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Mutations in chromatin modifying genes frequently occur in many kinds of

cancer. Most mechanistic studies focus on their canonical functions, while

therapeutic approaches target their enzymatic activity. Recent studies,

however, demonstrate that non-canonical functions of chromatin modifiers

may be equally important and therapeutically actionable in different types of

cancer. One epigenetic regulator that demonstrates such a dual role in cancer is

the histone methyltransferase EZH2. EZH2 is a core component of the polycomb

repressive complex 2 (PRC2), which plays a crucial role in cell identity,

differentiation, proliferation, stemness and plasticity. While much of the

regulatory functions and oncogenic activity of EZH2 have been attributed to its

canonical, enzymatic activity of methylating lysine 27 on histone 3 (H3K27me3), a

repressive chromatin mark, recent studies suggest that non-canonical functions

that are independent of H3K27me3 also contribute towards the oncogenic

activity of EZH2. Contrary to PRC2’s canonical repressive activity, mediated by

H3K27me3, outside of the complex EZH2 can directly interact with transcription

factors and oncogenes to activate gene expression. A more focused

investigation into these non-canonical interactions of EZH2 and other

epigenetic/chromatin regulators may uncover new and more effective

therapeutic strategies. Here, we summarize major findings on the non-

canonical functions of EZH2 and how they are related to different aspects

of carcinogenesis.
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Introduction

Polycomb group proteins were originally described for their role in Drosophila

development where they repress homeotic genes (Hox) required for proper body

segmentation (1–3). The two main Polycomb group complexes are the Polycomb

repressive complex 1 (PRC1) and Polycomb repressive complex 2 (PRC2), both of

which are conserved from Drosophila to mammals. While PRC1 consists of highly

variable subunits, PRC2 is composed of four core components: EZH1 or EZH2, EED,
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SUZ12 and RbAp46/48. Additionally, several secondary accessory

proteins such as JARID2, PCL and AEBP2 modulate the function of

PRC2 (4) (Figure 1A). Polycomb-mediated gene silencing primarily

operates through the regulation of chromatin structure via post-

translational modifications of histone tails (5, 6). Due to their

involvement in critical biological processes like differentiation, cell

identity, proliferation, stemness, and plasticity, alterations in

Polycomb complexes are frequently associated with human

cancers (7, 8) and developmental syndromes characterized by

congenital overgrowth, dysmorphic facial features, and learning

disabilities (9–13).

In the context of cancer, the role of PRC2, and EZH2

specifically, is multifaceted as it can function both as a tumor-

suppressor (14–18) and as an oncogene (17, 19–23) in a cell type

dependent manner. This dual functionality is reflected in the

observation of EZH2 amplifications and deletions in different
Frontiers in Oncology 02
kinds of cancer, which have been validated through functional

assays and in vivo models. In addition to loss- and gain-of-function

genetic events, missense mutations at tyrosine 641 (EZH2Y641)

function in a neomorphic manner, cause redistribution of

H3K27me3 and are strongly oncogenic (19).

While much of the oncogenic activity of PRC2, and particularly

EZH2, has been attributed to its enzymatic activity of methylating

lysine 27 on histone 3, recent studies revealed that this canonical

enzymatic activity cannot fully explain all of its physiological

functions and oncogenic effects. Considering the limited efficacy

of epigenetic inhibitors in cancer patients, which primarily target

enzymatic activity, a more focused investigation into EZH2’s non-

canonical functions may identify more effective therapeutic

strategies. In this review, we highlight and discuss the major non-

canonical functions of EZH2, its interactions with non-PRC2

proteins, along with implications on therapeutic strategies.
B

A

FIGURE 1

Canonical and non-canonical functions of EZH2. (A) EZH2 functions as the methyltransferase domain of the PRC2 complex in cooperation with core
components, EED, SUZ12 and RbAp46/48, to mediate methylation of lysine 27 on histone 3 (H3K27me3). Several accessory proteins that enhance
and direct PRC2 function include JARID2, PCLs, AEBP2 among others. (B) In addition to methylating histone tails EZH2 can also methylate non-
histone proteins, altering their function and activity with complicated effects on downstream gene expression. These include PLZF, RORa, GATA4,
AR and STAT3. Post-translational modifications of EZH2 by AKT, JAK3, CDK1, and protein interactions with non-PRC2 proteins promote non-
canonical functions, which can inhibit canonical PRC2 assembly and histone methylation. PRC2-independent functions of EZH2 include interactions
with transcription factors such as RelA/B, CMYC, NMYC, STAT3, where they together function as transcriptional activators.
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Post-translational modifications of
EZH2 may determine non-
canonical functions

Several post-translational modifications of EZH2 have been

identified over the years which may be responsible for switching

between canonical and non-canonical EZH2 functions (Figure 1B).

A study by Cha et al. was the first to find that the AKT kinase

phosphorylates EZH2 at serine 21 (S21), resulting in decreased

methyltransferase activity (24). Later studies found that

phosphorylation at S21 not only suppressed canonical enzymatic

activity, but was required for non-canonical, H3K27me3-

independent functions of EZH2 in prostate cancer (25) and

glioblastoma models (26). Other kinases known to modify EZH2

include JAK3 and the cyclin dependent kinases 1 and 2 (CDK1/2).

JAK3 phosphorylates EZH2 at tyrosine 244, promoting the

dissociation of the PRC2 complex (27), while CDKs have a more

complicated effect; CDK1/2 phosphorylate EZH2 at threonine 350,

enhancing recruitment of PRC2 and associations with non-coding

RNAs (28), while CDK1-mediated phosphorylation of EZH2 at

threonine 487 disrupts binding with PRC2 core components EED

and SUZ12, inhibiting H3K27me3 (29). Different modifications,

therefore, could have very different effects on the ability of EZH2 to

form protein complexes with either canonical PRC2 components,

or other effectors, which may be dependent on the right

conformational structure. While many of these modifications are

known and contribute or promote non-canonical EZH2 functions

as discussed further below, many likely remain unexplored.
Direct interaction between Ezh2
and DNA methyltransferases in
solid tumors

One of the earliest interaction of EZH2 outside of core PRC2

components and accessory proteins was with the DNA

methyltransferases, DNMT1, 3A and 3B (30). Vire et al. found

that EZH2 directly interacts and recruits DNMTs to specific target

loci (Figure 1A). Repression of these genes required the presence of

both H3K27me3 and DNA methylation in the promoter region.

Cooperation between these two epigenetic complexes also had

significant therapeutic implications with combination strategies

targeting both DNMT and EZH2 activity. For example, Ning

et al. showed that in gastric cancer and glioblastoma cell lines

EZH2 and DNMT1 together repressed expression of tumor

suppressors and that treatment with either the DNMT inhibitor

5-azadeoxycitidine and the methyltransferase inhibitor DZNep

reduced tumor growth (31). These early studies, however, were

limited by the fact that DZNep is not a specific EZH2 inhibitor and

enhanced efficacy could be due to inhibition of other

methyltransferases. Later studies with more specific EZH2

inhibitors showed that in hepatocellular carcinoma the

combination of 5-azadeoxycitidine with the EZH2 inhibitor

GSK126 increased expression of neoantigens, increased tumor-
Frontiers in Oncology 03
infiltrating lymphocytes and reduced cell growth (32, 33). In

multiple myeloma, Dimopoulos et al. investigated resistance to

lenalidomide and pomalidomide and found that resistance was

associated with increased DNA methylation and decreased

chromatin accessibility (34). Combination treatment with 5-

azacytidine and the EZH2 inhibitor, EPZ-6438, reversed these

epigenetic changes and re-sensitized the cells to lenalidomide and

pomalidomide. Dual inhibition of DNMTs and EZH2 was also

effective in prostate, breast, colon cancer and leukemia cells (35, 36),

highlighting the therapeutic potential of these interactions.
Ezh2-mediated methylation of Gata4
and its role in rhabdomyosarcoma

In addition to its interactions with other epigenetic regulators,

Ezh2 can directly interact with transcription factors, such as Gata4

(Figure 1B). Gata4 is a key transcription factor during heart

development that recruits the acetyltransferase p300 to specific

chromatin loci, activating the expression of genes critical to heart

development (37). While p300 acetylates Gata4 enhancing its

transcriptional activity (38), Ezh2 antagonizes this interaction by

directly methylating Gata4 on lysine 299 (39). This prevents its

acetylation and activation by p300, reducing its recruitment to

chromatin and impeding the activation of the heart development

program. This was the first report of a non-histone interaction of

EZH2 and an example of a histone methyltransferase and a histone

acetyltransferase that function antagonistically in a histone-

independent manner. A direct interaction between EZH2 and

GATA4 was also observed in rhabdomyosarcoma, a type of soft

tissue sarcoma that develops from muscle or fibrous tissue, and a

rare type of sarcomas of the heart. Song et al. demonstrated that

GATA4 promotes normal myogenesis by binding to GRIP1 and

stimulating the expression of miR-29a, which drives myogenic

differentiation (40). However, in sarcoma cells, a direct

interaction between GATA4 and EZH2 leads to the deposition of

H3K27me3 at the miR-29a promoter suppressing its expression,

inhibiting myogenic differentiation while promoting proliferation.

Overall, these results suggest that interactions of GATA4 with PRC2

components are important in rhabdomyosarcoma progression.
Transcriptional activation mediated by
EZH2 and the androgen receptor in
prostate cancer

While many EZH2 interactions require the presence of the rest

of the PRC2 complex as described above, EZH2 can engage in

protein-protein interactions independently of other PRC2

components or activate downstream signaling independent of its

methyltransferase activity. An early example where EZH2 functions

as an activator is in androgen-dependent prostate cancer (23).

Varambaly et al. initially found that EZH2 expression was highly

correlative with progression of castration-resistant prostate cancer

(23). Subsequent studies found that silencing of EZH2 had a
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profound effect on androgen-independent cell growth in vitro, with

a significant number of genes directly upregulated by EZH2 (25).

ChIP-seq experiments for EZH2 and H3K27me3 identified both

EZH2-specific peaks, termed “solo”, as well as peaks overlapping

with H3K27me3, termed “ensemble”. Additional mechanistic

studies found that EZH2 directly methylated the Androgen

receptor (AR), and together with AR, regulated expression of

activated genes. Xu et al. further suggested that the EZH2-AR

interaction was dependent on phosphorylation of EZH2 at serine

21. Interestingly, this interaction still required the intact

methyltransferase activity of EZH2, although the mechanistic

details remain unclear. In contrast to Xu et al., Kim et al.

proposed that EZH2 directly binds to the promoter of the AR,

controlling its expression independent of its methyltransferase

activity (41). Differences in methodology and models could

account for these disparate results and both mechanisms could

be true.
Non-canonical functions of EZH2 in
breast cancer involve transcriptional
activation and protein degradation
mechanisms

In breast cancer, EZH2 plays a significant role via both canonical

and non-canonical functions, which are summarized by Anwar et al.

(42). Interestingly, the non-canonical function of EZH2 in breast

cancer is not the same across different subtypes. In triple-negative

breast cancer, EZH2 acts as a transcriptional activator of the NF-KB

subunit RelB to drive self-renewal and promote tumor initiation (43,

44). In Estrogen Receptor (ER)-negative breast cancer, EZH2

physically interacts with RelA/RelB and promotes the transcription

of NF-KB targets such as IL6 and TNF, independent of its histone

methyltransferase activity. However, in ER-positive breast cancer

EZH2 assumes its canonical role, interacting with the ER in a

PRC2-dependent manner mediating H3K27me3 at NF-KB target

genes and repressing their expression (44).

EZH2 also non-canonically regulates gene expression by

targeting proteins for degradation via E3 ubiquitin ligases. Lee

et al. discovered that in breast cancer cells EZH2 recognizes and

monomethylates the lysine of an Arginine(R)-Serine(S)-Lysine(K)

histone-like sequence on RORa, leading to its subsequent

ubiquitination and degradation by DCAF1 (45). These data may

be biologically significant in cancer as well, as expression of RORa
and EZH2 is inversely correlated in breast cancer tissues (45).
Ezh2 association with protein
degradation machinery in nature killer
T cell lymphoma

Interactions of EZH2 with protein degradation machinery are

not unique to breast cancer. While studying the role of EZH2

during T cell development, Vasanthakumar et al. found
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diametrically different results when deleting different core

components of the PRC2 complex; depletion of Ezh2 resulted in

expansion of NKT cells, while depletion of Eed and Suz12 resulted

in a dramatic loss of NKT cells (46). They subsequently found that

PLZF, a master regulator of hematopoiesis and NKT cell expansion

(47) was directly methylated by EZH2 at lysine 430, which lead to its

ubiquitination and degradation, providing an explanation for the

observed phenotypes. EZH2 and PLZF also interact directly on

chromatin in myeloblastic cells, co-occupying loci that are not

associated with SUZ12, EED, or H3K27me3, but are instead

associated with H3K4me3 and active transcription (48),

highlighting the multilevel complexity of EZH2’s functions.
Cell-intrinsic and cell-extrinsic effects
of an EZH2-STAT3 interaction in
multiple solid tumors

A direct interaction between EZH2 and the immune-regulator,

STAT3, has been observed in multiple solid tumors. In melanoma,

EZH2 is either amplified, overexpressed or mutated at Tyrosine 641

(Y641), a hotspot mutation within the methyltransferase domain

which creates a hyperactive and neomorphic protein (19). To

understand the mechanisms of the oncogenic activity of this

mutant, we recently investigated potential non-canonical

interactions in melanoma and found that in mouse melanoma

cells, mutant Ezh2Y641F protein interacts directly with and

methylates Stat3 protein (49). We found that the interaction

between Ezh2 and Stat3 was highly enriched in the presence of

mutant Ezh2Y641F prote in , which exhibi t s increased

methyltransferase activity, suggesting that this interaction is

d e p end en t on E zh2 ’ s a c t i v i t y . U s i n g ch r oma t i n -

immunoprecipitation followed by sequencing (ChIP-seq) and

expression profile analysis, we found that Ezh2Y641F and Stat3

cooperate as transcriptional activators, binding to new regions on

chromatin to increase expression of several target genes. These

include MHC Class 1b antigen processing genes and autophagy

regulators. Functionally, the Ezh2Y641F-Stat3 interaction mediated

the recruitment of cytotoxic CD8+ T cells to the melanoma tumor

microenvironment, which slowed down in vivo tumor growth (49).

This was the first report of an enhanced non-canonical interaction

between the Ezh2Y641F mutant and a non-histone protein,

suggesting that perhaps this is an important aspect of the

oncogenic activity of EZH2 in cancers with Y641 mutations (7, 8).

The interaction between EZH2 and STAT3 has also been

reported in glioblastoma and colon carcinomas. In glioblastoma,

EZH2 binds to and methylates STAT3 at lysine 180, resulting in

enhanced STAT3 activity (26), while in colon carcinoma Dasgupta

et al. found that dimethylation of STAT3 at lysine 49 was crucial for

activating the IL6-STAT3 transcriptional program (50). EZH2 can

also methylate STAT3 in breast cancer cells, which was necessary

for tumor growth (51). Overall, the function and downstream

mechanisms of the EZH2-STAT3 interaction appears to be

determined by cellular context and may depend on availability of

other co-factors or post-translational modifications.
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Multifaceted interactions between
EZH2 and MYC in both solid and
blood cancers

MYC is a well-studied oncogene that is implicated in many

types of cancers. The relationship between MYC and EZH2 was

established more than a decade ago with studies demonstrating

their co-regulation. For example, EZH2 directly regulates CMYC

expression via association with the estrogen receptor alpha (ERa)
and b-catenin (52), and conversely, MYC binds the promoter of

EZH2 and regulates its expression in prostate cancer cells (53) and

B cell lymphomas (19). The latter raised the intriguing possibility

that EZH2 may be mediating some of the oncogenic activity of

MYC and account for the repressed genes in cancers with MYC

overexpression. This was demonstrated by Kaur and Cole in

immortalized mammary epithelial cells. Specifically, they showed

that MYC transcriptionally activates PTEN, leading to suppression

of AKT kinase activity, which in turn results in increased EZH2

protein stability and enzymatic activity. They further showed with

rescue assays and EZH2 mutants that EZH2 was responsible for the

transcriptional repression of nearly half of all the MYC-repressed

genes, consistent with EZH2 binding and accumulation of

H3K27me3 at MYC-repressed gene loci (54).

While the above studies suggested EZH2/PRC2 may be

mediating some of the repressive properties of MYC through

indirect signaling, they did not exclude the possibility of a more

direct interaction. More recent studies proposed that possibility, but

it remained unclear how EZH2 and MYC interacted at the

chromatin interface. Two recent studies shed more light into

these questions by investigating the interaction between EZH2

and CMYC in acute leukemia and multiple myeloma models (55,

56). Specifically, Wang J et al. discovered that EZH2 not only binds

to regions characterized by repressive H3K27me3 marks, as is

typical of canonical EZH2 activity, but also to regions with no

H3K27me3 (termed “EZH2-solo” sites). In fact, significant EZH2

binding overlaps with multiple gene-active chromatin marks, such

as H3K4me3, H3K9ac and H3K27ac. Interestingly, they found that

these EZH2-solo sites were also bound by CMYC. They further

demonstrated that EZH2 and CMYC directly interact through

EZH2’s transactivation domain (TAD) and that this interaction is

essential for malignant growth of leukemia cells. This result was

consistent with a previous report that identified a hidden TAD

within EZH2 that can be unlocked by cancer-specific EZH2-

phosphorylation, resulting in structural conformation changes

that mediate interactions with active transcription machinery (57).

In addition to interacting with CMYC, EZH2 also interacts with

NMYC, both in a canonical and non-canonical way. In

neuroblastoma cells, Corvetta et al. demonstrated that NMYC

directly interacts with EZH2 and recruits the PRC2 complex to

the promoter region of the tumor suppressor, clusterin (CLU). This

resulted in increased deposition of H3K27me3, suppressing

expression of CLU, and causing significant phenotypic effects

such as increased invasion and cell cycle progression (58).
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In prostate cancer cells, Dardenne et al. showed that NMYC

forms a complex with EZH2 and the Androgen Receptor (AR),

which enhances PRC2 target gene repression, regulating gene

expression programs critical for prostate cancer progression (59).

Contrary to these canonical functions of EZH2 in cooperation with

NMYC, Vanden Bempt et al. recently found that EZH2 exhibits

non-canonical functions in coordination with NMYC in peripheral

T-cell lymphoma (PTCL). Specifically, using a mouse model of

NMYC-driven PTCL, they found that EZH2 acts as a cofactor of

NMYC, activating expression of EZH2-NMYC bound sites without

association with other canonical PRC2 components or activity (60).

A noteworthy observation from these studies was that the

interaction between EZH2 and MYC was unique to transformed

leukemia cell lines and primary leukemia patient samples, and was not

detected in healthy, non-leukemic cells. This suggests that the EZH2-

MYC interactions may depend on the presence of specific co-factors

or post-translational modifications that facilitate that interaction and

are not present in healthy cells or in all types of cancers.
Therapeutic implications of EZH2
non-canonical functions

To investigate the importance of EZH2’s canonical and non-

canonical activities in cancer and therapeutics, several studies have

explored the concept of synthetic lethality between EZH2 inhibition

and mutations in other pathways. A notable example is the

relationship between PRC2/EZH2 and the SWI/SNF complex in

cancer. Several cancers with mutations in SWI/SNF subunits exhibit

increased sensitivity to PRC2 inhibition (61, 62). However, Kim

et al. demonstrated that SWI/SNF-mutant lung and ovarian cancer

cells are primarily dependent on the non-catalytic functions of

EZH2 and only partially dependent on its methyltransferase activity

(61). This strongly suggests that non-enzymatic functions of EZH2

are not only relevant in cancer progression, but also to

therapeutic approaches.

The non-canonical functions of EZH2 may also explain the

relatively weak responses of EZH2 inhibitors in some clinical trials

and must be taken into serious consideration when designing

therapeutic strategies. Several recent studies have utilized

proteolysis targeting chimeras (PROTACs) technology to hijack

the ubiquitin-proteasome pathway to degrade targeted proteins for

loss-of-function studies. Degradation of EZH2 by the PROTAC-

degrader MS-177 effectively inhibited on-target EZH2-PRC2 and

MYC-related oncogenic nodes and inhibited leukemia growth in

vivo more effectively than enzymatic inhibition (55, 56). In a

separate study, using the EZH2 PROTAC-degrader MS1973,

EZH2 degradation was necessary and more effective than

enzymatic inhibition in eliminating relapse-initiating cells in a

retinoic acid-dependent model of acute promyelocytic leukemia

(63). These studies highlight the potential clinical significance of

targeting non-canonical functions of EZH2, and may even be more

broadly applicable to other chromatin-modifying genes.
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Discussion

The non-canonical interactions of EZH2 encompass a wide

range of functions. Recent studies provided significant insights into

the intricate roles of epigenetic regulators and their interactions

with oncogenes such as MYC. It is important to acknowledge that

while these interactions are intriguing, many of them have yet to be

validated in vivo. Considering that the proper biological context

greatly influences protein functionality, it is possible that these

interactions may be different in vivo. Nonetheless, these studies

underscore the notion that proteins often have additional roles

beyond their established functions as epigenetic regulators or

chromatin modifiers. These additional roles can arise from

association with other protein complexes aberrantly expressed in

cancer cells, or by post-translational modifications, which can cause

structural conformational changes, facilitating novel interactions

not typically present in healthy cells. Considering these discoveries,

targeting the degradation of EZH2, or its post-translational

modifiers could be a promising therapeutic approach for cancers

that rely on these non-canonical interactions. However, the

specificities of these interactions to cancer cells, their occurrence

in different contexts, and the involvement of other epigenetic

regulators in similar functionalities are still not fully understood.

Ongoing and future research will undoubtedly uncover more of

these interactions, providing a deeper understanding of disease

mechanisms and guiding the development of effective

therapeutic strategies.
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