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China, as a major maritime nation, the China Containerized Freight Index (CCFI)

serves as an objective reflection of the Chinese shippingmarket and an important

indicator for understanding China’s shipping industry globally. The shipping

market is a complex ecosystem influenced by various factors, including vessel

supply and demand, cargo supply and demand relationships and prices, fuel

prices, and competition from substitute and complementary markets. To analyze

and study the state of the Chinese shipping market, we selected the CCFI as an

indicator and collected data on six factors that may affect the overall shipping

market. These factors include “ the China Coastal Bulk Freight Index(CCBFI)”, “the

Baltic Dry Index(BDI)”, “the Yangtze River Container Freight Index”, “Global:

Aluminum (minimum purity of 99.5%, London Metal Exchange (LME) spot

price): UK landed price”, “Major Ports: Container Throughput”, and “Coal Price:

US Central Appalachia: Coal Spot Price Index”. Then, we constructed an

analyticaland predictive framework using Deep Neural Network (DNN),

CatBoost regression model, and robust regression model to study the CCFI.

Based on the R2 results of the three models, it is evident that DNN provides the

best analytical and predictive performance for the CCFI, accurately forecasting

its changes. Additionally, the robust regression model indicates that “Global:

Aluminum (minimum purity of 99.5%, LME spot price): UK landed price” has the

greatest impact on the CCFI. Finally, from a business perspective, we provide

some suggestions for China’s container shipping industry.

KEYWORDS

China’s Containerized Freight Index, deep neural network, CatBoost regression, robust
regression, shipping company development proposal
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1 Introduction

1.1 Background

On January 30, 2020, the World Health Organization (WHO).

declared the outbreak of the novel coronavirus as a Public Health

Emergency of International Concern, which was later classified as a

pandemic on March 11, 2020. The global impact of COVID-19 has

been far-reaching, leading to significant disruptions in various

sectors, including international trade. According to data from the

World Trade Organization (WTO), global merchandise trade

volume declined by 5.3% in 2020 compared to 2019, marking the

largest drop since World War II. The shipping industry has also

experienced severe disruptions due to the pandemic-induced

restrictive measures (Xu et al., 2022), resulting in interruptions in

ports, shipping, and supply chains. The United Nations Conference

on Trade and Development (UNCTAD). estimated that global

maritime freight volume decreased by 4.1% in 2020 compared to

2019. However, as the situation improved and the global economy

began to recover, global GDP growth reached 5.7% in 2021

(UNCTAD), leading to increased trade demands among

countries. Shipping, with its advantages of high throughput, long-

distance transportation capabilities, low operating costs, and

environmental friendliness, became a preferred mode of transport

for companies in cross-border trade to reduce costs. China, with its

extensive 18,000-kilometer coastline and several excellent ice-free

ports, possesses favorable conditions for maritime development. In

container shipping, almost all finished goods, including clothing,

pharmaceuticals, and processed food, are transported in containers.

The container shipping industry is situated upstream in the

maritime economy. When factories shut down and there is a

shortage of raw materials, if there is a decrease in shipments,

resulting in reduced vessel bookings, declining business volume,

and decreased profit margins. The COVID-19 pandemic has greatly

disrupted global supply chains. The China Containerized Freight

Index (CCFI) reflects the price changes in China’s export container

transportation market. Exploring the factors influencing the CCFI

can provide insights into their impact on the Chinese container

market. Measures can then be taken to control the stability of these

factors, enhance risk prevention, stabilize the development of

container shipping, and promote global trade.
1.2 Literature review

The CCFI objectively reflects the situation of the Chinese

shipping market, and studying the changes in the CCFI plays a

significant role in understanding the changes in the Chinese

shipping industry. (Jeon et al., 2021) utilized the VECM (Vector

Error Correction Model) to analyze and model the CCFI based on

factors such as China’s container import volume, new building

prices of container ships, and second-hand prices of container

ships. (Yin and Shi, 2018) collected data on freight price changes

in Chinese containers to reveal the seasonal fluctuation patterns of

the CCFI. However, considering the current research progress, it is

found that there are still many unresolved issues in the field of
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studying the factors influencing the CCFI, and there is an urgent

need to fill the knowledge gap.

Furthermore, there is limited literature specifically related to

predicting the trends of CCFI. However, there are numerous studies

that employ various methods to forecast trends in other data. Based

on the current relevant literature, there are primarily three methods

used: deep learning, machine learning, and econometric models.

Deep neural networks (DNN) belong to a class of models

known as representation learning models, which can find the

underlying representation of data without manually providing

input features. DNN consists of multiple stacked nonlinear layers

that transform raw input data into higher-level and more abstract

representations through transformations in each stacked layer

(LeCun et al., 2015). Currently, many researchers focus on DNN-

related techniques. For example, (Khaki and Wang, 2019) used

DNN to predict maize hybrid yields based on genotype and

environmental data. (Yu and Yan, 2020) designed a prediction

model using a deep neural network (DNN) based on the phase

space reconstruction (PSR) method and Long Short-Term Memory

(LSTM) network to forecast stock prices.

Using machine learning models to model systems is a common

approach in scientific research. CatBoost regression, being a

decision tree-based algorithm, is well-suited for machine learning

tasks involving classification and heterogeneous data (Hancock and

Khoshgoftaar, 2020). (Huang et al., 2019) accurately estimated the

daily reference evapotranspiration (ET0) in data-limited humid

regions of China using CatBoost, which supports categorical

features in decision trees. (Zhou et al., 2021) proposed a fire

prediction model based on CatBoost to predict fire points

effectively. These examples demonstrate the application of

CatBoost regression in different domains.

Furthermore, robust regression such as RANSAC (Random

Sample Consensus) and its various extensions are widely adopted

due to their robustness and simplicity in handling outlier problems

(Ni et al., 2009). (Zhou et al., 2013) studied a camera parameter

estimation method based on the RANSAC algorithm to detect the

unreliability of camera parameters. (Olofsson et al., 2014) used the

RANSAC algorithm for tree trunk and crown detection,

classification, and measurement, enabling the estimation of tree

trunk height. (Ma and Jiang, 2018) proposed an improved

RANSAC algorithm aimed at overcoming the interference of

background images. These examples highlight the use of

RANSAC and its variants in different applications for addressing

outliers and improving robustness.

Therefore, considering the complexity of predicting CCFI

trends, this study employs three different methods, that is DNN,

CatBoost regression, and RANSAC regression, to forecast the CCFI.
1.3 Contribution and organization

This article aims to analyze and predict the China Container

Freight Index (CCFI) and reveal its relationships with “CCBFI,”

“BDI,” “Yangtze River Container Freight Index,” “Global:

Aluminum (minimum purity 99.5%, LME spot price): UK landed

price,” “Major Ports: Container Throughput,” and “Coal Price: US
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Central Appalachian Coal Spot Price Index.” Furthermore, it

evaluates and compares the applicability of DNN, CatBoost

regression, and robust regression methods in predicting CCFI.

Our study contributes to both theory and practice. From a

theoretical perspective, some scholars have analyzed and

predicted CCFI using mixed decomposition ensemble methods

based on EMD, Grey Wave, and ARMA (Chen et al., 2021) and

applied system dynamics to forecast and analyze the non-complex

nonlinear structure of CCFI (Jeon et al., 2021). However, there is no

literature that specifically investigates the relationship between

“CCBFI,” “BDI,” “Yangtze River Container Freight Index,”

“Global: Aluminum (minimum purity 99.5%, LME spot price):

UK landed price,” “Major

Ports: Container Throughput,” and “Coal Price: US Central

Appalachian Coal Spot Price Index” with CCFI. Furthermore,

research on the analysis and prediction of CCFI using DNN,

CatBoost regression, and robust regression methods is still

lacking. Therefore, our study provides a direction for further

research for scholars to explore the aforementioned relationships

and conduct subsequent studies on CCFI. Additionally, we

conducted a study on the applicability of the aforementioned

three models to CCFI, which can assist businesses of varying sizes

in evaluating the models and providing relevant recommendations

to develop more accurate supply chain and logistics strategies,

thereby enhancing operational efficiency and cost reduction.

The remaining sections of this paper are organized as follows.

Section 2 introduced the principles of the three models. In Section 3,

based on previous literature and practical considerations, we

identified the main influencing factors of CCFI and conduct data

collection and descriptive statistical analysis. Section 4 implemented

the application of the three models on CCFI and discussed the

practical effectiveness of the models. In Section 5, we provided

conclusions and offer some suggestions for businesses.
2 Methodology

Due to the complexity and randomness of CCFI trends,

predicting CCFI accurately is also more complex. Traditional

forecasting methods often struggle to adapt to the changing

dynamics of CCFI influenced by various factors. In this study, we

employ DNN, CatBoost regression, and RANSAC regression as

separate methods to predict CCFI trends. To facilitate

understanding of the subsequent sections of this paper, this

sect ion provides bas ic knowledge about these three

prediction methods.
2.1 DNN

DNN consists of L +1 layers of neural networks, where each

layer is composed of multiple neurons. The layers are structured as

follows: the 0 layer is the input layer, the 1 to L −1 layers are hidden

layers, and the L layer is the output layer. The input data starts from

the first layer and undergoes multiple nonlinear transformations

until it reaches the output layer. Each neuron receives the outputs
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from neurons in the previous layer, multiplies them by weights,

adds a bias term, and then applies a non-linear activation function.

The layers are fully connected, meaning that any neuron in the i

layer is connected to any neuron in the i + 1 layer. The nodes in

adjacent layers are linked together by connections, and the weights

of all these connections form a feed forward network (Zhu

et al., 2019).

Let the input of the k layer be denoted as Z(k), the output as a(k),

the activation function as g(), the weight matrix as W(k), and the

bias vector as b(k). The equations (1)-(2) can be represented as

follows. More specifically, the output of the j neuron in the i layer

can be expressed as shown in equation (3), where ni−1 represents the

number of neurons in the i − 1 layer, w(i)
j,k represents the weight

connecting the k neuron in the i − 1 layer to the j neuron in the i

layer, btj represents the bias of the j neuron in the i layer, and f ()

represents the activation function.

z(k) = W(k)z(k−1) + b(k) (1)

a(k) = g(z(k) (2)

y(i)j = f o
n−1

k=1

w(i)
j,ky

(i−1)
k + b(j)j

 !
(3)

As a feed forward neural network, in DNN, the data flow from

the input layer through the intermediate hidden layers and finally

reaches the output layer. There are connections between neurons in

each layer, and each connection has a weight that represents the

strength of the relationship between different neurons. In this study,

the network parameters were adjusted through extensive supervised

training to obtain relatively optimal values. The DNN model

constructed using the Keras framework consists of three Dense

layers and one output layer. Each Dense layer contains 64 neurons

and uses the relu activation function. The output layer consists of a

single neuron without an activation function.

The specific structure of a DNN is shown in Figure 1. Here, xi
represents the input features, b(k)i is the bias vector of the k layer,

W(k)
k−1k is the weight matrix from the k − 1 layer to the k layer, z(k)i is

the input vector of the k layer, a(k)i is the output vector of the k layer,

which also serves as the input vector for the next layer. g() denotes the

output activation function, and y represents the final output vector.
2.2 Catboost regression

CatBoost regression is a machine learning algorithm based on

Gradient Boosting Decision Tree. It utilizes the gradient boosting

algorithm to train the model with the objective of minimizing the

loss function and achieving better performance in classification and

regression tasks. Compared to traditional gradient boosting

decision tree algorithms, CatBoost regression not only possesses

high accuracy in predicting feature importance but also

distinguishes the relative contributions of different features to the

dependent variable.

The relative contribution of a specific feature in a single decision

tree is measured by equation (4), whereM represents the number of
frontiersin.org

https://doi.org/10.3389/fmars.2023.1245542
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Tu et al. 10.3389/fmars.2023.1245542
iterations and J2j denotes the relative contribution value of feature j .

The calculation method for J2J (T) is shown in equation (5), where

L − 1 indicates the number of non-leaf nodes in the tree, vt
corresponds to the feature associated with node t, and i2t
represents the decrease in squared loss after the split at node t. A

higher reduction in i2t signifies a greater relative contribution of the

feature to its corresponding node (SPSSRRO).

J2j =
1

MoM
m=1J

2
J (Tm)

(4)

J2J (T) = o
L−1

t=1
i2t I(υt = J) (5)
2.3 RANSAC regression

The foundation of RANSAC lies in the residuals and variance in

least squares regression. In least squares regression, a regression

model is fitted by minimizing the sum of squared residuals.

However, in RANSAC regression, as outliers may exist in the

data, directly minimizing the sum of squared residuals may lead

to biased fits. Therefore, an iterative weighted least squares

estimation of regression coefficients is employed.
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RANSAC works by randomly sampling the dataset and

selecting inliers (data points that fit well) and outliers. Then,

another round of least squares regression is performed using only

the inliers, resulting in a regression model as shown in equation (6).

In this equation, b1, b2, · · ·, bp represent the unknown regression

coefficients, e1, e2, · · ·, ep are independently and identically

distributed with a mean of 0. The weights for each data point are

determined based on the residuals, where data points with larger

residuals are assigned smaller weights to reduce the influence of

outliers, and data points with larger residuals are assigned larger

weights. This process is iterated multiple times to achieve

robustness.

Yi =o
P

j=1
xijbj + ei i = 1, 2, n (6)
3 Influencing factors identification

3.1 Influencing factors identify

(Zhao et al., 2022) analyzed the impact of BDI, CCBFI, and

container throughput on the container market using an

autoregressive integrated moving average model and exponential
FIGURE 1

The specific structure of DNN.
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smoothing model. (Hsiao et al., 2014) investigated the lead-lag

relationship between BDI and CCFI through cointegration analysis

and the Granger causality test. (Tsioumas and Papadimitriou, 2018)

explored the influence of coal on maritime trade using cointegration

analysis, the Granger causality test, and impulse response analysis.

Zheng and Yang ()zheng2016hub discussed the economies of scale

in Yangtze River container shipping. Additionally, an increase in

aluminum prices may raise production costs in related industries,

thereby affecting shipping demand and container freight rates,

potentially leading to fluctuations in CCFI. Based on previous

literature and the actual situation, this study selected the following

six factors for quantitative analysis of their impact on CCFI.

3.1.1 China Coastal Bulk Freight Index
China is one of the world’s largest producers and exporters of

goods, making its freight demand and freight rate levels crucial to

the global shipping market. The China Coastal Bulk Freight Index

(CCBFI) serves as a barometer for China’s major coastal ports’ bulk

freight rates. It timely reflects changes in freight transport and aids

the Chinese government in macroeconomic regulation of the

coastal shipping market, fostering the healthy development of

China’s coastal shipping market. Additionally, CCBFI also reflects

the conditions of the Chinese container shipping market. Although

bulk cargo and container transport are distinct markets, they are

both integral components of the maritime industry. Therefore,

fluctuations in the five commodity components (coal, grain, metal

ore, refined oil, and crude oil) included in the CCBFI can impact

changes in the China Container Freight Index (CCFI).

3.1.2 Baltic Dry Index
The BDI reflects the supply and demand relationship and price

trends in the international dry bulk market. It is calculated based on

the weighted average of spot rates from several major shipping

routes worldwide and is published by the Baltic Exchange. The BDI

is widely regarded as the “barometer” of dry bulk shipping and has

long been used as one of the most important indicators for

measuring shipping costs. In recent years, it has also become an

important indicator for global trade and the economy. As the dry

bulk market and the container market both belong to the shipping

industry, they can also have an impact on the China Container

Freight Index (CCFI).

3.1.3 Yangtze River Container Freight Index
The Yangtze River Container Freight Index reflects the changes

in container freight rates along the Yangtze River, and it is

calculated based on actual shipping data from major ports and

routes along the Yangtze River. It is published by the Chinese

Shipping Information Network. The Yangtze River Container

Freight Index is an important indicator of the inland container

shipping market along the Yangtze River, while the CCFI reflects

the overall price changes in the container shipping market in China.

As the Yangtze River serves as a major transportation artery in

China’s inland region, the price fluctuations in the inland container

shipping market along the Yangtze River can have an impact on the

overall market, that is, the price level of CCFI.
Frontiers in Marine Science 05
3.1.4 Global: Aluminum (minimum purity
of 99.5%, London Metal Exchange spot
price): UK landed price

This index represents the onshore price of aluminum spot

trading on the London Metal Exchange in the United Kingdom,

which reflects the price trends and levels in the global aluminum

market. Firstly, aluminum is one of the most abundant metallic

elements on Earth and is a vital industrial raw material globally. It

has extensive applications in sectors such as construction,

transportation, power transmission, electronics, and packaging (Li

et al., 2020). Therefore, changes in aluminum prices can affect the

production costs and product prices in related industries,

consequently influencing their transportation demand. Secondly,

aluminum prices are influenced by various macroeconomic factors,

including global economic conditions, supply and demand balance,

trade policies, and exchange rate fluctuations. These factors

indirectly impact the demand and prices in the shipping market

as well. Hence, aluminum trade and prices also have implications

for the development of the shipping market. For instance, an

increase in the transportation demand for aluminum products

can contribute to the prosperity of the shipping market.
3.1.5 Major ports: container throughput
Major ports refer to ports that have reached or exceeded a

certain scale of cargo throughput annually, while container

throughput refers to the number of containers handled by a port

within a year (Xiao et al., 2023), including container loading and

unloading. Container throughput is one of the key factors

determining the influence of a port. It plays an important role in

domestic cargo exchange and foreign trade transportation and

serves as a crucial measurement standard for global trade (Loske,

2020). It can directly reflect the development trends of ports (Huang

et al., 2015). Therefore, as an important indicator of container

development, port container throughput can provide a fundamental

basis for studying the trends of the CCFI.

3.1.6 Coal price: US Central Appalachia:
coal spot price index

This index is used to reflect the spot price of coal in the

Appalachian region of the American Midwest. It can also serve as

a reference indicator for the overall price trend of the coal market

and have a certain impact on the price fluctuations in the global coal

market. Fossil fuel trade(including coal, crude oil, and natural gas),

accounts for over 80% of global primary energy consumption

(Wang et al., 2022), with coal being a major contributor (Sahu

et al., 2014) and playing a significant role in global trade (Wang

et al., 2022; Xiao and Cui, 2023). Therefore, changes in the supply

and demand dynamics and price fluctuations in the global coal

market may affect international trade and the shipping market. On

the other hand, as an important indicator that objectively reflects

the global container market conditions, the CCFI has become the

world’s second-largest freight index (Hsiao et al., 2014). Its price

level and market supply-demand dynamics may be influenced by

various factors such as the global economic and trade environment

(Lu et al., 2023) and the competitive landscape of the shipping
frontiersin.org
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market, which can also impact the supply and demand dynamics

and price fluctuations in the coal market. Therefore, this study

selects a comprehensive index calculated from the spot price of coal

in the Appalachian region of the American Midwest as one of the

influencing factors of the CCFI for research purposes.
3.2 Data collection and processing

In this study, data for “CCFI”, “CCBFI”, “BDI”, “Yangtze River

Container Freight Index”, “Global: Aluminum (minimum purity of

99.5%, LME spot price): UK landed price”, “Major Ports: Container

Throughput” and “Coal Price: Appalachian region of the United

States: Coal spot price index” were sourced from the Tonghuashun

iFinD platform. Among these, “Major Ports: Container

Throughput” had a small number of missing values, which were

supplemented by taking the average of the data from the preceding

and following months.

As “BDI” is daily data, “CCFI” and “CCBFI” are weekly data,

“Yangtze River Container Freight Index” is monthly data, and

“Global: Aluminum (minimum purity of 99.5%, LME spot price):

UK landed price” and “Coal Price: Appalachian region of the

United States: Coal spot price index” are annual data. To make

the data consistent in frequency, all the data were aggregated to

monthly units. The annual data for “Global: Aluminum (minimum

purity of 99.5%, LME spot price): UK landed price” and “Coal Price:

Appalachian region of the United States: Coal spot price index”

were converted to monthly data, while the remaining data were

averaged for the corresponding month. The sample period covers

January 2008 to December 2022.
3.3 Descriptive statistical analysis

According to the table, a total of 180 data observations are

available for “CCFI,” “CCBFI,” “BDI,” “Yangtze River Container

Freight Index,” “Global: Aluminum (minimum purity 99.5%, LME

spot price): UK spot price,” “Major Ports: Container Throughput,”

and”Coal Price: US Central Appalachia: Coal Spot Price Index.” The

table shows the maximum value, minimum value, average value,
Frontiers in Marine Science 06
standard deviation, and median for each of these variables. Table 1

displays the data statistical analysis for each indicator. For “CCFI,”

the kurtosis is 4.66, which is greater than 3, indicating a heavy-tailed

distribution. The skewness is 2.39, which is greater than 0,

indicating a right-skewed distribution. For “CCBFI,” the kurtosis

is 7.00, which is greater than 3, indicating a heavy-tailed

distribution. The skewness is 2.37, which is greater than 0,

indicating a right-skewed distribution. For “BDI,” the kurtosis is

10.60, which is greater than 3, indicating a heavy-tailed distribution.

The skewness is 3.04, which is greater than 0, indicating a right-

skewed distribution. For the “Yangtze River Container Freight

Index,” the kurtosis is 1.36, which is less than 3, indicating a

thin-tailed distribution. The skewness is 1.23, which is greater

than 0, indicating a right-skewed distribution. For “Global:

Aluminum (minimum purity 99.5%, LME spot price): UK spot

price,” the kurtosis is 0.03, which is less than 3, indicating a thin-

tailed distribution. The skewness is 1.23, which is greater than 0,

indicating a right-skewed distribution. For “Major Ports: Container

Throughput,” the kurtosis is -1.05, which is less than 3, indicating a

thin-tailed distribution. The skewness is 0.01, which is greater than

0, indicating a right-skewed distribution. For “Coal Price: US

Central Appalachia: Coal Spot Price Index,” the kurtosis is 0.83,

which is less than 3, indicating a thin-tailed distribution. The

skewness is 1.16, which is greater than 0, indicating a right-

skewed distribution. The comparison of kurtosis and skewness for

the7 variables is shown in Figure 2.
4 Experimental results

4.1 DNN

Based on the collected monthly data of CCFI and its six

influencing attributes from January 2008 to December 2022, a

total of 180 data points are available. The dataset is divided into a

training set consisting of 125 data points and a test set consisting of

2 data points. The training process involves training a model using

the training set. The model is then used to predict the CCFI values

for the test set, and the accuracy of the model is evaluated based on

the actual values of the test set. The training cycle is set to 50, and
TABLE 1 Results of descriptive statistical analysis of the data.

Variable name Sample
Size

Maximum
value

Minimum
value

Mean Standard
deviation

Median Variance Kurtosis Skewness

CCFI 180 3526.24 641.68 1191.27 659.15 1009.67 434474.82 4.66 2.39

CCBFI 180 2686.90 782.84 1192.91 335.54 1114.35 112589.55 7.00 2.37

BDI 180 10843.65 306.91 1843.50 1707.91 1352.01 2916944.09 10.60 3.04

Yangtze River Container
Freight Index

180 1148.00 902.62 998.46 49.84 984.34 2483.65 1.36 1.23

Global: Aluminum 180 22207.00 10985 15574.83 2433.21 15212.42 5920517.87 0.03 0.68

Major Ports: Container
Throughput

180 2325.00 778.25 1559.52 398.73 1578.56 158988.66 -1.05 0.01

Coal Price 180 117.42 42.77 69.94 19.23 67.28 369.91 0.83 1.16
f
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the mean squared error (MSE) is used as the loss function, while the

mean absolute error (MAE) is used as the performance metric. The

RMSProp optimization algorithm is utilized. K-fold cross-

validation is employed as a common method for evaluating

model performance in deep learning. It provides a more reliable

estimate of the model’s generalization ability by dividing the dataset

into K subsets, using one subset as the validation set, and the

remaining K-1 subsets as the training set. This process is repeated K

times, and the average results are taken to reduce bias caused by

different choices of training and validation sets, thus providing a
Frontiers in Marine Science 07
more reliable evaluation of the model’s performance. Since the

training set data is limited, K-fold cross-validation is used. In this

case, K is set to 4, indicating that the training set is divided into four

parts for cross-validation. Each time, one part is used as the

validation set, while the remaining three parts are used as the

training set. The line graph illustrating the relationship between

training cycles and MAE is shown in Figure 3.

As shown in Table 2, lists the model evaluation results for the

six attributes influencing CCFI and the prediction of CCFI using

DNN from 2008 to 2022. A higher R2 value indicates better
FIGURE 3

Line graph of the relationship between training cycles and MAE.
FIGURE 2

Kurtosis and skewness histograms of the data.
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performance. The MSE value is 35237.797 in the test set and

11100.341 in the training set. The RMSE value is 187.717 in the

test set and 105.358 in the training set. The MAE value is 157.457 in

the test set and 93.591 in the training set. The MAPE value is 0.199

in the test set and 3.233 in the training set. The R2 value is 0.272 in

the test set and 0.882 in the training set.
4.2 Catboost regression

This chapter aims to provide a detailed explanation of the

modeling details of the CatBoost regression model using the

SPSSPRO software. The most important aspect of the modeling

process is parameter tuning, which involves adjusting key

parameters to avoid over fitting and improve model accuracy.

The specific steps for parameter tuning and modeling are as follows:

Step 1, Data Split. In order to evaluate the performance of the

model, the dataset is divided into a training set and a test set.

Typically, the dataset can be split into a training set of 70% to 80%

of the data and the remaining portion as the test set. Since our

dataset is relatively small, we will choose to use 80% of the data as

the training set and 20% as the test set. Additionally, we will shuffle

the data to eliminate any inherent ordering and reduce the model’s

dependence on specific orderings, thereby improving the model’s

generalization and reliability.

Step 2, Parameter Tuning. The key parameters to determine in

the CatBoost regression model are: iterations, learning-rate, depth,

and regularization. For the iteration count, it represents the number

of training rounds for the model. A larger iteration count can

increase the training time but may improve the model’s

performance to some extent. The learning rate controls the step

size at which the model updates the weights during each iteration. A

higher learning rate can accelerate the convergence of the model but

may lead to over fitting. On the other hand, a lower learning rate

can improve the stability and generalization ability of the model but

may result in longer training time. In the statement you provided, it

mentions that setting the learning rate to 0.1 is generally

appropriate. However, considering the complexity of the

experiment, you chose to evaluate several reasonable ranges of

values. With the other parameters set to their initial values, you

tested different learning rates, such as iterations=[50, 100, 150, 200],

and evaluated their performance on the validation set. Finally, we

selected 100 iterations as the optimal number of iterations based on

the evaluation results. The depth of the tree determines the

complexity of the model. Deeper trees can capture more feature

interactions, but they can also lead to over fitting. Shallower trees

may not be able to fully capture the complexity of the data. Based on

the adjusted number of iterations and learning rate, we conducted

experiments with depth=[8, 9, 10, 11]. It was found that the model
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achieved the highest accuracy when the depth was set to 10. The

regularization parameter helps prevent model over fitting. In

CatBoost, the regularization parameters mainly include L1

regularization and L2 regularization. We used L2 regularization

and set the regularization parameter values to [0.01, 0.1, 1.0].

Finally, we determined the regularization parameter value to be 1.0.

Finally, using the parameter tuning results mentioned earlier,

we apply them to the data for modeling. Table 3 presents the

important proportions of the six selected features for CCFI.

The prediction results of CatBoost regression are shown in

Table 4. We can see that the mean squared error (MSE) and mean

absolute error (MAE) of the training set, which represent the

expected value of the squared difference between the predicted

values and the actual values, are both small. Additionally, the R2

value of 1 indicates a high accuracy of the model. Moreover, the R2

value of 0.875 for the test set indicates good performance.

The goodness of fit plot for the CatBoost regression model is

shown in Figure 4. The blue line represents the true values of the test

set, while the green line represents the predicted values of the test

set. The two lines overlap to a great extent. From the Figure, it can

be observed that after training, an ideal CatBoost regression model

has been obtained.
4.3 Robust regression

A robust regression model is constructed with CCFI as the

dependent variable and “CCBFI,” “BDI,” “Yangtze River Container

Freight Index,” “Global: Aluminum (minimum purity 99.5%, LME

spot price): UK landed price,” “Ports: Container Throughput of

Major Ports,” and “Coal Price: US Central Appalachian: Coal Spot

Price Index” as independent variables. Let CCFI be Y, and let

“CCBFI,” “BDI,” “Yangtze River Container Freight Index,” “Global:

Aluminum (minimum purity 99.5%, LME spot price): UK landed

price,” “Ports: Container Throughput of Major Ports,” and “Coal
TABLE 2 DNN evaluation results.

MSE RMSE MAE MAPE R2

Training set 35237.797 187.717 157.457 0.199 0.272

Test set 11100.341 105.358 93.591 3.233 0.882
frontier
TABLE 3 Feature importance.

Feature names Feature
importance

Global: Aluminum (minimum purity 99.5%, LME spot
price): UK spot price

34.70%

Major Ports: Container Throughput 26.70%

CCBFI 10.60%

Yangtze River Container Freight Index 9.80%

BDI 9.10%

Coal Price: US Central Appalachia: Coal Spot Price Index 9.10%
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Price: US Central Appalachian: Coal Spot Price Index” be X1,X2,

X3,X4,X5,X6 respectively.

Thus, a multiple linear regression model can be established as

shown in equation (7)

Y = C0 + C1 � X1 + C2 � X2 + C3 � X3 + C4 � X4 + C5 � X5

+ C6 � X6 (7)

Where C0is the constant term, and C1,C2,C3,C4,C5,C6 are the

coefficients of each variable. The regression results are shown in

the Table 5.

The regression equation is shown in equation (8) (using non-

standardized coefficients).

Y = 374:121 − 0:968� X1 + 0:066� X2 + 2:643� X3 + 0:161

� X4 + 0:64� X5 + 13:768� X6 (8)

The regression model has an R2 value of 0.79, indicating that

79% of the variation in Y can be explained by the model, indicating

a good fit. By observing the regression model, it can be noted that

CCFI is positively correlated with “BDI”, “Global: Aluminum

(minimum purity of 99.5%, LME spot price): UK landed price”,

“Major Ports: Container Throughput”, and “Coal Price: US Central

Appalachian: Coal spot price index”, while CCFI is negatively

correlated with “CCBFI” and “Yangtze River Container

Freight Index”.

Performing an F-test to test the overall significance of the

regression equation.

The null hypothesis(H0) is stated as follows: C1 = C2 = C3 = C4 =

C5 = C6 = 0The alternative hypothesis(H1) is stated as follows: at least

one of the coefficients C1,C2,C3,C4,C5,C6 is not equal to zero.
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As shown in the Table 5, P = 0. Therefore, we reject the null

hypothesis, indicating that there is a linear relationship between Y

and X1,X2,X3,X4,X5,X6.

Based on the results of the robust regression model, the variable

“Global: Aluminum (minimum purity 99.5%, LME spot price): UK

delivered price” was found to have the most significant impact on

the CCFI. Aluminum is one of the most widely used important

metals globally. It possesses characteristics such as lightweight, good

conductivity, and corrosion resistance, making it widely applied in

various industries including aerospace, automotive, construction,

packaging, and more.

From the perspective of raw material costs, global aluminum

production ranks third after iron and copper, and it requires a

significant amount of raw materials like bauxite. However, the

distribution of global bauxite reserves is uneven, and international

trade of bauxite requires shipping. If global aluminum ore prices

rise, both production and transportation costs of aluminum may

increase, thus impacting the shipping market.

Considering international trade and shipping demand,

aluminum is a widely traded commodity across various

industries, including construction, automotive manufacturing,

aerospace, and shipbuilding. Aluminum plays a crucial role in the

shipbuilding industry due to its lightweight and excellent corrosion

resistance. It finds applications in ship structures, equipment, and

interior components.

From the perspective of supply and demand in the metal

market, the demand for aluminum in various industries fluctuates

with macroeconomic conditions, geopolitical factors, and trade

policies. Additionally, changes in aluminum smelting capacity,

utilization rates, and energy costs also affect the supply and

demand dynamics of aluminum. Therefore, fluctuations in
FIGURE 4

CatBoost regression model prediction results.
TABLE 4 Evaluation results of the CatBoost regression model.

MSE RMSE MAE MAPE R2

Training set 173.489 13.172 10.625 1 1

Test set 40209.697 200.524 115.227 9.138 0.875
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aluminum demand and supply indirectly influence the CCFI

through changes in shipping demand, leading to fluctuations in

the index.

In conclusion, changes in aluminum prices have a significant

impact on the fluctuations of the CCFI.
4.4 Comparison of results

In this study, we employed DNN (Deep Neural Network),

CatBoost regression model, and Robust regression model to

analyze and predict the impact of “CCBFI”, “BDI”, “Yangtze

River Container Freight Index”, “Global: Aluminum (minimum

purity of 99.5%, LME spot price): UK landed price”, “Major Ports:

Container Throughput”, and “Coal Price: US Central Appalachian

Coal Spot Price Index” on CCFI. Our objective was to identify the

most effective model for predicting CCFI and compare the

performance of these models.

When presenting the experimental results, we selected MSE,

RMSE, MAE, MAPE, and R2 as commonly used metrics for

evaluating model performance and accuracy. MSE measures the

average of the squared differences between predicted values and true

values. RMSE is the square root of MSE and has the same unit as the

original data, making it more intuitively understandable. MAE

measures the average of the absolute differences between

predicted values and true values. MAPE measures the average of

the percentage differences between predicted values and true values.

Smaller values for these four metrics indicate smaller percentage

differences between the model’s predictions and the true values. R2

measures the proportion of the variance in the dependent variable

that can be explained by the regression model. R2 values range from

0 to 1, where values closer to 1 indicate better ability of the model to

explain the variance in the dependent variable and better predictive

performance, while values closer to 0 indicate poorer explanatory

power and poorer predictive performance. These metrics reflect the

performance and accuracy of the model. Smaller values of MSE,

RMSE, MAE, and MAPE, as well as larger values of R2, indicate

smaller differences between the model’s predictions and the true

values, indicating better model performance and higher accuracy.
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These metrics can be used for comparing the performance of

different models, selecting the best model, tuning model

parameters, and evaluating the model’s generalization ability on

new data.

Based on the analysis of the experimental results using R2 , we

draw the following conclusions: The DNN model exhibits the best

predictive performance, with an R2 of 0.882. The CatBoost

regression model achieves an R2 of 0.875 on the test set, while the

Robust regression model has an R2 of 0.79. This indicates that DNN

possesses strong learning ability and nonlinear fitting capability,

allowing it to capture the complex relationship between input

features and the target variable more effectively. It is suitable for

handling large-scale data and high-dimensional features,

automatically extracting features, and conducting efficient pattern

recognition. Therefore, the DNN model can accurately predict the

variations in CCFI and provide higher prediction accuracy.

Based on the analysis of the time and space complexity of the

three models, the DNNmodel usually has a higher time complexity,

which depends on the number of layers, the number of neurons in

each layer, and the number of training iterations. It can be

approximated as O(E ∗ n ∗m), where E is the number of training

iterations (100), n is the sample size (180), and m is the number of

model parameters (64 ∗ (64 + 1)). The CatBoost model has a

relatively lower training time complexity due to the efficient

optimization strategies and techniques it employs. It can be

approximated as O(T ∗ n ∗ d2), where T is the number of

iterations (20), n is the sample size (180), and d is the feature

dimension (7).The time complexity of the robust regression model

is comparable to that of ordinary least squares regression, which is

approximately O(n3), where n is the sample size (180).The space

complexity of the DNN model includes storing the training data

and model parameters. The space required for storing the training

data is proportional to the size of the dataset, i.e., O(n ∗ d), where n
is the sample size and d is the feature dimension. Additionally, the

DNNmodel needs to store the weights and biases of each neuron, so

the space complexity of the model parameters is dependent on the

model’s scale. The space complexity of the CatBoost model mainly

consists of storing the training data and model parameters. The

space required for storing the training data is proportional to the
TABLE 5 Robust regression result.

Unstandardized
B

Coefficients
Standard
Error

Standardized
Coefficients

Beta
t p R2 Adjusted

R2 F

C0 374.121 522.712 0.716 0.000***

X1 -0.968 0.145 -0.493 -6.691 0.000***

X2 0.066 0.025 0.172 2.613 0.009***
0.79 0.782

F=108.321,
P=0.000***

X3 -2.643 0.539 -0.200 -4.900 0.000***

X4 0.161 0.015 0.595 10.421 0.000***

X5 0.640 0.077 0.387 8.325 0.000***

X6 13.768 1.763 0.402 7.809 0.000***
fro
*** represents a significance level of 1%.
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size of the dataset, i.e., O( n ∗ d), where n is the sample size and d is

the feature dimension. Additionally, CatBoost needs to store the

parameters and split points of each decision tree, so the space

complexity of the model parameters is related to the number and

depth of the trees. The space complexity of the robust regression

model mainly includes storing a copy of the original dataset and the

model parameters. The space required for storing the dataset is

proportional to the size of the dataset, i.e., O(n), where n is the

sample size (180). Additionally, the robust regression model needs

to store the iterative computation results for each sample, so the

space complexity of the model parameters is related to the size of

the dataset.

In summary, based on our research findings, the DNN model

performs the best in analysis and prediction, followed by the

CatBoost regression model in second place, and the Robust

regression model in third place. These conclusions provide

valuable guidance for selecting the appropriate model for

analyzing and predicting CCFI. They also offer important insights

into model performance and application scenarios. However,

choosing the right model should also consider the specific

problem and data characteristics, and adjustments and

optimizations should be made according to the requirements of

practical applications.
5 Conclusions and suggestions

According to our research findings, the DNNmodel exhibits the

best performance in analysis and prediction, followed by the

CatBoost regression model in second place, and the Robust

regression model in third place. The Robust regression model is

characterized by its relatively simple principles, making it easy to

comprehend and implement, suitable for analyzing simple linear

relationships. In contrast, the DNN and CatBoost regression models

are more complex, requiring deeper theoretical and technical

knowledge, as well as more extensive model tuning and training

time, especially when dealing with large-scale data and complex

features. The Robust regression model, on the other hand, requires

less training time and computational resource consumption,

making it suitable for quick analysis and prediction.

Therefore, we suggested that, depending on the company’s

capabilities, different models should be chosen for predicting

CCFI. For companies with greater resources, the DNN and

CatBoost regression models are more suitable. These companies

typically operate in more complex business environments with

larger data volumes, and these models can effectively handle

large-scale data and capture complex relationships, providing

more accurate predictions and decision support. For companies

with limited resources, the Robust regression model is more

practical. Given their smaller business scales and limited data

compared to larger companies, the Robust regression model can

still offer reliable analysis results while saving time and

resource costs.

For small-scale companies, the Robust regression model offers

efficiency in terms of time and resource consumption. Robust
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regression is a powerful statistical method that can provide

reliable analysis results even in the presence of outliers or

anomalies in the data. In terms of time, the Robust regression

model is typically faster than complex nonlinear models or machine

learning methods. Its computational complexity is relatively low,

allowing for faster results when dealing with large-scale datasets.

This means that small-scale companies can perform data analysis

and make decisions more quickly without requiring excessive time

and computational resources. However, the Robust regression

model also has its limitations. Firstly, it assumes that the error

term in the data follows a certain distribution, often assuming a

normal distribution. If the error term in the data does not adhere to

these assumptions, the effectiveness of the Robust regression model

may decrease. Therefore, when selecting a model, small-scale

companies need to consider the characteristics of their data and

the objectives of their analysis. If the dataset exhibits nonlinear

relationships or particularly complex structures, or if there are a

significant number of outliers in the data, the Robust regression

model may not be the best choice. In such cases, they may need to

consider other models that are more suitable for handling

these features.

In conclusion, the DNN, CatBoost regression model, and

Robust regression model possess distinct characteristics in

analyzing and predicting CCFI. The choice of an appropriate

model should consider the company’s scale and requirements.

However, specific problems and data features should also be

taken into account, and the selected model should be adjusted

and optimized to suit practical application needs.

While this study has yielded valuable research findings, it is

important to acknowledge its limitations. For instance, the data

sources used in this study may have inherent uncertainties and

biases during the data processing stage. Additionally, although

multiple factors influencing the shipping market were

investigated, there may be other potentially significant factors that

were not considered. In future research, expanding the selection of

variables can lead to more comprehensive analysis results.

Moreover, while DNN, CatBoost regression, and Robust

regression models were chosen as the analysis and prediction

framework in this study, other machine learning or statistical

models may also hold potential. Further exploration of the

applicability and performance comparison of different models can

be pursued in future work to identify optimal predictive models. To

further advance the understanding and impact of our research,

several avenues for future work emerge: Data Updates and

Expansion: The shipping market is a dynamic system,

necessitating regular updates and expansion of the dataset to

reflect the latest market changes. Future research can collect more

data, including additional factors and longer time spans, to improve

the accuracy and stability of prediction models. Model

Improvements and Optimization: Further enhancing and

optimizing the adopted models to enhance their predictive

performance and robustness. For example, different model

architectures, hyperparameter tuning, and feature engineering

techniques can be explored to optimize model performance.

Consideration of Additional Factors and Complex Relationships:
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The shipping market is influenced by multiple factors with complex

interrelationships. Future research can explore additional factors

and their intricate relationships, such as market competition

strategies, policy changes, and global economic dynamics, to

provide a more comprehensive analysis and prediction of the

shipping market.
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