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Abstract

High-contrast imaging has afforded astronomers the opportunity to study light directly emitted by adolescent (tens
of megayears) and “proto” (<10Myr) planets still undergoing formation. Direct detection of these planets is
enabled by empirical point-spread function (PSF) modeling and removal algorithms. The computational intensity
of such algorithms, as well as their multiplicity of tunable input parameters, has led to the prevalence of ad hoc
optimization approaches to high-contrast imaging results. In this work, we present a new, systematic approach to
optimization vetted using data of the high-contrast stellar companion HD 142527 B from the Magellan Adaptive
Optics Giant Accreting Protoplanet Survey (GAPlanetS). More specifically, we present a grid search technique
designed to explore three influential parameters of the PSF subtraction algorithm pyKLIP: annuli, movement, and
KL modes. We consider multiple metrics for postprocessed image quality in order to optimally recover at Hα
(656 nm) synthetic planets injected into contemporaneous continuum (643 nm) images. These metrics include peak
(single-pixel) signal-to-noise ratio (S/N), average (multipixel average) S/N, 5σ contrast, and false-positive
fraction. We apply continuum-optimized KLIP reduction parameters to six Hα direct detections of the low-mass
stellar companion HD 142527 B and recover the companion at a range of separations. Relative to a single-
informed, nonoptimized set of KLIP parameters applied to all data sets uniformly, our multimetric grid search
optimization led to improvements in companion S/N of up to 1.2σ, with an average improvement of 0.6σ. Since
many direct imaging detections lie close to the canonical 5σ threshold, even such modest improvements may result
in higher yields in future imaging surveys.

Unified Astronomy Thesaurus concepts: Direct imaging (387); Exoplanet detection methods (489); Astronomy
data analysis (1858); Principal component analysis (1944)

1. Introduction

Over the past decade, high-contrast direct imaging has
uncovered dozens of bound substellar companions to higher-
mass stars (Bowler 2016; Currie et al. 2022). This technique is
generally sensitive to faint companions at separations of >0 1
and masses on the order of several Jupiter masses or larger.
Imaging’s ability to resolve the light emitted directly by
exoplanet atmospheres makes it a powerful vehicle for planet
characterization. Consequently, prospects for future work
constraining planet composition, formation, and habitability
are intertwined with refinement of the imaging techniques that
will allow us to robustly isolate planetary signals (Seager &
Deming 2010; Biller & Bonnefoy 2018).

Both current and future imaging campaigns are dependent on
suppression of the stellar point-spread function (PSF). Raw
data of imaged extrasolar systems are dominated by the
diffraction-limited core of the stellar PSF, its broader seeing
halo, and a field of uncorrected stellar “speckles.” This leaves
faint planets buried under the starlight in raw and convention-
ally combined data. The hardware (adaptive optics (AO),
coronagraphs, apodizers, etc.) in some high-contrast imaging
instruments, such as the Gemini Planet Imager (GPI; Macintosh
et al. 2014) on the Gemini South telescope and the Spectro-
Polarimetic High-contrast Exoplanet REsearch (SPHERE;
Beuzit et al. 2019) on the Very Large Telescope (VLT), can
suppress starlight and allow for raw planet/star contrasts (i.e.,
the 5σ noise level at planetary separations) of ∼10−4 to 10−5

(Bailey et al. 2016). However, detection of young planets in
near-infrared thermal emission requires planet/star contrasts of
at least 10−6.
Postprocessing techniques, specifically PSF subtraction, can

improve planet/star contrasts by a factor of 10–100 (see, e.g.,
Bailey et al. 2016). A range of algorithmic approaches are
available to achieve this improved contrast, the most common
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of which are the Karhunen–Loéve Image Processing (KLIP;
Soummer et al. 2012; Pueyo 2016) and Locally Optimized
Combinations of Images (LOCI; Lafrenière et al. 2007)
techniques. Both techniques utilize angular differential imaging
(ADI; Marois et al. 2006), in which the source is allowed to
rotate in the image plane throughout the observation, while the
instrumental PSF remains static. On-sky rotation of the source
ensures that PSF features identified by the algorithms consist
primarily of instrumental PSF features and exclude rotating
high spatial frequency sources such as planets and narrow disk
structures. In this work, we focus strictly on the principal
component analysis (PCA) based technique, KLIP, implemen-
ted with the Python package pyKLIP12 (Wang et al. 2015).
Optimization of LOCI algorithms is discussed in Thompson &
Marois (2021).

Despite their power to suppress the stellar PSF, postproces-
sing algorithms like KLIP are complex and highly tunable.
Extracted photometry, astrometry, and spectroscopy of an
exoplanet direct detection are greatly influenced by user-
selected input parameters. The widely used KLIP algorithm
pyKLIP, for example, utilizes 25 tunable input parameters that
control features such as application of a high-pass filter, the
complexity of the PSF model, the number and shape of regions
for which model PSFs are constructed separately, and the size
of the library of reference images.

Of particular concern regarding KLIP parameter choices are
systems containing both planets and circumstellar material.
Substructure is ubiquitous in planet-forming disks (Benisty
et al. 2022), and disk features have the potential to appear
planet-like in postprocessed images (e.g., K. B. Follette et al.
2017). A number of reported (proto)planet detections in these
systems have been called into question when other techniques
or data sets fail to reveal unambiguous planetary signals. These
include the protoplanet candidates LkCa15 b and c (Kraus &
Ireland 2012; Sallum et al. 2015), which have been contested
by several papers highlighting their proximity to inner disk
material (Thalmann et al. 2016; Currie et al. 2019). Similarly,
the two planet candidates in the HD 100546 system (Quanz
et al. 2013; Currie et al. 2015) were flagged as potential false
positives because they were not recovered as orbiting point
sources in other observations (Follette et al. 2017; Rameau
et al. 2017).

We hypothesize that one cause of detection discrepancies
among reported planet candidates is a lack of standardization in
selecting PSF subtraction parameters. The de facto technique
among the imaging community has been to make default
choices for algorithmic parameters and to hand-tune those
parameters once an apparent detection is made, or to optimize
select parameters individually (Meshkat et al. 2014). These
approaches are used in part because of the computational
intensity of the KLIP algorithm, which does not lend itself well
to optimization approaches, requiring thousands to millions of
iterations.

In this work, we use Hα direct imagery of the 12–23 au
separation -

+ M0.26 0.14
0.16

 (Claudi et al. 2019) companion HD
142527 B to develop a pyKLIP optimization methodology.
This well-characterized companion has been observed as part
of the Giant Accreting Protoplanet Survey (K. B. Follette 2023,
in preparation) over a long time baseline (2013–2018) and

appears at a wide range of planet–star separations, making it
more difficult to recover in some epochs than others.
This paper is organized as follows. We describe pyKLIP

parameters of interest in Section 2. In Section 3, we detail our
Magellan Adaptive Optics (MagAO) observations and basic
data processing procedures. In Section 4, we outline our
optimization approach, develop image quality metrics, and
describe our selection of some fixed pyKLIP parameters. We
present the final results of our optimizations in Section 5.
Finally, we summarize our process and describe future steps in
Section 6.

2. KLIP Parameters of Interest

All KLIP implementations rely on two fundamental elements
of the algorithm: (1) the compilation of images to form a
reference library, and (2) the construction of a custom PSF
model for each image or region of an image from its PSF
library, the complexity of which is controlled by the number of
principal components (“KL modes”). “KL modes” are a set of
orthogonal basis vectors oriented to describe the variance in the
reference library images, with each additional mode describing
a smaller proportion of the overall variance. They can be
thought of as common patterns in the images. As the number of
KL modes used to build a PSF model increases, the patterns
identified appear in fewer of the reference images. Therefore,
higher KL modes correspond to a more “aggressive” PSF
subtraction. Of the 25 tunable user-input parameters to the
pyKLIP algorithm, those that have a particularly marked effect
on the quality of postprocessed images (even for bright
companions, as shown in Figure 1) are as follows:

1. The numbasis parameter controls the number of “KL
modes” that form the PSF model for subtraction, as
described above. This parameter can be a single value or
a list of values, in which case multiple PSF models will
be created and subtracted to form multiple postprocessed
images. The maximum number of KL modes that can be
used to construct a PSF for a given image sequence is
equal to the number of images in the reference image set
(for ADI imagery, this is the number of images in the
sequence minus any that were discarded through
rotational masking; see below).

2. The annuli parameter controls the radial geometry of
the optimization regions, specifically the number of
annular zones within the image for which PSFs are
constructed separately. In general, optimizing on smaller
regions (a higher annuli parameter) means optimizing
on fewer PSF features at once. These features include
quasi-static speckles, the AO control radius, wind
residuals, etc.

3. The movement parameter is effectively an ADI
rotational mask. It sets the number of pixels that an
astrophysical source (e.g., planet) located at the center of
each annular zone is required to have rotated relative to
the image for which the PSF is being constructed (the
“target image”) in order for another image in the
sequence (a “reference image”) to be included in the
reference library. A smaller movement value corre-
sponds to more “aggressive” subtraction, since more
reference images with the planet located near the same
position as in the target image are included in the
reference library.12 https://bitbucket.org/pyKLIP/pyklip
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4. The highpass parameter improves starlight subtraction
by attenuating low spatial frequency signals in an image
before executing KLIP. pyKLIPʼs Gaussian high-pass
filter parameter controls the standard deviation of this
filter, where a small standard deviation is considered
aggressive. Very little low spatial frequency signal will
survive an aggressive high-pass filter; however, planet
light may also be attenuated in this process.

3. Data and Preprocessing

3.1. Observational Data

The data used in these analyses were taken with the
Magellan Clay Telescope at Las Campanas Observatory using
the MagAO (Close et al. 2013; Marchetti et al. 2014, 2016)
system’s visible light camera (VisAO; Males 2013; Males et al.
2014) in Hα simultaneous differential imaging (SDI)
mode. The data were acquired between 2013 and 2018 as
part of the Giant Accreting Protoplanet Survey (GAPlanetS
K. B. Follette 2023, in preparation), a search for protoplanets
inside of the gaps of transitional disk host stars. GAPlanetS
data are processed with a custom IDL pipeline, as described in
detail in Follette et al. (2017). In brief, they are dark-subtracted
and divided by a flat-field image, which is generally acquired
once per observing semester. This corrects primarily for
attenuation of light by near-focus dust spots on the CCD
window, as the VisAO CCD is otherwise flat to within 1%. The
images are centered and aligned using Fourier cross-correla-
tion, separated into Hα (λc= 656 nm, Δλ= 6 nm) and
continuum (λc= 642 nm, Δλ= 6 nm) channels (acquired
simultaneously on the detector), and cropped to a 451-pixel

(∼3 5) square. Images with cosmic rays within 50 pixels of the
central star are removed from the image cube before analysis.
This work focuses on the transitional disk system HD

142527, which has a known -
+ M0.26 0.14

0.16
 (Claudi et al. 2019)

companion (Close et al. 2008; Biller et al. 2012, HD 142527 B)
at separations ranging from 12.38 to 22.89 au (Balmer et al.
2022). In particular, we are interested in HD 142527 epochs
where the companion is detectable with a range of KLIP
parameters. These robust detections provide a stable “training”
set of data for optimization. This was not the case for the
GAPlanetS data collected on 2017 February 10, for which the
companion was undetectable at signal-to-noise ratio (S/N)
greater than 3 using any KLIP parameters. This is likely due to
the limited rotation of this data set (16°.1) and the companion’s
tight separation (44.29± 2.57 mas; Balmer et al. 2022).
Seeing data indicated subarcsecond conditions for all data

sets for which it was available; however, the site seeing was
nonoperational during two of the epochs. The FWHM of the
data sets ranges from 4 to 5.5 pixels (32–44 mas), with an
average of 4.8 pixels or 38 mas, and on-sky rotation varies from
34°.8 to 117°.4, with an average of 74°. The properties of the
data sets used are described in Table 1. Astrometry and
photometry of the HD 142527 B companion from these data
sets are discussed in detail in Balmer et al. (2022).

3.2. Data Set Selection

Multiwavelength imaging of targets with known companions
is ideal for testing optimization of the pyKLIP algorithm.
Wavelengths where the companion is fainter or not visible can
be leveraged as “clean” images into which synthetic compa-
nions/planets can be inserted and optimized. Then, the efficacy

Figure 1. A depiction of pyKLIP output demonstrating the variation in the quality of recovery for a true companion (HD 142527 B) across a range of KLIP
movement and annuli parameters. Each pixel in the central heat map represents a separate, independent KLIP reduction with the movement and annuli values
depicted on the x- and y-axes, respectively. The color of that pixel reflects the highest single-pixel S/N value at the location of the companion in the S/N map. Inset
images depict the S/N maps for a representative sample of individual reductions. While much of this parameter space yields recovery of the companion at >5σ, there
is intense variation in the quality of the extraction, and even some parameters for which the signal from the bright companion is nearly absent. For this data set, an
optimal combination of parameters to maximize the S/N of the companion for 10 KL modes is a movement value of 1 pixel and 3 annuli. An in-depth explanation
of this grid search technique is provided in Section 4.2.

3

The Astronomical Journal, 165:57 (14pp), 2023 February Adams Redai et al.



of a parameter optimization approach can be evaluated by
applying it to target wavelengths.

In exploring data-driven approaches to KLIP optimization
for GAPlanetS data, we focus on optimization of simulated
planets injected at a range of separations into the continuum
images for HD 142527 B data sets. We then apply this
approach to the HD 142527 Hα data sets to test whether the
approach results in robust single-epoch Hα recovery of the
known accreting companion in these data sets. In Section 5, we
discuss the S/N penalty of optimizing on injected planets
injected into continuum images rather than directly on Hα
images.

We note that we have focused our approach in this work on
detection of planets at Hα alone, and have not applied
Simultaneous Differential Imaging (SDI) as a part of our
optimization approach i.e., We used continuum imagery to
inject and optimize false planets, but we did not combine Hα
and continuum images before or after PSF subtraction, treating
them as wholly separate data sets. SDI results are reported in
the GAPlanetS paper (K. B. Follette 2023, in preparation)
released in conjunction with this work.

Although our analysis of this proposed approach to
optimization relies on one object, the companion exists at a
wide range of separations (∼40–80 mas) across the 2013–2018
time baseline, and the data sets are of widely varying quality.

3.3. Pre-KLIP “Data Quality Cuts”

In order to reduce the computational scope of the
optimization problem, we implemented “data quality cuts”
prior to KLIP optimization as described in detail in K. B.
Follette (2023, in preparation). In short, we fit the stellar PSF
(or ghost in the case of saturated images) with a Moffat profile
and extracted the peak value of this fit for every image in an
image sequence. Using the peak value as a proxy for the
“quality” of a given image, we then culled the data by
discarding the images with the lowest peaks. We compared
contrast curves (computed under a conservative set of KLIP
parameters and with a high-pass filter of width of
0.5× FWHM) for the full image sequence to those with 5%,
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% of the
lowest-quality images discarded. We then chose a data quality
cut by eye, balancing the overall contrast in the inner and outer
regions of the image, generally adopting the cut with the
highest achieved contrast (lowest contrast curve) in the inner
0 1–0 25 unless that cut was substantially worse in the outer
regions of the image. The selected data quality cuts are listed in
Table 2.

This technique, which builds on the principle of “Lucky
Imaging” (Fried 1978), is a remarkably nuanced one. The

“answer” for the optimal data quality cut for a given image set
appears to vary with location within the image. We do not
explore it in detail in this work, but we do note here that
ultimately this parameter is likely also an important considera-
tion for future optimization work and should in principle be
optimized together with KLIP parameters.

3.4. Synthetic Planet Injection

The cornerstone of our proposed optimization approach is
the assertion that KLIP optimization should be done on
simulated companions to avoid cognitive biases in parameter
selection. Therefore, another critical pre-KLIP step in our
approach is injecting synthetic planets into the continuum
images.
Among other considerations in planet injection is the region

of the postprocessed image in which to optimize detections. In
this work, we have opted to focus on the region inside of the
AO system’s control radius for planet insertion and recovery.
This region (also known as the “dark hole”’) is in most cases
equivalent to or larger than the size of the cleared central
cavities of GAPlanetS transitional disks, which is the region
most likely to host detectable accreting protoplanets. In the case
of HD 142527, however, the cavity is very large (∼1″;
Avenhaus et al. 2014). It is likely that optimization of
companions in the outer portion of the HD 142527 cavity
would yield different choices for optimal KLIP parameters than
those reported here.
Injecting planets into raw data and recovering them at a

range of separations and position angles (PAs) is a common
method for quantifying azimuthal variation in recovered
astrometry and photometry due to PSF asymmetries (e.g.,
Wagner et al. 2018). It also serves as a means to quantify the
degree of flux attenuation (“throughput”) introduced by the

Table 1
GAPlanetS Observations of HD 142527 B Used in This Analysis

Date Sep. PA Seeing tint rsat Rot. Nims FWHM
(mas) (deg) (minutes) (pixels) (deg) (pixels)

11 April 13 81.08 ± 1.08 128.12 ± 0.49 0.56 74.2 6 65.3 1961 4.56
8 April 14 77.70 ± 1.68 117.01 ± 1.12 N/A 66.5 N/A 101.7 1758 4.00
15 May 15 70.16 ± 1.19 110.56 ± 0.80 0.55 90.3 N/A 117.4 2387 5.50
16 May 15 72.19 ± 2.02 107.84 ± 0.97 0.80 43.2 2 34.8 1143 5.01
18 May 15 70.00 ± 1.35 110.12 ± 0.72 0.66 79.5 9 76.8 159 5.24
27 April 18 44.34 ± 1.81 58.62 ± 1.67 N/A 48.3 3 49.2 580 4.37

Note. Orbital locations were derived from Balmer et al. (2022).

Table 2
Injected Planet Parameters

Date Cut Fake Contrast Ninjected

2013 April 11 10 0.01 8
2014 April 8 0 0.01 5
2015 May 15 50 0.01 5
2015 May 16 80 0.05 5
2015 May 18 0 0.01 4
2018 April 27 0 0.05 8

Note. Fake contrast is the contrast of injected fake planets used to compute
contrast curves (this same contrast is used to inject synthetic planets for
pyKLIP-PE optimization). Ninjected is the number of injected planets between
the IWA and control radius used to compute the optimal parameters.
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KLIP algorithm as a function of separation, which is needed to
determine detection limits (Mawet et al. 2019).

This technique of inserting synthetic planet signals is also a
potential tool for optimization. We hypothesize that if synthetic
planets injected into continuum images are successful at
mimicking real planets, their optimal KLIP parameters should
result in high-quality recoveries of real companions in Hα data
sets. This hypothesis is examined in detail in Section 5.2.

To this end, we injected planetary signals into the raw
continuum image sequences (culled according to the chosen
“data quality” cuts). The continuum images were chosen in
order to reduce the influence of the companion on the results,
though we note that it is recoverable at moderate S/N
(S/N= 2–6; Balmer et al. 2022) in continuum wavelengths.
In the case of HD 142527, we injected planets away from the
companion to mitigate its effects, which are then limited to an
inflation of the noise statistics at the companion’s separation. In
this way, the HD 142527 data mimic a case where optimization
is being done on injected planets in the vicinity of real,
previously unknown planets.

Synthetic planets are created by scaling the images of the
central star (or ghost in the case of saturated data) to a desired
contrast and injecting them into the raw images. The PSF of the
injected planets is constructed from the stellar PSF image by

image, so intrinsic variation in the stellar PSF is also captured
in the injected planetary PSF (as would be the case with real
planets). Contrasts of these injected planets are computed under
a single set of KLIP parameters (annuli= 5,
movement= 2) that ad hoc experimentation with MagAO
data indicates will result in robust recovery of most
companions. These injected planet contrasts were iterated upon
until the average S/N across 5, 10, 20, and 50 KL modes was
in the range of 6.5–7.5. We injected as many planets as would
fit between the inner working angle (IWA; PSF FWHM) and
the control radius separated by 1 FWHM radially. More
specifically,

=
- ( )N

Control Radius IWA

FWHM
. 1injected

The PAs of these fake injected planets were assigned such
that the first planet would be placed at a PA of 0 and each
subsequent planet would be advanced by a PA of 85°, probing
different azimuthal regions of the PSF.
Step 2 in Figure 2 visualizes the stage in our reduction

process where synthetic planet injection is done, and it shows
the resulting fake planets. Table 2 shows the contrasts and
number of fake injected planets in each data set.

Figure 2. A schematic representation of the optimization process applied in this work, with images drawn from optimization of the HD 142527 2013 April 11 data set.
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4. Optimization Methods

The goal of this work is to develop a method for selecting
KLIP parameter combinations that (1) is robust to false
positives and (2) leads to high-quality recoveries of known
objects. At the same time, we aim to develop a method that
does not rely on the planetary signal itself for optimization.
This approach is critical both in developing strategies for
untargeted/uninformed exoplanet searches, where the location
(s) of planet(s) are not known a priori, and in reducing
cognitive biases in parameter optimization.

In other words, we should be able to apply these techniques
to robustly recover planet signal without prior information
about the planet’s existence. In doing so, a first key question is
what the metrics for a “good” planet recovery should entail. A
second is how we should combine these metrics to refine an
optimization approach. We apply several techniques to this
problem, as outlined below.

4.1. Image Quality Metrics

In order to make decisions among possible pyKLIP
parameter values, one or more metrics for the “quality” of
the signal extraction are required. Due to the nuanced nature of
postprocessed image quality, we chose to utilize three
measurables in our approach to optimization: S/N maps,
contrast curves, and false-positive thresholds.

4.1.1. Peak/Average S/N

A common metric for a high-quality recovery is a planet’s
S/N, i.e., its signal should be at least 3σ–5σ above the noise
level, where the noise level is the standard deviation of
background pixels at that separation.

In order to compute S/N maps, we mask a wedge-shaped
region with a radial width of the PSF FWHM and an azimuthal
width of 15° on either side of each planet, which masks the
planet itself and all or most of the “self-subtraction lobes” that
extend azimuthally from its location. We then estimate the
noise at each separation by computing the standard deviation of
the nonmasked (noise) pixels in 1 pixel annuli and apply a
statistical correction following Mawet et al. (2014) to account
for the small number of independent noise samples near the
central star.

The classic measure of the quality of a high-contrast imaging
detection is the maximum single-pixel value in an S/N map
(which we will call “peak S/N” hereafter) of a recovered
companion. However, we also extract the average S/N of the
positive pixels under our planet masks as an alternative,
potentially more robust, measure of the detection quality. It
should be noted that, in our case, S/N is measured on
postprocessed images that have been subject to a high-pass
filter, and that the final postprocessed images were smoothed
with a 1 pixel Gaussian kernel.

4.1.2. Contrast

Another common metric for the quality of a high-contrast
imaging reduction is the achieved planet/star contrast limit.
The optimal reduction by this metric should have the best
planet/star contrast (lowest contrast value), allowing for the
recovery of the faintest objects.

As is standard in the field, we compute contrast by (1)
measuring the 5σ noise at a given location and (2) calibrating

that noise to correct for the algorithm throughput. Throughput
is computed as the ratio of a planet’s true (injected) brightness
to its postprocessed (recovered) brightness. The “raw” 5σ noise
level divided by the throughput yields a limiting brightness for
planets to be recovered at 5σ at a given location in the image.

4.1.3. False-positive Fraction

High-quality HCI reductions are also those in which all
signals meeting the canonical S/N threshold are true signals
and not false positives. On the assumption that there are no
additional true signals in our images, we consider false-positive
pixels to be those with values in the postprocessed maps with
S/Ns above 5σ that are not at the location of the known or
injected companion(s). We count the number of pixels between
the IWA and control radius that meet this threshold, excluding
those under the planetary mask(s). We note that more nuanced
approaches to false-positive estimation are possible. Isolated
single pixels with high values, for example, are less likely to be
mistaken for a companion than clusters of pixels with high
values. Previously unknown real companions that have not
been masked and are visible at the optimization wavelength
will also influence this value, as is the case in all of our data
sets. Future work should implement a more nuanced version of
this metric, perhaps also incorporating a forward-modeling
approach (e.g., Ruffio et al. 2017).

4.1.4. Neighbor Quality

“Neighbor quality” metrics are created by smoothing the
peak and average S/N metrics in movement/annuli space by a
Gaussian with an FWHM of 3 pixels. They serve to create a
measure of the quality of neighboring parameters in move-
ment/annuli space. In other words, a high S/N value that is an
outlier in a region of the annuli/movement heat map is
penalized by the low S/Ns of neighboring values. Parameter
regions that are stably high, such that small changes in
movement/annuli values result in minimal changes in S/N, are
given additional weight. A neighbor quality metric is created
for both peak S/N and average S/N.

4.2. pyKLIP-PE

The final tool in our approach to optimization is the pyKLIP
Parameter Explorer (pyKLIP-PE). This coarse grid search
algorithm runs pyKLIP for every combination of specified
movement and annuli parameter values for a specified
range of KL mode values and returns all of the image quality
metrics specified in Section 4.1.
The output for each data set is a 5D cube with the following

dimensions: annuli, movement, numbasis (KL mode),
planet, and image quality metric. In this work, we explore
annuli values of 1–25, movement values of 0–24, and a KL
basis set of numbasis = [1,2,3,4,5,10,20,50,100].
The maxima of the annuli and movement ranges are meant to
limit the computational time of each run of the algorithm but
can be expanded or reduced as necessary. KL mode values 1–5
were selected owing to the fact that they capture the most
frequently occurring PSF modes. KL modes 10, 20, 50, and
100 were subsequently chosen in an attempt to capture a range
of complexities gained by adding more KL modes.
To produce uniformity among data sets, we standardized

each of the image quality metrics to take values between ∼0
and 1 by subtracting the minimum value and dividing by the
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maximum–minimum value, so that 1 is the “best” combination
of parameters and 0 is the “worst.” In each case, this
normalization is computed in movement/annuli space
across KL modes so that for each planet, metric, and KL
mode combination the “optimal” answer may vary across these
parameters.

For contrast, we compute an image quality metric in log
contrast space that ranges from 0 to 1 as follows:

-
-

( ) ( )
( ) ( )

C C

C C

log log

log log
,10 10 min

10 max 10 min

where C is the measured 5σ contrast for each injected planet,
KL mode, annuli, and movement combination, and Cmin and
Cmax are the minimum and maximum 5σ contrast values across
all KL mode, annuli, and movement combinations for that
planet.

We then convert the false-positive pixel count to a normal-
ized metric. For each pixel exceeding the 5σ threshold inside
the control radius for each KL mode, annuli, and movement
combination, we (1) subtract its minimum value (generally 0),
(2) divide by the difference between its maximum and
minimum value across all KL modes, and (3) subtract this
value from 1. This creates a metric for which the movement
and annuli parameters with the highest number of false
positives are assigned a value of 0 and those with the lowest
number are assigned values near the maximum of 1.

A schematic depicting the various stages of the optimization
process outlined in this section is shown in Figure 2.

Note that the nature of the 5D pyKLIP-PE output
parameter space is such that it can be collapsed in many ways
to select the “best” choice of annuli, movement, and
numbasis parameters for a given data set. In Section 5 we
explore several ways in which we chose to collapse these cubes
to select a “best” parameter choice, though we note that there
are many other possibilities that remain to be explored.

Once optimal parameters have been selected for synthetic
planets injected into the continuum images, we apply those
parameters to the unaltered (no simulated planets) Hα images
to test the ability of this optimization method to robustly
recover HD 142527 B at Hα (see Table 1 for details of these
observations). At this stage, we apply our optimized parameters
to the Hα images only and do not engage in SDI reductions.

4.3. pyKLIP-PE Structure

Because the movement parameter is applied at the center of
each annular region and the widths of these regions vary with
the value of the annuli parameter, certain combinations of
annuli and movement lead to equivalent sets of reference
images (equivalent rotational masks) and broadly similar
reductions. For this reason, parameter exploration outputs
frequently show diagonal structure from regions with a large
number of annuli and low-movement values to fewer annuli
with larger movement values.

A further feature of the parameter explorer heat maps are the
jagged structures along the right-hand (high movement value)
side. These occur when the synthetic planets are “passed” by
the annular zone boundaries and move from being at the inner
edge of an annulus whose center is at larger radii to the outer
edge of an annulus whose center is at smaller radii. This shift to
a new annulus allows for greater movement values to be

applied before the algorithm runs out of reference images in the
new zone.
Unphysical contrast values are also assigned NaN values,

leading to a further source of white pixels in each parameter
explorer.

4.4. Fixed Parameters

In order to make the computational time for GAPlanetS data
sets tractable, we chose to limit the pyKLIP-PE grid search to
only the annuli, movement, and numbasis KLIP
parameters. We did, however, explore in a less systematic
way the effect of the high-pass filter (highpass) and IWA
values on postprocessed images and arrived at what we deemed
to be reasonable fixed choices for the values of these additional
influential KLIP input parameters.

4.4.1. Highpass

In the case of the Fourier high-pass filter width parameter
highpass, we explored setting it to values of “False,” “True”
(filter size= image size/10), and the data FWHM for several
HD 142527 data sets. We find that the application of an
aggressive high-pass filter with a size near the stellar FWHM
has a positive effect on the image quality when compared to
images with no high-pass filter (highpass= False) or a
conservative high-pass filter width (highpass= True).
Example S/N maps showing various high-pass filter widths
on the HD 142527 B 2013 April 11 data set are displayed in
Figure 3. With no high-pass filtering, the detection has an S/N
of 4.1. With high-pass filter set to “True,” a width of 1/10 the
image size, the S/N improves minimally to a value of 4.5.
However, when we set the width to 1 FWHM, the S/N
improved by nearly a factor of 2–8σ.
The effects of each filter size on image and detection quality

were further explored with receiver operating characteristic
(ROC) curves and contrast curves for the HD 142527 data sets.
We explored 0.5, 1, or 1.5 times the FWHM but found no
significant difference between these filter widths across data
sets. Further analyses need to be done to understand the
nuanced trade-offs of high-pass values in this regime.

4.4.2. Inner Working Angle

In the case of the IWA parameter IWA, MagAO data are
noncoronagraphic, so this parameter can in principle be set to
zero. The cleared central cavities of GAPlanetS targets are
generally <0 1 in radius, beneath the IWA of many
coronagraphic HCI instruments, and the known companions
in their gaps are very tightly separated: smaller IWAs leave
more area for planet detection in this region. However, for
initial pyKLIP parameters annuli = 5, movement = 2,
KL = 10, we found that in five out of the six data sets, setting
the IWA= FWHM instead of IWA= 0 moderately improved
recovered S/N values, with an average improvement of 0.62σ.
We therefore elected to balance these considerations by

setting IWA to a fixed value of either the median FWHM of the
data set or, in the case of saturated data, the saturation radius.
We chose these values because we would not be able to
separate the light of companions from the starlight regardless of
their intrinsic brightness at these separations. The range of IWA
values for the data sets considered here spans 3–8 pixels.
We note that, because the KLIP annuli parameter divides

the space between the IWA and outer working angle (OWA, in
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this case the image boundary) into evenly spaced annular
zones, modifying the IWA from data set to data set results in a
small variation in the “meaning” of the annuli parameter
values, in the sense that the same number of annular zones may
have slightly different annular widths in pixels if the OWA-
IWA range is varied. However, this difference in annuli widths
ranges from just 5 pixels for the lowest annuli value (1) to
under 1 pixel for the highest (25). Similarly, because the
movement parameter is defined relative to the center of each
annulus, this results in a very small variation (<1°) in the size
of the rotational mask corresponding to each movement value.

Although we chose to fix the IWA and highpass pyKLIP
parameters in this investigation, with greater computational
resources and/or for smaller single data sets, we strongly
recommend optimizing them as well.

5. Optimization Analysis and Results

In an uninformed search for planets, we do not know a priori
whether companions are present or at what separations and PAs
they might appear in our data sets. For this reason, we have
chosen to adopt an approach that averages over a number of
planets injected at different separations and PAs in our
continuum images, effectively optimizing over a region of
interest rather than at a single azimuthal and radial location.

The HD 142527 data sets, with a known companion at a
range of separations across the time baseline of our observa-
tions, serve as an ideal test case for this general methodology. If
the continuum, multiplanet optimized, set of KLIP parameters
is robust, then it should successfully recover true Hα
companion signals at any location within the optimization
region at reasonably high S/N. This S/N may not be the
highest achievable, since the companion itself was not the
target of the optimization. However, the method does not rely
on the reality of an apparent companion signal and therefore is
more robust to cognitive biases, particularly in the case of low-
S/N detections. It also mitigates the risk of artificially inflating
the S/N of a companion signal by optimizing on a single
localized combination of companion signal and speckle field.
In this section, we report the results of KLIP ADI optimization
based on five detection metrics (see Section 4.1 for a
description of these metrics) in Section 5.1. We then compare

the results of these optimizations to real planet optimization in
Section 5.2.

5.1. Generic versus Optimized Parameter S/N Maps

In many direct imaging surveys, KLIP reductions are done
with the same set of parameters across all data sets. We
mimicked this “survey” strategy by selecting a single, generic
set of KLIP parameters and applying them to all HD 142527
data sets for comparison against our optimized reductions.
Previous experience with these GAPlanetS data sets led us to
choose annuli= 5, movement= 2, KL Mode= 10, which
reveals most sources in our data at an S/N greater than 2. KLIP
reductions with these initial parameters are shown in the top
panel of Figure 4.
We then ran pyKLIP-PE on continuum planets injected

into our six HD 142527 continuum data sets, with the synthetic
planets injected as described in Section 3.4. From the
pyKLIP-PE output, we first extracted optimum movement,
annuli, and KL mode parameters for each of the three main
image quality metrics individually, namely, peak S/N, average
S/N, and contrast (see Section 4 for a description of how these
metrics are computed). These are shown in panels 2, 3, and 4 of
Figure 4. We then extracted the optimal parameters from the
combination of these three metrics, as shown in panel 5 of
Figure 4. Finally, we incorporated the false-positive fraction
and neighbor quality metrics described in Section 4 and
combined all six image quality metrics, shown in panel 6 of
Figure 4. The peak S/N of each reduction is reported as is
standard in direct imaging.
Figure 4 is therefore a gallery of KLIP postprocessed Hα

images whose parameters were selected to maximize the
recovery of continuum injected planets under each metric. Note
that the false-positive pixel metric is not shown here
individually because it is nearly degenerate and does not have
a single optimal value. It is therefore most beneficial when
combined with other metrics as a means of excluding bad
parameter choices.
Of the 30 optimized companion detections depicted in

Figure 4 (six data sets × five metric combinations), 22
produced a peak S/N improvement of up to 1.2σ relative to
reductions with generic KLIP parameters (annuli= 5,
movement= 2, KL Mode= 10). For five out of the six data

Figure 3. S/N maps showing the effect of high-pass filtering on the HD 142527 2013 April 11 data set. The left S/N map shows no high-pass filtering
(highpass = False) and has a peak companion S/N of 4.1. The middle S/N map shows a default high-pass filter width of 0.1 × the image size
(highpass = True) and has a slightly higher peak S/N of 4.6. The right S/N map shows a more aggressive high-pass filter width of 1 × FWHM and has a peak S/N
of 8.1.
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sets, there is at least one metric choice that improved detection
S/N over the generic with an average improvement of 0.6. In
the remaining data set, the maximum detection S/N selected by
the metrics is equivalent to that of the generic parameters.
However, even in cases where the optimal false planet
parameters for a particular image quality metric lowered the
S/N relative to the generic parameter choices, there was still a
clear detection of the companion using all metrics. In the case
of the most difficult data set (2018 April 27), where the
companion is separated by only 5 pixels from the central star,
the generic reduction could be classified as a nondetection,

while the pyKLIP-PE reductions maximizing peak S/N and
average S/N reveal the object at an S/N of ∼3.2σ. Therefore,
we find that in an uninformed or untargeted planet search of the
HD 142527 system, pyKLIP-PE would recover the compa-
nion at an S/N greater than 3 in all epochs using a number of
metric combinations.
The peak S/N metric optimization produced the best

detections in five out of the six data sets analyzed. However,
its optimizations were not significantly better than any other
single metric. We also find that for a given data set, multiple
metrics tend to converge on the same parameters (e.g., in 2014

Figure 4. Optimization results for six HD 142527 data sets in which the companion is recovered. The top panel shows S/N maps of KLIP reductions using a single set
of fixed KLIP parameters for all data sets: annuli = 5, movement = 2, KL = 10. Panels 2, 3, and 4 show S/N maps of Hα KLIP reductions with optimal
parameters identified for injected continuum planets under the pyKLIP-PE image quality metrics peak S/N (panel 2), average S/N (panel 3), and contrast (panel 4)
individually. Panel 5 shows the optimal parameters selected by the combination of these three metrics. Panel 6 shows the peak S/N, average S/N, contrast
combination, along with the false-positive pixel and neighbor quality metrics. Note that the best parameters based on false-positive pixels are not shown individually
because they are nearly degenerate for most data sets. In each of the six epochs, pyKLIP-PE was able to recover the real planet at a higher S/N than the generic
reductions under each individual metric in 22/30 cases. A Gaussian smoothing was applied to these data with a standard deviation of 1 before computing the S/
N maps.
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April 8 four out of our five metrics were maximized at
annuli = 25, movement = 1). In Section 5.2, we explore the
effects of combining multiple metrics, as well as the effect of
averaging across KL modes.

5.2. Comparison of False and True Companion Optimization

In the previous section, we show a gallery of KLIP Hα
reductions with parameters chosen to maximize various
combinations of the image quality metrics: peak S/N, average
S/N, contrast, false-positive pixels, and neighbor quality. In
each case, we ran the pyKLIP-PE optimizer on fake planets
injected into the continuum data and applied the selected
optimal parameters to Hα images to reveal the real companion.
However, in a case such as this—where the existence of the
companion is well established—a direct Hα optimization result
could in principle be used in lieu of the continuum injected
planet output to maximize the recovered signal of the planet.
We expect that parameters selected in this manner will better
reveal the companion than parameters chosen via fake planet
injection. Therefore, an important test of the pyKLIP-PEʼs
efficacy is its level of agreement between fake and real planet
optimization.

In order to estimate the level of agreement between injected
and true planet optimization, we first reduced the dimension-
ality of the pyKLIP-PE output. This output consists of 25
movement values, 25 annuli values, 9 KL modes (1, 2, 3, 4, 5,
10, 20, 50, 100), 6 parameter quality metrics (peak S/N, peak
S/N neighbor quality, average S/N, average S/N neighbor
quality, spurious pixel count, and contrast), and 4–8 injected
planets for each data set. We begin by averaging across the
continuum planets injected at various PAs and separations
between the IWA and control radius (the “optimization
region”), which allows for direct comparison with the single
companion in Hα. We then collapsed the pyKLIP-PE output
for each data set according to every possible combination of
image quality metrics and KL modes. The result is an aggregate
data quality (ADQ) map for each possible metric collapse
scenario. Since these aggregate maps are combinations of the
normalized image quality metrics, they have a range of possible
maximum values equal to the number of image quality metrics
that have been combined. We renormalize them by subtracting
the 10th percentile value and dividing by the 90th percentile,
creating a parameter quality map where most values lie
between 0 and 1. We do not explore weighting of the image
quality metrics in this work, and we combine them as a simple
linear combination of the individual metrics, but the application
of weighting coefficients is likely a fruitful avenue for future
exploration.

In this work we use these Hα optimization maps only to test
the structural consistency between continuum injected planet
ADQ maps under each metric collapse scenario and those of
the true Hα companion. To quantify the consistency between
the two-parameter quality maps (continuum injected planets
and true Hα companion), we subtract the map for the true Hα
companion from that of the continuum injected planets. This
creates a visualization of the difference in the structure of the
parameter qualities (see Figure 5). We use summary statistics
of these difference maps to analyze the relative merits of
different collapse methods and metric combinations, as well as
qualitative metrics such as the appearance of the final
difference maps in the low-movement regions, where we
expect the results to be most stable. This includes searching for

the combinations that minimize the differences in the structure
of pyKLIP-PE parameter space, which are the values where
the true and false companion results are most closely aligned.
One pattern present in the Hα ADQ maps (shown in the left

panels of Figure 5) is that they often exhibit two distinct peaks.
There is commonly a region of stably optimal parameter space
at low annuli and another at high annuli values. Move-
ment space shows fewer clear patterns in the false versus true
companion residual maps. However, movement values of zero,
equivalent to no rotational mask, are generally unstable in most
image metrics, so we have chosen to exclude them in this
analysis.
We initially sought to identify the metric or sum of metrics

and KL modes that minimized the difference between the real
and injected planet optimizations. In principle, a collapse
method that mimics the structure of the true companion
parameter explorer will have a low standard deviation in the
difference map, while maintaining a sum, median, and
difference at the continuum peak near zero. Therefore, we
utilized distributions of the following values from the
difference maps across all possible metric and KL combina-
tions for all six HD 142527 data sets: the median, standard
deviation, and sum of the difference maps (1–3), and the value
of the difference map at the location of the continuum injected
planet peak (4), which quantifies the relative penalty of
optimizing on the combination of continuum planets in lieu
of the single known companion.
We isolated all metric combinations for which the standard

deviation of the false-true difference map was among the
lowest X%, and where the sum, median, and difference at the
peak of that map were among the X% closest to the mean,
where X is a value that we varied to get a sense for the patterns
in these parameters under the assumption that, with the small
number of data sets under consideration, patterns in “good”
metrics would be more informative/universal than the single
“best” metric.
The metrics chosen varied, though again there was a

preference for more than one image quality metric. We
explored parameter combinations within the top 10% and
12% “best” values for all four measures (the median, standard
deviation, and sum of the difference maps, and the value of the
difference map at the location of the continuum injected planet
peak) and found that in the top 10%, 5 KL modes was chosen
the most frequently, and in the top 12%, 20 KL modes was
chosen then most frequently (Figure 6). Among all metric
combinations that fell in the top 12%, in 25 out of 26, at least 1
KL mode 5 or lower and 1 KL model 10 or higher were
selected. Therefore, we opted to use both 5 and 20.
Informed by this analysis, we opted for a final “best”

collapse method of 5 and 20 KL modes and an equal weighting
of all six image quality metrics.
We show the continuum injected planet and true Hα

companion aggregate maps for this combination, as well as
the difference map and a histogram of its values for this
combination of image quality metrics and KL modes for all
data sets in Figure 5.
The overall distributions of the standard deviation, sum,

median, and difference at the peak of the difference maps for all
collapse scenarios with the final choice marked in red are
shown in Figure 7.
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Figure 5. Maps of pyKLIP-PE output for continuum injected (CF) planets (first column) and the Hα real (HR) companion (second column), for each HD 142527 B
data set, normalized so that the 10th–90th percentiles in the ADQ metric span the range 0–1. The difference between the two normalized maps is shown in the
third column, where red values indicate parameter combinations that are more strongly favored for false planets and blue indicates the opposite. Shown in the
rightmost column are histograms of the difference maps. The highest relative parameter quality annuli/movement combinations are highlighted in red in the two
leftmost columns.
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5.3. Computing Efficiency

While a grid search of KLIP parameters applied to injected
planets can improve detection quality, we recognize that it may

not always be the most time-efficient choice. Note that the
pyKLIP-PE algorithm takes hours to weeks to run on a single
GAPlanetS data set on an 8 core, 32 GB machine. Therefore,
next steps in this exploration process will include investigating

Figure 6. Histograms showing the distribution of KL modes for all parameter combinations (choice of weights for image quality metrics and choice of KL modes for
combination) where the four quantitative measures of similarity between parameter explorer heat map structures for true and injected companions (described in detail
in the text) were among the top 10% (left) and top 12% (right) of values according to all four measures. In the top 10% of reductions, 5 KL modes was chosen most
frequently. In the top 12% of reductions, 20 KL modes was chosen most frequently.

Figure 7. Histograms of summary statistics for continuum injected planet—real Hα companion difference maps. These maps are generated for each of 32,768 possible
combinations of image quality metric and KL mode from the pyKLIP-PE output. For each map, the sum of the difference map (top left), standard deviation of the
difference map (top right), median of the difference map (bottom left), and difference in the ADQ metric score between the injected and true companions at the
location of the peak (bottom right) is computed. These quantities are averaged across the six HD 142527 B detections, and these averaged quantities are depicted in the
histograms. The red vertical lines indicate the value of these statistics for our choice of “best” collapse method.
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more systematically whether there are regions of KLIP
parameter space that yield consistently poor detections and
can be discarded. This would reduce processing time by
decreasing the number of values tested. We caution that these
parameters may be peculiar to the nature of the wavelength
regime and instruments used for a given data set.

5.4. Future Directions

Some parameters that were not explored in detail in the
scope of this research may also be vital in optimizing
detections. One example of this is the “high-pass” pyKLIP
parameter. Preliminary explorations of the high-pass parameter
show that it can change S/N by a factor of 3 or more. We find
that using high-pass values close to that of the PSF’s FWHM
usually result in high-quality detections. However, this
relationship should be further explored, and perhaps even
incorporated into the parameter exploration grid.

These optimization techniques should also be tested on data
from other telescopes. Our specific grid optimization technique
is certainly biased toward GAPlanetS data, so it is vital to
assess to what extent our conclusions are instrument or
wavelength dependent.

In order to gain a full understanding of the detectability of
accreting protoplanets embedded in disks, future analyses
should also consider forward modeling of systems with a disk
and planet combination.

6. Summary and Conclusion

In this paper, we demonstrate that a systematic approach to
optimization of input parameters to the PSF subtraction
algorithm pyKLIP results in equivalent or higher-S/N
detections of companions in the GAPlanetS sample relative
to using a single generic set of parameters across the survey
data set. We begin with six data sets of the HD 142527 system
taken over the course of 5 yr. We gauge the quality of our
parameter selection method, which relies on optimization of
planetary signals injected into the continuum images, based on
its ability to recover these known companions in as many data
sets and at as high an S/N as possible.

We introduce a grid search tool to optimize pyKLIP
parameters using a number of postprocessed image quality
metrics. More specifically, we explore the role of the pyKLIP
user-input parameters movement, annuli, and numbasis
(KL modes) on the quality of postprocessed images. To gauge
image quality, we combine a number of metrics computed from
the final S/N maps of the postprocessed images. These metrics
are the peak (single-pixel) S/N of the recovered planet, the
average S/N of the positive pixels under the planet mask
(r∼ 0.5FWHM), the star/planet contrast achieved at the planet
location, the number of false-positive pixels between the IWA
and control radius of the S/N map, and the quality of nearby
combinations of PyKLIP parameters.

The process of optimization utilized in this work is
summarized as follows:

1. Inject two to eight synthetic planets into the continuum
wavelength images for each GAPlanetS target in between
the IWA and control radius.

2. Fix the KLIP parameters highpass and IWA at values
that were found to be universally reasonable (1 FWHM in
most cases).

3. Complete a coarse grid search of the movement,
annuli, and numbasis parameters with the pyK-
LIP-PE algorithm.

4. Compute S/N maps for each postprocessed image and
record various metrics for the “quality” of each injected
planet detection, namely, peak S/N, peak S/N neighbor
quality, average S/N, average S/N neighbor quality,
contrast, and number of >5σ false-positive pixels inside
of the control radius.

5. Combine all six metrics and average among the 5 and 20
KL mode reductions to arrive at a “best” choice of KLIP
parameters for a given set of continuum injected planets.

6. Apply the best injected planet parameters to the Hα data
and record the peak S/N of the real companion
detections. If the injected planet was able to effectively
mimic a real signal, then its optimal parameters should be
well approximated for a real planet in the same data set.

We demonstrate that, relative to reductions with a generic
fixed choice of KLIP parameter values, this simple grid search
technique is able to reveal the HD 142527 B companion in
every epoch and improve the S/Ns of the detections by up
to 1.2σ.
This simple parameter grid search can help shape our

understanding of how to find planets in an uninformed planet
search. By showing that synthetic planets injected into images
at a wavelength where true sources are expected to be dim can
be used as a reasonable proxy for true planets at neighboring
wavelengths, we can start to conceive of parameter optim-
ization via more advanced mechanisms (such as neural
networks). Furthermore, we have established a reliable and
systematic method to select KLIP parameters without relying
on the reality of the planetary signal itself.
This paper provides one solution to minimizing false-

positive protoplanet detections by developing a robust data-
driven method for KLIP parameter optimization that does not
rely on the reality of an apparent planetary signal. It introduces
a new tool that will help high-contrast imaging surveys make
the most of available data, and may even help reveal planets
missed in previous explorations.
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