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ALAD-YOLO:an lightweight
and accurate detector for
apple leaf diseases

Weishi Xu1*† and Runjie Wang2†

1School of Intelligent Science and Technology, East China University of Science and Technology,
Shanghai, China, 2School of Geological Engineering, Tongji University, Shanghai, China
Suffering from various apple leaf diseases, timely preventive measures are

necessary to take. Currently, manual disease discrimination has high

workloads, while automated disease detection algorithms face the trade-off

between detection accuracy and speed. Therefore, an accurate and lightweight

model for apple leaf disease detection based on YOLO-V5s (ALAD-YOLO) is

proposed in this paper. An apple leaf disease detection dataset is collected,

containing 2,748 images of diseased apple leaves under a complex environment,

such as from different shooting angles, during different spans of the day, and

under different weather conditions. Moreover, various data augmentation

algorithms are applied to improve the model generalization. The model size is

compressed by introducing the Mobilenet-V3s basic block, which integrates the

coordinate attention (CA) mechanism in the backbone network and replacing the

ordinary convolution with group convolution in the Spatial Pyramid Pooling

Cross Stage Partial Conv (SPPCSPC) module, depth-wise convolution, and Ghost

module in the C3 module in the neck network, while maintaining a high

detection accuracy. Experimental results show that ALAD-YOLO balances

detection speed and accuracy well, achieving an accuracy of 90.2% (an

improvement of 7.9% compared with yolov5s) on the test set and reducing the

floating point of operations (FLOPs) to 6.1 G (a decrease of 9.7 G compared with

yolov5s). In summary, this paper provides an accurate and efficient detection

method for apple leaf disease detection and other related fields.

KEYWORDS

apple leaf disease, lightweight object detection, ALAD-YOLO, coordinate attention,
group convolution
1 Introduction

Apple is one of the most important crops with rich nutritional and medicinal values

and is widely grown in the world. China, one of the largest apple producers, produced more

than 41 million tons of apples in 2019, accounting for 54.07% of the global total (Hu et al.,

2022). However, apples are often threatened by various foliar diseases caused by bacterium,

such as brown spot disease and mosaic disease, which will lead to a drastic decrease in apple

yield and quality without timely detection and prevention, causing significant economic
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losses to farmers. Therefore, an efficient and accurate diagnosis

method for apple foliar diseases is essential to promoting the

development of the apple industry, which is of great practical value.

Traditionally, apple leaf diseases are usually detected by manual

inspection, which has many limitations and drawbacks. First, the

method relies on professional inspectors for detection (Liu et al.,

2017), thus making the limitation of human resources a serious

problem. Secondly, the accuracy of the method is difficult to

guarantee due to factors such as the vision and fatigue of human

eyes (Dutot et al., 2013). Especially for large-scale planting areas

such as apple plantations, the use of manual detection methods will

lead to a large workload, which will not only be labor-intensive but

also cause missed or false detection. Therefore, automated apple leaf

disease detection has become a hotspot for research (Zhang and

Tao, 2021) to improve the efficiency and accuracy of detection.

With the development of computer science and technology,

machine learning algorithms have been applied to the agricultural

field. For example (Pallathadka et al., 2022), preprocessed the images

with histogram equalization, then applied the principal component

analysis algorithm for feature extraction, and finally used the support

vector machine and naïve Bayes to classify rice leaf diseases. However,

machine learning algorithms are usually constrained by the ultra-

high computational effort during the stages of data preprocessing and

feature extracting, making the utility of these methods generally poor

(Sujatha et al., 2021). compared performances of machine learning

and deep learning algorithms for plant leaf disease detection, and the

experimental results show that the latter has better performance on

this kind of task.

With the rise of convolutional neural networks and the creation

of residual structures, deep learning techniques have achieved a

technological leap in a very short period of time, which also

improves the performances of target detection algorithms with

their excellent feature extraction and model migration ability.

Target detection algorithms have evolved from two-stage

detection algorithms to one-stage detection algorithms in this

phase. Among them, two-stage detection algorithms such as

Faster R-CNN (Ren et al., 2015) and Mask-RCNN have been

applied to detect plant leaf diseases by many scholars, such as (Li

et al., 2023) combined Mask-RCNN with the geometric model to

improve the ground-penetrating radar (GPR), and the pixel-level

segmentation for localization can effectively improve the detection

accuracy, reaching an average depth prediction error of 2.78 cm (Du

et al., 2022). proposed a corn pest detection algorithm based on

faster R-CNN, called pest R-CNN, which classified pest invasion

severity into four categories, juvenile, mild, moderate, and severe

based on feeding severity, and determined the severity of infestation

and specific forage location. One-stage detection algorithms include

YOLO (Tian et al., 2019) and SSD (Jiang et al., 2019), an end-to-end

detection method that enables high-speed and real-time detection

(LI et al., 2022). constructed the YOLO-JD network by introducing

DSCFEM and SPPM modules, increasing the mean average

precision (mAP) of jute disease detection to 96.63% (Tian et al.,

2019). applied the V-space-based SSD algorithm for multiscale

feature fusion and introduced an attention mechanism, increasing
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the mAP of apple leaf disease detection to 83.19% and the detection

speed to 27.53 frames per second (FPS). However, the above models

still have the problem of too large model size with a large number of

parameters and high computational cost, so lightweight models

have become the focus of scholars’ research in recent years (Lin

et al., 2023). applied Tiny-YOLOv4 to realize strawberry real-time

counting by comparing three frameworks (Darknet, TensorRT, and

TensorFlow Lite) and images with different resolutions, allowing

the model to achieve an accuracy of 14.6% with 91.95 FPS (Sozzi

et al., 2022). proposed an improved Tiny-YOLOX model, called

YOLO-Tobacco, for detecting tobacco brown spot disease in an

open-air scenario. They incorporated hierarchical mixed-scale

(HMU) units and convolutional block attention modules

(CBAM), making the detection speed reach 69 FPS but with less

accuracy compared with the non-lightweight model.

In summary, scholars have provided a lot of excellent ideas and

methods in the field of target detection, achieving good results for

plant leaf disease detection. In order to better apply to the actual

situation of agricultural production, this paper proposes accurate

and lightweight apple detection based on YOLOv5 (ALAD-YOLO),

a lightweight network model, taking both detection accuracy and

detection speed into account, which can be more easily deployed on

mobiles regardless of computational resources. The main

contributions are as follows:
(1) We replace the backbone network of YOLOv5 with a more

lightweight MobilenetV3s network to reduce the parameter

quantity and increase the operational efficiency.

(2) We use the C3 module refined by depth-wise convolution

and GhostNet module (DWC3_ghost) to replace all C3

modules in the neck network, improving feature fusion

efficiency, reducing computational cost, and maintaining

feature expressiveness while minimizing the impact on

detection accuracy.

(3) We develop a new module called SPPCSPC_GC, using

Cross Stage Partial (CSP) structure, spatial pyramid pooling

(SPP) module, and group convolution (GC) to replace the

original SPP module at the interface between the backbone

network and neck network, making this section better

adapted to images of different resolutions, effectively

avoiding overfitting, and making the model more

lightweight.

(4) We apply the CA mechanism to improve the model’s

accuracy. Compared with the CBAM mechanism and the

Squeeze-and-Excitation Networks (SE) attention

mechanism, the CA mechanism can better capture object

spatial and channel information without compromising

model lightweighting, thereby improving detection

accuracy.
The remaining parts of this article are organized as follows:

Section 2 provides a detailed introduction of the dataset and

network modules we used. Section 3 presents our experimental

results and provides a visual analysis. Next, Section 4 compares and
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discusses our proposed model with current mainstream networks.

Finally, we conclude by summarizing our model and discussing its

potential applications.
2 Materials and methods

2.1 Data collection and preprocessing

2.1.1 Data collection
To improve the generalization ability of the model, the dataset

in this paper includes apple leaves with different shooting angles,

backgrounds, times, disease ranges, and densities. The selected large

amount of image data ensures the model’s ability to detect small

disease ranges.

Due to the scarcity of public datasets for apple leaf diseases, this

paper collected the Kashmiri Apple Plant Disease Dataset (Kaur

et al., 2022) and the public dataset for Plant Pathology 2020-FGVC7

(Raman et al., 2022).

However, the above datasets all have problems that do not

match the actual detection environment, such as overly clear image

backgrounds and mostly displaying single leaves. To enhance the

generalization effect of the model and improve its ability to detect

small target disease ranges, the dataset also includes 961 small target

apple leaf cluster data that we collected ourselves (Figure 1C). The

final experimental data consists of 2,748 apple disease images.

Most of the images have varying resolutions and large or small

detection targets, and they were captured at different angles, providing

sufficient overall diversity of the data, as shown in Figure 1. The details

of the apple leaves are preserved while also being more in line with the

actual detection environment; the background is influenced by real

outdoor lighting and shadow occlusion. This reflects the actual apple

disease leaf detection scene and enhances the robustness and

generalization ability of the model training.

LabelMe software was used to generate XML files, and the

images were marked as mosaic disease, spot wilt disease, and leaf

blight. In the experiment, the dataset was divided into training,

validation, and testing sets in an 8:1:1 ratio.

2.1.2 Data preprocessing
To improve the generalization ability of object detection

models, data augmentation techniques are widely used. We used
Frontiers in Plant Science 03
the mosaic data augmentation technique to preprocess the apple

leaf disease detection dataset (Thapa et al., 2020). Mosaic data

augmentation is a technique that combines multiple data

augmentation operations. It combines four randomly selected

images into one and then applies random transformations to the

entire image, such as random scaling, flipping, translation, and

color change, as shown in Figure 2. The probability of scaling and

flipping the image is 50%, while the probability of adjusting the hue,

saturation, and brightness in color change is 1.5%, 70%, and 40%,

respectively (Wang et al., 2021). The probability of translation

is 10%.

In the apple leaf disease detection dataset, the distribution of

small targets is uneven, which may lead to insufficient model

training. By using the mosaic data augmentation technique, we

can increase the number of small targets and make their

distribution more uniform, thereby improving the model’s

detection ability. In addition, mosaic data augmentation can also

reduce overfitting and improve the model’s generalization ability.
2.2 Design for ALAD-YOLO

In order to achieve model lightweight and ensure accurate

detection of different categories of apple leaf diseases, this paper

proposes an efficient and accurate detection network ALAD-YOLO

based on YOLOv5s. Figure 3 shows the detailed structure of the

ALAD-YOLO model proposed in this paper.

YOLOv5 and the proposed ALAD-YOLO consist of four main

components: the input layer, the backbone network, the neck

network, and the prediction head. The basic unit CBS is

composed of regular convolution, batch normalization (BN), and

activation function SiLU. The backbone network of YOLOv5 is

stacked with a large number of CBS modules and C3 modules. The

Spatial Pyramid Pooling (SPP) module increases the receptive field

of the feature map through three different sizes of pooling kernels,

solves the problem of multiscale detection, and connects to the neck

network. The prediction head achieves predictions for three

different scales of objects and outputs the detection results for

large, medium, and small objects.

Due to the large number of CBS and C3 modules in the

network, the original YOLOv5 has poor portability (Wadhawan

et al., 2012), making it difficult to embed in mobile devices for use in
A B C

FIGURE 1

Samples of datasets, where (A) is a diseased apple leaf with a normal background, (B) is a diseased apple leaf in a real environment, and (C) is in an
intensive situation where samples of apple leaves have multiple diseases collected in this paper.
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smart agriculture. Therefore, this work proposes an efficient and

accurate ALAD-YOLO for detecting apple leaf diseases, as shown in

Figure 3. The main improvements are as follows: 1) MobileNetV3s

basic blocks containing lightweight depth-wise separable

convolutions, SE modules, and inverted residual structures are

used instead of stacked CBS and C3 modules to improve feature

extraction efficiency and compress model size. 2) The DWC3-ghost

module is proposed to replace the original C3 module in the neck

network to reduce parameter count and FLOPs. 3) The

SPPCSPC_GC structure is proposed to replace the original SPP

module with group convolution to further compress model size and

improve efficiency in the feature fusion stage. 4) A lightweight

coordinate attention (CA) module is embedded in the neck network

to refine the key information for detecting apple leaf diseases and

improve the detection accuracy for different types of diseases.

2.2.1 Lightweight backbone network
establishment

The backbone network of YOLOv5 mainly consists of CBS

modules and C3 modules, which include convolution operations
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and residual structures with high parameter count and FLOPs. In

order to be applied to embedded mobile devices, while ensuring the

detection accuracy of the model, this paper compresses the model

parameters as much as possible to improve its portability. A

lightweight backbone network for ALAD-YOLO was designed

using efficient MobileNetV3 (Howard et al., 2019) building blocks.

In this paper, the MobileNetV3s basic block is used, which can

reduce the number of parameters and computations in the feature

extraction process and achieve a good balance between speed and

accuracy. As shown in Figure 4, the MobileNetV3s basic block is

mainly composed of four modules: SE module, and DW

convolution module (Zhang et al., 2020), combined with an

inverted residual structure and a linear bottleneck structure.

2.2.1.1 Depth-wise separable convolutions

Depth-wise separable convolution decomposes a standard

convolution into a concatenation of two layers. First, it uses a

lightweight depth-wise convolution layer (Depthwise   convolution)

to apply a single-channel convolution filter to each channel of the

input feature map. Then, it connects a pointwise convolution layer
FIGURE 2

Mosaic data augmentation. Four images are randomly cropped and stitched onto one image as training data.
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(Pointwise  Convolution), which generates a new feature map by

linearly combining the features of each channel through a pointwise

convolution operation.

The ratio of the total number of parameters between depth-wise

separable convolution and normal convolution can be calculated as

follows:

Y = X*f + b

The formula for traditional convolutional operation is shown in

equation n, where * represents convolution operation. The output

feature map dimension is DF � DF � N , where N is the number of

output channels, and the convolutional kernel dimension is M �
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DK � DK � N , where M is the number of input feature map

channels. Therefore, the calculation of FLOPs for normal

convolution is N � DF � DF �M � DK � DK .

Depth-wise separable convolution can be divided into two

stages: depth-wise convolution and point-wise convolution. In the

first stage, the input feature dimension of the depth-wise

convolution is DF � DF �M, the convolution kernel parameter is

DK � DK � 1�M, and each channel corresponds to only one

convolution kernel during convolution. The output dimension is

DF � DF �M, so the FLOPs of the depth-wise convolution is DF �
DF �M � DK � DK . In the second stage, the point-wise

convolution has a convolution kernel parameter of 1� 1�M �
FIGURE 3

The architecture of the proposed ALAD-YOLO model. The entire network is divided into four parts: input network (A), backbone network (B), neck
network (C), and head network (D).
FIGURE 4

The architecture of the MobileNetV3s Basic Block. The basic block consists of four parts: depthwise convolution, linear bottleneck and inverse
residual structure, and SE attention mechanism.
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N and performs a 1� 1 standard convolution on each feature, with

an output dimension of DF � DF � N . The FLOP calculation is N

�DF � DF �M. Therefore, the parameter and FLOP ratio of the

normal convolution and the depth-wise separable convolution can

be obtained as
rparameters =

DK �DK �M +M� N
DK �DK �M� N

=
1
N

+
1
D2

K

rFLOPs =
M�DF �DF �DK �DK + N�DF �DF �M

DF �DF �DK �DK �M� N

=
1
N

+
1
D2

K

Where M is the number of input channels, DF is the size of the

input feature map, DK is the size of the convolutional kernel, and N

is the number of output channels.

The reduction of the parameter and FLOPs in depth-wise

separable convolution can be approximately attributed to the

parameter D2
K . When choosing k = 3, compared with the

traditional convolution, depth-wise separable convolution reduces

the parameter and FLOPs to 1=8 − 1=9 of the regular convolution

while ensuring a slight drop in accuracy.

2.2.1.2 Linear bottleneck and reverse residual structure

The reverse residual structure is as follows: The 1 × 1

convolution, also known as expansion convolution, expands the

number of channels in the input feature map by a factor of “factor”,

mapping the low-dimensional space to a high-dimensional space.

Then, the 3 × 3 depth-wise separable convolution is used to greatly

reduce the network’s parameter and computational complexity

while ensuring the feature extraction capability and prediction

accuracy of regular convolutions. Finally, the 1 × 1 convolution,

combined with a linear activation function (Linear Bottleneck

structure), is used to restore the number of output feature map

channels to 1/factor. The use of a linear activation function can

effectively reduce information loss during the transformation

process from the high-dimensional to low-dimensional feature

space. The input and output are only connected through the

residual structure when they have the same number of channels.

This structure reflects the compactness of the input and output,
Frontiers in Plant Science 06
implements an internal nonlinear transformation to expand the

features to a higher dimension, retains all the necessary information

in the bottleneck, increases the feature expression ability, and

reduces the network’s parameter count.

2.2.1.3 SE module

Firstly, the channels of the input feature matrix are pooled to

obtain an Rchannel�1 -dimensional vector. Then, two fully connected

layers are connected, with neuron numbers of channel and

channel*1/4, respectively, and ReLu and h-swish activation

functions are applied respectively. The SE module increases the

weight of important parts of the results and reduces the weight of

ineffective or less effective parts, thus training a better model.

In summary, compared with the CBS and C3 modules, the

MobileNetV3s basic block has three advantages: 1) introducing

depth-wise separable convolutions with lower computational cost

to replace ordinary convolutions, thus reducing the number of

parameters while maintaining network performance; 2) using linear

bottlenecks and inverted residual structures to make more efficient

layer structures by utilizing the low-rank properties of the problem;

3) using SE attention mechanism modules to increase the network’s

sensitivity to effective information.

2.2.2 DWC3-ghost
To further reduce model parameters and computational

complexity for apple leaf detection on embedded devices, this

paper proposes a new DWC3-ghost module using DWConv and

GhostNet (Han et al., 2020) basic blocks, which is embedded in the

neck network to replace the original C3 module, improving the

efficiency of feature fusion in the model.

As shown in Figure 5, in the ghost basic block, the input is first

processed by a normal convolution (convolution + BN + activation

function) to generate an intrinsic feature map with fewer channels,

reducing the number of parameters. Then, the identity and

inexpensive linear operation j (only convolution) are used to

enhance the features, generating the complete feature map.

In addition, lightweight operations such as low-channel

convolution and inexpensive linear operations are used in the

ghost module instead of traditional convolutional layers to
FIGURE 5

Ghost basic block computation: (A) general convolution with reduced number of channels. (B) Lightweight cheap linear transformation. (C) Stacking
of the results of (B) computation.
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generate redundant features, greatly reducing computational costs

and achieving more efficient feature mapping and computation.

The FLOPs in the ghost module consist of two parts: the

traditional convolutional layer that outputs a small number of

feature maps and the lightweight and inexpensive linear

transformation layer. The calculation process of the ghost module

is shown in formula n:

Y` = X*f
`

Yghost = jj(Y
`
i ), j ∈ ½1, s − 1�

Y = Y` + Yghost

The first stage outputs a small number of feature maps. The

input feature map X has dimensions of M � DF � DF , and the

convolutional kernel has dimensions of M � DK � DK � N .

The output feature map Y` has dimensions of DF � DF �M. To

simplify the calculation, the bias in the convolution calculation is

omitted and the FLOPs are calculated as DF � DF � DK � DK �
M � N . The second stage represents a lightweight and inexpensive

linear transformation layer. Y`
i represents the i th feature map

output from the first stage, jj represents the j th ghost feature map

generated by the j th linear operation, and Y`
i generates s − 1 ghost

feature maps. Finally, the ghost feature map Yghost has dimensions

of DF � DF � N � (s − 1).

The FLOP ratio of traditional convolutional layers and Ghost

modules with the same number of channels and the same feature

map size is shown in formula n. The Ghost module reduces the

model FLOPs by around s times.

rs =
M�DF �DF � N�DK �DK

M
s �DF �DF � N�DK �DK + (s − 1)� M

s �DF �DF � d� d
≈ s
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where s represents the total mappings produced by each

channel (1 intrinsic feature map and s-1 ghost feature maps) and

d represents the average size of the convolutional kernel for

linear operations.

Due to its simplicity and efficiency, the proposed GhostNet

block was used to replace the Bottleneck in the original C3

convolution for lightweight implementation, as shown in

Figures 6A, B. The CBS module was replaced by DWConv to

design an efficient DWC3-ghost module, as shown in Figure 6C.

The proposed DWC3-ghost module was embedded in the neck

network to improve feature fusion efficiency. This can reduce the

computational cost of the neck network while maintaining the

expressive power of the features, thereby reducing the impact on

detection accuracy.

2.2.3 SPPCSCP_GC module
To make the model more lightweight and improve its real-time

performance, this paper proposes using an improved SPPCSCP

module (Wang et al., 2022). The SPPCSCP_GC replaces the original

SPP module to further compress the model size, reduce the number

of model parameters, and improve the efficiency of the model in the

feature fusion stage.

The SPP module uses Maxpool on the feature map input into

four branches with different scales, giving the model the ability to

adapt to images of different resolutions. This effectively avoids

image distortion caused by cropping or scaling operations on

image regions and improves the scale-invariance of the image

while effectively avoiding overfitting.

The CSP module halves the number of channels in the feature

map and splits it into two branches, with one branch going through

convolution processing and the other going through Bottleneck * N

operations. The two branches are then concatenated, ensuring both

accuracy and reduced computational cost.
A

B

C

FIGURE 6

(A) Basic Ghost module. (B) Ghost-Bottleneck. (C) DWC3-Ghost.
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The proposed SPPCSPC module combines the SPP and CSP

modules, as shown in Figure 7, with CSP as the main component. It

retains the branch that performs a single convolution and adds an

SPP module to the other branch. Finally, the two branches are

concatenated to integrate all features, enhancing the effect of feature

fusion while ensuring model lightweight.

To further improve the model’s computational speed, group

convolution (Zhang et al., 2018) is applied to the SPPCSPC module

in this model. Group convolution aims to process feature maps in

groups, with each convolution kernel divided into groups and

convolved within the corresponding group, as shown in Figure 8.

The resulting feature maps are then concatenated together. Group

convolution can increase the diagonal correlation between feature

maps and significantly reduce training parameters, making it less

prone to overfitting, similar to the effect of regularization.

Therefore, we propose an effective improved module

SPPCSCP_GC, which combines SPP, CSP, and GC modules, so
Frontiers in Plant Science 08
that the network structure can not only perform well under images

of different resolutions but also effectively alleviate the problem of

gradient vanishing. The module reduces the size of the model,

ensuring inference speed and accuracy with fewer parameters and

smaller FLOP values.

2.2.4 Coordinate attention module
Improvements in the lightweighting of the neck network can

make the model more lightweight and significantly improve its real-

time performance, making it more convenient to deploy on mobile

devices. However, these improvements inevitably lead to a decrease

in detection accuracy. Therefore, we need to optimize the model’s

performance on detection accuracy while not significantly affecting

the computational cost.

To sum up, we introduce the Coordinate Attention (CA)

mechanism (Hou et al., 2021), as shown in Figure 9, which

effectively addresses the issue of the SE attention mechanism’s
A B

FIGURE 7

(A) Basic SPP module, (B) CSP structure, effectively reducing the number of model calculation parameters.
FIGURE 8

Group convolution operation procedure. The feature maps are processed in group, and each convolution kernel is divided into group accordingly.
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focus only on building inter-channel dependencies and ignoring

spatial features (Hu et al., 2018), as well as the CBAM attention

mechanism’s introduction of large-scale convolution kernels for

extracting spatial features but ignoring long-range dependencies

(Woo et al., 2018). The CA module is flexible and lightweight

enough to be easily incorporated into the core module of

lightweight networks.

As shown in the above figure, the CA attention mechanism first

performs pooling along the X and Y directions on the input feature

map with size C �H �W , generating feature maps of size C �
H � 1 and C � 1�W , respectively. Then, the two feature maps are

concatenated to obtain a feature map of size C � (H +W)  �1,

which is then compressed from the C dimension to the C=r

dimension using a 1� 1   Conv, resulting in a feature map of size

C=r � (H +W)*1. Next, the h_wish function is used for non-linear

activation, obtaining the intermediate feature representing the

encoded information. The intermediate feature is then

decomposed into a vertical attention tensor of size C=r � 1�W

and a horizontal attention tensor of size C=r  �H � 1, and each

attention tensor is upsampled using a set of 1×1 Conv, increasing

the number of channels from C=r to C. Finally, the sigmoid

function is used for non-linear activation to produce the

corresponding attention weights. The attention weights in the two

directions are multiplied with the original feature map from the

shortcut to obtain the attention-enhanced feature map.

The CA attention mechanism enables the network to collect

information from a wider area rather than being biased toward a

specific region, thus significantly improving detection accuracy. In

addition, the CA module uses only 1� 1 Conv kernels, two average

pooling layers, and very few matrix transpositions, reducing the

number of parameters and computational costs.

In this paper’s model, the CA module is embedded behind the

intersection of all top-down and bottom-up information fusion in

the neck network, effectively improving the detection accuracy loss

caused by model compression. This allows the network to have

attention to key information without incurring high computational

costs, thus maintaining its efficiency and flexibility.
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3 Results

In this section, the experimental setup, hyperparameter settings,

and training strategies are detailed in Section 3.1. Then, Section 3.2

describes the evaluation metrics used to evaluate the performance of

the model and their calculation formulas. Finally, in Section 3.3, the

results of this article are explored in combination with an ablation

experiment and visual analysis.
3.1 Implementation and setup

Experiments were conducted on the Featurize cloud server, with

an Nvidia RTX 3090 graphics card configured for hardware, with

25.4 GB of graphics memory, and deployed on a Linux operating

system. The implementation of the proposed method is based on

Python 1.10.1.

The model training strategies are as follows. We set a dynamic

learning rate to accelerate the network to the optimal value. The

initial learning rate(lr0) was set to 0.1, and the OneCycleLR learning

rate (lrf) is set to 0.01. The learning rate was updated every epoch

until the final learning rate reached to lr0*lrf. The warmup_epochs

was set to 3.0, with the warmup initial momentum set to 0.8 and the

warmup initial bias lr set to 0.1. The training epoch was set to 500,

and the batch size was set to 16. The weight attenuation was set to

0.0005, and the momentum was set to 0.937. The SGD optimizer is

used to optimize the network parameters.
3.2 Evaluation metrics

To evaluate the detection precision of the proposed model

ALAD-YOLO, we selected accuracy (P), recall rate (R), and

average accuracy (mAP) as evaluation metrics. Among them,

accuracy represents the ratio of positive samples correctly

predicted to positive samples predicted by the model. It mainly

measures the accuracy of the network in identifying positive
FIGURE 9

CA attention mechanism. Firstly, pool the input feature maps in the X(H) and Y(W) directions, respectively. Then, concatenate the output maps and
use 1*1 convolution to reduce the dimension. Lastly, along the spatial dimension, perform the dimension raising operation and combine it with the
sigmoid function to get the attention vector.
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samples. The recall rate represents the proportion of correctly

identified positive samples to all positive samples, and it reflects

the ability of the model in finding positive samples. mAP refers to

the mean value of the average accuracies of all categories, which

combines the detection performance between different categories.

We calculated these evaluation metrics according to the

following formulas:
P =

TP
TP + FP

R =
TP

TP + FN

AP =
Z 1

0
P(R)dR

mAP = o
n
i=1APi

n

where TP represents the number of positive samples correctly

classified. TN is the number of correctly identified negative

examples. FP represents the number of negative examples

incorrectly classified as positive examples. FN represents the

number of posi t ive samples incorrect ly c lass ified as

negative samples.

In addition to the above evaluation metrics to evaluate the

detection performance of the model, we also use the number of

parameters and FLOPs to evaluate the size and computational cost

of the ALAD-YOLO model to select lightweight network to deploy

on the mobile devices. Fewer parameters and FLOPs mean that

under the same computing resources, the model can run more

efficiently, while reducing memory usage and improving

computing speed.
3.3 Ablation experiment and analysis

Ablation experiments are conducted to investigate the

contribution of various modules in ALAD-YOLO, which improve

the detection performance and reduce computational costs. The

YOLOv5s model was used as the benchmark model. First, a

lightweight network architecture is introduced to verify its impact
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on detection performance. Then, based on the lightweight network

architecture selected, the improvement of network accuracy is

verified by introducing modules, such as DWC3_Ghost module

and CA module.

Firstly, different lightweight networks to improve the network

performance are verified on the test set. The benchmark model

YOLOv5s was compared with improved models, such as YOLOv5s

GhostNet (Experiment 2) and YOLOv5s MobileNet (Experiment

3). Compared with the benchmark model YOLOv5s, the mAP50-95

in experiment 2 and experiment 3 decreased by 1.6% and 1.7%,

respectively. However, in terms of parameter quantity, the FLOPs in

experiment 2 and experiment 3 increased greatly by 49.4% and

54.4%, respectively. Specifically, the quantity decreased from 7

million to 3 million and 4 million. The results show that the

backbone network composed of MobileNet basic blocks can

significantly reduce the computing cost and the accuracy of

mAP50-95 is only 0.1% lower than that of the Ghost module.

Considering multiple factors, the experiment finally selects the

backbone network composed of MobileNet basic blocks, which

can significantly reduce the computing cost, and its impact on

network accuracy is also acceptable.

The lightweight network structure can significantly reduce the

size of the model and improve detection speed, with the cost of

reducing the detection accuracy of the network. Therefore, some

improved methods that can improve accuracy without introducing

high computational costs are essential.

Secondly, based on the lightweight YOLO network composed of

MobileNet basic blocks, the model performance changes caused by

introducing different modules are verified. Experiment 6 introduces

the SPPCSPC module to replace the original SPP module, better

extracting and fusing feature maps. Experiment 7 uses the

SPPCSPC_ GC module, which replaces the ordinary convolution

in the SPPCSPC structure with group convolutions, effective feature

fusion is ensured while achieving lightweight. Experiment 8 and

experiment 9 respectively replace the C3 module in the neck part of

the original network with DWC3 Host and DWC3 Faster

structures. Based on experiment 9, experiment 10 and experiment

11 introduce an attention module to effectively extract key

information about the detection results in the network. The

improvements of the lightweight YOLO model on detection
TABLE 1 Comparison of experimental results based on the lightweight YOLOv5s model with different modules.

Model mAP50-95 (%) mAP50 (%) Parameters FLOPs(G)

1 YOLOv5s 82.3 97.7 7,018,216 15.8

2 YOLOv5s-GhostNet 80.7 97.0 3,681,120 8.0

3 YOLOv5s-MobileNet 80.6 97.6 4,632,840 7.2

6 YOLOv5s-MobileNet-SPPCSPC 83.6 98.2 11,031,144 12.4

7 YOLOv5s-MobileNet-SPPCSPC_GC 87.0 98.4 5,665,768 8.1

8 YOLOv5s-MobileNet-SPPCSPC_GC-DWC3_Faster 87.1 98.7 4,640,616 6.0

9 YOLOv5s-MobileNet-SPPCSPC_GC-DWC3_Ghost 87.5 98.3 4,703,480 6.2

10 YOLOv5s-MobileNet-SPPCSPC_GC-DWC3_Ghost-CBAM 87.8 98.3 4,719,835 6.1

11 YOLOv5s-MobileNet-SPPCSPC_GC-DWC3_Ghost-CA 90.2 98.7 4,712,323 6.1
fr
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performance by introducing different improvement methods are

shown in Table 1.
Fron
1. Experiment 6 and Experiment 7 show that using the

SPPCSPC module and SPPCSPC_GC to replace the SPP

module in the original network with the GC module can

effectively improve the model detection accuracy, with

improvements on the mAP50-95 by 3.0% and 6.4% on

the test set, respectively. The addition of the SPPCSPC

module in experiment 6 resulted in a significant increase of

5.2 G in the FLOPs of the model, which was somewhat

outweighed by the 3% mAP increase. However, in

experiment 7, after replacing the convolutions in the

SPPCSPC modu l e w i t h g roup convo lu t i on s ,

SPPCSPC_GC was proposed. The mAP50-95 on the test

set is increased by 6.4% with only a 0.9 G increase in

FLOPs, significantly improving detection accuracy

compared with the original benchmark network and

meeting the lightweight requirements.

2. Experiments 8 and 9 show that using the DWC3-Ghost

module and DWC3-Faster module instead of the C3

module in the original network neck section can

effectively reduce parameter quantity and computational

costs and has a certain improvement in detection accuracy.

Compared with the benchmark network, experiment 8 and

experiment 9 reduced FLOPs by 62.0% and 60.8%,

respectively, and improved mAP50-95 on the test set by

0.1% and 0.5%, respectively. The results show that replacing

the C3 module with a lightweight structure DWC3-Ghost

can effectively compress the model size and computational

cost and efficiently fuse and extract features to improve

detection accuracy.

3. Experiments 9 and 11 show that adding a CAmodule to the

lightweight YOLO network can effectively improve the

detection accuracy of the network, increasing the mAP50-

95 on the test set by 2.7%, while reducing the FLOPs by 0.1

G. Compared with the CBAMmodule added in experiment

10, its performance in the test set increased by 0.3% and the

FLOPs also decreased by 0.1 G. Therefore, both have a

slight increase in parameter quantity. The results show that

compared with the CBAM module, embedding the CA

module can better highlight information that is helpful for

disease spot detection. Although it slightly increases the

parameters of the model, it can well suppress useless

information to improve the accuracy of the model, while

reducing the FLOPs of the model.
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In summary, the proposed ALAD-YOLO model reduces the

parameter quantity and FLOPs, significantly improving the speed of

disease spot detection, whereas the impact on detection accuracy

can be negligible. Therefore, the proposed ALAD-YOLO is more

suitable for deployment on mobile devices with constrained

resource and has the great detection performance required for

practical applications.

On the test set with 2,748 images, the ALAD-YOLO network

accurately identified three apple leaf diseases and healthy leaves,

with mAP50 reaching 98.7% and mAP50-95 reaching 90.2%. The

detection performance of each category is shown in Table 2.

To visualize the detection performance of the proposed method,

Figures 10, 11 provide detection results of apple diseased leaf images

in different scenarios. Figure 10 visualizes the detection ability of the

model in simple scenarios, where the simple environment refers to

situations where the shooting is clear, the background is relatively

simple and clear, the affected area of the apple is obvious, and the

number of apple leaves included in the image is relatively small.

From Figures 10A–C, it can be seen that our model can detect and

judge three kinds of apple leaf disease accurately and

simultaneously. Due to the proposed CA attention module, our

model has a good ability to extract key information from images,

resulting in high detection accuracy for different categories of apple

leaf diseases. Figure 12 indicates the detection effect in difficult

cases, where the leaves are at the edge of the figure or partially

obscured. From Figures 12A, B, D–F, it can be seen that our model

can also accurately detect and judge the blades located in the edge

region of the image. Also, Figures 12C, G, I indicate that our model

can also accurately detect the leaves, which are partially obscured by

others. At the same time, it can also grasp edge information in the

image well.

To better demonstrate the advantages of the proposed model,

Figure 11 visualizes the detection capabilities of the model in

complex scenarios. Due to the fact that most apple leaves are

dense and have small spots in real environments, the detection of

diseased leaves in dense environments is particularly important.

However, our model is still very effective in this area. In the case of

densely distributed apple leaves, the environment in which each

apple leaf is located may not be the most suitable for testing. From

Figure 11, it can be seen that areas with apple leaf diseases can be

effectively detected, whether they are shaded areas, strong light

exposure areas, shooting edge areas, or leaf stacking areas.

Our conclusion is that ALAD-YOLO can achieve the maximum

mAP50-95 of 90.2% on the test set, which is 7.9% higher than the

benchmark model YOLOv5s, while maintaining the minimum level

of parameter quantity and FLOPs. Compared with other models,
TABLE 2 The detection performance of the ALAD-YOLO model on different categories of apple diseased leaves on the test set.

Class Instances P R mAP50 mAP50-95

All 3364 0.964 0.972 0.987 0.902

Mosaic 1788 0.961 0.971 0.985 0.894

Spot wilt 624 0.973 0.971 0.992 0.918

Leaf blight 952 0.958 0.974 0.985 0.892
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our model has the best recognition accuracy and achieves the fastest

calculating speed and the smallest model size, meeting the

requirements of real-time object detection for embedded

mobile devices.
4 Discussion

Based on the YOLO-V5 architecture, we updated the original

backbone network with Mobilenet-V3 and introduced several

effective modules, proposing ALAD-YOLO to achieve both good

detection accuracy and impressive speed. To further verify the

model performance, we conducted many comparative

experiments: compared with the regular YOLO-V5s model,

ALAD-YOLO achieved a 7.9% improvement in accuracy while

reducing FLOPs by 9.7G; for lightweight improvements such as

YOLOv5s-GhostNet, YOLOv5s-MobileNet, and YOLOv5s-

ShuffleNet, ALAD-YOLO showed a 10% or so increase in

accuracy and 2–3-G improvement in speed. For networks with

SPP, CA, CBAM, and other modules added, such as YOLOv5s-

MobileNet-SPPCSPC and YOLOv5s-MobileNet-SPPCSPC_GC-

DWC3_Faster, ALAD-YOLO was able to improve accuracy by

around 3% while maintaining speed, achieving a balance between

accuracy and lightweight and making it more suitable for

completing tasks than other models.

In this study, we found some remaining issues in the model,

which are common problems in current object detection models. In
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small object detection, such as detecting too many leaves, small

spots, or unavoidable occlusion due to lighting, ALAD-YOLO may

still have some missed detection or false detection (Alonso et al.,

2020). We believe that more powerful and comprehensive data

augmentation algorithms, such as random masking and noise

introduction, can help the model learn more subtle features.

Alternatively, taking pictures of leaves from multiple angles may

also solve such problems.

We also studied the performance of ALAD-YOLO on mobile

devices. In actual farms, data is usually collected through sensors,

processed by edge computing devices, and then transmitted to

cloud servers for more in-depth data analysis. Obviously, relying

solely on smartphone-based applications cannot achieve round-the-

clock disease detection on the farm. With the rapid development of

artificial intelligence technology, suitable algorithms have been

applied to the artificial intelligence of things (AIoT) (Chen et al.,

2020). Our proposed ALAD-YOLO can be integrated into such a

real-time observation system that provides farmers with

environmental changes, so that disease can be judged more

accurately and quickly. In addition, we also plan to compare our

model with other SOTA methods on the Raspberry Pi platform to

further evaluate its performance and provide more reference for

future research.

At the same time, we hope that some high-performance edge

computing modules or lightweight AI supercomputers can be

applied to the field of agriculture. With such computing

resources, the model will perform better than mobile platforms
D
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FIGURE 10

(A–I) indicate the detection effect with three samples randomly selected under three categories in the simple condition, i.e., a figure containing only
one leaf to be detected. The bounding box shows the predicted label of each detected leaf and the confidence level of the prediction.
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FIGURE 11

(A–E) indicate the complex cases, i.e., a figure containing multiple diseased leaves to be detected, and shading between the leaves is also common
due to the high density.
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FIGURE 12

(A–I) indicate the detection effect in difficult cases, i.e., the leaves are at the edge of the figure or partially obscured. (A, B, D–F) show that ALAD-
YOLO captures the edge information well. Also, (C, G, I) indicate that ALAD-YOLO has good detection ability for partially obscured diseased leaves.
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based on CPUs, and the corresponding models and algorithms will

also have wider applications.
5 Conclusion

This paper proposes a lightweight apple leaf disease detection

network, called ALAD-YOLO, to address the challenge of balancing

accuracy and speed in the current detection of apple leaf diseases.

Multiple data augmentation techniques are employed to enhance

the apple leaf disease detection dataset for training and evaluation.

ALAD-YOLO is an improved version of YOLO-V5s, with a more

lightweight Mobilenet-V3 network as its backbone. This

modification reduces the computational cost of feature extraction

while ensuring accuracy. The proposed DWC3-ghost module is

applied to the neck of the network, which improves the efficiency of

feature fusion while maintaining its expressiveness. Moreover, the

application of the SPPCSPC_GC module further enhances the

model ’s performance under different input resolutions.

The introduction of the CA attention mechanism strengthens the

model’s focus on the target, effectively compensating for the

accuracy loss caused by previous lightweight operations.

Experimental results show that ALAD-YOLO achieves a detection

accuracy of 90.2% with 6.1 GFLOPs. Compared with existing

models, ALAD-YOLO not only performs better in terms of

accuracy but also has higher computational efficiency. Therefore,

the proposed method provides excellent technical support for the

real-time and accurate detection of apple leaf diseases. In the

subsequent research, we will further optimize the performance of

ALAD-YOLO in complex scenarios, so that it can have a wider

range of applications.
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