UTC for the four study
cases. The colors and line style indicate the model experiments as defined in Sect. 6. Three different RA thresholds are used: (a) 0.1 mm,
(b) 1.0 mm, and (c) 10.0 mm. The size of the neighborhood used to calculate the FSS was set to 0.5◦.

This proof-of-concept study uses four cases, a rather low
amount of data. Usually, scores are calculated over several
months for evaluating whether a new method improves an
existing NWP model. FSS curves appeared noisy for high
thresholds and short accumulation periods (not shown) as a
result. The main conclusion here is that there are likely not
enough data to show significant differences; however, the en-
couraging point is that the effect of the assimilation is neutral.

9 Conclusions

The objective of this work is to design an assimilation
technique for the upcoming MTG-LI data for the re-
gional, convection-permitting model AROME-France. To
date, AROME-France applies a 3DVar assimilation system.
A tailored 1DBay plus 3DVar assimilation technique (Cau-
mont et al., 2010) is used to assimilate pseudo-MTG-LI flash
extent density (FED) in AROME-France. A similar assimi-
lation technique is currently used operationally for radar re-
flectivity data assimilation in AROME-France but has not yet
been tested for LDA.

This work first generated MTG-LI data that are used to
create the FED observations (Erdmann et al., 2022). Then,
an observation operator for FED is developed based on a lin-
ear, climatological relationship between observed FED and
the column-integrated AROME-France graupel mass, mg,

above the −5 ◦C isotherm. The operator is trained for 24 d
in 2018 and validated for 2 independent days in 2018. Pear-
son correlation coefficients of 0.97 and 0.92 for the training
and validation data, respectively, reveal a very strong relation
between the distributions of observed FED and model mg.
Nevertheless, the observation operator systematically over-
estimates the FED for mg values greater than 1.5× 107 kg
per AROME-France grid cell of 1.3 km× 1.3 km. More so-
phisticated observation operators are currently being tested
(Combarnous et al., 2022) but have not been included in this
work yet.

The observation operator is then used to compare
AROME-France-derived background FED (AROME_FED)
to the FED observations. The 1DBay method identifies the
best estimation of the FED from the background to in turn
create pseudo-observations (POs) of RH profiles based on
both the FED observation and the AROME-France back-
ground fields. As background profiles are processed, the
1DBay method maintains model physics and flow character-
istics.

The PO RH profiles add humidity to the AROME-
France background where the observed FED exceeds the
AROME_FED. It is further found that the 1DBay retrieval
leads to a reduction in humidity where the observed FED
equals zero and the AROME_FED is positive, i.e., in regions
of spurious convection with substantial mg. Hence, the LDA
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technique improves the AROME-France background humid-
ity. It is capable of both promoting convection in regions with
lightning and suppressing spurious convection. This was suc-
cessfully verified in four case studies where the new LDA
technique provided similar skill to the operational RDA in
AROME-France.

FED exhibits the highest values near the convective core
of a thunderstorm, and the lightning activity does not al-
ways cover the entire cloud size. In fact, zero FED exists
at cloudy locations. In order to address the specific nature
of FED data, the 1DBay retrieval method is adapted. In de-
tail, a wider vicinity is used to identify vertical profiles in
the 1DBay method and a so-called noCloud filter is intro-
duced. First results reveal that this adaption of the method
can help to more effectively reduce the background humid-
ity in regions of spurious convection and to avoid a reduction
in the background humidity if the profile occurs at the lo-
cation of a cloud. Nonetheless, one of the four case studies
revealed more skill in the LDA without the noCloud filter
than the LDA using this modification. The noCloud filter is
a first approach trying to overcome this issue by keeping the
background humidity constant when lightning was correctly
simulated but not observed. The authors encourage further
research on how the specifications of FED data can best be
addressed by the LDA scheme, i.e., through correlations be-
tween lightning locations and cloud cover.

In addition, this study found that the thinning of the FED
observations (on a grid of resolution of 7 km) was necessary
to avoid the effect of correlations between the observation
errors that violate the assumptions of a diagonal observation
error matrix in the AROME-France 3DVar data assimilation
system (not shown).

Finally, forecasts of 6 h rain accumulations are evaluated
through FSS analysis. The developed LDA scheme can in
general compete with the established RDA, an encouraging
result for the further testing and development of the LDA
in AROME-France. Positive effects on the forecast of rain-
fall by both RDA and LDA are found mainly for the high-
precipitation threshold and during the first 9 to 12 h of the
forecast. Longer forecast times show a small spread in FSSs
between the control run, RDA, and LDA for the three RA
thresholds, indicating that the assimilated radar and FED
data do not significantly affect the model forecast after 12 h.
The FSSs of the combination of RDA and LDA indicate in
most cases skill between the RDA and the LDA. The com-
bined RDA–LDA approach provides the best trade-off in a
general sense and with respect to the assimilated observa-
tions. The case of 2 February 2018 was unique in that nei-
ther RDA nor LDA improved the FSS of the control run.
This case was significantly influenced by weather phenom-
ena over the Atlantic Ocean, with limited radar and Meteor-
age coverage. Real MTG-LI data will provide more accurate
lightning records over the Atlantic than the synthetic MTG-
LI data based on Meteorage observations used in this study,
and the LDA performance might improve in such situations.

It could be further studied whether the radar reflectivity
and LDA can be coupled. A coupled approach may help to
overcome some issues explained for zero FED at cloudy lo-
cations in general or at least for precipitating clouds and,
at the same time, benefit from the successful promotion
and suppression of convection by both RDA and LDA. As
the LDA explored here is based on satellite observations,
such a coupled approach will also benefit forecasts over re-
gions with limited radar coverage. The specific improvement
over regions such as oceans and mountain ranges has not
been studied here since our pseudo-MTG-LI observations are
based on ground-based Meteorage records. A study address-
ing in particular the skill over such regions would be of great
interest as soon as real MTG-LI data become available.
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