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Objectives:Digestive system diseases have evolved into a growing global burden

without sufficient therapeutic measures. Lactobacillus reuteri (L. reuteri) is

considered as a new potential economical therapy for its probiotic effects in

the gastrointestinal system. We have provided an overview of the researches

supporting various L. reuteri strains’ application in treating common digestive

system diseases, including infantile colic, diarrhea, constipation, functional

abdominal pain, Helicobacter pylori infection, inflammatory bowel disease,

diverticulitis, colorectal cancer and liver diseases.

Methods: The summarized literature in this review was derived from databases

including PubMed, Web of Science, and Google Scholar.

Results: The therapeutic effects of L. reuteri in digestive system diseases may

depend on various direct and indirect mechanisms, including metabolite

production as well as modulation of the intestinal microbiome, preservation of

the gut barrier function, and regulation of the host immune system. These

actions are largely strain-specific and depend on the activation or inhibition of

various certain signal pathways. It is well evidenced that L. reuteri can be effective

both as a prophylactic measure and as a preferred therapy for infantile colic, and

it can also be recommended as an adjuvant strategy to diarrhea, constipation,

Helicobacter pylori infection in therapeutic settings. While preclinical studies

have shown the probiotic potential of L. reuteri in the management of functional

abdominal pain, inflammatory bowel disease, diverticulitis, colorectal cancer and

liver diseases, its application in these disease settings still needs further study.

Conclusion: This review focuses on the probiotic effects of L. reuteri on

gut homeostasis via certain signaling pathways, and emphasizes the

importance of these probiotics as a prospective treatment against several

digestive system diseases.

KEYWORDS

Lactobacillus reuteri, gut microbiota, infantile colic, diarrhea, constipation, functional
abdominal pain, inflammatory bowel disease, colorectal cancer
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1 Introduction

Digestive system diseases arise rapidly through the interaction

of genetic and environmental characteristics and are considered to

cause considerable healthcare burdens and costs (Peery et al., 2022;

Ricciardiello, 2022). Based on the latest data, digestive system

diseases are responsible for millions of healthcare encounters and

thousands and thousands of deaths that cost billions of dollars in

the United States every year (Peery et al., 2022). Of these digestive

system diseases, inflammatory bowel disease (IBD) is estimated to

affect 790 per 100,000 people in 2025 (Kaplan, 2015). According to

the most recent worldwide estimates, there were 930,000 deaths of

colorectal cancer (CRC) in 2020 and over 1.9 million new cases

(Morgan et al., 2023). The similar phenomenon of increasing

incidence is also seen in infantile colic (IC), functional abdominal

pain (FAP), and other gastrointestinal (GI) diseases (Thapar et al.,

2020; Peery et al., 2022; Indrio et al., 2023). Given this situation,

there is an urgent need to deploy personalized treatments for

these diseases.

Nowadays public interest of probiotics applications in

therapeutic settings is growing. One of the most widely used

probiotics, Lactobacillus, can be detected in the GI tract of

animals in varying concentrations depending on the species, age

of the host, or placement inside the gut (Zhao et al., 2023). The

Lactobacillus is a large heterogeneous set of facultative anaerobic

bacteria that are nonsporulating, and Gram-positive comprising

Lactobacillus (L.) acidophilus, L. reuteri, L. casei, L. bulgaricus, L.

rhamnosus, and so on (Mu et al., 2018). Among these, L. reuteri is

an extensively investigated probiotic that was first isolated in 1962,

resides in tissues of numerous mammals, and provides multiple

health benefits for the host including producing antimicrobial

molecules and regulating the host immune system (Yu et al.,

2023b). L. reuteri was discovered in various body sites, which

included breast milk, skin, urinary tract, and GI tract (Yu et al.,

2023b). Numerous L. reuteri strains were found to play unique roles

in different diseases covering hypercholesterolemia, skin infection,

allergic asthma, periodontitis, and autism spectrum disorders as

essential probiotics, especially in GI diseases (Sgritta et al., 2019;

Kubota et al., 2020; Dargenio et al., 2021). Mounting evidence

indicates that the symbiotic gut microbiota and host immune

system work together to preserve gut homeostasis (Saeed et al.,

2022). Growing data has revealed that the etiology of disorders of

the digestive system is strongly influenced by disrupted gut

microbes (Quaglio et al., 2022). Various L. reuteri strains have

been investigated in digestive system diseases like IC, diarrhea,

constipation, FAP, IBD, CRC, as well as liver diseases, and the

findings are generally promising (Dias et al., 2021; Saviano et al.,

2021; Werlinger et al., 2022; Happy Tummy et al., 2023).

But there are still doubts about clinical application of L. reuteri,

so it is important to understand the underlying mechanism of L.

reuteri in gut health. The effects of L. reuteri on GI diseases may

include preservation of gut barrier function, suppression of

excessive immune responses as well as oxidative stress,

modification of the composition of the intestinal flora, and

production of metabolites. In this review, we discussed the
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application of L. reuteri in digestive system diseases and outlined

the potential mechanisms.
2 Clinical application of L. reuteri in
digestive system diseases

2.1 Infantile colic

IC is typically characterized by daily full-force crying for a

minimum of 3 hrs, on a minimum of 3 days per week, for at least 3

weeks (Gordon et al., 2018). It is reported about one in four infants

younger than three months develop colic (Indrio et al., 2023).

Although IC often resolves by three months of age, it remains to

be stressful for parents and may even cause maternal postpartum

depressive symptoms (Mercuri et al., 2023). Considerable research

indicates that the intestinal microbiome’s composition is related to

infant colic symptoms, even though the pathophysiology of this

digestive condition is still inadequately comprehended (Korpela

et al., 2020). Firstly, it has been hypothesized that the developing GI

microbiome and the occurrence of excessive crying in infants

between the ages of two weeks and three months-the normal time

frame during which the gut is typically colonized by bacteria are

related (Zeevenhooven et al., 2018). Additionally, the gut

microbiota interacts with the gut-brain axis through multiple

signaling pathways, including neural, endocrine, immune, and

humoral signaling pathways (Deng et al., 2021). Given this, it

may influence central and gut neural functions, such as pain

perception in infants via the gut-brain axis, which may be

associated with excessive crying (Socala et al., 2021). In the past

decades, numerous studies illustrated that the GI microbial profiles

of infants with colic differ from those without colic in microbial

diversity, stability, and community composition (de Weerth et al.,

2013; Savino et al., 2017). Moreover, the results showed colicky

infants were less frequently colonized by Lactobacillus,

Bifidobacterium and more frequently enriched with the gas-

forming Coliforms (mostly Escherichia, Klebsiella) or other species

(Savino et al., 2009; de Weerth et al., 2013; Savino et al., 2017;

Sommermeyer et al., 2022; Kozhakhmetov et al., 2023).

We concluded that L. reuterimay be useful in the improvement

of breastfeeding babies with IC based on six randomized controlled

trials (RCTs), shown in Table 1. Accordingly, administering 1×108

colony-forming units (CFU) of L. reuteri DSM 17938 per day for 21

to 30 days can significantly decrease daily crying and fussing times,

and reduce the duration of crying episodes in colicky breast-fed

infants, consistent with remission of maternal depression (Savino

et al., 2010; Szajewska et al., 2013; Chau et al., 2015; Mi et al., 2015;

Savino et al., 2018a; Savino et al., 2018b). Similar results were

reported when analyzing the probiotic potential of L. reuteri ATCC

55730 in colicky infants, the superiority was still maintained

compared with simethicone intervention (Savino et al., 2007).

However, whether L. reuteri is useful in the treatment of formula-

fed colicky infants is still controversial. Data shown in the other two

RCT studies demonstrated that L. reuteri did not help manage the

symptoms of colicky infants (Sung et al., 2014; Turco et al., 2021).
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One study showed that a partially hydrolyzed formula added with

maltodextrins and L. reuteri DSM 17938 showed no preference for

the standard formula on colicky symptoms, but the unsatisfactory

results may attribute to the addition of maltodextrins in the

probiotics group (Turco et al., 2021). In another study included

breastfed and formula-fed colicky newborns, researchers found that

L. reuteri DSM 17938 had no beneficial impact on crying or fusing

time, instead, more fussing occurred in formula-fed infants

following probiotic treatment (Sung et al., 2014). The conflict

results may be explained by the differences in gut microbiota,

whose composition in early infancy seemed to be influenced by

various factors, including the delivery mode, infant feeding pattern,

gestational age, and the history of antibiotic use (Kapourchali and

Cresci, 2020). Formula-fed babies exhibited an increased gut

bacterial community richness relative to breast-fed babies, with a

greater abundance of Clostridium difficile (Azad et al., 2013).

Following the administration of L. reuteri DSM 17938, breast-fed

colicky infants showed a substantial rise in fecal Lactobacilli and a

drop in fecal Escherichia (E.) coli (Savino et al., 2010; Savino et al.,

2018b). From these findings, the therapeutic effectiveness of L.

reuteri could be influenced by the microbiome composition of the
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infant’s GI tract, which would account for the differences between

the effect on crying duration in breast-fed and formula-fed infants.

It is also reported that colicky infants showed increased serum

concentrations of inflammatory interleukin (IL)-8, monocyte

chemoattractant protein-1, and higher fecal calprotectin levels,

indicating the existence of systemic and intestinal local

inflammation (Partty et al., 2017). L. reuteri DSM 17938

treatment can increase circulating FoxP3 concentration and

reduce fecal calprotectin, indicating the underlying mechanisms

of L. reuteri to improve colic may be linked to the property of

alleviating inflammation (Savino et al., 2018a; Savino et al., 2018b).

According to a recent secondary analysis research based on a large

observational study, L. reuteri-containing formula was superior to

standard formula without probiotics in preventing infant colic,

similar to breast feeding (Happy Tummy et al., 2023).

Furthermore, the probiotic potential of L. reuteri DSM 17938

given at a dosage of 1×108 CFU per day for 90 days to prevent IC

is demonstrated by two RCT studies in newborns (Indrio et al.,

2014; Savino et al., 2015). This statement was also supported by one

prospective cohort study, which showed maternal consumption

with L. reuteri DSM 26866 in the latter four weeks of gestation was
TABLE 1 Randomized controlled trials of infantile colic.

Year Intervention Duration population Outcome Reference

2021 partially hydrolysed
formula +
maltodextrins+
+DSM 17938 vs
standard formula

28 days Formula-fed colicky infants
(<4 months)

significantly lower mean daily crying time in the standard formula
group

(Turco et al.,
2021)

2018 DSM 17938 vs placebo 1 month breast-fed colicky infants
(<4 months)

significantly shorter crying times, increased circulating FOXP3
concentration, reduced fecal calprotectin in the probiotic group

(Savino et al.,
2018b)

2018 DSM 17938 vs placebo 28 days breast-fed colicky infants
(<60 days)

a significant decrease in daily crying time, increased mRNA
expression of FoxP3

(Savino et al.,
2018a)

2017 DSM 17938 vs placebo 42 days breast-fed colicky infants
(3 weeks to 3 months)

did not significantly change crying time (Fatheree
et al., 2017)

2015 DSM 17938 vs placebo 21 days breast-fed colicky infants
(<60 days)

significantly shorter crying and fussing times in the probiotic group (Chau et al.,
2015)

2015 DSM 17938 and Vit
D3 vs Vit D3

3 months Newborns (<10 days) significantly reduced pediatric consultations for infantile colic (Savino et al.,
2015)

2015 DSM 17938 vs placebo 21 days breast-fed colicky infants
(<4 months)

significantly reduced daily crying time, improvement in maternal
depression in the probiotic group

(Mi et al.,
2015)

2014 DSM 17938 vs placebo 3 months newborns (<1 week) significantly reduced duration of crying time (Indrio et al.,
2014)

2014 DSM 17938 vs placebo 1 month Breast-fed and formula- fed
colicky infants (<3 months)

No benefit (increased fussing occurred only in formula fed infants) (Sung et al.,
2014)

2013 DSM 17938 vs placebo 21 days Breast-fed colicky infants
(<5 months)

significantly reduced crying time in the probiotic group (Szajewska
et al., 2013)

2010 DSM 17938 vs placebo 21 days Breast-fed colicky infants
(2 to 16 weeks)

significantly reduced crying time in the probiotic group, a significant
increase in fecal lactobacilli and a reduction in fecal Escherichia coli

(Savino et al.,
2010)

2007 ATCC 55730 vs
simethicone

28 days Breast-fed colicky infants
(21 to 90 days)

significantly reduced daily crying times (Savino et al.,
2007)

2020 DSM 26866 vs placebo 28 days pregnant women
(last 4 weeks of
pregnancy)

significantly decreased frequency of colic and lower colic severity in
the intervention group

(Pourmirzaiee
et al., 2020)
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able to protect infants from colic (Pourmirzaiee et al., 2020). In

conclusion, since L. reuteri may ameliorate colic symptoms mainly

by altering the microbial colonization pattern in colicky infants, it is

a receptive therapy for colicky infants without side effects and

recommendable supplements for newborns to prevent IC.
2.2 Diarrhea

Recent data has shown that acute diarrheal disease leads to 179

million outpatient visits every year in the United States, associated

with various pathogen infections such as Shigella, E. coli, rotavirus,

norovirus and antibiotic use (Meisenheimer Es Md et al., 2022).

Diarrhea is also identified as the leading infectious cause of

childhood morbidity and mortality (Ahmed et al., 2021).

Previously several specific probiotic strains have demonstrated

antidiarrheal effects (Skrzydlo-Radomanska et al., 2020; Lukasik

et al., 2022). An increasing number of studies have been conducted

to clarify the function of L. reuteri in diarrhea since Shornikova and

his colleagues first analyzed the effectiveness of L. reuteri DSM

17938 in pediatric acute watery diarrhea and demonstrated that it

can dosage-dependently shorten the duration of acute watery

diarrhea (Shornikova et al., 1997a; Shornikova et al., 1997b).

Previous nine RCTs, which demonstrated that L. reuteri DSM

17938 was capable of reducing the frequency, length of time, and

incidence of diarrhea in children and adults, especially in those with

lower nutritional status, supported the drug’s potential benefits in

treating and preventing diarrheal diseases (Agustina et al., 2012;

Francavilla et al., 2012; Jones et al., 2013; Dinleyici et al., 2014;

Gutierrez-Castrellon et al., 2014; Dinleyici et al., 2015; Pernica et al.,

2017; Maragkoudaki et al., 2018; Kambale et al., 2023). Additionally,

L. reuteriDSM 17938 could shorten a child’s stay in the hospital due

to acute gastroenteritis or infectious diarrhea (Dinleyici et al., 2014;

Szymanski and Szajewska, 2019). However, in the situation of

nosocomial diarrhea, three RCTs produced contrary findings

(Wanke and Szajewska, 2012; Urbanska et al., 2016; Kolodziej

and Szajewska, 2019). The investigators found that L. reuteri

DSM 17938 was ineffective in preventing diarrhea in inpatient

children received antibiotics, regardless of the given dosage

(1×108 CFU once daily, or 2×108 CFU twice daily, or 2×109 CFU

once daily while in hospital) (Wanke and Szajewska, 2012;

Urbanska et al., 2016; Kolodziej and Szajewska, 2019). While L.

reuteri ATCC 55730 was reported to be able to prevent antibiotic-

associated diarrhea in hospitalized adults in another study

(Cimperman et al., 2011). Different from the prior studies, this

clinical trial analyzed adult patients who were mainly treated with

combined antibiotic therapy, and the subjects were given L. reuteri

ATCC 55730 1×108 CFU twice daily for 28 days (Cimperman et al.,

2011). Given these limited data, the function of L. reuteri in

preventing antibiotic-associated diarrhea is ambiguous, which

may be strain-specific and depend on the gut microbiota

community disrupted by antibiotics. Of note, none of the

mentioned clinical studies analyzed the fecal L. reuteri abundance

before or after L. reuteri administration. All these RCT studies are

depicted in Table 2.
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Enterotoxigenic E. coli is a main pathogen of infectious diarrhea

in childhood and postweaning piglets (Kotloff, 2022; Qin et al.,

2023b). Gut microbiota disruption observed in diarrheal piglets was

described as a reduction of Lactobacillus, enriched abundance of E.

coli, and increased lipopolysaccharide (LPS) biosynthesis (Li et al.,

2023b). Supplement of L. reuteri can reverse the enriched

Pseudomonadota and the depleted Bacteroidota triggered by E.

coli infection and reduce jejunum E. coli content, thus preserving

intestinal disruption (Wang et al., 2018; Lu et al., 2023). L. reuteri

stains including L. reuteri HCM2 and L. reuteri PSC102 have been

reported to suppress the growth of E. coli in vitro and inhibit its

adherence to intestinal epithelial cells (Wang et al., 2018; Ali et al.,

2023). Moreover, L. reuteri was also reported to possess the ability

to upregulate the expression of tight junction (TJ) proteins and E-

cadherin, thereby maintaining intestinal permeability in infected

mice (Karimi et al., 2018; Lu et al., 2023). In a rotavirus-infected

murine model, L. reuteri can reduce diarrhea duration and alleviate

inflammation, probably associated with accelerated intestinal

epithelium turnover and restored gut microbiome diversity

(Preidis et al., 2012). Particularly, the efficiency of L. reuteri to

increase enterocyte proliferation and migration seemed to be

influenced by host nutritional status (Preidis et al., 2012). Except

these, the therapeutic application of L. reuteri in infectious diarrhea

may also be related to its metabolite production such as reuterin,

with the ability to inhibit an extensive range of germs (Collinson

et al., 2020).

These results illustrated that the therapeutic efficiency of L.

reuteri in diarrhea may depend on regulation of gut microbiota and

barrier, which is strain-specific and reliant on age, pathogen,

nutritional status, and the disease situation as well. To sum up, L.

reuteri can be recommended as an adjuvant to rehydration

treatment for diarrhea in therapeutic settings, but its function in

prophylactic settings still requires more research, especially in the

antibiotics-use setting.
2.3 Constipation

Constipation is an intestinal condition that could affect

individuals of all ages and dramatically lower their quality of life

(Saviano et al., 2021). With a prevalence spanning from 7% to 30%,

constipation is also one of the most prevalent pediatric disorders

(Wegner et al., 2018). The fundamental mechanism of constipation,

which typically has a functional cause without an organic origin, is

largely unknown (Mulhem et al., 2022). It is suggested that

disruption of the intestinal flora play a role in functional

constipation (FC) (Zhang et al., 2021). The results may be conflict

reliant on measurements. Based on traditional microbiological

culture tests, enriched Bifidobacteria and Lactobacillus were

observed in children with FC, while decreased abundance of

Bifidobacterium and Lactobacillus was seen in adult FC patients

(Zoppi et al., 1998; Khalif et al., 2005). Nowadays though gene

sequencing analysis, it seems consistent that Firmicutes relative

abundance is increased while Bacteroidetes frequency is

heterogeneous based on population, and the gut microbe pattern
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TABLE 2 Randomized controlled trials of diarrhea and functional constipation.

Year intervention symptom population Outcome Reference

2023 DSM 17938+ GG vs placebo
for 1 month

diarrhea Children with
uncomplicated severe
acute malnutrition

lower number of days of diarrhea
lower risk of diarrhea (>16 months)

(Kambale et al.,
2023)

2019 DSM 17938 vs placebo
for the duration of antibiotic
treatment

diarrhea Hospitalized children
received antibiotics

not effective in the prevention of diarrhea (Kolodziej and
Szajewska,
2019)

2019 DSM 17938+ rehydration
therapy vs placebo+
rehydration therapy
for 5 days

diarrhea children with acute
gastroenteritis (<5
years)

did not reduce the duration of diarrhea
a shorter duration of hospitalization

(Szymanski and
Szajewska,
2019)

2018 DSM 17938+ oral rehydration
salts+ zinc vs placebo + oral
rehydration salts+ zinc

diarrhea non-hospitalized
infants with acute
diarrhea

without statistical significance but
a better trend of the severity and duration of diarrhea

(Maragkoudaki
et al., 2018)

2017 DSM 17938 vs
placebo for 60 days

diarrhea hospitalized children
with acute diarrhea
(2-60 months)

lower odds of recurrent diarrhea (Pernica et al.,
2017)

2016 DSM 17938 vs
Placebo

diarrhea Hospitalized children
(1-48 months)

not effective in preventing nosocomial diarrhea (Urbanska
et al., 2016)

2015 DSM 17938 +oral rehydration
salts vs oral rehydration salts
for 5 days

diarrhea outpatient children
with acute infectious
diarrhea

reduced duration of diarrhea (Dinleyici et al.,
2015)

2014 DSM 17938 vs
placebo
for 5 days

diarrhea Hospitalized children
with acute
gastroenteritis

reduced the duration of diarrhea, reduced mean hospital stays (Dinleyici et al.,
2014)

2014 DSM 17938 vs placebo
for 3 months

diarrhea preschool children
(6-36 months)

reduced the frequency and duration of episodes of diarrhea (Gutierrez-
Castrellon
et al., 2014)

2013 NCIMB 30242 vs
Placebo
for 9 weeks

diarrhea healthy
hypercholesterolemic
subjects

Improved symptoms related to diarrhea (Jones et al.,
2013)

2012 DSM 17938 vs
Placebo

diarrhea Hospitalized children
(1-48 months)

no effect on the overall incidence of nosocomial diarrhea (Wanke and
Szajewska,
2012)

2012 DSM 17938 vs
Placebo

diarrhea Healthy children (1-6
years)

reduced diarrhea incidence in children with lower nutritional
status

(Agustina et al.,
2012)

2012 DSM 17938+oral rehydration
salts vs placebo + oral
rehydration salts

diarrhea Hospitalized children
with acute diarrhea
(6-36 months)

reduced the duration of watery diarrhea (Francavilla
et al., 2012)

2011 ATCC 55730 vs placebo
for 4 weeks

diarrhea hospitalized adults lower frequency of antibiotic-associated diarrhea (Cimperman
et al., 2011)

2020 DSM 17938 vs placebo functional
constipation

Children with
cerebral palsy and
chronic constipation

a significant decrease in stool pH and increased defecation,
improvement in the history of excessive stool retention, the
presence of fecal mass in the rectum, painful defecation,

(Garcia
Contreras et al.,
2020)

2020 DSM 17938 + magnesium
oxide vs DSM 17938+ placebo
vs placebo+ magnesium oxide
for 4 weeks

functional
constipation

Children with
functional
constipation
(6 months -6 years)

significant improvement in defecation frequency in DSM 17938
group

(Kubota et al.,
2020)

2019 DSM 17938 vs placebo for 105
days

functional
constipation

adults with
functional
constipation

significantly reduce the serum levels of 5-HT (Riezzo et al.,
2019)

2018 DSM 17938 + macrogol vs
placebo + macrogol for 8 weeks

functional
constipation

Children with
functional
constipation

No significant difference (Wegner et al.,
2018)

(Continued)
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differs in different subtypes of constipation as well (Zhu et al., 2014;

Mancabelli et al., 2017; Yu et al., 2023a).

A couple of RCTs have evaluated the effectiveness of L. reuteri

DSM 17938 in treating FC, depicted in Table 2. The investigations

demonstrated that L. reuteriDSM 17938 single-drug administration

significantly alleviated constipation both in children and adults,

involving improvement in defecation frequency, painful defecation,

and reduced fecal mass in the rectum (Coccorullo et al., 2010; Ojetti

et al., 2014; Riezzo et al., 2018; Garcia Contreras et al., 2020; Kubota

et al., 2020). However, L. reuteri DSM 17938 did not show

additional improvement in FC when regarded as adjuvant therapy

for lactulose or macrogol (Jadresin et al., 2018; Wegner et al., 2018;

Kubota et al., 2020). Only one study investigated the gut

microbiome community alternations, in which the limited data

revealed that L. reuteri treatment did not alter the gut microbiota

composition of the pediatric subjects with FC (Kubota et al., 2020).

To note, current evidence showed that L. reuteri DSM 17938

improved bowel movements, but did not affect stool consistency

(Coccorullo et al., 2010; Kubota et al., 2020). The defecation

frequency was found to be negatively correlated with genus

Oscillospira, Megasphaera, and Ruminococcus (Kubota et al.,

2020). On one hand, L. reuteri DSM 17938 can improve intestinal

motility and promote intestinal transit, partially via controlling

some GI peptide pathways. According to research by Riezzo and

colleagues, the therapeutic efficacy of L. reuteri DSM 17938 in FC

may be associated with serum brain-derived neurotrophic factor

and serotonin (5-HT) concentrations (Riezzo et al., 2019).

Tryptophan metabolism may be impacted by L. reuteri, which

would reduce the level of 5-HT in circulation (Montgomery et al.,

2022). The connection between the intestinal flora and the enteric

neural systems involves the 5-HT pathways, which have advantages

for irritating the local enteric nerve responses and promoting

motility (Ge et al., 2017; Agus et al., 2018). On the other hand, L.

reuteri DSM 17938 is capable of producing short-chain fatty acids

(SCFAs), the substances involved in boosting intestinal peristalsis

and colonic myoelectric cell response, all of which are effective for

treating chronic FC (Wu et al., 2013; Hurst et al., 2014; Calvigioni

et al., 2023).
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However, there is still no sufficient data in the field of L. reuteri

application for constipation prevention. A prospective RCT study

carried out by Indrio and colleagues revealed that oral

supplementation with L. reuteri DSM 1793 in newborns

effectively prevented constipation within the first 3 months after

birth (Indrio et al., 2014). In conclusion, present findings indicate

that L. reuteri can be recommended to be used in the management

of FC as an alternative therapy for traditional drugs.
2.4 Functional abdominal pain

FAP, which is the most prevalent type of abdominal pain in

children and teenagers, with a prevalence of about 14 percent, is

described as chronic or recurring pain without an organic cause

(Bao et al., 2023). Although most FAP is often self-managed, it can

have adverse effects on life quality, suffered children’s after-school

activities, and school attendance, and may interfere with regular

family life (Thapar et al., 2020). The disease was currently

considered a disorder of the “brain-gut axis”, and gut microbiome

changes could be engaged in its pathogenesis, but the available data

is insufficient to draw a conclusion (Zhou et al., 2022a). Given the

limitations of medication in children, probiotics arise as a possibly

pleasant therapeutic approach for the treatment of pediatric FAP

(Trivic et al., 2021). Six RCT investigations on L. reuteri DSM

17938’s medicinal potential are summarized in Table 3. The studies

demonstrated that administration of L. reuteri DSM 17938 for 4 to

12 weeks reduced the pain intensity, the frequency of episodes, and

increased days without pain in irritable bowel syndrome or FAP-

affected children without adverse events (Romano et al., 2014;

Eftekhari et al., 2015; Weizman et al., 2016; Jadresin et al., 2017;

Maragkoudaki et al., 2017; Jadresin et al., 2020). However, one study

proposed that L. reuteri DSM 17938 was equally effective in

relieving pain in both the placebo and L. reuteri groups of

children with FAP (Eftekhari et al., 2015). The authors speculated

that the result may be explained by psychological effects since L.

reuteri DSM 17938 showed no superiority to placebo (Eftekhari

et al., 2015). None of the studies explored gut flora profiles after L.
TABLE 2 Continued

Year intervention symptom population Outcome Reference

2018 DSM 17938 vs placebo for 105
days

functional
constipation

Adults with
functional
constipation

helps for defecation, improved abdominal discomfort, pain and
bloating

(Riezzo et al.,
2018)

2018 DSM 17938 + lactulose vs
placebo + lactulose

functional
constipation

Children with
functional
constipation

no difference in the stool frequency, stool consistency, pain (Jadresin et al.,
2018)

2014 DSM 17938 vs placebo for 4
weeks

functional
constipation

Adults with
functional
constipation

increased bowel movements (Ojetti et al.,
2014)

2010 DSM 17938 vs placebo for 8
weeks

functional
constipation

Infants with
functional
constipation
(> 6 months)

higher frequency of bowel movements, no significant difference
in stool consistency

(Coccorullo
et al., 2010)
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reuteri treatment, so we cannot draw a conclusion about the precise

mechanism of L. reuteri application in pediatric FAP.

By enhancing opioid receptor activity in the afflicted tissues,

Hegde and his colleagues reported that the dorsal root ganglia

neurons projecting to the dilated colon exhibited attenuated

hyperexcitability after L. reuteri recolonization, thus preventing

visceral hypersensitivity in lumen distension in rats (Hegde et al.,

2020). Additionally, L. reuteri may exhibit the ability to reduce gut

pain by reducing signaling from the pain receptor transient receptor

potential vanilloid 1 channel in the intestine (Pang et al., 2022).

Collectively, although L. reuteri could be an attractive choice in

treating FAP-related diseases due to its safety feature, there is

currently no powerful proof to recommend L. reuteri application

in FAP and further long-run researches are still needed to explore

the definite mechanism.
2.5 Helicobacter pylori infection

Helicobacter pylori (H. pylori) is the key pathogen of chronic

active gastritis, peptic and duodenal ulcers, with the global prevalence

of infection exceeding 50%, also considered a high-risk factor for

gastric cancer (de Brito et al., 2019). Currently, the effectiveness of

treatment has been greatly impaired by the fast global emergence of

antibiotic resistance to H. pylori, and the quadruple approach for H.

pylori elimination could further exacerbate GI disease (Chen et al.,

2021). It is suggested that eradication of H. pylori may lead to

disruption of gut microbiota, featured by reduced Actinobacteria as

well as Bacteroidetes abundances and enriched Proteobacteria (Sitkin

et al., 2022). Specific probiotics may be helpful in reducing side effects

triggered by first-line antimicrobial therapy and enhancing the

efficacy of H. pylori eradication therapy (Liang et al., 2022). In

previous RCT studies, L. reuteri was shown to reduce H. pylori

load but seemed to be unable to increase eradication rates ofH. pylori

as an adjuvant for first-line therapy (Imase et al., 2007; Francavilla

et al., 2008; Mehling and Busjahn, 2013; Francavilla et al., 2014; Holz
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et al., 2015; Dore et al., 2019; Poonyam et al., 2019; Yang et al., 2021;

Dore et al., 2022; Moreno Marquez et al., 2022; Naghibzadeh et al.,

2022), shown in Table 4. Notably, several studies showed that L.

reuteri can reduce abdominal pain, distension, and other eradication

treatment-related adverse events, consistent with decreased GI

symptom rating scale scores in H. pylori-positive subjects, thus

governing patient compliance (Lionetti et al., 2006; Francavilla

et al., 2008; Francavilla et al., 2014; Poonyam et al., 2019; Yang

et al., 2021; Moreno Marquez et al., 2022). Two studies analyzed the

alternations of the gut flora after combined therapy of this probiotics

and eradication treatment, which revealed that L. reuteri can change

the gut microbiota composition in H. pylori-positive patients but

cannot fully counteract gut dysbiosis induced by antibiotics (Yang

et al., 2021; Dore et al., 2022). It means that the benefits brought by L.

reuteri supplement cannot be attributed to restored gut microbiota

balance. Particularly, L. reuteri can survive the gastric acid

environment and colonize the gastric mucosa (Dargenio et al.,

2021). It is reported that L. reuteri can inhibit the early

colonization stages of H. pylori in the human GI tract, associated

with the suppression of the binding ofH. pylori to putative glycolipid

receptor molecules (Holz et al., 2015). Besides, L. reuteri produces

reuterin, an antibiotic that targets H. pylori, thus reducing H. pylori

load (Urrutia-Baca et al., 2018). Meanwhile, a most recent survey also

revealed that L. reuteri 2892 attenuated H. pylori-induced gastritis by

its anti-inflammatory and anti-oxidative stress characteristics as well

as suppressing the gene expression of the virulence factor CagA

(Forooghi Nia et al., 2023). Recent studies also focus on the

relationship between L. reuteri and cancer diseases, it has been

demonstrated that L. reuteri exerts an anti-tumor effect in gastric

cancer MKN1 cells, but data is still limited about L. reuteri

application in gastric cancers related to H. pylori infection (Kim

et al., 2022a).

Overall, L. reuteri has shown superiority as a salvageable

treatment for side effects brought by eradication therapy, yet we

still need further studies to delve deeper into the research gap

between L. reuteri application and H. pylori-associated cancer.
TABLE 3 Randomized controlled trials of functional abdominal pain.

Year intervention population Outcome References

2020 DSM 17938 vs
placebo
for 12 weeks

Children with functional abdominal pain
(4-18 years)

significant increased days without pain, reduced intensity of pain
(follow up of 4weeks)

(Jadresin et al.,
2020)

2017 DSM 17938 vs
placebo for 12
weeks

Children with functional abdominal pain or
irritable bowel syndrome (4-18 years)

significantly reduced severity of abdominal pain, increased days
without pain (follow-up of 4weeks)

(Jadresin et al.,
2017)

2017 DSM 17938 vs
placebo for 4 weeks

Children with functional abdominal pain
(5-16 years)

reduced the frequency and intensity of abdominal pain episodes
(follow-up of 8weeks)

(Maragkoudaki
et al., 2017)

2016 DSM 17938 vs
placebo for 4 weeks

Children with functional abdominal pain
(6-15 years)

relieving frequency and intensity of functional abdominal pain
(follow-up of 4weeks)

(Weizman
et al., 2016)

2015 DSM 17938 vs
placebo for 4 weeks

Children with functional abdominal pain
(4-16 years)

the pain was significantly reduced in both groups, but no significant
difference compared with placebo (follow-up of 8weeks)

(Eftekhari et al.,
2015)

2014 DSM 17938 vs
placebo for 4 weeks

Children with functional abdominal pain
(6-16 years)

lower pain intensity (follow-up of 4 weeks) (Romano et al.,
2014)
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2.6 Inflammatory bowel disease
and diverticulitis

Crohn’s disease and ulcerative colitis are categorized as chronic

IBD, which have evolved into a worldwide burden with increasing

incidence (Nishikawa et al., 2021). It is reported that about one in

five children needing a colectomy during childhood while the

intestinal damage and complications brought by Crohn’s disease

are still a difficulty for disease management (Cheng et al., 2021;

Gordon et al., 2022). Multiple factors, such as the interaction

between genetic background and environment, especially

including a potential association between impaired gut microbial

homeostasis and inflammation, and gut barrier disruption as well,

have been suggested to be engaged in IBD pathogenesis (Larabi

et al., 2020). It was observed in IBD subjects that the relative

abundance of Proteobacteria, especially E. coli, was increased while

the content of Bacteroidetes and Firmicutes was depleted, along with

the reduced gut microbiota diversity (Nishino et al., 2018; Vester-

Andersen et al., 2019). It has been revealed in a previous clinical

trial, whereby, rectal infusion of L. reuteri ATCC 55730 effectively

improved inflamed mucous membranes and reduced mucosal
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expression levels of inflammatory markers in active distal

ulcerative colitis in children (Oliva et al., 2012), shown in Table 5.

According to Liu and his colleagues, peroral treatment with L.

reuteri ATCC PTA 4659 improved colitis severity clinically and

morphologically in mouse colitis caused by dextran sulfate sodium

(Liu et al., 2022a). Other studies investigated the efficiency of L.

reuteri R2LC, ATCC PTA 4659, F-9-35, and 5454, these strains also

can alleviate inflammation in mice colitis, characterized by

downregulated pro-inflammatory tumor necrosis factor-a (TNF-

a), IL-1b, and interferon-g, the decisive cytokines in colitis

development (Ahl et al., 2016; Sun et al., 2018; Hrdy et al., 2020).

This may be explained by the boosted expression of the TJ proteins

along with cytoprotective heat shock proteins after L. reuteri

therapy, thereby conferring protection against defects in gut

barrier function (Ahl et al., 2016; Liu et al., 2022a). Meanwhile, L.

reuteri supplement can also reverse gut microbiota dysbiosis

induced by colitis. It was reported that after L. reuteri FYNDL13

treatment, enriched beneficial bacteria (Bifidobacterium,

Akkermansia, Blautia and Oscillospira) together with reduced

harmful bacteria (Bacteroides and Sutterella) content was

observed (Lin et al., 2023). Moreover, L. reuteri therapy can offset
TABLE 4 Randomized controlled trials of H. pylori infection.

Year intervention population Outcome References

2022 quadruple therapy+ S. boulardii vs quadruple
therapy+ DSMZ 17648 vs quadruple therapy

H. pylori-
positive adults

no significant difference in the eradication of H. pylori in L. reuteri
group

(Naghibzadeh
et al., 2022)

2022 quadruple therapy + DSM 17938 and ATCC
PTA 6475 vs quadruple therapy

H. pylori-
positive adults

no significant difference in the eradication of H. pylori (Dore et al.,
2022)

2022 eradication regimen+ DSM 17938 and ATCC
6475 vs eradication regimen

H. pylori-
positive adults

no differences in eradication therapy, reduced abdominal pain and
distension

(Moreno
Marquez et al.,
2022)

2021 non-viable DSM17648+triple therapy vs
placebo + triple therapy

H. pylori-
positive adults

did not improve the eradication rate of H. pylori, reduced abdominal
distention, diarrhea, and the Gastrointestinal Symptom Rating Scale
score.

(Yang et al.,
2021)

2019 quadruple therapy+ Biogaia® vs quadruple
therapy

H. pylori-
positive adults

did not increase eradication rates, reduced treatment-related adverse
events and improve the patients’ compliance

(Poonyam
et al., 2019)

2019 quadruple therapy + DSM 17938 and ATC
6475 vs quadruple therapy

H. pylori-
positive adults

no significance difference in H. pylori-eradication rate (Dore et al.,
2019)

2015 non-viable DSM17648 vs placebo H. pylori-
positive adults

reduce the load of H. pylori (Holz et al.,
2015)

2014 eradication regimen+ DSM 17938 and ATCC
6475 vs eradication regimen

H. pylori-
positive adults

reduced load of H. pylori, fewer side effects, decreased Gastrointestinal
Symptom Rating Scale scores, no difference in the H. pylori-eradication
rate

(Francavilla
et al., 2014)

2013 non-viable DSMZ17648 vs placebo H. pylori-
positive
asymptomatic
adults

reduced load of H. pylori (Mehling and
Busjahn, 2013)

2008 ATCC 55730+ sequential conventional
treatment vs sequential conventional treatment

H. pylori-
positive adults

reduced H. pylori load, decreased Gastrointestinal Symptom Rating
Scale scores, no difference in eradication rates

(Francavilla
et al., 2008)

2007 SD2112 vs placebo H. pylori-
positive adults

reduced load of H. pylori (Imase et al.,
2007)

2006 sequential therapy
+ ATCC 55730 vs sequential therapy

H. pylori-
positive
children

reduced frequency and intensity of antibiotic-associated side effects,
decreased Gastrointestinal Symptom Rating Scale scores

(Lionetti et al.,
2006)
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bacterial translocation to the mesenteric lymph nodes caused by

colitis, leading to the amelioration of excessive immune reactions

(Liu et al., 2022a). Secretory immunoglobulin (Ig) A is responsible

for bacterial translocation and bacterial toxins neutralization in the

intestinal mucosa (Tezuka and Ohteki, 2019). Recently, it was

discovered that orally administered L. reuteri R2LC stimulated

the proliferation of the B lymphocytes in Peyer’s patches and

induced IgA production and secretion to the intestinal lumen via

the PD-1 pathway (Liu et al., 2021a). Consequently, treatment

based on L. reuteri R2LC regulated alterations in the gut

microbiome and shielded against colitis caused by dextran-

sulfate-sodium (Liu et al., 2021a). Dendritic cells (DCs) are

responsible for handling pathogens when the gut barriers are

disrupted in IBD (Wei et al., 2022). L. reuteri was proven to

possess the potential to promote DCs differentiation and

maturation and boost regulatory T cells (Tregs) induction

(Haileselassie et al., 2016; Hrdy et al., 2020). In addition, it is

demonstrated that L. reuteri may reduce intestine inflammation by

the mechanisms dependent on aryl hydrocarbon receptor

activation, an immune and bacteria sensor receptor, correlated to

inflammatory responses in IBD pathogenesis (Pernomian et al.,

2020). The tryptophan metabolites from L. reuteri can activate aryl

hydrocarbon receptors, inducing IL-22 production to maintain

mucosal protection (Zelante et al., 2013). And the microbial

histamine produced by L. reuteri has been proven to ameliorate

intestinal inflammation in mice via activating H2R signaling (Gao

et al., 2015). It was also reported that LPxTG-motif surface protein

derived from L. reuteri SH 23 can alleviate inflammation in a mice

colitis model via the inhibition of the MAPK-dependent NF-kB
transduction way (Zong et al., 2023).

Colon mucosa and submucosa may inflame and herniate

through the muscular layer in cases of diverticulitis (Barbaro

et al., 2022). Diet and lifestyle factors may induce changes in the

gut microbiota community that contributes to mucosal

inflammation and diverticulitis (Piccioni et al., 2021). Probiotics

could be beneficial in diverticular disease because they can prevent

harmful bacteria from adhering to the intestinal mucosa and from

producing inflammatory markers (Piccioni et al., 2021). Two

previous RCTs examined L. reuteri’s function in managing acute

uncomplicated diverticulitis (AUD) in light of recent

recommendations that the condition be treated without the use of

antibiotics (Petruzziello et al., 2019; Ojetti et al., 2022). They

revealed that the treatment with L. reuteri ATCC PTA 4659 can

alleviate abdominal pain and reduce inflammatory markers as well
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as the duration of hospitalization in patients with AUD

(Petruzziello et al., 2019; Ojetti et al., 2022), shown in Table 5.

Therefore, the above preclinical studies validate the therapeutic

potential of specific strains of L. reuteri to enhance the natural

defense of gut epitheliums, alleviate hyperimmune response and

restore gut microecology balance in inflammatory intestinal

diseases. Although clinical data are limited, L. reuteri can be an

attractive adjuvant therapy for IBD and diverticulitis.
2.7 Colorectal cancer

As per global statistics, CRC is ranked third as the most

prevalent type of malignancy and the fourth major contributor to

deaths related to cancer worldwide (Baidoun et al., 2021). As is

known to all, IBD is linked to the onset and progression of CRC

(Mathey et al., 2021). Dysplasia, clonal proliferation, and malignant

progression might all be caused by gut dysbacteriosis, which may

also have dramatic effects on genetics and epigenetics (Eslami et al.,

2019). Previously, researchers identified gut flora dysbiosis in

patients with CRC, including the depletion of L. gallinarum,

Streptococcus thermophilus and enriched Firmicutes and

Bacteroidetes, along with decreased bacterial diversity (Dai et al.,

2018). Reduced abundance of Lactobacillus, Roseburia and

Bifidobacterium in gut microbiota composition was observed in

early precursors of CRC including adenoma and serrated polyp

(Rezasoltani et al., 2018).

Although the prognosis of CRC patients without local or distant

metastatic disease is generally favorable, there are currently

inadequate viable therapies for individuals with metastatic cancer

(Bell et al., 2022). Accordingly, probiotic therapy has recently

gained popularity as a promising CRC therapeutic approach. Gao

and colleagues demonstrated that treatment with (histidine

decarboxylase) HDC+ L. reuteri can induce luminal histamine

production, consequently, decreased colon tumor frequency and

size were observed in HDC-/- mice (Gao et al., 2017). Moreover,

they discovered that an L. reuteri mutant with isogenic HDC

deficiency that cannot generate histamine did not inhibit

tumorigenesis, highlighting the essential function of histamine in

preventing inflammatory responses and the development of

colorectal tumors (Gao et al., 2017). Reuterin, another major

compound produced by L. reuter i , was found to be

downregulated in mice and human CRC (Bell et al., 2022).

Consistently, reuterin has been shown to have an inhibitory
TABLE 5 Randomized controlled trials of colitis and diverticulitis.

Year intervention symptom population Outcome References

2022 ATCC PTA 4659+ fluids+bowel rest vs
placebo+ fluids+bowel rest

abdominal pain, inflammatory
markers and reduction of hours of
hospitalization.

patients affected by acute
uncomplicated
diverticulitis

Decreased inflammatory
markers

(Ojetti et al.,
2022)

2019 ATCC PTA 4659+ ciprofloxacin
+metronidazole vs placebo+ciprofloxacin
+metronidazole

abdominal pain, inflammatory
markers and reduction of hours of
hospitalization.

patients affected by acute
uncomplicated
diverticulitis

reduced abdominal pain
and inflammatory
markers

(Petruzziello
et al., 2019)

2012 ATCC 55730+mesalazine vs placebo
+mesalazine

inflammation and cytokine expression
of rectal mucosa

in children with active
distal ulcerative colitis

decreased mucosal
inflammation

(Oliva et al.,
2012)
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1254198
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Peng et al. 10.3389/fcimb.2023.1254198
impact on the proliferative rate of CRC cell lines such as RKO at a

concentration of 25µM, but not at a higher dosage of 100µM on

normal colonic epithelium (Yu et al., 2023b). Indole-3-lactic acid, a

tryptophan catabolite that inhibits the IL-17 signaling pathway, was

shown in another recent study to be a key player in the suppression

of colorectal carcinogenesis following L. reuteri treatment (Han

et al., 2023). RAR-related orphan receptor gt, a nuclear receptor,

was the target of this microbial metabolite product, which

prevented Th17 cell development (Han et al., 2023). The potential

underlying mechanism of L. reuteri’s pro-apoptotic actions was

investigated but still needs further investigation. L. reuteri MG5346

was reported to inhibit tumor growth by inducing cell apoptosis

though upregulated caspase-9 activity (Kim et al., 2022b).

Additionally, it has been demonstrated that sirtuin-3–L. reuteri

interaction is essential for the development of gut tumors (Zhang

et al., 2018). Sirtuin-3 is a tumor-suppressing gene and L. reuteri

can inhibit the downregulation of Sirt3 expression during colorectal

tumorigenesis (Zhang et al., 2018). A previous meta-analysis

analyzed the relationship between intestine E-cadherin and the

prognosis of CRC, they concluded that low expression of E-

cadherin is a risk factor for poor prognosis in CRC sufferers

(Chang et al., 2022). It has been evidenced that L. reuteri can

boost E-cadherin expression, indicating a possible mechanism for

treating CRC (Karimi et al., 2018).

In summary, considering these evidence, L. reuteri owns the

ability to suppress intestinal tumor progression in direct and

indirect ways, thereby it may develop into a potential adjuvant

treatment, but it is premature to recommend widespread use of L.

reuteri in CRC due to insufficient clinical data.
2.8 Liver diseases

The total cirrhosis incidence is growing and estimated to reach

112.1/100,000 person-years in 2040, largely attributed to the increase

in non-alcoholic fatty liver disease and alcohol-related liver disease

(Flemming et al., 2021). The liver is a central immunological organ,

which is frequently exposed to metabolites derived from the intestinal

microbiome, thus it is not surprising that the GI microbial community

also plays a part in the pathologic process of liver diseases (Jones and

Neish, 2021; Wang et al., 2021a). Particularly, gut microbiota dysbiosis

may already exist at the early period of liver damage. Studies have

shown alcohol-dependent subjects with liver disorder show

compositional changes in the fecal microbiota, presented as a

reduction in bacterial diversity and decreased relative abundance of

Lactobacillus, Bifidobacterium, as well as Akkermansia muciniphila

(Leclercq et al., 2014; Grander et al., 2018). The phenotype of ethanol-

elicited hepatitis was reversed by L. reuteri, partially by regulating fatty

acid metabolic pathways in mice alcoholic liver disease models (Zheng

et al., 2020). It was also reported that L. reuteri MJM60668

supplementation to mice fed a high-fat diet ameliorated hepatic

steatosis by inhibiting lipogenesis, which may be attributed to the

improvement of the gut microbiome dysbiosis (Werlinger et al., 2022).

Chen and colleagues reported that gut microbiota imbalance

promoted liver tumorigenesis and administration with L. reuteri can

improve tryptophan metabolism and reduce hepatic sterol regulatory
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element-binding protein 2 expression, thus suppressing tumorigenesis

(Chen et al., 2022). L. reuteri was also reported to reduce IL-17A

secretion of group 3 innate lymphoid cells (ILC3s) in liver by

upregulating acetate levels, thus exerting anti-tumor effects in mice

with hepatocellular carcinoma (Hu et al., 2023). These evidences

revealed the interaction between gut microbiome and hepatic

immune response as well as metabolite signal pathways. Hence the

use of L. reuteri in managing liver disorders has drawn a lot of

attention from researchers, although RCT studies on the bacteria’s

protective effects for patients with hepatic ailments are still inadequate.

In one RCT research, Ferolla et al. discovered that a 3-months

supplementation of L. reuteri with guar gum as well as inulin

reduced hepatic steatosis in subjects with nonalcoholic

steatohepatitis (Ferolla et al., 2016). However, another RCT study

carried out in 2017 showed that in obese patients with type 2 diabetes,

oral dosing of L. reuteri DSM 17938 for 12 weeks seemed to have no

impact on the microbiota composition, adiposity, or liver steatosis,

although, in some subjects with higher gut microbiota diversity before

intervention, it increased insulin sensitivity (Mobini et al., 2017). The

contrary outcomes may be attributed to the of microbial diversity in

complicated metabolic disease conditions and the crosstalk caused by

obesity. Taken together, these preclinical literatures provide evidence

that L. reuteri may relieve liver injury in several signaling pathways

probably by reversing gut microbiota dysbiosis. Given this, it may act

as a potential probiotic for the prevention or therapeutic strategy for

liver diseases, but further long-term well-designed clinical trials are

still needed.
3 Potential L. reuteri mechanisms in
digestive system diseases

As illustrated in Figure 1, growing preclinical investigations

revealed that L. reuteri restores gut microbiota balance, products

antimicrobial metabolites, regulates intestinal immunity and

mediates mucosal homeostasis, thereby exhibiting protective

effects on digestive system diseases.
3.1 Remodeling the gut microbiota

It is well-documented that L. reuteri can alter the bacterial

diversity and abundance of various microorganisms, largely strain-

specific. For instance, administration with L. reuteri LR6 and

KT260178 both resulted in higher counts of total Lactobacillus,

Bifidobacterium (Garg et al., 2020; Yang et al., 2020). While L.

reuteri DSM 17938 supplement improved bacterial diversity along

with enriched Firmicutes and reduced abundance of Bacteroidetes

(Liu et al., 2019). Similar results have been observed in disease

conditions. After supplement with L. reuteri DSM 17938,

investigators observed enriched fecal Lactobacilli and a decrease

in the colicky infants’ fecal E. coli counts (Savino et al., 2010; Savino

et al., 2018b). Consistently, L. reuteri ATCC PTA 4659 peroral

therapy alleviated mice colitis by maintaining the diversity of the

colon’s microbiome (Liu et al., 2022a).
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The beneficial properties of L. reuteri on gut microflora

dysbiosis may be partially explained by the competition of L.

reuteri and these harmful genera for the intestinal epithelium

binding sites (Walsham et al., 2016). Walsham et al. reported that

L. reuteri can bind to the epithelial cell surface by mucus-binding

proteins CmbA and MUB, thus inhibiting enteropathogenic E. coli

adherence to the gut epithelium (Walsham et al., 2016).

Bioinformatics analysis further revealed that the inhibition

mechanism may be associated with PI3K-Akt and MAPK

signaling pathways (Qin et al., 2023b). Furthermore, L. reuteri

may inhibit harmful bacteria by the production of antimicrobial

metabolites like reuterin (Asare et al., 2020). The probiotic

management of the gastrointestinal microbiota may also be

mediated by regulating the intestinal pH through lactic acid

production as well as some other antimicrobial substances like

acetic acid and ethanol of some L. reuteri strains (Vitale et al., 2023).

L. reuteri is demonstrated to be effective against a range of GI

microbial infections, including Salmonella, Enterobacteriaceae, and

others, partially depending on the synthesis of these compounds
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(Kao et al., 2020; Laosee et al., 2022; Qin et al., 2023a). In mice with

colitis caused by dextran-sulfate-sodium, dosing of L. reuteri R2LC

may remodel the makeup of the gut microbiome via enhanced

intestinal IgA production (Liu et al., 2021a). It has been

demonstrated that IgA is responsible for the selection of intestinal

colonized bacteria and tends to resist pathogenic bacteria (Schnupf

et al., 2018).

Overall, L. reuteri is shown to modulate the gut microbial

community, characterized by enriched beneficial genera and

diminished pathogenetic genera. Nonetheless, further research is

required to determine the interaction between GI health and the

modulated gut microbiota.
3.2 Production of antimicrobial metabolites

With the development of metabolomics and bacterial genetics

strategy, small compounds produced by L. reuteri were identified. It

has been proposed that the metabolite products of L. reuteri strains
FIGURE 1

Possible underlying mechanisms of L. reuteri in digestive system diseases. The underlying mechanisms of L. reuteri application in intestinal diseases
may include the following ways: (A) preservation of gut barrier function by increasing expression of tight junction proteins, promoting the intestine
epithelial cell proliferation, and inducing intestinal stem cell differentiation to Paneth cells by activating Wnt/b-catenin pathway; (B) production of
metabolites including reuterin, histamine, exopolysaccharide, short-chain fatty acids, thus mediating antibacterial, anti-inflammatory and anti-
oxidative stress properties via inhibited NF-kB signaling pathways as well as activated NRF2 signaling pathways; (C) modification of the composition
of the gut bacteria to restore balance; (D) regulation of intestinal immune response by selecting macrophage phenotype, promoting dendritic cell
differentiation, suppressing Th1/Th2 responses, inducing proliferation of regulatory T cells, thereby suppressing inflammatory responses. ISC, intestine
epithelial cell; ROS, reactive oxygen species; iNOS, inducible nitric oxide synthase; cAMP, cyclic adenosine monophosphate; PKA, Protein kinase A;
TNF, tumor necrosis factor; NRF2, nuclear factor erythroid-derived 2; H2 receptor, histamine 2 receptor; IL, interleukin; Tregs, regulatory T cells.
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are responsible for their antibacterial and immunoregulatory

properties. We covered a few well-known metabolites associated

with L. reuteri’s probiotic potential in this section.

3.2.1 Reuterin
Reuterin is a broad-spectrum antimicrobial compound generated

by specific strains of L. reuteri during the anaerobic metabolism of

glycerol (Asare et al., 2020). This antimicrobial compound, which is a

blend of different 3-hydroxypropionaldehyde (3-HPA) forms, may

suppress the proliferation of both Gram-positive and -negative bacteria,

protozoa, and fungi (Asare et al., 2020; Saviano et al., 2021). Apart from

being used as a food preservative product, reuterin was also identified

as the most inhibitory compound in CRC cell lines (Bell et al., 2022).

Recently, it was shown that reuterin can suppress tumor growth in the

mouse model implanted with CRC xenograft tumors by inducing

oxidative stress (Bell et al., 2022). The authors showed that reuterin can

inhibit the growth of CRC cell lines with a dose of 25mM but the

concentration of reuterin at a dose of 100mM seemed not cytotoxic to

non-cancerous colon cell lines (Bell et al., 2022). The molecular

mechanism might be explained by that reuterin can increase reactive

oxygen species and thus reduce ribosomal biogenesis by selectively

binding to cysteine residues, accompanied by increased gene expression

downstream of nuclear factor erythroid-derived 2 (Nrf-2) (Bell et al.,

2022). However, it was also revealed in vitro experiments that reuterin

treatment at a dose of 250mM significantly suppressed LPS-induced

oxidative stress by enhancing Nrf-2 expression and reducing reactive

oxygen species production in HD11 macrophage cells (Xu et al., 2022).

These data revealed that the effects of reuterin depend on certain cell

types, reuterin concentration, and stimulation time.

3.2.2 Histamine
Biogenic amines, especially histamine, were reported to be able to

modulate the host immune system (Dvornikova et al., 2023). Several

strains of L. reuteri such as L. reuteri DSM 20016 are capable of

producing histamine from the dietary component L-histidine, an

amino acid (Smythe and Efthimiou, 2022). According to Lin and

his colleagues, L. reuteri ATCC PTA 6475 inhibited the MAPK

signaling pathway, reducing the generation of TNF in monocyte-

derived macrophages isolated from children with Crohn’s disease (Lin

et al., 2008). By using mass spectrometry, investigators further proved

that the key substance of L. reuteri ATCC PTA 6475-mediated TNF

inhibition was histamine (Thomas et al., 2012). Histamine’s

pleiotropic actions are achieved by activating the H1R, H2R, H3R,

andH4R histamine receptors present in mammalian cells (Shulpekova

et al., 2021). Via activation of H2R on human monocytoid cell line

THP-1 cells, histamine stimulated increased levels of cyclic adenosine

monophosphate (cAMP) and improved protein kinase A activity, thus

inhibiting MEK/ERK MAPK signaling and alleviating inflammation

(Thomas et al., 2012). Consistently, Gao and his colleagues discovered

that oral administration of HDC+ L. reuteri capable of converting L-

histidine to histamine might successfully alleviate inflammatory

reactions in a murine model of colitis (Gao et al., 2015).

Subsequently, they found that by causing immature myeloid cells to

aggregate, HDC deficiency can accelerate the development of CRC

that is linked to inflammation, hinting that histamine may have
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antitumorigenic properties (Gao et al., 2017). H1R, H2R, and, to a

less extent, H4R are expressed by myeloid cells in the GI tract (Sander

et al., 2006). Consequently, histamine may be involved in intestinal

immunomodulation and inflammation by mediating myeloid cells

(Sander et al., 2006). Besides, it is reported that improved overall

survival outcomes in patients with CRC were correlated with elevated

gene expression of H2R and decreased gene expression of H1R in the

intestinal mucosa (Shi et al., 2019). The study further demonstrated

that histamine-producing L. reuteri can suppress tumorigenesis in an

established CRC mouse model but compared to H1R antagonists,

H2R antagonists dramatically increased both the size and number of

tumors (Shi et al., 2019). Given these data, different receptors of

histamine may play distinct roles in the gut.

3.2.3 Exopolysaccharide
Exopolysaccharide (EPS), a substance generated by L. reuteri, is

essential for the development of biofilms and L. reuteri’s adhesion to

surfaces of the epithelium (Wang et al., 2021b). And in vitro E. coli

adherence to porcine epithelial cells was also inhibited by EPS

synthesized by L. reuteri (Ksonzekova et al., 2016). Consequently,

the gene expression of proinflammatory cytokines like TNF-a and

IL-6 brought on by E. coli or Salmonella Typhimurium infection was

suppressed by EPS derived from L. reuteri (Ksonzekova et al., 2016;

Kissova et al., 2022).

3.2.4 Short-chain fatty acids
SCFAs are a set of metabolite products derived from L. reuteri

and engaged in regulating immune response and inflammatory

reactions, thereby, promoting intestinal health (Smith et al., 2013;

Oh et al., 2021). Intestinal SCFAs mainly consist of acetate,

propionate, and butyrate, which can be generated by L. reuteri in

different situations (Liu et al., 2022c; Calvigioni et al., 2023; Van den

Abbeele et al., 2023). SCFAs are also suggested to be essential for

ameliorating gut microbiota dysbiosis in mice colitis treated with L.

reuteri (Lee et al., 2022). Particularly, butyrate is the typical

metabolite which can enhance gastrointestinal motility by

mediating the enteric neurons and maintaining the proliferation

of Cajal cells though the AKT-NF-kB pathway (He et al., 2020).

Besides, L. reuteri was reported to exert anti-tumor effects in mice

with hepatocellular carcinoma by upregulating acetate levels (Hu

et al., 2023). Recently propionate and butyrate were also reported to

suppress the adhesion and invasion ability of Salmonella

Typhimurium in vitro experiments (Liu et al., 2022b).

Together, these observations provide substantial evidence that

metabolites generated by L. reuteri are involved in the regulation of

gut immune response and remodeling of the commensal microbiota

composition via the activation of various signal pathways.
3.3 Enhancement of intestinal
epithelial barrier

Numerous studies showed that intestinal epithelial barrier damage

disrupts immune homeostasis and contributes to many intestinal

disorders, especially IBD and CRC (Leibovitzh et al., 2023).
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The capacity of L. reuteri to boost gut barrier function has been

demonstrated in several investigations (Yi et al., 2018; Gao et al.,

2022). On one hand, L. reuteri owns the ability to maintain the

intestinal epithelial repair function. Wu and colleagues found that L.

reuteri reconstructed the epithelial integrity by activating the Wnt/b-
catenin pathway, thereby promoting the intestine epithelial cell

proliferation and inducing intestinal stem cell differentiation to

Paneth cells, even under the condition of TNF-induced intestinal

inflammation (Wu et al., 2020). On the other hand, L. reuteri was also

reported to maintain the integrity of the gut barrier by upregulating

the expression of TJ proteins, evidenced in in preclinical studies (Gao

et al., 2022; Liu et al., 2022a; Li et al., 2023a). TJ proteins are primary

for epithelial cell proliferation and gut permeability (Kuo et al., 2021).

Bacterial extracellular membrane vesicles derived from L. reuteri

contain lipoteichoic acid, identified as a Toll-like receptor (TLR) 2

activator (Pang et al., 2022). According to research, TLR2 activation

strengthened the intestinal barrier by increased expression of TJ

proteins via the PI3K-Akt-signaling pathway (Gu et al., 2016). L.

reuteri was also reported to induce TJ proteins expression via the

activated PKC-Nrf-2/HO-1pathway and inhibited NF-kB pathway,

along with reduced apoptosis of intestinal epithelial cells (Zhou et al.,

2022b). In conclusion, these results indicated the therapeutic benefits

of L. reuteri in gastrointestinal diseases by repairing the gut barrier

function though different pathways.
3.4 Regulation of immune cell
differentiation and function

L. reuteri may exhibit beneficial effects in digestive system

diseases via modulation of the immune system. DCs are crucial in

the interaction between microorganisms and gut immune responses

because of their advantageous location and capacity to present

luminal antigens as “gatekeepers” (Saez et al., 2023). Mature DCs

promote the polarization of naive T cells toward T helper (Th) 1,

Th2, Th17, or Treg responses (Tiberio et al., 2018). L. reuteri 5454

treatment alleviated colitis inflammation in mice, the potential

molecular mechanism might be explained by the efficiency of

DCs primed with L. reuteri 5454 to promote Tregs differentiation

and trigger IL-22 secretion (Hrdy et al., 2020). Another study

revealed that L. reuteri 17938 may activate DCs via TLR2 and

lead to Tregs expansion in the intestinal mucosa, thereby alleviating

experimental necrotizing enterocolitis (Hoang et al., 2018). Further

evidenced by in vitro experiments, L. reuteri cell-free supernatants

promoted DCs differentiation with up-regulated surface markers

(CCR7, CD83, CD86, HLA-DR) and enhanced cytokine synthesis

(IL-6, IL-10, and IL-23), nonetheless, these DCs exhibited

diminished phagocytic activity (Haileselassie et al., 2016). The

similar results were also reported by Lasaviciute and his

colleagues who showed that a mixed secondary response profile

was produced in DCs after priming human monocytes with L.

reuteriDSM17938 secretions, secreting low levels of TNF-a, and IL-
27 and high levels of IL-1b and IL-6 (Lasaviciute et al., 2022). The

particular manner by which L. reuteri modulates the phenotypic

and operation of mucosal-like DC is yet fully understood. Notably,
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the involvement of surface proteins was examined recently in the

interaction between L. reuteri and DCs. The study demonstrated

that L. reuteri can promote the release of the immune-regulating IL-

10 in monocyte-derived DCs independent of its mucus adhesins

while the production of pro-inflammatory cytokines (IL-6, TNF-a,
IL-1b) was enhanced by mucus adhesins (Bene et al., 2017).

Meanwhile, numerous preclinical studies showed L. reuteri also

had the property to promote the proliferation of Tregs while

suppressing the production of Th cells, specifically Th1 and Th2,

accompanied by decreased mRNA expression of NF-kB, TLR4, TNF-
a, IL-6, and upregulated IL-10 mRNA expression in the intestine

(Hoang et al., 2018; Liu et al., 2019; Liu et al., 2023b). The forkhead

box P3 (FoxP3) transcription factor is crucial in generating Tregs

(Harada et al., 2022). And the FoxP3 mRNA expression level was

shown to be elevated in peripheral blood after L. reuteri DSM 17938

administration in colicky infants (Savino et al., 2018b). In addition,

the mechanism of Tregs induction may be associated with

reprogrammed gut microbiota composition and SCFAs production

by L. reuteri (Liu et al., 2019; Wen et al., 2021). However, the ability of

L. reuteri to induce Tregs is generally strain-dependent, and certain L.

reuteri strains have anti-inflammatory properties that are not always

reliant on Tregs (Liu et al., 2021b; Liu et al., 2023a). Orally feeding L.

reuteri can suppress Th1/Th2 responses in mesenteric lymph nodes

in Treg-deficient mice via activation of adenosine A2A receptors (Liu

et al., 2023a). This phenomenon may be explained by the specific

property of L. reuteri to increase the level of plasma adenosine

metabolites such as inosine (Liu et al., 2021b). Proteomics studies

using mass spectrometry confirmed that bacterial extracellular

membrane vesicles derived from L. reuteri carried numerous

bacterial cell surface proteins, including 5’-nucleotidase, which

initiate the process by which AMP is transformed into the signal

molecule adenosine (Pang et al., 2022).

Besides, L. reuteri seemed to be able to promote M2

macrophage polarization. Pro-inflammatory M1-like macrophage

indicators may be suppressed by the stress protein GroEL isolated

from L. reuteri, whereas M2-like markers are favored, consequently

suppressing intestinal production of pro-inflammatory markers

(TNF-a, IL-1b, interferon-g) and increasing anti-inflammatory

IL-10 and IL-13 by the activation of a TLR4 pathway (Dias et al.,

2021). Except for these, Wang and colleagues reported that oral

therapy of L. reuteri effectively inhibited the progression of mice

colitis induced by immune checkpoint blockade treatment, and they

highlighted that the therapeutic impact of L. reuteri ATCC PTA

6475 was related to a decrease of ILC3s (Wang et al., 2019). ILC3s

are mainly found in the intestinal mucosa and can drive

proinflammatory responses and cause immunopathological

damage (Jarade et al., 2021). The mechanism is not fully clear. It

is possible that L. reuteri’s capacity to metabolize tryptophan into

indole derivatives, which subsequently activate the aryl

hydrocarbon receptor in ILC3s, is responsible for the underlying

mechanism (Zelante et al., 2013; Schiering et al., 2017).

Furthermore, a previous study investigated two strains extracted

from piglets, L. reuteri ZJ617 and L. reuteri ZJ615, characterized by

high and low adhesive ability respectively (Gao et al., 2016). The

study showed that L. reuteri ZJ615 reduced phosphorylation levels
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of ERK1/2 while L. reuteri ZJ617 had no significant effects on the

ERK1/2 signaling pathway in the ilea of the LPS-stimulated mice

model (Gao et al., 2016). Given this, L. reuteri’s capacity to

modulate the immune system may be somewhat dependent on its

adhesive property.

Overall, these studies demonstrated that metabolites and bacterial

components of L. reuteri as well as the restored balance of the gut

microbiota are both engaged in the suppression of excessive immune

response and protection the intestine from injury.
4 Conclusions and future perspectives

In the past decades, research regarding the link between digestive

diseases and the gut microbiome is growing quickly, accompanied by

increased interest in probiotics in gut health. L. reuterimay serve as a

viable candidate for the treatment of digestive system disorders owing

to its potent antimicrobial, immunomodulatory, and anti-

inflammatory activities with nearly no safety risks.

In this review, we systematically interpreted its application in

different digestive disorders, including IC, diarrhea and

constipation, FAP, H. pylori infection, IBD, and liver diseases.

The results discussed here showed that L. reuteri may alleviate the

symptoms of digestive problems through a variety of mechanisms,

such as manipulation of the intestinal microbial population, barrier

function of the epithelium, regulation of immunity, and modulation

of numerous metabolites. Most of the in vitro and in vivo

experiments revealed beneficial impacts of L. reuteri but the

results of some clinical trials may be controversial. This

phenomenon may be explained, in part, by specific and different

functions of multiple stains and the high diversity of the human gut

microbiota affected by sex, population, diet as well as other factors.

According to well-established studies, L. reuteri treatment is

effective in improving IC, diarrhea, constipation, and H. pylori

infection, whether to be served as a monotherapy or adjuvant

strategy. While given the limited clinical data, there is no

sufficient support data to recommend L. reuteri application in

FAP, IBD, diverticulitis, CRC and liver diseases. In conclusion, it

is important to conduct more research on L. reuteri’s potential

benefits for treating digestive system diseases so that it may be used

in clinical settings and as a therapeutic strategy.
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