
Mapana – Journal of Sciences 
2023, Vol 22, Special Issue 1, 33-40  

ISSN 0975-3303|https://doi.org/10.12723/mjs.sp1.3 

33 

 

 

Double Geodetic Number of a Line Graph 

T. Jebaraj* & Ayarlin Kirupa.M* 

Abstract 

Any line graph 𝐿(𝐺), the vertices correspond to the edges 
of 𝐺(𝑉 , 𝐸) and two vertices in 𝐿(𝐺) are adjacent if and only 
if the corresponding edges in 𝐺 are adjacent”. “If there are 
vertices 𝑢, 𝑣  in 𝑆  such that 𝑥, 𝑦 ∈  𝐼[𝑢, 𝑣]  for any pair of 
vertices 𝑥, 𝑦 in 𝐺, then the set 𝑆 of vertices of 𝐺 is said to be 
a double geodetic set of 𝐺 . The lowest cardinality of a 
double geodetic set is represented by the double geodetic 
number 𝑑𝑔(𝐺) ”. In this study, we determine double 
geodetic number of several line graphs.   

Keywords:   double geodetic number, line graph, cartesian product, 
vertex covering number. 

Introduction 
A connected finite undirected graph with no loops or multiple edges 
is referred to as a graph, 𝐺 = (𝑉, 𝐸). The standard notation for the 
number of edges and vertices in a graph 𝐺 is 𝑚 =  |𝐸|and 𝑛 =  |𝑉|. 
We cite [3] . If the subgraph induced by a vertex's neighbours is 
complete, then that vertex is an extreme vertex of 𝐺 . The closed 
interval 𝐼[𝑥, 𝑦] consists of all vertices lying on some x-y geodesic of 
𝐺, while for 𝑆 ⊆ 𝑉, 𝐼[𝑆] = ⋃ 𝐼[𝑥, 𝑦]𝑥,𝑦∈𝑆  . A set of vertices 𝑆 is said to 

be a geodetic set if 𝐼[𝑆] = 𝑉and the geodetic number is the lowest 
cardinality of a geodetic set which is denoted by 𝑔(𝐺).In [1] and [2], 
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the geodetic number is presented and briefly discussed. The double 
geodetic number that [4] first introduced. 

Basic Results 
The following theorem is needed for this paper's results to be 
supported. 

Theorem 2.1 [4] For the cycle 𝐶𝑛  of order 𝑛 ≥ 3,  𝑑𝑔(𝐶𝑛)  = 

{
2,      𝑖𝑓  𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑛, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑
. 

Double geodetic number of a line graph 
Definition 3.1. A set 𝑆’ of vertices of 𝐿(𝐺)  = 𝐻 is said to be double 
geodetic set of  𝐻 if for each pair of vertices 𝑥, 𝑦  in 𝐻  there exist 
vertices 𝑢, 𝑣  in 𝑆’  such that  𝑥, 𝑦 ∈ 𝐼[𝑢, 𝑣 ]. The double geodetic 
number is the lowest cardinality of the double geodetic set of 𝐿(𝐺) 
and is denoted by 𝑑𝑔[𝐿(𝐺)]. 

Example 3.2 

 

In Figure 3.2, 𝐿(𝐺) is the line graph of   In 𝐿(𝐺), 𝑆1 = {𝑣1, 𝑣3, 𝑣5} is the 
minimum geodetic set but 𝑆1 is not a double geodetic set of 𝐿(𝐺) and 
neither 3 − element nor  4 −  element  subset of vertices of 
𝐿(𝐺) contains the 𝑑𝑔-set of 𝐿(𝐺). Also, it is obvious that, the set 𝑆1 =
{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}  is the minimum double geodetic set of 𝐿(𝐺) . 
Therefore, 𝑔[𝐿(𝐺)]  = 3  and 𝑑𝑔[𝐿(𝐺)] =  5 . Consequently, a line 
graph's geodetic number and double geodetic number may differ. 
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Theorem 3.3   For the line graph 𝐿(𝐺)  of order 𝑛,   Then  2 ≤
𝑔[𝐿(𝐺)] ≤ 𝑑𝑔[𝐿(𝐺)] ≤ 𝑛. 

Proof. A geodetic set requires two vertices at a minimum. Therefore 
𝑔[𝐿(𝐺)] ≥ 2. We know that, each geodetic set must contain a double 
geodetic set. Then  𝑔[𝐿(𝐺)] ≤ 𝑑𝑔[𝐿(𝐺)].  Since all the vertices of 𝐿(𝐺),  
is a double geodetic set of 𝐿(𝐺), 𝑑𝑔[𝐿(𝐺)] ≤ 𝑛. 

Theorem 3.4 For any line graph 𝐿(𝐺) of order 𝑛 , 𝑔[𝐿(𝐺)] = 2  iff 
𝑑𝑔[𝐿(𝐺)]  =  2.  

Proof. Firstly, we assume that  𝑑𝑔[𝐿(𝐺)]  =  2.  We prove that 
𝑔[𝐿(𝐺)]  =  2.  Since 𝑑𝑔[𝐿(𝐺)]  = 2 . By using Theorem 3.3, we get 
𝑔[𝐿(𝐺)] = 2. Conversely, we assume that 𝑔[𝐿(𝐺)] = 2. To prove that 
𝑑𝑔[𝐿(𝐺)]  = 2, suppose we assume that 𝑑𝑔[𝐿(𝐺)]  ≠ 2. We know that 
𝐺is connected. By Property 3.2.1 in [7], 𝐿(𝐺) is connected. It follows 
from Proposition 2.14 in [4], 𝑑𝑔[𝐿(𝐺)].  This conflicts with our 
assumption. Hence, 𝑑𝑔[𝐿(𝐺)] = 2. 

Theorem 3.5 For every tree 𝑇 with k end edges, 𝑑𝑔[𝐿(𝑇)] = 𝑘. 

Proof. Let S be the collection of each extreme vertices of the line 
graph 𝐿(𝑇). By Theorem 2.5 in [4], 𝑑𝑔[𝐿(𝑇)]  ≥  |𝑆|. Further more, 
each double geodetic set of  𝑇 contains every extreme vertex of a line 
graph 𝐿(𝑇). The extreme vertices of 𝐿(𝑇) are the corresponding end 
edges of  𝑇. So 𝑑𝑔[𝐿(𝑇)] ≤  |𝑆|. By Corollary 2.9 in [4] , 𝑑𝑔[𝐿(𝑇)] =
|𝑆| = 𝑘. Hence, 𝑑𝑔[𝐿(𝑇)]  =  𝑘. 

corollary 3.6 For any path 𝑃𝑛 with 𝑛 vertices , 𝑑𝑔(𝐿(𝑃𝑛)] = 2. 

Proof.  It is clear that  𝑔[𝐿(𝑃𝑛)] = 2. By Theorem 3.4, 𝑑𝑔[𝐿(𝑃𝑛)] = 2. 

Theorem 3.7 For a nontrivial tree 𝑇 of order 𝑛 and 𝑑 be the diameter, 
then 𝑑𝑔[𝐿(𝑇)]  ≤ 𝑛 − 𝑑 + 1. 

Proof. Let 𝑇 be any nontrival tree of order 𝑛 and 𝑑 be the diameter. 
Let 𝑞 be the vertices of 𝐿(𝑇). Let 𝑝 = 𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑑 = 𝑞 be a path for 
which 𝑑(𝑝, 𝑞)  =  𝑑. Let 𝑆 be the extreme vertices of 𝐿(𝑇)also let 𝑆 =
 𝑉[𝐿(𝑇)] − {𝑣1, 𝑣2, … , 𝑣𝑑−1}. Neccesarily, by Theorem 3.5, 𝑑𝑔[𝐿(𝑇)] =
𝑘 ≤ | 𝑆|  =  𝑛 − (𝑑 − 1)  =  𝑛 − 𝑑 + 1. 

Theorem 3.8 For cycle 𝐶𝑛  of order 𝑛 ≥ 3  ,  𝑑𝑔[𝐿(𝐶𝑛)] =

{
2,   𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
𝑛,    𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

. 
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Proof. This statement is true based on Theorem 2.1 

Theorem 3.9 For the helm graph 𝐻𝑛 , 𝑑𝑔[𝐿(𝐻𝑛)] = {
8, 𝑖𝑓  𝑛 = 4
3𝑛, 𝑖𝑓 𝑛 ≥ 5

. 

Proof.  Let 𝑥  the vertex of  𝐾1 ,  𝑉(𝐶𝑛) = { 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛 }, 
𝐸 ={𝑒1, 𝑒2, … , 𝑒𝑛}  be the internal edges and 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑛} be the 
degree one vertices in helm graph 𝐻𝑛 . Now, the vertices 
𝑊 = { 𝑤1, 𝑤2, … , 𝑤𝑛 }, are formed from the end edges of 𝐻𝑛 ; 𝑊 ⊆
𝑉[𝐿(𝐻𝑛)], and 𝑋 = {𝑥1, 𝑥2, , … , 𝑥𝑛} are the vertices made up of  the 
edges of  𝐶𝑛;   𝑋 ⊆ 𝑉[𝐿(𝐻𝑛)], 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛} which are the vertices 
of 𝐿(𝐻𝑛), made up of  internal edges of 𝐻𝑛; 𝑌 ⊆ 𝑉[𝐿(𝐻𝑛)]. 

Case (i) If 𝑛 = 4. 

For the graph 𝐿(𝐻4), the set of vertices in the set 𝑊 = {𝑤1, 𝑤2, 𝑤3, 𝑤4}  
are all extreme vertices.  The set 𝑊 is the only minimum geodetic set 
of 𝐿(𝐻4), but this set 𝑊 is not double geodetic set. Because, some pair 
of vertices ( 𝑤𝑖, 𝑦𝑖) where 1 ≤ 𝑖 ≤ 4 , does not lie on any geodesic of  
𝑊. Now, consider the set 𝑌 = {𝑦1, 𝑦2, 𝑦3, 𝑦4}. All are weak extreme 
vertices. Hence, the set 𝑊 ∪ 𝑌 is unique minimum double geodetic 
set in 𝐿(𝐻4). Thus, we get |𝑊 ∪ 𝑌| = 8.  Therefore, 𝑑𝑔[𝐿(𝐻4)] = 8. 

Case (ii) For 𝑛 ≥ 5. 

Let 𝑣 be any vertex in 𝐿(𝐻𝑛). First we prove that 𝑣 is 𝐿(𝐻𝑛)’s weak 
extreme vertex.  Let 𝑣’ be the eccentric vertex of 𝑣  in 𝐿(𝐻𝑛). Then, 
𝑣, 𝑣’ lie only on 𝐼[𝑣, 𝑣’] so that 𝐿(𝐻𝑛) has a weak extreme vertex 𝑣. 
Proceeding like this, all vertices of 𝐿(𝐻𝑛) are weak extreme vertices. 
By Proposition 2.14 in [4], All the vertices of 𝐻𝑛  are unique double 
geodetic set of 𝐿(𝐻𝑛) and |𝑊 ∪ 𝑋 ∪ 𝑌| = 3𝑛, Thus, 𝑑𝑔[𝐿(𝐻𝑛)] = 3𝑛. 

Corollary 3.10: For the helm graph 𝐻𝑛 , 𝑛 ≥ 5 ,  𝑔[𝐿(𝐻𝑛)] +
𝑑𝑔[𝐿(𝐻𝑛)] = 𝑚 + 𝑛. 

Proof.  helm graph 𝐻𝑛  has 3𝑛  edges. It becomes 3𝑛 vertices in 
𝐿(𝐻𝑛). Since 𝑔[𝐿(𝐻𝑛)] = 𝑛  and 𝑑𝑔[𝐿(𝐻𝑛)] = 3𝑛  and 𝑉[𝐿(𝐻𝑛)] =
𝐸(𝐻𝑛) = 𝑚 and 𝑉(𝑊) = 𝑛 , 𝑤here 𝑊 is the extreme vertices of 𝐿(𝐻𝑛).  

Now, 𝑔[𝐿(𝐻𝑛)] + 𝑑𝑔[𝐿(𝐻𝑛)] = 4𝑛 =  3𝑛 + 𝑛    =𝑉[𝐿(𝐻𝑛)] + 𝑉(𝑊)  =
𝑚 + 𝑛. 

Corollary 3.11: For the helm graph (𝑛 ≥ 5), 𝑑𝑔[𝐿(𝐻𝑛)] = 𝛿∆ − 6. 
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Proof. 𝐿(𝐻𝑛)  has a minimum degree 𝛿 of 3 and a maximum degree 
∆ of  𝑛 + 2. 

Now , 𝑑𝑔[𝐿(𝐻𝑛)] = 3𝑛 ,  𝑑𝑔[𝐿(𝐻𝑛)] + 6 = 3𝑛 + 6 =  3(𝑛 + 2)  =  𝛿∆ . 
𝑑𝑔[𝐿(𝐻𝑛)]     =  𝛿∆ − 6. 

Theorem 3.12 For the wheel graph of order 𝑛 ≥ 7, 𝑑𝑔[𝐿(𝑊𝑛)] = 𝑛 −
1. 

Proof. Let 𝑊𝑛  =  𝐾1 + 𝐶𝑛−1   (𝑛 ≥ 7) with 𝑥 as the vertex of 𝐾1 and 
(𝐶𝑛−1) = {𝑣1, 𝑣2, … , 𝑣𝑛−1} ,  𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛−1} be the internal edges 
of 𝑊𝑛 . Now , 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛−1}  be the vertices made up of the 
edges of 𝐶𝑛−1 . i.e) 𝑌 ⊆ 𝑉[𝐿(𝑊𝑛)], 𝑍 = {𝑧1, 𝑧2, … , 𝑧𝑛−1} which 
verticesof [𝐿(𝑊𝑛)]  formed from the internal edges of 𝑊𝑛;  𝑍 ⊆
𝑉[𝐿(𝑊𝑛)]. For every pair of vertices which are 𝑑(𝑢, 𝑣) = 𝑑𝑖𝑎𝑚[𝐿(𝑊𝑛)] 
is formed by the double geodetic set of 𝐿[(𝑊𝑛)] . Obviously, the 
collection of all vertices of the set 𝑌  is a 𝑑𝑔 − set of 𝐿(𝑊𝑛) and 
𝑑𝑔[𝐿(𝑊𝑛)] = 𝑛 − 1. 

Theorem 3.13 For the friendship graph 𝐹𝑛  having 2𝑛 + 1 vertices, 
𝑑𝑔[𝐿(𝐹𝑛)] = 𝑛  𝑛 ≥ 3. 

Proof. friendship graph 𝐹𝑛  has 2𝑛 + 1 vertices and 3𝑛 edges. Let 𝑥 
be common vertex. 2𝑛 edges are incident with common vertex 𝑥 . 
This 2𝑛 edges forms 2𝑛 vertices                 𝑈 = {𝑢1, 𝑢2, … , 𝑢2𝑛} in (𝐹𝑛) . 
Also the remaining 𝑛 edges of 𝐹𝑛  which are not incident with the 
vertex 𝑥  forms 𝑛  extreme vertices 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑛}  in 
𝐿(𝐹𝑛) ;  𝑈, 𝑊 ⊆ 𝑉[𝐿(𝐹𝑛)].  By Theorem 2.5 in [4], the set 𝑆 contains the 
vertices of 𝑊  and 𝑑(𝑢, 𝑣) = 𝑑𝑖𝑎𝑚[𝐿(𝐹𝑛)] and every pair of vertices 
lies on the set 𝑆. Thus, 𝑆 is the only minimum double geodetic set of  
𝐿(𝐹𝑛)and so |𝑆| = 𝑛. 

Corollary 3.14 For the friendship graph 𝐹𝑛 , ( 𝑛 ≥ 3), 𝑔[𝐿(𝐹𝑛)] +
𝑑𝑔[𝐿(𝐹𝑛)] = 𝑚 − 𝑛. 

Proof. Let 𝑈 = {𝑢1, 𝑢2, … , 𝑢2𝑛}  be the vertices made of the internal 
edges of 𝐹𝑛 and                  𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑛} be the extreme vertices 
of 𝐿(𝐹𝑛) formed from 𝑛 −copies of the cycle graph 𝐶3 of 𝐹𝑛. 𝑊 forms 
the minimum double geodetic set of 𝐿(𝐹𝑛). It is obvious that 𝑔[𝐿(𝐹𝑛)] 
and 𝑑𝑔[𝐿(𝐹𝑛)]   are same. Since the friendship graph 𝐹𝑛  has 2𝑛 
internal edges, it becomes 2𝑛   vertices of 𝐿(𝐹𝑛).  Since 𝑉[𝐿(𝐹𝑛)] =
 𝐸(𝐹𝑛)] = 𝑚 and 𝑉(𝑊) = 𝑛 and also 𝑔[𝐿(𝐹𝑛)] = 𝑛. 
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Now, 𝑔[𝐿(𝐹𝑛)] + 𝑑𝑔[𝐿(𝐹𝑛)] = 2𝑛  = 𝑉(𝑈) 

                                                = 𝑉[𝐿(𝐹𝑛)] − 𝑉(𝑊) 

                                               = 𝑚 − 𝑛. 

Corollary 3.15 For the friendship graph 𝐹𝑛, (𝑛 ≥ 3) , 𝑑𝑔[𝐿(𝐹𝑛)] =  
∆

𝛿
. 

Proof.  Minimum degree (𝛿) of 𝐿(𝐹𝑛) is 2 and maximum degree (∆) 
of 𝐿(𝐹𝑛) is 2𝑛. 

Now,  𝑑𝑔[𝐿(𝐹𝑛)] = 𝑛 

                           =
2𝑛

2
 

                           =
∆

𝛿
. 

Theorem 4.1 For the pan graph 𝑃𝑛   of order 𝑛 ≥ 3 , 𝑑𝑔[𝐿(𝑃𝑛)] =

{
2   𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑
4  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

. 

Proof.   Consider a cycle {𝑣1, 𝑣2, … , 𝑣𝑛, 𝑣1} with 𝑛 vertices. Let 𝑃𝑛  be 
the pan graph made from 𝐺 = 𝐶𝑛  by adding an end edge 𝑢𝑣 such 
that 𝑢 ∈ 𝐺  and  𝑣 ∉ 𝐺 , by the definition of line graph, cycle's line 
graph is also a cycle and the end edge in 𝑃𝑛′ is the extreme vertex of 
𝐿(𝑃𝑛). Now, 𝐿(𝑃𝑛) = 𝐶𝑛 ∪ 𝐾3. We prove the following cases. 

Case (i) 𝑛 is odd 

 The geodetic number of 𝐿(𝑃𝑛)  is 2. By theorem 3.4, 𝑑𝑔[𝐿(𝑃𝑛) ] = 2. 

Case (ii)  𝑛 is even 

Since the edge 𝑢𝑣  = 𝑣𝑘 the extreme vertex in 𝐿(𝑃𝑛). By theorem 2.5 
in [4] , 𝑣𝑘 belongs to the double geodetic set of 𝐿(𝑃𝑛). Since 𝐿(𝑃𝑛) =
𝐶𝑛 ∪ 𝐾3  the edges 𝑣𝑖 , 𝑣𝑗  occurring on the vertex of 𝑢 , which is 

antipodal in 𝑃𝑛  are the vertices in 𝐿(𝑃𝑛). These vertices are contained 
in the double geodetic set of 𝐿(𝑃𝑛).  Let 𝑣𝑚  be the vertex of 𝐿(𝑃𝑛) 
which is the eccentric vertex of 𝑣𝑘  . This follows from Case (ii) of 
theorem 3.9, 𝑣𝑚  is a weak extreme vertex of 𝐿(𝑃𝑛). By Proposition 
2.14 in [4], 𝑣𝑚  belongs to the double geodetic set. Hence, 𝑆 =
{𝑣𝑘 , 𝑣𝑖, 𝑣𝑗, 𝑣𝑚} is the double geodetic set of 

𝐿(𝑃𝑛)𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑑𝑔[𝐿(𝑃𝑛)] = 4. 

Theorem 4.2 For the pan graph 𝑃𝑛  ,  𝑛  is odd, 𝑑𝑔[𝐿(𝑃𝑛)] =
 2 ∝° (𝑃𝑛) – 𝑛 + 1. 
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Proof. If 𝑛 ≥ 3  is odd and let ∝° be the vertex covering number of 

𝑃𝑛.  𝑆𝑖𝑛𝑐𝑒 𝑑𝑔[𝐿(𝑃𝑛)] = 2  and 𝑛  is odd,  ∝° (𝑃𝑛) =
𝑛+1

2
.  Hence, 

𝑑𝑔[𝐿(𝑃𝑛)] = 2 = 1 + 1 = 1 − 𝑛 + 1 + 𝑛 and 𝑑𝑔[𝐿(𝑃𝑛)] =
2(−𝑛+1+1+𝑛)

2
=  

2(1−𝑛)

2
+

2(1+𝑛)

2
= 2 ∝° (𝑃𝑛)– 𝑛 + 1. 

Theorem 4.3 For the pan graph 𝑃𝑛  , 𝑛  is even, 𝑑𝑔[𝐿(𝑃𝑛)] =
 2 ∝° (𝑃𝑛) – 𝑛 + 2. 

Proof. Let  ∝° is the vertex covering number of 𝑃𝑛 ,𝑛 ≥ 3, 𝑛 is even. We 

have  𝑑𝑔[𝐿(𝑃𝑛)] = 4 and 𝑛 is even,  ∝° (𝑃𝑛) =
𝑛+2

2
.  Hence, 𝑑𝑔[𝐿(𝑃𝑛)] =

4 = 2 + 2 = −𝑛 + 2 + 𝑛 + 2. 

=
2(−𝑛 + 2 + 𝑛 + 2)

2
= 2 ∝° (𝑃𝑛)– 𝑛 + 2. 

Theorem 4.4  If the graph 𝐺’ is obtained by adding an end edge  𝑢𝑖,𝑣𝑖 , 𝑖 =
1,2, … , 𝑛  to each vertex  of  𝐺 = 𝐶𝑛  such that 𝑢𝑖 ∈ 𝐺 , 𝑣𝑖 ∉ 𝐺 .Then, 

𝑑𝑔[𝐿(𝐺’)] = {
2𝑛, 𝑓𝑜𝑟 𝑛 𝑖𝑠 𝑜𝑑𝑑
𝑛, 𝑓𝑜𝑟 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

. 

 

5. Cartesian Product 

Theorem 5.1.  For any cycle 𝐶𝑛  of order 𝑛 ≥ 3 ,    𝑑𝑔[𝐿(𝐶𝑛 × 𝑃2)] =

{
4    𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
3𝑛   𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

. 

Proof.  Let 𝐶𝑛 × 𝑃2 be formed from two copies 𝐺1 and 𝐺2 of 𝐶𝑛. this graph 

is called 𝑛 − prism graph. The 𝐶𝑛 × 𝑃2 graph contains two sets of cycle 𝐶𝑛. 

One set of cycle is 𝐶1 and another one is 𝐶2. In 𝐿(𝐶𝑛 × 𝑃2), the vertices 𝑋 =
{𝑥1, 𝑥2, … , 𝑥𝑛} corresponds the edges of 𝐶1and the edges of 𝐶2 converted to 

the vertices  𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛} .also, the set   𝑍 = {𝑧1, 𝑧2, … , 𝑧𝑛} 

corresponds to edges incident with the cycles  𝐶1 and 𝐶2.     

Case (i) if 𝑛 is even 

In   𝐿(𝐶𝑛 × 𝑃2) , the vertex 𝑥𝑖 where (1 ≤ 𝑖 ≤ 𝑛) is an eccentric vertex of 

vertex 𝑥𝑗 , (1 ≤ 𝑗 ≤ 𝑛) in 𝑋. It is obvious the pair 𝑥𝑖,𝑥𝑗 of vertices lie only 

𝐼[𝑥𝑖, 𝑥𝑗]. consequently, the vertex 𝑥𝑖 and 𝑥𝑗  are the weak extreme vertices. 

By Proposition 2.14 in [4], the vertices 𝑥𝑖 and 𝑥𝑗  belongs to ’ , where 𝑆’ is 

the geodetic set. But every pair does not lie on any geodesic of 𝑆’. So, we 

consider the set 𝑌, where the vertices 𝑦𝑖 and 𝑦𝑗 are eccentric for each other. 

hence, the vertices 𝑦𝑖and 𝑦𝑗 belongs to the double geodetic set 𝑆’. thus, 𝑆’ =
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{𝑥𝑖, 𝑥𝑗, 𝑦𝑖 , 𝑦𝑗}  is the minimum double geodetic set of  𝐿(𝐶𝑛 ×

𝑃2) .thus, 𝑑𝑔[𝐿(𝐶𝑛 × 𝑃2)]   = 4.   

Case (ii) if 𝑛 is odd  

       This follows from the case (ii) of theorem 3.9. 
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