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Expression patterns and
immunological characterization
of PANoptosis -related genes
in gastric cancer

Xin Qing1,2, Junyi Jiang1, Chunlei Yuan1, Kunke Xie1*

and Ke Wang1*

1Clinical Laboratory, Boai Hospital of Zhongshan Affiliated to Southern Medical University,
Zhongshan, China, 2West China Hospital, Sichuan University, Chengdu, China
Background: Accumulative studies have demonstrated the close relationship

between tumor immunity and pyroptosis, apoptosis, and necroptosis. However,

the role of PANoptosis in gastric cancer (GC) is yet to be fully understood.

Methods: This research attempted to identify the expression patterns of

PANoptosis regulators and the immune landscape in GC by integrating the

GSE54129 and GSE65801 datasets. We analyzed GC specimens and

established molecular clusters associated with PANoptosis-related genes

(PRGs) and corresponding immune characteristics. The differentially expressed

genes were determined with the WGCNA method. Afterward, we employed four

machine learning algorithms (Random Forest, Support Vector Machine,

Generalized linear Model, and eXtreme Gradient Boosting) to select the

optimal model, which was validated using nomogram, calibration curve,

decision curve analysis (DCA), and two validation cohorts. Additionally, this

study discussed the relationship between infiltrating immune cells and

variables in the selected model.

Results: This study identified dysregulated PRGs and differential immune

activities between GC and normal samples, and further identified two

PANoptosis-related molecular clusters in GC. These clusters demonstrated

remarkable immunological heterogeneity, with Cluster1 exhibiting abundant

immune infiltration. The Support Vector Machine signature was found to have

the best discriminative ability, and a 5-gene-based SVM signature was

established. This model showed excellent performance in the external

validation cohorts, and the nomogram, calibration curve, and DCA indicated its

reliability in predicting GC patterns. Further analysis confirmed that the 5 selected

variables were remarkably related to infiltrating immune cells and immune-

related pathways.

Conclusion: Taken together, this work demonstrates that the PANoptosis

pattern has the potential as a stratification tool for patient risk assessment and

a reflection of the immune microenvironment in GC.

KEYWORDS

PANoptosis, gastric cancer, molecular patterns, immune infiltration, machine learning
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2023.1222072/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1222072/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1222072/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1222072/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1222072&domain=pdf&date_stamp=2023-08-18
mailto:bayywk2022@163.com
mailto:15015079724@163.com
https://doi.org/10.3389/fendo.2023.1222072
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1222072
https://www.frontiersin.org/journals/endocrinology


Qing et al. 10.3389/fendo.2023.1222072
Introduction

Regulated cell death (RCD) is mediated by multiple signal

transduction pathways and presented a clear action mechanism in

the pathophysiologic process (1, 2). As non-apoptosis RCD forms,

autophagy, ferroptosis, pyroptosis, and necroptosis have been

observed to serve a crucial role in the maintenance of homeostasis

and disease progression (3–5). Meanwhile, A growing insight into the

interaction between pyroptosis, apoptosis, and necroptosis has

contributed to the aggregation of these three RCD modalities into

one concept: PANoptosis (6, 7). Once an RCD pathway is terminated

in the tumor, PANoptosis can immediately initiate an alternative

mechanism to act as a tumor suppressor (8). Several reports have

confirmed that PANoptosis drives the development of a variety of

diseases such as colorectal cancer, ARDS, and ischemia injury (9–11).

Although numerous reports have revealed the importance of

pyroptosis, apoptosis, and necroptosis respectively in tumors, the

relationship between PANoptosis and antitumor immunity remains

unknown. Identifying the PANoptosis-related molecular mechanisms

can provide potential opportunities to generate promising insights for

tumor immunotherapy.

Gastric cancer (GC) is one of the most prevalent magnificence

in the digestive system (12). GC at an early stage has an excellent

prognosis with a 5-year survival probability of over 90%, while the

5-year survival probability of progressive GC is only about 30% (13,

14). Early management of GC is crucial to improve the survival

status and reduce the mortality probability of patients, and it is

essential to precisely identify GC with specific molecular patterns

and establish a multivariate prediction signature (15, 16).

Meanwhile, growing evidence from the multi-omics advancement

enables us to access a landscape insight into RCDs in GC (17–19).

Therefore, additional studies on the molecular levels of

PANoptosis-related genes (PRGs) may offer a novel perspective

into GC heterogeneity.

In this study, we investigated gene expression and immune

landscape differences between control and GC specimens. GC

patients were categorized into two PANoptosis-related clusters,

and cluster-specific DEGs were determined with the WGCNA

algorithm. Subsequently, a predictive model for classifying

patients with distinct molecular patterns and evaluating its

reliability with various methods and external validation cohorts,

thereby offering promising perspectives into the prediction of GC

patterns and risk.
Materials and methods

Data collection and preprocessing

The available data were obtained from the Gene Expression

Omnibus (GEO) public database (20), including GSE54129,

GSE65801, GSE66229, and GSE13911. These datasets focused on

the gene sequencing results of GC patients, and each dataset

contains more than 60 samples (Table 1). GSE54129 and

GSE65801 were further integrated, and the batch effects between
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different reports and platforms were eliminated with the combat

algorithm in the sva package (21). The integrated dataset was

applied for further analysis, and GSE66229 and GSE13911 were

regarded as external validation cohorts.
Correlation analysis between PRGs and
immune infiltration analysis

14 PRGs were acquired from the prior report (22), and 10 genes

were identified as differentially expressed genes. The CIBERSORT

algorithm was further utilized to evaluate the abundant levels of 22

kinds of immune cells in individual samples (23). To reveal the

relationship between PRGs and GC-related immunological features,

we explored the correlation between the PRGs and the abundance

of immune cells. p < 0.05 indicated a statistical significance.
Unsupervised clustering of GC patients

Based on these PRGs’ expression data, the unsupervised

clustering analysis (“ConsensusClusterPlus” package) categorized

the 143 GC samples into distinct clusters with the k-means

algorithm for 1,000 iterations (24). The optimal cluster variable

was systematically assessed based on the cumulative distribution

function (CDF) curve, consensus matrix, and consistent cluster

score (>0.9).
Weighted gene co-expression network
analysis (WGCNA)

WGCNA is a bioinformatics approach for introducing patterns

of gene correlations between different specimens and revealing gene

module information with biological significance (25, 26). First, the

correlation parameter between paired genes was computed to

establish the correlation matrix. Next, this matrix was transferred

into a weighted neighborhood matrix based on the soft threshold

feature. Afterward, the neighborhood matrix was further converted

into a topological overlap matrix (TOM) revealing the correlative

levels between genes. 1-TOM was regarded as the distance for

clustering the genes, and the dynamic tree chopping was

constructed to determine the module. The least gene number in

the modules was set to 100. After the individual module was

identified according to the key gene expression data and the
TABLE 1 Information on microarray datasets obtained from GEO
database.

Dataset Platform GC Control

GSE54129 GPL570 111 21

GSE65801 GPL14550 32 32

GSE66229 GPL570 300 100

GSE13911 GPL570 31 38
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sample classification, the association of the module key genes with

sample classifications was also identified.
Establishment of the prediction model
based on machine learning algorithms

Based on two distinct PRGs clusters, the “caret” package was

utilized to propose machine learning models including random

forest model (RF), support vector machine model (SVM),

generalized linear model (GLM), and eXtreme Gradient Boosting

(XGB) (27). According to various dependent decision trees from a

training pool, the RF algorithm promotes the precision of the model

by randomly limiting the overfitting of individual decision trees

(28). SVM can identify optimal parameters by removing the SVM-

derived eigenvectors (29). An SVM module based on the “e1071”

package was created to further evaluate the diagnostic value of the

selected biomarker in GC (30). GLM could dynamically assess the

association between normally distributed dependent traits and

categorical or continuous independent traits (31). XGB is a

collection of boosted trees based on gradient boosting, thus

making detailed comparability between classification error and

model sophistication (32). The different clusters were regarded as

the response parameter and the cluster-specific DEGs were

identified as interpretative parameters. The caret package

dynamically adjusted the variables in these models by grid

identification, and these machine learning models were executed

with default factors and evaluated with 5-fold cross-validation. The

“DALEX” package was performed to illustrate the abovementioned

four machine learning models and visualize the residual

distribution and feature importance among these machine

learning models (33). The “pROC” package was executed to

quantify the area under ROC curves (34). Finally, the appropriate

machine learning model was identified and the top 5 parameters

were regarded as the crucial predictive indicators correlated with

GC. The predictive model was confirmed for its diagnostic value

using ROC curves analysis in the validation datasets.
Diagnostic nomogram construction
and validation

A diagnostic nomogram was obtained for the risk evaluation of

GC with the “rms” package (35). Nomogram presented individual

risk values for individual variables; a final value was acquired by

merging the value of 5 selected variables. Afterward, the risk of GC

could be obtained based on the final value. The diagnostic reliability

of the nomogram was evaluated with the calibration curve, DCA,

and external cohorts.
Correlation between selected variables and
infiltrating immune cells

Based on the CIBERSORT algorithm, correlation evaluation

was executed to investigate the association between infiltrating
Frontiers in Endocrinology 03
immune cells and selected variables. These results were visualized

with the “ggplot2” package (36). P-values < 0.05 demonstrated

statistical significance. Meanwhile, immune-check points and HLA

molecules were also discussed in immunological analysis.
Results

Dysregulation of PANoptosis regulators
and immunological status in GC

To explore the molecular act iv i ty of PANoptos is

modulators in the development of GC, we comprehensively

assessed the abundant levels of 14 PRGs between GC and

control samples using the merged dataset. 10 PRGs were

identified as the differentially expressed PANoptosis genes.

The relative levels of ZBP1, RIPK3, CASP6, and RNF31 were

lower , whereas NLRP3, CASP8, PYCARD, MAP3K7,

TNFAIP3, and RBCK1 were significantly higher in GC than

that in control samples (Figures 1A, B). Figure 1C presents the

site of CNV alterations of these regulators on chromosomes.

Afterward, we conducted a correlation examination between

these differentially expressed PRGs to investigate whether

PANoptosis modulators serve a vital function in the

evolution of GC. Interestingly, a significant synergistic

impact was observed in most of the regulators, such as

NLRP3 and TNFAIP3 (coefficient = 0.63) (Figure 1D).

To clarify whether there are immunological differences between

the GC and control samples, the CIBERSORT method was executed

to identify the enrichment difference of immune infiltration cells

between GC and control samples (Figure 1E). The findings revealed

that GC patients demonstrated greater enrichment levels of naïve B

cells, naïve CD4 T cells, activated memory CD4 T cells, follicular

helper T cells, activated NK cells, M0 Macrophages, M1

Macrophages, and Neutrophils (Figure 1F), indicating that

variations in the immunological status could serve a critical role

in the progression of GC. Additionally, we also explored the

association between differentially expressed PANoptosis

regulators and infiltrating immune cells. The majority of immune

cells were markedly associated with these regulators (Figure 1G).

These findings demonstrated that PRGs may be the vital variables in

modulating the molecular and immunological landscape of

GC patients.
Immunological features
of PANoptosis clusters

To clarify the PANoptosis-related patterns in GC, we

categorized the GC samples from the expression status of 10

differentially expressed PRGs. The k-value was adjusted to 2

(Figure 2A), and GC patients were finally classified into two

clusters, including Cluster1 (n = 73) and Cluster2 (n = 70). The

findings of the principal component analysis (PCA) analysis

confirmed that there was a remarkable discrepancy between these

clusters (Figure 2B).
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To further investigate the molecular properties of clusters, we

fully discussed the enrichment differences of 10 PRGs between

clusters. Different PRGs expression patterns were clarified between

the two PANoptosis clusters (Figure 2C). PANoptosis Cluster1 was

typified by elevated expressions of ZBP1, RIPK3, CASP, CASP8,

PYCARD, TNFAIP3, RNF31, and RBCK1, while PANoptosis

Cluster2 presented high expression levels of NLRP3 and MAP3K7

(Figure 2D). Similarly, the immune infiltration analyses indicated a

distinct immune microenvironment between the two clusters

(Figure 2E). Cluster1 demonstrated decreased Stromal score and

ESTIMATE score, consistent with the prior results (Figure 2F).

Specifically, Cluster1 presented a greater ratio of Plasma cells,

activated CD4 memory T cells, follicular helper T cells, Tregs,

resting NK cells, M0 Macrophages, M1 Macrophages, activated

Dendritic cells, and activated Mast cells, whereas the infiltration of

gd T cells, activated NK cells, Monocytes, M2 Macrophages, and

resting Mast cells were relatively higher in Cluster2 (Figure 2G).

Furthermore, we also discussed additional immunogenic signatures
Frontiers in Endocrinology 04
to identify the immunological characteristics of these clusters. As

demonstrated in Figure S2, diverse immune-checkpoint molecules

andHLAmolecules were differently expressed in these clusters. These

abovementioned findings suggested that PANoptosis Cluster1 may

exhibit a more predominant degree of immune abundance.
Construction of gene modules and
co-expression network

To determine the critical gene modules linked to GC, the

WGCNA algorithm was utilized to construct a co-expression

network and modules for the control and GC samples. We

obtained the variance of gene expression in the merged dataset

and identified the top 25% of genes with the greatest variance for

additional analysis. Co-expressed gene modules were established

when the value of soft power was 6 and the scale-free R2 was set to

0.9 (Figure 3A). A total of 10 specific
B C

D E

F G

A

FIGURE 1

Identification of dysregulated PRGs in GC. (A) The expression landscape of 10 DEGs was presented in the heatmap. (B) Boxplots illustrated the
expression of 14 PRGs between GC and control samples. (C) The location of 14 PRGs on chromosomes. (D) Correlation analysis of 10 differentially
expressed PRGs. (E) The relative abundances of 22 infiltrating immune cells between GC and control samples. (F) Boxplots showed the differences in
immune infiltration between GC and control samples. (G) Correlation analysis between 10 differentially expressed PRGs and infiltrating immune cells.
*p < 0.05, **p < 0.01, ***p < 0.001.
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Co-expression modules with distinct colors were identified with

the dynamic cutting approach and the heatmap of the topological

overlap matrix (TOM) was also displayed (Figures 3B–D).

Afterward, all genes in the 10 modules were further utilized for

determining the similarity and adjacency of module-clinical

characteristics (Control and GC) co-expression. Finally, the blue

module presented the greatest connection with GC, which included

280 genes (Figure 3E). Meanwhile, we found a close relationship

between the blue module and module-related genes (Figure 3F).

Additionally, we also investigated the vital gene modules

associated with PANoptosis clusters with the WGCNA approach.

We selected b = 4 and R2 = 0.9 as the optimal soft threshold

variables to establish a scale-free network (Figure 4A). More

critically, 9 modules were identified as valuable modules and the

heatmap portrayed the TOM of each module-related gene

(Figures 4B–D). Module-clinical characteristics (Cluster1 and

Cluster2) relationship indicated the significant association

between the turquoise module (750 genes) and GC clusters
Frontiers in Endocrinology 05
(Figures 4E, F). The findings demonstrated that turquoise module

genes had a tight correlation with the screened module.
Selection of cluster-specific DEGs and
functional enrichment

37 cluster-specific DEGs were found by exploring the

overlapping genes between module-related genes of PANoptosis

clusters and module-related genes of GC and control samples

(Figure 5A). The functional enrichment analysis was applied to

investigate the functional annotations correlated with cluster-

specific DEGs. The findings revealed that angiogenetic status and

endoderm cell activity were closely associated with these DEGs

based on GO pathways (Figure 5B). Meanwhile, we found these

DEGs participated in diverse signaling processes, such as focal

adhesion, PI3K-Akt signaling pathway, and ECM-receptor

interaction (Figure 5C). Meanwhile, The GSVA analysis was
B C

D E

F G

A

FIGURE 2

Identification of molecular and immune characteristics between the two PANoptosis clusters. (A) Consensus clustering matrix when k = 2. (B) PCA
visualizes the distribution of two clusters. (C, D) Expression landscape of 10 DEGs between two PANoptosis clusters. (E) The relative levels of 22
infiltrating immune cells between two clusters. (F) Estimated immune microenvironment scores between the two clusters. (G) The differences in
immune infiltration between two clusters. *p < 0.05, **p < 0.01, ***p < 0.001.
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applied to further investigate the functional differences related to

cluster-specific DEGs between the two clusters (Figure S1).
Establishment and evaluation of machine
learning models

To further determine pattern-specific genes with excellent

diagnostic significance, we performed four machine learning

algorithms (RF, SVM, GLM, and XGB) based on the expression

data of 37 cluster-specific DEGs in the GC training cohort. The

“DALEX” package was utilized to present the four algorithms and

show the residual distribution of all models in the validation cohort.
Frontiers in Endocrinology 06
SVM and RF machine learning characteristics demonstrated a

relatively smaller residual (Figures 6A, B). Afterward, the top 10

characteristic genes of the individual model were ranked based on

the root mean square error (RMSE) (Figure 6C). Meanwhile, the

receiver operating characteristic (ROC) curves were plotted to

reveal the reliable status of these models, and we observed that

SVM had the greatest performance (Figure 6D). Finally, the SVM

model was presented to best distinguish patients with distinct

patterns, and the top five critical genes (IGFBP4, GEM,

KIAA1522, COL6A3, and STYK1) were identified as predictor

variables for additional analysis.

To validate the predictive reliability of the SVM model, we

established a nomogram to assess the risk of PANoptosis patterns in
B

C D

E F

A

FIGURE 3

Co-expression network of DEGs in GC. (A) The identification of soft threshold power. (B) Cluster tree dendrogram of co-expression modules.
(C) Representative of clustering of module eigengenes. (D) Representative heatmap of the correlations among 10 modules. (E) Correlation analysis
between module eigengenes and clinical status. (F) Scatter plot between module membership in blue module and the gene significance for GC.
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GC patients (Figure 7A). The calibration curve further presented

the predicted and actual pattern risks of GC (Figure 7B), and the

DCA demonstrates that this nomogram

has excellent accuracy (Figure 7C), which may guide clinical

decision-making. Subsequently, we confirmed the 5-gene predictive

model on the external datasets (GSE13911 and GSE66229)

including control samples and GC patients. ROC curves

presented excellent performance of the 5-gene predictive model

with an AUC value of 0.970 and 0.916, respectively (Figures 7D, E),

suggesting this diagnostic model is equally valuable in

distinguishing GC from normal samples.
Frontiers in Endocrinology 07
The biological activity and immune
landscape of biomarkers

We also discussed the associations between 5 characteristic

genes and distinct immune cell types, the findings revealed that

IGFBP4 had positive associations with resting mast cells, naïve B

cells, monocytes, activated NK cells, M2 Macrophages, gd T cells,

naïve CD4 T cells, and negative associations with memory B cells,

activated Mast cells, resting NK cells, resting CD4 memory T cells,

and plasma cells (Figure 8A). Similarly, a significant correlation was

also observed between additional biomarkers (GEM, GEM,
B

C D

E F

A

FIGURE 4

Co-expression network of DEGs between the two PANoptosis clusters. (A) The identification of soft threshold power. (B) Cluster tree dendrogram of
co-expression modules. (C) Representative of clustering of module eigengenes. (D) Representative heatmap of the correlations among 9 modules.
(E) Correlation analysis between module eigengenes and clinical status. (F) Scatter plot between module membership in turquoise module and the
gene significance for Cluster2.
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KIAA1522, COL6A3, and STYK1) and infiltrating immune cells

(Figures 8B–E). These findings demonstrated some kinds of

immune cells are dysregulated in the progression of GC.

Additionally, The GSEA analysis results showed that the cell cycle

and focal adhesion were crucial biological activities in the

development of GC (Figures 9A–E), consistent with the

abovementioned results.
Discussion

At present, the diagnosis of GC has relied on gastroscopy and

pathological judgment of biopsy tissue, and these methods are

limited by their complexity and invasiveness (13, 37) with the

development of high-throughput histology technology,

systematically identifying the molecular biomarkers of GC is a

promising approach from multi-omics levels (38). Therefore, the

identification of more valuable molecular patterns is critical to guide

the personalized treatment of GC. PANoptosis is a harmonious

network where the three programmed cell death-related pathways

can be surrogates for each other and interact together in response to

tumor microenvironment stimulation (39, 40). However, the

specific functions of PANoptosis and its relevant mechanisms in

different diseases have not been sufficiently explored. Therefore, we

aimed to discuss the detailed role of PRGs in GC phenotyping and

the immune microenvironment. Furthermore, gene signatures
Frontiers in Endocrinology 08
associated with PANoptosis were applied for predicting the

GC patterns.

In this work, we comprehensively discussed the expression

characteristics of PANoptosis modulators between normal

samples and GC patients. The dysregulated PRGs were observed

in GC patients more than those in control samples, indicating an

essential part of PRGs in the development of GC. Afterward, we

assessed the relationship among PRGs to determine the association

between PANoptosis modulators and GC. We found that some

PANoptosis regulators demonstrated considerable interactions, as

proven by the presence of PRG interactivity in GC patients.

Meanwhile, the infiltrating levels of immune cells were different

between control samples and GC patients. GC patients presented

greater abundant ratios of naïve B cells, naïve CD4 T cells, activated

memory CD4 T cells, follicular helper T cells, activated NK cells, M0

Macrophages, M1 Macrophages, and Neutrophils, consistent with

the prior reports. Moreover, we employed an unsupervised cluster

approach to present the distinct PANoptosis regulation patterns in

GC patients according to the expression status of PRGs, and two

different PANoptosis -related patterns were determined. Cluster-

specific DEGs demonstrated that Cluster1 was largely engaged in

immune-related biological processes, such as TGF-b signaling and

Notch signaling pathway, while Cluster2 was featured by metabolic

activity. Consistently, Cluster1 had a greater level of Chemokine

signaling and JAK-STAT signaling. Therefore, it would be valuable

to consider that Cluster1 may present more activated B cells and T
B C

A

FIGURE 5

Identification of cluster-specific DEGs and their biological functions. (A) The intersections between module-related genes of PANoptosis clusters
and module-related genes. (B, C) Functional enrichment analysis of overlapping genes based on GO and KEGG pathways.
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cells to eliminate the development of GC and further demonstrate a

better prognosis.

The available machine learning algorithms enable bioinformatic

technology to more accurately and rapidly identify promising

biomarkers correlated with disease initiation and development,

allowing for disease diagnosis, treatment, and therapeutic agents’

investigation (41). In this work, we examined the predictive ability

of four machine learning algorithms (RF, SVM, GLM, and XGB)

predicated on the expression level of cluster-specific DEGs and

constructed an SVM-based prediction signature, which

demonstrated the greatest predictive performance in the testing

cohort, indicating the SVM-based machine learning signature has

promising properties in depicting the patterns of GC. Afterward,
Frontiers in Endocrinology 09
five special variables (IGFBP4, GEM, KIAA1522, COL6A3, and

STYK1) were selected to establish an SVM-based model. The 5-

gene-based SVM model can reliably predict GC in the external

cohorts (AUC = 0.970 and 0.916), which gives new perspectives for

the diagnosis of GC. Moreover, we also established a nomogram

model for the diagnosis of GC patterns with these 5 predictor genes,

and this model presented dramatic predictive value, suggesting the

significance of this predictive model for clinical utilities.

As the most prevalent IGFBP in circulation, IGFBP4 has been

reported to serve a crucial role in tumor development regulation by

inhibiting IGF activities (42). Bioinformatics analysis presented that

IGFBP4 could play a critical biomarker and prognostic predictor for

GC (43). GEM is a regulative protein that might be involved in the
B

C D

A

FIGURE 6

Establishment and evaluation of RF, SVM, GLM, and XGB machine models. (A) Cumulative residual distribution of each machine learning model.
(B) Boxplots showed the residuals of each machine learning model. Red dot represented the root mean square of residuals (RMSE). (C) The important
traits in RF, SVM, GLM, and XGB machine models. (D) ROC analysis of four machine learning models based on 5-fold cross-validation in the testing
cohort.
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receptor-activated signaling pathway at the plasma membrane, thus

serving a pivotal role in fundamental cellular actions (44).

Dysregulated KIAA1522 might facilitate the carcinogenesis and

metastasis of diverse gastrointestinal tumors through different
Frontiers in Endocrinology 10
signaling pathways, such as the Notch signaling pathway (45, 46).

And KIAA1522 serves a tumorigenic function in the metastasis of

gastrointestinal tumors and might be a promising molecular target

for further management. COL6A3 has been reported to be
B

C D E

A

FIGURE 7

Validation of the 5-gene-based SVM model. (A) Establishment of a nomogram for predicting the risk of GC clusters based on the SVM model. (B, C)
Construction of calibration curve (B) and DCA (C) for assessing the predictive efficiency of the nomogram model. (D, E) ROC analysis of the model
based on 5-fold cross-validation in GSE13911 (D) and GSE66229 (E) datasets.
B C

D E

A

FIGURE 8

Correlation map of 22 types of immune cells and 5 selected genes. A positive and negative correlation was respectively shown in the right and left
direction, whereas the size of the circle represents the strength of correlation, the larger the size, the stronger the correlation. (A) IGFBP4. (B) GEM.
(C) KIAA1522. (D) COL6A3. (E) STYK1.
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participated in the development of GC by modulating the PI3K/

AKT signaling pathway (47), and some research demonstrated that

inhibition of COL6A3 would make a great prognosis in GC patients

(48, 49). Low STYK1 expression presented an unfavorable

prognosis for GC, and STYK1 could be a diagnostic and

prognostic predictor in GC patients (50).

Currently, PANoptosis can stimulate powerful anti-tumor

immunity, and facilitating PANoptosis could have remarkable

therapeutic significance in GC (51). Meanwhile, accumulative

studies have observed that immunological disorders are essential

pathobiological factors responsible for the proliferation and

unfavorable prognosis of GC (52, 53). Therefore, we conducted a

correlation analysis between these selected PANoptosis pattern-

related genes with infiltrating immune cells. The findings indicated

differential levels of Plasma cells, resting CD4 memory T cells,

Monocytes, resting and activated NK cells, M2 Macrophages, naive

B cells, resting and activated Mast cells, and gd T cells between

control and GC. Plasma cells, naive B cells, and Mast cells

participated in antibody production and further mediated the

tumor progression (54–56). The positive activity of NK cells is

responsible for the therapeutic outcome and prognostic significance

of GC, while the volume and spread of the tumor also affect the NK

cell functions in patients (57). Polarization of M2 macrophages in

the GC microenvironment could stimulate tumor metastasis by

promoting the EMT process in GC (58). gd T cells in GC tissue can

regulate gastric carcinogenesis by secreting different cytokines (59).

Moreover, resting CD4 memory T cells modulated immunological

status, and Monocytes mediated prognostic evaluation are reported

from prior studies during the GC (60, 61).

Inevitably, there are certain deficiencies and limitations in this

research. The findings of our study should be further confirmed in

vivo or in vitro studies. Also, the prognostic value of this SVM-based

model is pending to be evaluated in the external database with

complete survival information. Therefore, further experimental and

prospective studies are necessary in the future.
Frontiers in Endocrinology 11
Conclusion

In summary, this work revealed the association between PRGs

and immune cell infiltration and demonstrated the considerable

immunological heterogeneity between GC patients with different

PANoptosis patterns. A 5-gene-based SVM model was identified as

the valuable machine learning signature, which can reliably evaluate

GC patterns and the pathophysiologic process of GC patients. Our

research provides the first identification of the potential value for

PANoptosis in GC and reveals the potential molecular

characteristics contributing to GC heterogeneity, and improve

personalized therapy in GC based on PANoptosis patterns.
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SUPPLEMENTARY FIGURE 1

Biological characteristics between two PANoptosis clusters. (A)Differences in
hallmark pathway activities between Cluster1 and Cluster2 samples ranked by

t-value of GSVA method. (B) Differences in KEGG pathways between Cluster1
and Cluster2 samples ranked by t-value of GSVA method.

SUPPLEMENTARY FIGURE 2

Immunological characteristics between two PANoptosis clusters. (A, B)
Differences in HLA and immune-checkpoint molecules between Cluster1

and Cluster2. (C) Differences in immune activity between Cluster1
and Cluster2.
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