# The Sextuple Complete Partitions of Integers 

P. Geetha*


#### Abstract

This paper presents the concepts of sextuple (6tuple) complete partitions of integers. An attempt has been made at the theorem based on the last part of sextuple complete partitions of integers.


Keywords: Integers, Compositions, Partitions, Complete Partitions

## 1. Introduction

A partition ${ }^{v}$ of the integer $n$ is a representation of $n$ as a sum of positive integers wherein the order of the summands is considered irrelevant. Let $v=\left(v_{0}, v_{1}, \ldots . v_{n}\right)$ be a partition of the natural number m into $n+1$ parts $v_{i}$ arranged in non-decreasing order, $m=v_{0}+v_{1}+\ldots .+v_{n}, 1 \leq v_{0} \leq v_{1} \leq \ldots . \leq v_{n}$. The sum of the parts is called the weight of the partition and is denoted by $|v|$, while $n+1$ is the length of the partition [1]. Complete partitions were introduced by the author in [2]. Mac Mahon [3] introduced perfect partitions of a number. He took into the consideration the number of perfect partitions of the number $n=p_{1}{ }^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots . .-1$, where $p_{1}, p_{2}, \ldots$. are primes, and discovered that the quantity of perfect partitions of this number is equal to the quantity of compositions of the multipartite number $\left(\alpha_{1}, \alpha_{2}, \ldots.\right)$. The fact that the number of
*Department of Mathematics, Periyar Maniammai Institute of Science \& Technology, Periyar Nagar, Vallam, Thanjavur; maxgeetha@gmail.com
perfect partitions of $n$ is the same as the number of ordered factorizations of ${ }^{n+1}$ was also shown. He also demonstrated the similarity between the number of ordered factorizations of $n+1$ and the number of perfect partitions of $n$. More recently, the concept of representation as the sum of specified numbers was applied. The phrase "complete" appears to have initially emerged in a Hoggatt and King in [4], which was then resolved in Brown's work from [5]. A similar idea of representing as a sum of given numbers was used in later days. It seems that the word "complete" first appeared in a problem suggested by Hoggatt and King in [4] which was solved in Brown's paper[5]. They called an arbitrary sequence $\left\{f_{i}\right\}_{i=1}^{\infty}$ of positive integers "complete" if every positive integer $n$ could be
represented in the form $\quad \sum_{i=1}$ where each ${ }^{\alpha_{i}}$ was either 0 or 1. We can also write a complete partition of an integer $n$ is a partition $v=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ of n , with $v_{1}=1$, such that each integer $r$, $1 \leq r \leq n$, can be represented as a sum of elements of $v_{1}, v_{2}, \ldots, v_{k}$. [6],[8], [9], [10].

## 2. Survey of Literature

J. J. Sylvester (1857) initiated the study of the partition of numbers. In 1871, he developed the partition of an even number into two prime numbers and published his findings in a paper titled "A note on the theory of a point in partitions". In 1882, he continued his research on sub invariants, or semi-invariants, to binary quantics of an unlimited order, with rational fractions and partitions. Hansraj Gupta (1969) presented a historical survey of some aspects of the theory of partitions in his work partitions - A survey. A. K. Agarwal and M. V. Subbaro (1991) presented some properties of perfect partition function and Combinatorial interpretation of $n!$ [12, $13 \& 14]$. Seung Kyung Park ( 1996) contributed to the study of complete partitions, recurrence relations and generating functions of complete partitions. Seung Kyung Park (1997) worked on the study of
the enumeration of $r$ - complete partitions and a generalization of complete partitions of a positive integer [15]. Enumeration of geometric configurations on a convex polygon was created by Marc Noy in 1999. The theory of partitions has a fundamental invariant, according to Alladi (1999). Hokyu Lee and Seung Kyung Park (2002) represented the double complete partitions with more specified completeness and worked for the $r$ - subcomplete partitions [16]. Ncvillc Robbins (2002) presented the convolution-type formulas for the number of partitions of $n$ that are not divisible by $r$, coprime to $r$ in the paper on partition functions and divisor sums [17]. Overpartitions were created by Jeremy Lovejoy and Sylvie Corteel in 2003. Work on a finite set's partition function was done in 2003 by T.C. Brown et al. James A. Sellers, Andrew V. Sills and Gary L. Mullen (2004) worked on bijections and congruences for generalizations of partition identities of Euler and Guy [18]. James A. Seller (2004) published the results that deal with partition functions that exclude specific polygonal numbers as parts [19]. C. S. Srivatsan et al. (2006) contributed to gentle statistics and constrained partitions. Hokyu Lee (2006) generalized the perfect partition and found a relation with ordered factorizations [20]. Oystein J. Rodseth (2006) presented the study of enumeration of M - partitions, weak M- partitions and generating functions [21]. Mac Mahon (2006) initiated the study of double perfect partitions and found a relation with ordered factorizations. Oystein J. Rodseth (2007) produced some standard results on generating functions and completeness of minimal $r$ - complete partitions [22]. Significant observations regarding the parity of the total number of parts in odd-part partitions were made by James A. Seller in 2007.

## 3. Preliminaries

Definition 3.1: A complete partition of an integer $n$ is a partition

$$
v=\left(v_{1} v_{2} \ldots . v_{k}\right) \text { of } n \text {, with } v_{1}=1 \text {, such that each integer } i, 1 \leq i \leq n,
$$

can be represented as a sum of elements of $v_{1} v_{2} \ldots v_{k}$. In other words, each $i$ can be expressed as $\sum_{j=1}^{k} \beta_{j} v_{j}$, where $\beta_{j}$ is either 0 or 1.

Definition 3.2 : A double complete partition [7] of an integer $n$ is a partition $v=\left(v_{1}^{m_{1}} v_{2}^{m_{2}} \ldots . . v_{l}^{m_{l}}\right)$ of $n$ such that each integer $m$, with $2 \leq m \leq n-2$, $n$ can be represented by at least two different ways

$$
\text { as a sum }^{\sum_{i=1}^{l} \beta_{i} v_{i}} \text { with } \beta_{i} \in\left\{0,1,2, \ldots m_{l}\right\} .
$$

Definition 3.3: For any integer $n \geq 8$, its triple complete partition [11] of an integer $n$ is a partition $v=\left(v_{1}^{m_{1}} v_{2}^{m_{2}} \ldots . . v_{l}^{m_{l}}\right)$ of $n$ such that each integer $m$, with $3 \leq m \leq n-3$, can be represented at least three different ways as a sum $\sum_{i=1}^{l} \beta_{i} v_{i}$ with $\beta_{i} \in\left\{0,1,2, \ldots . m_{l}\right\}$.

Definition 3.4: For any integer $n \geq 11$, the quadruple complete partition of an integer $n$ is a partition $v=\left(v_{1}^{m_{1}} v_{2}^{m_{2}} \ldots . v_{l}^{m_{l}}\right)$ of $n$ such that each integer $m$, with $4 \leq m \leq n-4$, can be represented at least four different ways as a sum $\sum_{i=1}^{l} \beta_{i} v_{i}$ with $\beta_{i} \in\left\{0,1,2, \ldots . m_{l}\right\}$.

Definition 3.5: For any integer $n \geq 16$, its quintuple complete partition can be obtained by taking the parts of $n$ as $v=\left(v_{1}^{m_{1}} v_{2}^{m_{2}} \ldots . . v_{l}^{m_{l}}\right)$ of $n$ such that each integer $r$, with $5 \leq r \leq n-5$, can be represented by at least five different ways as a sum $\sum_{i=1}^{l} \beta_{i} v_{i}$ with $\beta_{i} \in\left\{0,1,2, \ldots m_{l}\right\}$.

## 4. Main Results

Now, we define the sextuple (6- tuple) complete partitions of integers. For both quintuple and sextuple complete partitions of integers $n$ should be greater than or equal to 16 .

Definition 4.1: For any integer $n \geq 16$, its sextuple ( 6 - tuple) complete partition can be obtained by taking the parts of $n$ as $v=\left(v_{1}^{m_{1}} v_{2}^{m_{2}} \ldots . . v_{l}^{m_{l}}\right)$ of $n$ such that each integer $r$, with $6 \leq r \leq n-6$
can be represented at least six different ways as a sum $\sum_{i=1}^{l} \beta_{i} v_{i}$ with $\beta_{i} \in\left\{0,1,2, \ldots m_{l}\right\}$.

Theorem 4.2: If a partition ${ }^{v}=\left(v_{1}^{m_{1}} v_{2}^{m_{2}} \ldots . . v_{l}^{m_{l}}\right)$ of a positive integer
$n \geq 16$ is a sextuple complete partition then

$$
v_{i+1} \leq \sum_{j=1}^{i} m_{j} v_{j}-5
$$

with ${ }^{i \geq 4}$ and $v$ should have at least two 1 's, one 2 , one 3 , one 4 and one 5 (or) one 1 , two 2 's, one 3 , one 4 and one 5 (or) one 1 , one 2 , two

3 's, one 4 and one 5 (or) one 1 , one 2 , one 3 , two 4 's and one 5 (or) one 1 , one 2 , one 3 , one 4 and two 5's as its parts..

Proof : For any integer $n$, its sextuple complete partition can be obtained by taking the value as $n \geq 16$, and the parts of the integer $n$ should be equivalent to $\left(v_{1}^{m_{1}} v_{2}^{m_{2}} \ldots . . v_{l}^{m_{l}}\right)$ We can prove this theorem by considering the parts of the integer as $n=v_{1}^{m_{1}} v_{2}^{m_{2}} v_{3}^{m_{3}} v_{4}^{m_{4}} v_{5}^{m_{5}}$. That is, $n=1^{m_{1}} 2^{m_{2}} 3^{m_{3}} 4^{m_{4}} 5^{m_{5}}$ with $m_{1} \geq 2, m_{2}, m_{3}, m_{4} \& m_{5} \geq 1$ and $v_{5} \leq m_{1}+m_{2}+m_{3}+m_{4} \quad$ is a sextuple complete partition of the integer $n=m_{1} v_{1}+m_{2} v_{2}+m_{3} v_{3}+m_{4} v_{4}+m_{5} v_{5}$. If it is a sextuple complete partition, then for every integer $r$, $\quad j=1$, it can be written as five different ways using the parts $1,2,3,4$ and 5. Therefore, $m_{5} v_{5}, m_{2} v_{1}+m_{4} v_{4}, \quad m_{2} v_{2}+m_{3} v_{3}, m_{2} v_{1}+m_{2} v_{2}$ and $m_{1} v_{1}+m_{3} v_{3}$ are the five representations of $n$ with $v$ satisfies the condition $v_{i+1} \leq \sum_{j=1}^{i} m_{j} v_{j}-5$.

Now we check the condition $v_{i+1} \leq \sum_{j=1}^{i} m_{j} v_{j}-5$ for $n$. Let us assume that
$n=v_{1}^{m_{1}} v_{2} v_{3} v_{4} v_{5}, \quad n=v_{1} v_{2}^{m_{2}} v_{3} v_{4} v_{5}, \quad n=v_{1} v_{2} v_{3}^{m_{3}} v_{4} v_{5}$, $n=v_{1} v_{2} v_{3} v_{4}^{m_{4}} v_{5}$ and $n=v_{1} v_{2} v_{3} v_{4} v_{5}^{m_{5}} \quad$ be a sextuple complete partitions of $n$ with $m_{1}=m_{2}=m_{3}=m_{4}=m_{5}=2$ and $v_{1}=1, v_{2}=2, v_{3}=3, v_{4}=4, v_{5}=5------(1)$.

Case (i): If we consider $n=v_{1}^{m_{1}} v_{2} v_{3} v_{4} v_{5}$, to be the sextuple complete partition, it should satisfy the condition

$$
v_{i+1} \leq \sum_{j=1}^{i} m_{j} v_{j}-5------(2) \quad \text { with } i=4 \text {. Here } n=16 \text { by }
$$

equation (1) and by equation (2), $5 \leq 6$.Therefore, $v$ satisfies the condition.

Case (ii) : If we consider $n=v_{1} v_{2}^{m_{2}} v_{3} v_{4} v_{5}$, to be the sextuple complete partition then by equations (1) and (2) $n=17$ and $5 \leq 7$.

Case (iii) : If we consider $n=v_{1} v_{2} v_{3}^{m_{3}} v_{4} v_{5}$, to be the sextuple complete partition then by equations (1) and (2) $n=18$ and $5 \leq 8$.

Case (iv): If we consider $n=v_{1} v_{2} v_{3} v_{4}{ }^{m_{4}} v_{5}$ to be the sextuple complete partition then by equations (1) and (2) $n=19$ and $5 \leq 9$.

Case (v) : If we consider $n=v_{1} v_{2} v_{3} v_{4} v_{5}^{m_{5}}$ to be the sextuple complete partition then by equations (1) and (2) $n=20$ and $5 \leq 5$.

If the above cases are true for $n=v_{1}^{m_{1}} v_{2} v_{3} v_{4} v_{5}$, $n=v_{1} v_{2}^{m_{2}} v_{3} v_{4} v_{5}, n=v_{1} v_{2} v_{3}{ }^{m_{3}} v_{4} v_{5}, n=v_{1} v_{2} v_{3} v_{4}{ }^{m_{4}} v_{5} \quad$ and $n=v_{1} v_{2} v_{3} v_{4} v_{5}^{m_{5}}$,then the condition $v_{i+1} \leq \sum_{j=1}^{i} m_{j} v_{j}-5$ is also true for $v=\left(v_{1}^{m_{1}} v_{2}^{m_{2}} \ldots . . v_{l}^{m_{l}}\right)$. Hence $v$ satisfies the condition $v_{i+1} \leq \sum_{j=1}^{i} m_{j} v_{j}-5$.

For a clear understanding numerical illustration is presented below.
Numerical Illustration 4.3: For the integer $n=22=1^{2} 23456$ its sextuple complete partition is as follows:

| Sl. No. | Integer n | Sextuple complete partition of $\mathbf{n}$ |
| :---: | :---: | :---: |
| 1. | 22 | $\begin{aligned} & 2.1+1.2+1.3+1.4+1.5+1.6 \\ & 0.1+0.2+0.3+0.4+2.5+2.6 \\ & 0.1+1.2+1.3+0.4+1.5+2.6 \\ & 2.1+0.2+1.3+0.4+1.5+2.6 \\ & 0.1+0.2+2.3+1.4+0.5+2.6 \\ & 1.1+1.2+1.3+1.4+0.5+2.6 \end{aligned}$ |
| 2. | 23 | $\begin{aligned} & 1.1+0.2+0.3+0.4+2.5+2.6 \\ & 1.1+1.2+1.3+0.4+1.5+2.6 \\ & 1.1+0.2+2.3+1.4+0.5+2.6 \\ & 2.1+1.2+1.3+1.4+0.5+2.6 \\ & 0.1+1.2+1.3+2.4+2.5+0.6 \\ & 0.1+2.2+2.3+2.4+1.5+0.6 \end{aligned}$ |

Corollary 4.4: Let $v=\left(v_{1}^{m_{1}} v_{2}^{m_{2}} \ldots . v_{l}^{m_{l}}\right)$ be a sextuple complete partition of a positive integer $n$. Then $v_{i+1} \leq \sum_{j=1}^{i} 6^{j-1} v_{j}$ where $v_{i+1}$ is the last part of the sextuple complete partition of an integer.

Proof: In a sextuple complete partition, $n \geq 16$ and $v_{1}, v_{2}, v_{3}, v_{4}$ and $V_{5}$ should be equivalent to $1,2,3,4$ and 5 respectively. $v_{i+1} \leq v_{1}+v_{2}+\ldots . .+v_{j} \leq 6 v_{1}+6 v_{2}+\ldots . .+6 v_{j} \leq 6^{j-1} v_{1}+6^{j-1} v_{2}+\ldots . .+6^{j-}$

## 5. Conclusion

Using the concept of complete partition an attempt has been made at sextuple complete partitions of integers. This work may be extended upto k-tuple complete partitions of integers.

## References

[1]. Oystein J. Rodseth, Journal of integer sequences, Vol. 10 (2007).
[2].S. K. Park, Complete Partitions, Fibonacci Quart., to appear.
[3]. P. A. Mac Mahon, Combinatory Analysis, Vols I and II, Cambridge Univ. Press, Cambridge, 1975, 1916 (reprinted, Chelsea, 1960).
[4]. V. E. Hoggatt \& C. King, "Problem E 1424" Amer. Math. Monthly 67 (1960) : 593.
[5]. J. L. Brown, Note on Complete sequences of Integers, Amer. Math. Monthly 68 (1961).
[6]. George E. Andrews, Number Theory, W. B. Saunders Company, London.
[7]. Hokyu Lee and Seung Kyung Park, The Double Complete Partitions of Integers, Commun. Korean Math. Soc. 17(2002), No.3, pp. 431 - 437.
[8]. Tom M. Apostol, Introduction to Analytic Number theory, Springer - Verlag, New York Heidelberg Berlin, 1976.
[9]. Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery, An Introduction to the theory of Numbers, 5th Edition, John Wiley \& Sons, Inc. New York.
[10].G. E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and Its Applications. Vol.2. Reading, Mass.: Addison-Wesley, 1976.
[11]. Geetha. P, Gnanam. A, The Triple and Quadruple Complete Partitions of Integers, Bulletin of Pure and Applied Sciences,Vol. 38E (Math \& Stat.), No.1, 2019. P.356-358 Print version ISSN 0970 6577, Online version ISSN 2320 3226, DOI: 10.5958/2320-3226.2019.00038.9.
[12]. Agarwal A. K and M. V. Subbarao, Some properties of perfect partitions, Indian J. pure appl. Math., 22(9) : 737-743, September 1991.
[13]. Agarwal A. K, Padmavathamma, and M. V. Subbarao, Partition theory, Atma Ram \& Sons, Chandigarh, 2005.
[14]. Ahlgren S. and Boylan M., Arithmetic properties of the partition function, Invent. Math. 153(2003), 487 - 502.
[15].Seung Kyung Park,The r-complete Partitions, Discrete Mathematics 183 (1998): 293-297.
[16]. Hokyu Lee, The r - subcomplete partitions, Ewha Womans University, Seoul 120-750, Korea, April 2002.
[17]. Ncvillc Robbins, On partition functions and Divisor sums, Journal of integer sequences, Vol. 5, 2002.
[18]. James A. Sellers, Andrew V. Sills and Gary L. Mullen, Bijections and Congruences for Generalizations of Partition identities of Euler and Guy, The electronic journal of combinatorics, 2004.
[19].James A. Sellers, Partitions Excluding specific polygonal numbers as parts, Journal of integer sequences, Vol. 7(2004).
[20]. Hodyu Lee, Double perfect partitions, Discrete Mathematics 306 (2006), 519 - 525.
[21]. Oystein J. Rodseth, Enumeration of M - partitions, Discrete Mathematics, 2006.
[22]. Oystein J. Rodseth, Minimal r - complete partitions, Journal of integer sequences, Vol. 10 (2007).

