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With the accelerated melting of the Arctic sea ice, the opening of the Northeast

Passage of the Arctic is becoming increasingly accessible. Nevertheless, the

constantly changing natural environment of the Arctic and its multiple impacts

on vessel navigation performance have resulted in a lack of confidence in the

outcomes of polar automated route planning. This paper aims to evaluate the

effectiveness of two distinct models by examining the advancements in two

essential components of e-navigation, namely ship performance methods and

ice routing algorithms. We also seek to provide an outlook on the future

directions of model development. Furthermore, through comparative

experiments, we have examined the existing research on ice path planning and

pointed out promising research directions in future Arctic Weather

Routing research.
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1 Introduction

Considering global climate change and the acceleration of Arctic sea ice melting

(Guemas et al., 2016), the opening of the Arctic Northeast Passage (NEP) will become a

reality (Li et al., 2021a). The emergence of this new route will provide a new option for

maritime trade between Asia and Europe. Not only will the journey distance be cut by

about 40%, the voyage time will be reduced, and the economic costs will be lower (Chen

et al., 2020; Tseng et al., 2021), but it will also ease the present strain on shipping on

traditional shipping routes.

However, as a new route, the harsh nature of the environment makes polar navigation

more challenging. To create safe, effective, and economic routes, an experienced skipper

must pay close attention to the ice and ocean conditions of the Arctic waters. Is it possible

to do this using a computer?

Automatic systems are increasingly employed in shipping. Weather routing is a way of

planning and providing the operating state of a vessel under various sea conditions based
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on the weather forecast and the vessel’s technology (Simonsen et al.,

2015). In traditional ocean voyages, the influences of sea, wind, and

cyclone on the vessel maneuvering are taken into account in the

weather routing to obtain a quick, economical, and safe route (Li

et al., 2017; Perera and Soares, 2017; Fabbri and Vicen-Bueno,

2019). However, more influencing factors should be considered in

Arctic weather navigation.

In Arctic waters, apart from the influences of wind, waves, and

currents, there is also a need to take into consideration the impact of

severe conditions like sea ice, freezing temperatures, and poor

visibility. Sea ice has a multiscale impact on ship maneuvering in

polar waters. For instance, perennial ice limits the normal passage of

ships, first-year ice can slow down the boat, and floating ice can

pose a threat to the security of the sea. Moreover, while the journey

is reduced by polar navigation, sailing in an icy region will

inevitably increase operating costs and the amount of fuel

consumed, making it more difficult to assess the economic cost

of shipping.

To sum up, a great challenge has been imposed on automatic

route planning due to the rapid change of the natural environment

of Arctic NEP and its multiscale impact on vessel navigation. The

rationality and efficiency of weather routing in polar areas must be

verified. Two aspects should be considered in this regard: first, the

adequacy of the Ship Performance Models (SPMs); second, the

feasibility of the Ice Routing Algorithms (IRAs). SPMs are

mathematical models for ship velocity, cost, and security in a

complicated polar environment, whereas IRAs describe a

reasonable route design approach that can be adapted to the

requirements of navigation and operation. This article gives an

overview of the current studies on SPMs and IRAs.

The framework of this paper is as follows: Section 2 introduces

the current research status of SPMs. The research progress of IRAs

is discussed in Section 3, and then a dynamic multi-objective path

algorithm adapted to polar regions is proposed for the existing

problems. Section 4 validates the new algorithm, and Section 5

summarized the conclusions.
2 Literature review for SPMs

Due to the many factors affecting SPMs, the scope of this paper

is limited to the direct impact of sea ice on ship navigation,

including sea ice induced changes in navigation safety, navigation

cost and speed. These factors are closely related to the development

of polar shipping and are key useful functions for the optimal design

of polar shipping routes. The remaining factors, such as ecological

and environmental protection, geopolitical and military conflicts

and other external influences, certainly have an impact on the

development of polar shipping. However, such influences are

macroscopic and indirect, so they are out of the scope of our study.
2.1 Polar ship speed models

Cargo is usually time-consuming for merchant ships, and the

Arctic sea ice can have a significant effect on the speed of vessels.
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This requires reliable ice-speed models in e-navigation to allow

route design within a reasonable time frame (Agarwal and

Ergun, 2008).

In the Arctic, except for some specific routes where wind and

waves need to be considered, such as the Kemi-Hamburg route

(Lehtola et al., 2020), it is the impact of sea ice on navigation speed

that is the most important and persistent.

The Polar Operational Limit Assessment Risk Indexing System

(POLARIS), a polar navigation standard, clearly states that when

sea ice concentration and ice thickness are above certain thresholds,

navigation speed will inevitably be affected and may even need to be

detoured (Engtrø et al., 2020).

According to the existing research, the current research on the

inference of navigation speed in the Arctic sea is mainly divided into

two categories: dynamic models and statistical models.
2.1.1 Dynamic model
The dynamic model is analyzed from the perspective of

dynamics and kinematics. By analyzing the force relationships

between the polar sea ice and the ship, the motion equations

between the ship’s speed and the sea ice are constructed, and the

changes in the ship’s motion state under different sea ice resistance

are calculated. Its development phase includes four stages: semi-

empirical formula, simulation of sea ice processes on ships using

Discrete Element (DEM), or Finite Element Method (FEM),

characterization of multiphase interactions between ships and

marine elements by coupled Computational Fluid Dynamics

(CFD) and DEM/FEM, and a hybrid scheme combining the

above methods. The specific development process is shown

in Figure 1:

The early ice resistance model utilized a semi-empirical formula

to calculate the ice resistance (Riska et al., 1997). The formula was

subsequently further elaborated by (Colbourne, 2000) as follows:

Frp = V=
ffiffiffiffiffiffiffiffiffi
ghiC

p
(1)

RP = 0:5CpriBhiV
2Cn (2)

Cp = kcFr
−b
p (3)

where Frp denotes the ice Froude number, hi stands for the ice

thickness, C represents the ice concentration, g symbolizes the

acceleration of gravity, Rp indicates the ice resistance, Cp signifies

the ice force coefficient, B and ri are the ship beam and the ice

density, and kc, b, and n are constants relevant to ship parameters.

These research results made important contributions to ship

design and operational planning (Juva and Riska, 2002). However,

semi-empirical studies cannot solve the problem of maneuvering, so

it is necessary to simplify the interaction between ship and ice in

order to arrive at a viable solution (Li et al., 2020b).

Thus, high-fidelity computing models based on CFD, DEM, or

FEM can improve individual ice resistance (Xue et al., 2020). A

mathematical model for estimating ship speed was developed,

which considers the ice-breaking process (Petri, 2001). Lubbad

and Løset used a closed-form solution for ice-breaking modeling
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to simulate the dynamic processes of the ship as it broke through

the ice. The velocity of a vessel in an icy region is calculated by a

numerical simulation of the ice motion (Lubbad and Løset, 2011).

More complex ice processes, such as ice rotation and ice

submersion, were considered in current studies (Tuhkuri and

Polojärvi, 2018). Although the descriptions of the different

processes were still simple and not systematically validated, they

were of great importance to guide (Li et al., 2020a).

Previous simulations of ship progress through ice floes ignored

the effect of hydrodynamics, which was also a key factor in ship

operation in icy water (Tsarau and Løset, 2015). Huang et al. (2020)

first developed a CFD and DEM approach to simulate the ship-

wave-ice interactions and provide reliable resistance prediction

(Huang et al., 2020). In which, standard CFD models were used

for ship propulsion in open water and DEM was used to simulate

the interaction between ship structures and ice floes, and fluid

forces were obtained from the CFD solution to achieve ship-wave-

ice coupling. The original floe-distribution algorithm was developed

to import the natural ice-floe fields into the CFD & DEM model,

where the floes were randomly distributed and had a range of sizes

according to field measurements. The accuracy of this approach in

predicting the ice-floe resistance was experimentally confirmed

(Tang et al., 2022).

Although a computation method is usually affordable, the CFD

and DEM model is very costly. It is impractical to run the

simulation every time a resistance estimation is required.

Therefore, it is necessary to develop empirical equations to

quickly estimate the ice resistance (Zhou et al., 2016; Huang et al.,

2021), as follows:

Rice = A� ri � h� D� V2 � B=Lpp � C1:5 � Fr−0:8 (4)

where A represents a coefficient dependent on ships, D denotes

the ice diameter, and Lpp stands for the length between vertical lines.

So far, the dynamic method is highly accurate, and it can be

utilized to simulate the variation of the load in a certain polar

environment. However, due to the complicated relationship

between the ice and the ocean in the polar region, there are many

types of ice-strengthened vessels, and the sailing conditions are very

varied. A dynamic model has to recreate all the options, and this
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requires a large number of computational resources. It is a small

sample event with weak generalization ability, and it cannot meet

the requirement of high-speed simulation in polar regions.
2.1.2 Data-driven model
The statistical models are mainly based on data driving, and the

effects of sea ice and other factors on ships are investigated by

statistical algorithms. For instance, the relationships between the

displacement and the thickness of sea ice, the concentration of sea

ice, and the ice sheet were established by regression analysis (Jeong

et al., 2021).

Based on Automatic Identification System (AIS) ship data, as

well as sea-ice data from satellite observations, Löptien and Axell

(2014) calculated velocity using multivariate regression. The

mapping relationship between the ice shelf and the ice sheet, as

well as the displacement depth and direction angle, was built to

predict the speed performance of the various vessels in the ice

(Löptien and Axell, 2014).

As a result of the rapid development of machine learning

technology, Milaković et al. (2020) applied artificial neural

networks to speed up reasoning in Arctic areas. By characterizing

the acceleration/deceleration effect of sea ice on the ship, the speed

of the ship was calculated (Milaković et al., 2020).

The main limiting factor of data-driven speed is that sea ice data

cannot be matched by ship information due to different data

sources (Milaković et al., 2020). Because of the poor temporal and

spatial resolution of the AIS model, it is difficult to describe the

interglacial channel due to the low time and space resolution of the

sea ice model. Thus, wrong velocity patterns are produced, and this

influences the validity of the model training. In order to do so,

Similä and Lensu (2018) utilized high-resolution Synthetic Aperture

Radar images to precisely describe the polar seas. The AIS temporal

and spatial data were employed to train stochastic forest models.

The performance of the training was more consistent with the

actual sailing speed of the vessel (Similä and Lensu, 2018).

Thus, the statistical model is to establish a general empirical

relationship that can be applied to different types of ships in

complex polar sea conditions. Since the model is based on ship

and ice data, the results are more in line with the reality of
FIGURE 1

History of the dynamic model.
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navigation. However, because of the uncertainty and randomness in

the choice of variables, the reliability and stability of the proposed

model should be validated.

2.1.3 Summary
Based on the above-mentioned literature review, different types

of speed inference models and their errors in predicting ship speed

are sorted out in Table 1.

In order to reduce the uncertainty of ship forecasts, improve

their robustness, and save computational resources, the integration

of dynamic and statistical models must be enhanced.

Figure 2 proposed a new framework where the dynamic and

statistical models were combined. The framework adopted the

concept of transfer learning with two stages (Zhang et al., 2022).

In the first stage, the mixed dynamic models were incorporated to

generate large samples of certain vessels at various operating

conditions. A transfer network of ship speed in ice was

constructed and pre-trained by these samples. In the second

stage, it was possible to derive a quantitative relationship between

environmental performance, vessel performance and velocity based

on the historical navigational data through the statistical models,

and thus corrected the pre-training pattern.
2.2 Polar shipping cost

An important reason that the Arctic passage has attracted the

world’s attention is the potential cost advantage of shipping due to

its short distance. This is not a simple linear problem with a

negative connection with the route distance.

The economic cost of navigating in the NEP depends on the

ability of the ship’s ice resistance level, the cost of building the

vessel, the cost of fuel (fuel consumption, fuel price, and fuel types),

the operational expenses (staff wages, insurance, and repairs and

maintenance), as well as the combination of several factors
Frontiers in Marine Science 04
including piloting and ice-breaking charges (Theocharis et al.,

2019). Apart from the determination of the voyage time and the

area of the NEP, sea ice will also have an impact on the sailing speed,

route design, and operating costs of vessels (Wang et al., 2021).

To adapt to the harsh weather and environmental conditions of

the NEP, ships operating in the NEP require more powerful engines

and sturdier hulls. This has resulted in higher ship-building costs

compared to those of the traditional passage (Erikstad and Ehlers,

2012). As for operational costs, because of the high risk of Arctic

maritime transport, extra maintenance and insurance costs have to

be incurred to actively avoid accidents and mitigate risks. At the

same time, crew members with ice sailing experience and the ability

to cope with harsh conditions also need more salaries. Fuel cost is

also one of the key factors affecting shipping costs. A ship’s fuel

consumption is determined by its size, hull structure, speed,

durability, and design. Since the NEP is relatively short, it is

advantageous in terms of fuel expenditure. In the Arctic, however,

according to the International Maritime Organization’s sulfur limit,
TABLE 1 Summary of ship speed inference models.

Type Method Ship speed
error

Data-driven
model

Regression analysis (Jeong et al., 2021) 2.7%-17.3%

Data-driven
model

Artificial neural network (Milaković
et al., 2020)

2.6%-9.4%

Data-driven
model

Random forest (Similä and Lensu, 2018) ≤9%

Dynamic
model

Mathematical ship model (Lubbad and
Løset, 2011)

≈7%

Dynamic
model

Ship performance model (Li et al.,
2020a)

≤10%

Dynamic
model

General empirical equation (Huang
et al., 2021)

≥10%
FIGURE 2

Speed reasoning network of coupled dynamic and statistical techniques.
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ships have to utilize cleaner fuels at a higher cost compared to

traditional fuels (Wan et al., 2018).

The estimate of the parameters in the current Arctic NEP

potential evaluation models are very different and uncertain

(Tables 2–4). On the one hand, the estimates of relevant factors

in Arctic NEP (like ship-building, fuel, and operational costs) are

highly subjective. Experts’ different understandings of the problem

and optimistic and conservative expectations for the future have

resulted in controversial conclusions (Theocharis et al., 2018).

On the other hand, there is a lack of quantification of themultiscale

effects of sea ice in the models (Wang et al., 2021). The effects of sea ice

variability are usually used to determine the navigable time and

navigable area. Few studies have considered the impact of sea ice

changes on fuel consumption, route distance, and icebreaker charges.

Models typically use many assumptions rather than parameters

estimates. Although the computational complexity of the model is

simplified in this way, it also brings uncertainty to the assessment. For

instance, the thermal distance of the NEP is regarded as a constant, and

the design of the channel does not change with changes in sea ice.

To address the aforementioned issue, Solakivi and his research

team (2019) used Clarkson’s World Fleet Register data to analyze
Frontiers in Marine Science 05
the extra economic cost of NEP vessels with various sizes/ice classes

(Solakivi et al., 2019). This included extra fuel costs, extra shipping

costs, and extra operational expenses. However, the data quality, the

choice of factors, and the differences in statistical models have

resulted in uncertainty in the outcomes of data-driven assessments.

Especially, the data from the above-mentioned documents were

obtained in the winter, and the samples were not sufficiently

representative. Furthermore, the 2015 figures were taken into

account for transportation costs up to 2022 or beyond, with no

consideration for changes in the economic cost over time.

To make full use of expert knowledge and data-driven analysis,

Wang et al. (2023) proposed a new framework for economic

analysis of marine transportation (see Figure 3), where

uncertainty is given more attention than the current research

(Wang et al., 2023). First, a new quantitative method was used in

conjunction with an importance ranking method to capture

uncertainty in the evidence and to perform multi-source evidence

fusion. Second, a Bayesian network model was chosen as a tool to

convey the uncertainty from one variable to another variable. Third,

the Bayesian network was well-trained by the fused multi-source

evidence, and was able to combine expert knowledge and statistical

results in a probabilistic manner to achieve inference about the

economic costs of future polar voyages. Finally, the trained network

was used for sensitivity analysis and quantitative evaluation of key

factors affecting the polar economy.
2.3 Polar navigation safety

For Arctic weather routing, in addition to considering the above

navigation speed and navigation costs, the security of navigation is

clearly of paramount importance. As a result of the unique

geographical environment of the Arctic region, apart from the
TABLE 2 Different conclusions regarding additional fuel costs.

considered Ice
class category

Extra fuel con-
sumption rate

Resource

IB +67% (Liu and Kronbak, 2010)

IA, IAS +8% (Lasserre, 2014)

Ice class +8%; +10%; +30% (Furuichi and Otsuka, 2014;
Zhang et al., 2016; Wan et al.,
2018)

IC; IB; IA, IAS +2%; +3%; +10% (Omre, 2012)
TABLE 3 Different conclusions regarding additional shipbuilding costs.

considered Ice class category Extra building cost Resource

IB +20% (Liu and Kronbak, 2010)

IAS, IA +20% (Lasserre, 2014)

IAS-IA +5-7% (Pruyn, 2016)

IAS; IA; IB; IC +12%; +9.5%; +7.5%; +6.5% (Eide et al., 2010)

PC7 to PC4* +20% (Schøyen and Bråthen, 2011)

PC6 +20% (Dvorak, 2009)

PC4 +30% (Eide et al., 2010)

DAS+high +30-40% (Chernova and Volkov, 2010)

CAC3 +30%,+40% (Somanathan et al., 2009)

Ice class +10-35%; +20%; +25%; +30%; +30%; +36% (Zhang et al., 2016; Kiiski, 2017; Wang et al., 2018)

Ice class Derived based on the data from Clarkson’s World Fleet Register (Solakivi et al., 2019)
*According to the approximate equivalence of ice class classification systems, PC6 is equal to IAS and PC7 is equal to IA.
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traditional factors such as wind, waves, and other factors, the

influence of sea ice on safe navigation should be taken into

account. Though the Arctic NEP is essentially navigable in the

summer, there are still a few marine regions that are frozen.

There are two major types of risk evaluation in Arctic NEP. The

first type is risk assessment by considering risk probability or

empirical formula. The other type adopts a standardized risk

quantification framework that combines critical navigation

conditions (such as the sea ice index in the sea ice regional

navigation system issued by Transport Canada, and the risk index

in POLARIS issued by the International Maritime Organization)

(Browne et al., 2022).

The benefit of risk assessment by considering risk probabilities

or empirical formulas is that it is possible to draw probabilistic

conclusions if the effect of sea ice is not sufficiently clear. The model

of reasoning combined with the experience can provide assessment

results that are consistent with general cognition. For example, Li
Frontiers in Marine Science 06
et al. (2021b) employed the Dynamic Bayesian Network (DBN)

approach to assess the navigational hazard of a particular route

according to influencing factors like wind velocity, temperature,

wave height, and ice depth (Li et al., 2021b). They built the network

nodes according to subjective experience and computed the DBN

time transmission probability. Through the dynamic time transfer

nodes, the study could enable the dynamic risk assessment of

probability changes as the background field changes. However,

this method requires reliable expertise to determine probabilities

for various types of ships, and its generality has to be reviewed.

Besides, in the quantification of sea ice, the study only considered

the effect of sea ice concentration, without taking into account the

effect of factors like the thickness of the sea ice on the hazard and

velocity of the vessel. Lehtola et al. (2019) applied a subjective

experience formula to comprehensively consider the effects of sea

ice concentration, thickness, and ice ridges on vessel navigation

(Lehtola et al., 2019). Furthermore, the impact of sea ice on
TABLE 4 Different conclusions regarding operating expenses (USD/day).

Payload (TEU)
Crew cost Maintenance Insurance Other

Resource
SCR NSR SCR NSR SCR NSR SCR NSR

3800 2740 +0% 1644 +100% 3288 +0% (Omre, 2012)

4000 3333 +0% 1280 +100% 3344 +0% 1445 (Verny and Grigentin, 2009)

4000 2749 +10% 465 100% 803 +19% 3211 +0% (Kiiski, 2017)

4000 2740 +0% 1321 +50% (Furuichi and Otsuka, 2014)

4300 2500 +10% 1200 +100% 1400 +50% 1000 +50% (Liu and Kronbak, 2010)

4500 4333 +10% 1667 +20% 2192 50% (Lasserre, 2014)

5089 3767 +50% 2638 +10% 8990 +50% 1883 +10% (Wan et al., 2018)

5500 3640 +10% 725 +20% 3080 24.6% 1250 +0% (Zhang et al., 2016)

– – +11-14% +150% +50% (Somanathan et al., 2009)
FIGURE 3

Multi-source heterogeneous economic cost inference model.
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navigational risks was mapped to navigation speed for navigation.

Compared with the probability of DBN, the empirical equation

could provide a distinct hazard outcome. The study could also

provide a reasonable quantification of factors, such as the

concentration and thickness of sea ice, and the calculated results

were very informative. However, the empirical formula is based on

some necessary assumptions, such that calculated results are not

correct and the real sailing conditions are not consistent. Moreover,

the empirical formula is based on the fixed information of some

factors, and it does not consider the subjective initiative of the crew

in the actual voyage.

The second approach is based on determining the safe margin

of navigation combined with critical navigational conditions. The

POLARIS not only considers sea ice concentration and thickness

data, which are the most important factors for navigation, but also

takes into account seamen’s subjective experience. POLARIS

integrates the related experience with other techniques, such as

the Canadian Arctic Ice Navigation System, the Russian Ice Zone

Certificate, and the Assistance to the Pilot Ice Zone as described in

the Navigation Regulations of the Northern Sea Route (Deggim,

2018). The formula for calculating the risk value is as follows:

RIO = (C1 � RIV1) + (C2 � RIV2) + (C3 � RIV3) +… + (Cn

� RIVn) (5)

where C1…Cn are the sea ice concentration, and RIV1…RIVn

are determined by the ice level of the ship and the thickness of the

sea ice (see Table 5). As a framework for navigation guidance in

polar areas, the POLARIS can evaluate the navigation risks under
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different ice conditions according to the ice level of the ship. Based

on the navigation risks, navigation instructions such as the need to

slow down or to recommend detours are presented in Table 6

(Engtrø et al., 2020). The system can be utilized as a risk restraint in

ship navigation, and the recommended speed is based on the risk

range (Table 7). For example, Li et al. (2020b) calculated the speed

of the ship through ice resistance and introduced the risk index of

the POLARIS as a navigation risk constraint in route planning (Li

et al., 2020b). Route planning was carried out according to the

thickness and concentration of sea ice to ensure the safe navigation

of ships. Lee et al. (2021) computed the sailing power based on the

ship’s evaluation model and introduced the POLARIS into route

planning (Lee et al., 2021). The research was based on POLARIS’

guidance to constrain the sailing speed and to ensure the safety of

the planning results. For Arctic meteorological navigation, the

POLARIS can not only quantify the risk of sea ice cover for ship

navigation but also can regulate the navigation of ships based on the

quantified risk value, which has good applicability in meteorological

navigation issues.
3 Literature review for IRAs

The components of a route-finding algorithm can be illustrated

by formulating the task in terms of an optimization problem. The

objective function models the cost for a ship to travel along a given

path between destination A and destination B. This cost may be

measured by the journey time, the shipping costs, or the voyage risk

caused by the ice loading.
TABLE 5 Risk index values (Li et al., 2020b).

Ice Class Ice-
Free

New
Ice

Grey
Ice

Grey
White
Ice

Thin
First
Year
Ice 1st
Stage

Thin
First
Year
Ice
2nd
Stage

Medium
First Year
Ice less
than 1 m
thick

Medium
First

Year Ice

Thick
First
Year
Ice

Second
Year Ice

Light
Multi

Year Ice
less than
2.5 m
thick

Heavy
Multi
Year
Ice

PC1 3 3 3 3 2 2 2 2 2 2 1 1

PC2 3 3 3 3 2 2 2 2 2 1 1 0

PC3 3 3 3 3 2 2 2 2 2 1 0 -1

PC4 3 3 3 3 2 2 2 2 1 0 -1 -2

PC5 3 3 3 3 2 2 1 1 0 -1 -2 -2

PC6 3 2 2 2 2 1 1 0 -1 -2 -3 -3

PC7 3 2 2 2 1 1 0 -1 -2 -3 -3 -3

IA Super 3 2 2 2 2 1 0 -1 -2 -3 -4 -4

IA 3 2 2 2 1 0 -1 -2 -3 -4 -5 -5

IB 3 2 2 1 0 -1 -2 -3 -4 -5 -6 -6

IC 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8

Not Ice-
Strengthened

3 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -8
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3.1 Design of background field

First of all, unlike road planning, there is no fixed route in polar

marine areas. The coastline map of the shipping area defines the

objective functions, which can be based on various definitions, such as

a grid or a diagram linking waypoints, and points in a Cartesian grid or

in the form of a triangular-shaped grid (Piehl et al., 2017). Recently,

several research studies have been devoted to the development of

original ice routing approaches, such as the application of the Voronoi

diagram (Liu et al., 2016), and the FEM-based potential theory (Piehl

et al., 2017). Based on the existing research on Arctic sea route

planning, the design of the background field can be divided into

two categories.

One is the discrete background field, which is usually regarded

as the standard grid of discretization. For example, Zhang et al.

(2019) used a standard grid based on data resolution as the

background field in the course simulation of multi-ship

operations (Zhang et al., 2019). When Lee et al. (2021) used a

genetic algorithm to plan the route in the Arctic sea, the grid of the

background field is generated according to the longitude and

latitude resolution of sea ice data (Lee et al., 2021). Depending on

the latitude, the resolution of the grid also changes, as shown

in Figure 4.

The use of discrete standard grids for background field design

leads to rough routes obtained by the path planning algorithms,

which need to be smoothed afterwards. Since there are only a few

fixed choices of ship steering angles in a discrete background field, it

is usually only possible to move from the current point to eight

surrounding points (Nam et al., 2013). Some studies have

interpolated sea ice elements to improve the grid resolution of the

background field and reduce the roughness of the route (Kotovirta

et al., 2009).

The other is the continuous background field, which is usually

irregular. For example, Piehl et al. (2017) used the Delaunay

triangulation method to divide the background field into fine

irregular triangles, making the ship’s turning angle freer (Piehl

et al., 2017). The resulting visual continuity is shown in

Figure 5 below.

Similarly, Liu et al. (2016) used the Voronoi diagram method to

divide the background field into irregular polygons (Liu et al., 2016).

This can improve the steering freedom of the ship in the route

planning algorithm and make the calculated route smoother. In

addition, there are also studies on route planning based on sailing

distance and turning angle, which decompose the entire route into
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many short routes of different lengths and angles (Lee et al., 2018).

A smooth route can also be obtained by this method when the route

segmentation is fine.

Although routes generated based on discrete and continuous

background fields have different roughness, they often need to be

smoothed at a later stage. Several studies have shown that the

difference in background field design has little effect on the results of

route planning, but mainly affects the calculation time of the

algorithm. Despite the concern that the convergence speed in

continuous conditions is usually slower in comparison to the

discrete conditions because more alternatives are involved in the

former, the algorithms reach an optimal solution at a similar

iteration (Choi et al., 2013).
3.2 Selection of path planning algorithm

In addition to the above background field design differences, the

most significant difference between ice routing studies is the choice

of a path planning algorithm. In the current research on ice route

planning in the Arctic, the methods used can be roughly divided

into the following:

The first is a direct search algorithm, such as the Powell method.

This kind of algorithm has high computational efficiency, but it is

easy to fall into local optimization, and algorithm convergence is

difficult (Kotovirta et al., 2009).

The second is a greedy search algorithm, such as the Dijkstra

algorithm. Nam et al. applied the Dijkstra algorithm to choose the

best way on a set of segments along the Northern Sea Route (Nam

et al., 2013). If there is no negative objective function value in the

search area, the Dijkstra algorithm can achieve the global optimal

solution by checking all the explored nodes. But for a large sea area,

the search speed of this algorithm will be significantly reduced, and

a lot of memory will be consumed.

The third is a heuristic algorithm, such as the A* heuristic

algorithm. Ice route planning based on the A* heuristic algorithm

has attracted much attention in recent years because of its high

search efficiency (Guinness et al., 2014). Some studies contain

modifications of the basic A* algorithm for better applicability to

the considered problem (Wang et al., 2018). The heuristic search

algorithm can measure the distance relationship between the search

location and the target location. This makes the search direction

preferentially oriented to the target location and improves

search efficiency.
TABLE 7 Recommended speed limits for elevated-risk operations
(Bergström et al., 2022).

Ice Class Recommended
Speed Limit

PC1 11 knots

PC2 8 knots

PC3-PC5 5 knots

Below PC5 3 knots
TABLE 6 Risk index outcome criteria (Bergström et al., 2022).

RIO Ice classes
PC1-PC7

Ice classes below PC7
or ships not assigned an ice

class

RIO≥0 Normal operation Normal operation

-10≤RIO<0 Elevated operational
risk

Operation subject to special
consideration

RIO<-10 Operation subject to
special consideration

Operation subject to special
consideration
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The fourth is a random search algorithm, such as the Genetic

Algorithm (GA). Choi et al. contributed to the problem of ice

routing by introducing the genetic optimization algorithm instead

of the “greedy” one (Choi et al., 2013). This algorithm is suitable for

multi-objective programming, especially when the weight of goals

cannot be measured. The random search algorithm can get a good

solution quickly. But the algorithm depends on parameter
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initialization, and the performance of the algorithm is greatly

affected by the random search operator (Katoch et al., 2021).

Therefore, it is difficult for the random search algorithm to

achieve global optimization.

The algorithm in the above research mainly focuses on static

route planning and cannot respond to the change of background

field. In addition to the above algorithms, there are also LPA* and
FIGURE 5

Background field of triangulated grid points (Piehl et al., 2017).
FIGURE 4

Background field of normalized grid points (Lee et al., 2021).
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D*lite algorithms suitable for dynamic programming. The LPA*

algorithm is a forward incremental search algorithm. In a dynamic

environment, the LPA* algorithm can adapt to the change of

obstacles in the environment. When the obstacles change, the

distance information obtained previously is used for secondary

planning without recalculating the entire environment. However,

this algorithm cannot guarantee the pass ability of the unsearched

area, because it can only be calculated based on the distance

information from the current point to the starting point and the

estimated information to the target point (Koenig and Likhachev,

2005). In the process of approaching the target point, the D*lite

algorithm can deal with the emergence of dynamic obstacle points

through static search in the local scope. The heuristic algorithm can

guide the search direction to the target point in each search, which

can further improve the search efficiency by replacing the limitation

of the non-heuristic algorithm to walk around without rules (Jin

et al., 2023).

Considering the changes of icefloes and icebergs in the Arctic

Sea, the dynamic planning algorithm is more suitable for the route

in the ice region. Elements such as icefloes and icebergs usually do

not have fixed drift routes, so the location or short-term prediction

must be carried out based on real-time observations. Therefore, in

order to deal with the variables that change with time, a dynamic

path planning algorithm should be introduced to optimize routes in

the Arctic Sea. The algorithm can characterize the dynamic

influence of dangerous elements such as icefloes and icebergs, and

adjust the route based on the constantly updated forecast data

(Choi, 2015).

The present dynamic path planning algorithm can be used to

describe the variation of the dynamic barrier more effectively. However,

dealing with the dynamic variation of the objective function because of

the variation of the sea ice is not effective. In the Arctic Sea, the

dynamic changes of sea ice not only affect the points of obstacles, but

also have a significant impact on the navigable grid points. As the sea

ice changes at different times, the objective functions such as the risk

and speed change accordingly. For instance, as the sea ice becomes

thicker and thicker, the associated navigational hazards and

navigational speed will be decreased and increased with time. Even

though the obstacles remain unchanged, the objective function has

changed with time (Wang et al., 2018). Therefore, the current dynamic

path planning algorithm has application problems in Arctic Weather

Routing, which need to be further studied and improved.
3.3 Diversity of objective functions

Because of the special nature and ecology of the Arctic region,

the route planning for the Arctic Sea should not only consider the

changes in the environmental field, but also consider a variety of

constraints. As far as the restriction is concerned, the terrain

restriction is static and depends on the vessel’s type and relative

parameters (e.g., dimension, shape, and draft). In the future, the

dynamic variation of sea ice is a critical factor that will limit the

opening of NEP. (Zhang et al., 2017) presented a new approach to

scheduling Arctic maritime routes with multiple constraints on

physical and operational aspects.
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As for the object function, the primary aim of Arctic Route

Planning is to guarantee safe sailing and prevent damage to the ship

due to the harsh environmental conditions. (Li et al., 2021b) adopted

DBN to build a road safety assessment model based on environmental

factors such as sea ice, which could be utilized to dynamically evaluate

the voyage hazard. In addition to security, the cost of navigation should

also be taken into consideration. (Topaj et al., 2019) utilized economical

criteria to optimize the route design and to make sure that the target

can be reached within the scheduled time. At the same time, they not

only saved the cost of fuel and other costs but also avoided the problem

of damages for violation of the contract due to excessive sailing time.

Furthermore, the timeliness of navigation is also crucial. A number of

studies have considered polar climates and have employed voyage time

as an objective function when planning a path to minimize fuel

consumption and to make sure that the destination port is reached

on time (Kuhlemann and Tierney, 2020).

Based on the above-complicated constraints and objective

functions, it is clear that the single-objective path planning

algorithm has no capability. Thus, it is necessary to adopt multi-

objective route planning. The existing research on multi-objective

processing is mainly divided into two methods:

One is to introduce subjective knowledge optimization

methods, such as the weighting method, constraint method, and

linear programming method. Based on the theory of weights,

constraints, and linear programming, a multi-objective function

can be converted into a single-objective function. The multi-

objective function is solved by the single-objective optimization

method. Although this method makes the solution less difficult, it is

possible to obtain only one solution, like (Lehtola et al., 2020) who

implemented the auto-route optimization with the A * algorithm.

Taking into account the timeliness and security characteristics of

vessels operating in the Arctic NEP, this optimal framework was

developed to assign different weights. In the actual decision-making

process, the distribution of weighted values is more subjective.

Conflicts may exist between objectives, and it is difficult to specify

accurate weights to optimize them all at once.

The other one is based on Pareto optimal solution. This method

can find a set of solutions that make each target value compromise,

that is, the Pareto optimal solution, to provide a variety of

alternative solutions according to different needs. For example,

Zhang et al. (2021) used the improved ant colony evolution

algorithm to build different types of multi-objective route

planning models, aiming at route optimization among conflicting

objectives (sailing time, additional navigation resistance, and

navigation safety) (Zhang et al., 2021). Fabbri and Vicen-Bueno

(2019) introduced the second-generation fast non-dominated

genetic algorithm (NSGA-II) to solve the Pareto optimal set

under multi-objective conditions (Fabbri and Vicen-Bueno, 2019).

However, the application of the multi-objective optimization

method in the Arctic Sea is less. Considering that the multiple

objective functions to be considered in the Arctic route planning are

complicated, it is difficult to give weights based on subjective

knowledge. Therefore, multi-objective optimization algorithms

based on Pareto have high applicability, such as the NSGA-II

algorithm. More research should be done on multi-objective

optimization in Arctic Weather Routing.
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4 Discussion

Since most of the research on IRAs in Section 3.2 used only one

algorithm, the differences between algorithms were not compared.

Therefore, we replicated and compared the existing algorithms with

experiments based on the background field of normalized grid

points to study the effects of different algorithms under different

objective functions. In addition to the static path planning

algorithm in Section 3.2, we also introduced the D*lite dynamic

path planning algorithm here. The applicability of static and

dynamic path planning algorithms in ice route planning was tested.

Further, through the literature review in Section 3, we identified the

problem in the current research, i.e., how to deal with the dynamic

multi-objective path planning in the Arctic Sea. There would be a

variety of solutions to this problem, and we proposed a solution here,

the D*-NSGA-III algorithm. We compared the dynamic multi-

objective optimization capability of D*-NSGA-III algorithm based on

the replication and comparison experiments of existing algorithms.
4.1 Data description

This experiment used the sea ice thickness data of PIOMAS (Pan-

Arctic Ice-Ocean Modeling and Assimilation System) and the sea ice

concentration data of NSIDC (National Snow and Ice Data Center).

The spatial resolution was unified to a grid of 0.25°×0.25°, and the time

resolution was one day. The ship navigation data of the IA ice class was

derived from Automatic Identification System (AIS).

Sea ice concentration from the National Snow and Ice Data

Center (NSIDC) is a daily grid data. The data was synthesized from

the Nimbus-7 satellite and microwave detection data from the

Defense Meteorological Satellite Program (DMSP) and DMSP-

F17 satellite (Tschudi et al., 2020).

PIOMAS is an Arctic sea ice numerical simulation system that

includes multiple elements of sea ice and ocean (Zhang and

Rothrock, 2003). Improving numerical simulation results by

assimilating sea surface temperatures from ice-free areas and

using different ice strength parameters can provide daily grid data

on sea ice thickness.

AIS is a modern navigational aid system that transmits

information such as ship speed back to ground base stations. The

frequency reported by the ship is generally 12 seconds/time, and

when the course changes, it is generally 4 seconds/time. The AIS

data set of 2018 was used in this experiment. The ice class of the

ship was Class IA and the speed was up to 22 knots.
4.2 Design of experiment

This experiment is divided into two main parts. The first part of

the experiment, based on four algorithms (D*lite, A*, Dijkstra, GA),

takes navigation safety cost (RIO), sailing time cost (Time), and

sailing distance cost (Distance) as a single objective function to test

the effectiveness of the four algorithms.

In the second part of the experiment, the D*-NSGA-III

algorithm is used to obtain the Pareto optimal solution set of the
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dynamic multi-objective path planning problem by considering the

constraints of three objective functions, RIO, Time, and Distance,

under the dynamic background field. By comparing with the results

of the first part, we test whether the algorithm can be used to solve

the dynamic multi-objective path planning problem in the Arctic

Sea, and verify the effectiveness of the algorithm.

To control the variables, the following experiment takes the port of

Petropavlovsk-Kamchatskiy (53°1′N,158°39′E) as the start point and

the port of Rotterdam (51°55’ N, 4°29’E) as the endpoint. This

experiment assumes November 2, 2020, as the departure time, and

only two environmental factors, sea ice concentration and sea ice

thickness, are considered. Navigation risk is calculated based on the

RIO value of the POLARIS. The speed inference model is based on the

random forest algorithm to fit the relationship between sea ice

concentration, thickness and ship speed (Wang et al., 2021). The

area where RIO is less than -10 is considered as an unnavigable

obstacle. The area of RIO between -10 and 0 is considered to require

icebreaker assistance, and the speed is fixed at 4 knots. The area of RIO

between 0 and 30 is calculated by the random forest model. Areas of

RIO greater than or equal to 30 are at full speed, with a speed of

22 knots.

In the first part of the experiment, only two variables of the

algorithm (4 kinds) and the objective function (3 kinds) are

changed in this study, and a total of 12 route planning results are

obtained. Three aspects of work have been carried out:

Firstly, the effects of algorithms on ice route planning (taking

A*, Dijkstra, GA as examples) are compared.

Secondly, the influence of different objective functions on the

route planning algorithm is verified.

Thirdly, the applicability of static path planning algorithm and

dynamic path planning algorithm (taking D*lite as an example) in

ice route planning is tested.

In the second part of the experiment, this study uses the D*-

NSGA-III algorithm to obtain the Pareto optimal solution set by

taking RIO, Time, and Distance as multi-objective constraints. To

clearly show the result of path planning, this paper only shows three

optimal paths under different goals.
4.3 D*-NSGA-III

Because the D*lite algorithm only updates the values of adjacent

or related points when the obstacle is changed. The remaining grid

points which are always passable still retain historical values.

Therefore, the objective function value of the passable point does

not change with the background field, resulting in the feasible

solution found by the algorithm not being the optimal solution.

In addition, D* lite has a problem with addressing multiple

objectives during the planning. This algorithm takes the utility

function as the basis of the choice of the route. Although the multi-

pole utility function can be set at the same time, there is still a need to

enhance the consistency and understanding of the various objectives.

The NSGA algorithm performs well in multi-objective optimization.

Furthermore, NSGA-III improves the crowding classification of

population screening more than NSGA-III, thus allowing more

diversity of algorithm results (Deb and Jain, 2014). The NSGA-III
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algorithm is employed to randomly find the best solution in the

solution space, and it is utilized to generate a new population. The

algorithm is based on the Pareto theory and uses non-dominant sorting

to sort and filter the crossed and mutated populations. The diversity of

the screened populations is guaranteed through preset reference points.

However, NSGA-III also has some problems with Arctic weather

navigation. The population initialization is complicated, particularly

in the Arctic meteorological navigation, and it is difficult to find a viable

solution to accommodate the variations in the background field.

In summary, the optimization of the Arctic NEP should not

only deal with the dynamic variation of the parameters and the

utility function but also should deal with the multi-objective

function constraints. To solve this dynamic multi-objective ice

routing planning problem, we propose a possible solution. Based

on the population iterative optimization framework of NSGA-III,

we combine D*lite and NSGA-III algorithms to propose D*-NSGA-

III algorithm. The technical flow of the algorithm is shown in

Figure 6 below.

In the initialization module, the D*lite algorithm can smoothly

generate the initial population, even though it is not necessarily the

best estimate. Based on the population generated by D*lite

initialization, NSGA-III can find the Pareto optimum through

cross-variation and population selection. Ultimately, the D*-

NSGA-III algorithm can come up with multiple sets of feasible

solutions. The solution distributed on the leading edge of Pareto is

the optimal solution under the multi-objective function constraints,

and the appropriate route can be chosen based on the different

navigation tasks.
4.4 Objective function

In this experiment, the calculation of safety cost is based on the

RIO value in Section 2.3. The value of RIO in POLARIS ranges from

-10 to 30. A larger value indicates more security. The safety cost of

navigation adopts the cumulative RIO value method:

S  =  o
i
(40 − (RIOi  + 10)) (6)

Where i represents the grid point through which the route

passes. Since the cost function in the algorithm should be as low as

possible, we invert RIO when calculating the cumulative value of the

cost function and adjust it to the range of 0~40.

The cost of route distance D is calculated based on the results of

track planning as follows:

D =o
i
Di

=o
i
R� arcos½cosðy1iÞcosðy2iÞcosðx1i − x2iÞ+sinðy1iÞsinðy2iÞ�

(7)

where R is the radius of the earth, and (xli,yli), (x2i,y2i) are the

latitude and longitude of the two points i in the segment. The

distance is measured in nautical miles (nm).

The cost of sailing time T is calculated based on the distance and

the average speed of the two points, as follows:
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T =o
i
Di=(V1i + V2i) (8)

Where Di is the sailing distance between two points, V1i and V2i

are the speed at two points of the course. The speed is obtained by

the speed inference model established in Section 4.2. Sailing time is

measured in hours.
4.5 Replication and comparison of
existing studies

For the static planning algorithm (A*, Dijkstra, GA), since the

algorithm could not consider the daily refresh of the background

field, the sea ice concentration and thickness on November 2 are

always used as the background field for navigation planning. The

population number of the GA algorithm is 100 and the number of

iterations is 300. As for the dynamic planning algorithm (D*lite),

the algorithm can update the sea ice background field every day, and

continue to plan the subsequent route according to the changes

in obstacles.

The above four algorithms are executed three times and set as

the objective functions of RIO, Time and Distance, respectively.

Finally, 12 routes are obtained for comparison.

The navigability and objective function values of the above 12

routes are calculated under the actual dynamic navigation

environment. From November 2, when the sailing time of the

route accumulates for one day, the background field is refreshed to

the sea ice value of the next day. The navigability and objective

function values of each route are shown in Table 8 below.

The orange marks in Table 8 are the optimal results for the

corresponding single-objective function. As can be seen from the

table, when RIO is taken as the objective function, that is, the

pursuit of the lowest cost of navigation safety, all routes of the 4

algorithms can be used, and the D*Lite algorithm has the best

results. Among the static planning algorithms (A*, Dijkstra, GA),

GA has the best effect.

However, taking the shortest time or shortest distance as the

single-objective function will cause some statistical routes to be

impassable. Because the routes with a short time or short distance

tend to the high-latitude sea areas. However, most of the high-

latitude sea areas are covered by sea ice and the sea ice changes

significantly. Most of the existing studies on ice route planning are

static algorithms, which can only consider a constant background

field. However, when the high-latitude sea ice changes day by day,

the sea ice in some areas may become thicker, resulting in some

points in the static route being impassable.

All navigable routes are shown in Figure 7 below.

From the above figure, there are obvious differences in the route

planning results of the same algorithm with different objective

functions. Routes with lower navigation safety costs are mostly

located in low-latitude sea areas, while routes with lower time cost

and lower distance cost tend to be in high-latitude sea areas. To

better reflect the relationship between dynamic changes of

background field and route planning, we show the route planning

process with RIO, SIC, and SIT as background in (Appendix

Figures 10-12) .
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The data resolution used in this experiment is 0.25°, which is

undoubtedly rough for product applications. It can be seen from the

experimental results that the rough resolution will lead to the

obvious sawtooth of the route, as shown in Figure 6. However,

the purpose of this experiment is to compare the applicability of

different IRAs in the Arctic. A resolution of 0.25° or finer may affect

the results of the algorithm, but it should not materially affect them.

In general, the existing research on ice route planning mostly

uses static planning algorithms, and there are some cases of

unnavigable routes in the actual dynamic background field of ice

navigation. The dynamic path planning algorithm, such as D*Lite,

can be applied to the dynamic changes of Arctic sea ice and has a

good application prospect. However, D*Lite cannot refresh the

objective function values of globally passable grid points, and its

applicability needs to be further improved.

In addition, different objective functions will have different

effects on the path planning results. The Arctic Weather Routing

involves a variety of objective functions, so how to reasonably carry

out multi-objective route planning is also an important research

direction in the future.
4.6 Effectiveness of D* -NSGA-III

From November 2, 2020, the sea ice background field was

updated daily along with the accumulation of time. The population

size of the D*-NSGA-III model was set to 300. The initial

population was generated by the D*Lite module based on

different objective functions, and the path individuals were

repeated to 300 to ensure that the individuals of the initial

population were passable. In the course of crossing, two

intersections of different routes were selected randomly to cross

and swap paths in this section. The mutation node was randomly
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selected during mutation. After the node’s position was changed, if

a continuous route could still be found, the mutation would be

considered successful. After 100 iterations, the effect of the model

tended to be stable, and the individuals in the final population were

all F1 individuals, that is, the Pareto optimal solution set. The Pareto

surface formed by this solution set was shown in Figure 8 below:

From the above graph, it can be observed that the optimal

results of D*-NSGA-III have excellent population diversity. To

pursue the shortest voyage, the lowest voyage risk, and the

shortest voyage time, or to seek a compromise between several

objectives, the Pareto surface, which consists of the above-

mentioned points, may serve as a base for selecting routes.

Since there are multiple routes on the Pareto surface, to clearly

show the route planning process and facilitate comparison with

Tables 8, 9 only shows the three optimal individuals (Individual

1~3) in the optimal order of RIO, Time and Distance, respectively.

Taking Individual 1 as an example, this individual has the lowest

risk (the highest RIO) in the Pareto surface, as well as the best time

and distance costs. Similarly, Individual 2 has the shortest time cost

and Individual 3 has the shortest distance cost. The specific values

are shown in Table 9.
TABLE 8 The navigability and single-objective function value of 12
routes (× represents that the route is actually impassable).

Algorithm \ Objective
function

RIO Time
(hour)

Distance
(nm)

D*Lite 22636.648 336.910 5943.144

A* 18995.475 333.935 ×

Dijkstra 6754.590 327.152 ×

GA 21387.928 × 6036.900
The shaded part represents the best value in the current column.
FIGURE 6

D*-NSGA-III dynamic multi-objective path planning model.
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The green marks in Table 9 represent the individual results with

the optimal objective value in the Pareto solution set when single-

objective sorting (columns in the table). Because D*-NSGA-III is a

multi-objective optimization algorithm, all individuals (rows in the

table) have three target values. By comparison with Table 8, it can

be seen that when only pursuing a certain objective is optimal, the

result of D*-NSGA-III is superior to the other four algorithms. In

addition, D* -NSGA-III can consider a variety of objectives, so that

the other two objectives are also relatively optimal.

The dynamic process of the above three routes over time is

shown in Figure 9 below, taking the RIO background field as

an example:

As can be seen from Figure 9, D*-NSGA-III can provide the

optimal route with multi-objective optimization according to

different mission objectives. When in pursuit of the lowest risk of

navigation (Individual 1) or the shortest voyage time (Individual 2),

the two routes have high consistency, that is the mid-ocean route. It

can not only avoid the time cost caused by long distances in low-

latitude sea, but also avoid the time cost caused by high risks in

high-latitude sea. When pursuing the shortest sailing distance

(Individual 3), the route will be biased towards the high-latitude

sea. At the same time, it can ensure the navigability of the route and

the relatively optimal navigation risk and navigation time. In order

to clearly show the route planning process, only 3 routes are shown

here. The appendix shows the route planning process of all Pareto

optimal solutions (Appendix Figures 13-15).

Based on the experiments, the D*-NSGA-III algorithm can

satisfy the requirement of designing multi-target routing in Arctic

waters. D*-NSGA-III can be employed as a guide for multi-target

navigation missions.
5 Conclusion

Our research team has been working on the development of two

key components of e-navigation, namely the ship performance
Frontiers in Marine Science 14
methods and ice routing algorithms. The validity of these two

models was assessed separately, the shortcoming of existing

research was pointed out, and further development of this model

was also discussed. Based on the replication and comparison of

experiments, we examined the existing research on ice routing

planning and pointed out the application prospects of dynamic

routing algorithms. This paper proposed a solution to the dynamic

multi-objective planning problem in Arctic waters (D*-NSGA-III)

and pointed out the future research directions for Arctic

weather routes.
• Based on the concept of transfer learning, the combination

of dynamic and statistical models contributes to improve

the robustness and generalizability of velocity forecasting.
FIGURE 8

Distribution of optimal solution set of D*-NSGA-III. The points
represent the fitness of the objective function for each path. Since
all individuals are F1 individuals, the same color is used.
FIGURE 7

Passable route of path planning algorithm. The lines with different colors represent the route planning results of different algorithms (A*, Dijkstra, GA,
D*Lite) under different single objective functions (RIO, Time, Distance).
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• Leveraging expertise and statistics, and combining expertise

with statistics in a probabilistic manner, enables the

justification of the economic cost of polar navigation

based on multi-source heterogeneous evidence.

• Forecasts based on sea ice concentration and sea ice

thickness allow the estimation of navigational hazards

under crit ica l navigat ional condit ions, making

quantitative results more realistic.

• Dynamic route planning algorithm based on multi-

objective optimization has a good application prospect in

Arctic Weather Routing.
According to the review and analysis of IRAs, the present IRAs

are not appropriate for the multi-scale dynamic variation in the

Arctic NEP. Moreover, it is impossible to guarantee the diversity of

the Pareto optimal solution set. Given these deficiencies, we
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presented a new adaptation of the IRA, named D*-NSGA-III. The

validity of this algorithm was demonstrated by an example. It was

proved that the proposed algorithm can achieve multi-objective

optimization in the case of sea ice variation, which could satisfy the

various requirements of marine transport.

However, because of the limitations of the current measurement

techniques, large-scale measurements of sea ice concentration and

thickness are mostly based on satellite inversion. There is still room

for improvement in the accuracy of the satellite observation data,

but the most significant issue is the resolution of the observed data.

Different elements of sea ice often need to be observed from a

distance. Besides, technical restrictions make it challenging to have

accurate observations across the Arctic. Moreover, there is a spatial

discontinuity in the background field data from various sources.

Some of the background fields are thick, while others are thin.

Therefore, it is necessary to deal with the placement and fusion of
TABLE 9 Multiple objective function values of 3 routes.

Individual \ Objective function RIO Time (hour) Distance (nm)

Individual 1 24864.860 315.759 6077.283

Individual 2 24722.812 313.539 6048.870

Individual 3 11753.088 451.235 5572.599
The shaded part represents the best value in the current column.
FIGURE 9

Individual 1~3 dynamic multi-objective route planning results. Individual 1 and 2 overlap for the most part.
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different grids. Currently, the available resolution of sea-ice data

(e.g., ERA5 reanalysis datasets) is usually 0.25° x 0.25°, which is

unsuitable for weather navigation (Bormann et al., 2013). Though

the SAR satellite has a high resolution, it is impossible to ensure

continuous observation, and it is possible to observe only a tiny

portion of the ocean.

In the future, the Arctic weather routing should nest grids of

different resolutions based on background fields of different

spatial resolutions to realize multiscale path planning. It is

possible to employ the background field of the numerical

model and build the background area of the route planning

through multiple grid nets. Multigrid nesting has been applied in

the weather model, where a coarse grid indicates the global

situation and the nesting of one or more sub-regions (Krol et al.,

2005). Likewise, when the background field of route planning is

built, the edge region can be procured using thicker resolution

data. A delicate mesh is embedded when the marine region or

certain vessel region is highly resolved. Thus, it is possible to

unify the data of different resolutions to construct a background

field for multiscale planning.
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