Mapana - Journal of Sciences
2023, Vol. 22, Special Issue No. 1, 41-49
ISSN 0975-3303 |https:/ /doi.org/10.12723/mjs.sp1.4

Sigma Chromatic Number of Some Graphs

Preethi K Pillai* \& J Suresh Kumar

Abstract

The Sigma colouring (σ - colouring) of a graph G with n vertices is an injection from $V(G)$ to $\{1,2, \ldots, n\}$ such that the colour sums (adding the colours of the neighbouring vertices) of any two neighbouring vertices are different. The smallest number of colours needed to colour a graph G is represented by its Sigma Chromatic number, $\sigma(G)$. In this article we obtain the σ-colouring of some graphs such as Barbell Graph, Twig graph, Shell graph, Tadpole, Lollipop, Fusing all the vertices of cycle and duplication of every edge by a vertex in C_{n}.

Keywords: σ - colouring, Sigma Chromatic number, Barbell Graph, Twig graph, Shell graph, Tadpole, Lollipop.
AMS Subject Classification Number: 05C15

Introduction

By a graph, we mean simple graph. Several types of graph colouring were investigated in $[1,3]$ and new variations of colouring are available in $[3,5,6]$. The σ - colouring was introduced by Gary Chartrand et.al.[1] in 2008 as he was doing a project. Gary Chartrand et.al. presented the first paper [2] in 2010, finding $\sigma(G)$ of complete graphs, complete r-partite graph with $r \geq 2$ and cycles. He proved that $\sigma(G) \leq X(G)$ where $X(G)$ is the minimum number of colours used in the proper vertex colouring G. Finding the Sigma Chromatic number of a graph G is the goal of the Sigma colouring problem. We begin by recollecting some basic definitions used in this article.

[^0]Definition.1.1. Barbell graph, B_{n}, is obtained by connecting two copies of K_{n} by a bridge.

Definition 1.2. A path with two pendent edges attaching to each internal vertex forms a Twig graph.

Definition. 1.3. A Shell graph is defined as a cycle C_{n} with $(n-3)$ chords sharing a common end point called the apex.

Definition 1.4. The tadpole graph, $T_{n l}$, is the graph obtained by joining a cycle to a path P_{l} of lenth l.

Definition 1.5. The lollipop graph denoted by $L_{n l}$, is the graph obtained by joining a complete graph K_{n} to a path of lenth l.

Definition 1.6. Fusion (Identification) of two distinct vertices u, v of a graph G produces a new graph G_{1} constructed by replacing the vertices u, v by a single vertex w such that every edge which is incident with either u or v in G is now incident with w in G_{1}.

Definition.1.7. The floor function of a real number x is the largest integer less than or equal to x and it is denoted by $\lfloor x\rfloor$.The ceil function of a real number x is the smallest integer greater than or equal to x and is denoted by $\lceil x\rceil$.

Definition.1.8.[3]. Imagine a vertex colouring of G which is notproper. The function $c: V(G) \rightarrow N$ is a vertex colouring of a graph G, and $c(v)$ denote the colour of a vertex v. We encode the colours by natural numbers in order to do this. For any $v \in V(G)$, the sum of colours of the vertices neighbouring to v be denoted by $\sigma(v)$; if for any two adjacent vertices $u, v \in$ $V(G), \sigma(v) \neq \sigma(u)$, then the colouring is called a Sigma colouring ($\sigma-$ colouring) of G. The minimum number of colours used in a sigma colouring of G is called the sigma chromatic number of G and is denoted by $\sigma(G)$.
In our article, we obtain the σ-colouring of some graphs such as Barbell Graph, Twig graph, Shell graph, Tadpole, Lollipop, Fusing all the vertices of cycle and duplication of every edge by a vertex in C_{n}. For the expressions and definitions not explained in this article, we may refer to Harary[4].

Findings

Theorem.2.1. A Barbell graph, B_{n} is $\sigma-$ colourable and $\sigma\left(B_{n}\right) \leq n+$ 1.

Proof: Consider B_{n}, the barbell graph constructed by connecting two copies of complete graph K_{n} and K_{n}^{\prime} by a bridge. Let $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the vertices of K_{n} and $v_{1}{ }^{\prime} v_{2}{ }^{\prime}, v_{3}, \ldots, v_{n}^{\prime}$ be the vertices of $K_{n}{ }^{\prime}$ and the bridge be $e=v_{1} v_{1}{ }^{\prime}$.

Define $c: \mathrm{V}\left(B_{n}\right) \rightarrow\{1,2\}$ as follows:
$c\left(v_{i}\right)=i ;$ if $1 \leq i \leq n$.
$c\left(v_{i}^{\prime}\right)=i+1$; if $1 \leq i \leq n$.
The vertices v_{i} and $v_{i+1},(2 \leq i \leq n-1)$ are of the same degree and are adjacent in K_{n}. We colour all the vertices with different colours, otherwise these vertices will receive the same colour sum, which violates the rules of σ - colouring. In the case of $K_{n}{ }^{\prime}$, if we colour all the vertices with same set of colours in K_{n}, then atleast two vertices receives the same colour sum, which breaks the condition of $\sigma-$ colouring. So, we use an additional colour $n+1$ in $K_{n}{ }^{\prime}$. Then, all adjacent vertices get different vertex sum. Here c is a σ - colouring with $\sigma(G) \leq n+1$.

Theorem.2.2. For any Twig graph $T_{m}, m \geq 2, \sigma\left(T_{m}\right)=2$.
Proof: Let the initial and terminal vertices of the path be v_{1} and v_{m+2} and let $v_{2}, v_{3}, \ldots, v_{m+1}$ be the internal vertices of the path. Let $v_{i}(1 \leq$ $i \leq m+2), u_{j,}(1 \leq j \leq m)$ and $w_{j},(1 \leq j \leq m)$ be the vertex set and $v_{i} v_{i+1}(1 \leq i \leq m+1), u_{j} v_{j+1}(1 \leq j \leq m), w_{j} v_{j+1}(1 \leq j \leq m)$ be the edge set.

Define $c: \mathrm{V}\left(T_{n}\right) \rightarrow\{1,2\}$ as follows.
$c\left(v_{i}\right)=1$ if i is odd.
$c\left(v_{i}\right)=2$ if i is even.
$c\left(u_{i,}\right)=1$
$c\left(w_{i,}\right)=1$
It could be noted all the adjacent vertices get different vertex sum. Here c is a σ-colouring with $\sigma\left(T_{m}\right) \leq 2$. If possible, consider
$\sigma\left(T_{m}\right)=1$. Since the vertices v_{i} and $v_{i+1}(2 \leq i \leq m)$ are of the same degree and we colour all the vertices with the same colour 1 these adjacent vertices v_{i} and $v_{i+1}(2 \leq i \leq m)$ get the same colour sum, which contradicts the rule of σ - colouring. So $\sigma\left(T_{m}\right) \neq 1$. Hence, $\sigma\left(T_{m}\right)=2$.
Theorem.2.3. The Shell graph is σ - colourable and $\sigma\left(S_{n, n-3}\right), n \geq$ $4,=2$.

Proof: Let $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the nodes of the cycle C_{n}. Let v_{1} be the apex vertex of shell graph $S_{n, n-3}$.
Suppose the case where the number of nodes is odd.
Define $c: V\left(S_{n, n-3}\right) \rightarrow\{1,2\}$ as follows:
$c\left(v_{2 i}\right)=2 ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$c\left(v_{2 i-1}\right)=1 ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$.
$c\left(v_{n}\right)=2$.
Suppose the case where the number of nodes is even.
Define the vertex colour $c: V\left(S_{n, n-3}\right) \rightarrow\{1,2\}$ as follows:
$c\left(v_{2 i}\right)=2 ; 1 \leq i \leq \frac{n}{2}$.
$c\left(v_{2 i-1}\right)=1 ; 1 \leq i \leq \frac{n}{2}$
It could be noted all the adjacent vertices get different vertex sum. Here c is a $\sigma-$ colouring with $\sigma\left(S_{n, n-3}\right) \leq 2$. If possible, consider $\sigma\left(S_{n, n-3}\right)=1$. Since the vertices v_{i} and $v_{i+1}(3 \leq i \leq n-2)$ are of the same degree and we colour all the vertices with the same colour 1 , these adjacent vertices v_{i} and $v_{i+1}(3 \leq i \leq n-2)$ get the same colour sum which contradicts the rule of σ - colouring. So, $\sigma\left(S_{n, n-3}\right)$ $\neq 1$. Hence, $\sigma\left(S_{n, n-3}\right)=2$.

Theorem.2.4. The Tadpole graph, $T_{n l}$, is σ - colourable. For $n \geq$ $3, l \geq 3, \sigma\left(T_{n}\right)=2$.
Proof: Let $T_{n l}$ be the graph obtained by joining a cycle C_{n} by a path P_{l}. Let the cycle C_{n} have vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ and $u_{1}, u_{2}, u_{3}, \ldots, u_{l}$ be the vertices of the path joining v_{1} to P_{l}. Define $c: V\left(T_{n l}\right) \rightarrow$ $\{1,2\}$ as follows.

Case I: When n is odd.
$c\left(v_{2 i}\right)=2 ; 1 \leq i \leq \frac{n-1}{2}$.
$c\left(v_{2 i-1}\right)=1 ; 1 \leq i \leq \frac{n+1}{2}$.
$c\left(u_{4 i-2}\right)=1,1 \leq i \leq\left\lfloor\frac{n+2}{4}\right\rfloor$.
All other vertices in the path except $u_{4 i-2}\left(1 \leq i \leq\left\lfloor\frac{n+2}{4}\right\rfloor\right)$ are coloured with colour 2.
Case II: When n is even.
$c\left(v_{2 i}\right)=1 ; 1 \leq i \leq \frac{n}{2}$.
$c\left(v_{2 i-1}\right)=2 ; 1 \leq i \leq \frac{n}{2}$.
$c\left(u_{4 i-3}\right)=1,1 \leq i \leq\left\lfloor\frac{n+3}{4}\right\rfloor$. All other vertices in the path except $u_{4 i-3}\left(1 \leq i \leq\left\lfloor\frac{n+3}{4}\right\rfloor\right)$ are coloured with colour 2 .
It could be noted all the adjacent vertices get different vertex sum. Here c is a σ - colouring with $\sigma\left(T_{n l}\right) \leq 2$. If possible, consider $\sigma\left(T_{n l}\right)=1$. Since the vertices v_{i} and $v_{i+1}(2 \leq i \leq n-1)$ are of the same degree and we colour all the vertices with the same colour 1 these adjacent vertices v_{i} and $v_{i+1}(2 \leq i \leq n-1)$ get the same colour sum , which violates the rule of σ - colouring. So, $\sigma\left(T_{n l}\right) \neq 1$. Hence, $\sigma\left(T_{n l}\right)=2$.

Theorem.2.5. The Lollipop graph $L_{n l}$ is $\sigma-$ colourable. For $n \geq$ $3, l \geq 3, \sigma\left(L_{n l}\right) \leq n$.
Proof: Let $L_{n l}$ be the graph obtained by joining a complete graph K_{n} by a path P_{l}.

Let $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the vertices of a complete graph K_{n} and $u_{1}, u_{2}, u_{3}, \ldots, u_{l}$ be the vertices of the path joining v_{1} to P_{l}.

Define the vertex colour $c: V\left(L_{n l}\right) \rightarrow\{1,2,3, \ldots, n\}$ as follows.
$c\left(v_{i}\right)=i ; 1 \leq i \leq n$.
$c\left(u_{4 i-2}\right)=1,1 \leq i \leq\left\lfloor\frac{l+2}{4}\right\rfloor$. All other vertices in the path except $u_{4 i-2}\left(1 \leq i \leq\left\lfloor\frac{l+2}{4}\right\rfloor\right)$ in the path are coloured with colour 2.

The vertices v_{i} and $v_{i+1}(2 \leq i \leq n-1)$ are of the same degree and are adjacent in K_{n}. We colour all the vertices with different colours, otherwise these vertices get the same colour sum, which contradicts
the rule of σ-colouring. Using the above colouring pattern all adjacent vertices get different vertex sum. Here, c is a σ - colouring with $\sigma\left(L_{n l}\right) \leq n$.

Theorem.2.6. The graph obtained by joining two copies of C_{n} by a path P_{m} admits σ - colouring. For $n \geq 3, m \geq 3 \sigma(H)=2$.

Proof: Consider H be the graph constructed by joining two copies of C_{n} by a path P_{m}.
Let $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the nodes of the first copy of C_{n}, $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the nodes of the other copy of C_{n} and $w_{1}, w_{2}, w_{3}, \ldots, w_{m}$ be the nodes of path P_{m}.

Suppose the case where the number of nodes of $\boldsymbol{C}_{\boldsymbol{n}}$ is odd.
Case I: When n is odd.
(a) When m is odd.

Define $c: V(H) \rightarrow\{1,2\}$ as follows

$$
c\left(w_{i}\right)=c\left(u_{i}\right)=c\left(v_{i}\right)=\left\{\begin{array}{l}
2 \text { if } i \text { is even } \\
1, \text { if } i \text { is odd }
\end{array}\right.
$$

(b) When m is even.

$$
\begin{gathered}
c\left(v_{i}\right)=\left\{\begin{array}{l}
2 \text { if } i \text { is even } \\
1, \text { if } i \text { is odd }
\end{array}\right. \\
c\left(u_{i}\right)=\left\{\begin{array}{l}
2 \text { if } i \text { is even } \\
1, \text { if } i \text { is odd }
\end{array}\right. \\
c\left(w_{i}\right)=\left\{\begin{array}{c}
2 \text { if } i \text { is even } i \neq m \\
1, \text { if } \text { is odd }
\end{array}\right. \\
c\left(w_{m,}\right)=1
\end{gathered}
$$

Case II: When n is even.
(a): When m is even.

Define $c: V(H) \rightarrow\{1,2\}$ as follows

$$
c\left(w_{i}\right)=c\left(u_{i}\right)=c\left(v_{i}\right)=\left\{\begin{array}{l}
2 \text { if } i \text { is even } \\
1, \text { if } i \text { is odd }
\end{array}\right.
$$

(b): When m is odd.

$$
\begin{gathered}
c\left(v_{i}\right)=\left\{\begin{array}{l}
2 \text { if } i \text { is even } \\
1, \text { if } i \text { is odd }
\end{array}\right. \\
c\left(u_{i}\right)=\left\{\begin{array}{l}
2 \text { if } i \text { is even } \\
1, \text { if } i \text { is odd }
\end{array}\right. \\
c\left(w_{i}\right)=\left\{\begin{array}{c}
2 \text { if } i \text { is even } i \neq m \\
1, \text { if } \text { i is odd }
\end{array}\right. \\
c\left(w_{m}\right)=1
\end{gathered}
$$

It could be noted all the adjacent vertices get different vertex sum. Here c is a σ - colouring with $\sigma(H) \leq 2$. If possible, consider $\sigma(H)=$ 1. Since the vertices v_{i} and $v_{i+1}(2 \leq i \leq n-2)$ are of the same degree and we colour all the vertices with the same colour 1 . These adjacent vertices v_{i} and $v_{i+1}(2 \leq i \leq n-2)$ get the same colour sum, which contradicts the rule of σ - colouring. So, $\sigma(H) \neq 1$. Hence $\sigma(H)=2$.

Theorem.2.7. The graph obtained by fusing all the n vertices of cycle C_{n} with the apex vertices of n copies of $K_{1 m}$ admits $\sigma-$ colouring. For $n>3, m \geq 3, \sigma(H)=2$.

Proof: Consider H be the graph obtained by by fusing all the n vertices of cycle C_{n} with the apex vertices of n copies of $K_{1 m}$. Let $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the vertices of the cycle C_{n}. Fusing all the vertices v_{i} of cycle C_{n} with the apex vertices of star $K_{1 m}$ by $v_{i j}, 1 \leq i \leq n, 1 \leq$ $j \leq m$.

Suppose the case where the number of nodes of $\boldsymbol{C}_{\boldsymbol{n}}$ is odd.
Define $c: V(H) \rightarrow\{1,2\}$ as follows.

$$
\begin{gathered}
c\left(v_{i}\right)=\left\{\begin{array}{l}
2 \text { if } i \text { is even } \\
1, \text { if } i \text { is odd }
\end{array}\right. \\
c\left(v_{i j}\right)=1 ; 1 \leq i \leq n-1,1 \leq j \leq m-1 \\
c\left(v_{n m}\right)=2
\end{gathered}
$$

Suppose the case where the number of nodes of $\boldsymbol{C}_{\boldsymbol{n}}$ is even.
Define $c: V(H) \rightarrow\{1,2\}$ as follows.

$$
\begin{gathered}
c\left(v_{i}\right)=\left\{\begin{array}{l}
2 \text { if } i \text { is even } \\
1, \text { if } i \text { is odd }
\end{array}\right. \\
c\left(v_{i_{j}}\right)=1 ; 1 \leq i \leq n, 1 \leq j \leq m
\end{gathered}
$$

It could be noted all the adjacent vertices get different vertex sums. Here c is a σ - colouring with $\sigma(G) \leq 2$. If possible, consider $\sigma(G)=$ 1. Since the vertices v_{i} and $v_{i+1}(1 \leq i \leq n-1)$ are of the same degree and we colour all the vertices with the same colour 1, these adjacent vertices v_{i} and $v_{i+1}(1 \leq i \leq n-1)$ get the same colour sum, which contradicts the rule of σ - colouring. So, $\sigma(G) \neq 1$. Hence, $\sigma(H)=2$.

Theorem.2.8. The graph constructed by replication of every edge replaced with a vertex in C_{n} is σ - colouring, $n \geq 3, \sigma(H)=2$.

Proof:Consider $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be nodes of the cycle C_{n}. Let H be the graph constructed by replication of every edge $v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{n} v_{1}$ in C_{n} by the corresponding new nodes $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$,respectively.

Suppose the case where the number of nodes of $\boldsymbol{C}_{\boldsymbol{n}}$ is odd.

Define $c: V(H) \rightarrow\{1,2\}$ as follows
$c\left(v_{2 i}\right)=2 ; 1 \leq i \leq \frac{n-1}{2}$.
$c\left(v_{2 i-1}\right)=1 ; 1 \leq i \leq \frac{n+1}{2}$
$c\left(u_{i}\right)=1 ; 2 \leq i \leq n$.
$c\left(u_{1}\right)=2$.
Suppose the case where the number of nodes of $\boldsymbol{C}_{\boldsymbol{n}}$ is even.
Define $c: V(H) \rightarrow\{1,2\}$ as follows
$c\left(v_{2 i}\right)=2 ; 1 \leq i \leq \frac{n}{2}$.
$c\left(v_{2 i-1}\right)=1 ; 1 \leq i \leq \frac{n}{2}$
$c\left(u_{i}\right)=1 ; 1 \leq i \leq n$.
It could be noted all the adjacent vertices get different vertex sum. Here, c is a $\sigma-$ colouring with $\sigma(G) \leq 2$. If possible, consider $\sigma(G)=$ 1 .Since the vertices v_{i} and $v_{i+1}(1 \leq i \leq n-1)$ are of the same degree and we colour all the vertices with the same colour 1, these adjacent vertices v_{i} and $v_{i+1}(1 \leq i \leq n-1)$ get the same colour sum, which contradicts the rule of $\sigma-$ colouring. So, $\sigma(G) \neq 1$. Hence $\sigma(G)=2$.

References:

[1]. G. Chartrand and P. Zhang, Chromatic Graph Theory, Boca Raton, Chapman\& Hall Press, (2008).
[2]. G. Chartrand, F. Okamoto and P. Zhang, The Sigma Chromatic Number of a Graph, Graphs and Combinatorics, 26:755-773, (2010).
[3]. J. A. Gallian, Dynamic Survey of Graph labelling, Electron. J. Comb.,18 (\#DS6), (2016).
[4]. F. Harary, Graph Theory, Addison Wesley, Reading Mass, (1969).
[5]. J. Suresh Kumar, Graph Colouring Parameters-A survey, International Journal for Research in Applied Science and Engineering Technology, Volume. 7 (IV), (2019).
[6]. J. Suresh Kumar and Preethi K Pillai, Sigma colouring and Graph Operations, South East Asian J.of Mathematics and Mathematical Sciences,Vol.17,No.3,pp.363-372, (2021).

[^0]: * The PG and Research Department of Mathematics, N.S.S. Hindu College, Changanacherry, Kerala, India 686102; Email: preethiasokar@gmail.com

