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Introduction: The etiology of major depressive disorder (MDD) involves the

interaction between genes and environment, including treatment. Early molecular

signatures for treatment response and remission are relevant in a context

of personalized medicine and stratification and reduce the time-to-decision.

Therefore, we focused the analyses on patients that responded or remitted

following a cognitive intervention of 8 weeks.

Methods: We used data from a randomized controlled trial (RCT) with MDD

patients (N = 112) receiving a cognitive intervention. At baseline and 8 weeks,

blood for DNA methylation (Illumina Infinium MethylationEPIC 850k BeadChip)

was collected, as well as MADRS. First, responders (N = 24; MADRS-reduction of

at least 50%) were compared with non-responders (N = 60). Then, we performed

longitudinal within-individual analyses, for response (N = 21) and for remission

(N = 18; MADRS smaller or equal to 9 and higher than 9 at baseline), respectively,

as well as patients with no change in MADRS over time. At 8 weeks the sample

comprised 84 individuals; 73 patients had DNA methylation for both time-

points. The RnBeads package (R) was used for data cleaning, quality control, and

differential DNA-methylation (limma). The within-individual paired longitudinal

analysis was performed using Welch’s t-test. Subsequently gene-ontology (GO)

pathway analyses were performed.

Results: No CpG was genome-wide significant CpG (p < 5 × 10−8). The most

significant CpG in the differential methylation analysis comparing response versus

non-response was in the IQSEC1 gene (cg01601845; p = 1.53 × 10−6), linked

to neurotransmission. The most significant GO-terms were linked to telomeres.

The longitudinal response analysis returned 67 GO pathways with a p < 0.05.

Two of the three most significant pathways were linked to sodium transport. The

analysis for remission returned 46 GO terms with a p-value smaller than 0.05 with

pathways linked to phosphatase regulation and synaptic functioning. The analysis

with stable patients returned mainly GO-terms linked to basic cellular processes.

Discussion: Our result suggest that DNA methylation can be suitable

to capture early signs of treatment response and remission following

a cognitive intervention in depression. Despite not being genome-wide

significant, the CpG locations and GO-terms returned by our analysis

comparing patients with and without cognitive impairment, are in line
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with prior knowledge on pathways and genes relevant for depression treatment

and cognition. Our analysis provides new hypotheses for the understanding of

how treatment for depression can act through DNA methylation and induce

response and remission.

KEYWORDS

pharmaco-epigenomics, major depressive disorder, DNA methylation, psychotherapy,
pathways

1. Introduction

Major depression is one of the disorders where it is well-
known that disease risk is defined both by genetic vulnerability
and environmental exposure (Schwabe et al., 2019). Integrating
genomics and environmental information for the understanding
of major depression, has become increasingly important (Ormel
et al., 2019; Fabbri et al., 2020). Complementary to the genomic
research, including genome-wide association studies (GWAS),
Investigation of the “exposome,” with the whole of an individual’s
exposure, (Vineis et al., 2020) or “phenome,” the combined set
of an individual’s phenotypic features, e.g., with the emerging of
phenome-wide analyses (PheWAS) are strategies that address this
complexity of the genetics of the individual interacting with its
environment (Sluis et al., 2010; Barch, 2022; Meng et al., 2022).
How the genome and the exposome come together at the molecular
level and induce changes in the individual, such as recovery from
depression after a treatment, remains largely unclear. The question
remains which aspects of genomics or phenomics contribute and
how (Ormel et al., 2019; Matthews and Turkheimer, 2021). For
genetics, focus has shifted from overall case-control design to
more stratified techniques to integrate phenotypical diversity in
genomic (Sluis et al., 2010; Schwabe et al., 2019). In particular for
depression, stratified analyses have shown merit in advancing the
field of genomics in depression at the mechanistic level of how
depression treatment works. Both stratification by phenotypical
characteristics of the disorder (Schwabe et al., 2019; Thalamuthu
et al., 2022), but also by treatment and treatment response have
helped to understand the genetic basis of depression as a psychiatric
disorder (Kendall et al., 2021; Schubert et al., 2021).

The exposome has learned from genomics by adopting some
of the techniques like composite scores and focusing on multiple
phenotypes at once (Greener, 2019; Vineis et al., 2020; Liu et al.,
2023) to understand their underlying common structure (Sluis
et al., 2010; Barch, 2022; Meng et al., 2022). At some point, of
course the genome and exposome act synergistically (Rappaport,
2012; Choi et al., 2022) to redefine the phenotype (Greener, 2019),
e.g., a genetic vulnerability for mood disorders and stress in the
environment can lead to depression. Therefore, pinpointing the
mechanisms involved in this interaction is highly relevant to
understand disease risk (Choi et al., 2022), but also treatment
potential (Jukic et al., 2022).

One of the molecular mechanisms that is suggested to
play a role in the interface between an individual’s genetic
risk and the environmental exposure DNA methylation, as
one example of an epigenetic mechanism (Plusquin et al., 2019;

van Calker and Serchov, 2021). DNA methylation is known to be in
part dependent on the underlying genomic variants, but also to be
dynamic and responsive to environmental changes and alter gene
expression in response to environmental influences (van Calker
and Serchov, 2021; Müller et al., 2022). Therefore, it finds itself
in a prime position for the investigation of early signatures of
molecular change in response to treatment, such as response to a
cognitive treatment. A psychotherapeutic intervention can be seen
both as a treatment and an environmental factor. If successful,
this environmental factor is supposed to induce early changes
in the molecular functioning of the cell and the individual to
induce treatment response, possibly even remission. These early
molecular processes that record the environmental change and act
as a switch to provide a molecular answer to the psychotherapeutic
intervention and induce symptom improvement are the focus of
this study. We are particularly interested in these early molecular
changes in the window of the 8 first weeks of a cognitive
intervention, linked to antidepressant response and remission. We
want to know which loci change this early in the recovery process.
These can inform an optimized treatment strategy through an
early stratification of patients that may or may not respond to the
chosen treatment. Therefore, we perform a case-control analysis
with responders versus non-responders, but extend our analyses
into within-individual longitudinal paired analyses for patients
who responded or remitted to capture the dynamics of DNA
methylation loci over these 8 weeks.

The opportunities of personalized medicine include person-
oriented treatment choices, shortening the time to successful
treatment, and early knowledge about treatment failures. We hope
our results can contribute to the growing need for early indicators
of treatment response. We are primarily interested in exploring
the potential of early DNA methylation changes and the role
DNA methylation can play in the context of treatment response,
rather than understanding the precise mechanistic complexity,
in the strict sense, of DNA methylation in the process of
depression recovery.

Nonetheless, as depression and recovery from depression have
been linked to improved neuronal connectivity (Dichter et al., 2015;
Dunlop et al., 2019; Long et al., 2020), inflammation (Gasparini
et al., 2022), and neurotrophic factors, such as the BDNF-pathway
(Duman and Aghajanian, 2014; Li et al., 2021), we expect these
signals to be represented in our pathway analysis. Due to the
nature of DNA methylation and its function in gene-regulation,
we also expect DNA regulatory processes to be represented in
our results, as recovery from depression is a dynamic process
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that needs regulation at the DNA level (Mamdani et al., 2011;
Woo et al., 2018).

We use the data from an existing randomized clinical trial
(RCT) with depressed patients where patients received either a
personalized or regular cognitive intervention. DNA methylation
data are available for two time points: baseline and 8 weeks in the
intervention. Therefore, this dataset is well suited to distinguish
pathways that play a role in the early molecular phases of recovery:
the moment where the cell is sensitive for the cognitive treatment
and acts on the changed environment, hopefully for the better.

2. Materials and methods

2.1. Sample, subjects, and phenotype

Only patients diagnosed with MDD according to DSM-IV-
TR were included (Knight et al., 2021). For this analysis, we used
the epigenomic data of CERT-D, a previously published RCT
on the effects of a cognitive intervention in patients with major
depressive disorder (MDD) (Knight and Baune, 2017). Data were
collected in Australia between 2017 and 2019 (Knight et al., 2021).
The original sample consisted of 112 individuals. In the study all
patients received an intervention to improve cognitive, emotional
and functional outcomes in depression. Three individuals were
excluded based on reported ancestry, which was confirmed by
principal component analysis of genetic markers (Supplementary
Figure 1). For this study data at baseline and the 8-week interval
were used. Depression was assessed using MADRS, which was
completed at baseline and after 8 weeks.

After quality control (QC), as described below, both DNA
methylation data and phenotypic data were available for 90
individuals at baseline (mean age 45 years, 68% women). The mean
MADRS-score at baseline was 23. At 8 weeks, the final sample
with phenotypic and DNA methylation data available comprised 84
individuals (mean age 43 years, 62% women). The mean MADRS-
score of the sample at 8 weeks was 15. For 73 individuals DNA
methylation data at both time points were available.

For a detailed description of the trial and the sample, we refer
to Knight and Baune (2017).

For this manuscript we focused on patients that showed
improvement or remitted over the course of 8 weeks. In line with
the available literature (Price et al., 2022), response was defined
as a reduction of at least 50% of the MADRS score at baseline
(N = 29), of which 24 individuals had DNA methylation data
available at 8 weeks and 21 individuals had DNA methylation data
available at both time points. Patients were considered remitted
if their score after 8 weeks was smaller or equal to 9 and the
baseline score was at least consistent with mild depression (MADRS
score larger than 9). This was the case for 24 individuals, of
which 18 individuals had DNA methylation data available at
both time points. An exploratory paired longitudinal analysis was
performed to provide a contrast for the longitudinal analysis
independent of response. For this analysis we used all “stable”
individuals who did not show a difference between baseline
and 8 weeks of more than 5 points on MADRS (in either
direction). A total of 28 of these individuals had DNA methylation

available at both time-points and was not already included
in another paired longitudinal analysis (N = 1). A schematic
overview is presented in the Supplementary data (Supplementary
Figure 2).

The study and data collection have been approved by the
Human Research Ethics Committees of the Royal Adelaide
Hospital and the University of Adelaide (Knight and Baune, 2017;
Knight et al., 2021).

2.2. Epigenome-wide DNA methylation
analysis

DNA methylation data (Illumina Infinium MethylationEPIC
850k BeadChip) were available of 101 individuals. Blood samples
for this study were taken at baseline (T0) and after 8 weeks
(T1). DNA was isolated from whole blood samples using
standard procedures (QIAamp DNA Blood Midi-Kit, Qiagen,
Hilden, Germany) followed by purification (Amicon 0,5ml 3K;
Merck/Millipore, Darmstadt, Germany) and pipetting on 96-well
plates for chip-based analyses. Bisulfite conversion and handling of
the DNA methylation chips were performed in the Life & Brain
Institute Bonn (Zillich et al., 2022). Samples were randomized
on plates and chips based on patients’ sex and age. Both time
points (T0, T1) of the same patient (for within-individual analyses)
were analyzed on the same chip. Following analysis on HiScan
array scanning systems (Illumina, San Diego, CA, USA), data were
transferred as.idat files. The further processing and quality control
of the DNA methylation data was performed using R (version
4.2.2) and the “RnBeads” pipeline [Package RnBeads 2.0, (Assenov
et al., 2014; Müller et al., 2019)]. DNA methylation preprocessing
was performed for baseline and 8 weeks combined, a total of 180
samples. Within-individual longitudinal analyses were performed
using the Welch’s t-test as provided in the RnBeads package.
Cross-sectional differential methylation analyses were performed
with “limma,” as also embedded in the RnBeads package. To
capture the dynamic aspects of early signs of treatment response
in depression, we explored the overlap of the 1% most significant
CpGs (i.e., 6,696 CpGs from the dataset of 669,674 CpGs) for
each of the analyses as it reflects within-individual changes over
the time period of 8 weeks and changes particularly linked to
treatment response and remission. A detailed description of the
quality control steps is provided in the Supplementary data.
The same procedure was repeated for the analysis with stable
individuals.

For the interpretation of results, the following online databases
are used: UCSC genome browser (Lee et al., 2022), Alliance
of Genome Resources (Kishore et al., 2020), and GeneCards

R©

(Safran et al., 2021).

2.3. Pathway analysis

The pathway analysis was performed on all 669 674 CpGs
for each of the conditions. The R-package “methylGSA” (Ren and
Kuan, 2019) was used for the pathway analyses as it provides
statistical strategies to correct for systemic bias. The “methylglm”-
command was used to extract gene-ontology (GO) terms informed
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TABLE 1 Descriptive statistics of the samples used for the analyses [age (years), body weight (kg), height (cm), Pers = personalized treatment,
TAU = treatment as usual].

Response
8W

Non-response
8W

Group
comparison

Longitudinal
response

Longitudinal
remission

Stable
course

N 24 60 21 18 28

Treatment: Pers/TAU 15/9 30/30 13/8 10/8 12/16

Age (SD) 42 (15) 44 (15) F(1, 82) = 0.41,
p = 0.52

42 (16) 46 (16) 43 (16)

Mean MADRS baseline (SD) 23 (9) 21 (9) F(1, 82) = 1.75,
p = 0.037

23 (9) 18 (8) 21 (9)

Mean MADRS difference
over time

−16 −3 F(1, 82) = 58.91,
p < 0.001

−16 −12 0 (3)

Mean MADRS 8W (SD) 7 (4) 18 (8) F(1, 82) = 2.18,
p = 0.0065

7.7 (4.2) 6.0 (2.7) 18 (9)

% women 16 36 p = 0.85 67% 67% 64%

Years of education (SD) 14 (2) 14 (3) F(1, 82) = 0.26,
p = 0.62

14 (2) 14 (2) 14 (2)

Body weight (SD) 83 (30) 76 (17) F(1, 82) = 1.35,
p = 0.25

83 (30) 83 (29) 82 (17)

Height (SD) 168 (13) 169 (8) F(1, 82) = 0.13,
p = 0.72

168 (13) 166 (11) 169 (9)

by the results of the DNA methylation analyses. A minimum
of 100 and maximum of 500 CpG sites per enriched term was
predefined for the analyses. For the GO-analysis on hyper- or
hypo-methylation [as described in the Supplementary material,
Table 1 (tab 1)], the GO-analysis was repeated with either the
hypo- or hyper methylated CpGs. In addition, we performed a
GO analysis for longitudinal remission and longitudinal response
after exclusion of the 1% (i.e., 6,696) most significant CpGs from
this analysis to get a clearer image from the pathways linked
to depression recovery using the stable group as a reference of
longitudinal DNA methylation changes over the course of 8 weeks
independent of depressive symptoms.

2.4. Confounding variables

Both depression and epigenome related variables were
considered for the analysis. Phenotype related variables included
biological sex, age, years of education as reported by the participant,
body weight, and height at baseline. As ancestry was already
accounted for in previous QC steps, it is not additionally
represented in the final epigenome wide association analysis
model. As overall missing for these variables were limited (6.08%),
imputation was performed using the R package “missRanger”
(v.2.1.0). Imputed variables have been additionally checked for
plausibility through density plots.

Cell type deconvolution is mandatory for epigenome-wide
DNA methylation analysis. As no cell type counts were available
for our whole blood samples, we use a 6-cell types reference dataset
as suggested by Salas et al. (2018) with the GSE110554 reference
dataset using the Houseman et al. (2014) method to estimate the
most important cell type fractions for our samples: neutrophils,
monocytes, B-lymphocytes, natural killer cells, and CD4+ and
CD8+ T-cells.

For the analysis at 8 weeks technical confounding factors
(e.g., batch effects) were addressed using surrogate variables, 16
surrogate variables were estimated and included in the model,
resulting in an overall genomic inflation factor (λ) = 0.97.
A correlogram is also shown in the Supplementary data. For the
within-individual paired analysis no confounding variables could
be included in the model, as within-individual batch effects were
minimized from the start, we do not expect any confounding
factors to become relevant over the 8-week time period. Genomic
inflation (λ) for the within-individual analyses showed a good fit
for both response (λ = 0.99), remission (λ = 0.99), and the stable
course (λ = 0.94).

For the exploration of baseline DNA methylation and its
relation to response at 8 weeks, additional analyses were performed
for the 10 CpGs as discussed in Table 2. The association between
DNA methylation at baseline and MADRS at baseline was explored
using linear regression analyses. These analyses too were controlled
for cell-types and demographics. For response at week 8 we
performed an ANCOVA with DNA methylation at baseline and
response at 8 weeks, also controlled for cell-types, demographics,
and MADRS at baseline.

A comparison of cell type composition for both time points is
provided in the Supplementary data. Other group comparisons are
shown in Table 1 and were tested using ANOVA and Fisher’s exact
test.

3. Results

3.1. Sample description

Table 1 shows the descriptive statistics of the comparisons in
this study. A total of 14 individuals were represented in both the
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TABLE 2 Top 10 of response versus non-response cross-sectional analysis at week 8.

CpG Location % Mean
methylation
difference

p-value Responders Comment

cg01601845 chr3: 13296533
Open Sea

1.14 1.53 × 10−6 Hypo-methylated IQSEC1 (gene body); regulation of postsynaptic
neurotransmitter receptor internalization. Located in

nucleolus.

cg25153882 chr7: 117499375
Open Sea

−1.71 2.10 × 10−6 Hyper-methylated CTTNBP2 (gene body); protein coding gene. Gene-ontology
(GO) annotations related to this gene include SH3 domain

binding.

cg09148738 chr1: 153950187
Island

−0.64 4.45 × 10−6 Hyper-methylated JTB (promotor); enables protein kinase binding activity.
Involved in mitotic cytokinesis and positive regulation of

protein kinase activity. Located in cytoplasm and midbody.
Colocalizes with centrosome and spindle.

GO annotations include protein kinase binding.

cg26340532 chr3: 32727189
South Shore

1.00 5.09 × 10−6 Hypo-methylated CNOT10; Predicted to be involved in mRNA catabolic
process and negative regulation of translation. Located in

membrane. Part of CCR4-NOT complex. Among its related
pathways are gene expression (transcription) and

deadenylation-dependent mRNA decay.

cg01002264 chr10:
121137808
Open Sea

−1.19 1.77 × 10−5 Hyper-methylated GRK5 (G protein-coupled receptor kinase 5) is a protein
coding gene. Among its related pathways are GPCR

downstream signaling and myometrial relaxation and
contraction pathways. GO annotations include transferase
activity, transferring phosphorus-containing groups and

protein tyrosine kinase activity.

cg12083535 chr12:
100814114
Open Sea

−1.13 2.52 × 10−5 Hyper-methylated SLC17A8 (promotor); vesicular glutamate transporter gene.
GO annotations related to this gene include symporter
activity and L-glutamate transmembrane transporter

activity.

cg02762115 chr11: 640446
Island

3.23 2.59 × 10−5 Hypo-methylated DRD4 (promotor); this gene encodes the D4 subtype of the
dopamine receptor. GO annotations include G

protein-coupled receptor activity and SH3 domain binding.

cg05625299 chr10: 1740780
North Shore

0.89 2.61 × 10−5 Hypo-methylated ADARB2 (gene-body); among its related pathways are
ATP/ITP metabolism. GO annotations include RNA

binding and double-stranded RNA binding.

cg01388620 chr7: 158037729
Island

−1.57 2.62 × 10−5 Hyper-methylated PTPRN2 (gene body); related pathways are innate immune
system and PAK-pathway. GO annotations include

phosphatase activity and transmembrane receptor protein
tyrosine phosphatase activity.

cg26491461 chr1: 72748417
North Shore

1.08 2.69 × 10−5 Hypo-methylated Gene desert, vicinity of NEGR1; predicted to act upstream of
or within several processes, including positive regulation of

neuron projection development.

longitudinal response and remission group. A schematic overview
is presented in the Supplementary data (Supplementary Figure 2).

3.2. Response versus non-response at
8 weeks (post-intervention)

In the analysis comparing responders and non-responders
with DNA methylation at 8 weeks (cross-sectional), no CpGs
were genome-wide significant at the level of 5 × 10−8. A total
of 10 CpGs had a p-value smaller than 3 × 10−5 and are
shown in Table 2. The most significant CpG (cg01601845;
p = 1.53 × 10−6) was located in Open Sea in the gene-body
of the IQSEC1 gene, gene linked to regulation of postsynaptic
neurotransmitter receptor internalization (Kishore et al., 2020), as
well as to treatment response in depression with citalopram in

a prior GWAS (rs11128623) (Garriock et al., 2010). The mean
methylation difference was 1.14% with relative hypomethylation
for the responders.

The GO-pathway analysis returned 77 pathways with a
p-value < 0.05. The two most significant pathways were linked to
telomeres: telomere maintenance (GO: 0000723; p = 0.00025) and
telomere organization (GO: 0032200; p = 0.00026) with 290 and 323
genes in the gene-set, respectively. Figure 1A shows the 10 most
significant GO terms for this analysis.

A follow-up analysis on the top-10 CpGs, presented
in Table 2, with DNA methylation at baseline showed no
statistically significant associations with depression severity at
baseline (MADRS). The analysis looking at DNA methylation at
baseline and response at 8 weeks (also controlled for cell-types,
demographics, and MADRS at baseline), returned 1 CpG with
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FIGURE 1

Gene-ontology pathway analysis. Top 10 of GO pathways from each of the depression-related analyses with the number of genes for the GO
reference and the number of genes that contributed to the result. (A) Cross-sectional analysis responders vs. non-responders. (B) Paired
within-individual longitudinal analyses with responders. (C) Paired within-individual longitudinal analyses with remitters.

p < 0.05 (cg02762115; p = 0.030; DRD4 promotor; statistical details
and figure in Supplementary data, Supplementary Figure 5).

3.3. Within-individual paired longitudinal
analysis for response

For the within-individual longitudinal analysis of responders,
a total of 13 CpGs had a p-value smaller than 3 × 10−5. No
CpGs were genome-wide significant at the level of 5 × 10−8.
The most significant CpG (cg22274825; p = 5.10 × 10−6) was
located at the South Shore of an island linked to the gene
SOX4, a gene also linked to mood disorders and immune-
related processes in prior research (Martinez et al., 2022). A shift
was seen over time with a DNA methylation difference of
1.93%, with relative hypermethylation at 8 weeks as compared
to baseline for the same individuals. The list of all 13
CpGs is presented in the Supplementary data, Supplementary
Table 5.

The GO-pathway analysis returned 67 pathways with a
p-value < 0.05. Two of the three most significant pathways were
linked to sodium transport (see also Figure 1B for top 10): sodium
ion transmembrane transporter activity (GO: 0015081; p = 0.00014;
333 genes) and solute: sodium symporter activity (GO: 0015370;
p = 0.0011; 171 genes).

3.4. Within-individual paired longitudinal
analysis for remission

For the within-individual longitudinal analysis of individuals
that remitted over the course of 8 weeks, one CpG came close
to the genome-wide significant level of 5 × 10−8: cg02327902
(p = 7.74 × 10−8). The CpG is located at the North Shore of an
island linked to the promotor region of the LIN37 gene, a gene
with a primary role in gene regulation, cell cycle function, and
mitosis (Fischer et al., 2022). A shift was seen over the course
of 8 weeks with a DNA methylation difference of 1.23%, with
relative hypermethylation post-intervention. Overall, 11 CpGs had
a p-value below 3 × 10−5 (detailed list in Supplementary data,
Supplementary Table 6).

The pathway analysis returned 46 GO terms with a p-value
smaller than 0.05 with pathways primarily linked to phosphatase
regulation (phosphatase regulator activity, GO: 0019208: 148
genes, p = 0.0029 and protein phosphatase regulator activity,
GO: 0019888: 124 genes, p = 0.0072) and synaptic functioning
(postsynaptic density, GO: 0014069: 381 genes, p = 0.0029;
asymmetric synapse, GO: 0032279: 389, p = 0.0046; postsynaptic
specialization, GO: 0099572: 420 genes, p = 0.0056). Figure 1C
shows the 10 most significant GO terms. Figure 2 shows volcano-
plots of both depression-related longitudinal analyses.
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FIGURE 2

Volcano plots for both longitudinal analyses. (A) Within-individual paired analysis with individuals that responded over the course of 8 weeks.
(B) Within-individual paired analysis with individuals that remitted over the course of 8 weeks.

3.5. Within-individual paired longitudinal
analysis of the stable group

The analysis for individuals not showing any change in
depression severity resulted in 14 CpGs with p < 3 × 10−5.
None of which overlapped with the listed CpGs of the longitudinal
remission or response analysis, nor did the associated genes. From
the 6,696 (top 1%) most significant CpGs from this analysis, 18
CpGs overlapped with both paired analyses and seem to contribute
to a longitudinal signature. A total of 80 CpGs overlapped with the
paired response analysis specifically, 93 overlapped with the paired
remission analysis. These were added to the Supplementary data
[Supplementary Table 1 (tab 3) and Supplementary Figure 5].
A total of 1,403 CpGs seem to be specifically linked to depression
recovery processes.

At GO-analysis level, 48 GO-terms were returned with p < 0.05.
A total of 9 GO terms of these overlapped with the paired remission
analysis (p < 0.05). The top 10 of this GO analysis is shown in the
Supplementary data [Supplementary Table 1 (tab 1)].

3.6. Overlapping CpGs and pathways

In the interest of finding a distinct signature of depression
recovery, we looked at overlapping CpGs and pathways within the
longitudinal depression-related analyses with the stable group as
a contrast. As overall 669 674 CpGs were analyzed per analysis,
we focused on the 6,696 most significant CpGs from each of the
analyses (i.e., top 1%). The two analyses focusing on response
showed 341 CpGs that overlapped. Both longitudinal analyses
showed a high overlap: 1,421 CpGs. The comparison of the cross-
sectional post-intervention analysis at 8 weeks and the longitudinal
analysis focusing on remission returned 165 overlapping CpGs.

In addition, from the GO-terms analyses described in the
previous paragraphs, only the ones with p < 0.05 per analysis
were compared for overlaps. This returned 5 GO-terms overlapping

between both analyses with focus on response, 8 GO-terms for the
comparison of both longitudinal analyses and one overlapping GO-
term for the intersection of the cross-sectional post-intervention
analysis at 8 weeks and the longitudinal analysis focusing on
remission (Figure 3).

Comparing with the analysis with the stable individuals, two
GO-terms with p < 0.05 overlapped with the paired response
analysis (p < 0.05). None overlapped within both top 10s
(Figure 3), only one of p < 0.05 was represented in either top 10,
i.e., remission (GO: 0018394 peptidyl-lysine acetylation).

Finally, we repeated the GO analysis for the paired response
and paired remission analysis on all CpGs minus the top 1% CpGs
(i.e., 6,676 most significant) from the so-called stable analysis. This
resulted in a minor shift in priorities of GO-terms within the top-
10 for each analysis with the occurrence of GO: 0098984 (neuron
to neuron synapse) in the top 10 of remission and GO: 0048475
(coated membrane) in the top 10 of response [Supplementary data:
Supplementary Table 1 (tab 2)].

4. Discussion

We performed two analyses focusing on treatment response
in depression following a cognitive intervention and one analysis
with focus on remission in depression. In our search for early
treatment signatures in the context of treatment response and
remission, we see both at the CpG and pathway (GO) level
results linked to major depression recovery. The most significant
gene from the analysis comparing responders and non-responders,
IQSEC1, has been linked to treatment response to antidepressant
medication at the genetic level (Garriock et al., 2010), as well as
to high-risk individuals prone to developing mood disorders in
a DNA methylation study (Walker et al., 2016). This result, as
well as the occurrence of multiple GO-terms and pathways linked
to synaptic connectivity (Dunlop et al., 2019), neurotransmitters
(Saeedi et al., 2021) and DNA-related processes, such as telomeres
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FIGURE 3

Overlapping GO-terms and CpGs for the three depression-related analyses with early treatment signatures. Both analyses looking at response have
five overlapping GO-terms. The within-individual longitudinal analyses shared 8 GO-terms. The cross-sectional analysis and the longitudinal analysis
with individuals that remitted have only one overlapping GO-term.

(Hough et al., 2016) correspond to previous research and are
consistent with our hypotheses. Immunological involvement was
represented by the SOX4-gene (Martinez et al., 2022). We expected
an immunological representation in the pathways and GO terms as
well, which, seemed to be absent from our most important findings,
however, telomerase-activity (Bürhan-Çavuşoğlu et al., 2021) and
other GO terms returned by our analysis have also been linked to
immunological processes, such as heat shock proteins (Srivastava,
2002). In addition, as shown in the Supplementary information
(Table 2), cell-type distributions were not significantly different
over the interval of 8 weeks. Therefore, the gene-regulatory and
cell-internal signals related to immunological processes might be
indicative of a subtle, primary reaction within these immune-cells
in answer to changes in the stress system following the intervention.
A follow-up analysis e.g., at 12 weeks would be useful to proof this
hypothesis, maybe shows itself in a shift in the cell-type distribution
within the individual. Unfortunately, we currently do not have
these data available to test this hypothesis.

Also in line with our expectations is the relatively high
consistency between the two analyses focusing on treatment
response. The analysis comparing responders and non-responders
after the intervention is different from the within-individual
longitudinal analysis through the presence of a contrast group. For
the longitudinal response analysis, no control group was defined
as it reflects changes over time for individuals that responded.
This was also the case for the analysis with remitted patients, both
showed a high overlap. Only 165 of the most significant CpGs
and one GO-term were shared by the remission analysis and the
analysis comparing responders and non-responders. In the context
of early signatures of depression treatment, where “remission”
and “response” mark two stages in the continuous process, that is
recovery, this might also be an indication that other genome or

exposome characteristics and pathways play a role in the velocity
and intensity of symptom improvement. The question can be
rephrased in terms of stratification, asking who becomes either a
remitter or a responder after an 8-weeks cognitive intervention.
This would be in line with other literature discussing an individual’s
genetic susceptibility environmental changes, either bad or good,
such as a cognitive intervention, and resilience (Han et al., 2019;
Marcolongo-Pereira et al., 2022). By including a reference group
with individuals that did not change their depression severity over
the course of 8 weeks, we could provide a “contrast” to compare the
longitudinal analyses with. This contrast confirmed our results and
the involvement of the specific pathways in depression recovery.
The contrast with the stable individuals enforced the signals related
to neuronal connectivity and cell signaling already present in the
GO analyses for remission and response, through addition of
neuron-to-neuron synapse, despite looking at white blood cells.

Our results did not show any genome-wide results, which can
be a consequence from the limited sample sizes used for these
analyses. Nonetheless, by focusing on the more homogeneous
phenotypes of treatment response and remission for a longitudinal
design in addition to the post-intervention cross-sectional analysis
we could optimize statistical power through the paired longitudinal
test. The lack of possibility to control for additional confounding
variables in the longitudinal analysis is also a limitation to be
addressed. However, through careful planning to avoid batch
effects, the genomic inflation estimates were close to 1, which is in
line with expectations of a sound analysis. Also, due to the short
time-interval the variability of cell-types between both time-points,
as well as other known confounders, was very limited. The course of
recovery in depression is typically linked to a complex interplay of
the HPA-axis, immunological processes and neurotrophic factors
(Fourrier et al., 2019). We expect the DNA methylation changes
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to be a consequence of the intervention. Starting from that point,
we assume subtle changes take place at each of these levels, leading
to an overall symptom improvement in the patient, including
behavioral changes.

As the dynamics of DNA methylation in a clinical context of
a treatment paradigm for depression are not well understood, the
investigation of early DNA methylation signatures after 8 weeks
of cognitive intervention comes with the cost that the changes
observed are at a preliminary stage. It is possible that we are only
seeing the start of the molecular answer to the treatment and that
signals will increase in significance over time. Due to these dynamic
properties of DNA methylation, it is noteworthy that the results
of our cognitive intervention study need replication and validation
with other treatment modalities, such as medication. We also like
to point out that the DNA methylation changes observed in this
study, are DNA methylation changes observed in white-blood cells.
Currently it is estimated, using live brain tissue after epileptic
surgery, that about 20% of CpGs show a statistical correlation
between the blood and the brain, saliva only 15%. Despite the
higher overall correlation for saliva (r = 90 and r = 86 for blood),
blood still seems to be the better, accessible proxy for CpG-specific
DNA methylation (Braun et al., 2019). As stated in the introduction,
we are more interested in the biomarker potential, using our small
sample size. We see our results primarily as indicators of DNA
methylation dynamics in an accessible tissue, such as blood, which
at some point may contribute to the development of early markers
for therapy response. However, our results are in line with the vast
existing literature on therapy response, including research focusing
on genomics (Garriock et al., 2010) and medication treatment
(Garriock et al., 2010).

In the overarching context of personalized medicine, early
therapy signatures that point at a mechanistic understanding
of early treatment response are of particular relevance. DNA
methylation and early signatures of treatment response at the
molecular level can help stratify individuals by expected treatment
outcome and, if necessary, support the decision for a timely
treatment adaptation. Research like ours helps to finetune the
interpretation of early DNA methylation changes in response
to treatment. In analogy to pharmaco-epigenomics (Banerjee,
2022), also non-pharmacological treatment can induce DNA
methylation changes. This knowledge is relevant topics for future
research in this field, as it increases the ability to distinguish
between DNA methylation responses per treatment modality for
depression (Hack et al., 2019). A better understanding of early DNA
methylation signatures of treatment response, or lack of molecular
answer to treatment, can inform and improve patient care through
a shorter time-to-decision interval. The ability to adapt treatment
choices to the individual and optimize timing based on early DNA
methylation signatures, can increase patient wellbeing significantly
as it provides an opportunity for the acceleration of an individually
optimized treatment-timeline.
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