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Mapping cover crop species in
southeastern Michigan using
Sentinel-2 satellite data and
Google Earth Engine

Xuewei Wang, Jennifer Blesh, Preeti Rao, Ambica Paliwal,

Maanya Umashaanker and Meha Jain*

School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, United States

Cover crops are a critical agricultural practice that can improve soil quality,

enhance crop yields, and reduce nitrogen and phosphorus losses from farms.

Yet there is limited understanding of the extent to which cover crops have

been adopted across large spatial and temporal scales. Remote sensing o�ers

a low-cost way to monitor cover crop adoption at the field scale and at large

spatio-temporal scales. To date, most studies using satellite data have mapped

the presence of cover crops, but have not identified specific cover crop species,

which is important because cover crops of di�erent plant functional types (e.g.,

legumes, grasses) perform di�erent ecosystem functions. Here we use Sentinel-

2 satellite data and a random forest classifier to map the cover crop species

cereal rye and red clover, which represent grass and legume functional types,

in the River Raisin watershed in southeastern Michigan. Our maps of agricultural

landcover across this region, including the two cover crop species, had moderate

to high accuracies, with an overall accuracy of 83%. Red clover and cereal rye

achieved F1 scores that ranged from 0.7 to 0.77, and user’s and producer’s

accuracies that ranged from 63.3% to 86.2%. The most common misclassification

of cover crops was fallow fields with remaining crop stubble, which often looked

similar because these cover crop species are typically planted within existing

crop stubble, or interseeded into a grain crop. We found that red-edge bands

and images from the end of April and early July were the most important for

classification accuracy. Our results demonstrate the potential to map individual

cover crop species using Sentinel-2 imagery, which is critical for understanding

the environmental outcomes of increasing crop diversity on farms.
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1. Introduction

Diversified farming systems, which comprise a suite of practices that reduce

soil disturbance, maintain permanent soil cover, and increase crop functional

diversity from plot to landscape scales (Kremen et al., 2012), have been shown

to increase agricultural sustainability (Garibaldi et al., 2017; Tamburini et al.,

2020; Beillouin et al., 2021). One key diversification practice is the use of cover

crops, which are non-harvested crops grown in rotation with primary crops that

maintain soil cover during periods that would otherwise typically be in bare fallow.
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A large body of evidence shows that cover crops improve multiple

ecosystem functions, such as reducing soil erosion, increasing soil

fertility and building soil organic carbon (C), retaining nitrogen

(N) and phosphorus (P), reducing pest and disease pressure, and

enhancing crop yields (Tonitto et al., 2006; Finney and Kaye, 2017;

Kaye and Quemada, 2017; Blesh, 2018). Despite these potential

benefits, there is little understanding of the extent to which farmers

are adopting cover crops, both across space and through time.

This is because existing datasets on the use of cover crops at large

scales are typically collected through government censuses, which

are done infrequently and produce data at the level of political

boundaries. Instead, remote sensing can offer a low-cost way to

simultaneously monitor cover crop adoption at the field scale and

at large spatio-temporal scales.

There is a growing body of literature that has used satellite

imagery to map various characteristics of cover crops, including

their presence, phenology, and biomass, in multiple farming

systems across the globe. For example, previous studies have used

multi-spectral optical imagery, such as Landsat, and Sentinel-2, to

map the presence of cover crops by detecting vegetation greenness

outside of the primary growing season (Hively et al., 2015; Seifert

et al., 2019; Fan et al., 2020; Thieme et al., 2020). These studies

have also found that vegetation indices can be used to map the

phenology, sowing time, and termination date of cover crops (Fan

et al., 2020; Gao et al., 2020) as well as their performance by

estimating biomass (Prabhakara et al., 2015; Breunig et al., 2020;

Thieme et al., 2020; Goffart et al., 2021) and biomass nitrogen

content (Xia et al., 2021). Recent work has also shown that radar

and thermal data can be used in combination with optical imagery

to improve cover crop area and biomass estimation (Barnes et al.,

2021; Jennewein et al., 2022). These methods have been applied

to map cover crops in multiple farming systems, including in

the eastern United States (Hively et al., 2015), the United States

Midwest (Seifert et al., 2019; KC et al., 2021), the Netherlands (Fan

et al., 2020), Belgium (Goffart et al., 2021), and Brazil (Breunig et al.,

2020).

While these studies have shown that the presence, phenology,

and biomass of cover crops can be detected with high accuracy at

the field scale, few studies have attempted tomap specific cover crop

species using satellite imagery. Yet knowing the composition of

cover crop species is important given that the functional diversity of

cropping systems—i.e., the diversity of crop functional traits—is a

crucial predictor of ecosystem services, including productivity and

nutrient retention (Blesh and Drinkwater, 2013; Martin and Isaac,

2015;Wood et al., 2015). It is likely that remote sensing can identify

different cover crop species based on differences in phenology or

spectral signatures. Considering phenology, different cover crop

species may be planted or terminated at different times based on

where they fall in the annual crop growing calendar. It is likely that

vegetation indices that measure leaf area index and biomass, such as

the Normalized Difference Vegetation Index (NDVI), can be used

to map these phenological differences as NDVI will accordingly

increase, peak, and decline at different times during the growing

season (Jain et al., 2016; Tariq et al., 2022). In addition, it is possible

that cover crops may be distinguished by differences in spectral

signatures (Rao et al., 2021). For example, flowering species such

as red clover, which produces purple flowers, likely have different

spectral signatures than grass species, such as cereal rye, which

remain green throughout the growing season.

In this study, we use Sentinel-2 satellite imagery and Google

Earth Engine to map two common cover crop species, red clover

and cereal rye, which represent legume and grass functional groups,

in the River Raisin watershed in southeastern Michigan. We focus

on this region because it hasmoderate levels of cover crop adoption,

with ∼4–8% of agricultural area under cover crops according to

the latest USDA census. Furthermore, cover crop adoption in this

region could have important implications for reducing soil erosion

and associated N and P losses, which contribute to harmful algal

blooms and eutrophication in the Great Lakes, the Mississippi

Delta, and the Gulf of Mexico (Michalak et al., 2013), as well

as to climate change through greenhouse gas emissions (Eagle

et al., 2020; EPA, 2022). To our knowledge, the only data product

that has attempted to map individual cover crop species in the

United States is the Cropland Data Layer (CDL), which is produced

by the United States Department of Agriculture (USDA) National

Agricultural Statistics Service (NASS) using Landsat satellite data,

however the accuracies of cereal rye and red clover in this data set

are low (USDA, 2017). We specifically examine whether moderate-

resolution optical data, Sentinel-2, can more effectively classify

cereal rye and red clover in southeastern Michigan based on

differences in their phenological and/or spectral signatures.

2. Methods

2.1. Study region

Our study area, the River Raisin watershed, encompasses

parts of southeastern Michigan and northern Ohio, including

Washtenaw, Jackson, Lenawee, and Monroe counties (Figure 1).

As a tributary to Lake Erie, water drains from the north to west

and enters Lake Erie at Monroe Harbor. It is a highly productive

and intensively farmed area, with over 75% of the land area under

agriculture. As a result, the River Raisin watershed is a major

source of N and P losses that cause eutrophication and harmful

algal blooms.

In this study, we focus on two cover crop species, cereal rye

and red clover, which are commonly used by farmers in our study

region in the overwintering niche. Cereal rye (Secale cereale) is

a cool season annual grass and is one of the most reliable cover

crops across the Midwest (Martinez-Feria et al., 2016). Cereal rye

has traits that stabilize soil, retain and recycle N, P, and other

nutrients, build soil C, and suppress weeds, which may increase

yields over time (Snapp and Surapur, 2018). Because of cereal rye’s

cold tolerance, it can be planted in the late fall after harvesting

corn and gain substantial biomass in the spring as the soil warms;

cereal rye is typically terminated between the end of April and the

middle of May ahead of planting the following crop (Pantoja et al.,

2016; Figure 2). Red clover (Trifolium pratense) is a biennial legume

cover crop species that provides moderate amounts of N through

legume N fixation, positively impacting crop yield (Coombs et al.,

2017; Blesh et al., 2019). In our study region, farmers often frost-

seed red clover into winter wheat (i.e., in late winter, Figure 2)

to improve its establishment and minimize competition with cash
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FIGURE 1

Location of the River Raisin Watershed in Michigan (highlighted in red) and the percent area under cover crops in 2017 at the county level according

to the USDA Census.

crops (Gibson, 2006; Gaudin et al., 2013). Red clover grows rapidly

after wheat is harvested, and usually remains in the field until the

following spring.

Themain cash crops grown in this region are corn and soybean,

with some winter wheat. Winter wheat is planted in the fall and

flowers and senesces in the middle of June (Figure 2). By the first

week of July, winter wheat typically reaches maturity and is ready

for harvest. Soybean and corn are both typically planted in early

to mid-May, and both crops grow throughout the summer. The

other common vegetation class in our study area is grass and

pasture for grazing, and this class of perennial species remains

green throughout the summer growing season (Figure 2).

2.2. Ground data collection

Based on the timing of cover crop growth in our study region

(Figure 2), we conducted two separate field visits: the first occurred

from April 25th to May 5th and the second occurred from June 23rd

to June 25th in 2018. During these field visits we collected ground

truth data that we used to calibrate and validate our remote sensing

algorithm. During the first field visit, we identified the presence of

cover crops during a time when other cash crops (except for winter

wheat) were not prevalent. During the second field visit we were

better able to distinguish cereal rye cover crops from winter wheat,

as these two crops looked similar at the end of April (Figure 2).

To select appropriate fields to visit for our ground survey, we

conducted the following steps. First, we used a cropmask to identify

all cultivated land in our study region using the USDA NASS

Cropland Data Layer (USDA, 2017). This data product defines

cultivated area as pixels that were classified as cultivated in at least

two out of the last five years. We then selected 5,000 random points

from these cultivated pixels that were within 10 meters from a road;

we did this to ensure that the fields we visited were visible from the

road and could be classified easily while driving. Finally, to ensure

that our randomly selected ground truth points represented the

range in vegetation land cover types found across our study region,

we created a maximum Normalized Difference Vegetation Index

(NDVI) mosaic for April 2018 using Sentinel-2 Level-1C top of the

atmosphere (TOA) satellite data in Google Earth Engine (https://

earthengine.google.com/, Supplementary Figure 1). We selected

500 points from our original random sample that were stratified

across four intervals of NDVI (<0.2; 0.3–0.4; 0.4–0.6; and >0.6).

We then visited these 500 points in person to collect observational

data on the type of land cover.

For each field, three GPS locations were taken at the start,

middle, and end of the field along the road, and we recorded the

observed land cover type. The five classes observed were fallow

fields, grass/pastures, winter wheat, cereal rye, and red clover. Since

winter wheat and cereal rye were difficult to distinguish in the

first field survey, we revisited all winter wheat and cereal rye fields

during the second survey in late June. At this point we were able

to distinguish between these two classes because cereal rye had
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FIGURE 2

Phenology of di�erent agricultural land cover classes found in the River Raisin watershed, with the timing of the field survey highlighted as red

rectangles (Field survey in legend) and available Sentinel-2 imagery highlighted as red triangles (Temporal coverage in legend).

been terminated whereas winter wheat was still in the field and

was reaching the stage of flowering or senescence. Some fields were

omitted from our survey as they were either not cultivated or we

were unable to identify the landcover type. In total, we collected

GPS and groundcover data from 461 fields, with 173 fallow, 125

wheat, 69 grass/pasture, 64 red clover, and 30 cereal rye fields.

To delineate field boundaries, we overlaid our GPS points on

a high-resolution (0.3m) base map using Digital Globe imagery in

ArcGIS 10.6.1. For each set of three GPS points which represented

the start, middle, and end of each field along the road, we

identified each associated visible field boundary in the high-

resolution imagery. We then manually drew polygon boundaries

for each field based on visual interpretation of field boundaries from

the high-resolution imagery. To minimize edge effects, we buffered

each field by manually shifting the polygon inwards by 10m across

all edges using ArcGIS software.

2.3. Satellite image processing and land
cover classification

We acquired Sentinel-2 Level-1C TOA satellite data from

Google Earth Engine from April 4th to August 11th, 2018, which is

the key period to identify overwintering cover crops in temperate

climates (Figure 2). To ensure cloud cover did not impact our

analyses, we filtered images to those that had <5% cloud cover

across the entire scene and visually examined each image to make

sure there was no cloud cover over our study area. In total, we

acquired satellite data for 11 dates throughout the growing season,

with one Sentinel-2 scene covering our entire study region. Since

three of these dates were within 1 week of each other (July 4 to July

9) and provided similar information, we selected only one of these

image dates (July 9). This resulted in a total of 9 images throughout

the growing season that we used in our analyses (Figure 3).

Previous studies show that different indices can help

differentiate agricultural land cover. Here, we expected that indices

that measure leaf area index, plant senescence, and leaf chlorophyll

would be able to capture phenological differences across the

different vegetation types considered in our study. Individual

bands, such as blue, green, and red, on the other hand are more

likely to capture potential spectral differences among vegetation

types, such as flowering red clover and a grass such as rye. We

thus calculated a suite of vegetation indices that prior research has

shown to be important using band math in Google Earth Engine

(Table 1). We exported all bands and indices (Table 1) for each

of the nine image dates (Figure 3) for all pixels within our 461

polygons using the ExportTable function in Google Earth Engine.

We imported the data into R Project software for all subsequent

analyses and used random forest to classify the five land cover

classes in our study region. Before running the random forest

analysis, we removed highly correlated features that had a

correlation value greater than 0.9 using the caret package (Kuhn,

2022) in R Project software (R Core Team, 2022). In addition,

to reduce the effect of spatial autocorrelation, we selected 30

pixels at random from each polygon; for fields that were smaller
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FIGURE 3

Boxplots of NDVI for each of the five land cover classes from our sample points across the nine image dates considered in our study. Trend lines for

each class are drawn in colors associated with each land cover type. Considering large changes in NDVI trend lines, the sharp decrease in wheat

NDVI in June represents senescence and eventual harvest of the crop, increases in NDVI in June for fallow are due to growth of the main cash crop,

and increases in NDVI for rye in June represent the establishment and growth of the subsequent cash crop following the termination of rye.

TABLE 1 List of all bands and indices used in this study, along with description and references.

Bands Indices

Band Description Index Calculation Description References

B2 Blue (B) Normalized difference vegetation index

(NDVI)

(NIR-R)/(NIR+R) Leaf area index Tucker, 1979

B3 Green (G) Green-blue NDVI (GBNDVI) (NIR-(G+B))/(NIR+(G+B)) Leaf area index Wang et al., 2010

B4 Red (R) Green-red NDVI (GRNDVI) (NIR-(G+R))/(NIR+(G+R)) Leaf area index Wang et al., 2007

B5 Red Edge 1 (RE1) Red-edge normalized difference index

(NDI)

(RE1 – R)/(RE1+ R) Leaf area index Pérez et al., 2000

B6 Red Edge 2 (RE2) Plant senescence reflectance index

(PSRI)

(R – G)/RE2 Plant senescence Merzlyak et al., 1999

B7 Red Edge 3 (RE3) NIR-Green NDVI (NGNDVI) (NIR – G)/(NIR+ G) Plant senescence Qi et al., 2002

B8 Near infrared (NIR) Red-edge chlorophyll index (CIre) RE3/RE1−1 Leaf chlorophyll Gitelson et al., 2003

B8A Red Edge 4 (RE4) Green chlorophyll vegetation index

(GCVI)

NIR/G−1 Leaf chlorophyll Gitelson et al., 2003

B11 Shortwave infrared 1

(SWIR1)

Normalized pigment chlorophyll ratio

index (NPCI)

(R – B)/(R+ B) Leaf chlorophyll Penuelas et al., 1997

B12 Shortwave infrared 2

(SWIR2)

Shortwave infrared water stress index 1

(SIWSI1)

(NIR-SWIR1)/(NIR+SWIR1) Vegetation

moisture

Fensholt and Sandholt,

2003

Shortwave infrared water stress index 2

(SIWSI2)

(NIR-SWIR2)/(NIR+SWIR2) Vegetation

moisture

Fensholt and Sandholt,

2003

Normalized difference tillage index

(NDTI)

(SWIR1- SWIR2)/(SWIR1+

SWIR2)

Residue cover van Deventer et al., 1997

than 30 pixels, we selected all available pixels within the field

polygon. We then split our data into training (70% of fields)

and validation data (30% of fields) to ensure that an independent

dataset was used for validation. Random forest analyses were run

using the randomForest package (Liaw and Wiener, 2002) in R

Project Software using default values. We conducted accuracy
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TABLE 2 Contingency table and overall accuracy (OA), user’s accuracy (UA) or precision, and producer’s accuracy (PA) or recall of the classified

validation dataset.

Predicted class

Clover Fallow Grass/pasture Rye Wheat PA or recall

Ground truth class Clover 395 73 69 16 17 69.30%

Fallow 3 1,504 33 14 4 96.53%

Grass/Pasture 55 183 314 0 50 52.16%

Rye 0 97 2 171 0 63.33%

Wheat 5 38 18 18 1,011 92.75%

UA or precision 86.24% 79.37% 72.02% 78.08% 93.44%

OA 83.01%

We shaded accuracies from lighter to darker to represent lower to higher percent accuracies, respectively.

assessment by applying our trained random forest model to

the independent validation dataset, and used a contingency

table to calculate user’s accuracy (also known as precision),

producer’s accuracy (also known as recall), overall accuracy, and

F1 scores (Supplementary Table 1). Finally, we calculated variable

importance of our predictor variables by examining the mean

decrease in model accuracy that occurred after each predictor

variable was permuted from the full model using the randomForest

package in R Project software.

3. Results

Our model had an overall accuracy of 83.01%, although

classification accuracy varied across the five land cover classes

considered in our model (Table 2). In particular, the classification

of wheat was highly accurate, with an F1 score of 0.93, user’s

accuracy of 93.43%, and producer’s accuracy of 92.75% (Tables 2,

3). Fallow lands also had high classification accuracy, with an F1

score of 0.87, user’s accuracy of 79.37%, and producer’s accuracy

of 93.53% (Tables 2, 3). The relatively low user’s accuracy was

becausemany pixels classified as fallowwere in fact other land cover

classes, particularly grass/pasture. The two cover crop species had

moderate classification accuracies, with the classification accuracy

of red clover outperforming that of cereal rye. Red clover had an F1

score of 0.77, user’s accuracy of 86.24%, and producer’s accuracy

of 69.29% (Tables 2, 3). The relatively low producer’s accuracy

was because red clover pixels were often misclassified, usually as

fallow and grass/pasture. Cereal rye had an F1 score of 0.70, user’s

accuracy of 78.08%, and producer’s accuracy of 63.33% (Tables 2,

3). The relatively low producer’s accuracy occurred because cereal

rye pixels were also often classified as other land cover types,

particularly fallow fields. Finally, the class that had the lowest

classification accuracy was grass/pasture, with an F1 score of.61,

user’s accuracy of 72.02%, and producer’s accuracy of 52.16%

(Tables 2, 3). The low producer’s accuracy was again because many

grass/pasture fields were misclassified as fallow fields.

Considering variable importance, we found that the most

important predictor variable for our classification was the

normalized difference tillage index (NDTI) from April 20

(Figure 4). Other indices found to be within the top 20 most

important variables included PSRI, NPCI, and CIRE. When

TABLE 3 F1 scores for each of the five land cover classes considered in

our study.

Clover Fallow Grass/Pasture Rye Wheat

0.77 0.87 0.61 0.70 0.93

FIGURE 4

The 20 most important predictor variables in the random forest

analysis considering the mean decrease in model accuracy (%) when

each variable is permuted. Bands are labeled as the index or band

name followed by the month and then the date of the band.

examining the importance of individual raw bands, we found that

the red edge and NIR bands (B5, B6, B7, B8, and B8A) were

important, comprising 12 of the top 20 most important variables.

Considering important time periods, we found that 9 of the 20most

important variables were bands and indices from July 9, suggesting

that this is a critical time point to differentiate the different land

cover classes considered in our study. In addition, 7 of the 20

most important variables were bands and indices from early in the

growing season during the month of April. This suggests that this

period is also critical for identifying the different land cover classes

considered in our study.
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4. Discussion and conclusion

This study used Sentinel-2 satellite data and random forest to

classify two cover crops species that are grown in the overwintering

period, cereal rye and red clover, in Southeast Michigan. These

species represent two contrasting crop functional types (legume

and grass) that can provide complementary ecosystem services

in diversified cropping systems (Martin and Isaac, 2015; Wood

et al., 2015), particularly N supply and nutrient retention (Tonitto

et al., 2006; Blesh and Drinkwater, 2013). Overall, our model

distinguished different agricultural land cover types, including

these cover crops, with moderate to high accuracies. Our model

reached an overall accuracy of 83%, and F1 scores for all cover

and cash crops ranged from 0.7 to 0.93 (Tables 2, 3). While cover

crop accuracies were moderate (user’s and producer’s accuracies

ranged from 63.3% to 86.2%) (Table 2), they weremuch higher than

accuracies from the existing cropland data layer (CDL) product

that uses Landsat satellite data to map crop species across the

United States. This suggests that locally-calibrated random forest

models using Sentinel-2 data can be used to more accurately

quantify the presence of individual cover crop species, which is

important for better understanding their potential environmental

benefits at large spatial and temporal scales.

Although overall accuracy was high, misclassifications of cover

crop species were common. Red clover was most oftenmisclassified

as fallow and grass/pasture fields, likely because clover, which is a

biennial species, can have biomass production similar to perennial

grass/pasture fields in the summer, and may also be mowed for

hay. Cereal rye was misclassified most as fallow fields, which may

be due to the highly variable biomass production for cereal rye in

the region based on planting date and weather conditions. Some

fields with low cereal rye biomass appeared similar in spectral

signature to fallow fields with weeds. Another reason for these

misclassifications is that cover crops can be interseeded with a grain

crop (e.g., in our study this is a common practice for red clover),

or planted into remaining crop residue, which leads to substantial

variation in spectral signatures across fields and even within the

same field. For example, cereal rye is often planted in fields where

corn was previously harvested, with the rye growing around the

corn stubble. This is likely why the most common misclassification

of cereal rye was with fallow fields, which often contained crop

residues along with weeds. Red clover had better classification

accuracies than cereal rye, likely because it has more dense ground

coverage and is a broad-leaf plant, and thus was less likely to be

confused with other land cover classes such as fallow fields.

Considering which bands and indices were the most important

for classification, we found that the normalized difference tillage

index (NDTI) from April 20 was the most important variable. This

is likely because this index captures the difference between tilled

and untilled fields, which helps to distinguish tilled fallow fields

from the other four land cover types that remain untilled and

contain vegetation (Figure 3). We also found that red-edge bands

were particularly important for classifying our various land cover

classes, which highlights the critical importance of using Sentinel-2

for cover crop classification. This finding supports previous studies

that have found that red-edge bands can effectively classify different

vegetation types, including individual crop species (Immitzer et al.,

2016; Forkuor et al., 2018). Considering image timing, we found

that early July (July 9th) followed by late April (April 20th-30th)

were the most important dates for classifying the five land cover

types in our study. In particular, these two time periods are critical

for distinguishing the cover crop species of interest in our study

region. This is because July 9th is near the timing of harvest for

winter wheat and high biomass growth for red clover (Figure 3),

making it easier to detect fields planted with red clover during this

period. Late April, on the other hand, is critical for classifying cereal

rye as this is the time period when the cover crop approaches peak

biomass prior to termination (Figure 3). These dates are also likely

important for distinguishing other land cover classes in our study

region. Specifically, on July 9 there was high biomass of cash crops

that had been planted in fallow fields (Figure 3), whereas fallow

fields showed little vegetation biomass during late April, especially

if they had been recently tilled (Figure 3).

Our study provides some of the first evidence that Sentinel-2

can map individual cover crop species that provide critical—and

distinct—ecosystem functions in the Great Lakes region. However,

there are several limitations that should be addressed in future

studies. First, we were unable to collect a large sample size for

cover cropped fields, particularly for cereal rye (n = 30). This is

likely because cover crops are only planted on 4–8% of agricultural

land area in this region, and our random sampling approach for

collecting field data did not effectively target cover cropped fields.

Future work should identify if classification accuracies improve

when a greater number of cover cropped fields are used to train

the classifier. Second, our study was restricted to one watershed,

and it is unclear how generalizable our findings would be to a larger

or different study region. This is particularly true given that even

within the River Raisin watershed cover crop management and

performance was heterogeneous, and such heterogeneity is only

expected to increase across a broader study area.

In conclusion, we find that we were able to map individual

cover crop species using Sentinel-2 satellite data and random

forest with moderate accuracies. This is important given that

previous work has largely mapped the presence or absence of

cover crops, without distinguishing species or functional types.

However, given current understanding of the links between crop

functional diversity and ecosystem services in agricultural systems

(Martin and Isaac, 2018), better characterizing diversification

through cover crops is important for linking distinct cover crop

species to expected environmental benefits. Future work should

examine how generalizable our findings are to broader regions

in Michigan, across the Midwest, and in other cropping systems

across the globe where cover crops are grown. Our results show

that red-edge bands and images from early in the growing

season (April), close to termination of overwintering annual cover

crops, and during the summer growing season (July), were the

most important for classifying agricultural land cover, including

cover crops.
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