
Mapana – Journal of Sciences 
2023, Vol. 22, Special Issue 1, 163-178 

ISSN 0975-3303|https://doi.org/10.12723/mjs.sp1.13 

163 

 

 

Fork-decomposition of the Cartesian Product 

of Graphs 

A. Samuel Issacraj* & J. Paulraj Joseph† 

Abstract 
Let 𝐺 = (𝑉, 𝐸)  be a graph. Fork is a tree obtained by 
subdividing any edge of a star of size three exactly once. In 
this paper, we investigate the necessary and sufficient 
condition for the fork-decomposition of Cartesian product 
of graphs. 
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Introduction 
We consider simple, finite, and undirected graphs. Let 𝐾𝑛 denote the 
complete graph on 𝑛 vertices and 𝐾𝑚,𝑛 denote the complete bipartite 
graph with partite sets of sizes 𝑚 and 𝑛. Let 𝑃𝑘 denote the path of 
length 𝑘 − 1 and 𝑆𝑘 denote the star of size 𝑘 − 1. A vertex of degree 
1 is called a pendant vertex and the vertex adjacent to it is called the 
support vertex. Terms not defined here are used in the sense of Bondy 
and Murty [4]. 

Let 𝐿 = {𝐻1, 𝐻2, . . . 𝐻𝑟}  be a family of subgraphs of 𝐺 . An L-
decomposition of 𝐺  is an edge-disjoint decomposition of 𝐺  into 
positive integers 𝛼𝑖 copies of 𝐻𝑖 where 𝑖 ∈ {1,2, … , 𝑟}. Furthermore, if 
each 𝐻𝑖(𝑖𝜖{1,2, . . . , 𝑟}) is isomorphic to a graph 𝐻, then we say that 𝐺 
has an H-decomposition. 
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The obvious necessary condition for the existence of a {𝐻1, 𝐻2, . . . 𝐻𝑟}- 
decomposition of 𝐺 is ∑ 𝛼𝑖𝑒(𝐻𝑖)𝑟

𝑖=1 = 𝑒(𝐺)     (1) 

We call this equation as necessary sum condition. 

The Fork graph was defined by Simone and Sassano in the name of 
chair graph in 1993, when they studied the stability number of bull 
and chair-free graphs [5]. A tree with degree sequence (1,1,1,2,3) is 
unique and is nothing but the fork defined above. Hence the 

subgraph Fork is also called a chair   or (3,2,1,1,1)-tree. 
The decomposition of arbitrary graphs into subgraphs of small size 
is assuming importance in literature. There are several studies on the 
isomorphic decomposition of graphs into sunlet [1], cycles [2], trees 
[3], paths [8, 11], stars [12], etc. In 2013, P. Chithra Devi and J. Paulraj 
Joseph studied the 𝑃4  Decomposition of Product graphs [6]. The 
general problem of H-decompositions was proved to be NP-
complete for any H of size greater than 2 by Dor and Tarsi [7]. The 
decomposition of complete bipartite graphs, complete graphs, and 
corona graphs into Fork was studied in [9]. In this paper, we 
investigate the decomposition of the Cartesian product of graphs 
into forks. 

Definition 1.1. [10] The Cartesian product of two graphs 𝐺 and 𝐻, 
denoted by 𝐺□𝐻, is the graph whose vertex set is 𝑉(𝐺) × 𝑉(𝐻); two 
vertices (𝑔, ℎ)  and (𝑔′, ℎ′)  are adjacent in 𝐺□𝐻  precisely if 𝑔 = 𝑔′ 
and ℎℎ′𝜖𝐸(𝐻), or 𝑔𝑔′𝜖𝐸(𝐺) and ℎ = ℎ′. The number of edges in 𝐺□𝐻 
is |𝑉(𝐺)||𝐸(𝐻)| + |𝑉(𝐻)||𝐸(𝐺)|. 

The following results are used in the subsequent section. 

Theorem 1.2. [9] The complete bipartite graph 𝐾𝑚,𝑛  is fork-
decomposition if and only if 𝑚𝑛 ≡ 0(𝑚𝑜𝑑 4)  except 𝐾2,4𝑖+2, (𝑖 =

1,2, . . . ). 

Theorem 1.3. [9] The Complete graph 𝐾𝑛 can be decomposed into 
forks if and only if 𝑛 = 8𝑘 or 𝑛 = 8𝑘 + 1, for all 𝑘 ≥ 1. 

Theorem 1.4. [9] 𝐶𝑛 ∘ 𝐾𝑚 is fork-decomposable if and only if 𝑚 = 1 
and 𝑛 = 2𝑘 or 𝑚 = 3. 

Theorem 1.5. [9]  
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For 𝒎 ≥ 𝟑, 𝑲𝒎 ∘ 𝑲𝟏  is fork-decomposable if and only if 𝒎 ≡
𝟎, 𝟕 (𝒎𝒐𝒅 𝟖) 

For 𝑚 ≥ 3, 𝐾𝑚 ∘ 𝐾2  is fork-decomposable if and only if 𝑚 ≡
0,5 (𝑚𝑜𝑑 8) 

Cartesian product of two Paths 
In this section, we give the necessary and sufficient conditions for 
the decomposition of Cartesian product of two paths into forks. The 
following three lemmas are used in proving the decomposition of 
Cartesian product of two paths into forks. 

Lemma 2.1. 𝑃3□𝑃3 and 𝑃4□𝑃4 are fork-decomposable. 

Proof. The fork-decomposition is depicted in Figure 2.1. 

 
Figure 2.1 Fork-decomposition of 𝑃3□𝑃3 and 𝑃4□𝑃4 

Lemma 2.2. Let 𝐺1  be the graph obtained by joining one of the 
vertices of degree 2 of 𝑃2𝑘−1 ∘ 𝐾1 (𝑘 ≥ 1) to the alternate vertices of 
𝐶4. Then 𝐺1 is fork-decomposable. 

Proof. The graph 𝐺1 is given in Figure 2.2 

 

Figure 2.2 The graph 𝐺1 

Let 𝑢1, 𝑢2, … , 𝑢2𝑘−1  and 𝑣1, 𝑣2, … , 𝑣2𝑘−1  be the vertices of first and 
second copy of 𝑃2𝑘−1 in 𝑃2𝑘−1 ∘ 𝐾1  respectively. Let 𝑥𝑖, 𝑦𝑖(1 ≤ 𝑖 ≤
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2𝑘 − 1)  be the pendant vertices of 𝑢𝑖  and 𝑣𝑖  respectively and let  
𝑤1, 𝑤2, 𝑤3, 𝑤4 be the vertices of 𝐶4.  

Then a fork-decomposition of 𝐺1  is given by 
{𝑢𝑖𝑥𝑖, 𝑢𝑖𝑢𝑖+1, 𝑢𝑖+1𝑥𝑖+1, 𝑢𝑖+1𝑢𝑖+2},  
{𝑣𝑖𝑦𝑖 , 𝑣𝑖𝑣𝑖+1, 𝑣𝑖+1𝑦𝑖+1, 𝑣𝑖+1𝑦𝑖+2}, {𝑢2𝑘−1𝑥2𝑘−1, 𝑢2𝑘−1𝑤1, 𝑤1𝑤2, 𝑤1𝑤4}, 
{𝑣2𝑘−1𝑦2𝑘−1, 𝑣2𝑘−1𝑤3, 𝑤3𝑤2, 𝑤3𝑤4} for 𝑖 = 1,3, . . . ,2𝑘 − 3. 

Lemma 2.3. Let 𝐺2 be the graph obtained by identifying an end copy 
of 𝑃3□𝑃3  of 𝑃3□𝑃2𝑘+2 with another end copy of 𝑃3□𝑃3  of 𝑃3□𝑃2𝑘+2 
and deleting the edges of third copy of 𝑃2𝑘  in each of the graphs 
𝑃3□𝑃2𝑘+2 as shown in Figure 2.3. Then 𝐺2 is fork-decomposable.  

Proof. Let us label the vertices of 𝐺2 as given in Figure 2.3 

 
Figure 2.3 The graph 𝐺2 

The fork-decomposition of 𝐺2  is given by 

{𝑥𝑖𝑢2,𝑖, 𝑢2,𝑖𝑢1,𝑖, 𝑢2,𝑖𝑢2,𝑖+1, 𝑢1,𝑖𝑢1,𝑖+1}, {𝑦𝑖𝑣2,𝑖, 𝑣2,𝑖𝑣1,𝑖, 𝑣2,𝑖𝑣2,𝑖+1, 𝑣1,𝑖𝑣1,𝑖+1}, 

{𝑥2𝑘−1𝑢2,2𝑘−1, 𝑢2,2𝑘−1𝑢1,2𝑘−1, 𝑢2,2𝑘−1𝑒4, 𝑢1,2𝑘−1𝑒1} , 

{𝑦2𝑘−1𝑣2,2𝑘−1, 𝑣2,2𝑘−1𝑣1,2𝑘−1, 𝑣2,2𝑘−1𝑒8,  𝑣1,2𝑘−1𝑒9} ,
{𝑒1𝑒2, 𝑒1𝑒4, 𝑒2𝑒5, 𝑒2𝑒3} , {𝑒3𝑒6, 𝑒6𝑒9, 𝑒5𝑒6, 𝑒8𝑒9} , {𝑒4𝑒7, 𝑒5𝑒8, 𝑒7𝑒8, 𝑒8𝑒9} 
for 𝑖 = 1 to 2𝑘 − 2. 
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In the following theorem, we give necessary and sufficient 
conditions for the fork-decomposition of Cartesian product of paths.  

Theorem 2.4. 𝑃𝑛□𝑃𝑚  is fork-decomposable if and only if 𝑚 ≡
𝑛 (𝑚𝑜𝑑 4)  where  
𝑛 ≤ 𝑚.  

Proof. If 𝑃𝑛□𝑃𝑚 is fork-decomposable, then the total number of edges 
in 𝑃𝑛□𝑃𝑚, given as 2𝑚𝑛 − (𝑚 + 𝑛) must be a multiple of four. Since 
2𝑚𝑛 is even, 𝑚 and 𝑛 must be both even or both odd. Hence the 
difference between 𝑚  and 𝑛  must be even. Thus  
2𝑚𝑛 − 𝑚 − 𝑛 = 4𝑘  implies 𝑚 − 𝑛 = 4𝑘 − 2𝑚𝑛 + 2𝑚 = 4𝑘 − 2𝑚(𝑛 −
1), where 𝑘 is a positive integer. Since 𝑚 and 𝑛 are both even or both 
odd, 𝑚(𝑛 − 1)  must be even. That is, 𝑚(𝑛 − 1) = 2𝑙  where 𝑙  is a 
positive integer. Then 𝑚 − 𝑛 = 4𝑘 − 4𝑙 = 4(𝑘 − 𝑙).  Hence, 𝑚 ≡
𝑛 (𝑚𝑜𝑑 4). 

 Conversely, assume that 𝑚 ≡ 𝑛 (𝑚𝑜𝑑 4). We shall prove that 𝑃𝑛□𝑃𝑚 
is fork-decomposable, by considering two cases.  

Case i. 𝑛 = 𝑚  

If 𝑛 is even, let 𝑛 = 2𝑖. The proof is by induction on 𝑛. Since 𝑃4□𝑃4 is 
fork-decomposable by Lemma 2.1, the result is true for 𝑛 = 4. 
Assume that the result is true for  𝑛 = 2𝑖 − 2. Since 𝑃2𝑖□𝑃2𝑖  can be 
decomposed into 𝑃2𝑖−2□𝑃2𝑖−2  and 𝐺2 , by induction 𝑃2𝑖−2□𝑃2𝑖−2  is 
fork-decomposable and by Lemma 2.3, 𝐺2  is fork-decomposable. 
Hence 𝑃2𝑖□𝑃2𝑖 is fork-decomposable. 

If 𝑛  is odd, let 𝑛 = 2𝑖 + 1. Since 𝑃3□𝑃3  is fork-decomposable by 
Lemma 2.1, the result is true for 𝑛 = 3 . 𝑃2𝑖+1□𝑃2𝑖+1  can be 
decomposed into 𝑃2𝑖□𝑃2𝑖  and 𝐺1 . Since 𝑃2𝑖□𝑃2𝑖  is fork-
decomposable and by Lemma 2.2, 𝐺1  is fork-decomposable, 
𝑃2𝑖+1□𝑃2𝑖+1  is fork-decomposable. Hence 𝑃𝑛□𝑃𝑛  is fork-
decomposable.  

Case ii. 𝑛 ≠ 𝑚  

If 𝑛 = 2, 𝑚 = 2 + 4𝑎, for some positive integer 𝑎 ≥ 1. For 𝑎 = 1, the 
graph 𝑃2□𝑃6 is fork-decomposable as shown in Figure 2.4. 



Mapana - Journal of Sciences, Vol. 22, Special Issue 1  ISSN 0975-3303 

168 

 

 

Figure 2.4 𝑃2□ 𝑃6 

Consider the graph 𝐻1  obtained from 𝑃2□𝑃4  with pendant edge 
attached to first copy of 𝑃2. The graph 𝐻1 is fork-decomposable as 
shown in the Figure 2.5 

 
Figure 2.5 The graph 𝐻1 

For 𝑎 > 1, the graph 𝑃2□𝑃2+4𝑎 can be decomposed into one copy of 
𝑃2□𝑃6  and 𝑎 − 1  copies of 𝐻1  and hence 𝑃2 × 𝑃𝑚  is fork-
decomposable for 𝑚 = 2 + 4𝑎. 

If 𝑛 ≠ 2, consider the graph 𝐻2  obtained by removing 𝑃𝑛□𝑃𝑛  from 
𝑃𝑛□𝑃𝑚 . Let 𝑙 = 𝑚 − 𝑛.  Clearly, 𝑙  is a multiple of 4 . Let 

{𝑢1,𝑖, 𝑢𝑖,2, … , 𝑢𝑖,𝑛} be the vertices of 𝑃𝑙□𝑃𝑛 in 𝐻2 where 𝑖 = 1 to 𝑙. Let 

𝑢0,1, 𝑢0,2, … , 𝑢0,𝑛 be the pendant vertices attached to 𝑢1,1, 𝑢1,2, … , 𝑢1,𝑛 
respectively. 

Then a fork-decomposition of 𝐻2  is given by 

{𝑢𝑖,1𝑢𝑖,2, 𝑢𝑖,1𝑢𝑖−1,1, 𝑢𝑖,2𝑢𝑖−1,2, 𝑢𝑖,1𝑢𝑖+1,1} , 

{𝑢𝑖+1,2𝑢𝑖+1,1, 𝑢𝑖+1,2𝑢𝑖,2, 𝑢𝑖+1,2𝑢𝑖+2,2, 𝑢𝑖+2,2𝑢𝑖+3,2} , 

{𝑢𝑖+2,1𝑢𝑖+2,2, 𝑢𝑖+2,1𝑢𝑖+1,1, 𝑢𝑖+2,1𝑢𝑖+3,1, 𝑢𝑖+3,1𝑢𝑖+3,2}  for 𝑖 =

1,5,9, … , 𝑚 − 3 and  {𝑢𝑗,𝑘𝑢𝑗,𝑘−1, 𝑢𝑗,𝑘𝑢𝑗−1,𝑘, 𝑢𝑗,𝑘𝑢𝑗+1,𝑘, 𝑢𝑗+1,𝑘𝑢𝑗+1,𝑘−1} for 

𝑗 = 1,3, … , 𝑚 − 1 and 𝑘 = 3,4, … , 𝑛. 

Since 𝑃𝑛□𝑃𝑚 can be decomposed into 𝑃𝑛□𝑃𝑛 and 𝐻2 which are fork-
decomposable, 𝑃𝑛□𝑃𝑚 is fork-decomposable. 

Cartesian Product of path and cycles 

In this section, we give the necessary and sufficient conditions for 
the decomposition of Cartesian product of path and cycles into forks. 
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The following lemma is used in proving the necessary and sufficient 
conditions for the fork-decomposition of Cartesian product of paths.  

Lemma 3.1. The graph 𝑃2□𝐶𝑛 is fork-decomposable if and only if 𝑛 ≡
0 (𝑚𝑜𝑑 4). 

Proof. If 𝑃2□𝐶𝑛  is fork-decomposable, then |𝐸(𝑃2□𝐶𝑛)| = 3𝑛 ≡
0 (𝑚𝑜𝑑 4), and hence  𝑛 ≡ 0 (𝑚𝑜𝑑 4). 

Conversely, assume that 𝑛 ≡ 0 (𝑚𝑜𝑑 4).  

Let 𝑉(𝐶𝑛) = {𝑤1, 𝑤2, … , 𝑤𝑛} and  𝑉(𝑃2) = {𝑥1, 𝑥2}.  

Then 𝑉(𝑃2□𝐶𝑛) =
{(𝑥1, 𝑤1), (𝑥1, 𝑤2), … , (𝑥1, 𝑤𝑛), (𝑥2, 𝑤1), (𝑥2, 𝑤2), … , (𝑥2, 𝑤𝑛)}.  

Rename the following vertices: (𝑥1, 𝑤𝑗) = 𝑢𝑗, (𝑥2, 𝑤𝑘) = 𝑣𝑘, 1 ≤ 𝑗, 

𝑘 ≤ 𝑛. 

Then a fork-decomposition of 𝑃2□𝐶𝑛  is given by 
{𝑢𝑖𝑣𝑖, 𝑢𝑖𝑢𝑖+1, 𝑢𝑖𝑢𝑖−1, 𝑢𝑖−1𝑣𝑖−1}, {𝑣𝑖+1𝑢𝑖+1, 𝑣𝑖+1𝑣𝑖−1, 𝑣𝑖+1𝑣𝑖+2, 𝑣𝑖−1𝑣𝑖−2}, 
{𝑢𝑖+2𝑣𝑖+2, 𝑢𝑖+2𝑢𝑖+1, 𝑢𝑖+2𝑢𝑖+3, 𝑣𝑖+2𝑣𝑖+3}  for 
 𝑖 ≡ 2 (𝑚𝑜𝑑 4). The subscripts are taken modulo 𝑛. 

Theorem 3.2. 𝐶𝑚□𝑃𝑛 is fork-decomposable if and only if 𝑚 = 4𝑘. 

Proof. Let 𝐺 = 𝐶𝑚□𝑃𝑛. If 𝐺 is fork-decomposable, then |𝐸(𝐶𝑚□𝑃𝑛)| ≡
0 (𝑚𝑜𝑑 4)  which implies 2𝑚𝑛 − 𝑚 = 4𝑘. Thus 𝑚(2𝑛 − 1) =
4𝑘. Since 2𝑛 − 1 is odd, 𝑚 must be a multiple of 4. 

Conversely, assume that 𝑚 = 4𝑘. Let 𝐻 = 𝐶𝑚□𝑃2. Then 𝐶𝑚□𝑃2 can 
be decomposed into 𝐻  and 𝐺 − 𝐻 . By Lemma 3.1, 𝐻  can be 
decomposed into forks and 𝐺 − 𝐻  can be decomposed into 𝑛 − 2 
copies of 𝐶𝑚 ∘  𝐾1. Since 𝑚 is a multiple of 4, by Theorem 1.4, 𝐶𝑚 ∘ 𝐾1 
can be decomposed into forks and hence 𝐺 is fork-decomposable.  

The following lemma is used in proving the existence of necessary 
and sufficient conditions for the fork-decomposition of Cartesian 
product of cycles.  

Lemma 3.3. Let 𝐺 be the graph obtained from 𝑃2□𝐶𝑛 with pendant 
vertex attached to the first vertex of each copy of 𝑃2. Then 𝐺 is fork-
decomposable for all 𝑛 ≥ 3. 

Proof. Let 𝑉(𝐶𝑛) = {𝑥1, 𝑥2, … , 𝑥𝑛} and 𝑉(𝐾2) = {𝑦1, 𝑦2}. 
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Then 𝑉(𝑃2□𝐶𝑛) =
{(𝑥1, 𝑦1), (𝑥2, 𝑦1), … , (𝑥𝑛, 𝑦1), (𝑥1, 𝑦2), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦2)}. 

Rename the vertices (𝑥𝑖, 𝑦1) = 𝑢𝑖  and (𝑥𝑖, 𝑦2) = 𝑣𝑖  for all 1 ≤ 𝑖 ≤ 𝑛. 
Let 𝑤𝑖 be the pendant vertex attached to each 𝑢𝑖. 

Then a fork-decomposition of 𝐺 is given by {𝑢𝑛𝑢1, 𝑢𝑛𝑤𝑛, 𝑢𝑛𝑣𝑛, 𝑣𝑛𝑣1} 
and {𝑢𝑖𝑢𝑖+1, 𝑢𝑖𝑤𝑖, 𝑢𝑖𝑣𝑖 , 𝑣𝑖𝑣𝑖+1}  for 1 ≤ 𝑖 ≤ 𝑛 − 1.  The subscripts are 
taken modulo 𝑛. 

Theorem 3.4. 𝐶𝑚□𝐶𝑛 is fork-decomposable if and only if either 𝑚 or 
𝑛 is even. 

Proof. If  𝐶𝑚□𝐶𝑛  is fork-decomposable, then |𝐸(𝐶𝑚□𝐶𝑛)| ≡
0 (𝑚𝑜𝑑 4), implies    2𝑚𝑛 = 4𝑘. Hence either 𝑚 or 𝑛 is even. 

Conversely, assume that 𝑛 is even and let 𝐺 = 𝐶𝑚□𝐶𝑛. Then 𝐺 can be 

decomposed into  
𝑛

2
 copies of 𝐶𝑚□𝐾2 with pendant edge attached to 

the first copy of 𝐶𝑚 which in turn can be decomposed into forks by 
Lemma 3.3. Similarly, we can prove the result for even values of 𝑚. 

Cartesian Product of centipede and path 
In this section, we give necessary and sufficient conditions for the 
Cartesian product of centipede and path into forks. 

Theorem 4.1. Let G be an m-centipede (𝑃𝑚 ∘ 𝐾1)   and if  𝑚 ≡
0(𝑚𝑜𝑑 2), then 𝐺□𝑃𝑛 is fork-decomposable for all 𝑛 ≡ 0(𝑚𝑜𝑑 4). 

Proof. Let 𝐺 be an 𝑚-centipede. Let 𝑉(𝑃𝑚) = {𝑥1, 𝑥2, … , 𝑥𝑚} and let 𝑦𝑖 
be the pendant vertex adjacent to 𝑥𝑖(1 ≤ 𝑖 ≤ 𝑚) . Let 
{𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛, (1 ≤ 𝑖 ≤ 𝑚)} be the vertices of a path in 𝑛 copies of 
𝑚 -centipede and let  {𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑛}  be the pendant vertices in 𝑛 
copies of 𝑚 -centipede attached to 𝑥𝑖𝑗(1 ≤ 𝑖 ≤ 𝑚  and 1 ≤ 𝑗 ≤ 𝑛) 

respectively. 

The set of forks 𝐹1  and 𝐹2  can be obtained as 

{𝑥𝑖𝑗𝑥𝑖(𝑗+1), 𝑥𝑖𝑗𝑥(𝑖+1)𝑗, 𝑥𝑖𝑗𝑦𝑖𝑗 , 𝑦𝑖𝑗𝑦(𝑖+1)𝑗}  for 1 ≤ 𝑖 ≤ 𝑛 − 1  and 1 ≤ 𝑗 ≤

𝑚 − 1  and {𝑥𝑖𝑗𝑥𝑖(𝑗+1), 𝑥𝑖𝑗𝑦𝑖𝑗 , 𝑥𝑖𝑗𝑥𝑖(𝑗−1), 𝑥𝑖(𝑗−1)𝑦𝑖(𝑗−1)} for 𝑗 =

2,4, … , 𝑚 − 2 and 𝑖 = 𝑛. If we remove 𝐹1 and 𝐹2, we get a component 
𝑀 obtained by adding an edge to the end vertex 𝑦(𝑛−1)𝑚 of path in 

𝑃2□𝑃𝑛−1. 
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Figure 4.1 The graphs 𝑀1 and 𝑀2 

This component 𝑀 can be decomposed into component 𝑀1 which is 

obtained by adding an edge to the end vertex of 𝑃3 in 𝑃2□𝑃3 and 
𝑛

4
−

1 copies of 𝑀2 obtained by adding an edge to the first vertex of the 
first copy and end vertex of the second copy of 𝑃4  in 𝑃2□𝑃4 
respectively. The decomposition of  𝑀1  and 𝑀2  are shown in the 
Figure 4.1. 

Cartesian Product of complete graph and path 
In the following theorem, we give necessary and sufficient 
conditions for the fork-decomposition of Cartesian product of 
complete graph and path. 

Theorem 5.1. The graph  𝐾𝑚□𝑃𝑛 is fork-decomposable if and only if 
it satisfies any one of the following conditions. 

1. 𝑚 ≡ 0 (𝑚𝑜𝑑 8) 

2. 𝑛 ≡ 0 (𝑚𝑜𝑑 2) and 𝑚 ≡ 0 (𝑚𝑜𝑑 4) 

3. 𝑛 ≡ 2 (𝑚𝑜𝑑 4) and 𝑚 ≡ 2 (𝑚𝑜𝑑 4) 

4. 𝑛 ≡ 3 (𝑚𝑜𝑑 4) and 𝑚 ≡ 5 (𝑚𝑜𝑑 8) 

5. 𝑛 ≡ 1 (𝑚𝑜𝑑 4) and 𝑚 ≡ 1 (𝑚𝑜𝑑 8) 

Proof. If  𝐾𝑚□𝑃𝑛 is fork-decomposable, then total number of edges in  

𝐾𝑚□𝑃𝑛  is 𝑚(𝑛 − 1) + 𝑛 (
𝑚(𝑚−1)

2
) =

𝑚

2
(𝑛(𝑚 + 1) − 2) ≡ 0 (𝑚𝑜𝑑 4). 

Then 𝑚(𝑛(𝑚 + 1) − 2) = 8𝑘.  Clearly, 𝑚 ≡ 0 (𝑚𝑜𝑑 8)  which is 
condition (1). 

Suppose 𝑚 ≡ 1 (𝑚𝑜𝑑 8) , then (8𝑘 + 1)(𝑛(8𝑘 + 1 + 1) − 2) ≡
0 (𝑚𝑜𝑑 8), which implies 𝑛(8𝑘 + 2) − 2 ≡ 0 (𝑚𝑜𝑑 8). Then, 𝑛(4𝑘 +
1) − 1 ≡ 0 (𝑚𝑜𝑑 4)  which implies 𝑛 − 1 ≡ 0 (𝑚𝑜𝑑 4) . Thus 𝑛 ≡
1 (𝑚𝑜𝑑 4) which is condition (5). 

Suppose 𝑚 ≡ 2 (𝑚𝑜𝑑 8) , then (8𝑘 + 2)(𝑛(8𝑘 + 2 + 1) − 2) ≡
0 (𝑚𝑜𝑑 8), which implies 2𝑛(8𝑘 + 3) − 4 ≡ 0 (𝑚𝑜𝑑 8). Then 𝑛(8𝑘 +
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3) − 2 ≡ 0 (𝑚𝑜𝑑 4)  which implies 3 𝑛 − 2 ≡ 0 (𝑚𝑜𝑑 4) .  Thus 𝑛 ≡
2 (𝑚𝑜𝑑 4) which is condition (3). 

Suppose 𝑚 ≡ 3 (𝑚𝑜𝑑 8) , then (8𝑘 + 3)(𝑛(8𝑘 + 3 + 1) − 2) ≡
0 (𝑚𝑜𝑑 8) , which implies 3𝑛(8𝑘 + 4) − 6 ≡ 0 (𝑚𝑜𝑑 8) . Then 
12𝑛(2𝑘 + 1) ≡ 6 (𝑚𝑜𝑑 8)  which implies 6 𝑛(2𝑘 + 1) ≡ 3 (𝑚𝑜𝑑 4) . 
Here 𝑛 is not a positive integer. Hence this condition does not hold. 

Suppose 𝑚 ≡ 4 (𝑚𝑜𝑑 8) , then (8𝑘 + 4)(𝑛(8𝑘 + 4 + 1) − 2) ≡
0 (𝑚𝑜𝑑 8) , which implies 4𝑛(8𝑘 + 5) − 8 ≡ 0 (𝑚𝑜𝑑 8) . Then 
4𝑛(5) ≡ 0 (𝑚𝑜𝑑 8)  which implies  
5𝑛 ≡ 0 (𝑚𝑜𝑑 2).  Thus 𝑛 ≡ 0 (𝑚𝑜𝑑 2) which is condition (2). 

Suppose 𝑚 ≡ 5 (𝑚𝑜𝑑 8) , then (8𝑘 + 5)(𝑛(8𝑘 + 5 + 1) − 2) ≡
0 (𝑚𝑜𝑑 8) , which implies 5𝑛(8𝑘 + 6) − 10 ≡ 0 (𝑚𝑜𝑑 8) . Then 
40𝑛𝑘 + 30𝑛 − 10 ≡ 0 (𝑚𝑜𝑑 8)  which implies 20𝑛𝑘 + 15𝑛 − 5 ≡
0 (𝑚𝑜𝑑 4) . Then 15𝑛 − 5 ≡ 0 (𝑚𝑜𝑑 4)  which implies 𝑛 − 1 ≡
0 (𝑚𝑜𝑑 4). Thus 𝑛 ≡ 3 (𝑚𝑜𝑑 4) which is condition (5).  

Suppose 𝑚 ≡ 6 (𝑚𝑜𝑑 8) , then (8𝑘 + 6)(𝑛(8𝑘 + 6 + 1) − 2) ≡
0 (𝑚𝑜𝑑 8), which implies 6𝑛(8𝑘 + 7) − 12 ≡ 0 (𝑚𝑜𝑑 8). Then 42𝑛 −
12 ≡ 0 (𝑚𝑜𝑑 8)  which implies 21 𝑛 ≡ 6 (𝑚𝑜𝑑 4) . Then 21 𝑛 ≡
2 (𝑚𝑜𝑑 4) which implies 𝑛 ≡ 2 (𝑚𝑜𝑑 4) which is condition (2). 

Suppose 𝑚 ≡ 7 (𝑚𝑜𝑑 8) , then (8𝑘 + 7)(𝑛(8𝑘 + 7 + 1) − 2) ≡
0 (𝑚𝑜𝑑 8), which implies 7𝑛(8𝑘 + 8) − 14 ≡ 0 (𝑚𝑜𝑑 8) which is not 
possible. Hence this condition does not hold.  

Now let us prove the converse part in 5 cases. 

Case 1. 𝑚 ≡ 0 (𝑚𝑜𝑑 8) 

The graph 𝐾𝑚□𝑃𝑛 can be decomposed into 
𝑚

8
 copies of 𝐾8 , 

(𝑛−1)𝑚

8
 

copies of 𝐾8 ∘  𝐾1 and 𝑛 (
𝑚

8
 2 ) copies of 𝐾8,8. By Theorem 1.3, 1.5 and 

1.2, 𝐾8 , 𝐾8 ∘ 𝐾1  and 𝐾8,8  are fork-decomposable. Hence 𝐾𝑚□𝑃𝑛  is 
fork-decomposable.  

Case 2. 𝑛 ≡ 0 (𝑚𝑜𝑑 2) and 𝑚 ≡ 0 (𝑚𝑜𝑑 4) 

First let us prove the result for 𝐾4□𝑃𝑛. If 𝑛 = 2, let the vertices of first 
and second copy of 𝐾4  be {𝑥1, 𝑥2, 𝑥3, 𝑥4}  and {𝑦1, 𝑦2, 𝑦3, 𝑦4} 
respectively. Then a fork-decomposition of 𝐾4 × 𝑃2  is given by 
{𝑥1𝑥4, 𝑥1𝑥3, 𝑥1𝑥2, 𝑥3𝑦3} , {𝑥2𝑥4, 𝑥2𝑥3, 𝑥2𝑦2, 𝑦2𝑦3} , 
{𝑦1𝑦2, 𝑦1𝑦3, 𝑦1𝑥1, 𝑦3𝑦4} and {𝑦4𝑦2, 𝑦4𝑦1, 𝑦4𝑥4, 𝑥4𝑥3}. 
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Figure 5.1 The graph 𝐴 

If 𝑛 ≥ 4, the graph 𝐾4□𝑃𝑛 can be decomposed into one copy of 𝐾4□𝑃2 

and 
𝑛

2
− 1 copies of the graph 𝐴 given in Figure 5.1. Since the graph 

𝐴 is fork decomposable as shown in the Figure 5.1, 𝐾4□𝑃𝑛 is fork-
decomposable.  

The graph 𝐾𝑚□𝑃𝑛  can be decomposed into 
𝑚

4
 copies of 𝐾4□𝑃𝑛  and 

𝑛 (
𝑚

4
 2 ) copies of 𝐾4,4. By Theorem 1.2, 𝐾4,4 is fork-decomposable. 

Hence 𝐾𝑚□𝑃𝑛 is fork-decomposable. 

Case 3. 𝑛 ≡ 2 (𝑚𝑜𝑑 4) and 𝑚 ≡ 2 (𝑚𝑜𝑑 4). 

Firstly, let us prove the result for 𝑚 = 6. The graph 𝐾6□𝑃𝑛  can be 
decomposed into 𝐾4□𝑃𝑛 , 𝑃𝑛□𝑃2  and 𝑛  copies of 𝐾2,4 . By Case (2), 
𝐾4□𝑃𝑛  is fork-decomposable. By Theorem 1.2, 𝐾2,4  is fork-
decomposable and by Theorem 2.4, 𝑃𝑛□𝑃2  is fork-decomposable. 
Hence 𝐾6□𝑃𝑛 is fork-decomposable. 

For 𝑚 > 6 , the graph 𝐾𝑚□𝑃𝑛  can be decomposed into 𝐾6□𝑃𝑛 , 
𝐾𝑚−6□𝑃𝑛  and 𝐾6,𝑚−6. By Case (2), 𝐾𝑚−6□𝑃𝑛  is fork-decomposable 
and by Theorem 1.2, 𝐾6,𝑚−6 is fork-decomposable. Hence 𝐾𝑚□𝑃𝑛 is 
fork-decomposable.  

Case 4. 𝑛 ≡ 3 (𝑚𝑜𝑑 4) and 𝑚 ≡ 5 (𝑚𝑜𝑑 8). 

Firstly, we shall prove that 𝐾5□𝑃𝑛 is fork-decomposable. If 𝑛 = 3,  let 
the vertices of first, second and third copy of 𝐾5 be 𝑢𝑖, 𝑣𝑖, 𝑤𝑖(1 ≤ 𝑖 ≤
5) respectively. Then a fork-decomposition of 𝐾5□𝑃3 is given by 

{𝑢1𝑢2, 𝑢1𝑢3, 𝑢1𝑢4, 𝑢4𝑢5}, {𝑢2𝑢3, 𝑢2𝑢4, 𝑢2𝑢5, 𝑢5𝑢1}, 
{𝑢3𝑢4, 𝑢3𝑢5, 𝑢3𝑣3, 𝑣3𝑤3}, {𝑣2𝑣1, 𝑣2𝑣5, 𝑣2𝑤2, 𝑣5𝑢5}, 
{𝑣3𝑣2, 𝑣3𝑣1, 𝑣3𝑣5, 𝑣1𝑢1}, {𝑣4𝑣3, 𝑣4𝑣2, 𝑣4𝑢4, 𝑣2𝑢2}, 
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{𝑣1𝑣5, 𝑣1𝑣4, 𝑣1𝑤1, 𝑣4𝑤4}, {𝑤1𝑤3, 𝑤1𝑤4, 𝑤1𝑤5, 𝑤3𝑤2}, 
{𝑤2𝑤1, 𝑤2𝑤5, 𝑤2𝑤4, 𝑤4𝑤3}, {𝑤5𝑤4, 𝑤5𝑤3, 𝑤5𝑣5, 𝑣5𝑣4}. 

If 𝑛 ≥ 3 , 𝐾5□𝑃𝑛  can be decomposed into ⌈
𝑚

4
⌉  copies of 𝐾5□𝑃3  and  

⌈
𝑚

4
⌉ − 1  copies of 𝐾5 ∘ 𝐾2 . By Theorem 1.5, 𝐾5 ∘ 𝐾2  is fork-

decomposable and hence 𝐾5□𝑃𝑛 is fork-decomposable.  

Now we shall prove the result for 𝑚 . The graph 𝐾𝑚□𝑃𝑛  can be 
decomposed into 𝐾𝑚−5□𝑃𝑛 ,  𝐾5□𝑃𝑛  and 𝑚  copies of 𝐾5,𝑚−5 . Since 

𝑚 ≡ 5 (𝑚𝑜𝑑 8), 𝐾𝑚−5□𝑃𝑛 is fork-decomposable by Case (1) and by 
Theorem 1.2, 𝐾5,𝑚−5  is fork-decomposable. Hence 𝐾𝑚□𝑃𝑛  is fork-
decomposable.  

Case 5. 𝑛 ≡ 1 (𝑚𝑜𝑑 4) and 𝑚 ≡ 1 (𝑚𝑜𝑑 8). 

Firstly, we shall prove that 𝐾9□𝑃𝑛 is fork-decomposable. The graph 

𝐾9□𝑃𝑛  can be decomposed into 𝐾4□𝑃𝑛−1 , 𝐾5□𝐾2  and a graph H 
obtained by attaching pendant edges to four consecutive vertices of 
𝐾9 . By Case (2) and (4), 𝐾4□𝑃𝑛−1  and 𝐾5□𝑃𝑛−2 are fork-

decomposable respectively. By Theorem 1.5, 𝐾5 ∘ 𝐾2  is fork-
decomposable.  

Now we have to prove that the graph 𝐻 is fork-decomposable. Let 
{𝑥1, 𝑥2, … , 𝑥9}  be the vertices of 𝐾9  and let {𝑦1, 𝑦2, 𝑦3, 𝑦4}  be the 
pendant vertices attached to 𝑥𝑖(𝑖 = 1 to 4) respectively. Then a fork-
decomposition of 𝐻 is given by 

{𝑥1𝑥5, 𝑥1𝑥6, 𝑥1𝑥9, 𝑥9𝑥8}, {𝑥2𝑥4, 𝑥2𝑥5, 𝑥2𝑥7, 𝑥5𝑥8}, 
{𝑥2𝑥6, 𝑥2𝑥8, 𝑥2𝑥9, 𝑥6𝑥5}, {𝑥2𝑥3, 𝑥2𝑦2, 𝑥2𝑥1, 𝑥1𝑦1}, 
{𝑥3𝑥6, 𝑥3𝑥8, 𝑥3𝑥9, 𝑥8𝑥1}, {𝑥4𝑥8, 𝑥4𝑦4, 𝑥4𝑥1, 𝑥1𝑥3}, 
{𝑥4𝑥3, 𝑥4𝑥9, 𝑥4𝑥6, 𝑥6𝑥8}, {𝑥5𝑥4, 𝑥5𝑥3, 𝑥5𝑥9, 𝑥9𝑥7}, 
{𝑥7𝑥8, 𝑥7𝑥5, 𝑥7𝑥6, 𝑥6𝑥9}, {𝑥7𝑥4, 𝑥7𝑥3, 𝑥7𝑥1, 𝑥3𝑦3}.  

Hence 𝐾9 × 𝑃𝑛 is fork-decomposable.   

Now we shall prove that the result for 𝑚. The graph 𝐾𝑚□𝑃𝑛 can be 
decomposed into 𝐾9□𝑃𝑛, 𝐾𝑚−9□𝑃𝑛 and 𝑛 copies of 𝐾9,𝑚−9. Since 𝑚 ≡

1 (𝑚𝑜𝑑 8) , by Case (1), 𝐾𝑚−9□𝑃𝑛   is fork-decomposable and by 
Theorem1.2, 𝐾9,𝑚−9  is fork-decomposable. Hence 𝐾𝑚□𝑃𝑛  is fork-
decomposable.  
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Cartesian product of complete graph and cycle 
In the following theorem, we give necessary and sufficient 
conditions for the fork-decomposition of Cartesian product of 
complete graph and cycle. 

Theorem 6.1 The graph 𝐾𝑚□𝐶𝑛 is fork-decomposable if and only if it 
satisfies any one of the following conditions. 

1. 𝑛 is even and 𝑚 ≡ 0(𝑚𝑜𝑑 4) or 𝑚 ≡ −1(𝑚𝑜𝑑 4) 

2. 𝑛 is odd and 𝑚 ≡ 0(𝑚𝑜𝑑 8) or 𝑚 ≡ −1(𝑚𝑜𝑑 8) 

3. 𝑛 ≡ 0(𝑚𝑜𝑑 4)  

Proof:  If the graph 𝐾𝑚□𝐶𝑛  is fork-decomposable, then the total 

number of edges is 𝑛
𝑚(𝑚−1)

2
+ 𝑚𝑛 = 𝑚𝑛 (

𝑚+1

2
) = 𝑛 (

𝑚2+𝑚

2
) ≡

0(𝑚𝑜𝑑 4). That is 𝑛(𝑚(𝑚 + 1)) ≡ 0(𝑚𝑜𝑑 8).  

If 𝑛 is odd, then 𝑚(𝑚 + 1) ≡ 0(𝑚𝑜𝑑 8). Hence 𝑚 ≡ 0(𝑚𝑜𝑑 8) or 𝑚 ≡
−1(𝑚𝑜𝑑 8) which is condition 2.  

Obviously 𝑚(𝑚 + 1)  is even and if 𝑛  is even, then either 𝑛 ≡
0(𝑚𝑜𝑑 4) which is condition 3 or 𝑚(𝑚 + 1) must be a multiple of 4. 
That is, 𝑚 ≡ 0(𝑚𝑜𝑑 4)  or  
𝑚 ≡ −1(𝑚𝑜𝑑 4) , which is condition 1. 

Now we shall prove the converse part in 3 cases. 

Case 1(a). 𝑛 ≡ 0(𝑚𝑜𝑑 2) and 𝑚 ≡ 0(𝑚𝑜𝑑 4). 
When 𝑚 = 4, the graph 𝐾4□𝐶𝑛 can be decomposed into 𝐾3□𝐶𝑛 and 
𝐶𝑛 ∘ 𝐾3. By Theorem 3.4, the graph 𝐾3□𝐶𝑛 is fork-decomposable and 

by Theorem 1.4, 𝐶𝑛 ∘ 𝐾3  is fork-decomposable. Hence the graph 

𝐾4□𝐶𝑛 is fork-decomposable. The graph 𝐾𝑚□𝐶𝑛 can be decomposed 

into 
𝑚

4
 copies of 𝐾4□𝐶𝑛  and 𝑛 (

𝑚

4

2
)  copies of 𝐾4,4. By Theorem 1.2, 

𝐾4,4 is fork-decomposable. Hence 𝐾𝑚□𝑃𝑛 is fork-decomposable. 

Case 1(b). 𝑛 ≡ 0(𝑚𝑜𝑑 2) and 𝑚 ≡ −1(𝑚𝑜𝑑 4). 

When 𝑚 = 3, the graph 𝐾3□𝐶𝑛 is fork-decomposable by Theorem 3.4. 
Consider the graph 𝐾𝑚□𝐶𝑛. The graph 𝐾𝑚□𝐶𝑛 can be decomposed 
into 𝐾3□𝐶𝑛 , 𝐾𝑚−3□𝐶𝑛  and 𝑛  copies of 𝐾3,𝑚−3.  By Theorem 1.2, 
𝐾3,𝑚−3 is fork-decomposable and by Case 1(a), 𝐾𝑚−3□𝐶𝑛  is fork-
decomposable. Hence 𝐾𝑚□𝐶𝑛 is fork-decomposable. 
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Case 2(a). 𝑛 ≡ 1(𝑚𝑜𝑑 2) and 𝑚 ≡ 0(𝑚𝑜𝑑 8). 

When 𝑚 = 8, the graph 𝐾8□𝐶𝑛 can be decomposed into 𝑛 copies of 
𝐾8 ∘ 𝐾1.  By Theorem 1.5, 𝐾8 ∘ 𝐾1  is fork-decomposable. Hence the 
graph 𝐾8□𝐶𝑛  is fork-decomposable. The graph 𝐾𝑚□𝐶𝑛  can be 

decomposed into 
𝑚

8
 copies of 𝐾8□𝐶𝑛  and 𝑛 (

𝑚

8

2
)  copies of 𝐾8,8 . By 

Theorem 1.2, 𝐾8,8  is fork-decomposable. Hence 𝐾𝑚□𝐶𝑛  is fork-
decomposable. 
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Case 2(b). 𝑛 ≡ 1(𝑚𝑜𝑑 2) and 𝑚 ≡ −1(𝑚𝑜𝑑 8). 
When 𝑚 = 7, the graph 𝐾7□𝐶𝑛 can be decomposed into 𝑛 copies of 
𝐾7 ∘ 𝐾1.  By Theorem 1.5, 𝐾7 ∘ 𝐾1  is fork-decomposable. Hence the 
graph 𝐾7□𝐶𝑛  is fork-decomposable. The graph 𝐾𝑚□𝐶𝑛  can be 
decomposed into 𝐾7□𝐶𝑛 , 𝐾𝑚−7□𝐶𝑛  and 𝑛  copies of 𝐾7,𝑚−7 . By 
Theorem 1.2, 𝐾7,𝑚−7  is fork-decomposable and by Case 2(a), 
𝐾𝑚−7□𝐶𝑛 is fork-decomposable. Hence 𝐾𝑚□𝐶𝑛 is fork-decomposable. 

Case 3. 𝑛 ≡ 0(𝑚𝑜𝑑 4). 
It is enough to prove the result for 𝑚 ≡ 1(𝑚𝑜𝑑 4) and 𝑚 ≡ 2(𝑚𝑜𝑑 4). 
Suppose 𝑚 ≡ 1(𝑚𝑜𝑑 4).  When 𝑚 = 5,  the graph 𝐾5□𝐶𝑛  can be 
decomposed into 𝐾5□𝑃𝑛−1 and 𝐾5 ∘ 𝐾2. By Theorem 5.1, the graph 

𝐾5□𝑃𝑛−1  is fork-decomposable and by Theorem 1.5, 𝐾5 ∘ 𝐾2 is fork-

decomposable. Hence the graph 𝐾5□𝐶𝑛  is fork-decomposable. The 
graph 𝐾𝑚□𝐶𝑛  can be decomposed into 𝐾5□𝐶𝑛  , 𝐾𝑚−5□𝐶𝑛  and 𝑛 
copies of 𝐾5,𝑚−5 .  By Theorem 1.2, 𝐾5,𝑚−5  is fork-decomposable. 
Hence 𝐾𝑚□𝐶𝑛 is fork-decomposable for 𝑚 ≡ 1(𝑚𝑜𝑑 4). 

Suppose 𝑚 ≡ 2(𝑚𝑜𝑑 4).  When 𝑚 = 2,  the graph 𝐾2□𝐶𝑛  is fork-
decomposable by Lemma 3.1. The graph 𝐾𝑚□𝐶𝑛 can be decomposed 
into 𝐾2□𝐶𝑛  , 𝐾𝑚−2□𝐶𝑛  and 𝑛  copies of 𝐾2,𝑚−2 .  By Theorem 1.2, 
𝐾2,𝑚−2  is fork-decomposable. Hence 𝐾𝑚□𝐶𝑛  is fork-decomposable 
for 𝑚 ≡ 2(𝑚𝑜𝑑 4). 

Also, by using the case (1), 𝐾𝑚□𝐶𝑛 is fork-decomposable for all 𝑛 ≡
0(𝑚𝑜𝑑 4). 

Conclusion 
In this paper we have investigated the existence of fork-
decomposition of Cartesian product of graphs. Also, we have 
investigated the necessary and sufficient conditions for the 
decomposition of Cartesian product of graphs into forks. A study on 
the fork-decomposition of other product graphs and total graphs is 
finalized and will appear as a separate paper in a reputed journal. 
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