

Double Geodetic Number of a Line Graph

T. Jebaraj* & Ayarlin Kirupa.M*

Abstract

Any line graph L(G), the vertices correspond to the edges of G(V, E) and two vertices in L(G) are adjacent if and only if the corresponding edges in G are adjacent^{μ}. "If there are vertices u, v in S such that $x, y \in I[u, v]$ for any pair of vertices x, y in G, then the set S of vertices of G is said to be a double geodetic set of G. The lowest cardinality of a double geodetic set is represented by the double geodetic number dg(G).". In this study, we determine double geodetic number of several line graphs.

Keywords: double geodetic number, line graph, cartesian product, vertex covering number.

Introduction

A connected finite undirected graph with no loops or multiple edges is referred to as a graph, G = (V, E). The standard notation for the number of edges and vertices in a graph G is m = |E| and n = |V|. We cite [3]. If the subgraph induced by a vertex's neighbours is complete, then that vertex is an extreme vertex of G. The closed interval I[x, y] consists of all vertices lying on some x-y geodesic of G, while for $S \subseteq V$, $I[S] = \bigcup_{x,y \in S} I[x, y]$. A set of vertices S is said to be a geodetic set if I[S] = V and the geodetic number is the lowest cardinality of a geodetic set which is denoted by g(G).In [1] and [2],

^{*} Department of Mathematics, Malankara Catholic College, Mariagiri, Kanyakumari District, 629153, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India; Email: jebaraj.math@gmail.com; ayarlin.kirupa19@gmail.com

the geodetic number is presented and briefly discussed. The double geodetic number that [4] first introduced.

Basic Results

The following theorem is needed for this paper's results to be supported.

Theorem 2.1 [4] For the cycle C_n of order $n \ge 3$, $dg(C_n) = \begin{cases} 2, & \text{if } n \text{ is even} \\ n, & \text{if } n \text{ is odd} \end{cases}$

Double geodetic number of a line graph

Definition 3.1. A set *S*' of vertices of L(G) = H is said to be double geodetic set of *H* if for each pair of vertices *x*, *y* in *H* there exist vertices *u*, *v* in *S*' such that $x, y \in I[u, v]$. The double geodetic number is the lowest cardinality of the double geodetic set of L(G) and is denoted by dg[L(G)].

Example 3.2

In Figure 3.2, L(G) is the line graph of In L(G), $S_1 = \{v_1, v_3, v_5\}$ is the minimum geodetic set but S_1 is not a double geodetic set of L(G) and neither 3 – element nor 4 – element subset of vertices of L(G) contains the dg-set of L(G). Also, it is obvious that, the set $S_1 = \{v_1, v_2, v_3, v_4, v_5\}$ is the minimum double geodetic set of L(G). Therefore, g[L(G)] = 3 and dg[L(G)] = 5. Consequently, a line graph's geodetic number and double geodetic number may differ.

Jebaraj & Kirupa M.

Theorem 3.3 For the line graph L(G) of order n, Then $2 \le g[L(G)] \le dg[L(G)] \le n$.

Proof. A geodetic set requires two vertices at a minimum. Therefore $g[L(G)] \ge 2$. We know that, each geodetic set must contain a double geodetic set. Then $g[L(G)] \le dg[L(G)]$. Since all the vertices of L(G), is a double geodetic set of L(G), $dg[L(G)] \le n$.

Theorem 3.4 For any line graph L(G) of order n, g[L(G)] = 2 iff dg[L(G)] = 2.

Proof. Firstly, we assume that dg[L(G)] = 2. We prove that g[L(G)] = 2. Since dg[L(G)] = 2. By using Theorem 3.3, we get g[L(G)] = 2. Conversely, we assume that g[L(G)] = 2. To prove that dg[L(G)] = 2, suppose we assume that $dg[L(G)] \neq 2$. We know that *G* is connected. By Property 3.2.1 in [7], L(G) is connected. It follows from Proposition 2.14 in [4], dg[L(G)]. This conflicts with our assumption. Hence, dg[L(G)] = 2.

Theorem 3.5 For every tree *T* with k end edges, dg[L(T)] = k.

Proof. Let S be the collection of each extreme vertices of the line graph L(T). By Theorem 2.5 in [4], $dg[L(T)] \ge |S|$. Further more, each double geodetic set of *T* contains every extreme vertex of a line graph L(T). The extreme vertices of L(T) are the corresponding end edges of *T*. So $dg[L(T)] \le |S|$. By Corollary 2.9 in [4], dg[L(T)] = |S| = k. Hence, dg[L(T)] = k.

corollary 3.6 For any path P_n with n vertices, $dg(L(P_n)) = 2$.

Proof. It is clear that $g[L(P_n)] = 2$. By Theorem 3.4, $dg[L(P_n)] = 2$.

Theorem 3.7 For a nontrivial tree *T* of order *n* and *d* be the diameter, then $dg[L(T)] \le n - d + 1$.

Proof. Let *T* be any nontrival tree of order *n* and *d* be the diameter. Let *q* be the vertices of *L*(*T*). Let $p = v_0, v_1, v_2, ..., v_d = q$ be a path for which d(p,q) = d. Let *S* be the extreme vertices of *L*(*T*)also let $S = V[L(T)] - \{v_1, v_2, ..., v_{d-1}\}$. Neccessarily, by Theorem 3.5, $dg[L(T)] = k \le |S| = n - (d - 1) = n - d + 1$.

Theorem 3.8 For cycle C_n of order $n \ge 3$, $dg[L(C_n)] = \begin{cases} 2, & if n is even \\ n, & if n is odd \end{cases}$

Proof. This statement is true based on Theorem 2.1

Theorem 3.9 For the helm graph H_n , $dg[L(H_n)] = \begin{cases} 8, & if n = 4 \\ 3n, & if n \ge 5 \end{cases}$.

Proof. Let *x* the vertex of K_1 , $V(C_n) = \{v_1, v_2, v_3, ..., v_n\}$, $E = \{e_1, e_2, ..., e_n\}$ be the internal edges and $U = \{u_1, u_2, ..., u_n\}$ be the degree one vertices in helm graph H_n . Now, the vertices $W = \{w_1, w_2, ..., w_n\}$, are formed from the end edges of H_n ; $W \subseteq V[L(H_n)]$, and $X = \{x_1, x_2, ..., x_n\}$ are the vertices made up of the edges of C_n ; $X \subseteq V[L(H_n)]$, $Y = \{y_1, y_2, ..., y_n\}$ which are the vertices of $L(H_n)$, made up of internal edges of H_n ; $Y \subseteq V[L(H_n)]$.

Case (i) If *n* = 4.

For the graph $L(H_4)$, the set of vertices in the set $W = \{w_1, w_2, w_3, w_4\}$ are all extreme vertices. The set W is the only minimum geodetic set of $L(H_4)$, but this set W is not double geodetic set. Because, some pair of vertices (w_i, y_i) where $1 \le i \le 4$, does not lie on any geodesic of W. Now, consider the set- $Y = \{y_1, y_2, y_3, y_4\}$. All are weak extreme vertices. Hence, the set $W \cup Y$ is unique minimum double geodetic set in $L(H_4)$. Thus, we get $|W \cup Y| = 8$. Therefore, $dg[L(H_4)] = 8$.

Case (ii) For $n \ge 5$.

Let *v* be any vertex in $L(H_n)$. First we prove that *v* is $L(H_n)$'s weak extreme vertex. Let *v*' be the eccentric vertex of *v* in $L(H_n)$. Then, *v*, *v*' lie only on I[v, v'] so that $L(H_n)$ has a weak extreme vertex *v*. Proceeding like this, all vertices of $L(H_n)$ are weak extreme vertices. By Proposition 2.14 in [4], All the vertices of H_n are unique double geodetic set of $L(H_n)$ and $|W \cup X \cup Y| = 3n$, Thus, $dg[L(H_n)] = 3n$.

Corollary 3.10: For the helm graph H_n , $n \ge 5$, $g[L(H_n)] + dg[L(H_n)] = m + n$.

Proof. helm graph H_n has 3n edges. It becomes 3n vertices in $L(H_n)$. Since $g[L(H_n)] = n$ and $dg[L(H_n)] = 3n$ and $V[L(H_n)] = E(H_n) = m$ and V(W) = n, where W is the extreme vertices of $L(H_n)$.

Now, $g[L(H_n)] + dg[L(H_n)] = 4n = 3n + n = V[L(H_n)] + V(W) = m + n.$

Corollary 3.11: For the helm graph $(n \ge 5)$, $dg[L(H_n)] = \delta \Delta - 6$.

Jebaraj & Kirupa M.

Proof. $L(H_n)$ has a minimum degree δ of 3 and a maximum degree Δ of n + 2.

Now, $dg[L(H_n)] = 3n$, $dg[L(H_n)] + 6 = 3n + 6 = 3(n+2) = \delta\Delta$. $dg[L(H_n)] = \delta\Delta - 6$.

Theorem 3.12 For the wheel graph of order $n \ge 7$, $dg[L(W_n)] = n - 1$.

Proof. Let $W_n = K_1 + C_{n-1}$ $(n \ge 7)$ with *x* as the vertex of K_1 and $(C_{n-1}) = \{v_1, v_2, ..., v_{n-1}\}$, $E = \{e_1, e_2, ..., e_{n-1}\}$ be the internal edges of W_n . Now, $Y = \{y_1, y_2, ..., y_{n-1}\}$ be the vertices made up of the edges of C_{n-1} . i.e) $Y \subseteq V[L(W_n)], Z = \{z_1, z_2, ..., z_{n-1}\}$ which vertices of $[L(W_n)]$ formed from the internal edges of W_n ; $Z \subseteq V[L(W_n)]$. For every pair of vertices which are $d(u, v) = diam[L(W_n)]$ is formed by the double geodetic set of $L[(W_n)]$. Obviously, the collection of all vertices of the set *Y* is a dg – set of $L(W_n)$ and $dg[L(W_n)] = n - 1$.

Theorem 3.13 For the friendship graph F_n having 2n + 1 vertices, $dg[L(F_n)] = n \cdot n \ge 3$.

Proof. friendship graph F_n has 2n + 1 vertices and 3n edges. Let x be common vertex. 2n edges are incident with common vertex x. This 2n edges forms 2n vertices $U = \{u_1, u_2, ..., u_{2n}\}$ in (F_n) . Also the remaining n edges of F_n which are not incident with the vertex x forms n extreme vertices $W = \{w_1, w_2, ..., w_n\}$ in $L(F_n)$; $U, W \subseteq V[L(F_n)]$. By Theorem 2.5 in [4], the set S contains the vertices of W and $d(u, v) = diam[L(F_n)]$ and every pair of vertices lies on the set S. Thus, S is the only minimum double geodetic set of $L(F_n)$ and so |S| = n.

Corollary 3.14 For the friendship graph F_n , $(n \ge 3)$, $g[L(F_n)] + dg[L(F_n)] = m - n$.

Proof. Let $U = \{u_1, u_2, ..., u_{2n}\}$ be the vertices made of the internal edges of F_n and $W = \{w_1, w_2, ..., w_n\}$ be the extreme vertices of $L(F_n)$ formed from n –copies of the cycle graph C_3 of F_n . W forms the minimum double geodetic set of $L(F_n)$. It is obvious that $g[L(F_n)]$ and $dg[L(F_n)]$ are same. Since the friendship graph F_n has 2n internal edges, it becomes 2n vertices of $L(F_n)$. Since $V[L(F_n)] = E(F_n)] = m$ and V(W) = n and also $g[L(F_n)] = n$.

Mapana - Journal of Sciences, Vol. 22, Special Issue 1

Now, $g[L(F_n)] + dg[L(F_n)] = 2n = V(U)$ = $V[L(F_n)] - V(W)$ = m - n.

Corollary 3.15 For the friendship graph F_{n} , $(n \ge 3)$, $dg[L(F_n)] = \frac{\Delta}{\delta}$.

Proof. Minimum degree (δ) of $L(F_n)$ is 2 and maximum degree (Δ) of $L(F_n)$ is 2n.

Now, $dg[L(F_n)] = n$

$$=\frac{2n}{2}$$
$$=\frac{\Delta}{\delta}.$$

Theorem 4.1 For the pan graph P_n of order $n \ge 3$, $dg[L(P_n)] =$ $\begin{cases} 2 & if n \text{ is odd} \\ 4 & if n \text{ is even} \end{cases}$

Proof. Consider a cycle $\{v_1, v_2, ..., v_n, v_1\}$ with *n* vertices. Let P_n be the pan graph made from $G = C_n$ by adding an end edge uv such that $u \in G$ and $v \notin G$, by the definition of line graph, cycle's line graph is also a cycle and the end edge in P_n' is the extreme vertex of $L(P_n)$. Now, $L(P_n) = C_n \cup K_3$. We prove the following cases.

Case (i) *n* is odd

The geodetic number of $L(P_n)$ is 2. By theorem 3.4, $dg[L(P_n)] = 2$.

Case (ii) *n* is even

Since the edge $uv = v_k$ the extreme vertex in $L(P_n)$. By theorem 2.5 in [4], v_k belongs to the double geodetic set of $L(P_n)$. Since $L(P_n) =$ $C_n \cup K_3$ -the edges v_i, v_j occurring on the vertex of u, which is antipodal in P_n - are the vertices in $L(P_n)$. These vertices are contained in the double geodetic set of $L(P_n)$. Let v_m be the vertex of $L(P_n)$ which is the eccentric vertex of v_k . This follows from Case (ii) of theorem 3.9, v_m is a weak extreme vertex of $L(P_n)$. By Proposition 2.14 in [4], v_m belongs to the double geodetic set. Hence, S = $\{v_k, v_i, v_i, v_m\}$ is the double geodetic set of $L(P_n)$ and hence $dg[L(P_n)] = 4$.

Theorem 4.2 For the pan graph P_n , *n* is odd, $dg[L(P_n)] = 2 \propto_0 (P_n) - n + 1$.

Jebaraj & Kirupa M.

Proof. If $n \ge 3$ is odd and let ∞ be the vertex covering number of P_n . Since $dg[L(P_n)] = 2$ and n is odd, $\infty (P_n) = \frac{n+1}{2}$. Hence, $dg[L(P_n)] = 2 = 1 + 1 = 1 - n + 1 + n$ and $dg[L(P_n)] = \frac{2(-n+1+1+n)}{2} = \frac{2(1-n)}{2} + \frac{2(1+n)}{2} = 2 \propto (P_n) - n + 1$.

Theorem 4.3 For the pan graph P_n , *n* is even, $dg[L(P_n)] = 2 \propto_0 (P_n) - n + 2$.

Proof. Let \propto_{\circ} is the vertex covering number of P_n , $n \ge 3$, n is even. We have $dg[L(P_n)] = 4$ and n is even, $\propto_{\circ} (P_n) = \frac{n+2}{2}$. Hence, $dg[L(P_n)] = 4 = 2 + 2 = -n + 2 + n + 2$.

$$=\frac{2(-n+2+n+2)}{2}=2 \propto (P_n)-n+2.$$

Theorem 4.4 If the graph G' is obtained by adding an end edge $u_i, v_i, i = 1, 2, ..., n$ to each vertex of $G = C_n$ such that $u_i \in G$, $v_i \notin G$. Then, $dg[L(G')] = \begin{cases} 2n, for n \text{ is odd} \\ n, for n \text{ is even} \end{cases}$.

5. Cartesian Product

Theorem 5.1. For any cycle C_n of order $n \ge 3$, $dg[L(C_n \times P_2)] = \begin{cases} 4 & if n is even \\ 3n & if n is odd \end{cases}$

Proof. Let $C_n \times P_2$ be formed from two copies G_1 and G_2 of C_n . this graph is called n – prism graph. The $C_n \times P_2$ graph contains two sets of cycle C_n . One set of cycle is C_1 and another one is C_2 . In $L(C_n \times P_2)$, the vertices $X = \{x_1, x_2, ..., x_n\}$ corresponds the edges of C_1 and the edges of C_2 converted to the vertices $Y = \{y_1, y_2, ..., y_n\}$.also, the set $Z = \{z_1, z_2, ..., z_n\}$ corresponds to edges incident with the cycles C_1 and C_2 .

Case (i) if n is even

In $L(C_n \times P_2)$, the vertex x_i where $(1 \le i \le n)$ is an eccentric vertex of vertex x_j , $(1 \le j \le n)$ in *X*. It is obvious the pair x_i, x_j of vertices lie only $I[x_i, x_j]$. consequently, the vertex x_i and x_j are the weak extreme vertices. By Proposition 2.14 in [4], the vertices x_i and x_j belongs to ', where S' is the geodetic set. But every pair does not lie on any geodesic of S'. So, we consider the set *Y*, where the vertices y_i and y_j are eccentric for each other. hence, the vertices y_i and y_j belongs to the double geodetic set S'. thus, S' =

 $\{x_i, x_j, y_i, y_j\}$ is the minimum double geodetic set of $L(C_n \times P_2)$.thus, $dg[L(C_n \times P_2)] = 4$.

Case (ii) if n is odd

This follows from the case (ii) of theorem 3.9.

References

- F. Buckley and F. Harary, Distance in graphs, Addison-Wesley, Reading, MA (1990)
- [2] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, 39(2002), 1-6.
- [3] F. Harary, Graph Theory (Addision-Wesley, 1969).
- [4] A. P. Santhakumaran, T. Jebaraj, Double geodetic number of a graph, Discussiones Mathematicae, Graph Theory, 32(2012), 109 – 119.
- [5] Venkanagouda .M. Goundar, K. S. Asha Latha, Venkatesha, M. H. Muddebihal, On the geodetic number of line graph, Int. J. Contemp. Math. Sciences, vol.7, No 46(2012), 2289 –2295.
- [6] Venkanagouda .M. Goudar and K. S. Asha Latha, Venkatesha, Split Geodetic number of a Line Graph, International J. Math. Combin.Vol.3(2015), 81-87.
- [7] M.Venkatachalapathy, K.Kokila and B.Abarna, Some Trends In Line Graphs, Advances in Theoretical and Applied Mathematics. ISSN 0973-4554 Volume 11, Number 2(2016), 171-178.