Mapana - Journal of Sciences
2023, Vol 22, Special Issue 1, 33-40
ISSN 0975-3303|https://doi.org/10.12723/mjs.sp1.3

Double Geodetic Number of a Line Graph

T. Jebaraj* \& Ayarlin Kirupa.M*

Abstract

Any line graph $L(G)$, the vertices correspond to the edges of $G(V, E)$ and two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G are adjacent". "If there are vertices u, v in S such that $x, y \in I[u, v]$ for any pair of vertices x, y in G, then the set S of vertices of G is said to be a double geodetic set of G. The lowest cardinality of a double geodetic set is represented by the double geodetic number $d g(G)^{\prime \prime}$. In this study, we determine double geodetic number of several line graphs.

Keywords: double geodetic number, line graph, cartesian product, vertex covering number.

Introduction

A connected finite undirected graph with no loops or multiple edges is referred to as a graph, $G=(V, E)$. The standard notation for the number of edges and vertices in a graph G is $m=|E|$ and $n=|V|$. We cite [3]. If the subgraph induced by a vertex's neighbours is complete, then that vertex is an extreme vertex of G. The closed interval $I[x, y]$ consists of all vertices lying on some $x-y$ geodesic of G, while for $S \subseteq V, I[S]=\cup_{x, y \in S} I[x, y]$. A set of vertices S is said to be a geodetic set if $I[S]=V$ and the geodetic number is the lowest cardinality of a geodetic set which is denoted by $g(G)$.In [1] and [2],

[^0]the geodetic number is presented and briefly discussed. The double geodetic number that [4] first introduced.

Basic Results

The following theorem is needed for this paper's results to be supported.
Theorem 2.1 [4] For the cycle C_{n} of order $n \geq 3, d g\left(C_{n}\right)=$ $\left\{\begin{array}{c}2, \\ n, \\ n \text { if } n \text { is even } \text { odd }\end{array}\right.$.

Double geodetic number of a line graph

Definition 3.1. A set S^{\prime} of vertices of $L(G)=H$ is said to be double geodetic set of H if for each pair of vertices x, y in H there exist vertices u, v in S^{\prime} such that $x, y \in I[u, v]$. The double geodetic number is the lowest cardinality of the double geodetic set of $L(G)$ and is denoted by $d g[L(G)]$.

Example 3.2

G

Figure 3.1

$L(G)$
Figure 3.2

In Figure 3.2, $L(G)$ is the line graph of $\operatorname{In} L(G), S_{1}=\left\{v_{1}, v_{3}, v_{5}\right\}$ is the minimum geodetic set but S_{1} is not a double geodetic set of $L(G)$ and neither 3 - element nor 4 - element subset of vertices of $L(G)$ contains the $d g$-set of $L(G)$. Also, it is obvious that, the set $S_{1}=$ $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ is the minimum double geodetic set of $L(G)$. Therefore, $g[L(G)]=3$ and $d g[L(G)]=5$. Consequently, a line graph's geodetic number and double geodetic number may differ.

Theorem 3.3 For the line graph $L(G)$ of order n, Then $2 \leq$ $g[L(G)] \leq d g[L(G)] \leq n$.

Proof. A geodetic set requires two vertices at a minimum. Therefore $g[L(G)] \geq 2$. We know that, each geodetic set must contain a double geodetic set. Then $g[L(G)] \leq d g[L(G)]$. Since all the vertices of $L(G)$, is a double geodetic set of $L(G), d g[L(G)] \leq n$.
Theorem 3.4 For any line graph $L(G)$ of order $n, g[L(G)]=2$ iff $d g[L(G)]=2$.
Proof. Firstly, we assume that $d g[L(G)]=2$. We prove that $g[L(G)]=2$. Since $d g[L(G)]=2$. By using Theorem 3.3, we get $g[L(G)]=2$. Conversely, we assume that $g[L(G)]=2$. To prove that $d g[L(G)]=2$, suppose we assume that $d g[L(G)] \neq 2$. We know that G is connected. By Property 3.2.1 in [7], $L(G)$ is connected. It follows from Proposition 2.14 in [4], $d g[L(G)]$. This conflicts with our assumption. Hence, $d g[L(G)]=2$.
Theorem 3.5 For every tree T with k end edges, $d g[L(T)]=k$.
Proof. Let S be the collection of each extreme vertices of the line graph $L(T)$. By Theorem 2.5 in [4], $d g[L(T)] \geq|S|$. Further more, each double geodetic set of T contains every extreme vertex of a line graph $L(T)$. The extreme vertices of $L(T)$ are the corresponding end edges of T. So $d g[L(T)] \leq|S|$. By Corollary 2.9 in $[4], d g[L(T)]=$ $|S|=k$. Hence, $d g[L(T)]=k$.
corollary 3.6 For any path P_{n} with n vertices, $d g\left(L\left(P_{n}\right)\right]=2$.
Proof. It is clear that $g\left[L\left(P_{n}\right)\right]=2$. By Theorem 3.4, $d g\left[L\left(P_{n}\right)\right]=2$.
Theorem 3.7 For a nontrivial tree T of order n and d be the diameter, then $d g[L(T)] \leq n-d+1$.
Proof. Let T be any nontrival tree of order n and d be the diameter. Let q be the vertices of $L(T)$. Let $p=v_{0}, v_{1}, v_{2}, \ldots, v_{d}=q$ be a path for which $d(p, q)=d$. Let S be the extreme vertices of $L(T)$ also let $S=$ $V[L(T)]-\left\{v_{1}, v_{2}, \ldots, v_{d-1}\right\}$. Neccesarily, by Theorem 3.5, $d g[L(T)]=$ $k \leq|S|=n-(d-1)=n-d+1$.

Theorem 3.8 For cycle C_{n} of order $n \geq 3, d g\left[L\left(C_{n}\right)\right]=$ $\left\{\begin{array}{l}2, \text { if } n \text { is even } \\ n, \text { if } n \text { is odd }\end{array}\right.$.

Proof. This statement is true based on Theorem 2.1
Theorem 3.9 For the helm graph $H_{n}, d g\left[L\left(H_{n}\right)\right]=\left\{\begin{array}{l}8, \text { if } n=4 \\ 3 n, \text { if } n \geq 5\end{array}\right.$.
Proof. Let x the vertex of $K_{1}, V\left(C_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$, $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the internal edges and $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the degree one vertices in helm graph H_{n}. Now, the vertices $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$, are formed from the end edges of $H_{n} ; W \subseteq$ $V\left[L\left(H_{n}\right)\right]$, and $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ are the vertices made up of the edges of $C_{n} ; \quad X \subseteq V\left[L\left(H_{n}\right)\right], Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ which are the vertices of $L\left(H_{n}\right)$, made up of internal edges of $H_{n} ; Y \subseteq V\left[L\left(H_{n}\right)\right]$.
Case (i) If $n=4$.
For the graph $L\left(H_{4}\right)$, the set of vertices in the set $W=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ are all extreme vertices. The set W is the only minimum geodetic set of $L\left(H_{4}\right)$, but this set W is not double geodetic set. Because, some pair of vertices (w_{i}, y_{i}) where $1 \leq i \leq 4$, does not lie on any geodesic of W. Now, consider the set $-Y=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. All are weak extreme vertices. Hence, the set $W \cup Y$ is unique minimum double geodetic set in $L\left(H_{4}\right)$. Thus, we get $|W \cup Y|=8$. Therefore, $d g\left[L\left(H_{4}\right)\right]=8$.
Case (ii) For $n \geq 5$.
Let v be any vertex in $L\left(H_{n}\right)$. First we prove that v is $L\left(H_{n}\right)^{\prime}$'s weak extreme vertex. Let v^{\prime} be the eccentric vertex of v in $L\left(H_{n}\right)$. Then, v, v^{\prime} lie only on $I\left[v, v^{\prime}\right]$ so that $L\left(H_{n}\right)$ has a weak extreme vertex v. Proceeding like this, all vertices of $L\left(H_{n}\right)$ are weak extreme vertices. By Proposition 2.14 in [4], All the vertices of H_{n} are unique double geodetic set of $L\left(H_{n}\right)$ and $|W \cup X \cup Y|=3 n$, Thus, $d g\left[L\left(H_{n}\right)\right]=3 n$.
Corollary 3.10: For the helm graph $H_{n}, n \geq 5, g\left[L\left(H_{n}\right)\right]+$ $d g\left[L\left(H_{n}\right)\right]=m+n$.

Proof. helm graph H_{n} has $3 n$ edges. It becomes $3 n$ vertices in $L\left(H_{n}\right)$. Since $g\left[L\left(H_{n}\right)\right]=n$ and $d g\left[L\left(H_{n}\right)\right]=3 n$ and $V\left[L\left(H_{n}\right)\right]=$ $E\left(H_{n}\right)=m$ and $V(W)=n$, where W is the extreme vertices of $L\left(H_{n}\right)$.
Now, $g\left[L\left(H_{n}\right)\right]+d g\left[L\left(H_{n}\right)\right]=4 n=3 n+n \quad=V\left[L\left(H_{n}\right)\right]+V(W)=$ $m+n$.

Corollary 3.11: For the helm graph $(n \geq 5), d g\left[L\left(H_{n}\right)\right]=\delta \Delta-6$.

Proof. $L\left(H_{n}\right)$ has a minimum degree δ of 3 and a maximum degree Δ of $n+2$.

Now, $d g\left[L\left(H_{n}\right)\right]=3 n, d g\left[L\left(H_{n}\right)\right]+6=3 n+6=3(n+2)=\delta \Delta$. $d g\left[L\left(H_{n}\right)\right]=\delta \Delta-6$.

Theorem 3.12 For the wheel graph of order $n \geq 7, d g\left[L\left(W_{n}\right)\right]=n-$ 1.

Proof. Let $W_{n}=K_{1}+C_{n-1}(n \geq 7)$ with x as the vertex of K_{1} and $\left(C_{n-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}, E=\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$ be the internal edges of W_{n}. Now, $Y=\left\{y_{1}, y_{2}, \ldots, y_{n-1}\right\}$ be the vertices made up of the edges of C_{n-1}. i.e) $Y \subseteq V\left[L\left(W_{n}\right)\right], Z=\left\{z_{1}, z_{2}, \ldots, z_{n-1}\right\}$ which verticesof $\left[L\left(W_{n}\right)\right]$ formed from the internal edges of $W_{n} ; Z \subseteq$ $V\left[L\left(W_{n}\right)\right]$. For every pair of vertices which are $d(u, v)=\operatorname{diam}\left[L\left(W_{n}\right)\right]$ is formed by the double geodetic set of $L\left[\left(W_{n}\right)\right]$. Obviously, the collection of all vertices of the set Y is a $d g-$ set of $L\left(W_{n}\right)$ and $d g\left[L\left(W_{n}\right)\right]=n-1$.

Theorem 3.13 For the friendship graph F_{n} having $2 n+1$ vertices, $d g\left[L\left(F_{n}\right)\right]=n-n \geq 3$.

Proof. friendship graph F_{n} has $2 n+1$ vertices and $3 n$ edges. Let x be common vertex. $2 n$ edges are incident with common vertex x. This $2 n$ edges forms $2 n$ vertices $\quad U=\left\{u_{1}, u_{2}, \ldots, u_{2 n}\right\}$ in $\left(F_{n}\right)$. Also the remaining n edges of F_{n} which are not incident with the vertex x forms n extreme vertices $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ in $L\left(F_{n}\right) ; U, W \subseteq V\left[L\left(F_{n}\right)\right]$. By Theorem 2.5 in [4], the set S contains the vertices of W and $d(u, v)=\operatorname{diam}\left[L\left(F_{n}\right)\right]$ and every pair of vertices lies on the set S. Thus, S is the only minimum double geodetic set of $L\left(F_{n}\right)$ and so $|S|=n$.

Corollary 3.14 For the friendship graph $F_{n},(n \geq 3), g\left[L\left(F_{n}\right)\right]+$ $d g\left[L\left(F_{n}\right)\right]=m-n$.

Proof. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{2 n}\right\}$ be the vertices made of the internal edges of F_{n} and $\quad W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be the extreme vertices of $L\left(F_{n}\right)$ formed from n-copies of the cycle graph C_{3} of F_{n}. W forms the minimum double geodetic set of $L\left(F_{n}\right)$. It is obvious that $g\left[L\left(F_{n}\right)\right]$ and $\operatorname{dg}\left[L\left(F_{n}\right)\right]$ are same. Since the friendship graph F_{n} has $2 n$ internal edges, it becomes $2 n$ vertices of $L\left(F_{n}\right)$. Since $V\left[L\left(F_{n}\right)\right]=$ $\left.E\left(F_{n}\right)\right]=m$ and $V(W)=n$ and also $g\left[L\left(F_{n}\right)\right]=n$.

Now, $g\left[L\left(F_{n}\right)\right]+d g\left[L\left(F_{n}\right)\right]=2 n=V(U)$

$$
\begin{aligned}
& =V\left[L\left(F_{n}\right)\right]-V(W) \\
& =m-n .
\end{aligned}
$$

Corollary 3.15 For the friendship graph $F_{n},(n \geq 3), d g\left[L\left(F_{n}\right)\right]=\frac{\Delta}{\delta}$.
Proof. Minimum degree (δ) of $L\left(F_{n}\right)$ is 2 and maximum degree (Δ) of $L\left(F_{n}\right)$ is $2 n$.
Now, $d g\left[L\left(F_{n}\right)\right]=n$

$$
\begin{aligned}
& =\frac{2 n}{2} \\
& =\frac{\Delta}{\delta} .
\end{aligned}
$$

Theorem 4.1 For the pan graph P_{n} of order $n \geq 3, \operatorname{dg}\left[L\left(P_{n}\right)\right]=$ \{ 2 if n is odd
\{ 4 if n is even.
Proof. Consider a cycle $\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right\}$ with n vertices. Let P_{n} be the pan graph made from $G=C_{n}$ by adding an end edge $u v$ such that $u \in G$ and $v \notin G$, by the definition of line graph, cycle's line graph is also a cycle and the end edge in $P_{n}{ }^{\prime}$ is the extreme vertex of $L\left(P_{n}\right)$. Now, $L\left(P_{n}\right)=C_{n} \cup K_{3}$. We prove the following cases.
Case (i) n is odd
The geodetic number of $L\left(P_{n}\right)$ is 2. By theorem 3.4, $d g\left[L\left(P_{n}\right)\right]=2$.
Case (ii) n is even
Since the edge $u v=v_{k}$ the extreme vertex in $L\left(P_{n}\right)$. By theorem 2.5 in [4] , v_{k} belongs to the double geodetic set of $L\left(P_{n}\right)$. Since $L\left(P_{n}\right)=$ $C_{n} \cup K_{3}$-the edges v_{i}, v_{j} occurring on the vertex of u, which is antipodal in P_{n} - are the vertices in $L\left(P_{n}\right)$. These vertices are contained in the double geodetic set of $L\left(P_{n}\right)$. Let v_{m} be the vertex of $L\left(P_{n}\right)$ which is the eccentric vertex of v_{k}. This follows from Case (ii) of theorem 3.9, v_{m} is a weak extreme vertex of $L\left(P_{n}\right)$. By Proposition 2.14 in [4], v_{m} belongs to the double geodetic set. Hence, $S=$ $\left\{v_{k}, v_{i}, v_{j}, v_{m}\right\}$ is the double geodetic set of $L\left(P_{n}\right)$ and hence $\operatorname{dg}\left[L\left(P_{n}\right)\right]=4$.
Theorem 4.2 For the pan graph P_{n}, n is odd, $\operatorname{dg}\left[L\left(P_{n}\right)\right]=$ $2 \propto_{0}\left(P_{n}\right)-n+1$.

Proof. If $n \geq 3$ is odd and let α_{0} be the vertex covering number of P_{n}. Since $\operatorname{dg}\left[L\left(P_{n}\right)\right]=2$ and n is odd, $\quad \propto_{\circ}\left(P_{n}\right)=\frac{n+1}{2}$. Hence, $d g\left[L\left(P_{n}\right)\right]=2=1+1=1-n+1+n$ and $d g\left[L\left(P_{n}\right)\right]=\frac{2(-n+1+1+n)}{2}=$ $\frac{2(1-n)}{2}+\frac{2(1+n)}{2}=2 \alpha_{0}\left(P_{n}\right)-n+1$.
Theorem 4.3 For the pan graph P_{n}, n is even, $\operatorname{dg}\left[L\left(P_{n}\right)\right]=$ $2 \propto_{0}\left(P_{n}\right)-n+2$.
Proof. Let α_{\circ} is the vertex covering number of $P_{n}, n \geq 3, n$ is even. We have $d g\left[L\left(P_{n}\right)\right]=4$ and n is even, $\propto_{\circ}\left(P_{n}\right)=\frac{n+2}{2}$. Hence, $d g\left[L\left(P_{n}\right)\right]=$ $4=2+2=-n+2+n+2$.

$$
=\frac{2(-n+2+n+2)}{2}=2 \alpha_{\circ}\left(P_{n}\right)-n+2 \text {. }
$$

Theorem 4.4 If the graph G^{\prime} is obtained by adding an end edge $u_{i}, v_{i}, i=$ $1,2, \ldots, n$ to each vertex of $G=C_{n}$ such that $u_{i} \in G, v_{i} \notin G$.Then, $d g\left[L\left(G^{\prime}\right)\right]=\left\{\begin{array}{l}2 n, \text { for } n \text { is odd } \\ n, \text { for } n \text { is even }\end{array}\right.$.

5. Cartesian Product

Theorem 5.1. For any cycle C_{n} of order $n \geq 3, \operatorname{dg}\left[L\left(C_{n} \times P_{2}\right)\right]=$ $\{4$ if n is even
$\left\{3 n\right.$ if n is odd ${ }^{*}$
Proof. Let $C_{n} \times P_{2}$ be formed from two copies G_{1} and G_{2} of C_{n}. this graph is called $n-$ prism graph. The $C_{n} \times P_{2}$ graph contains two sets of cycle C_{n}. One set of cycle is C_{1} and another one is C_{2}. In $L\left(C_{n} \times P_{2}\right)$, the vertices $X=$ $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ corresponds the edges of C_{1} and the edges of C_{2} converted to the vertices $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$.also, the set $Z=\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ corresponds to edges incident with the cycles C_{1} and C_{2}.
Case (i) if n is even
In $L\left(C_{n} \times P_{2}\right)$, the vertex x_{i} where $(1 \leq i \leq n)$ is an eccentric vertex of vertex $x_{j},(1 \leq j \leq n)$ in X. It is obvious the pair x_{i}, x_{j} of vertices lie only $I\left[x_{i}, x_{j}\right]$. consequently, the vertex x_{i} and x_{j} are the weak extreme vertices. By Proposition 2.14 in [4], the vertices x_{i} and x_{j} belongs to ', where S^{\prime} is the geodetic set. But every pair does not lie on any geodesic of S^{\prime}. So, we consider the set Y, where the vertices y_{i} and y_{j} are eccentric for each other. hence, the vertices y_{i} and y_{j} belongs to the double geodetic set S^{\prime}. thus, $S^{\prime}=$
$\left\{x_{i}, x_{j}, y_{i}, y_{j}\right\}$ is the minimum double geodetic set of $L\left(C_{n} \times\right.$ $\left.P_{2}\right)$.thus, $d g\left[L\left(C_{n} \times P_{2}\right)\right]=4$.
Case (ii) if n is odd
This follows from the case (ii) of theorem 3.9.

References

[1] F. Buckley and F. Harary, Distance in graphs, Addison- Wesley, Reading, MA (1990)
[2] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, 39(2002), 1-6.
[3] F. Harary, Graph Theory (Addision- Wesley, 1969).
[4] A. P. Santhakumaran, T. Jebaraj, Double geodetic number of a graph, Discussiones Mathematicae, Graph Theory, 32(2012), 109 - 119.
[5] Venkanagouda .M. Goundar, K. S. Asha Latha, Venkatesha, M. H. Muddebihal, On the geodetic number of line graph, Int. J. Contemp. Math. Sciences, vol.7, No 46(2012), 2289 -2295.
[6] Venkanagouda .M. Goudar and K. S. Asha Latha, Venkatesha, Split Geodetic number of a Line Graph, International J. Math. Combin.Vol.3(2015), 81-87.
[7] M.Venkatachalapathy, K.Kokila and B.Abarna, Some Trends In Line Graphs, Advances in Theoretical and Applied Mathematics. ISSN 0973-4554 Volume 11, Number 2(2016), 171-178.

[^0]: * Department of Mathematics, Malankara Catholic College, Mariagiri, Kanyakumari District, 629153, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India; Email: jebaraj.math@gmail.com; ayarlin.kirupa19@gmail.com

