
MODELING AND ANALYSIS OF INFORMATION SYSTEMS, VOL. 30, NO. 2, 2023
j o u r n a l h o m e p a g e : w w w . m a i s - j o u r n a l . r u

COMPUTING METHODOLOGIES AND APPLICATIONS

Signal Transition Graphs for Asynchronous Data Path Circuits
A. Kushnerov

1
, S. Bystrov

2
DOI: 10.18255/1818-1015-2023-2-170-186

1
Independent researcher, Beer-Sheva, Israel.

2
Independent researcher, Sochi, Russia.

MSC2020: 68W35 Received May 5, 2023

Research article A�er revision May 29, 2023

Full text in English Accepted May 31, 2023

�e paper proposes a method for constructing signal transition graphs (STGs), which are directly mapped into asynchronous

circuits for data processing. �e advantage of the proposed method is that the resulting circuits are not only output-

persistent, but also conformant to the environment. In other approaches, the environment is speci�ed implicitly and/or

inexactly and therefore they guarantee only output persistence. �e conformation can be veri�ed if both the circuit and

its environment are speci�ed by STGs. As an example, we consider a module realizing the function AND2. �is module

can either wait for both 1s or evaluate the function as soon as at least one 0 arrives. For each case, we draw up a separate

STG (scenario) and map it into NCL gates. To provide such a mapping, we specify the behaviors of NCL gates by STG

protocols. For data path, such an STG always contains alternative branches with the so-called garbage transitions at the

gate inputs. �e garbage transitions on a certain wire mean that the circuit is sensitive to the delay in this wire. Ignoring

the garbage may lead to a violation of conformation or/and output persistence. For example, in the combinational part of

the NCL circuits, the garbage appears on the inputs of NCL gates, and therefore these circuits are not delay insensitive.
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В статье предлагается метод построения графов сигнальных переходов (STG), которые напрямую отображаются

в схемы асинхронной обработки данных. Преимуществом предлагаемого метода является то, что полученные схе-

мы не только неизменны по выходу (output-persistent), но и конформны внешней среде. В других подходах среда

задаётся неявно и/или неточно, и поэтому они гарантируют только неизменность по выходу. Конформность мож-

но проверить, если как схема, так и её внешняя среда заданы STG. В качестве примера мы рассматриваем модуль,

реализующий функцию 2И. Этот модуль может либо ожидать лог. 1 на обоих входах, либо вычислить функцию,

как только придёт хотя бы один 0. Для каждого случая мы составляем отдельный STG (сценарий) и отображаем

его в элементы NCL. Чтобы обеспечить такое отображение, мы задаём поведение NCL элементов STG прото-

колами. Для тракта данных такой STG всегда содержит альтернативные ветви с так называемыми мусорными

переключениями на входах элементов. Мусорные переключения на определенном проводе означают, что схема

чувствительна к задержке в этом проводе. Игнорирование мусора может привести к нарушению конформности

и/или неизменности по выходу. Например, в комбинационной части NCL схем мусор появляется на входах NCL

элементов, поэтому эти схемы чувствительны к задержкам.

Ключевые слова: арифметика; верификация; декомпозиция; задержка в проводах; конформность; пайплайн;

слабая причинность; хэндшейк
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Introduction
Asynchronous circuits do not use clock to ensure the validity of signals and operate in the mode of

request-acknowledge. Like any digital circuits, they are built from logic gates. An output of a logic gate can

be either in a stable or in an excited state. A stable state corresponds to the value of the Boolean function of

the gate. An excited state is opposite to the value of this function. From an excited state, the gate can either

switch to a new stable state or return to the previous one. �e e�ect of returning to the previous stable state

is called a hazard
1
. �e goal of asynchronous design is hazard-free circuits. Input signals can also be in an

excited state, but they produced by the environment, which is not realized by a circuit. �us, to model the

environment, it is more natural to use not Boolean functions, but something else. In this paper we use the

event-based model called Signal Transition Graphs (STGs).
In this model, the signals can be input, internal and output. �e signal is excited if all the conditions for

its switching to a new state are met. Any signal can stay excited for an arbitrary, but �nite time. For non-

input signals, i. e. for the gates obtained from STG, this means that their delay can be unbounded, but �nite.

�e most important property of STG is output persistence. �is property means that non-input signals must

switch from an excited to a new stable state. �e excitation can be removed only from input signals and only

by switching of other input signals. Output persistence guarantees that an STG is mapped into a hazard-free

circuit with arbitrary gate delays. In terms of data path design, such circuits are called delay-insensitive

circuits free from gate orphans [1]. If we have one STG for the circuit and another one for the environment,

we can check if the circuit does exactly what the environment expects from it to do. In other words, the

circuit interface must be conformant to the environment and vice versa. �e concepts of output-persistence

and conformation are considered in more detail in Section 1.

Traditional approaches to designing an asynchronous data path are algebraic. O�en they convert the

initial combinational logic into a hazard-free one using dual-rail encoding (Table 1). �us, each initial vari-

able and its inversion are considered as two new signals. �ese signals may switch independently, but must

reset into a spacer (all 0s or all 1s). Such a discipline is called a 4-phase protocol and shown in Fig. 1.

Table 1. Dual-rail encoding
a b a1 a0 b1 b0

0 0 0 1 0 1

0 1 0 1 1 0

1 0 1 0 0 1

1 1 1 0 1 0

spacer 0 0 0 0

to data

reset
to spacer

set

Fig. 1. A 4-phase protocol for input data

STGs are convenient for designing a control path, where the variables are single-rail. �is encoding can

be viewed as follows. �e only value of a variable (e. g. the command “execute”) is encoded by switching a

signal from 0 to 1. Switching the same signal from 1 to 0 can be interpreted as a spacer. �us, the control is

just a realization of functions in a unary (1-of-1) encoding. Let this encoding be the �rst in the sequence, then

the second one is 1-of-2 (dual-rail), and the N-th is 1-of-N. We can use STGs for any of these encodings and

thereby embed control into data. �is means that we do not need to split the circuit into the control and data

1
Traditionally, hazards are considered in terms of input changes and divided into functional and logic ones.
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M1

M2

M3
M4

Fig. 2. Interface of the module M3 insensitive to delays
in the wires

Fig. 3. Interface protocol for the module M3 in Fig. 2,
which consists of input (the signals data IN, Aab) and

output (data OUT, Ay) handshakes

p

q

r

Fig. 4. Dual-rail AND circuit with embedded handshake

Fig. 5. Behavior of the C-element y1 in Fig. 4.
The transitions r+, r- in the short alternative branch are

garbage that complicates decomposition

path. Moreover, the embedded control will allow us to build circuits according to the modular-hierarchical

principle. In some sense, this principle is the opposite of RTL design. In particular, to synthesize an N -bit

adder it is su�cient to construct an STG for a single bit only.

�e 4-phase protocol in Fig. 1 is used only to exchange data. Supplementing it with a control signal,

we obtain the handshake protocol, which allows us to organize the interaction between modules. Each

handshake is realized by two variables as follows. �e sender module sends a dual-rail variable (data) to the

receiver module, which sends a unary control variable back to the sender. Let us consider the connection of

modules shown in Fig. 2
2
. �e module M3 receives the dual-rail variables a and b from the modules M1 and

M2, and sends back an acknowledgement Aab. �eoretically, M1 and M2 may send data sequentially. In this

case, delays in the wires may cause the sequential transitions to occur concurrently. However, the interface

of each module is concurrent i. e. the module waits for input data to arrive in any order. Fig. 3 shows the

interface protocol for the module M3. �is is a generalized 4-phase protocol with two handshakes. �e signal

data IN stands for a bus of input signals, which are switching concurrently. �e signal Ay is also switching

concurrently with any signal of data IN. �us, we have the handshake protocol and the concurrent interface
3
.

�is is what guarantees that the circuit will operate correctly with arbitrary delays of intermodule wires.

A module can realize algorithms to compute multiple functions. �e modules can be connected arbitrary.

�e only restriction is that any ring must contain at least three modules [5]. Such a system may have some

degree of concurrency and in a particular case, is a one-dimensional pipeline. �e control in this system is

entirely local (intermodule). No global control required.

An example of the realization of a simple module is shown in Fig. 4. �is is a dual-rail AND circuit with

embedded handshake. Note that the inputs of the 3-input C-element switch only once before the element

�res. However, for the 2-input C-elements, this is not true. Fig. 5 shows the behavior of the C-element y1,

which contain two alternative branches. �e transition r+ in the short branch does not cause y1+. In the

circuit, this r+ causes y0+, which initiates two concurrent processes. One is Aab- and reset of a and b into

spacer, and the other is Ay-. Both of these processes are synchronized by r-. �us, r+ is eventually reset to

r-. We will refer to such alternative branches and transitions as garbage.

2
At the circuit level, such a structure was proposed �rst in [2] and formalized at the STG level in [3].

3
�e method proposed in [4] removes immediate relations between input transitions in an STG and makes them concurrent.
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a) b)

Fig. 6. Decompositions of C-element verified under the environment in Fig. 5.
Operating correctly (a) and incorrectly (b)

Fig. 6 shows two decompositions of the C-element [6], which have been veri�ed under the environment

in Fig. 5. �e circuit in Fig. 6a is output-persistent and conformant. However, the circuit in Fig. 6b violates

the conformation being still output-persistent
4
.

�us, the environment must be speci�ed formally, otherwise we can get a wrong decomposition. In this

paper, we propose a method that allows one to specify the behavior of an arbitrary module using STG. �e

obtained STG can be used for both veri�cation and synthesis. To verify any previously designed circuit, this

STG is used as an environment.

�e synthesis is a mapping of STG into a library of logic gates. As shown in [5], the library of NCL gates

is optimal. �is was revealed in experiments with STGs, where the best results are obtained by “mirroring”

the data phase into the spacer phase. In this case, for each alternative branch, considered separately, each

signal is realized by a C-element. However, such signals can take place in di�erent alternative branches.

Hence, NCL gates are the simplest and natural mean to realize them.

1. �eoretical Background
a) Signal Transition Graphs (STGs) [8]. �ese graphs are used to specify the behavior of asynchronous

circuits. An STG is a type of a labeled Petri net, where transitions are associated with the changes in the

values of binary signals. For example, x+ means the switching of a signal x from 0 to 1, and x- means a 1

to 0 switching. Input, internal and output signals are denoted and processed di�erently. �e arcs in an STG

capture the causal relations between the transitions. An STG may contain places with multiple incoming

and outgoing arcs. If all arcs outgoing from a place, enter input transitions, such a place models a free

(non-deterministic) choice made by the environment.

A signal transition is called excited if all entering it arcs, have tokens. An STG is called output-persistent [9]

if the excitation is removed in a strictly de�ned way. For every non-input signal, the excitation is removed

only by its �ring. For every input signal, the excitation is removed either by its �ring or by �ring other

input signal. �e circuit can be converted to the so-called circuit Petri net [10], which itself is a type of

STG. For veri�cation, the circuit Petri net is combined (by parallel composition) with an STG that speci�es

the environment. �is gives an STG of the closed system: the outputs of the circuit are the inputs for the

environment STG and vice versa.

�e circuit is called conformant if two conditions are met [10]. On one hand, the environment STG must

provide only such transitions of the output signals, which the corresponding circuit Petri net can receive

and still remain hazard-free. On the other hand, the circuit Petri net must provide only such transitions of

the output signals, which the environment STG expects.

In this paper, we construct STGs by hand, so we need to make them readable. To this end, we use

dummy transitions (dum) and proxy places. A dummy does not represent any real signal and is just a

placeholder. A proxy place is a label for a regular place, from which an arc goes out and/or where it comes

in. To verify and map STGs into circuits, as well as for verifying the obtained circuits, we use the Workcra�

tool (h�p://workcra�.org). If an STG with dummies is used as an environment, Workcra� can verify the

circuit for conformation. However, to verify the circuit or STG for output persistence, one needs to contract

dummies.

4
�e problem of circuits not conformant to the environment was �rst considered by Izumi Kimura in [7].
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At some point, we sacri�ce formalities for readability and use dummies to specify weak (OR) causality.

Namely, we specify a contradictory STG that violates output determinacy [11]. Such an STG cannot be

mapped into a circuit, and if it is used as an environment, even the correct circuit will violate conformation.

We propose a way around this obstacle.

b) NCL gates [12]. �ese gates are a special case of a generalized C (gC)-element. It is de�ned by the

self-dependent expression y(x, y) = S(x) ∨ yR(x), where S(x) and R(x) are set and reset functions. �ese

functions must be orthogonal [9], that is, meet the condition S(x)R(x) = 0. Under this condition, the regular

Boolean function f (x, y) = S(x) ∨ yR(x) is monotone. A function f (z1,… , zm) is called positive unate in

variable zi if f (zi = 1) > f (zi = 0). A function positive unate in all variables, is called monotone. For NCL

gates, the number of variables in x = (x1,… , xn) is limited to n 6 4. �e NCL gates are used under the

4-phase protocol with zero spacer, hence their reset function R(x) = (x1 + … + xn), and the set functions S(x)
are di�erent monotone functions.

2. Protocols for NCL gates
To guarantee output persistence, any logic gate must operate under a certain protocol. For NCL gates,

we consider two types of protocols: with full and incomplete indication. �e protocol with full indication

realizes only strong (AND) causality. In this case, each transition is enabled to �re only a�er all of its im-

mediate causes have �red. As shown in [5] (and outlined in Introduction), the protocols with full indication

are realized best by NCL gates. In the case of weak (joint OR) causality [13] a transition is enabled to �re

if at least one of its immediate causes has �red. �us, there can be di�erent variants of weak causality. �e

protocol with incomplete indication can realize both strong causality and all variants of weak causality.

a) Full indication. In protocols of this type each product term (conjunction) in the set function is given by

an alternative branch, whose signals are synchronized in the set and reset phases. Fig. 7 shows the protocol

with full indication and garbage branches for the NCL gate TH23w2 (the set function is A+BC). To verify

this STG for output persistence, we need to contract the dummy. An equivalent STG without dummies can

be obtained by translating the ProFlo expression [14]:

{B+;B-#C+;C-#A+;F+;A-;F-#(B+|C+);F+;(B-|C-);F-}
where the operators ';', '#'and '|'denote sequential composition, choice and concurrency respectively

5
.

b) Incomplete indication. We can extend the protocol with full indication in di�erent ways, each of which

gives its own protocol with incomplete indication. For example, in the STG in Fig. 7 each alternative branch

on the right may contain all the three input signals as shown in Fig. 8. �is protocol realizes the only variant

of weak causality possible for A+BC. In general case, each variant corresponds to a subset (from at least two

conjunctions) of the set of conjunctions of the set function. For example, the set function A+B+CD contains

four subsets: A+B, A+CD, B+CD, A+B+CD. Each of them represents a variant of weak causality.

Fig. 7. Protocol with full indication and
garbage branches for TH23w2 (A+BC)

Fig. 8. Protocol with incomplete indication and garbage
branches for TH23w2. Without timing constraints, the

output determinacy is violated

5
Currently, all signals in ProFlo are internal, i. e. we need to assign inputs and outputs. Otherwise, both output persistence and

output determinacy are violated.
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Let us consider the STG in Fig. 8 in more detail. �e branches on the right contain the data phase and

the spacer phase. In the data phase there are signals that are not indicated. In the upper branch this is B+
and C+, and in the bo�om one this is A+. In the spacer phase A-, B-, C- are indicated in both branches. On

the other hand, in the upper branch F+ is excited by A+, and in the bo�om one — by both B+ and C+. So,

we have a contradiction that cannot be realized by the circuit and is a particular case of violation of output

determinacy [11].

However, we presume that in the upper branch A+ occurs earlier than either B+ or C+, and in the bo�om

one A+ occurs later than both B+ and C+. �ese timing constraints are orthogonal and applied only to the

input transitions. Hence, we can model them by interleaving [15]. �us, the STG in Fig. 8 is converted into

the output-determinate form. An equivalent interleaved STG without dummies is obtained by translating

the ProFlo expression:

{B+;B-#C+;C-#(A+;(F+|(B+;C+))#A+;(F+|(C+;B+))#B+;A+;(F+|C+)#

B+;C+;(F+|A+)#C+;A+;(F+|B+)#C+;B+;(F+|A+));(A-|B-|C-)F-}
To guarantee output determinacy for both types of the protocols, we need to make sure that:

1) No set of immediate causes of the output signal in the data phase can be a strict subset of an-

other set of immediate causes of the same signal in another branch (absorbed conjunction). For example,

A+BC+AB=A+BC and therefore in Fig. 7 and Fig. 8 the branch, where A+ and B+ are the only immediate

causes of F+ is prohibited.

2) No garbage branch contains any set of immediate causes of the output signal in the data phase. In

Fig. 7 and Fig. 8 the sets prohibited for the garbage branches are not only {A+}, {B+|C+}, but also all possible

supplements: {A+|B+}, {A+|C+}, {A+|B+|C+}.

3. Proposed Method
�e initial speci�cation for the method is the truth tables of Boolean (or multiple-valued) functions

6
.

Based on the truth tables, we construct an STG for the module and map this STG into a circuit. �e protocols

with full and incomplete indication are used as templates for the mapping. Let us demonstrate the method

on the example of the AND function y=ab. �e module realizing this function and its interface are shown

in Fig. 2. According to the truth table, we represent the dual-rail variables taking the value “1”, as shown in

Table 2. Abbreviation “Sc.” in this table means scenarios. We will introduce them later.

Table 2. Truth table of the AND function (a) and its dual-rail representation (b)
a b y

0 0 0

0 1 0

1 0 0

1 1 1

a)

Sc. as bs ys

1.1

a0 b0 y0
a0 b1 y0
a1 b0 y0

1.2 a1 b1 y1
b)

�e STG construction process consists of 6 steps (no iterations):

1. Analyze the truth table and elaborate a way to get functions. Since data is encoded by “+” transitions,

it is su�cient to draw up an STG for the data phase only. �is step largely determines the complexity

of the resulting circuit.

2. Insert (“+”) transitions of the input acknowledgement signals. According to the handshake protocol,

they must precede the (“+”) transitions of the functions. Since in the used NCL protocols the spacer

phase is completely determined by the data phase, we can �nd the set functions. �e number of

variables in these functions must not exceed 4, otherwise decomposition is necessary.

6
Multiple-valued (symbolic) STGs were introduced in [16]. To map such an STG into a circuit, one needs to take additional steps,

which are not automated yet.
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3. Decomposition. Insert (“+”) transitions of internal signals before the transitions of those signals that

are not realized by NCL gates. �e goal is to reduce the amount of immediate causes for both the

output and internal transitions.

4. Complement the STG with the spacer phase and then realize the output handshakes. �e data phase

is always mirrored into the spacer phase. In addition, in the protocols with incomplete indication,

the signals non-indicated in the data phase, are indicated in the spacer phase. To realize the output

handshakes, each “+” (“-”) transition of the output signal must be an immediate cause of “-” (“+”)

transition of the corresponding input acknowledgement.

5. Provide the NCL protocols for all non-input signals. To this end, we need to establish new mediate

relations between three sequential events: cause [“+” (“-”) transition of non-input data], midterm event

[“-” (“+”) transition of output acknowledgement] and e�ect [“-” (“+”) transition of input data]. In

general case, these relations can be realized in several di�erent ways. Finding the minimal realization is

the classical set cover problem [5, 17]. However, there is a universal (but not always optimal) solution:

to combine all the individual output acknowledgements into one, whose transitions are immediate

e�ects of all output functions.

6. If the number of variables in the set function of the output acknowledgement exceeds 4, decompose

it (as at Step 3).

From the obtained STG we can �nd the protocol under which any gate x operates. To this end, we need

to convert all signals, except x and its immediate causes, to dummies. Contracting these dummies, we get

the protocol with garbage transitions.

a) Variant 1. Using only strong causality.

Step 1. In the dual-rail representation in Table 2b ys depends on two variables as and bs that arrive

concurrently. Although one of them can arrive earlier, we will not analyze this situation. �us, ys waits for

both as and bs to arrive, as shown in Fig. 9.

Step 2. �e only option to insert the input acknowledgement Ay+ is shown in Fig. 10. From this �g-

ure we �nd the set function ys=as·bs·Ay. Substituting here the variables from Table 2b, we split ys into

y0=Ay·(a0·b0+a0·b1+a1·b0) and y1=Ay·a1·b1. Since y0 depends on 5 variables, a decomposition is needed.

Step 3. Let us introduce Scenario 1.1 for y0 and Scenario 1.2 for y1, as shown in Table 2b. Each scenario de-

scribes the behavior of the module for a certain set of input combinations. For di�erent scenarios these sets do

not overlap. To decompose y0, we insert x+ into Scenario 1.1 as shown in Fig. 11. Since the NCL protocols are

symmetric, any decomposition is output persistent. Now, the set functions are: x=as·bs=a0·b0+a0·b1+a1·b0
and y0=x·Ay. For Scenario 1.2 the set function is the same y1=Ay·a1·b1.

Step 4. For the protocols with full indication, the spacer phase is a mirror re�ection of the data phase.

�us, to realize the output handshakes, we establish immediate relations between y0+, y1+ (y0-, y1-) and Ay-
(Ay+), as shown in Fig. 12.

Fig. 9. STG obtained at Step 1 Fig. 10. STG obtained at Step 2
Scenario 1.1 Scenario 1.2

Fig. 11. STG obtained at Step 3

Scenario 1.1 Scenario 1.2

Fig. 12. STG obtained at Step 4
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Table 3. All necessary mediate relations for Variant 1
Sc. cause e�ect

1.1

x+ or y0+

as-

bs-

y0+ as- or bs-

1.2 y1+

a1-

b1-

Table 4. Minimal set of relations covering Table 3
Sc. cause e�ect

1.1 y0+

as-

bs-

1.2 y1+

a1-

b1-

Scenario 1.1 Scenario 1.2

Fig. 13. STG obtained at Step 5

Step 5. As at the previous step, to provide the NCL protocols for x, y0, y1, it is su�cient to establish

relations between the data phase and the spacer phase. All the necessary mediate relations are shown Table 3.

Minimizing the relations in Scenario 1.1, we obtain Table 4. Now, in Scenario 1.1 (1.2) the cause of as- (a1-)
and bs- (b1-) is the same y0+ (y1+). �erefore, all the relations for a and b must be realized via the same

midterm transition Aab-.
Fig. 13 shows the obtained STG with mirrored new relations, which allow us to write Aab=!(y0+y1).
Substituting into this STG the variables from Table 2b, we get the speci�cation of strongly indicating

AND circuit shown in Fig. 14.

ack

ack

ack

ack

ack

ack

in

in

in

in

in

in

Scenario 1.1

ack

in

ack

in

Scenario 1.2

Fig. 14. STG specification of strongly indicating AND circuit with handshake

It is evident from Fig. 14 that the protocols for x, y0, y1 are similar to the one shown in Fig. 7, i. e. are

the protocols with full indication and garbage branches. We have already obtained all the equations of the

gates, so the STG in Fig. 14 is mapped into the circuit shown in Fig. 15. To realize this circuit in the static

CMOS, at least 46 transistors are required [15].

Let us now return to the circuit in Fig. 4 and try to embed the gates p and q into the C-elements y1 and

y0. To this end, we modify the STG in Fig. 14 as shown in Fig. 16. Let the signal x in this �gure be the

inversion of some signal w. �is signal can be realized by the NCL gate TH24comp followed by a C-element.
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THand0

x

Fig. 15. AND circuit. Variant 1, obtained from the STG in Fig. 14

in

in

in

in in

in

in

in

ack

ack

ack

ack ack

ack

ack

ack

Fig. 16. Modification of the STG in Fig. 14

x

Fig. 17. SR-latch based variant of the circuit in Fig. 15

�e set function of TH24comp is S=a0·b0+a0·b1+a1·b0+a1·b1 or S=(a1+a0)·(b1+b0). Hence, the signal w can

be realized by the completion detector from the circuit in Fig. 4. �e signals y0, y1 in the STG in Fig. 16 are

mapped into the SR-latch on complex gates, as shown in Fig. 17
7
. As compared to the circuit in Fig. 15, this

circuit requires 42 transistors instead of 46.

b) Variant 2. Using both strong and weak causality (early propagation [19] or early evaluation [20]).

Step 1. From the dual-rail representation in Table 2b we can see that for y0 it is su�cient to have either

a0 or b0. To describe this situation, we consider two cases. In the �rst case a0 arrives earlier than b0 and vice

versa. �is is Scenario 1.1. In the second case a0 (b0) switches concurrently with a don’t-care term b1 (a1).
�is is Scenario 1.2. Let us denote in Scenario 1.1 the variable that arrives earlier by N0, and the variable

that arrives later — by Ms. In Scenario 1.2 they arrive concurrently. For y1 we need both a1 and b1. �is

is Scenario 2. �e variables encoded in each scenario are given in Table 5. �e obtained STG is shown in

Fig. 18.

Table 5. Scenarios and encoding for Variant 2
Sc. as bs N0 Ms ys

1.1

- - a0 b0 y0
- - b0 a0 y0

1.2

- - a0 b1 y0
- - b0 a1 y0

2 a1 b1 - - y1

Step 2. �e only option to insert the transition Ay+ of the input acknowledgement into both scenarios

and follow the handshake protocol is shown in Fig. 19.

7
Such circuits were �rst proposed in [18]. �e principle of their operation is that data blocks that arm of the latch, which should

remain in zero.
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Scenarios 1.1 & 1.2 Scenario 2

Fig. 18. STG obtained at Step 1

Scenarios 1.1 & 1.2 Scenario 2

Fig. 19. STG obtained at Step 2

Scenario 1.1 Scenario 1.2 Scenario 2

Fig. 20. STG obtained at Step 4

Substituting into Fig. 19 the variables from Table 5, we can write the set functions: y0=Ay·N0=Ay·(a0+b0)
and y1=Ay·a1·b1. �e number of variables in these functions does not exceed 4, therefore the decomposition

(Step 3) is not needed.

Step 4. Scenario 1.1 realizes weak causality such that Ms+ is not indicated by y0+ in the data phase. In

the spacer phase both of N0- and Ms- must be indicated by y0-. Scenarios 1.2 and 2 realize strong causality

and therefore, the spacer phase is the mirror re�ection of the data phase. To realize the output handshakes,

we establish new immediate relations from y0+ (y1+) to Ay- and from y0- (y1-) to Ay+ as shown in Fig. 20.

Step 5. To provide the NCL protocols for y0 and y1, we establish the mediate relations given in Table 6.

Table 6. All necessary mediate relations for Variant 2
Sc. Com. cause e�ect

1.1

* y0+

N0-

Ms-

** Ms+

N0-

Ms-

1.2

* y0+ N0-

*** Ms+ Ms-

2 * y1+

a1-

b1-

* mirrored for spacer-data; ** only for data-spacer;

*** necessary only for sign alternation, mirrored for spacer-data.

�e relations in this table cannot be minimized, so we establish them as is. Note that the e�ect of some

relations is a nominal transition (N0- or Ms-) decoded as either as- or bs-. Hence, in such a relation, the

midterm transition must be common for a and b. �is is transition Aab-. Note also that in Fig. 20, N0+ and

Ms+ can be decoded as the same real transition a0+. �erefore, we need to establish in Scenario 1.1 and 1.2

an additional relation between N0+ and Aab-. �e resulting STG is shown in Fig. 21.

From Fig. 21 we �nd the set function Aab=N0·Ms·y0+a1·b1·y1 and decode N0 and Ms using Table 5. As a

result, we obtain Aab=(a0·b0+a0·b1+a1·b0)·y0+a1·b1·y1, which is a function of 6 variables and therefore must

be decomposed.

Step 6. To decompose Aab, we insert three new internal signals: a, b, y. In Scenario 1.1 and 1.2 the signals

a and b are encoded by nominal signals N and M as shown in Table 7. Fig. 22 shows the STG obtained at

Step 6.
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Scenario 1.1 Scenario 1.2 Scenario 2

Fig. 21. STG obtained at Step 5

Table 7. Extending Table 5 by adding the columns N and M
Sc. as bs N0 Ms N M ys

1.1

- - a0 b0 a b y0
- - b0 a0 b a y0

1.2

- - a0 b1 a b y0
- - b0 a1 b a y0

2 a1 b1 - - - - y1

Scenario 1.1 Scenario 1.2
Scenario 2

Fig. 22. STG obtained at Step 6

ack

in

in

in

in

ack ack

ack

Scenario 1.1

in

in

in

in

ack ack

ack ack

Scenario 1.2

ack

in

ack

in

Scenario 2

Fig. 23. STG specification of weakly indicating AND circuit with handshake

Substituting into this STG the variables from Table 7, we get the set function Aab=a·b·y and a=!(a1+a0),
b=!(b1+b0), y=!(y1+y0). In each equation, the number of variables does not exceed 4, so further decomposition

is not needed. �e above substitution gives the full STG of weakly indicating AND circuit shown in Fig. 23.

We have already obtained all the equations of the gates, so the STG in Fig. 23 is mapped into the circuit

shown in Fig. 24. To realize this circuit in the static CMOS, at least 50 transistors are required [15].
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TH33w2

a b y

Fig. 24. AND circuit. Variant 2, obtained from the STG in Fig. 23

in

in

in

in

ack

ack

ack

ack

Scenario 1.1

ack

in

ack
in

ack
in

ack

ack
in

in
Scenario 1.2

ack
in

ack
in

Scenario 2 (garbage

branch)

Fig. 25. Protocol with incomplete indication for y0

in

in

in

in

ack

ack

ack

ack

Fig. 26. Non-output-determine STG for Scenario 1.1 in Fig. 25

Let us now make sure that the behavior in Fig. 23 is mapped into the circuit in Fig. 24. To this end, we need

to �nd a protocol under which every gate operates and compare it with the template for the corresponding

NCL gate. As an example, we consider the signal y0, whose set function y0=Ay·(a0+b0). To �nd the protocol

for y0, we convert to dummies the transitions of those signals in Fig. 23, which are not causes for y0. �en,

we contract extra dummies and obtain the STG shown in Fig. 25.

Let us consider Scenario 1.1 in Fig. 25. In the upper branch, a0+ arrives earlier than b0+, and the bo�om

one — vice versa. �us, we have timing constraints. Returning to the STG in Fig. 8, we specify Scenario 1.1

by non-output-determinate STG as shown in Fig. 26. �e timing constraints make it output-determinate.

�us, the obtained protocol for y0 (Fig. 26 along with Scenarios 1.1 and 2 in Fig. 25) corresponds to the

template in Fig. 8. In other words, the signal y0 is indeed realized by the NCL gate TH33w2 as shown in the

circuit in Fig. 24.

4. Related Works
Prior to this work, STGs had never been used to synthesize data path circuits at the level of gates. In

terms of indication, early arithmetic circuits used only strong causality. �e handshake in these circuits

is realized on registers. We have shown that this is not necessary. In the so-called DIMS circuits [2, 21],

dual-rail data signals are synchronized on multi-input C-elements, whose outputs are then collected by OR

gates. Such circuits are two-level and therefore have large overhead in area. In contrast to DIMS, the so-

called crossed implementation [18, 22] is a multilevel, purely combinational dual-rail circuit. To generate
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a completion signal, all internal dual-rail signals in such a circuit are ORed and then collected by a tree of

C-elements. �us, the area occupied by the completion detector can be very large.

�ere is a variant of the crossed implementation [23] obtained by direct mapping of a Binary Decision

Diagram (BDD). Note that transitions to spacer can be detected on the power rails, which in turn, can be used

for a�acks. On the other hand, logic layers in dual-rail circuits can have the opposite spacer. In particular,

the corresponding variant of the cross-implementation [19] was designed especially for security purposes.

To simplify the completion detection, one can use the so-called layer-wise optimization [24]. It should be

taken into account that this optimization is based on relative timing, i. e. the circuit becomes sensitive to

gate delays.

To optimize DIMS, it is necessary to �nd such C-elements that do not have garbage transitions at their

inputs, as well as OR gates to which these C-elements are connected. �e inputs without garbage, as well

as all inputs of the corresponding OR gate, are inputs of the equivalent circuit. Its output is connected to

the node where the output of the OR gate was connected. �e equivalent circuit is similar to the completion

detector with OR gates. Such an optimization is realized implicitly when a Multi-valued Decision Diagram

(MDD) is mapped into a circuit [25].

Both DIMS and the crossed implementations can be optimized if the input signals of one gate are indi-

cated at the output of some other gate. �is principle de�nes the conditions of the so-called weak indica-

tion [26]. We used the same principle in the protocols with incomplete indication that realize both strong

and weak causality. For these protocols, there are at least two di�erent approaches to DIMS optimization [1,

27]. In the former approach, the optimization is deeper that allows one to convert DIMS into an NCL circuit.

�en, the area or delay of this circuit is minimized. �e crossed implementation for the above protocols can

be optimized by a method based on solving Boolean equations [28].

A typical representative of circuits operating under the protocol with incomplete indication is the NCL

full adder [29]. A simpler full adder circuit was realized on transistors [30]. However, in this circuit, the

output carry rails do not return to zero. Instead, the previous data values are kept on the output capacitances.

For these rails, we can either organize a 2-phase protocol or make the assumption that they are updated

earlier than the sum. To design and optimize transistor circuits, similar to the one discussed above, there is

a systematic approach [31].

Ad hoc algebraic techniques to embed the handshake into the NCL modules and thus to get rid of reg-

isters in the NCL pipelines are considered in [32–34]. �e way to link these algebraic techniques with the

presented STGs could be as follows. Let an STG is speci�ed by the ProFlo expression and converted to a state

transition diagram (using a �nite state transducer). �e operators of the ProFlo language on this diagram

can represented by the operators of Tsirlin’s algebra [22, 35].

Conclusion and Discussion
In this paper, the asynchronous data path is considered as a set of communicating dual-rail arithmetic

circuits operating under the 4-phase protocol. We proposed a method for specifying such circuits by STGs.

�ese STGs are correct by construction and are mapped into output-persistent circuits. To verify previously

designed circuits, the obtained STGs can be used as an environment. �e proposed method is based on the

use of the protocols with full and incomplete indication. �e la�er is more complicated, but gives additional

options for optimization. In both protocols, the data phase is mirrored into the spacer phase. If some signals

are not indicated in the data phase, they are indicated in the spacer phase. �is allows us to use the full

potential of NCL gates.

�e protocols with full indication use only strong causality. �is is the 1st variant, which gives the circuits

in Fig. 15 and in Fig. 17. �e protocols with incomplete indication use both strong and weak causality. �is

is the 2nd variant, which gives the circuit in Fig. 24. �is circuit requires 20 % more transistors (50 vs. 42)

than the SR-latch based circuit (the 1st variant) in Fig. 17, but has a lower latency.
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Note that the function AND2 is a special case of MAJ3 (carry in full adder). Moreover, the dual-rail

MAJ3 is functionally complete, since we can invert the dual-rail signal by swapping the wires. A realization

of MAJ3 on the SR-latch, whose arms are 5-input complex gates !((a·b+c·(a+b))·d·e) was proposed in [36].

Asynchronous circuits are sensitive to delays in some wires. To �nd such wires, we need to consider each

gate separately and obtain the protocol under which it operates. In this protocol we distinguish between

signals at the inputs and at the output of the gate. If all input transitions are indicated at the gate output,

the corresponding input wires (from the gate to the fork) can have arbitrary delay. For each non-indicated

transition there is a fork with unsafe wire. �e same fork may correspond to a non-indicated transition in

another protocol. We distinguish between two types of non-indicated transitions.

A non-indicated transition of the 1st type (for example, x+) precedes the opposite transition of the same

signal (x-), which is followed by the output transition. A non-indicated transition of the 2nd type occurs

concurrently with the output transition. For the considered protocols, this means that garbage transitions are

of the 1st type, and weak causality generates transitions of the 2nd type. A circuit with unsafe wires retains

all the properties (output-persistence, etc.), if the delays in these wires satisfy certain inequalities. Namely,

the delay of each unsafe wire must be shorter than the delay of the corresponding adversary path [37].

Violation of this condition takes us beyond the STG model and leads to hazards. In terms of data path

design, this situation is called wire orphan [1].
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