Mapana - Journal of Sciences
2023, Vol. 22, Special Issue 1, 163-178
ISSN 0975-3303|https://doi.org/10.12723/mjs.sp1.13

Fork-decomposition of the Cartesian Product of Graphs

A. Samuel Issacraj* \& J. Paulraj Joseph ${ }^{\dagger}$

Abstract

Let $G=(V, E)$ be a graph. Fork is a tree obtained by subdividing any edge of a star of size three exactly once. In this paper, we investigate the necessary and sufficient condition for the fork-decomposition of Cartesian product of graphs.

Keywords: Decomposition, Fork, Product graph, Cartesian product. Mathematics Subject Classification (2010): 05C70, 05C51, $05 C 76$.

Introduction

We consider simple, finite, and undirected graphs. Let K_{n} denote the complete graph on n vertices and $K_{m, n}$ denote the complete bipartite graph with partite sets of sizes m and n. Let P_{k} denote the path of length $k-1$ and S_{k} denote the star of size $k-1$. A vertex of degree 1 is called a pendant vertex and the vertex adjacent to it is called the support vertex. Terms not defined here are used in the sense of Bondy and Murty [4].

Let $L=\left\{H_{1}, H_{2}, \ldots H_{r}\right\}$ be a family of subgraphs of G. An L decomposition of G is an edge-disjoint decomposition of G into positive integers α_{i} copies of H_{i} where $i \in\{1,2, \ldots, r\}$. Furthermore, if each $H_{i}(i \epsilon\{1,2, \ldots, r\})$ is isomorphic to a graph H, then we say that G has an H -decomposition.

[^0]The obvious necessary condition for the existence of a $\left\{H_{1}, H_{2}, \ldots H_{r}\right\}$ decomposition of G is $\sum_{i=1}^{r} \alpha_{i} e\left(H_{i}\right)=e(G)$

We call this equation as necessary sum condition.

The Fork graph was defined by Simone and Sassano in the name of chair graph in 1993, when they studied the stability number of bull and chair-free graphs [5]. A tree with degree sequence (1,1,1,2,3) is unique and is nothing but the fork defined above. Hence the subgraph Fork is also called a chair H or (3,2,1,1,1)-tree.
The decomposition of arbitrary graphs into subgraphs of small size is assuming importance in literature. There are several studies on the isomorphic decomposition of graphs into sunlet [1], cycles [2], trees [3], paths [8, 11], stars [12], etc. In 2013, P. Chithra Devi and J. Paulraj Joseph studied the P_{4} Decomposition of Product graphs [6]. The general problem of H -decompositions was proved to be NPcomplete for any H of size greater than 2 by Dor and Tarsi [7]. The decomposition of complete bipartite graphs, complete graphs, and corona graphs into Fork was studied in [9]. In this paper, we investigate the decomposition of the Cartesian product of graphs into forks.

Definition 1.1. [10] The Cartesian product of two graphs G and H, denoted by $G \square H$, is the graph whose vertex set is $V(G) \times V(H)$; two vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are adjacent in $G \square H$ precisely if $g=g^{\prime}$ and $h h^{\prime} \epsilon E(H)$, or $g g^{\prime} \epsilon E(G)$ and $h=h^{\prime}$. The number of edges in $G \square H$ is $|V(G)||E(H)|+|V(H)||E(G)|$.

The following results are used in the subsequent section.
Theorem 1.2. [9] The complete bipartite graph $K_{m, n}$ is forkdecomposition if and only if $m n \equiv 0(\bmod 4)$ except $K_{2,4 i+2},(i=$ $1,2, \ldots$).

Theorem 1.3. [9] The Complete graph K_{n} can be decomposed into forks if and only if $n=8 k$ or $n=8 k+1$, for all $k \geq 1$.

Theorem 1.4. [9] $C_{n} \circ \bar{K}_{m}$ is fork-decomposable if and only if $m=1$ and $n=2 k$ or $m=3$.

Theorem 1.5. [9]

Issacraj \& Paulraj Fork-decomposition of the Cartesian Product of Graphs

For $\boldsymbol{m} \geq \mathbf{3}, \boldsymbol{K}_{\boldsymbol{m}} \circ \boldsymbol{K}_{\mathbf{1}}$ is fork-decomposable if and only if $\boldsymbol{m} \equiv$ $0,7(\bmod 8)$
For $m \geq 3, K_{m} \circ \bar{K}_{2}$ is fork-decomposable if and only if $m \equiv$ 0,5 (mod 8)

Cartesian product of two Paths

In this section, we give the necessary and sufficient conditions for the decomposition of Cartesian product of two paths into forks. The following three lemmas are used in proving the decomposition of Cartesian product of two paths into forks.

Lemma 2.1. $P_{3} \square P_{3}$ and $P_{4} \square P_{4}$ are fork-decomposable.
Proof. The fork-decomposition is depicted in Figure 2.1.

(a) $P_{3} \square P_{3}$

(b) $P_{4} \square P_{4}$

Figure 2.1 Fork-decomposition of $P_{3} \square P_{3}$ and $P_{4} \square P_{4}$
Lemma 2.2. Let G_{1} be the graph obtained by joining one of the vertices of degree 2 of $P_{2 k-1} \circ K_{1}(k \geq 1)$ to the alternate vertices of C_{4}. Then G_{1} is fork-decomposable.

Proof. The graph G_{1} is given in Figure 2.2

Figure 2.2 The graph G_{1}
Let $u_{1}, u_{2}, \ldots, u_{2 k-1}$ and $v_{1}, v_{2}, \ldots, v_{2 k-1}$ be the vertices of first and second copy of $P_{2 k-1}$ in $P_{2 k-1} \circ K_{1}$ respectively. Let $x_{i}, y_{i}(1 \leq i \leq$
$2 k-1$) be the pendant vertices of u_{i} and v_{i} respectively and let $w_{1}, w_{2}, w_{3}, w_{4}$ be the vertices of C_{4}.

Then a fork-decomposition of G_{1} is given by $\left\{u_{i} x_{i}, u_{i} u_{i+1}, u_{i+1} x_{i+1}, u_{i+1} u_{i+2}\right\}$, $\left\{v_{i} y_{i}, v_{i} v_{i+1}, v_{i+1} y_{i+1}, v_{i+1} y_{i+2}\right\},\left\{u_{2 k-1} x_{2 k-1}, u_{2 k-1} w_{1}, w_{1} w_{2}, w_{1} w_{4}\right\}$, $\left\{v_{2 k-1} y_{2 k-1}, v_{2 k-1} w_{3}, w_{3} w_{2}, w_{3} w_{4}\right\}$ for $i=1,3, \ldots, 2 k-3$.

Lemma 2.3. Let G_{2} be the graph obtained by identifying an end copy of $P_{3} \square P_{3}$ of $P_{3} \square P_{2 k+2}$ with another end copy of $P_{3} \square P_{3}$ of $P_{3} \square P_{2 k+2}$ and deleting the edges of third copy of $P_{2 k}$ in each of the graphs $P_{3} \square P_{2 k+2}$ as shown in Figure 2.3. Then G_{2} is fork-decomposable.

Proof. Let us label the vertices of G_{2} as given in Figure 2.3

Figure 2.3 The graph G_{2}
The fork-decomposition of G_{2} is given by $\left\{x_{i} u_{2, i}, u_{2, i} u_{1, i}, u_{2, i} u_{2, i+1}, u_{1, i} u_{1, i+1}\right\},\left\{y_{i} v_{2, i}, v_{2, i} v_{1, i}, v_{2, i} v_{2, i+1}, v_{1, i} v_{1, i+1}\right\}$, $\left\{x_{2 k-1} u_{2,2 k-1}, u_{2,2 k-1} u_{1,2 k-1}, u_{2,2 k-1} e_{4}, u_{1,2 k-1} e_{1}\right\}$ $\left\{y_{2 k-1} v_{2,2 k-1}, v_{2,2 k-1} v_{1,2 k-1}, v_{2,2 k-1} e_{8}, v_{1,2 k-1} e_{9}\right\}$ $\left\{e_{1} e_{2}, e_{1} e_{4}, e_{2} e_{5}, e_{2} e_{3}\right\},\left\{e_{3} e_{6}, e_{6} e_{9}, e_{5} e_{6}, e_{8} e_{9}\right\},\left\{e_{4} e_{7}, e_{5} e_{8}, e_{7} e_{8}, e_{8} e_{9}\right\}$ for $i=1$ to $2 k-2$.

In the following theorem, we give necessary and sufficient conditions for the fork-decomposition of Cartesian product of paths.
Theorem 2.4. $P_{n} \square P_{m}$ is fork-decomposable if and only if $m \equiv$ $n(\bmod 4)$ where $n \leq m$.

Proof. If $P_{n} \square P_{m}$ is fork-decomposable, then the total number of edges in $P_{n} \square P_{m}$, given as $2 m n-(m+n)$ must be a multiple of four. Since $2 m n$ is even, m and n must be both even or both odd. Hence the difference between m and n must be even. Thus $2 m n-m-n=4 k$ implies $m-n=4 k-2 m n+2 m=4 k-2 m(n-$ $1)$, where k is a positive integer. Since m and n are both even or both odd, $m(n-1)$ must be even. That is, $m(n-1)=2 l$ where l is a positive integer. Then $m-n=4 k-4 l=4(k-l)$. Hence, $m \equiv$ $n(\bmod 4)$.

Conversely, assume that $m \equiv n(\bmod 4)$. We shall prove that $P_{n} \square P_{m}$ is fork-decomposable, by considering two cases.

Case i. $n=m$
If n is even, let $n=2 i$. The proof is by induction on n. Since $P_{4} \square P_{4}$ is fork-decomposable by Lemma 2.1, the result is true for $n=4$. Assume that the result is true for $n=2 i-2$. Since $P_{2 i} \square P_{2 i}$ can be decomposed into $P_{2 i-2} \square P_{2 i-2}$ and G_{2}, by induction $P_{2 i-2} \square P_{2 i-2}$ is fork-decomposable and by Lemma 2.3, G_{2} is fork-decomposable. Hence $P_{2 i} \square P_{2 i}$ is fork-decomposable.
If n is odd, let $n=2 i+1$. Since $P_{3} \square P_{3}$ is fork-decomposable by Lemma 2.1, the result is true for $n=3 . P_{2 i+1} \square P_{2 i+1}$ can be decomposed into $P_{2 i} \square P_{2 i}$ and G_{1}. Since $P_{2 i} \square P_{2 i}$ is forkdecomposable and by Lemma 2.2, G_{1} is fork-decomposable, $P_{2 i+1} \square P_{2 i+1}$ is fork-decomposable. Hence $P_{n} \square P_{n}$ is forkdecomposable.

Case ii. $n \neq m$
If $n=2, m=2+4 a$, for some positive integer $a \geq 1$. For $a=1$, the graph $P_{2} \square P_{6}$ is fork-decomposable as shown in Figure 2.4.

Figure $2.4 P_{2} \square P_{6}$
Consider the graph H_{1} obtained from $P_{2} \square P_{4}$ with pendant edge attached to first copy of P_{2}. The graph H_{1} is fork-decomposable as shown in the Figure 2.5

Figure 2.5 The graph H_{1}
For $a>1$, the graph $P_{2} \square P_{2+4 a}$ can be decomposed into one copy of $P_{2} \square P_{6}$ and $a-1$ copies of H_{1} and hence $P_{2} \times P_{m}$ is forkdecomposable for $m=2+4 a$.
If $n \neq 2$, consider the graph H_{2} obtained by removing $P_{n} \square P_{n}$ from $P_{n} \square P_{m}$. Let $l=m-n$. Clearly, l is a multiple of 4 . Let $\left\{u_{1, i}, u_{i, 2}, \ldots, u_{i, n}\right\}$ be the vertices of $P_{l} \square P_{n}$ in H_{2} where $i=1$ to l. Let $u_{0,1}, u_{0,2}, \ldots, u_{0, n}$ be the pendant vertices attached to $u_{1,1}, u_{1,2}, \ldots, u_{1, n}$ respectively.
Then a fork-decomposition of H_{2} is given by $\left\{u_{i, 1} u_{i, 2}, u_{i, 1} u_{i-1,1}, u_{i, 2} u_{i-1,2}, u_{i, 1} u_{i+1,1}\right\}$
$\left\{u_{i+1,2} u_{i+1,1}, u_{i+1,2} u_{i, 2}, u_{i+1,2} u_{i+2,2}, u_{i+2,2} u_{i+3,2}\right\}$
$\left\{u_{i+2,1} u_{i+2,2}, u_{i+2,1} u_{i+1,1}, u_{i+2,1} u_{i+3,1}, u_{i+3,1} u_{i+3,2}\right\} \quad$ for $\quad i=$
$1,5,9, \ldots, m-3$ and $\left\{u_{j, k} u_{j, k-1}, u_{j, k} u_{j-1, k}, u_{j, k} u_{j+1, k}, u_{j+1, k} u_{j+1, k-1}\right\}$ for $j=1,3, \ldots, m-1$ and $k=3,4, \ldots, n$.

Since $P_{n} \square P_{m}$ can be decomposed into $P_{n} \square P_{n}$ and H_{2} which are forkdecomposable, $P_{n} \square P_{m}$ is fork-decomposable.

Cartesian Product of path and cycles

In this section, we give the necessary and sufficient conditions for the decomposition of Cartesian product of path and cycles into forks.

The following lemma is used in proving the necessary and sufficient conditions for the fork-decomposition of Cartesian product of paths.
Lemma 3.1. The graph $P_{2} \square C_{n}$ is fork-decomposable if and only if $n \equiv$ $0(\bmod 4)$.
Proof. If $P_{2} \square C_{n}$ is fork-decomposable, then $\left|E\left(P_{2} \square C_{n}\right)\right|=3 n \equiv$ $0(\bmod 4)$, and hence $n \equiv 0(\bmod 4)$.
Conversely, assume that $n \equiv 0(\bmod 4)$.
Let $V\left(C_{n}\right)=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ and $V\left(P_{2}\right)=\left\{x_{1}, x_{2}\right\}$.
Then $V\left(P_{2} \square C_{n}\right)=$ $\left\{\left(x_{1}, w_{1}\right),\left(x_{1}, w_{2}\right), \ldots,\left(x_{1}, w_{n}\right),\left(x_{2}, w_{1}\right),\left(x_{2}, w_{2}\right), \ldots,\left(x_{2}, w_{n}\right)\right\}$.
Rename the following vertices: $\left(x_{1}, w_{j}\right)=u_{j},\left(x_{2}, w_{k}\right)=v_{k}, 1 \leq j$, $k \leq n$.

Then a fork-decomposition of $P_{2} \square C_{n}$ is given by $\left\{u_{i} v_{i}, u_{i} u_{i+1}, u_{i} u_{i-1}, u_{i-1} v_{i-1}\right\},\left\{v_{i+1} u_{i+1}, v_{i+1} v_{i-1}, v_{i+1} v_{i+2}, v_{i-1} v_{i-2}\right\}$, $\left\{u_{i+2} v_{i+2}, u_{i+2} u_{i+1}, u_{i+2} u_{i+3}, v_{i+2} v_{i+3}\right\} \quad$ for $i \equiv 2(\bmod 4)$. The subscripts are taken modulo n.
Theorem 3.2. $C_{m} \square P_{n}$ is fork-decomposable if and only if $m=4 k$.
Proof. Let $G=C_{m} \square P_{n}$. If G is fork-decomposable, then $\left|E\left(C_{m} \square P_{n}\right)\right| \equiv$ $0(\bmod 4)$ which implies $2 m n-m=4 k$. Thus $m(2 n-1)=$ $4 k$. Since $2 n-1$ is odd, m must be a multiple of 4 .
Conversely, assume that $m=4 k$. Let $H=C_{m} \square P_{2}$. Then $C_{m} \square P_{2}$ can be decomposed into H and $G-H$. By Lemma 3.1, H can be decomposed into forks and $G-H$ can be decomposed into $n-2$ copies of $C_{m} \circ K_{1}$. Since m is a multiple of 4 , by Theorem 1.4, $C_{m} \circ K_{1}$ can be decomposed into forks and hence G is fork-decomposable.
The following lemma is used in proving the existence of necessary and sufficient conditions for the fork-decomposition of Cartesian product of cycles.
Lemma 3.3. Let G be the graph obtained from $P_{2} \square C_{n}$ with pendant vertex attached to the first vertex of each copy of P_{2}. Then G is forkdecomposable for all $n \geq 3$.
Proof. Let $V\left(C_{n}\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $V\left(K_{2}\right)=\left\{y_{1}, y_{2}\right\}$.

Then $V\left(P_{2} \square C_{n}\right)=$
$\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{1}\right), \ldots,\left(x_{n}, y_{1}\right),\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{2}\right)\right\}$.
Rename the vertices $\left(x_{i}, y_{1}\right)=u_{i}$ and $\left(x_{i}, y_{2}\right)=v_{i}$ for all $1 \leq i \leq n$. Let w_{i} be the pendant vertex attached to each u_{i}.

Then a fork-decomposition of G is given by $\left\{u_{n} u_{1}, u_{n} w_{n}, u_{n} v_{n}, v_{n} v_{1}\right\}$ and $\left\{u_{i} u_{i+1}, u_{i} w_{i}, u_{i} v_{i}, v_{i} v_{i+1}\right\}$ for $1 \leq i \leq n-1$. The subscripts are taken modulo n.

Theorem 3.4. $C_{m} \square C_{n}$ is fork-decomposable if and only if either m or n is even.

Proof. If $C_{m} \square C_{n}$ is fork-decomposable, then $\left|E\left(C_{m} \square C_{n}\right)\right| \equiv$ $0(\bmod 4)$, implies $2 m n=4 k$. Hence either m or n is even.

Conversely, assume that n is even and let $G=C_{m} \square C_{n}$. Then G can be decomposed into $\frac{n}{2}$ copies of $C_{m} \square K_{2}$ with pendant edge attached to the first copy of C_{m} which in turn can be decomposed into forks by Lemma 3.3. Similarly, we can prove the result for even values of m.

Cartesian Product of centipede and path

In this section, we give necessary and sufficient conditions for the Cartesian product of centipede and path into forks.

Theorem 4.1. Let G be an m-centipede $\left(P_{m} \circ K_{1}\right)$ and if $m \equiv$ $0(\bmod 2)$, then $G \square P_{n}$ is fork-decomposable for all $n \equiv 0(\bmod 4)$.

Proof. Let G be an m-centipede. Let $V\left(P_{m}\right)=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and let y_{i} be the pendant vertex adjacent to $x_{i}(1 \leq i \leq m)$. Let $\left\{x_{i 1}, x_{i 2}, \ldots, x_{i n},(1 \leq i \leq m)\right\}$ be the vertices of a path in n copies of m-centipede and let $\left\{y_{i 1}, y_{i 2}, \ldots, y_{i n}\right\}$ be the pendant vertices in n copies of m-centipede attached to $x_{i j}(1 \leq i \leq m$ and $1 \leq j \leq n)$ respectively.

The set of forks F_{1} and F_{2} can be obtained as $\left\{x_{i j} x_{i(j+1)}, x_{i j} x_{(i+1) j}, x_{i j} y_{i j}, y_{i j} y_{(i+1) j}\right\}$ for $1 \leq i \leq n-1$ and $1 \leq j \leq$ $m-1$ and $\left\{x_{i j} x_{i(j+1)}, x_{i j} y_{i j}, x_{i j} x_{i(j-1)}, x_{i(j-1)} y_{i(j-1)}\right\}$ for $j=$ $2,4, \ldots, m-2$ and $i=n$. If we remove F_{1} and F_{2}, we get a component M obtained by adding an edge to the end vertex $y_{(n-1) m}$ of path in $P_{2} \square P_{n-1}$.

Figure 4.1 The graphs M_{1} and M_{2}
This component M can be decomposed into component M_{1} which is obtained by adding an edge to the end vertex of P_{3} in $P_{2} \square P_{3}$ and $\frac{n}{4}-$ 1 copies of M_{2} obtained by adding an edge to the first vertex of the first copy and end vertex of the second copy of P_{4} in $P_{2} \square P_{4}$ respectively. The decomposition of M_{1} and M_{2} are shown in the Figure 4.1.

Cartesian Product of complete graph and path

In the following theorem, we give necessary and sufficient conditions for the fork-decomposition of Cartesian product of complete graph and path.

Theorem 5.1. The graph $K_{m} \square P_{n}$ is fork-decomposable if and only if it satisfies any one of the following conditions.

1. $m \equiv 0(\bmod 8)$
2. $n \equiv 0(\bmod 2)$ and $m \equiv 0(\bmod 4)$
3. $n \equiv 2(\bmod 4)$ and $m \equiv 2(\bmod 4)$
4. $n \equiv 3(\bmod 4)$ and $m \equiv 5(\bmod 8)$
5. $n \equiv 1(\bmod 4)$ and $m \equiv 1(\bmod 8)$

Proof. If $K_{m} \square P_{n}$ is fork-decomposable, then total number of edges in $K_{m} \square P_{n} \quad$ is $m(n-1)+n\left(\frac{m(m-1)}{2}\right)=\frac{m}{2}(n(m+1)-2) \equiv 0(\bmod 4)$. Then $m(n(m+1)-2)=8 k$. Clearly, $m \equiv 0(\bmod 8)$ which is condition (1).
Suppose $m \equiv 1(\bmod 8)$, then $(8 k+1)(n(8 k+1+1)-2) \equiv$ $0(\bmod 8)$, which implies $n(8 k+2)-2 \equiv 0(\bmod 8)$. Then, $n(4 k+$ 1) $-1 \equiv 0(\bmod 4)$ which implies $n-1 \equiv 0(\bmod 4)$. Thus $n \equiv$ 1 (mod 4$)$ which is condition (5).
Suppose $m \equiv 2(\bmod 8)$, then $(8 k+2)(n(8 k+2+1)-2) \equiv$ $0(\bmod 8)$, which implies $2 n(8 k+3)-4 \equiv 0(\bmod 8)$. Then $n(8 k+$
3) $-2 \equiv 0(\bmod 4)$ which implies $3 n-2 \equiv 0(\bmod 4)$. Thus $n \equiv$ $2(\bmod 4)$ which is condition (3).
Suppose $m \equiv 3(\bmod 8)$, then $(8 k+3)(n(8 k+3+1)-2) \equiv$ $0(\bmod 8)$, which implies $3 n(8 k+4)-6 \equiv 0(\bmod 8)$. Then $12 n(2 k+1) \equiv 6(\bmod 8)$ which implies $6 n(2 k+1) \equiv 3(\bmod 4)$. Here n is not a positive integer. Hence this condition does not hold.

Suppose $m \equiv 4(\bmod 8)$, then $(8 k+4)(n(8 k+4+1)-2) \equiv$ $0(\bmod 8)$, which implies $4 n(8 k+5)-8 \equiv 0(\bmod 8)$. Then $4 n(5) \equiv 0(\bmod 8) \quad$ which implies $5 n \equiv 0(\bmod 2)$. Thus $n \equiv 0(\bmod 2)$ which is condition (2).

Suppose $m \equiv 5(\bmod 8)$, then $(8 k+5)(n(8 k+5+1)-2) \equiv$ $0(\bmod 8)$, which implies $5 n(8 k+6)-10 \equiv 0(\bmod 8)$. Then $40 n k+30 n-10 \equiv 0(\bmod 8)$ which implies $20 n k+15 n-5 \equiv$ $0(\bmod 4)$. Then $15 n-5 \equiv 0(\bmod 4)$ which implies $n-1 \equiv$ $0(\bmod 4)$. Thus $n \equiv 3(\bmod 4)$ which is condition (5).
Suppose $m \equiv 6(\bmod 8)$, then $(8 k+6)(n(8 k+6+1)-2) \equiv$ $0(\bmod 8)$, which implies $6 n(8 k+7)-12 \equiv 0(\bmod 8)$. Then $42 n-$ $12 \equiv 0(\bmod 8)$ which implies $21 n \equiv 6(\bmod 4)$. Then $21 n \equiv$ $2(\bmod 4)$ which implies $n \equiv 2(\bmod 4)$ which is condition (2).

Suppose $m \equiv 7(\bmod 8)$, then $(8 k+7)(n(8 k+7+1)-2) \equiv$ $0(\bmod 8)$, which implies $7 n(8 k+8)-14 \equiv 0(\bmod 8)$ which is not possible. Hence this condition does not hold.
Now let us prove the converse part in 5 cases.
Case 1. $m \equiv 0(\bmod 8)$
The graph $K_{m} \square P_{n}$ can be decomposed into $\frac{m}{8}$ copies of $K_{8}, \frac{(n-1) m}{8}$ copies of $K_{8} \circ K_{1}$ and $n\left(\frac{m}{8} 2\right)$ copies of $K_{8,8}$. By Theorem 1.3,1.5 and 1.2, $K_{8}, K_{8} \circ K_{1}$ and $K_{8,8}$ are fork-decomposable. Hence $K_{m} \square P_{n}$ is fork-decomposable.
Case 2. $n \equiv 0(\bmod 2)$ and $m \equiv 0(\bmod 4)$
First let us prove the result for $K_{4} \square P_{n}$. If $n=2$, let the vertices of first and second copy of K_{4} be $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ respectively. Then a fork-decomposition of $K_{4} \times P_{2}$ is given by $\left\{x_{1} x_{4}, x_{1} x_{3}, x_{1} x_{2}, x_{3} y_{3}\right\} \quad, \quad\left\{x_{2} x_{4}, x_{2} x_{3}, x_{2} y_{2}, y_{2} y_{3}\right\}$
$\left\{y_{1} y_{2}, y_{1} y_{3}, y_{1} x_{1}, y_{3} y_{4}\right\}$ and $\left\{y_{4} y_{2}, y_{4} y_{1}, y_{4} x_{4}, x_{4} x_{3}\right\}$.

Figure 5.1 The graph A
If $n \geq 4$, the graph $K_{4} \square P_{n}$ can be decomposed into one copy of $K_{4} \square P_{2}$ and $\frac{n}{2}-1$ copies of the graph A given in Figure 5.1. Since the graph A is fork decomposable as shown in the Figure 5.1, $K_{4} \square P_{n}$ is forkdecomposable.

The graph $K_{m} \square P_{n}$ can be decomposed into $\frac{m}{4}$ copies of $K_{4} \square P_{n}$ and $n\left(\frac{m}{4} 2\right)$ copies of $K_{4,4}$. By Theorem 1.2, $K_{4,4}$ is fork-decomposable. Hence $K_{m} \square P_{n}$ is fork-decomposable.

Case 3. $n \equiv 2(\bmod 4)$ and $m \equiv 2(\bmod 4)$.
Firstly, let us prove the result for $m=6$. The graph $K_{6} \square P_{n}$ can be decomposed into $K_{4} \square P_{n}, P_{n} \square P_{2}$ and n copies of $K_{2,4}$. By Case (2), $K_{4} \square P_{n}$ is fork-decomposable. By Theorem 1.2, $K_{2,4}$ is forkdecomposable and by Theorem 2.4, $P_{n} \square P_{2}$ is fork-decomposable. Hence $K_{6} \square P_{n}$ is fork-decomposable.

For $m>6$, the graph $K_{m} \square P_{n}$ can be decomposed into $K_{6} \square P_{n}$, $K_{m-6} \square P_{n}$ and $K_{6, m-6}$. By Case (2), $K_{m-6} \square P_{n}$ is fork-decomposable and by Theorem 1.2, $K_{6, m-6}$ is fork-decomposable. Hence $K_{m} \square P_{n}$ is fork-decomposable.

Case 4. $n \equiv 3(\bmod 4)$ and $m \equiv 5(\bmod 8)$.
Firstly, we shall prove that $K_{5} \square P_{n}$ is fork-decomposable. If $n=3$, let the vertices of first, second and third copy of K_{5} be $u_{i}, v_{i}, w_{i}(1 \leq i \leq$ 5) respectively. Then a fork-decomposition of $K_{5} \square P_{3}$ is given by
$\left\{u_{1} u_{2}, u_{1} u_{3}, u_{1} u_{4}, u_{4} u_{5}\right\},\left\{u_{2} u_{3}, u_{2} u_{4}, u_{2} u_{5}, u_{5} u_{1}\right\}$,
$\left\{u_{3} u_{4}, u_{3} u_{5}, u_{3} v_{3}, v_{3} w_{3}\right\},\left\{v_{2} v_{1}, v_{2} v_{5}, v_{2} w_{2}, v_{5} u_{5}\right\}$,
$\left\{v_{3} v_{2}, v_{3} v_{1}, v_{3} v_{5}, v_{1} u_{1}\right\},\left\{v_{4} v_{3}, v_{4} v_{2}, v_{4} u_{4}, v_{2} u_{2}\right\}$,
$\left\{v_{1} v_{5}, v_{1} v_{4}, v_{1} w_{1}, v_{4} w_{4}\right\},\left\{w_{1} w_{3}, w_{1} w_{4}, w_{1} w_{5}, w_{3} w_{2}\right\}$, $\left\{w_{2} w_{1}, w_{2} w_{5}, w_{2} w_{4}, w_{4} w_{3}\right\},\left\{w_{5} w_{4}, w_{5} w_{3}, w_{5} v_{5}, v_{5} v_{4}\right\}$.

If $n \geq 3, K_{5} \square P_{n}$ can be decomposed into $\left\lceil\frac{m}{4}\right\rceil$ copies of $K_{5} \square P_{3}$ and $\left\lceil\frac{\mathrm{m}}{4}\right\rceil-1$ copies of $K_{5} \circ \bar{K}_{2}$. By Theorem 1.5, $K_{5} \circ \bar{K}_{2}$ is forkdecomposable and hence $K_{5} \square P_{n}$ is fork-decomposable.

Now we shall prove the result for m. The graph $K_{m} \square P_{n}$ can be decomposed into $K_{m-5} \square P_{n}, K_{5} \square P_{n}$ and m copies of $K_{5, m-5}$. Since $m \equiv 5(\bmod 8), K_{m-5} \square P_{n}$ is fork-decomposable by Case (1) and by Theorem 1.2, $K_{5, m-5}$ is fork-decomposable. Hence $K_{m} \square P_{n}$ is forkdecomposable.

Case 5. $n \equiv 1(\bmod 4)$ and $m \equiv 1(\bmod 8)$.
Firstly, we shall prove that $K_{9} \square P_{n}$ is fork-decomposable. The graph $K_{9} \square P_{n}$ can be decomposed into $K_{4} \square P_{n-1}, K_{5} \square \bar{K}_{2}$ and a graph H obtained by attaching pendant edges to four consecutive vertices of K_{9}. By Case (2) and (4), $K_{4} \square P_{n-1}$ and $K_{5} \square P_{n-2}$ are forkdecomposable respectively. By Theorem 1.5, $K_{5} \circ \bar{K}_{2}$ is forkdecomposable.

Now we have to prove that the graph H is fork-decomposable. Let $\left\{x_{1}, x_{2}, \ldots, x_{9}\right\}$ be the vertices of K_{9} and let $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ be the pendant vertices attached to $x_{i}(i=1$ to 4$)$ respectively. Then a forkdecomposition of H is given by
$\left\{x_{1} x_{5}, x_{1} x_{6}, x_{1} x_{9}, x_{9} x_{8}\right\},\left\{x_{2} x_{4}, x_{2} x_{5}, x_{2} x_{7}, x_{5} x_{8}\right\}$,
$\left\{x_{2} x_{6}, x_{2} x_{8}, x_{2} x_{9}, x_{6} x_{5}\right\},\left\{x_{2} x_{3}, x_{2} y_{2}, x_{2} x_{1}, x_{1} y_{1}\right\}$,
$\left\{x_{3} x_{6}, x_{3} x_{8}, x_{3} x_{9}, x_{8} x_{1}\right\},\left\{x_{4} x_{8}, x_{4} y_{4}, x_{4} x_{1}, x_{1} x_{3}\right\}$,
$\left\{x_{4} x_{3}, x_{4} x_{9}, x_{4} x_{6}, x_{6} x_{8}\right\},\left\{x_{5} x_{4}, x_{5} x_{3}, x_{5} x_{9}, x_{9} x_{7}\right\}$,
$\left\{x_{7} x_{8}, x_{7} x_{5}, x_{7} x_{6}, x_{6} x_{9}\right\},\left\{x_{7} x_{4}, x_{7} x_{3}, x_{7} x_{1}, x_{3} y_{3}\right\}$.
Hence $K_{9} \times P_{n}$ is fork-decomposable.
Now we shall prove that the result for m. The graph $K_{m} \square P_{n}$ can be decomposed into $K_{9} \square P_{n}, K_{m-9} \square P_{n}$ and n copies of $K_{9, m-9}$. Since $m \equiv$ $1(\bmod 8)$, by Case (1), $K_{m-9} \square P_{n}$ is fork-decomposable and by Theorem1.2, $K_{9, m-9}$ is fork-decomposable. Hence $K_{m} \square P_{n}$ is forkdecomposable.

Cartesian product of complete graph and cycle

In the following theorem, we give necessary and sufficient conditions for the fork-decomposition of Cartesian product of complete graph and cycle.

Theorem 6.1 The graph $K_{m} \square C_{n}$ is fork-decomposable if and only if it satisfies any one of the following conditions.

1. n is even and $m \equiv 0(\bmod 4)$ or $m \equiv-1(\bmod 4)$
2. n is odd and $m \equiv 0(\bmod 8)$ or $m \equiv-1(\bmod 8)$
3. $n \equiv 0(\bmod 4)$

Proof: If the graph $K_{m} \square C_{n}$ is fork-decomposable, then the total number of edges is $n \frac{m(m-1)}{2}+m n=m n\left(\frac{m+1}{2}\right)=n\left(\frac{m^{2}+m}{2}\right) \equiv$ $0(\bmod 4)$. That is $n(m(m+1)) \equiv 0(\bmod 8)$.

If n is odd, then $m(m+1) \equiv 0(\bmod 8)$. Hence $m \equiv 0(\bmod 8)$ or $m \equiv$ $-1(\bmod 8)$ which is condition 2.

Obviously $m(m+1)$ is even and if n is even, then either $n \equiv$ $0(\bmod 4)$ which is condition 3 or $m(m+1)$ must be a multiple of 4 . That is, $\quad m \equiv 0(\bmod 4) \quad$ or $m \equiv-1(\bmod 4)$, which is condition 1 .

Now we shall prove the converse part in 3 cases.
Case 1(a). $n \equiv 0(\bmod 2)$ and $m \equiv 0(\bmod 4)$.
When $m=4$, the graph $K_{4} \square C_{n}$ can be decomposed into $K_{3} \square C_{n}$ and $C_{n} \circ K_{3}$. By Theorem 3.4, the graph $K_{3} \square C_{n}$ is fork-decomposable and by Theorem 1.4, $C_{n} \circ \underline{K_{3}}$ is fork-decomposable. Hence the graph $K_{4} \square C_{n}$ is fork-decomposable. The graph $K_{m} \square C_{n}$ can be decomposed into $\frac{m}{4}$ copies of $K_{4} \square C_{n}$ and $n\left(\frac{\frac{m}{4}}{2}\right)$ copies of $K_{4,4}$. By Theorem 1.2, $K_{4,4}$ is fork-decomposable. Hence $K_{m} \square P_{n}$ is fork-decomposable.

Case 1(b). $n \equiv 0(\bmod 2)$ and $m \equiv-1(\bmod 4)$.
When $m=3$, the graph $K_{3} \square C_{n}$ is fork-decomposable by Theorem 3.4. Consider the graph $K_{m} \square C_{n}$. The graph $K_{m} \square C_{n}$ can be decomposed into $K_{3} \square C_{n}, K_{m-3} \square C_{n}$ and n copies of $K_{3, m-3}$. By Theorem 1.2, $K_{3, m-3}$ is fork-decomposable and by Case 1(a), $K_{m-3} \square C_{n}$ is forkdecomposable. Hence $K_{m} \square C_{n}$ is fork-decomposable.

Case 2(a). $n \equiv 1(\bmod 2)$ and $m \equiv 0(\bmod 8)$.
When $m=8$, the graph $K_{8} \square C_{n}$ can be decomposed into n copies of $K_{8} \circ K_{1}$. By Theorem 1.5, $K_{8} \circ K_{1}$ is fork-decomposable. Hence the graph $K_{8} \square C_{n}$ is fork-decomposable. The graph $K_{m} \square C_{n}$ can be decomposed into $\frac{m}{8}$ copies of $K_{8} \square C_{n}$ and $n\left(\frac{\frac{m}{8}}{2}\right)$ copies of $K_{8,8}$. By Theorem 1.2, $K_{8,8}$ is fork-decomposable. Hence $K_{m} \square C_{n}$ is forkdecomposable.

Case 2(b). $n \equiv 1(\bmod 2)$ and $m \equiv-1(\bmod 8)$.
When $m=7$, the graph $K_{7} \square C_{n}$ can be decomposed into n copies of $K_{7} \circ K_{1}$. By Theorem 1.5, $K_{7} \circ K_{1}$ is fork-decomposable. Hence the graph $K_{7} \square C_{n}$ is fork-decomposable. The graph $K_{m} \square C_{n}$ can be decomposed into $K_{7} \square C_{n}, K_{m-7} \square C_{n}$ and n copies of $K_{7, m-7}$. By Theorem 1.2, $K_{7, m-7}$ is fork-decomposable and by Case 2(a), $K_{m-7} \square C_{n}$ is fork-decomposable. Hence $K_{m} \square C_{n}$ is fork-decomposable.
Case 3. $n \equiv 0(\bmod 4)$.
It is enough to prove the result for $m \equiv 1(\bmod 4)$ and $m \equiv 2(\bmod 4)$. Suppose $m \equiv 1(\bmod 4)$. When $m=5$, the graph $K_{5} \square C_{n}$ can be decomposed into $K_{5} \square P_{n-1}$ and $K_{5} \circ \underline{K_{2}}$. By Theorem 5.1, the graph $K_{5} \square P_{n-1}$ is fork-decomposable and by Theorem 1.5, $K_{5} \circ \underline{K_{2}}$ is forkdecomposable. Hence the graph $K_{5} \square C_{n}$ is fork-decomposable. The graph $K_{m} \square C_{n}$ can be decomposed into $K_{5} \square C_{n}, K_{m-5} \square C_{n}$ and n copies of $K_{5, m-5}$. By Theorem 1.2, $K_{5, m-5}$ is fork-decomposable. Hence $K_{m} \square C_{n}$ is fork-decomposable for $m \equiv 1(\bmod 4)$.

Suppose $m \equiv 2(\bmod 4)$. When $m=2$, the graph $K_{2} \square C_{n}$ is forkdecomposable by Lemma 3.1. The graph $K_{m} \square C_{n}$ can be decomposed into $K_{2} \square C_{n}, K_{m-2} \square C_{n}$ and n copies of $K_{2, m-2}$. By Theorem 1.2, $K_{2, m-2}$ is fork-decomposable. Hence $K_{m} \square C_{n}$ is fork-decomposable for $m \equiv 2(\bmod 4)$.
Also, by using the case (1), $K_{m} \square C_{n}$ is fork-decomposable for all $n \equiv$ $0(\bmod 4)$.

Conclusion

In this paper we have investigated the existence of forkdecomposition of Cartesian product of graphs. Also, we have investigated the necessary and sufficient conditions for the decomposition of Cartesian product of graphs into forks. A study on the fork-decomposition of other product graphs and total graphs is finalized and will appear as a separate paper in a reputed journal.

Acknowledgment

We thank the referees for their valuable feedbacks and comments.

References

1. Abolape D. Akwu, Deborah O.A. Ajayi, Sunlet Decomposition of Certain Equipartite Graphs, Int. J. Comb., (2013), Article ID 907249, 4 pages.
2. Alspach, B., Gavlas, H., Cycle decomposition of K_{n} and $K_{n}-I$, J .Combin. Theory (B), 81 (2001), 77-99.
3. Barat, J., Gerbner, D., Edge decomposition of graph into copies of tree with four edges, Electron. J. Combin., 21 (1) (2014).
4. Bondy, J.A., Murty, U.S.R. , Graph Theory, Springer International Edition, 2008.
5. Caterina De Simone and Antonio Sassano, Stability number of bull and chair-free graphs, Discrete Appl. Math., 41 (1993), 121-129.
6. Chithra Devi P., Paulraj Joseph J., P4 Decomposition of Product graphs, JP Journal of Mathematical Sciences, 7 (1 \& 2) (2013), 13-39.
7. Dor, D., Tarsi, M., Graph-decomposition is NP-complete: a complete proof of Holyr conjecture, SIAM J. Comput., 26 (1997), dor, 11661187.
8. Ming-qing Zhai, Chang-hong Lu, Path Decomposition of Graph with given path length, Acta Math. Appl. Sin. Engl. Ser., 22 (4) (2006), 633-638.
9. Paulraj Joseph, J., Samuel Issacraj, A., Fork-decomposition of graphs, PreConference Proceedings of the International Conference on Discrete Mathematics, ISBN:978-93-91077-532, (2022), 426-431.
10. Richard Hammack, Wilfied Imrich, Samndi Klavzar, Handbook of Product Graphs, Second Edition, Taylor and Francis Group, 2011.
11. Sunil Kumar, C., On P_{4}-decomposition of Graphs, Taiwanese J. Math., Vol. 7 (4) (2003), pp. 657-664.
12. Yang Zhao, Baoyindureng Wu , Star decomposition of graphs, Discrete Math. Algorithms Appl., 7(2), (2015), 1550016 (9 pages).

[^0]: * Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India; Email: samuelissacraj@gmail.com
 † Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India; Email: prof.jpaulraj@gmail.com

