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Abstract 

The reserved dominating set is special up gradation of 
dominating set, such that some of the vertices in the vertex 
set have the special privilege (reserved) to appear in the 
Dominating set irrespective of their adjacency due to the 
necessity of the user. The minimum --cardinality of a 
reserved dominating set of 𝐺 is called the reserved 
domination number of 𝐺 and is denoted by 𝑅(𝑘) −

𝛾(𝐺)where 𝑘  is the number of reserved vertices. In this 
paper reserved domination number of𝐿(𝑃𝑛), 𝐿(𝐶𝑛), 𝐿(𝑆𝑛), 

𝐿(𝐵𝑚,𝑛), 𝐿(𝑊𝑛) and 𝐿(𝐹1,𝑛) are found 

 

Keywords: Dominating set, reserved dominating set, reserved 
domination number, line graph. 

1. Introduction  
The Oystein Ore [1] defined that the dominating set of a graph. 
Rajasekar et al., [3,6] defined the reserved dominating set (𝑅𝐷𝑆) of 
the graph 𝐺 to be the subset 𝑆 of 𝑉, whose vertices are reserved in 
such a way that they must appear in the dominating set. The 
dominating 𝑅𝐷𝑆 with the minimum cardinality is called reserved 
domination number of 𝐺  and is denoted by 𝑅(𝑘) − 𝛾(𝐺)where 𝑘 is 

the number of reserved vertices. In [4] authors found the location 
domination number of line graph. Rajasekar et al. [3,5,6,7] have 
found the reserved domination number, 2-reserved domination 
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number of graphs and reserved domination number of complement 
of a graphs. 

Throughout this paper we use the indexing set [initial value; final 
value: step value] where initial value is the first value of indexing 
set, step value is the incremented value of initial value and the final 
value is the maximum value that can be achieved by initial value by 

incrementing. Therefore  1; :1k n  implies 1, 2,3,...,k n=  and 

 1; :1nv v  implies  1 2 3, , ,..., .nv v v v  Further throughout the paper 

Reserved vertex is referred to as𝑅𝑉, Dominating Set as DS, Reserved 
Dominating Set as 𝑅𝐷𝑆 and Reserved Domination Number as𝑅𝐷𝑁. 

2. Preliminaries 
Definition 2.1: [3] Reserved Domination. 

Let 𝐺 = (𝑉, 𝐸) be a graph. A subset 𝑆 of 𝑉 is called a Reserved 
Dominating Set (𝑅𝐷𝑆)of 𝐺 if 

(i) 𝜇 be any nonempty proper subset of 𝑆. 

(ii) Every vertex in 𝑉 − 𝑆is adjacent to a vertex in𝑆. 

The dominating set 𝑆is called a minimal reserved dominating set if 
no proper subset of 𝑆containing 𝜇is a dominating set. The set 𝜇 is 
called Reserved set. The minimum cardinality of a reserved 
dominating set 𝑆  of 𝐺 is called the reserved domination number 
of𝐺and is denoted by 𝑅 − 𝛾(𝐺). 

Definition 2.2: [3,6] 2-Reserved Domination. 

Let 𝐺 = (𝑉, 𝐸)be a graph. A subset 𝑆of 𝑉 is called a 𝑘  -reserved 
dominating set (𝑅𝐷𝑆)of 𝐺 if 

(i) 𝜇 is any nonempty proper subset of 𝑆with 𝑘 vertices. 

(ii) Every vertex in 𝑉 − 𝑆is adjacent to a vertex in𝑆. 

The dominating set 𝑆is called a minimal 𝑘 -reserved dominating set 
if no proper subset of 𝑆 containing 𝜇 is a dominating set. The set 𝜇 is 
called 𝑘 -reserved set. 

The minimum cardinality of a 𝑘 -reserved dominating set 𝑆 of 𝐺is 
called the 𝑘  -reserved domination number of𝐺and is denoted by 
𝑅(𝑘) − 𝛾(𝐺) where 𝑘 is the number of reserved vertices. 
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Definition 2.3: Bistar Graph. 

A Bistar graph is the graph obtained by joining the centre (apex) 
vertices of two copies of 𝐾1,𝑛 by an edge and it is denoted by 𝐵𝑚,𝑛. 

Theorem 2.4: [3] For 𝑃𝑛,  the𝑅𝐷𝑁, 

𝑅(1) − 𝛾(𝑃𝑛, 𝜇) = 1 + ⌈
𝑘−2

3
⌉ + ⌈

𝑛−(𝑘+1)

3
⌉ , if𝜇 = 𝑣𝑘(𝑘 ∈ [1; 𝑛: 1]). 

Theorem 2.5: [3] For 𝐶𝑛, the 𝑅𝐷𝑁, 𝑅(1) − 𝛾(𝐶𝑛, 𝜇) = 𝛾(𝐶𝑛) = ⌈
𝑛

3
⌉ if𝜇 =

𝑣𝑘(𝑘 ∈ [1; 𝑛: 1]). 

Remark 2.6: [3] For 𝐾𝑛, 𝑛 ≥ 3 the 𝑅𝐷𝑁, 𝑅(1) − 𝛾(𝐾𝑛) = 1. 

3. Reserved Domination Number of Line Graph 

Proposition 3.1: For 𝑃𝑛,  𝑅(1) − 𝛾(𝐿(𝑃𝑛)) = 𝑅(1) − 𝛾(𝑃𝑛−1), asf𝐿(𝑃𝑛) =

𝑃𝑛−1. 

Proposition 3.2: For 𝐶𝑛 , 𝐿(𝐶𝑛) = 𝐶𝑛 and hence 𝑅(1) − 𝛾(𝐿(𝐶𝑛)) =

𝑅(1) − 𝛾(𝐶𝑛). 

Theorem 3.3: For 𝑆𝑛 = 𝐾1,𝑛, 𝑅(1) − 𝛾(𝐿(𝑆𝑛), 𝜇) = 𝑅(1) − 𝛾(𝐾𝑛, 𝜇) = 1, 

if 𝜇 = 𝑒𝑘(𝑘 ∈ [1; 𝑛: 1]).  

Proof: 𝑆1 = 𝐾2 = 𝑃2  and so by Proposition 3.1, 𝑅(1) − 𝛾(𝐿(𝑆1)) =

𝑅(1) − 𝛾(𝐿(𝑃2)) = 𝑅(1) − 𝛾(𝑃1) = 1. 

For 𝑛 > 1 ,f𝐿(𝑆𝑛) ≅ 𝐾𝑛  and so 𝑅(1) − 𝛾(𝐿(𝑆𝑛), 𝜇) = 𝑅(1) − 𝛾(𝐾𝑛, 𝜇) =

1. 

Theorem 3.4: For 𝐵𝑚,𝑛, the 𝑅𝐷𝑁, 

𝑅(1) − 𝛾(𝐿(𝐵𝑚,𝑛), 𝜇) = {

1, if 𝜇 = 𝑒

2, if 𝜇 = {
𝑒𝑢𝑘 , 𝑘 ∈ [1;𝑚: 1]  or

𝑒𝑣𝑘 , 𝑘 ∈ [1; 𝑛: 1].
  

Proof:  

Case (i): When 𝑚 = 1 = 1, 𝐵1,1 ≅ 𝑃4  and by Proposition 3.1, 𝑅(1) −

𝛾(𝐿(𝐵1,1), 𝜇) = {
1, if 𝜇 = 𝑒
2, if 𝜇 = 𝑒𝑢1 or 𝑒𝑣1

 . 

Case (ii): Either 𝑚 = 1for 𝑛 = 1. 

Without loss of generality, assume that 𝑚 > 1 and 𝑛 = 1. 𝐿(𝐵𝑚,1)is 

isomorphic to𝐿𝑚+1,1. 
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Suppose 𝜇 = 𝑒 is 𝑅𝑉. Then 𝑒 must be in the DS and 𝑒 dominates all 
other vertices. Hence the required 𝑅𝐷𝑆 is {𝑒}. 

Thus 𝑅(1) − 𝛾(𝐿(𝐵𝑚,1), 𝜇) = 1 where 𝜇 = 𝑒. 

 

 

Fig. 1: (a) ,1mB  and (b) ( ),1mL B  

Suppose 𝜇 = 𝑒𝑢𝑘(𝑘 ∈ [1;𝑚: 1]) is the 𝑅𝑉. Then 𝑒𝑢𝑘 must be in the DS 

and 𝑒𝑢𝑘  dominates the vertices {𝑒𝑢1 , 𝑒𝑢2 , . . . , 𝑒𝑢𝑘−1 , 𝑒𝑢𝑘+1 , . . . , 𝑒𝑢𝑚} ∪

{𝑒}. The remaining vertex which is not dominated by 𝑒𝑢𝑘 is 𝑒𝑣1. So 

𝑒𝑣1 must be in the DS. 

Hence the required 𝑅𝐷𝑆 is {𝑒𝑢𝑘 , 𝑒𝑣1}. 

Thus 𝑅(1) − 𝛾(𝐿(𝐵𝑚,1), 𝜇) = 2 where 𝜇 = 𝑒𝑢𝑘(𝑘 ∈ [1;𝑚: 1]). 

Suppose 𝜇 = 𝑒𝑣1  is the 𝑅𝑉 . Then 𝑒𝑣1  must be in the DS and 𝑒𝑣1 

dominates only the vertex 𝑒. The remaining vertices which aren’t 

dominated by 𝑒𝑢𝑘  are {𝑒𝑢1; 𝑒𝑢𝑚: 1} . To dominate the remaining 

vertices, choose any one of the vertex say 𝑒𝑢1 from {𝑒𝑢1; 𝑒𝑢𝑚: 1}.  

Hence the required𝑅𝐷𝑆 is {𝑒𝑣1 , 𝑒𝑢1}. 

Thus 𝑅(1) − 𝛾(𝐿(𝐵𝑚,1), 𝜇) = 2 where 𝜇 = 𝑒𝑣1. 

Case (iii): Line graph of 𝐵𝑚,𝑛  when 𝑚, 𝑛 > 1  is isomorphic to the 
graph obtained due to single vertex fusion of𝐾𝑚+1 and𝐾𝑛+1. 
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(a) 

 
(b) 

Fig. 2: (a) 𝐵𝑚,𝑛 and (b) 𝐿(𝐵𝑚,𝑛) 

Suppose 𝜇 = 𝑒 is 𝑅𝑉. Then 𝑒 must be in the DS and 𝑒 dominates all 
other vertices. Hence the required 𝑅𝐷𝑆 set is {𝑒}. 

Thus 𝑅(1) − 𝛾(𝐿(𝐵𝑚,𝑛), 𝜇) = 1 where 𝜇 = 𝑒. 

Suppose 𝜇 = 𝑒𝑢𝑘(𝑘 ∈ [1;𝑚: 1]) is the 𝑅𝑉. Then 𝑒𝑢𝑘 must be in the DS 

and 𝑒𝑢𝑘  dominates the vertices {𝑒𝑢1 , 𝑒𝑢2 , . . . , 𝑒𝑢𝑘−1 , 𝑒𝑢𝑘+1 , . . . , 𝑒𝑢𝑚} ∪

{𝑒} . The remaining vertices which are not dominated by 𝑒𝑢𝑘  are 

{𝑒𝑣1; 𝑒𝑣𝑛: 1}.  

To dominate the remaining vertices, choose any one of the vertices 

say 𝑒𝑣1 from{𝑒𝑣1; 𝑒𝑣𝑛: 1}.  

Hence the required 𝑅𝐷𝑆 is {𝑒𝑢𝑘 , 𝑒𝑣1}. 

Thus 𝑅(1) − 𝛾(𝐿(𝐵𝑚,𝑛), 𝜇) = 2 where 𝜇 = 𝑒𝑢𝑘(𝑘 ∈ [1;𝑚: 1]). 

Similarly, one can prove for the 𝑅𝑉𝜇 = 𝑒𝑣𝑘 where 𝑘 ∈ [1; 𝑛: 1]. 
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Theorem 3.5: For 𝑊𝑛, 𝑅(1) − 𝛾(𝐿(𝑊𝑛), 𝜇) = ⌈
𝑛+1

3
⌉ if 𝜇 = 𝑒𝑘 or 𝑒𝑣𝑘  (𝑘 ∈

[1; 𝑛: 1]). 

Proof: Let 𝑉(𝑊𝑛) = {𝑣, {𝑣1; 𝑣𝑛: 1}}  where 𝑑𝑒𝑔 𝑣 = 𝑛  and 𝑑𝑒𝑔 𝑣𝑘 = 3 

for all 𝑘 ∈ [1; 𝑛: 1]. Label the edge 𝑣𝑣𝑘  as 𝑒𝑣𝑘 , edge 𝑣𝑘𝑣𝑘+1 as 𝑒𝑘 for 

𝑘 ∈ [1; 𝑛 − 1: 1] and 𝑣1𝑣𝑛 as 𝑒𝑛 as represented in the Fig. 3. 

 
Figure 3: 𝑊𝑛 

𝐿(𝑊𝑛) is constructed as shown in Fig. 4. 

 

 
Figure 4: 𝐿(𝑊𝑛) 
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The induced subgraph of the sets {𝑒𝑣1; 𝑒𝑣𝑛: 1}  and {𝑒1; 𝑒𝑛: 1}  is 𝐾𝑛 

and 𝐶𝑛 respectively. 

Case (i): Suppose 𝜇 = 𝑒𝑣𝑘(𝑘 ∈ [1; 𝑛: 1]) is 𝑅𝑉. Then 𝑒𝑣𝑘 must be in the 

DS and 𝑒𝑣𝑘  dominates the vertices{𝑒𝑣1 , 𝑒𝑣2 , . . . , 𝑒𝑣𝑘−1 , 𝑒𝑣𝑘+1 , . . . , 𝑒𝑣𝑛} ∪

{𝑒𝑘−1, 𝑒𝑘}. The remaining vertices which are not dominated by 𝑒𝑣𝑘 

are {𝑒1, 𝑒2, . . . , 𝑒𝑘−2, 𝑒𝑘+1, . . . , 𝑒𝑛}. 

Now it is enough to find the DS for the 
vertices {𝑒1, 𝑒2, . . . , 𝑒𝑘−2, 𝑒𝑘+1, . . . , 𝑒𝑛} . The 𝐿(𝑊𝑛)[𝑉1]  with 𝑉1 =
{𝑒1, 𝑒2, . . . , 𝑒𝑘−2, 𝑒𝑘+1, . . . , 𝑒𝑛} is 𝑃𝑛−2. 

Hence 𝑅(1) − 𝛾(𝐿(𝑊𝑛), 𝜇) = |{𝑒𝑣𝑘}| + 𝛾(𝑃𝑛−2)    = 1 + ⌈
𝑛−2

3
⌉ = ⌈

𝑛+1

3
⌉ 

where𝜇 = 𝑒𝑣𝑘(𝑘 ∈ [1; 𝑛: 1]). 

Case (ii): Suppose 𝜇 = 𝑒𝑘(𝑘 ∈ [1; 𝑛: 1]) is 𝑅𝑉. Then 𝑒𝑘 must be in the 

DS and 𝑒𝑘  dominates the vertices {𝑒𝑘−1, 𝑒𝑘+1} ∪ {𝑒𝑣𝑘 , 𝑒𝑣𝑘+1} . The 

remaining vertices which are not dominated by 𝑒𝑘  are 

{𝑒1, 𝑒2, . . . , 𝑒𝑘−2, 𝑒𝑘+2, . . . , 𝑒𝑛} ∪ {𝑒𝑣1 , 𝑒𝑣2 , . . . , 𝑒𝑣𝑘−1 , 𝑒𝑣𝑘+2 , . . . , 𝑒𝑣𝑛}. 

To dominate the remaining vertices from the set 

{𝑒𝑣1 , 𝑒𝑣2 , . . . , 𝑒𝑣𝑘−1 , 𝑒𝑣𝑘+2 , . . . , 𝑒𝑣𝑛} , choose the vertex 𝑒𝑣𝑘+3  or 𝑒𝑣𝑘−3 . 

Consider the vertex 𝑒𝑣𝑘+3 which dominates 𝑒𝑘+2 and 𝑒𝑘+3. 

Now it is enough to find the DS for the vertices 
{𝑒1, 𝑒2, . . . , 𝑒𝑘−2, 𝑒𝑘+4, . . . , 𝑒𝑛} . The 𝐿(𝑊𝑛)[𝑉2]  with 𝑉2 =
{𝑒1, 𝑒2, . . . , 𝑒𝑘−2, 𝑒𝑘+4, . . . , 𝑒𝑛} is 𝑃𝑛−5. 

Hence 𝑅(1) − 𝛾(𝐿(𝑊𝑛), 𝜇) = |{𝑒𝑘}| + |{𝑒𝑣𝑘+3}| + 𝛾(𝑃𝑛−5) = 1 + 1 +

⌈
𝑛−5

3
⌉ = ⌈

𝑛+1

3
⌉ where 𝜇 = 𝑒𝑘(𝑘 ∈ [1; 𝑛: 1]). 

Theorem 3.6: For the fan graph 𝐹1,𝑛, the reserved domination number 
for the different values of 𝑛 is summarized as follows: 

i. For 𝑛 ≡ 0(𝑚𝑜𝑑 3)  

𝑅(1) − 𝛾(𝐿(𝐹1,𝑛), 𝜇)

=

{
 
 

 
 ⌈
𝑛 + 1

3
⌉ , if 𝜇 = {

𝑒𝑣𝑘(𝑘 = 1,3,4,6, . . . , 𝑛 − 5, 𝑛 − 3, 𝑛 − 2, 𝑛) or

𝑒𝑘(𝑘 = 1,3,6,9, . . . , 𝑛 − 9, 𝑛 − 6, 𝑛 − 3, 𝑛 − 1)

⌈
𝑛

3
⌉ , if 𝜇 = {

𝑒𝑣𝑘(𝑘 = 2,5,8,11, . . . , 𝑛 − 10, 𝑛 − 7, 𝑛 − 4, 𝑛 − 1) or

𝑒𝑘(𝑘 = 2,4,5,7, . . . , 𝑛 − 7, 𝑛 − 5, 𝑛 − 4, 𝑛 − 2)

 

ii. For 𝑛 ≡ 1(𝑚𝑜𝑑 3) 
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𝑅(1) − 𝛾(𝐿(𝐹1,𝑛), 𝜇) = ⌈
𝑛

3
⌉ , if 𝜇 = {

𝑒𝑣𝑘(𝑘 ∈ [1; 𝑛: 1]) or

𝑒𝑘(𝑘 ∈ [1; 𝑛 − 1: 1])
  

iii. For 𝑛 ≡ 2(𝑚𝑜𝑑 3) 

𝑅(1) − 𝛾(𝐿(𝐹1,𝑛), 𝜇) =

{

⌈
𝑛+2

3
⌉ , if 𝜇 = 𝑒𝑣𝑘(𝑘 = 3,6,9,12, . . . , 𝑛 − 11, 𝑛 − 8, 𝑛 − 5, 𝑛 − 2)

⌈
𝑛

3
⌉ , if 𝜇 = {

𝑒𝑣𝑘(𝑘 = 1,2,4,5, . . . , 𝑛 − 4, 𝑛 − 3, 𝑛 − 1, 𝑛) or

𝑒𝑘(𝑘 ∈ [1; 𝑛 − 1: 1])

  

Proof: 𝐹1,1 and 𝐹1,2 are isomorphic to 𝑃2 and 𝐶3 respectively.  

Therefore 𝑅(1) − 𝛾 (𝐿(𝐹1,1)) = 1 and 𝑅(1) − 𝛾 (𝐿(𝐹1,2)) = 1. 

For 𝑛 > 2 , let 𝑉(𝐹1,𝑛) = {𝑣, {𝑣1; 𝑣𝑛: 1}}  where 𝑑𝑒𝑔 𝑣 = 𝑛 , 𝑑𝑒𝑔 𝑣1 =

𝑑𝑒𝑔 𝑣𝑛 = 2  and 𝑑𝑒𝑔 𝑣𝑘 = 3  for all 2 ≤ 𝑘 ≤ 𝑛 − 1 . Label the edge 
𝑣𝑘𝑣𝑘+1 as 𝑒𝑘 and 𝑣𝑣𝑘 as 𝑒𝑣𝑘 as shown in Fig. 5. 

 
Figure 5: 𝐹1,𝑛 

In the graph 𝐹1,𝑛, edge adjacency is given as follows: 

i. 𝑒1 is adjacent to 𝑒𝑣1 , 𝑒𝑣2 and 𝑒2. 

ii. 𝑒𝑛−1 is adjacent to 𝑒𝑣𝑛−1 , 𝑒𝑣𝑛 and 𝑒𝑛−2. 

iii. For 1 < 𝑘 < 𝑛 − 1, 𝑒𝑘 is adjacent to 𝑒𝑣𝑘 , 𝑒𝑣𝑘+1 , 𝑒𝑘−1 and 𝑒𝑘+1. 

iv. 𝑒𝑣1 is adjacent to 𝑒𝑣2 , 𝑒𝑣3 , . . . , 𝑒𝑣𝑛−1 , 𝑒𝑣𝑛 and 𝑒1. 

v. 𝑒𝑣𝑛 is adjacent to 𝑒𝑣1 , 𝑒𝑣2 , . . . , 𝑒𝑣𝑛−2 , 𝑒𝑣𝑛−1 and 𝑒𝑛−1. 

vi. For 1 < 𝑘 < 𝑛 , 𝑒𝑣𝑘  is adjacent to 

𝑒𝑣1 , 𝑒𝑣2 , . . . , 𝑒𝑣𝑘−1 , 𝑒𝑣𝑘+1 , . . . , 𝑒𝑣𝑛−1 , 𝑒𝑣𝑛 , 𝑒𝑘−1 and 𝑒𝑘. 
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Since adjacency matrix of line graph is nothing but the incidence 

matrix of the given graph, the graph 𝐿(𝐹1,𝑛) is obtained from edge 

adjacency of 𝐹1,𝑛 as shown in Fig. 6. 

 

Figure 6: 𝐿(𝐹1,𝑛) 

The induced subgraph of {𝑒𝑣1; 𝑒𝑣𝑛: 1}  is a complete graph with 𝑛 

vertices and the induced subgraph of {𝑒1; 𝑒𝑛−1: 1} is a path of length 
𝑛 − 1. 

Case (i): For 𝑛 ≡ 0(𝑚𝑜𝑑 3). 

Sub case (i): Suppose 𝑒𝑣1 is the 𝑅𝑉. Then 𝑒𝑣1 must be in the DS and 

𝑒𝑣1 dominates the vertices {𝑒𝑣2; 𝑒𝑣𝑛: 1} ∪ {𝑒1}. The remaining vertices 

which are not dominated by 𝑒𝑣1 are {𝑒2; 𝑒𝑛−1: 1}. Now it is enough to 

find the DS for the vertices {𝑒2; 𝑒𝑛−1: 1}. 

The 𝐿(𝐹1,𝑛)[𝑉1] with 𝑉1 = {𝑒2; 𝑒𝑛−1: 1} is 𝑃(𝑛−1)−1 = 𝑃𝑛−2. 

Hence 𝑅(1) − 𝛾(𝐿(𝐹1,𝑛), 𝑒𝑣1) = |{𝑒𝑣1}| + 𝛾(𝑃𝑛−2) = 1 + ⌈
𝑛−2

3
⌉ = ⌈

𝑛+1

3
⌉. 

Similarly, the same result is obtained for the 𝑅𝑉  𝑒𝑣𝑘  where𝑘 =

3,4,6, . . . , 𝑛 − 5, 𝑛 − 3, 𝑛 − 2, 𝑛.  

Sub case (ii): Suppose 𝑒𝑣2 is the𝑅𝑉. Then 𝑒𝑣2 must be in the DS and 

𝑒𝑣2  dominates the vertices {𝑒𝑣1 , 𝑒𝑣3 , . . . , 𝑒𝑣𝑛−1 , 𝑒𝑣𝑛} ∪ {𝑒1, 𝑒2} . The 

remaining vertices which are not dominated by 𝑒𝑣2 are {𝑒3; 𝑒𝑛−1: 1}. 

Now it is enough to find the DS for the vertices {𝑒3; 𝑒𝑛−1: 1}. 

The 𝐿(𝐹1,𝑛)[𝑉2] with 𝑉2 = {𝑒3; 𝑒𝑛−1: 1} is 𝑃(𝑛−1)−2 = 𝑃𝑛−3. 

Hence 𝑅(1) − 𝛾(𝐿(𝐹1,𝑛), 𝑒𝑣2) = |{𝑒𝑣2}| + 𝛾(𝑃𝑛−3) = 1 + ⌈
𝑛−3

3
⌉ = ⌈

𝑛

3
⌉. 
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The same result holds for VR 𝑒𝑣𝑘  where 𝑘 = 5,8,11, . . . , 𝑛 − 10, 𝑛 −

7, 𝑛 − 4, 𝑛 − 1. 

Sub case (iii): Suppose 𝑒1 is 𝑅𝑉 . Then 𝑒1 must be in the DS and 𝑒1 
dominates the vertices 𝑒2, 𝑒𝑣1and𝑒𝑣2. The remaining vertices which 

are not dominated by 𝑒1 are {𝑒𝑣3; 𝑒𝑣𝑛: 1} ∪ {𝑒3; 𝑒𝑛−1: 1}. To dominate 

the remaining vertices from the set{𝑒𝑣3; 𝑒𝑣𝑛: 1}, choose the vertex 

𝑒𝑣4which also dominated 𝑒3 and 𝑒4. 

 Now it is enough to find the DS for the vertices {𝑒5; 𝑒𝑛−1: 1}.  

The 𝐿(𝐹1,𝑛)[𝑉3] with 𝑉3 = {𝑒5; 𝑒𝑛−1: 1} is 𝑃(𝑛−1)−4 = 𝑃𝑛−5. 

Hence 𝑅(1) − 𝛾(𝐿(𝐹1,𝑛), 𝑒1) = |{𝑒1}| + |{𝑒𝑣4}| + 𝛾(𝑃𝑛−5) = 2 + ⌈
𝑛−5

3
⌉ 

= ⌈
𝑛+1

3
⌉. 

Similarly, we get same result for the VR 𝑒𝑘 where 𝑘 = 3,6,9, . . . , 𝑛 −

9, 𝑛 − 6, 𝑛 − 3, 𝑛 − 1. 

Sub case (iv): Suppose 𝑒2 is 𝑅𝑉. Then 𝑒2 has to be in the DS and 𝑒2 
dominates the vertices 𝑒1, 𝑒3, 𝑒𝑣2 and 𝑒𝑣3 . The remaining vertices 

which are not dominated by 𝑒2  are {𝑒𝑣1 , 𝑒𝑣4 , . . . , 𝑒𝑣𝑛−1 , 𝑒𝑣𝑛} ∪

{𝑒4; 𝑒𝑛−1: 1} . To dominate the remaining vertices from the set 

{𝑒𝑣1 , 𝑒𝑣4 , . . . , 𝑒𝑣𝑛−1 , 𝑒𝑣𝑛}, choose the vertex 𝑒𝑣5which also dominates 𝑒4 

and 𝑒5. 

Now it is enough to find the DS for the vertices {𝑒6; 𝑒𝑛−1: 1}.  

The graph 𝐿(𝐹1,𝑛)[𝑉4] with 𝑉4 = {𝑒6; 𝑒𝑛−1: 1} is 𝑃(𝑛−1)−5 = 𝑃𝑛−6. 

Hence𝑅(1) − 𝛾(𝐿(𝐹1,𝑛), 𝑒2) = |{𝑒2}| + |{𝑒𝑣5}| + 𝛾(𝑃𝑛−6) = 2 + ⌈
𝑛−6

3
⌉ =

⌈
𝑛

3
⌉. 

The same result holds for VR 𝑒𝑘 where 𝑘 = 4,5,7, . . . , 𝑛 − 7, 𝑛 − 5, 𝑛 −

4, 𝑛 − 2. 

Hence  
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𝑅(1) − 𝛾(𝐿(𝐹1,𝑛), 𝜇)

=

{
 
 

 
 ⌈
𝑛 + 1

3
⌉  where 𝜇 = {

𝑒𝑣𝑘(𝑘 = 1,3,4,6, . . . , 𝑛 − 5, 𝑛 − 3, 𝑛 − 2, 𝑛) or

𝑒𝑘(𝑘 = 1,3,6,9, . . . , 𝑛 − 9, 𝑛 − 6, 𝑛 − 3, 𝑛 − 1)

⌈
𝑛

3
⌉  where 𝜇 = {

𝑒𝑣𝑘(𝑘 = 2,5,8,11, . . . , 𝑛 − 10, 𝑛 − 7, 𝑛 − 4, 𝑛 − 1) or

𝑒𝑘(𝑘 = 2,4,5,7, . . . , 𝑛 − 7, 𝑛 − 5, 𝑛 − 4, 𝑛 − 2)

 Case (ii): For 𝑛 ≡ 1(𝑚𝑜𝑑 3). 

𝑅(1) − 𝛾(𝐿(𝐹1,𝑛), 𝜇) = ⌈
𝑛

3
⌉  where 𝜇 = {

𝑒𝑣𝑘(𝑘 ∈ [1; 𝑛: 1]) or

𝑒𝑘(𝑘 ∈ [1; 𝑛 − 1: 1])
 

Case (iii): For 𝑛 ≡ 2(𝑚𝑜𝑑 3). 

𝑅(1) − 𝛾(𝐿(𝐹1,𝑛), 𝜇)

=

{
 

 ⌈
𝑛 + 2

3
⌉  where 𝜇 = 𝑒𝑣𝑘(𝑘 = 3,6,9,12, . . . , 𝑛 − 11, 𝑛 − 8, 𝑛 − 5, 𝑛 − 2)

⌈
𝑛

3
⌉  where 𝜇 = {

𝑒𝑣𝑘(𝑘 = 1,2,4,5, . . . , 𝑛 − 4, 𝑛 − 3, 𝑛 − 1, 𝑛) or

𝑒𝑘(𝑘 ∈ [1; 𝑛 − 1: 1])
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