

# Sigma Chromatic Number of Some Graphs

Preethi K Pillai<sup>\*</sup> & J Suresh Kumar

### ABSTRACT

The Sigma colouring ( $\sigma$  – colouring) of a graph *G* with *n* vertices is an injection from *V*(*G*) to {1,2, ..., *n*} such that the colour sums (adding the colours of the neighbouring vertices) of any two neighbouring vertices are different. The smallest number of colours needed to colour a graph *G* is represented by its Sigma Chromatic number,  $\sigma$ (*G*). In this article we obtain the  $\sigma$ -colouring of some graphs such as Barbell Graph, Twig graph, Shell graph, Tadpole, Lollipop, Fusing all the vertices of cycle and duplication of every edge by a vertex in *C*<sub>*n*</sub>.

**Keywords**:  $\sigma$ - colouring, Sigma Chromatic number, Barbell Graph, Twig graph, Shell graph, Tadpole, Lollipop.

AMS Subject Classification Number: 05C15

## Introduction

By a graph, we mean simple graph. Several types of graph colouring were investigated in [1,3] and new variations of colouring are available in [3,5,6]. The  $\sigma$  – colouring was introduced by Gary Chartrand et.al.[1] in 2008 as he was doing a project. Gary Chartrand et.al. presented the first paper [2] in 2010, finding  $\sigma(G)$  of complete graphs, complete r –partite graph with  $r \ge 2$  and cycles. He proved that  $\sigma(G) \le X(G)$  where X(G) is the minimum number of colours used in the proper vertex colouring *G*. Finding the Sigma Chromatic number of a graph *G* is the goal of the Sigma colouring problem. We begin by recollecting some basic definitions used in this article.

<sup>\*</sup> The PG and Research Department of Mathematics, N.S.S. Hindu College, Changanacherry, Kerala, India 686102; Email: preethiasokar@gmail.com

Definition.1.1. Barbell graph,  $B_n$ , is obtained by connecting two copies of  $K_n$  by a bridge.

Definition 1.2. A path with two pendent edges attaching to each internal vertex forms a Twig graph.

Definition. 1.3. A Shell graph is defined as a cycle  $C_n$  with (n - 3) chords sharing a common end point called the apex.

Definition 1.4. The tadpole graph,  $T_{nl}$ , is the graph obtained by joining a cycle to a path  $P_l$  of lenth l.

Definition 1.5. The lollipop graph denoted by  $L_{nl}$ , is the graph obtained by joining a complete graph  $K_n$  to a path of lenth l.

Definition 1.6. Fusion (Identification) of two distinct vertices u, v of a graph *G* produces a new graph  $G_1$  constructed by replacing the vertices u, v by a single vertex w such that every edge which is incident with either u or v in *G* is now incident with w in  $G_1$ .

Definition.1.7. The floor function of a real number x is the largest integer less than or equal to x and it is denoted by  $\lfloor x \rfloor$ . The ceil function of a real number x is the smallest integer greater than or equal to x and is denoted by  $\lfloor x \rfloor$ .

Definition.1.8.[3]. Imagine a vertex colouring of G which is notproper. The function  $c: V(G) \rightarrow N$  is a vertex colouring of a graph  $G_i$ and c(v) denote the colour of a vertex v. We encode the colours by natural numbers in order do to this. For any  $v \in V(G)$ , the sum of colours of the vertices neighbouring to v be denoted by  $\sigma(v)$ ; if for any two adjacent vertices  $u, v \in$  $V(G), \sigma(v) \neq \sigma(u)$ , then the colouring is called a Sigma colouring  $(\sigma - \text{colouring})$  of *G*. The minimum number of colours used in a sigma colouring of G is called the sigma chromatic number of G and is denoted by  $\sigma(G)$ .

In our article, we obtain the  $\sigma$  -colouring of some graphs such as Barbell Graph, Twig graph, Shell graph, Tadpole, Lollipop, Fusing all the vertices of cycle and duplication of every edge by a vertex in  $C_n$ . For the expressions and definitions not explained in this article, we may refer to Harary[4].

<Names of Author/s>

# Findings

Theorem.2.1. A Barbell graph,  $B_n$  is  $\sigma$  – colourable and  $\sigma(B_n) \le n + 1$ .

Proof: Consider  $B_n$ , the barbell graph constructed by connecting two copies of complete graph  $K_n$  and  $K'_n$  by a bridge. Let  $v_1, v_2, v_3, ..., v_n$  be the vertices of  $K_n$  and  $v_1, v_2, v_3, ..., v_n$  be the vertices of  $K_n$  and  $v_1, v_2, v_3, ..., v_n$  be the vertices of  $K_n$  and the bridge be  $e = v_1 v_1'$ .

Define  $c : V(B_n) \rightarrow \{1,2\}$  as follows:

 $c(v_i) = i$ ; if  $1 \le i \le n$ .

 $c(v_i) = i + 1; \text{ if } 1 \le i \le n.$ 

The vertices  $v_i$  and  $v_{i+1}$ ,  $(2 \le i \le n - 1)$  are of the same degree and are adjacent in  $K_n$ . We colour all the vertices with different colours, otherwise these vertices will receive the same colour sum, which violates the rules of  $\sigma$  – colouring. In the case of  $K_n'$ , if we colour all the vertices with same set of colours in  $K_n$ , then atleast two vertices receives the same colour sum, which breaks the condition of  $\sigma$  – colouring. So, we use an additional colour n + 1 in  $K_n'$ . Then, all adjacent vertices get different vertex sum. Here c is a  $\sigma$  – colouring with  $\sigma(G) \le n+1$ .

Theorem.2.2. For any Twig graph  $T_m$ ,  $m \ge 2$ ,  $\sigma(T_m) = 2$ .

Proof: Let the initial and terminal vertices of the path be  $v_1$  and  $v_{m+2}$ and let  $v_2, v_3, ..., v_{m+1}$  be the internal vertices of the path. Let  $v_i$  ( $1 \le i \le m + 2$ ),  $u_{j_i}$  ( $1 \le j \le m$ ) and  $w_{j_i}$  ( $1 \le j \le m$ ) be the vertex set and  $v_i v_{i+1}$  ( $1 \le i \le m + 1$ ),  $u_j v_{j+1}$ ( $1 \le j \le m$ ),  $w_j v_{j+1}$ ( $1 \le j \le m$ ) be the edge set.

Define  $c : V(T_n) \rightarrow \{1,2\}$  as follows.

 $c(v_i) = 1$  if *i* is odd.  $c(v_i) = 2$  if *i* is even.  $c(u_{i,i}) = 1$  $c(w_{i,i}) = 1$ 

It could be noted all the adjacent vertices get different vertex sum. Here *c* is a  $\sigma$  – colouring with  $\sigma(T_m) \leq 2$ . If possible, consider  $\sigma(T_m) = 1$ . Since the vertices  $v_i$  and  $v_{i+1}$  ( $2 \le i \le m$ ) are of the same degree and we colour all the vertices with the same colour 1 these adjacent vertices  $v_i$  and  $v_{i+1}$  ( $2 \le i \le m$ ) get the same colour sum, which contradicts the rule of  $\sigma$  – colouring. So  $\sigma(T_m) \neq 1$ . Hence,  $\sigma(T_m) = 2$ .

Theorem.2.3. The Shell graph is  $\sigma$  – colourable and  $\sigma(S_{n,n-3}), n \ge 4, = 2$ .

Proof: Let  $v_1, v_2, v_3, ..., v_n$  be the nodes of the cycle  $C_n$ . Let  $v_1$  be the apex vertex of shell graph  $S_{n,n-3}$ .

Suppose the case where the number of nodes is odd.

Define  $c : V(S_{n,n-3}) \rightarrow \{1,2\}$  as follows:

$$c(v_{2i}) = 2; 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor.$$
  
 $c(v_{2i-1}) = 1; 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor.$ 

 $c(v_n) = 2.$ 

Suppose the case where the number of nodes is even.

Define the vertex colour  $c : V(S_{n,n-3}) \rightarrow \{1,2\}$  as follows:

$$c(v_{2i}) = 2; 1 \le i \le \frac{n}{2}.$$
  
$$c(v_{2i-1}) = 1; 1 \le i \le \frac{n}{2}$$

It could be noted all the adjacent vertices get different vertex sum. Here *c* is a  $\sigma$  – colouring with  $\sigma(S_{n,n-3}) \leq 2$ . If possible, consider  $\sigma(S_{n,n-3}) = 1$ . Since the vertices  $v_i$  and  $v_{i+1}$  ( $3 \leq i \leq n-2$ ) are of the same degree and we colour all the vertices with the same colour 1, these adjacent vertices  $v_i$  and  $v_{i+1}$  ( $3 \leq i \leq n-2$ ) get the same colour sum which contradicts the rule of  $\sigma$  – colouring. So,  $\sigma(S_{n,n-3}) \neq 1$ . Hence,  $\sigma(S_{n,n-3}) = 2$ .

**Theorem.2.4.** The Tadpole graph,  $T_{nl}$ , is  $\sigma$  – colourable. For  $n \ge 3$ ,  $l \ge 3$ ,  $\sigma(T_{nl}) = 2$ .

Proof: Let  $T_{nl}$  be the graph obtained by joining a cycle  $C_n$  by a path  $P_l$ . Let the cycle  $C_n$  have vertices  $v_1, v_2, v_3, ..., v_n$  and  $u_1, u_2, u_3, ..., u_l$  be the vertices of the path joining  $v_1$  to  $P_l$ . Define  $c : V(T_{nl}) \rightarrow \{1,2\}$  as follows.

Case I: When n is odd. 44

<Names of Author/s>

<Abbreviated title of the article>

$$c(v_{2i}) = 2; 1 \le i \le \frac{n-1}{2}.$$
  

$$c(v_{2i-1}) = 1; 1 \le i \le \frac{n+1}{2}.$$
  

$$c(u_{4i-2}) = 1, \ 1 \le i \le \left\lfloor \frac{n+2}{4} \right\rfloor.$$

All other vertices in the path except  $u_{4i-2}$  ( $1 \le i \le \left\lfloor \frac{n+2}{4} \right\rfloor$ ) are coloured with colour 2.

Case II: When n is even.

$$c(v_{2i}) = 1; 1 \le i \le \frac{n}{2}.$$
  
$$c(v_{2i-1}) = 2; 1 \le i \le \frac{n}{2}.$$

 $c(u_{4i-3}) = 1$ ,  $1 \le i \le \left\lfloor \frac{n+3}{4} \right\rfloor$ . All other vertices in the path except  $u_{4i-3}(1 \le i \le \left\lfloor \frac{n+3}{4} \right\rfloor)$  are coloured with colour 2.

It could be noted all the adjacent vertices get different vertex sum. Here *c* is a  $\sigma$  – colouring with  $\sigma(T_{nl}) \leq 2$ . If possible, consider  $\sigma(T_{nl}) = 1$ . Since the vertices  $v_i$  and  $v_{i+1}(2 \leq i \leq n-1)$  are of the same degree and we colour all the vertices with the same colour 1 these adjacent vertices  $v_i$  and  $v_{i+1}(2 \leq i \leq n-1)$  get the same colour sum ,which violates the rule of  $\sigma$  – colouring. So,  $\sigma(T_{nl}) \neq 1$ . Hence,  $\sigma(T_{nl}) = 2$ .

Theorem.2.5. The Lollipop graph  $L_{nl}$  is  $\sigma$  – colour able. For  $n \ge 3$ ,  $l \ge 3$ ,  $\sigma(L_{nl}) \le n$ .

Proof: Let  $L_{nl}$  be the graph obtained by joining a complete graph  $K_n$  by a path  $P_l$ .

Let  $v_1, v_2, v_3, ..., v_n$  be the vertices of a complete graph  $K_n$  and  $u_1, u_2, u_3, ..., u_l$  be the vertices of the path joining  $v_1$  to  $P_l$ .

Define the vertex colour  $c : V(L_{nl}) \rightarrow \{1, 2, 3, ..., n\}$  as follows.

 $c(v_i) = i; 1 \le i \le n.$ 

 $c(u_{4i-2}) = 1$ ,  $1 \le i \le \left\lfloor \frac{l+2}{4} \right\rfloor$ . All other vertices in the path except  $u_{4i-2}(1 \le i \le \left\lfloor \frac{l+2}{4} \right\rfloor)$  in the path are coloured with colour 2.

The vertices  $v_i$  and  $v_{i+1} (2 \le i \le n - 1)$  are of the same degree and are adjacent in  $K_n$ . We colour all the vertices with different colours, otherwise these vertices get the same colour sum, which contradicts

the rule of  $\sigma$  – colouring. Using the above colouring pattern all adjacent vertices get different vertex sum. Here, *c* is a  $\sigma$  – colouring with  $\sigma(L_{n l}) \leq n$ .

Theorem.2.6. The graph obtained by joining two copies of  $C_n$  by a path  $P_m$  admits  $\sigma$  – colouring. For  $n \ge 3, m \ge 3 \sigma(H) = 2$ .

Proof: Consider H be the graph constructed by joining two copies of  $C_n$  by a path  $P_m$ .

Let  $v_1, v_2, v_3, ..., v_n$  be the nodes of the first copy of  $C_n$ ,  $u_1, u_2, u_3, ..., u_n$  be the nodes of the other copy of  $C_n$  and  $w_1, w_2, w_3, ..., w_m$  be the nodes of path  $P_m$ .

Suppose the case where the number of nodes of  $C_n$  is odd.

Case I: When n is odd.

(a) When m is odd.

Define  $c : V(H) \rightarrow \{1,2\}$  as follows

$$c(w_i) = c(u_i) = c(v_i) = \begin{cases} 2 & if i is even \\ 1, & if i is odd \end{cases}$$

(b) When m is even.

$$c(v_i) = \begin{cases} 2 & if i is even \\ 1, if i is odd \\ c(u_i) = \begin{cases} 2 & if i is even \\ 1, if i is odd \\ 1, if i is odd \\ c(w_i) = \begin{cases} 2 & if i is even, i \neq m \\ 1, if i is odd \\ c(w_{m_i}) = 1 \end{cases}$$

Case II: When n is even.

(a): When m is even.

Define  $c: V(H) \rightarrow \{1,2\}$  as follows

$$c(w_i) = c(u_i) = c(v_i) = \begin{cases} 2 \text{ if } i \text{ is even} \\ 1, \text{ if } i \text{ is odd} \end{cases}$$

(b): When m is odd.

<Names of Author/s>

$$c(v_i) = \begin{cases} 2 \text{ if } i \text{ is even} \\ 1, \text{ if } i \text{ is odd} \end{cases}$$
$$c(u_i) = \begin{cases} 2 \text{ if } i \text{ is even} \\ 1, \text{ if } i \text{ is odd} \end{cases}$$
$$c(w_i) = \begin{cases} 2 \text{ if } i \text{ is even}, i \neq m \\ 1, \text{ if } i \text{ is odd} \end{cases}$$
$$c(w_m) = 1$$

It could be noted all the adjacent vertices get different vertex sum. Here *c* is a  $\sigma$  – colouring with  $\sigma(H) \leq 2$ . If possible, consider  $\sigma(H) = 1$ . Since the vertices  $v_i$  and  $v_{i+1}(2 \leq i \leq n-2)$  are of the same degree and we colour all the vertices with the same colour 1. These adjacent vertices  $v_i$  and  $v_{i+1}(2 \leq i \leq n-2)$  get the same colour sum, which contradicts the rule of  $\sigma$  – colouring. So,  $\sigma(H) \neq 1$ . Hence  $\sigma(H) = 2$ .

Theorem.2.7. The graph obtained by fusing all the *n* vertices of cycle  $C_n$  with the apex vertices of *n* copies of  $K_{1m}$  admits  $\sigma$  – colouring. For  $n > 3, m \ge 3, \sigma(H) = 2$ .

Proof: Consider *H* be the graph obtained by by fusing all the *n* vertices of cycle  $C_n$  with the apex vertices of *n* copies of  $K_{1m}$ . Let  $v_1, v_2, v_3, ..., v_n$  be the vertices of the cycle  $C_n$ . Fusing all the vertices  $v_i$  of cycle  $C_n$  with the apex vertices of star  $K_{1m}$  by  $v_{ij}$ ,  $1 \le i \le n, 1 \le j \le m$ .

Suppose the case where the number of nodes of  $C_n$  is odd.

Define  $c: V(H) \rightarrow \{1,2\}$  as follows.

$$c(v_i) = \begin{cases} 2 & \text{if } i & \text{is even} \\ 1 & \text{, if } i & \text{is odd} \end{cases}$$
$$c(v_{ij}) = 1; 1 \le i \le n - 1, 1 \le j \le m - 1.$$
$$c(v_{nm}) = 2.$$

Suppose the case where the number of nodes of  $C_n$  is even.

Define  $c : V(H) \rightarrow \{1,2\}$  as follows.

$$c(v_i) = \begin{cases} 2 \text{ if } i \text{ is even} \\ 1, \text{ if } i \text{ is odd} \end{cases}$$

 $c(v_{i\,j}) = 1; 1 \le i \le n, 1 \le j \le m.$ 

It could be noted all the adjacent vertices get different vertex sums. Here *c* is a  $\sigma$  – colouring with  $\sigma(G) \leq 2$ . If possible, consider  $\sigma(G) = 1$ . Since the vertices  $v_i$  and  $v_{i+1}(1 \leq i \leq n-1)$  are of the same degree and we colour all the vertices with the same colour 1, these adjacent vertices  $v_i$  and  $v_{i+1}(1 \leq i \leq n-1)$  get the same colour sum, which contradicts the rule of  $\sigma$  – colouring. So,  $\sigma(G) \neq 1$ . Hence,  $\sigma(H) = 2$ .

**Theorem.2.8.** The graph constructed by replication of every edge replaced with a vertex in  $C_n$  is  $\sigma$  – colouring ,  $n \ge 3$  ,  $\sigma(H) = 2$ .

**Proof**:Consider  $v_1, v_2, v_3, ..., v_n$  be nodes of the cycle  $C_n$ . Let H be the graph constructed by replication of every edge  $v_1v_2, v_2v_3, ..., v_nv_1$  in  $C_n$  by the corresponding new nodes  $u_1, u_2, u_3, ..., u_n$ , respectively.

### Suppose the case where the number of nodes of $C_n$ is odd.

Define  $c : V(H) \rightarrow \{1,2\}$  as follows

$$c(v_{2i}) = 2; 1 \le i \le \frac{n-1}{2}.$$
  

$$c(v_{2i-1}) = 1; 1 \le i \le \frac{n+1}{2}$$
  

$$c(u_i) = 1; 2 \le i \le n.$$
  

$$c(u_1) = 2.$$

Suppose the case where the number of nodes of  $C_n$  is even.

Define  $c : V(H) \rightarrow \{1,2\}$  as follows

$$c(v_{2i}) = 2; 1 \le i \le \frac{n}{2}.$$
  

$$c(v_{2i-1}) = 1; 1 \le i \le \frac{n}{2}$$
  

$$c(u_i) = 1; 1 \le i \le n.$$

It could be noted all the adjacent vertices get different vertex sum. Here, *c* is a  $\sigma$  – colouring with  $\sigma(G) \leq 2$ . If possible, consider  $\sigma(G) = 1$ . Since the vertices  $v_i$  and  $v_{i+1}(1 \leq i \leq n-1)$  are of the same degree and we colour all the vertices with the same colour 1, these adjacent vertices  $v_i$  and  $v_{i+1}(1 \leq i \leq n-1)$  get the same colour sum, which contradicts the rule of  $\sigma$  – colouring. So,  $\sigma(G) \neq 1$ . Hence  $\sigma(G) = 2$ .

#### **References:**

- [1]. G. Chartrand and P. Zhang, Chromatic Graph Theory, Boca Raton, Chapman& Hall Press, (2008).
- [2]. G. Chartrand, F. Okamoto and P. Zhang, The Sigma Chromatic Number of a Graph, Graphs and Combinatorics, 26:755–773, (2010).
- [3]. J. A. Gallian, Dynamic Survey of Graph labelling, Electron. J. Comb.,18 (#DS6), (2016).
- [4]. F. Harary, Graph Theory, Addison Wesley, Reading Mass, (1969).
- [5]. J. Suresh Kumar, Graph Colouring Parameters–A survey, International Journal for Research in Applied Science and Engineering Technology, Volume.7 (IV), (2019).
- [6]. J. Suresh Kumar and Preethi K Pillai, Sigma colouring and Graph Operations, South East Asian J.of Mathematics and Mathematical Sciences, Vol.17, No.3, pp.363-372, (2021).