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APPLICATION OF A DIATOMIC MOLECULE MODEL POTENTIAL TO A 

SERIES OF HOMO- AND HETERODIATOMIC MOLECULES 

Dorien E. Carpenter and Javier E. Hasbun 

Corresponding author: jhasbun@westga.edu  

We apply a one-dimensional classical model of a diatomic molecule model potential 

with modifications to H2, HF, LiF, N2, and CO. We obtain the unknown parameters of 

this model by digitizing plots of the potential curves for the molecules from a published, 

Hartree-Fock based theoretical electron correlation calculation (Piris 2017). We then 

apply the method of successive approximations to the model in order to calculate the 

wavenumber for each molecule in the series. The wavenumber depends on a parameter 

which in turn depends on the initial conditions. The value of this parameter for each 

individual molecule gives zero percent error for the corresponding molecule’s 

wavenumber, but an average is used in the final calculation of all molecules’ 

wavenumbers. The resulting wavenumbers are all within seven percent of the 

experimental values. 

Keywords: mechanics, model potential, wavenumber, successive approximations, 

diatomic molecule 

INTRODUCTION 

The Lennard-Jones potential (Lennard-Jones 1931; Kittel 1986; Hasbun and Datta 

2019) is an equation that models the potential between two atoms or molecules within a 

solid. The equation is composed of a term representing the short-range repulsive force 

caused by the Pauli Exclusion Principle and a second term representing the long-range 

attractive force due to the Van der Waals interaction. The derivation of the Van der 

Waals term relies on the assumption that the charge separation on each particle is 

significantly less than the distance between the particles (Kittel 1986). An example of 

such a system is shown in Figure 1. 

 

Figure 1. Diagram of two neutral particles with charge separations x1 and x2, separated by a distance R. 
This system follows the Lennard-Jones potential model. 

The Lennard-Jones potential for a system such as that in Figure 1 can be written as 

 ,          (1)  
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where A and B are positive constants (Kittel 1986; Hasbun and Datta 2019). The graph 

of potential versus the distance between the particles generated by Equation (1) will 

have the general characteristics of the plot shown in Figure 2. 

 

Figure 2. Example plot of the Lennard-Jones potential (Equation (1))  

In the case of a diatomic molecule, the internuclear distance of the atoms is 

approximately equal to the sum of the charge separation on each atom. This makes the 

approximation used in the derivation of the Lennard-Jones potential invalid and so the 

Lennard-Jones potential model is not a good representation of this system. However, 

the plot of potential versus internuclear distance for two atoms forming a diatomic 

molecule has a distinct shape which is similar to that produced by the Lennard-Jones 

potential (Piris 2017). It is this similarity that inspired the diatomic molecule model 

potential. Based on the Lennard-Jones potential, this model has a short-range repulsive 

term and a long-range attractive term. 

 ,          (2) 

where A and B are positive constants and x is the internuclear distance of the atoms 

(Timberlake and Hasbun 2008; Hasbun 2009).  

 To test the accuracy of the model potential, we compare the wavenumbers 

calculated using the model to those obtained experimentally (Piris 2017). We also 

compare the plots of potential versus internuclear distance to those generated by a 

Hartree-Fock (Hartree 1935) based theoretical electron correlation calculation (Piris 

2017). 
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To calculate the wavenumber, we first calculate the angular frequency of the 

system. For this, we use the method of successive approximations (Hasbun 2009; Chow 

1995; Hill and Hasbun 2018) to account for the anharmonicity of the system described 

by the model potential. This results in a more accurate calculation of the wavenumber 

than is obtained using a harmonic approximation. Following the method of successive 

approximations, for a system acted on by a force , such that 

,           (3) 

we calculate the frequency by making a third order Taylor expansion (Boas 2006) of the 

force about the equilibrium position, x0, 

.  (4) 

The force at  is zero, so the first term vanishes. We then define the new 

parameters ,  , and  and combine and 

rewrite equations (3) and (4) as 

 ,       (5) 

where , with .We make a guess solution of the form  

,     (6) 

which we substitute into equation (5) to find the corrected angular frequency, 

,         (7) 

where  is determined by the initial conditions (Hasbun 2009).  

Once we have calculated the angular frequency, we calculate the wavenumber 

starting with the oscillation frequency, 

 .           (8) 

We then calculate the wavelength using the formula 

,            (9) 

where c is the wave speed. Finally, the wavenumber (Hecht 1998) is given by 

 .           

 (10) 
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Combining equations (8) through (10), we obtain a formula for the wavenumber from 

the angular frequency as 

  .           (11) 

THEORY 

The equation for the potential between two atoms forming a diatomic molecule given by 

equation (2) assumes the potential approaches zero for an infinite internuclear distance. 

To make the model more generic, we add a constant parameter, . We then further 

modify equation (2) to better fit the data obtained by digitizing plots of potential 

generated using a Hartree-Fock (Hartree 1934) based theoretical electron correlation 

calculation (Piris 2017). This is done by replacing the variable  with . Therefore, 

equation (2) becomes 

 .        (12) 

The addition of the new parameter  serves to stretch the model potential to better 

conform to the digitized data (Piris 2017). 

  To find the values of the parameters in equation (12), we extract several values 

from the digitized data (Piris 2017). First, the bond length, , which is the internuclear 

distance where the potential is minimized. Next, the potential at the bond length, ,  

and the potential as the internuclear distance becomes large, . Last, we obtain the 

internuclear distance less than  where the potential equals , . These values are 

illustrated in Figure 3. 

 

Figure 3. Plot of the potential for a diatomic molecule illustrating the known parameters of the molecule.  
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The unknown parameters A, B, and  can then be calculated as follows: 

We take the derivative of equation (12) with respect to .  

 .         (13) 

Equation (13), being the derivative of equation (12) is zero at the minimum of equation 

(12), which occurs at . Therefore,  

 ,         (14) 

which we rearrange to find  

 .           (15) 

We then evaluate equation (12) at  , substitute  , and rearrange to 

obtain 

 .           (16) 

Combining equations (15) and (16) provides us with a formula for  in terms of the 

known parameters  and , 

.          (17) 

To find A and B, we evaluate equation (12) at , substitute  to obtain 

 .        (18) 

Substituting equation (15) into equation (18) and simplifying, we find 

 ,          (19) 

which, by factoring out  , substituting equation (15), and rearranging, gives us 

 .        (20) 

Combining equations (20) and (15), we then find 

 .        (21) 

 Once we have obtained the parameters for the model (Tables I and II), we 

calculate the wavenumber. We begin by making a second order Taylor expansion (Boas 

2006) of the potential, equation (2), about  . 

.     (22) 
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The second term on the right-hand side of equation (22) is proportional to the derivative 

of the potential at a local minimum, and so becomes zero. The first term is the minimum 

of the potential, , but, because potential is relative, this term can be ignored without 

affecting the calculation of the wavenumber. Therefore, upon evaluating the second 

derivative of potential at , equation (22) becomes 

,         (23) 

which is the equation of potential for a simple harmonic oscillator with an effective 

spring constant given by 

 .           (24) 

The angular frequency for such a system is  

 ,           (25) 

where M is the reduced mass of the system, given by 

 ,           (26) 

with  and  being the masses of the two atoms. From the angular frequency, we can 

calculate the wavenumber (Table III) for this harmonic approximation using equation 

(11) with the wave speed being the speed of light,  centimeters per second 

(Hasbun 2009). 

 To account for the anharmonicity of the system, we apply the method of 

successive approximations. Because this requires a third order Taylor expansion of the 

force, and since force, in one dimension, is related to potential by 

 ,          (27) 

we make a fourth order Taylor expansion of the potential about  , 

 
.         (28) 

To calculate force, we take the derivative of equation (28) with respect to . The zeroth 

order term becomes zero, and the first order term, being proportional to the derivative 

at a minimum, becomes zero. Therefore, we obtain 

,    (29) 
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where  ,  , and  . 

Comparing equation (29) with equation (4), we see that the coefficients from equation 

(5) for the model potential are 

 ,           (30) 

 ,           (31) 

.          (32) 

Equation (30) is the angular frequency calculated using the simple harmonic oscillator 

approach and is therefore equivalent to equation (25).  

We calculate the corrected angular frequency using equations (7), (25), and (32). 

However, equation (7) depends on the parameter , which depends on the initial 

conditions. To obtain the value of , we rearrange equation (7) to find 

 .          (33) 

We then calculate the experimental angular frequencies for the molecules H2, HF, LiF, 

N2, and CO from the experimental wavenumbers (Piris 2017) using equation (11). These 

values are substituted along with  and  for each molecule, respectively. This 

provides five values of  (Table IV), the average of which is computed and used in the 

final calculation for all the molecules. The average we obtain is 

.         (34) 

Once we calculate the corrected angular frequency; that is, 

 ,          (35) 

we calculate the corrected wavenumber using equation (11).  

 

 We compare the calculated wavenumbers, corrected and uncorrected, to the 

experimental values using the percent error, which is given by 

 ,         (36) 

where  is the experimental wavenumber. 
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RESULTS 

All calculations are done using MATLAB (MathWorks). The MATLAB script in 

Appendix A calculates all resultant values for dihydrogen and produces a graph 

comparing the potential curves for dihydrogen from the model potentials and the 

Lennard-Jones potential to the experimental data (Piris 2017). The known parameters 

for the molecules are listed in Table I. These values were extracted by using MATLAB 

(MathWorks) to digitize the potential curves generated by a Hartree-Fock based 

theoretical electron correlation calculation (Piris 2017).  

Table I. Known parameters of the model potential obtained by using the MATLAB 

(MathWorks) to digitize plots of potential generated by a Hartree-Fock based theoretical 

electron correlation calculation (Piris 2017). 

Molecule  (Hartree)  (Hartree)  (Angstrom)  (Angstrom) 

H2     
HF     
LiF     
N2     
CO     
 

The known parameters in Table I were used to calculate the unknown parameters for 

the model potential given by equation (2). These parameters are listed in Table II. 

Table II. Unknown parameters for the model potential calculated from equations (17), 

(20), and (21) using MATLAB and the known parameters in Table I. 

Molecule (Hartree 

Angstroms cubed) 
(Hartree 

Angstroms 
squared) 

 (Angstrom) 

H2    
HF    
LiF    
N2    
CO    
 

The wavenumbers calculated using the harmonic oscillator approach of equation (25) 

are only reasonably accurate for H2, HF, N2, and CO, with the average percent error for 

these molecules being 21.52 percent. However, for LiF, the harmonic oscillator approach 

is moderately accurate, having a percent error of only 5.76 percent. Using the method of 

successive approximations with the average value of  from equation (7) for all the 

molecules significantly improves the calculated wavenumber. The corrected 

wavenumbers for all the molecules differ by less than seven percent from their 

respective experimental values (Piris 2017). Table III presents the experimental 

8
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wavenumbers, calculated harmonic angular frequencies, and wavenumbers, and the 

percent error for each calculated wavenumber. Table IV displays the experimental 

wavenumbers, the values of  and  calculated for the method of successive 

approximations, the corrected angular frequencies, the corrected wavenumbers, and the 

percent error for each improved wavenumber. 

Table III. Experimental wavenumbers, angular frequencies and wavenumbers 

calculated from the harmonic oscillator approximation (Equation (25)) and the percent 

error for the molecules in the series. 

Molecule  (cm-1)  (rad/s)  (cm-1) Percent Error 

H2     
HF     
LiF     
N2     
CO     
 

Table IV. Experimental wavenumbers, values of parameters  , and , angular 

frequencies and wavenumbers calculated using the method of successive 

approximations (Equations (32) and (35) which replaces Equation (7)), and the percent 

error for the molecules in the series. 

Molecule  
(cm-

1) 

 
(ms) 

      (m-1s-

2) 

      (m-

2s-2) 
 

(rad/s) 
 

(cm-1) 

Percent 
Error 

H2        
HF        
LiF        
N2        
CO        
 

The plots of potential versus internuclear distance for the molecules are 

compared to the data obtained by digitizing the potential curves generated by a Hartree-

Fock based theoretical electron correlation calculation (Piris 2017). The plots for each 

molecule match the data well near the bond length as well as for distances less than the 

bond length. However, the model potential (Equation (12)) approaches  much more 

slowly than the data. The plots of potential versus internuclear distance for dihydrogen, 

as an example, are shown in Figure 4. This plot shows the model potential modified only 

by adding , the model potential with  and , and the quartic approximation of the 

model used to calculate the corrected wavenumber superimposed on the data. This plot 

also shows the Lennard-Jones potential applied to the dihydrogen molecule to show 

that it is a poor representation of the potential between the atoms within a diatomic 

molecule. 

9
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Figure 4. Plots of potential for dihydrogen generated by the model potential (Equation (2)) with the Vinf 
correction, the model with  (Equation (3)), the quartic approximation used to calculate the wavenumber 
(Equation (28)), and the Lennard-Jones potential (Equation (1)) with the Vinf correction superimposed on 

the digitized data (Piris 2017). 

DISCUSSION 

The purpose of this project is to test the accuracy of the diatomic molecule model 

potential (Timberlake and Hasbun 2008; Hasbun 2009). With the modifications of 

adding the potential for a large internuclear distance ( ) and the parameter  

improved the model potential so that it better fits the data. This data is obtained by 

digitizing the potential curves generated using a Hartree-Fock based theoretical electron 

correlation calculation (Piris 2017). Applying the method of successive approximations 

to the modified model potential, we calculated the wavenumbers of the molecules H2, 

HF, LiF, N2, and CO to within seven percent of the experimental values (Piris 2017). To 

use the method of successive approximations, we calculated the values of the parameter 

 for each molecule based on the experimental wavenumbers, then used the average to 

calculate the theoretical wavenumber. The calculated wavenumbers can possibly be 

improved by using the method of successive approximations for a higher order Taylor 

expansion of the model potential as well as by performing further iterations of the 

method. Furthermore, by deriving the formula for  in terms of the initial conditions, 

one could use the values for  to calculate the amplitude of the molecules’ oscillations. 

Finally, for the purpose of the interested reader, we have included the MATLAB script 

that reproduces the above potential curves and prints the parameters and calculated 

values.   
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APPENDIX A 

% Potential_Calculator.m (11/2022) By Dorien Carpenter and J. Hasbun 
% This uses the known parameters of a diatomic molecule to calculate the 
% potential curve of the two atoms using the 3-2 potential (Hasbun 2009). 
% The wavenumberof the molecule is calculated using a quadratic  
% approximation of the potential and using the method of successive  
% approximations to obtain a more accurate wavenumber from the quartic  
% approximation of the potential. A plot of potential vs. internuclear  
% distance is created comparing the model potential, the model potential  
% with xs and its quartic approximation, and the Lennard-Jones potential to 
% the digitized experimental data (Piris 2017). 
% References 
% Piris, M. 2017. Global Method for Electron Correlation. Physical Review 
% Letters.119(6),063002 
% Hasbun, J.E. 2009. Classical Mechanics with MATLAB Applications, 1st 
% Ed.(Jones and Bartlet Publishers,LLC, Sadbury, Massachusetts) 
clear; 
 
% Parameters obtained from Piris for hydrogen 
Vmin=-1.172455;     % minimum of potential (hartree) (Piris 2017) 
Vinf=-1;            % potential at infinite distance (hartree) (Piris 2017) 
Xb=0.743;           % Bond Length, distance at Vmin(angstroms) (Piris 2017) 
X0=0.3778;          % internuclear distance less than Xb at which the  
                    % potential equals Vinf (angstroms) (Piris 2017) 
Nexp=4401;          % experimental wavenumber (1/cm) (Piris 2017) 
 
% Data from potential plot of Hydrogen molecule (Piris 2017) 
X_angstrom = [0.357853,0.366799,0.369781,0.372763,0.375746,0.378728,... 
    0.378728,0.38171,0.384692,0.387674,0.387674,0.390656,0.393638,... 
    0.39662,0.39662,0.399602,0.402584,0.405567,0.405567,0.408549,... 
    0.411531,0.414513,0.417495,0.420477,0.420477,0.423459,0.426441,... 
    0.429423,0.429423,0.435388,0.43837,0.441352,0.441352,0.447316,... 
    0.447316,0.450298,0.450298,0.45328,0.456262,0.462227,0.465209,... 
    0.468191,0.471173,0.477137,0.480119,0.480119,0.486083,0.489066,... 
    0.489066,0.492048,0.503976,0.506958,0.515905,0.518887,0.521869,... 
    0.530815,0.533797,0.536779,0.542744,0.55169,0.557654,0.560636,... 
    0.560636,0.569583,0.575547,0.581511,0.587475,0.593439,0.602386,... 
    0.611332,0.617296,0.62326,0.632207,0.641153,0.647117,0.656064,... 
    0.670974,0.676938,0.688867,0.700795,0.718688,0.733598,0.742545,... 
    0.757455,0.769384,0.781312,0.796223,0.808151,0.829026,0.855865,... 
    0.879722,0.900596,0.918489,0.9334,0.945328,0.957256,0.969185,... 
    0.981113,0.996024,1.00497,1.022863,1.034791,1.049702,1.064612,... 
    1.076541,1.094433,1.106362,1.121272,1.136183,1.151093,1.16004,... 
    1.171968,1.189861,1.207753,1.228628,1.234592,1.246521,1.264414,... 
    1.27336,1.285288,1.297217,1.312127,1.327038,1.335984,1.347913,... 
    1.356859,1.380716,1.392644,1.413519,1.416501,1.434394,1.449304,... 
    1.461233,1.479125,1.497018,1.520875,1.538767,1.553678,1.571571,... 
    1.589463,1.616302,1.637177,1.664016,1.687873,1.708748,1.729622,... 
    1.753479,1.774354,1.792247,1.82505,1.851889,1.875746,1.899602,... 
    1.923459,1.944334,1.974155,1.998012,2.018887,2.045726,2.069583,... 
    2.099404,2.12326,2.147117,2.176938,2.209742,2.236581,2.263419,... 
    2.299205,2.329026,2.355865,2.379722,2.400596,2.424453,2.451292,... 
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    2.481113,2.516899,2.555666,2.582505,2.627237,2.657058,2.695825,... 
    2.734592,2.764414,2.791252,2.827038,2.862823,2.895626,2.925447,... 
    2.949304,2.976143,3.011928,3.038767,3.065606,3.09841,3.137177,... 
    3.164016,3.196819,3.232604,3.265408,3.295229,3.331014,3.363817,... 
    3.393638,3.423459,3.447316,3.477137,3.503976,3.530815,3.554672,... 
    3.575547,3.596421,3.617296,3.647117,3.682903,3.727634,3.766402,... 
    3.832008,3.87674,3.909543,3.936382,3.972167,4.007952,4.04672,... 
    4.088469,4.115308,4.171968,4.2167,4.270378,4.327038,4.392644,... 
    4.482107,4.529821,4.595427,4.643141,4.714712,4.792247,4.878728,... 
    4.941352,4.992048]; 
 
Y_hartree=[-0.951196,-0.954785,-0.95927,-0.963158,-0.966746,-0.969737,... 
    -0.973325,-0.976017,-0.979605,-0.982895,-0.985885,-0.988876,... 
    -0.991567,-0.994557,-0.998146,-1.001734,-1.005024,-1.008313,... 
    -1.011005,-1.013995,-1.016388,-1.019079,-1.021172,-1.024163,... 
    -1.027153,-1.030742,-1.034031,-1.036423,-1.039713,-1.042703,... 
    -1.045993,-1.051077,-1.054665,-1.057656,-1.060646,-1.063337,... 
    -1.066029,-1.069019,-1.07201,-1.075299,-1.077691,-1.080383,... 
    -1.083074,-1.086364,-1.089354,-1.091746,-1.09384,-1.096531,... 
    -1.100419,-1.104007,-1.106998,-1.110885,-1.114773,-1.118361,... 
    -1.121651,-1.124641,-1.127931,-1.130323,-1.133014,-1.135407,... 
    -1.138397,-1.14049,-1.142883,-1.145275,-1.147667,-1.149462,... 
    -1.150957,-1.152751,-1.155443,-1.157536,-1.15933,-1.161124,... 
    -1.162919,-1.164115,-1.16561,-1.167105,-1.168002,-1.169498,... 
    -1.170395,-1.17189,-1.172189,-1.172787,-1.172189,-1.172189,... 
    -1.17189,-1.171292,-1.170395,-1.169199,-1.168002,-1.16561,... 
    -1.163218,-1.159928,-1.157536,-1.156041,-1.154545,-1.152751,... 
    -1.150359,-1.148864,-1.147069,-1.144976,-1.142285,-1.139593,... 
    -1.1375,-1.135108,-1.132117,-1.129725,-1.127931,-1.125538,... 
    -1.122548,-1.120455,-1.118361,-1.116268,-1.113577,-1.110586,... 
    -1.107596,-1.105203,-1.103409,-1.101615,-1.099522,-1.097129,... 
    -1.095036,-1.092943,-1.091148,-1.089354,-1.08756,-1.085167,... 
    -1.082775,-1.080084,-1.078589,-1.076196,-1.074103,-1.072309,... 
    -1.070813,-1.06872,-1.066328,-1.063038,-1.060347,-1.058852,... 
    -1.057057,-1.053768,-1.051675,-1.049282,-1.046591,-1.0439,... 
    -1.041806,-1.040012,-1.03762,-1.035526,-1.034031,-1.031938,... 
    -1.029844,-1.028349,-1.026555,-1.02506,-1.023565,-1.02177,... 
    -1.020873,-1.019079,-1.018182,-1.016986,-1.015789,-1.014892,... 
    -1.013995,-1.0125,-1.011902,-1.011005,-1.009809,-1.008612,... 
    -1.007715,-1.007416,-1.007117,-1.006519,-1.005921,-1.005622,... 
    -1.005024,-1.004426,-1.004127,-1.003529,-1.00323,-1.002931,... 
    -1.002333,-1.002333,-1.002033,-1.001734,-1.001734,-1.001435,... 
    -1.001435,-1.001136,-1.001136,-1.001136,-1.001435,-1.000538,... 
    -1.000239,-1.000538,-1.000538,-0.99994,-0.99994,-0.99994,... 
    -0.99994,-0.99994,-1.000239,-0.99994,-0.999641,-0.999641,... 
    -0.99994,-0.999641,-0.99994,-0.999342,-0.999641,-0.999641,... 
    -0.999641,-0.99994,-0.999641,-0.999641,-0.99994,-0.999641,... 
    -0.999641,-0.999641,-0.999641,-0.999641,-0.999641,-0.999641,... 
    -0.999641,-0.999342,-0.999641,-0.999641,-0.999641,-0.999641,... 
    -0.999641,-0.999641,-0.999641,-0.999641,-0.999641,-0.999641,... 
    -0.999641,-0.999641,-0.999641,-0.999641,-0.999641]; 
 
% Known Parameters 
C=3*10^(8);         % speed of light (m/s) (Hasbun 2009) 
m1=1.007947;        % mass of atom 1 (amu) 
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m2=1.007947;        % mass of atom 2 (amu) 
M=m1*m2/(m1+m2);    % reduced mass of the molecule (amu) 
A1=2.9133*10^(-11); % A1 parameter for the molecule  
 
% Conversion factors 
m_to_cm=100;                    % conversion from meters to centimeters 
h_to_J=4.35975.*10.^(-18);      % conversion from hartree to Joule 
A_to_m=10.^(-10);               % conversion from angstrom to meter 
U_to_Kg=1.6605402*10.^(-27);    % conversion from atomic mass unit to kg 
 
% Conversion of units 
c=C*m_to_cm;            % Speed of light in cm/s 
 
VminJ=Vmin*h_to_J;      % Convert potentials to Joules 
VinfJ=Vinf*h_to_J; 
 
Xbm=Xb*A_to_m;          % Convert distances to meters 
X0m=X0*A_to_m; 
 
MKg=M*U_to_Kg;          % Convert mass to Kg 
 
% Quadratic Approximation 
Xs = 3*X0-2*Xb;                       % calculate Xs in angstroms   
Xsm = Xs*A_to_m;                        % calculate Xs in meters 
A = -2*((Xbm-Xsm)^3)*(VminJ-VinfJ);     % calculate parameters A and B 
B = -3*((Xbm-Xsm)^2)*(VminJ-VinfJ);      
 
k=(32*B^5)/(81*A^4);                    % Effective spring constant 
w_quad=sqrt(k/MKg);                     % Frequency of oscillation (rad/s) 
f=w_quad/(2*pi);                        % Frequency converted to Hz 
n_quad=f/c;                             % Wavenumber (1/lamda; 1/cm) 
err_quad=100*abs(n_quad-Nexp)/Nexp;     % Percent error for quad approx 
 
% Method of Successive Approximation 
a3=(120*B/((Xbm-Xsm)^6)-360*A/((Xbm-Xsm)^7))/(6*MKg); % a3 for correction 
w_correction=w_quad*sqrt(1-((A1.^2)*(3*a3)/(4*w_quad^2))); % corr ang freq 
n_correction=w_correction/(2*pi*c);                  % corrected wavenumber 
err_correction=100*abs(n_correction-Nexp)/Nexp;      % percent error 
 
% Lennard-Jones Potential Model 
Alj=2.*(Xbm.^6).*(VinfJ-VminJ);         % a and b for Lennard-Jones model 
Blj=(Xbm.^12).*(VinfJ-VminJ); 
klj=156.*Blj.*(Xbm.^(-14))-42.*Alj.*(Xbm.^(-8)); % eff spring cnst  
wlj=sqrt(klj./M);                       % angular frequency 
nlj=wlj./(2*pi*c);                      % wavenumber  
errlj=100.*abs(nlj-Nexp)./Nexp;         % percent error 
Aplotlj=2.*(Xb.^6).*(Vinf-Vmin);        % a and b for Lennard-Jones plot 
Bplotlj=(Xb.^12).*(Vinf-Vmin);           
vlj=Bplotlj./(X_angstrom.^12)-Aplotlj./(X_angstrom.^6)+Vinf; % Potential 
figure 
plot(X_angstrom,vlj,'g') 
hold on 
 
% Model potential without Xs for plotting 
A_noXs=2.*(Xb.^3).*(Vinf-Vmin);         % A & B for model without Xs 
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B_noXs=3.*(Xb.^2).*(Vinf-Vmin);             
V_3_2 = A_noXs./(X_angstrom.^3)-B_noXs./(X_angstrom.^2)+Vinf; % Potential 
plot(X_angstrom,V_3_2,'m')              % plot calculated potential 
 
% Model potential with Xs for plotting 
x_plot=[0:0.01:5];                      % generate x values for plot 
a_hA3 = -2*((Xb-Xs)^3)*(Vmin-Vinf);     % a and b in units for plotting 
b_hA2 = -3*((Xb-Xs)^2)*(Vmin-Vinf); 
v_plot = a_hA3./((x_plot-Xs).^3)-b_hA2./((x_plot-Xs).^2)+Vinf; % Potential 
plot(x_plot,v_plot,'b')                 % plot calculated potential curve 
ylim([Vmin-0.05 Vinf+0.1]);             % set y limits for best view of plot 
xlabel('Internuclear Distance (Angstroms)'); 
ylabel('Potential (Hartree)'); 
 
% Quartic approximation of potential 
X_m = x_plot.*A_to_m;                   % convert x values to meters 
a1V = (32*B.^5)./(81*A.^4);            % coefficients of pot. taylor series 
a2V = (-512*B.^6)./(243*A.^5); 
a3V = (2560*B.^7)/(243*A.^6); 
V_Approx = VminJ + (1/2)*a1V*(X_m-Xbm).^(2) + (1/6)*a2V*(X_m-Xbm).^(3) +... 
    (1/12)*a3V*(X_m-Xbm).^4; % calculate potential at each x value 
V_Approx_hartree = V_Approx./h_to_J;    % convert from Joule to hartree 
plot(x_plot,V_Approx_hartree,'r')       % plot quartic potential 
 
% calculate coefficients of taylor series of force 
w0_squared = a1V/MKg; 
a2 = a2V/(2*MKg); 
a3 = a3V/(6*MKg); 
 
% plot data from (Piris 2017) 
plot(X_angstrom,Y_hartree,'k.') 
title('Hydrogen Molecule Potential'); 
legend('Lennard-Jones Potential','Model Potential Without Xs',... 
    'Model potential with Xs','Quartic Approximation',... 
    'Digitized Data (Piris 2017)',Location='southeast') 
 
% Print results of calculations 
format_1a = 'Parameters:\n Xb = %5.4E angstroms\n X0 = %5.4E angstroms\n'; 
format_1b = ' Vmin = %5.4E hartree\n Vinf = %5.4E hartree\n'; 
format_1c = ' Xs = %5.4E angstroms\n A = %5.4E hartree*angstrom^3\n'; 
format_1d = ' B = %5.4E hartree*angstrom^2\n w0^2 = %5.4E (rad/s)^2\n'; 
format_1e = ' a2 = %5.4E (m^-1)(s^-2)\n a3 = %5.4E (m*s)^-2\n\n'; 
format1=strcat(format_1a,format_1b,format_1c,format_1d,format_1e); 
fprintf(format1,Xb,X0,Vmin,Vinf,Xs,a_hA3,b_hA2,w0_squared,a2,a3); 
format_2a = 'Results:\n Calculated Frequency: %5.4E rad/s \n'; 
format_2b = 'Calculated Wavenumber:  %5.4E cm-1 \n\t\t'; 
format_2c = 'Percent Error:  %2.4f \n\n  Corrected Frequency: %5.4E rad/s'; 
format_2d = ' \n Corrected Wavenumber:  %5.4E cm-1 \n\t\t'; 
format_2e = 'Percent Error: %2.4f\n'; 
format2=strcat(format_2a,format_2b,format_2c,format_2d,format_2e); 
fprintf(format2,w_quad,n_quad,err_quad,w_correction,n_correction,... 
    err_correction); 
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