
Robust Query Optimization for Analytical
Database Systems

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Dipl.-Inf. Axel Hertzschuch

Gutachter: Prof. Dr.-Ing. Wolfgang Lehner
Technische Universität Dresden
Fakultät Informatik
Institut für Systemarchitektur
Lehrstuhl für Datenbanken
01062 Dresden

Prof. Andy Pavlo
Carnegie Mellon University
Department of Computer Science
5000 Forbes Avenue
Pittsburgh, PA 15213

Tag der Verteidigung: 10. Juli 2023

Dresden, im Juli 2023

2

ABSTRACT

Querying and efficiently analyzing complex data is required to gain valuable business
insights, to support machine learning applications, and to make up-to-date information
available. Therefore, this thesis investigates opportunities and challenges of selecting the
most efficient execution strategy for analytical queries. These challenges include hard-to-
capture data characteristics such as skew and correlation, the support of arbitrary data
types, and the optimization time overhead of complex queries. Existing approaches often
rely on optimistic assumptions about the data distribution, which can result in significant
response time delays when these assumptions are not met. On the contrary, we focus on
robust query optimization, emphasizing consistent query performance and applicability.
Our presentation follows the general select-project-join query pattern, representing the
fundamental stages of analytical query processing.

To support arbitrary data types and complex filter expressions in the select stage, a novel
sampling-based selectivity estimator is developed. Our approach exploits information
from filter subexpressions and estimates correlations that are not captured by existing
sampling-based methods. We demonstrate improved estimation accuracy and query ex-
ecution time. Further, to minimize the runtime overhead of sampling, we propose new
techniques that exploit access patterns and auxiliary database objects such as indices.

For the join stage, we introduce a robust optimization approach by developing an upper-
bound join enumeration strategy that connects accurate filter selectivity estimates –e.g.,
using our sampling-based approach– to join ordering. We demonstrate that join orders
based on our upper-bound join ordering strategy achieve more consistent performance
and faster workload execution on state-of-the-art database systems. However, besides
identifying good logical join orders, it is crucial to determine appropriate physical join
operators before query plan execution.

To understand the importance of fine-grained physical operator selections, we exhaus-
tively execute fixed join orders with all possible operator combinations. This analysis
reveals that none of the investigated query optimizers fully reaches the potential of op-
timal operator decisions. Based on these insights and to achieve fine-grained operator
selections for the previously determined join orders, the thesis presents a lightweight
learning-based physical execution plan refinement component called. We show that this
refinement component consistently outperforms existing approaches for physical opera-
tor selection while enabling a novel two-stage optimizer design. We conclude the thesis
by providing a framework for the two-stage optimizer design that allows users to modify,
replicate, and further analyze the concepts discussed throughout this thesis.

3

4

CONTENTS

1 INTRODUCTION 11

1.1 Analytical Query Processing . 12

1.2 Select-Project-Join Queries . 13

1.3 Basics of SPJ Query Optimization . 14
1.3.1 Plan Enumeration . 14
1.3.2 Cost Model . 15
1.3.3 Cardinality Estimation . 15

1.4 Robust SPJ Query Optimization . 16
1.4.1 Tail Latency Root Cause Analysis 17
1.4.2 Tenets of Robust Query Optimization 19

1.5 Contribution . 19

1.6 Outline . 20

2 SELECT (-PROJECT) STAGE 23

2.1 Sampling for Selectivity Estimation . 24

2.2 Related Work . 28
2.2.1 Combined Selectivity Estimation (CSE) 29
2.2.2 Kernel Density Estimator . 31
2.2.3 Machine Learning . 32

2.3 Beta Estimator for 0-Tuple-Situations . 33
2.3.1 Methodology . 33
2.3.2 Beta Distribution in Non-0-TS . 35
2.3.3 Parameter Estimation in 0-TS . 37
2.3.4 Selectivity Estimation and Predicate Ordering 39
2.3.5 Evaluation . 46

2.4 Customized Sampling Techniques . 53
2.4.1 Focused Sampling . 54
2.4.2 Conditional Sampling . 56
2.4.3 Zone Pruning . 58
2.4.4 Discussion . 59

2.5 Summary . 59

3 JOIN STAGE: LOGICAL ENUMERATION 61

5

3.1 Related Work . 62
3.1.1 Point Estimates . 63
3.1.2 Join Cardinality Upper Bound . 64

3.2 Upper Bound Join Enumeration with Synopsis (UES) 66
3.2.1 U-Block: Simple Upper Bound for Joins 67
3.2.2 E-Block: Customized Enumeration Scheme 68
3.2.3 UES Algorithm . 69

3.3 Evaluation . 71
3.3.1 General Performance . 72
3.3.2 Discussion . 74

3.4 Summary . 76

4 JOIN STAGE: PHYSICAL OPERATOR SELECTION 77

4.1 Operator Selection vs Join Ordering . 77

4.2 Related Work . 80
4.2.1 Adaptive Query Processing . 80
4.2.2 Bandit Optimizer (Bao) . 81

4.3 TONIC: Learned Physical Join Operator Selection 82
4.3.1 Query Execution Plan Synopsis (QEP-S) 83
4.3.2 QEP-S Life-Cycle . 84
4.3.3 QEP-S Design Considerations . 87

4.4 Evaluation . 89
4.4.1 Performance Factors . 90
4.4.2 Rate of Improvement . 92
4.4.3 Data Shift . 95
4.4.4 TONIC - Runtime Traits . 97
4.4.5 Discussion . 97

4.5 Summary . 99

5 TWO-STAGE OPTIMIZER FRAMEWORK 101

5.1 Upper-Bound-Driven Join Ordering Component 101

5.2 Physical Operator Selection Component 103

5.3 Example Query Optimization . 103

6 CONCLUSION 107

BIBLIOGRAPHY 109

LIST OF FIGURES 117

LIST OF TABLES 121

A APPENDIX 123

6 CONTENTS

A.1 Basics of Query Execution . 123

A.2 Why Q? . 124

A.3 0-TS Proof of Unbiased Estimate . 125

A.4 UES Upper Bound Property . 127

A.5 TONIC – Selectivity-Aware Branching . 128

A.6 TONIC – Sequences of Query Execution 129

CONTENTS 7

8 CONTENTS

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my advisor, Wolfgang
Lehner. He has been a constant source of support throughout my research, guiding me
with insightful ideas and keeping me motivated to always raise the bar. I am indebted
to him for providing me with the time and freedom to develop my thesis, as well as for
giving me the opportunity to attend exciting conferences. Wolfgang always finds a way
to ensure things work smoothly, and for that, I am sincerely thankful.

I would also like to express my appreciation to Dirk Habich for his wealth of knowledge
and his willingness to discuss new ideas. He has been a great mentor and his invaluable
feedback has helped me navigate through many challenging paper deadlines. Whenever
I found myself puzzled or lost in detail, Dirk consistently assisted me in finding an en-
gaging and persuasive writing style. Thank you, for your unwavering support. In the
same vein, I would like to extend my gratitude to Claudio Hartmann for his patience,
expertise, and writing guidance.

I am grateful to Andy Pavlo for his dedication to conducting an external review of my
thesis. Further, I am indebted to Guido Moerkotte and Norman May for their ongoing
support in forging working prototypes and encouraging my ideas. I would also like to
thank Ulrike Schöbel for spellchecking my publications and Rico Bergmann for proof-
reading and discussing various technical details.

Moreover, I would like to acknowledge all of my colleagues for the countless discussions
in the office and in the coffee kitchen, the shared laughter and sorrows, and for being an
amazing team. Thank you, Alex, Andreas, Anja, Eric, Jerome, Johannes F., Johannes P.,
Juliana, Julius, Lucas, Lennart, and Rico!

Finally, I would like to express my deepest gratitude to my family and friends, who
have always supported me throughout my academic journey. In addition, the university
sports center has been of great help in maintaining my physical and mental well-being.
But most importantly, I want to thank Jenny, who has been my rock during times of stress.

Axel Hertzschuch
Dresden, May 2023

9

10 CONTENTS

1
INTRODUCTION

Analytical query processing is a critical aspect of data analysis that enables organiza-
tions to extract valuable insights from large datasets. Based on these insights, organiza-
tions make informed business decisions, optimize business processes, and identify trends
and patterns in their data. For instance, analytical queries help retailers analyze cus-
tomer purchase patterns and tailor their marketing strategies to increase sales. Further,
this information helps them optimize their inventory management system, reduce waste,
and anticipate supply chain risks.* Similarly, financial service companies use analytical
queries to analyze market trends and make investment decisions in real-time.† In addi-
tion, healthcare providers can use analytical queries to analyze patient data and iden-
tify disease patterns. This information helps medical staff to develop effective treatment
plans and improve patient outcomes.‡ Besides many more industry segments, the gen-
eral rise of machine learning applications significantly elevated the need to organize and
quickly search large data sets to provide the necessary training data. However, analyt-
ical query processing requires significant computing resources to process large datasets
quickly. As the volume of data increases, organizations need to scale their computing
resources to ensure that they can process their data in a practical time frame.

To ensure fast analytical query processing, the database system must generate resource-
efficient execution plans for the given input queries. This involves finding efficient op-
erator sequences and selecting suitable operator implementations. In particular, query
execution times are dictated by the number of tuples that have to be processed at a cer-
tain stage during query execution. Therefore, a substantial body of research focuses on
cardinality estimation (i.e., the task of approximating the sizes of intermediate results for
a given candidate plan). Based on these estimates, an optimizer assesses the quality of
several candidate plans and selects the most efficient execution plan.

In the following, we briefly overview analytical query processing and then narrow our
focus toward query optimization. Section 1.2 introduces the general query pattern that is
commonly found in analytical workloads that we use to explain various concepts. In Sec-
tion 1.3, we describe the traditional, cost-based query optimizer design as a foundation
to frame the concepts presented in the thesis.

*https://www.moodysanalytics.com/product-list/supply-chain-catalyst
†https://www.sap-press.com/financial-reporting-with-sap-s4hana_5416/
‡https://www.sisense.com/glossary/healthcare-analytics-basics/

11

1.1 ANALYTICAL QUERY PROCESSING

Analytical queries are often characterized by complex filter expressions and a multitude
of joins to consolidate data from different sources (tables). Processing these queries often
takes a considerable amount of time due to the complexity of their operations. To avoid
isolation conflicts of concurrent transactions, these queries are usually executed on read-
only data or snapshots of dynamic data. With regard to business applications, tables can
grow large and may contain many possible attributes (columns). However, only a few
of them might be read to generate business insights [BiB19]. This access pattern of few
columns but many rows fostered the development of alternative data storage layouts.

To optimize memory access, state-of-the-art online analytical processing (OLAP) systems
such as SAP HANA [FML+12], MonetDB [BKM08], and Hyper [KN11] move data into
main memory and organize it in a column-oriented storage [BKM08]. In contrast to a
row-store, a column-store decomposes data vertically, such that attribute values –instead
of complete tuples– are sequentially stored in pages (internal structures). Therefore, each
tuple is associated with a TID (tuple id) to identify the belonging tuple. To reconstruct
a tuple, all elements with the same TIDs are selected. This storage layout facilitates data
compression (e.g., using run length encoding) and allows for more efficient data access as
the system only needs to fetch pages for attributes that are required to answer the query.

Besides data organization, access path selection (in accordance with the storage layout)
is crucial for efficient analytical query processing as it determines resource consumption
such as memory footprint and query execution time. While the database user speci-
fies What information should be returned, a query processor deals with How this infor-
mation is returned. Figure 1.1 shows the core components of a query processor. Note
that query processors are much more complex as the figure excludes several preparation
steps. These steps include parsing the query into a normalized internal representation
as well as semantic analysis such as access and integrity control. However, given the
internal query representation, the task of a query optimizer is to find an appropriate exe-
cution plan. Therefore, operator sequences are repeatedly re-ordered or substituted with
alternative operator implementations to generate (equivalent) plan candidates. Based on
statistical information provided by the database, the efficiency of each plan is evaluated,
such that the plan with the minimum cost estimate is selected for execution. Afterward,
the runtime system prepares and executes the final query execution plan. This includes
plan parameterization, code generation, execution control, and result provisioning. In
addition, some optimizers adopt their planning decision with regard to feedback from
the execution engine (e.g., by comparing cost predictions with runtime traits). More de-
tails on query execution can be found in the appendix (Section A.1).

Query Optimizer

Execution Engine

Data Storage

Data

Query

Statistics

Query Execution Plan
(QEP)

Result

Feedback

Query Processor

Figure 1.1: General query processing workflow.

12 Chapter 1 Introduction

1.2 SELECT-PROJECT-JOIN QUERIES

Select-Project-Join (SPJ) queries are most commonly regarded as the epitome of analytical
query processing and are a synonym for the following operator pattern:

SELECT: Choose a subset of tuples that satisfies a selection predicate. Thereby, predicates
are filters to retain only tuples that comply with the filter condition.

PROJECT: From an input table, generate an output table with tuples that contain only the
specified attributes. This operator can also rearrange the order of attributes.

JOIN: From two input tables, generate a table containing all tuples that are a combination
of two tuples (one from each input) with common values for one or more attributes.

We use this pattern as a representative to highlight challenges and opportunities for ana-
lytical query processing. Additional operations on the results set, e.g. group by, order by,
and aggregate, can be applied in line with all concepts discussed in this thesis. However,
they are not explicitly detailed to keep focus on the fundamentals. Further, while other
operators, such as disjunction, negation, union, intersection, except, and quantifiers are
interesting (and in parts straightforward to apply), they are not part of this thesis.

With regard to the previous section, consider the following SPJ query:

SELECT a,b,c FROM R,S,T
WHERE R.a<x AND S.b=’y’ AND R.pk=S.fk AND S.fk=T.c

According to the relational algebra [Cod70], this query can be parsed and represented as:

πa,b,c(σR.a<x∧S.b=′y′(R ▷◁R.pk=S.fk (S ▷◁S.fk=T.c T)))

Based on this (internal) representation the query processor generates the query execution
plan (QEP). In particular, the optimizer has to determine the join order, the order of filter
predicates, and appropriate physical operators. Essentially, the QEP is then an operator
tree with physical implementations of the algebraic operators.
Figure 1.2 shows an example QEP for the above query, where seq. scan is a sequential
table scan, idx. lookup an index-based scan, and hash join, loop join are two popular
implementations of join operators.

πR.a,S.b,T.c

▷◁hash join
S.fk=T.c

▷◁loop join
R.pk=S.fk

σseq. scan
R.a<x

R

σidx. lookup
S.b=′y′

S

σseq. scan
T rue

T

Figure 1.2: Example query execution plan.

1.2 Select-Project-Join Queries 13

1.3 BASICS OF SPJ QUERY OPTIMIZATION

To understand the challenges of SPJ query optimization, this section overviews the ar-
chitecture of a textbook query optimizer. Traditionally, a cost-based query optimizer is
composed of three building blocks: (1) the plan enumerator that spans the search space
of all valid query execution plans, (2) the cost model to assess the cost of an enumerated
plan prior to its execution, and (3) the cardinality estimator that provides the estimated
sizes of intermediate results to the cost model.

1.3.1 Plan Enumeration

Plan enumeration applies transformation rules of the relational algebra that enable equiv-
alent plans with different operator sequences. Therefore, we briefly discuss some funda-
mental transformation rules by adopting definitions from [Moe23].

For a relation R, we denote A(R) the schema of R, and use Ai := A(Ri). Accordingly,
A(e) is the set of attributes of a relation resulting from any algebraic expression e. Con-
sider the predicate pi := age<30 where age is an attribute name. Then, age behaves like
a free variable that must be bound to some value before the predicate can be evaluated.
The set of free variables of an expression e is denoted by F(e). According to Moerkotte
[Moe23], the following transformations are applied to enumerate equivalent plans:

σp1 ∧ ... ∧ σpk
(R) ≡ σp1(...(σpk

(R))...) (1.1)

σp(R1 ▷◁q R2) ≡ σp(R1) ▷◁q R2 (1.2)

if F(p) ⊆ A1(R1)
σp1(σp2(R)) ≡ σp2(σp1(R)) (1.3)

R1 ▷◁p R2 ≡ R2 ▷◁p R1 (1.4)

(R1 ▷◁p1,2 R2) ▷◁p2,3 R3 ≡ R1 ▷◁p1,2 (R2 ▷◁p2,3 R3) (1.5)

if F(p1,2) ⊆ A(R1) ∪ A(R2) and F(p2,3) ⊆ A(R2) ∪ A(R3)
πA(R1 ▷◁p R2) ≡ πA1(R1) ▷◁p πA2(R2) (1.6)

if F(p) ⊆ A,A = A1 ∪ A2 and Ai ⊆ A(Ri)

This enables logical plan enumeration as follows:

(1) Push-Down Select. Conjunctive filter expressions are separated into sub-expressions
and pushed down to the respective base tables (Equation (1.1) and (1.2)). According
to Equation (1.3), the select operator is commutative, that is, the optimizer has to
enumerate and choose an appropriate order in which to apply the filter predicates.

(2) Join Enumeration. Next, joins are enumerated. According to Equation (1.4) and (1.5)
joins are commutative and associative if their join attributes overlap. Consequen-
tially, the search space of equivalent plan alternatives grows relative to the number
of joins. Given a query with a moderate number of joins, query optimizers usu-
ally apply dynamic programming for join enumeration. However, if the number
of joins exceeds a certain limit, optimizers switch to heuristics or prune the search
space (e.g., by only considering deep tree plan structures) [Moe23].

14 Chapter 1 Introduction

(3) Push-Down Project. After a join order has been determined, project operators are
applied. Similar to filter operators, project operators are pushed down towards base
tables. However, according to Equation (1.6), the project-push-down terminates if
an attribute would be deleted that is otherwise required for a subsequent join.

In addition, to the logical re-ordering of the operators, the choice of physical operators
further extends the search space. However, as has been extensively analyzed by Leis et al.
[LGM+15] and as will be discussed next, even simple heuristics can determine efficient
query execution plans if accurate cost approximations are provided.

1.3.2 Cost Model

A cost model is a deterministic function to predict the resource consumption of all enu-
merated query execution plans. Based on this function, the optimizer assesses the cost of
all candidate plans and selects the plan with the lowest cost assignment for execution. In
general, query execution times are indirectly quantified by system-dependent factors such
as memory consumption, I/O, and CPU costs. Thereby, the size of intermediate results is
often considered one of the most important factors [MNS09]. A very basic cost function
is given by Equation (1.7). Cout only depends on (estimated) intermediate result sizes. For
a join tree T , Cout(T) is the sum of all join cardinalities.

Cout(T) =
{

0 , if T is a single relation
|T |+Cout(T1) + Cout(T2) , if T = T1 ▷◁ T2

(1.7)

To underline the importance of intermediate result sizes, Wolf et al. [WMWS18] demon-
strate a strong correlation between the Cout cost output and actual query execution times.
Nevertheless, to capture more subtle performance traits of modern hardware, Manegold
et al. [MBK02] provide a cost function that includes an approximation of the cascad-
ing hierarchy between CPU caches and main memory. In case data does not reside in
memory, additional costs for disk I/O or network communication need to be considered.
Aside from data transportation, it is important to capture and compare the costs of differ-
ent operator implementations. For instance, Krishnamurthy et al. [KBZ86] provide cost
approximations for nested loop joins, hash joins, and sort-merge joins.

In summary, cost models use input cardinalities either to directly quantify execution cost
(Cout) or as input for more complex formulas (e.g., capturing the costs of different join im-
plementations). Since these cardinalities are unknown until query execution, they must
be estimated. Therefore, cardinality estimation is discussed next.

1.3.3 Cardinality Estimation

Cardinality estimation is concerned with predicting the size (number of tuples) of (inter-
mediate) query result sets. For instance, |R ▷◁ S| describes the cardinality for joining table
R with table S and |σp(R)| is the number of qualifying tuples for evaluating predicate p
over R. In the context of filter predicates, we often refer to selectivity estimation. The term
selectivity is closely related to cardinality. Selectivities define a relative ratio |σp(R)|/|R|
of cardinalities that lies in the interval [0,1] [Mül22].

1.3 Basics of SPJ Query Optimization 15

According to Moerkotte et al. [MNS09], cardinality estimation is considered the most
important component of query optimization, implying that even the most sophisticated
enumeration algorithms and cost models cannot compensate for poor estimation quality.
Leis et al. [LGM+15] come to a similar conclusion and provide evidence that simple cost
functions and enumeration heuristics are sufficient, given reliable cardinality estimates.

Traditionally, cardinality estimates are derived from a combination of (i) basic statistical
information, and (ii) simplifying assumptions to apply the statistical information. Basic
statistics are created for individual attributes and may encompass the number of distinct
values, most frequent values (top-k lists), or histograms of the data distribution. Further,
database systems track base table cardinalities and primary-key/foreign-key relation-
ships. If no dedicated statistics are available or if they do not capture all relevant data
characteristics, database systems fall back to heuristics. In particular, query optimizers
use heuristics to estimate join cardinalities as basic statistics often lack information about
join crossing or attribute correlations [LGM+15]. For instance, given the (estimated) sizes
of tables R,S and the number of distinct values (domain) for the attributes R.a, S.b, Post-
greSQL [Posb] uses the following formula to estimate join cardinalities:

|R.a ▷◁ S.b| := |R|∗|S|
max(domain(R.a), domain(S.b)) (1.8)

Thereby, the following assumptions (heuristics) are used by Postgres:

(i) All attribute values are uniformly distributed.

(ii) Values from different attributes are independent, that is, there is no correlation be-
tween values across different attributes.

(iii) When joining two attributes, values from the smaller domain are completely in-
cluded in the larger domain.

Although Equation (1.8) assumes both a uniform distribution of attribute values and pair-
wise independence of join attributes, these assumptions are often not met in real-life
scenarios. We consider these assumptions to be optimistic as such heuristics regularly un-
derestimate the true cardinalities by several orders of magnitude. These underestimates,
in turn, lead to poor planning decisions and therefore long running queries [LGM+15].

1.4 ROBUST SPJ QUERY OPTIMIZATION

Over the last few decades, a significant amount of research has been devoted to improve
the optimization and execution approaches of relational database systems for complex
queries and constantly changing workloads. This research mainly focuses on addressing
the challenges posed by complex queries, which often lead to errors in selectivity and car-
dinality estimation. As a result, much work has been conducted to improve cardinality
estimation techniques. However, achieving precise estimates for arbitrary select-project-
join queries is difficult and sophisticated methods often entail disproportionate resource
requirements or have limited support of data and predicate types. Consequently, state-
of-the-art systems still rely on rudimentary statistics and overly optimistic assumptions
(cf. Section 1.3.3). Although such optimistic query optimization might result in good plan-
ning decisions for the majority of queries, few queries take exceptionally long to execute;
we refer to this as tail latency.

16 Chapter 1 Introduction

Join-Order-Benchmark Query0

5

10

15

20

25

30

35

40
re

sp
on

se
 ti

m
e

[s
]

(a) Postgres (native) optimistic optimization.

Join-Order-Benchmark Query0

5

10

15

20

25

30

35

40

re
sp

on
se

 ti
m

e
[s

]

(b) Postgres robust optimization.

Figure 1.3: Execution times of query plans based on two different optimization principles.
(The blue line serves as orientation.)

Accordingly, our goal is to develop a robust query optimizer characterized by the following
objectives: (i) support of arbitrary filter expressions, (ii) adaptation to updates without
compromising performance, (iii) minimal planning time overhead, (iv) and most impor-
tantly the prevention of catastrophic tail latencies.

To illustrate the fundamental difference between (traditionally) optimistic planning de-
cisions and robust query optimization, we present a preview of our findings from run-
ning the Join-Order-Benchmark (JOB); a real-life benchmark that we will describe in Sec-
tion 3.3. Thereby, Figure 1.3 reports query execution times based on two optimization
principles, namely the native optimizer of PostgreSQL [Posb] and the robust design dis-
cussed throughout this work. Although both optimizers access the same statistics, we
observe a fundamental trade off between many fast but few very long-running queries (Fig-
ure 1.3a) and sometimes slower but generally more consistent execution times (Figure 1.3b).
In particular, workload execution times are often dominated by a few very long-running
queries. As will be shown, eliminating these tail latencies by robust query planning leads
to an overall faster workload execution.

1.4.1 Tail Latency Root Cause Analysis

To better understand the pitfalls of current optimistic optimizer designs, we analyze the
query execution plans of a selected JOB query. Therefore, Figure 1.4 sketches the opti-
mistic query execution plan of JOB query 8c in comparison to our robust plan. For each
join operation, we distinguish the join type (1:n, n:m) and compare the actual (act) inter-
mediate result sizes with the estimated (est) join cardinalities.

Optimistic Query Optimization. The first plan shown in Figure 1.4a is produced by the
default optimizer of PostgreSQL. Before enumerating joins, the (estimated) sizes of (po-
tentially pre-filtered) base tables are required. In case of query 8c, the optimizer needs to
estimate selectivities for rt.role=’writer’ and cn.country_code=’[us]’ to assess the
number of filtered tuples. Based on the (estimated) base table sizes, Postgres uses Equa-
tion (1.8) to estimate the cardinalities of the subsequent joins. However, due to the overly
optimistic assumptions of Equation (1.8), Postgres underestimates the output cardinality
of the first join ci-rt. This underestimate then propagates through the subsequent plan

1.4 Robust SPJ Query Optimization 17

(a) Postgres native: Error propagation of optimistic cardinality estimates leading
to suboptimal join order and potentially long-running query.

(b) Upper bound pessimistic join ordering reducing the risk of disastrous planning decisions.

Figure 1.4: Comparison between optimistic and pessimistic (robust) join ordering.

nodes, causing potentially poor planning decisions. In case of query 8c, Postgres materi-
alizes the intermediate result of ci-rt-t-cn-mc-an into a hash map to apply a hash join
in the last plan node. Contrary to the assumed cardinality the hash map does not fit into
the reserved memory and spills to disk. To make matters worse, the intermediate result
encompasses a high degree of skew that constantly requires a reorganization of the hash
buckets. Further, while Postgres typically uses parallel hash joins, the data skew limits
the number of parallel workers. As a result, the execution of this query takes 122s.

Pessimistic Join Order. Figure 1.4b shows an alternative join ordering produced by our
method. In contrast to relying on overly optimistic assumptions, we calculate an upper
bound for join intermediate results. Based on this upper bound, we employ a customized
enumeration approach that applies 1:n joins prior to n:m joins. The reason is that 1:n joins
can be deemed safe as they can only reduce the size of the foreign-key (n:m) partner and
never increase join intermediate result sizes. Our approach further balances intermediate
result sizes and data skew. As a result, our pessimistic join order executes in 8.2s for the
most sub-optimal selection of the hash join probe- and build side.

Operator Selection. While the pessimistic join order of Figure 1.4b reduces the potential
of poor planning decisions, we can also take Postgres initial join order and only revise the
operator selection for the last join. When injecting the true cardinalities for the last join
shown in Figure 1.4a, Postgres decides to replace the hash join with an index nested loop
join. This rather small change reduces the query execution time from 122s to 6.2s.

18 Chapter 1 Introduction

1.4.2 Tenets of Robust Query Optimization

As we discussed, consistent execution times are essential for robust query optimization
as they help to ensure that users can rely on the system’s performance and make accurate
predictions about query processing times. Furthermore, it is important to ensure flexi-
bility such that the optimizer supports a wide range of applications and environments,
without requiring customization or configuration. In summary, we impose the following
requirements according to the general stages of SPJ queries:

Select-Stage. Selectivity estimates for base table filter expressions lay the foundation for
join cardinality estimation. However, in common business intelligence scenarios, filter
operators dominate join costs [VHF+18]. In these situations filter predicate ordering is
of paramount importance and requires selectivity estimates for arbitrary subexpressions.
Thereby, robust selectivity estimation (i) covers all relevant data types, (ii) accounts for
arbitrary predicate correlation, and (iii) remains reliable in the presence of data or schema
updates. Although existing approaches achieve accurate estimates for most filter expres-
sions, we show that highly selective, conjunctive filter predicates remain challenging.

Join Stage. One of the key requirements of robust SPJ query optimization is the ability
to scale efficiently in the number of joins. That means that the optimization time remains
practical with a growing number of joins. Similarly, the database system should perform
query optimization without placing excessive hardware demands that would otherwise
compromise query throughput. Further, given a fixed (logical) join order, the physical
operator selection should not introduce performance regression when compared to sim-
ple heuristics such as always using hash joins. Although this thesis focuses on equi-joins
in the join enumeration phase, it could be argued that the support of more exotic join
predicates is a requirement for robust optimization.

1.5 CONTRIBUTION

In the course of the thesis, we detail the components that are required to build a robust
query optimizer. Thereby, we provide insights into challenging aspects of (robust) query
optimization –and accordingly– present novel solutions. Our main contributions and the
corresponding publications can be summarized as follows:

Analyzes and Evaluation. We provide a thorough analysis of challenges for analytical
query processing with a focus on robust query optimization. For each of our con-
tributions, we detail related work and a comprehensive evaluation. Our measures
include benchmark execution times, optimization time overheads, and general run-
time traits such as memory footprint. To further analyze our results, we make the
source code publicly available.

Theoretical Background. As the thesis aims towards opportunities to reliably optimize
analytical queries, we study probabilistic error guarantees for sampling-based esti-
mates. The respective work [MH20] has been published at CIDR’20.

Dealing with Empty Samples. Sampling is a universal and easy-to-implement concept
that tackles most challenges of filter selectivity estimation. However, sampling esti-
mates perform poorly in situations where no sample tuple satisfies the given filter
expression. Therefore, we published a novel approach at SIGMOD’21 [HML+21]
that– given a sample– derives more precise selectivity estimates when no sample
tuple matches the filter. Besides more accurate selectivity estimates for very selec-
tive filter conditions, we demonstrate improved execution orders for conjunctive
sub-expressions that result in faster query execution times.

1.5 Contribution 19

Efficient Sampling. To minimize the overhead of sampling, we propose new techniques
tailored to modern in-memory column store databases. We emphasize that sampling
should be treated as query execution. That is, we exploit specific access patterns and
auxiliary database objects such as indices to achieve fast and precise estimates.

Join Enumeration. We study opportunities that connect precise sampling-based filter se-
lectivity estimates to join enumeration. Therefore, we introduce an upper bound for-
mula and a customized join enumeration approach. Thereby, robustness is achieved
by upper-bound-based pessimistic join orders. Using our pessimistic join orders, we
demonstrate faster workload execution and substantially improved query tail laten-
cies. Our efficient sampling and join enumeration strategies have been combined in
one paper that has been published at CIDR’21 [HHHL21].

Join Operator Selection. Based on our VLDB’22 publication [HHHL22], we present a
lightweight, learning-based physical operator refinement component. We explicitly
designed this component to bootstrap any relational query optimizer and to work in
tandem with our previous work. Given an initial query execution plan –determined
by a generic query optimizer– we apply a refined operator selection for each join.
To solve the operator selection problem, we use a whitebox learning paradigm, that
only revises planning decisions in situations with sufficient empirical data.

End-to-End Framework To ease reproducibility, we contribute PostBOUND [BHH+23],
a framework to systematically evaluate different approaches for (pessimistic) query
optimization. The framework enables users to modify, substitute, and analyze op-
timization components without needing to recompile the database system. There-
fore, we pave the way for future research to further test and investigate the various
concepts discussed in this thesis.

1.6 OUTLINE

This thesis is aligned with the general structure of select-project-join queries, which we
use as representatives for analytical query processing. We dedicate chapters to filter se-
lectivity estimation, logical join enumeration, and physical operator selection.

Chapter 2 frames specific challenges of robust filter selectivity estimation and details
fundamental characteristics of sampling-based selectivity estimates. After analyzing re-
cent work, we introduce a novel sampling-based selectivity estimator that enables sound
predicate enumeration in situations where current approaches fail. Additionally, we pro-
pose and evaluate customized sampling techniques to guarantee precise selectivity esti-
mates from fresh data while keeping the sampling overhead at bay. Chapter 3 focuses on
logical join enumeration – again starting with challenges and recent research. To over-
come fundamental burdens of inaccurate point estimates for join cardinalities, we follow
recent research in the direction of pessimistic join ordering. We employ a customized
enumeration scheme in combination with a fast-to-calculate upper bound that is based
on precise filter selectivity estimates and rudimentary base table statistics. We demon-
strate that robust optimization in the join stage is accomplished through our pessimistic
join ordering approach. However, due to the underlying upper bound, our pessimistic
join ordering relies on physical join operators that are deemed safe for large intermediate
result sizes but may perform suboptimal given smaller than anticipated input cardinali-
ties. We argue that lifting the full potential of our optimization concept requires a down-
stream, fine-grained operator selection. Consequently, we employ a two-stage optimizer
design that separates the logical join enumeration from the physical operator selection.
The following Chapter 4 is then dedicated to the physical operator selection. Although
join ordering and physical operator selection are traditionally intertwined, we analyze

20 Chapter 1 Introduction

different physical operator combinations for fixed join orders and show that none of the
investigated query optimizers reaches the full potential of optimal operator decisions.
To embody the two-stage optimizer design and to lift the potential of (near) optimal op-
erator sequences, we introduce a whitebox learning approach for fine-grained operator
selections. We demonstrate robust operator refinements by the means that our approach–
contrary to existing work– does not introduce any performance regression in a cold start
setting. Before concluding in Chapter 6, we disclose an open-source framework in Chap-
ter 5 that allows to further analyze and modify the concepts discussed in this thesis.

1.6 Outline 21

22 Chapter 1 Introduction

2
SELECT (-PROJECT) STAGE

This chapter focuses on the selectivity estimation of base table filter expressions as a vi-
tal part of SPJ query optimization. Query optimizers of state-of-the-art database systems
require estimators that work on a variety of data and predicate types. In particular, the
comprehensive analysis of 60k real-world business intelligence data repositories by Vo-
gelsgesang et al. [VHF+18] underlines the importance of filter operations and reveals:
Most data is stored in string format, which enables arbitrary complex expressions. These
complex expressions may include user-defined functions that can hardly be estimated
with pre-calculated table statistics such as histograms. Moreover, filter operations are
often machine-generated and heavily over-specified. Detecting common sub-expression,
in general, is no trivial task either [KBNb21].
Nevertheless, finding good estimates for filter selectivities is a key requirement for ana-
lytical query processing. For example, SAP HANA’s decision of evaluating queries with
precompiled, vectorized code or leveraging just-in-time compilation relies on precise es-
timates for highly selective filter predicates [SFA+19]. To illustrate core challenges of
filter selectivity estimation, consider the following query:

SELECT name FROM person

WHERE age > 45 AND salary > 100, 000︸ ︷︷ ︸
predicate correlation

AND project LIKE ’%phd%acm%’︸ ︷︷ ︸
complex expression over string data︸ ︷︷ ︸

highly selective conjunctive filter predicate

Predicate correlation. In real-life scenarios, we often see highly complex conjunctive fil-
ter predicates that are strongly correlated [VHF+18]. For instance, correlation arises from
machine-generated and over-specified filter expressions or domain-dependent proper-
ties as in our example. According to Ioannidis [Ioa03a] and Cormode et al. [CGHJ11],
histograms can be applied to estimate the selectivities of simple filter expressions.
Histograms approximate value distributions of attributes by splitting them into parti-
tions and counting the respective frequencies. Due to their small overhead, the equi-
width and equi-depth partitioning schemes have been established as de facto standard
[Ioa03b]. While some histograms can provide error guarantees for predicates over sin-
gle attributes [MDM+14], histograms usually provide limited support for predicates that
involve multiple attributes. For instance, STHoles [BCG01] can be used to estimate the se-
lectivity of predicates on few attributes by learning from result cardinalities of a known
workload. But like other multi-dimensional histograms, this method does not scale well
with many attributes due to the curse of dimensionality. Therefore, optimizers commonly
use a simplifying assumption called Attribute Value Independence (AVI) [SAC+79], where
single predicate selectivities are multiplied while ignoring potential correlations.

23

Arbitrary predicate-/data-type. Recent research applies machine learning (ML) models
to the problem of filter selectivity estimation as they can capture arbitrary predicate cor-
relation and the effect of skewed data. In general, ML models learn a mapping from a nu-
merical encoding of a query to its output cardinality. Especially multi-layer-perceptron-
[DWN+19] and auto-encoder models [YLK+19] show promising results in capturing ar-
bitrary predicate correlations when given sufficient training data.
Although ML might be promising to model complex data characteristics, this early re-
search cannot handle arbitrary filter expressions, e.g. LIKE-expressions over string-typed
data [MWL23]. In particular, user-defined functions post a challenge to ML (and his-
tograms, likewise) as they are generally non-compliant with any upfront numerical rep-
resentation or encoding of standard filter operations.

Highly selective filter expressions. Since sampling naturally tackles the above issues,
it remains popular in commercial systems, e.g [Oraa, LGM+15, LRG+17, SAP], and has
been combined with histograms [MMK18] and machine learning [KVM+19, YLK+19]. In
a nutshell: sampling is query execution on a sub-set of the data and therefore works on
every predicate- and data type. Traditionally, we randomly draw a fixed number of tu-
ples from a table and divide the number of qualifying sample tuples by the total number
of sample tuples. Therefore, just like a base table tuple a sample tuple either qualifies the
filter expression or it does not. Instead of drawing the sample at query time, some ap-
proaches exploit materialized views [LLZZ07] or use reservoir sampling [Vit85, BRN20].
Although sampling is versatile and relatively easy to implement, it is not a panacea. Sam-
pling struggles with highly selective filter expressions, i.e. in situations with few or no
qualifying sample tuples. This chapter, therefore, demonstrates the importance of these
situations, highlights the limitations of traditional sampling, and details the respective
solutions. The remainder is structured as follows.

In Section 2.1, we formalize sampling in the context of database systems, provide theo-
retical error guarantees, and demonstrate challenges of highly selective filter expressions.
Afterward, Section 2.2 identifies existing approaches to handle highly selective filter ex-
pressions. Our proposed solution is detailed and extensively evaluated in Section 2.3 and
Section 2.4. Thereby, our solution is two-fold and fundamentally seeks to answer:

(1) Given a traditional sample, how can we improve estimation quality in case of
highly selective filter expressions? (Section 2.3)

(2) How can sampling be modified to increase the number of qualifying sample tu-
ples without sacrificing additional optimization time? (Section 2.4)

2.1 SAMPLING FOR SELECTIVITY ESTIMATION

We first introduce our basic notation and then elaborate on theoretical error guarantees –
especially with regard to highly selective filters. In the context of query optimization, the
basic sampling procedure can be described as follows. Let R be a set of tuples defining
a table or view. We get a sample S ⊆ R by drawing tuples from R uniformly at random
and without replacement. The number of tuples in R is denoted by n := |R|. By m := |S|
we denote the sample size. We define a conjunctive predicate Pq as a conjunction of r
single predicates (atoms) Pq := P1 ∧ P2 . . . ∧ Pr. The result size after evaluating Pq on
R is defined as l := Cnt(Pq, R) and corresponds to SELECT COUNT(∗) FROM R WHERE Pq.
Analogously, we define k := Cnt(Pq, S). Therefore, p := k/m denotes the traditional
estimate and p̃ := l/n the true selectivity.

24 Chapter 2 Select (-Project) Stage

R, S some table R, sample S ⊆ R
n := |R| number of tuples in R
m := |S| number of tuples in S
Pq conjunctive predicate P1 ∧ P2 . . . ∧ Pr

l := Cnt(Pq, R) number of qualifying tuples in R
k := Cnt(Pq, S) number of qualifying tuples in S
P(n,m, k, l) hypergeometric distribution
X random variable, pX (k)=P(n,m, k, l)

Table 2.1: Notation.

The total number of possible samples is given by the binomial coefficient
(n

m

)
. Hence, the

number of samples of size m with exactly k qualifying tuples is
(n−l

m−k

)(l
k

)
. Since every

sample is equally likely, the probability of observing k qualifying sample tuples is:

P(n,m, k, l) :=
(n−l

m−k

)(l
k

)(n
m

)
This is the underlying model of sampling; known as hypergeometric distribution. A random
variable X (number of qualifying tuples) distributed hypergeometrically with parame-
ters n, l, and m is written as X ∼ hypergeometric(n,m, l). The probability that X takes on
k is denoted by pX (k) := P(n,m, k, l) [Ric06]. For convenience, Table 2.1 summarizes our
basic notation.

Throughout the thesis, we rely on the q-error metric to evaluate the quality of selectivity
(cardinality) estimates. It is defined as:

qerror := max{p/p̃; p̃/p}.

The q-error describes the multiplicative error between an estimate and its ground truth.
This error metric is widely adopted by the optimization community due to its tight con-
nection to the actual quality of query plans (more details are found in Appendix A.2).

Probabilistic Bounds

Usually we use the point estimate kn/m to get the most likely number of tuples in the
base table that satisfy the filter predicate. However, to understand the error margin of
sampling-based estimates, we need to assess the minimal (maximal) number l of table
tuples that complies with our observation of n,m, k. For a given probability (confidence)
ϵ, we define:

α(n,m, k) := min{l|P(n,m, k, l) ≥ ϵ}
ω(n,m, k) := max{l|P(n,m, k, l) ≥ ϵ}

Assume n,m and ϵ are fixed. Then, for a given number k of qualifying sample tuples,
α(n,m, k) (ω(n,m, k)) is the smallest (largest) number of tuples from R that has a prob-
ability greater than ϵ. In order to calculate α(n,m, k) and ω(n,m, k), we use the natural
logarithm of P. Therefore, we define:

f(x) := log(P(n,m, k, x)) − log(ϵ)

2.1 Sampling for Selectivity Estimation 25

and x0 and x1 such that f(xi) = 0, x0 < nk/m, x1 > nk/m. Then:

α(n,m, k) = [x0],
ω(n,m, k) = [x1].

Thus, the problem can be reduced to finding the roots of f(x). There exist many pos-
sibilities to find the root of a function. The simplest is bisection [EWK90, p73]. Others
include fixpoint calculation [EWK90, p79], Newton’s method [EWK90, p78], Brent’s al-
gorithm [Bre71], and TOMS Algorithm 748 by Alefeld, Potra, and Shi [APS95].

Relation between qualifying sample tuples and the q-error

According to the bound formulas, the maximum q-error mainly depends on k over a
wide range of table sizes and sample fractions. Let us consider a fixed k > 0 and ask how
the q-error decreases with increasing sample sizes m. We might assume that it decreases
linearly with the sample size. However, this is far from true. Consider Figure 2.1. For
two different k ∈ {4, 8}, it shows on the x-axis the sample fraction m/n scaled by 1000.

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 0.001 0.01 0.1 1 10 100

m
ax

 q
-e

rr
or

1000(|S|/|R|)

4 qualifying sample tuples: sample fraction vs. max-qerror std-est (prob = 10^{-5})

|R| = 10^6
|R| = 10^7
|R| = 10^8
|R| = 10^9

 6

 6.2

 6.4

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 8

 0.001 0.01 0.1 1 10 100

m
ax

 q
-e

rr
or

1000(|S|/|R|)

8 qualifying sample tuples: sample fraction vs. max-qerror std-est (prob = 10^{-5})

|R| = 10^6
|R| = 10^7
|R| = 10^8
|R| = 10^9

Figure 2.1: k-Curves.

26 Chapter 2 Select (-Project) Stage

 1000

 10000

 100000

 1x106

 1x107

 1x108

 0.001 0.01 0.1 1

O
m

eg
a

1000(|S|/|R|)

0 qualifying sample tuples: sample fraction vs. omega (prob = 10-5)

|R| = 106

|R| = 107

|R| = 108

|R| = 109

Figure 2.2: ω-0-curve.

On the y-axis, it shows the maximal q-error of the standard estimator. All curves start at
a minimum sample size of 1000. We observe that below a sample fraction of 0.1% and
table sizes between 106 and 109 tuples, the maximum q-error is almost a constant. Only
for larger sample fractions the q-error decreases significantly.

In general, given α(n,m, k), ω(n,m, k) we can derive the minimal number of qualifying
tuples needed to assure a maximal q-error less than q by:

ηq(n,m) := min{k|k n
m

≤ q ∗ α(n,m, k), ω(n,m, k) ≤ q ∗ k n
m

} (2.1)

Limitations of traditional sampling: 0-Tuple-Situation

Given a sufficient number of qualifying tuples, sample-based estimates are precise and
give probabilistic error guarantees. However, complex predicates frequently lead to sit-
uations where no sample tuple qualifies (k = 0). According to Kipf et al. [KKR+19], we
call these 0-Tuple Situations (0-TS).

Since α(n,m, 0) = 0 for all n and m, we concentrate on ω(n,m, 0) in this case. There-
fore, Figure 2.2 contains what we call the ω-0-curve. For zero qualifying sample tuples it
depicts the maximum number of conceivable table tuples ω(n,m, 0) on the y-axis for dif-
ferent relation sizes n and sample fractions m/n on the x-axis. We observe that ω(n,m, 0)
is independent of the relation size and slowly decreases with the sampling fraction. Ac-
cording to Equation (2.1), we need a sampling fraction of 0.1% of the relation to guarantee
an upper bound for ω(n,m, 0) at about 10,000 tuples. This directly links to the maximum
q-error of the selectivity estimate 1/|R| – a common technical workaround in these sit-
uations to prevent faulty prunings in query plans [MMK18]. To circumvent estimating
l = 0, other query optimizers also rely on basic heuristics, e.g., using Attribute Value In-
dependence (AVI), that –as will be shown– can lead to large estimation errors and poor
planning decisions [MNS09, SAC+79].

2.1 Sampling for Selectivity Estimation 27

2 atoms 3 atoms 4 atoms 5 atoms 6 atoms 7 atoms
0

20

40

60

80

%
 o

f q
ue

rie
s

le
ad

in
g

to
 0

-T
S

54%
48%

57%

72% 71%

58%

38%
31%

47%

62% 62%

44%

sample size: 1k tuples
sample size: 10k tuples

Figure 2.3: Relative number of queries that lead to empty samples (0-TS) with regard to
the number of single predicates (atoms) and the sample size.

Significance of 0-Tuple-Situations

To assess the frequency at which 0-TS occur, we analyze the Public Bi Benchmark [BiB19],
a real-world, user-generated workload. Considering base tables with at least 1M tuples,
Figure 2.3 illustrates the relative number of queries that result in 0-TS when using two
standard-sized random samples. Interestingly, and contrary to the intuition of being a
corner case, this analysis of a real-life workload reveals that up to 72% of the queries
with complex filters lead to empty samples.

Next, we discuss the 0-Tuple-Situation problem in the context of related work. In partic-
ular, we overview sophisticated concepts that are able to capture complex data character-
istics while being able to deal with or avoid the 0-Tuple-Situation. Afterward, we detail
and evaluate our solution in Section 2.3.

2.2 RELATED WORK

In the following sections, we overview three approaches that can naturally circumvent
0-Tuple-Situations and that we use in our evaluation. In particular: (1) Müller and Mo-
erkotte [MMK18] combine statistical information from different sources, using the Maxi-
mum Entropy approach by Markl et al. [MHK+07]. As will be explained in Section 2.2.1,
their solution space is based on probabilistic bounds that enable a statistically sound es-
timate in 0-TS without using a constant estimate such as 1/|S| or 1/|R|. As an alternative
to the work of Müller and Moerkotte, Yu et al. [YKZ06] assign weights to the sampled tu-
ples by considering the information provided by sketches. (2) Section 2.2.2 overviews the
Kernel Density Estimator (KDE) of Heimel et al. [HKM15] that applies sampling to iden-
tify regions with a high probability mass in an n-dimensional space. The selectivity of a
query with r predicates is estimated by its distance to the high probability mass regions.
(3) Since recent research applies machine learning (ML) to the problem of selectivity esti-
mation, e.g., [DWN+19, KKR+19, WHT+19, KVM+19, YLK+19], Section 2.2.3 illustrates
the core concept of the art. Like the KDE approach, machine learning employs a natural
workaround for selectivity estimation in 0-TS.

28 Chapter 2 Select (-Project) Stage

2.2.1 Combined Selectivity Estimation (CSE)

As has been mentioned, Müller and Moerkotte [MMK18] use the Maximum Entropy ap-
proach by Markl et al. [MHK+07] to combine sketches (or histograms) with traditional
sampling. Their idea is to account for the uncertainty of sampling-based estimates by
using statistical information from additional sources, e.g. histograms.
Given an index set N = {1, ..., r} and a conjunctive predicate Pq = P1 ∧ ... ∧ Pr, a sys-
tem of 2r linear equations is generated to represent all possible sub-expressions of Pq.
For each sub-expression, traditional sampling is used to determine an interval of proba-
bilistic bounds, e.g. [α(n,m, k), β(n,m, k)] while external sources are used to tighten the
initial bounds. From a general infinite set of possible solutions, Müller and Moerkotte
choose the solution that maximizes the entropy and therefore balances out the assumed
independence within the constrained search space.

To integrate all available statistical information, a shared representation of boolean pred-
icates is required. In particular, for a subset X ⊆ N , two formulas are defined to dis-
tinguish the selectivities induced by the predicates over X . Thereby, the first formula
represents sub-expressions of Pq as a conjunction of predicates pi whose index is con-
tained in X :

Fβ(X) :=
∧

i∈X

Pi,

where Fβ(X) ≡ true in case of X = ∅. The second formula constitutes the minterms of Pq

and is defined as:

Fγ(X) :=
∧

i∈X

Pi ∧
∧

i∈N\X

¬Pi.

Accordingly, the minterm of a boolean function with r variables is an expression in which
each of the r variables appears exactly once – either in their positive or complement
form. Therefore, given a conjunctive query p1 ∧ p2 ∧ p3 with index set N = {1, 2, 3} and
X = {1, 2}, the β-selectivity β(X) is the selectivity of Fβ(X) = P1 ∧ P2. Similarly, the
γ-selectivity γ(X) is the selectivity of Fγ(X) = P1 ∧ P2 ∧ ¬P3. Hence the β-selectivity
β(X) is always greater than or equal to the γ-selectivity γ(X). Further, every conjunctive
query Fβ(X) can be expressed as a disjunction of minterms Fγ(Y) that positively contain
all predicates indexed by X . Thus Fβ(1, 2) = P1 ∧ P2 = (P1 ∧ P2 ∧ ¬P3) ∨ (P1 ∧ P2 ∧
P3) = Fγ(1, 2) ∨ Fγ(1, 2, 3). In general, all β-selectivities can be computed as a sum of
γ-selectivities:

β(X) =
∑

X⊆Y ⊆N

γ(Y)

Note that β(∅) = 1 since every entry in a data set or relation satisfies this condition. To
combine both formulas, Müller and Moerkotte [MMK18] define a binary 2r × 2r design
matrix C where each row of C indicates which γ-selectivities contribute to a β-selectivity.
For the bitvector representations bv(i), bv(j) of two integers i, j < r, the design matrix is
defined as follows:

Ci,j =
{

1 if bv(i) ⊆ bv(j)
0 else

Given the design matrix and using the bitvector encoding of indices contained in X , a
system of linear equations Cx = b can be generated. For example, the conjunctive query
P1 ∧ P2 gives rise to:

2.2 Related Work 29

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

γ(00)
γ(01)
γ(10)
γ(11)

 =

β(00)
β(01)
β(10)
β(11)

Therefore, given all γ-selectivites, we can compute all β-selectivties as Cx. Vice versa, all
γ-selectvities can be computed from β-selectivities as C−1b using the inverse matrix C−1.

The main trick is to derive two vectors βl(X), βu(X) containing the lower and upper
bounds of all β-selectivities by combining multiple sources of statistical information. In
particular, we use the probabilistic bounds [α(n,m, k), β(n,m, k)] of a sampling-based
estimator to populate βl(X), βu(X). For sub-expressions with few predicates, q-optimal
histograms [MDM+14] –i.e., histograms with a maximum error guarantee– can be used
to tighten the β-selectivity bounds. In accordance to Cx = b the vectors βl(X), βu(X)
lead to a system of inequalities:

bl ≤ Cx ≤ bu

These inequalities span the search space of possible γ-selectivities. As sampling allows
for deriving bounds for minterms, the solution vector of γ-selectivities can be further con-
strained by the respective sampling bounds xl, xu. Especially, using probabilistic bounds
instead of point estimates, CSE naturally accounts for the 0-Tuple-Situation. For the ob-
jective function, Müller and Moerkotte [MMK18] adopt the maximum entropy princi-
ple [MHK+07] as they reason to maximize the assumed independence in the absence of
further knowledge. In vector form, the entropy function is given by −xT log(x) and can
be maximized by minimizing its negated form. The constrained optimization problem
can therefore be formulated as:

minimize
x

xT log(x)

subject to bl ≤ Cx ≤ bu,

xl ≤ x ≤ xu

To solve the optimization problem, Müller and Moerkotte apply linear programming
methods, e.g. using Mehrotra’s algorithm [Meh92]. As the search space grows exponen-
tially in the number of predicates, Müller and Moerkotte restrict the optimization prob-
lem to a partial design matrix to keep the query optimization time practical for complex
filter expressions with many predicates.

To illustrate the core concept, Figure 2.4 adapts an example from [MMK18] and sketches
the solution of a problem with only one predicate Pi. While estimating the selectivity
of a single filter predicate with the maximum entropy approach may not necessarily be
the intended use case, assume for the sake of the graphical illustration that we are given
xl = (γl(0), γl(1))T = (0.1, 0.05)T and xu = (γu(0), γu(1))T = (0.6, 0.7)T . The figure’s axis
are then the γ-selectivities of P ′

is minterms. The induced bounds xl and xu together with
the constraint γ(0) + γ(1) ≤ βu(∅) = 1 span the search space depicted in gray color. The
maximum entropy solution γ(0) = 0.367 = γ(1) and therefore β(Pi) = 0.367 is achieved
by solving the constrained optimization problem.

30 Chapter 2 Select (-Project) Stage

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
(0)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(1
)

Max Entropy

(1) u(1) = 0.7

(1) l(1) = 0.05
(0

)
l (0

)=
0.

1

(0
)

u (
0)

=
0.

6

(0) +
(1)

u(
) = 1

Figure 2.4: Maximum entropy solution example.

2.2.2 Kernel Density Estimator

The Kernel Density Estimator (KDE) by Heimel et al. [HKM15] is a sampling-based ap-
proach tailored to numerical data. Each sample tuple of r attributes marks a point in an
r-dimensional space. The KDE model assigns a high probability to regions of high den-
sity while smoothing out their vicinity. By design, KDE only requires a base table sample
to generate the model and does not have to deal with 0-TS.

Figure 2.5 overviews the core principles of kernel density estimation using an example
in a 2-dimensional space – e.g. using queries with a conjunction of two single predicates
over numeric data. First, traditional sampling is applied to mark datapoints in the 2d
space (Figure 2.5b). Then, local probability distributions –known as kernels– are centered
around these sample points (Figure 2.5c). That is, KDE assigns high probability to regions
that lie in the vicinity of sampled points. Eventually, a selectivity estimate is derived by
averaging the probability mass of those distributions that contribute to the queried point.

According to [HKM15], given a sample S = {t⃗(1), ..., t⃗(m)} of sizem from a d-dimensional
dataset, multivariate KDE defines an estimator p̂H(x⃗) : Rd → R that assigns a probability
density to each point x⃗ ∈ Rd:

p̂H(x⃗) := 1
s · |H|

m∑
i=1

K
(
H−1

[
t⃗(1) − x⃗

])
(2.2)

Hereby, K : Rd → R denotes the kernel function, which defines the shape of local proba-
bility distributions. As kernel function, Heimel et al. propose using the Gaussian normal
distribution or the Epanechnikov truncated second-order polynomial [KBJ04, PD85]. The
matrix H ∈ Rd×d is the bandwidth matrix, which controls the spread of local probability
distributions. To further answer range predicates instead of point filters, the respective
regions of p̂H(x⃗) need to be integrated.

However, major challenges of KDE are (i) selecting a good bandwidth, that is, the degree
to which neighboring regions should contribute to the final estimate and (ii) the trade-
off between time consumption and estimation quality as optimization time substantially
increases with the number of kernels and sampling dimensions.

2.2 Related Work 31

(a) Points in database. (b) Sampled points. (c) Kernels. (d) Estimated distrib.

Figure 2.5: A Kernel Density Estimator approximates the underlying distribution of a
given dataset (a) by picking a random sample of data points (b), centering local prob-
ability distributions (kernels) around the sampled points (c), and averaging those local
distributions (d). Reprinted from [HKM15].

To tackle these challenges, Scotts’ rule [Sco15] is used to strike the right balance between
sample size, estimation quality, and optimization time. The bandwidth is then deter-
mined by a coarse global optimization algorithm (e.g. MLSLS [RKT87]) and later refined
by local optimization (e.g. L-BFGSB [BLNZ95] or MMA [Sva02]). Further, based on the
observation that selectivity estimation with KDE is highly parallelizable, Heimel et al.
propose a GPU-accelerated KDE model to mitigate the optimization time penalty.

2.2.3 Machine Learning

As has been stated, recent research applies machine learning (ML) to the problem of car-
dinality estimation, e.g. [DWN+19, KKR+19, WHT+19, YLK+19] and further combines it
with sampling, e.g. [KVM+19, HKM15]. Especially ML approaches based on neural net-
works show promising results in capturing complex data dependencies and correlations.
Figure 2.6 depicts one of the most prominent types of neural networks –the Multi-Layer-
Perceptron (MLP). The MLP consists of three types of layers: (1) an input layer that re-
ceives the encoded query, (2) a hidden layer that applies weights to the inputs and prop-
agates them through an activation function enabling non-linear transformations, and (3)
an output layer that consolidates the neural activation and produces the final estimate.

Given pairs of encoded queries and output cardinalities, the MLP can learn a mapping
of input feature vectors to these ground truth cardinalities in a preceding training phase.
Accordingly, major challenges are (i) finding a suitable query encoding as input vector
and (ii) generating a plethora of representative training data. While tables, attributes,
and operators (<,=,>) are usually one-hot encoded, predicate values are min-max nor-
malized into [0, 1] to enhance prediction accuracy [JS11].
Similar to KDE models, MLP models do not yet cover all relevant filter predicate types
[MWL23]. Additional ML-specific drawbacks include the lack of error guarantees/ex-
plainability, demanding hardware requirements [BCCN18], and cumbersome adaptation
efforts to account for changing data distributions. However, once trained MLP models
can achieve fast and accurate selectivity estimates for the supported types of filter predi-
cates. Since MLP models can be trained independently of sampling, highly selective filter
expressions are no concern.

32 Chapter 2 Select (-Project) Stage

Figure 2.6: Process for cardinality estimation with learned models [WHT+19].

2.3 BETA ESTIMATOR FOR 0-TUPLE-SITUATIONS

This section presents our novel approach that – given a sample – derives more precise
selectivity estimates when no sample tuple matches the filter (0-TS). To handle 0-TS, we
exploit partial predicate correlations and take the certainty of selectivity estimates into
account. We start with an overview of our core concept in Section 2.3.1 and present
theoretical foundations of our solution in Sections 2.3.2 - Section 2.3.4. A comprehensive
evaluation is found in Section 2.3.5 and showcases the effectiveness of our approach.

2.3.1 Methodology

Given two arbitrary subexpressions PA, PB of Pq, we denote p(A) the estimated selectiv-
ity of PA, i.e. the fraction of qualifying sample tuples. Further, for the number (count) of
qualifying sample tuples Cnt(PB, S) ≥ 1 for PB , we define

p(A|B) := Cnt(PA ∧ PB, S)
Cnt(PB, S) = kAB

mB
, (2.3)

the selectivity of PA on a sample prefiltered by PB . Accordingly, substituting PB with
its negated form PB gives p(A|B). By substituting S with R, we get the true conditional
selectivities p̃(A|B), p̃(A|B).

The main motivation of this work is to account for situations where Cnt(PA ∧PB, S) = 0.
To improve estimation accuracy in 0-TS, we make heavy use of the following equation:

p(A) = p(A|B)p(B) + p(A|B)p(B), (2.4)

where p(B) = 1−p(B). When no sample tuple qualifies, the traditional estimate implies
p(A|B) = 0 and p(A|B) > 0, if p(A) > 0. Our basic idea is to use an unbiased estimate
p0 ̸= 0 for p(A|B) in 0-TS, which introduces an inconsistency to Equation (2.4). We then
adjust both conditionals p(A|B), p(A|B) according to their certainty to satisfy the equa-
tion again and get p′(A,B) = p(A|B)adjustedp(B). To model the certainty, we use the
beta distribution B, a continuous probability density function with two shape parameters
(a, b). Similar to existing work, we derive the beta distribution for qualifying sample

2.3 Beta Estimator for 0-Tuple-Situations 33

Figure 2.7: Structure and building blocks.

tuples (k≥1) in this section. The parameterized beta distribution according to the quali-
fying expression PA ∧ PB is denoted by BA|B and models the certainty of p(A|B) (cf. lhs
in Fig. 2.7). In Section 2.3.3, we introduce an unbiased estimate for the non-qualifying
expression PA ∧ PB in terms of the hypergeometric distribution and explain how this
translates to specific shape parameters for BA|B (cf. rhs in Fig. 2.7). The optimization
problem of consistently balancing the initial estimates according to their certainty is de-
fined in Section 2.3.4. Subsequently, we solve the problem, using the respective models
BA|B and BA|B . From the adjusted estimates, we derive the combined selectivity estimate
(cf. bottom Fig. 2.7). Lastly, we extend the scheme to an arbitrary number of conjunctive
predicates. Before going into detail, we illustrate the core concept.

Given a sample S of size m with k qualifying tuples, it seems apparent that S can con-
tribute more information than the traditional estimate of k

m . For instance, we are able to
observe correlations between single attributes or groups of attributes. Moreover, instead
of relying on point estimates, we could ask: How reliable are the observed correlations? As-
sume we are given a table R containing brands and colors of cars. As can be seen in Table
2.2, a sample of size 110 shows that half of the cars are Audis, hence p(Audi) = 0.5. Addi-
tionally, 5 out of 10 Blue cars are Audis and 50 out of 100 cars with a different color than
Blue are Audis as well. Note that both observed conditional selectivities p(Audi|Blue) and
p(Audi|Blue) have the same expected value of 0.5. However, since there are more obser-
vations for Audi|Blue, we assume the true selectivity p̃(Audi|Blue) to deviate less from
p(Audi|Blue) compared to p̃(Audi|Blue) and p(Audi|Blue), respectively. This intuition
is in perfect agreement with the well-known law of large numbers.

Such a characteristic can be modeled by a beta distribution B(a, b). Since B(a, b) is a
probability density function, it integrates to 1. Moreover, for every 0 ≤ x1 ≤ x2 ≤ 1 it
models the probability of x1 ≤ p̃(A|B) ≤ x2, depending on the observed sample. With
the right choice of shape parameters (a,b) – that will be derived in the following – the
integral from 0 to the expected selectivity p(A|B) (traditional estimate in non-0-TS) is 0.5.
It then coincides with the median and the assumption that we are equally likely to under-
and overestimate the true selectivity p̃(Audi|Blue).

m #Audi #Blue #Audi|Blue #Audi|Blue
110 55 10 5/10 50/100

Table 2.2: Sample S of R showing more certainty for the conditional selectivity estimate
p(Audi|Blue) compared to p(Audi|Blue).

34 Chapter 2 Select (-Project) Stage

0.0 0.2 0.4 0.6 0.8 1.00

2

4

6

8

100 Observations

10 Observations

0.5=p(Audi|Blue)p(Blue)+p(Audi|Blue)p(Blue)
p(Audi|Blue) = 0.5
p(Audi|Blue) = 0.5

(a) Observed conditionals

0.0 0.2 0.4 0.6 0.8 1.00

2

4

6

8

Adjustment

0.6=p0(Audi|Blue)p(Blue)+p0(Audi|Blue)p(Blue)
p0(Audi|Blue)=0.73
p0(Audi|Blue)=0.58
p0(Audi|Blue)=0.73
p0(Audi|Blue)=0.58

(b) Adjusted conditionals

Figure 2.8: Beta distribution modeling the certainty of an estimate regarding the number
of observations. The certainty is balanced by equally distributing the probability mass.

Figure 2.8a provides a first intuition of how the distribution relates to the example. The x-
axis describes the selectivity of p(Audi|Blue), p(Audi|Blue), and the y-axis the respective
probability density. Note that more observations lead to a steeper slope, less variance
and thus more certainty. Suppose we are given the true selectivity p̃(Audi) = 0.6, that
contradicts the sample where p(Audi) = 0.5. Our goal is to adjust p(Audi|Blue) and
p(Audi|Blue) so that:

1. The adjusted estimate is consistent with Equation (2.4).

2. Both new estimates share the same probability of underestimating (overestimating)
their true selectivity.

While the first condition spans the solution space, the second condition mediates the rel-
ative adjustments according to the respective certainties. As there are more observations
for p(Audi|Blue), we are more certain that p(Audi|Blue) is closer its true selectivity. Thus,
we expect less adjustment compared to p(Audi|Blue). Figure 2.8b reveals that more cer-
tainty indeed results in less adjustment. Given the adjusted selectivity p′(Audi|Blue), we
estimate the fraction of qualifying tuples as p′(Audi,Blue) = p′(Audi|Blue)p(Blue).

2.3.2 Beta Distribution in Non-0-TS

In this section, we derive the beta distribution and its shape parameters for qualifying
samples. The special case of non-qualifying samples will be discussed in Section 2.3.3.
Babcock and Chaudhuri [BC05] introduce a similar derivation for the qualifying case.
We adopt their notation and extend this concept to selectivity estimation.

Given a sample S and a conjunctive predicate Pq, we define Sq := ⟨s0, . . . , sm⟩ with
si = 1 if the ith sample tuple satisfies Pq and si = 0 otherwise. A traditional sampling-
based estimator simply returns the estimated fraction of qualifying tuples as p = k

m .
However, we are not only interested in the point estimate but in the likeliness of the

2.3 Beta Estimator for 0-Tuple-Situations 35

true selectivity p̃ = l
n deviating from p. Since the true fraction of qualifying tuples p̃

is unknown, it will be treated as random variable z (the estimate of p̃) depending on
Sq. In particular, we seek the conditional probability density function f(p̃ = z|Sq), with
Pr[(x1 ≤ p̃ ≤ x2)|Sq] :=

∫ x2
x1
f(p̃ = z|Sq)dz. Note that Figure 2.8a depicts the probability

mass for the interval [x1 = 0, x2 = 0.5].

We start the derivation by transforming the probability density f(p̃ = z|Sq), using Bayes’
rule p(A|B)= p(B|A)p(A)

p(B) :

f(p̃ = z|Sq) = Pr [Sq|p̃ = z] f(p̃ = z)∫ 1
0 Pr [Sq|p̃ = y] f(p̃ = y)dy

Because m ≪ n holds, and the sample tuples are selected independently and uniformly
at random, the probability Pr [Sq|p̃ = z] can be modeled as Bernoulli Process [DKLM05]:

Pr [Sq|p̃ = z] = zk(1 − z)m−k

The function f(z) is a probability distribution independent of Sq, often referred to as prior
distribution. According to Babcock and Chaudhuri [BC05], we set f(p̃ = z) ∝ z−α(1 −
z)−α, α ∈ (0, 1) and get the following probability density function conditioned on Sq:

f(p̃ = z|Sq) = zk−α(1 − z)m−k−α∫ 1
0 y

k−α(1 − y)m−k−αdy
(2.5)

This is the definition of a beta distribution B with shape parameters (a, b) = (k − α +
1,m− k−α+ 1) [Ker11]. Note, the denominator of Eq. (2.5) is independent of z and acts
as a normalizing constant. Since Eq. (2.5) is a probability density function and 0 ≤ z ≤ 1,
we know that

∫ 1
0 f(p̃ = z|Sq)dz = 1. Narrowing the integral’s upper bound leads to the

cumulative distribution function (CDF):

CDF(x,B(a, b)) =
∫ x

0
f(p̃ = z|Sq)dz

= 1 −
∫ 1

x
f(p̃ = z|Sq)dz

Given Sq, the cumulative distribution describes the likeliness of under- or overestimating
the true selectivity p̃ = l

n . Since p = k
m is the estimated median, we seek α so that:

CDF(x,B(a, b)) =
∫ x

0
f(p̃ = z|Sq)dz =

∫ 1

x
f(p̃ = z|Sq)dz

⇐⇒ Pr[p̃ ≤ k

m
|Sq] = Pr[p̃ ≥ k

m
|Sq] = 0.5

⇐⇒ median(B(a,b)) = k

m

Fortunately, Kerman [Ker11] provides a good closed-form approximation of the median:

a− 1
3

a+ b− 2
3

≈ median(B(a, b)), for a, b > 1 (2.6)

36 Chapter 2 Select (-Project) Stage

By substituting a=k−α+1, b=m−k−α+1 with α= 2
3 :

k− 2
3 +1− 1

3
k− 2

3 +1+m−k− 2
3 +1− 2

3
= k

k +m− k
= k

m
, (2.7)

we see that the median of the beta distribution (Equation (2.6)) becomes k
m . Babcock et

al. [BC05] used α= 1
2 , known as Jeffrey’s prior [BS09] and argued with a diminishing effect

of the prior distribution with an increasing sample size. In contrast, our experiments
show a severe effect of the prior distribution on estimation accuracy when dealing with
small selectivities: Regardless of the sample size, using (a, b) = (k+ 1

3 ,m−k+ 1
3) and

therefore α= 2
3 instead of α= 1

2 produces consistently better results in our approach.

2.3.3 Parameter Estimation in 0-TS

In this section, we estimate shape parameters for the beta distribution when no sample
tuple matches the filter (k = 0). We derive an unbiased initial estimate for l in terms
of the hypergeometric distribution and parameterize the beta distribution accordingly.
With the beta distribution for qualifying (cf. Sec. 2.3.2) and non-qualifying samples, we
balance the certainty and uncertainty in Section 2.3.4. This eventually leads to the adjusted
selectivity estimate.

Hypergeometric Distribution in 0-TS

Providing an unbiased estimate for l with respect to the hypergeometric distribution is
not trivial when k = 0. In this case the sample is too small to capture qualifying tu-
ples. However, suppose we are able to observe fractions of qualifying sample tuples.
We would then expect 0 ≤ k ≤ 1 tuples. Due to the lack of additional information,
we provide an unbiased initial estimate for k = 0.5 as it is equidistant from k = 0 and
k = 1. Accordingly, an unbiased estimate of l enables the probability of seeing less than
0.5 qualifying sample tuples to be equal to observing more than 0.5 tuples. Therefore,
given n,m,X ∼ hypergeometric(n,m, l), we seek l such that k = 0.5 is the median, i.e.

Pr[X ≤ k = 0.5] ≥ 1
2 and Pr[X ≥ k = 0.5] ≥ 1

2 (2.8)

Unfortunately, X relates to a discrete distribution. Since there is no such thing as half a
qualifying tuple and:

Pr[X ≤ k = 0.5] = Pr[X < k = 1] = Pr[X = k = 0],

Equation (2.8) holds true for every k ∈ [0, 1). In this case, there is no unique solution and
k = 0.5 refers to a so called weak median [KB80]. However, considering a sample of size
2m, we may use X̃ ∼hypergeometric(n,2m, l) and assume:

Pr[X̃ ≤ k = 1] ≥ 1
2 and Pr[X̃ ≥ k = 1] ≥ 1

2 (2.9)

⇐⇒ Pr[X̃ = k = 0] = P(n, 2m, k = 0, l) = 1
2

2.3 Beta Estimator for 0-Tuple-Situations 37

Therefore, by virtually doubling the sample size, k = 1 becomes the strong median of X̃
and gives a unique solution of l. Hence, we seek the number of qualifying relation tuples
so that we have a 50% chance of observing at least one qualifying sample tuple when
considering a sample twice the size. Given m,n, the solution of l such that P(n, 2m, k=
0, l) = 0.5 holds is provided by:

P(n, 2m, k=0, l) = 0.5 ⇐⇒ l = n
ln(2)
2m (2.10)

A proof for Eq. (2.10) can be found in the appendix (Section A.3). Therefore, our initial
and unbiased estimate in 0-TS is given by p0 := ln(2)

2m .

Discussion. Besides the theoretical considerations, one can numerically illustrate that
Eq. (2.10) holds: Given n = 100000, l = 693 ≈ ln(2) ∗ 100, we draw one sample tuple at a
time and count the necessary tuples to observe the first qualifying one. When repeating
the experiment 1M times, one can see that the median of the number of draws is 2m = 100.
Therefore: p0 = 693/100000 ≈ ln(2)/100.

Beta Distribution in 0-TS

Since our goal is to adjust the initial estimate p0 = ln(2)
2m according to its certainty, we need

to estimate shape parameters of a beta distribution B(a, b), such that

median(B(a, b)) = p0 = ln(2)
2m

As discussed in Section 2.3.2 (Equation (2.6)) , Kerman [Ker11] provides an approxima-
tion for the median, which can be used to derive the respective shape parameters (a, b).
It is, however, constrained to a, b > 1, and k = 0 is a special case where the median needs
to be ln(2)

2m instead of k
m . Substituting parameter a according to a= k+1−α (cf. Section

2.3.2, Equation (2.7)) gives:

a = ln(2)
2 + 1 − α = ln(2)

2 + 1
3 < 1,

thus violating the constraint and leading to a significant approximation error of ∼ 10%.
Nevertheless, we numerically find that using a = 0.634, b = m provides a consistently
accurate approximation for non-qualifying samples, where

median(B(a=0.634, b=m)) ≈ ln(2)
2m

It can be shown numerically that using a= 0.634, b=m provides a relative error of less
than 1% for m > 1, which is rapidly decreasing to less than 0.1% for m ≥ 10.

Summarizing everything so far, we use the following shape parameters for the beta dis-
tribution depending on the number of qualifying sample tuples and the sample size:

(a, b) =
{

(k + 1
3 ,m−k + 1

3) if k ≥ 1
(0.634, m) if k = 0

(2.11)

38 Chapter 2 Select (-Project) Stage

2.3.4 Selectivity Estimation and Predicate Ordering

Given the beta distribution and the respective shape parameters, we model the certainty
of both conditional selectivities from Section 2.3.1 (Eq. (2.4)). We build upon the previous
considerations and consistently adjust both estimates to solve the inconsistency intro-
duced by the initial estimate. First, we describe and solve the optimization problem for
the conjunction of two boolean expressions. Subsequently, we extend our scheme to an
arbitrary number of expressions and discuss the impact on predicate enumeration.

Optimization Problem

Applying the traditional estimate implies p(A|B) = 0 if the conjunction PA ∧ PB leads to
a 0-TS (cf. Sec. 2.3.1, Eq. (2.3)). Instead of assuming p(A|B) = 0, we use the unbiased
estimate from Section 2.3.3. Since p(A|B) is the selectivity of PA on a sample prefiltered
by PB , we define mB := Cnt(PB, S) and estimate p0 = ln(2)

2mB
. Therefore, we introduce the

following inconsistency to Equation (2.4):

p(A) = 0 ∗ p(B) + p(A|B)p(B) ̸= p0 ∗ p(B) + p(A|B)p(B)

Our goal is to solve the imposed inconsistency in a way that is most consistent with both
corresponding beta distributions of p(A|B), p(A|B). Treating p(A|B), p(A|B) as variables
zA|B, zA|B gives raise to the space of solutions, where

zA|B =
p(A) − p(B)zA|B

p(B) , zA|B =
p(A) − p(B)zA|B

p(B)
(2.12)

and 0 < p(B) < 1. Let BA|B,BA|B be the beta distribution, modeling the certainty of
p(A|B), and p(A|B), respectively. As we illustrate in Section 2.3.1, maintaining the shared
probability of over- and underestimating the true values of the selectivities p(A|B), p(A|B)
provides a relative adjustment according to their certainty derived from the sample.
Therefore, we seek a solution where

p(A) = p(B)zA|B + p(B)zA|B and (2.13)

CDF(zA|B,BA|B) = CDF(zA|B,BA|B) (2.14)

Let us revisit the example from Section 2.3.1 and assume the sample did not show any
Blue Audis. Suppose 55 of 110 cars are Audis but with a color different than Blue and 10
cars are Blue but not Audis.

With kAB := Cnt(PA ∧ PB, S) = 0 and mB :=Cnt(PB, S)=10 , we model the uncertainty
of p(Audi|Blue), using Equation (2.11):

BA|B = B(0.634, 10)

Analogously with kAB := Cnt(PA ∧PB, S),mB := Cnt(PB, S), we derive the shape pa-
rameters for the second beta distribution:

(a, b) = (kAB + 1
3 , mB −kAB + 1

3) = (55+ 1
3 , 100−55+ 1

3)

2.3 Beta Estimator for 0-Tuple-Situations 39

Hence, the certainty of p(Audi|Blue) is modeled by:

BA|B = B(55.33, 45.33)

The solution (z′
A|B, z

′
A|B) of Equation (2.13) and Equation (2.14) gives the adjusted esti-

mate p′(Audi|Blue) = z′
A|B . The fraction of Blue Audis and therefore the adjusted filter

selectivity is then given by:

p′(Audi,Blue) = z′
A|Bp(Blue) = p′(Audi|Blue)p(Blue)

Solving the Optimization Problem

As stated before, p(A|B) and p(A|B) can be treated as variables zA|B, zA|B . Using Equa-
tion (2.12), we define zsub that either substitutes zA|B or zA|B . Suppose zA|B is substituted

by zsub = p(A)−p(B)zA|B
1−p(B) . Accordingly, we reformulate the solution of the optimization

problem defined by Equation (2.13) and (2.14) as a solution of the following equation,
depending on a single variable:

CDF(zA|B,BA|B) = CDF(zsub,BA|B) (2.15)

For 0 < p(B) < 1, there exists a unique solution to Equation (2.15). According to
Equation (2.10), we cover the corner cases p(B) = 0, p(B) = 1 using p(B) = ln(2)/2m,
p(B) = 1 − ln(2)/2m, while estimating p(A|B) as p(A). Having solved Eq. (2.15) for
0 < p(B) < 1, either zA|B or zA|B can be back-substituted using Equation (2.12). The ana-
lytical solution, however, requires the root of a higher-order polynomial. Since there is no
general solution for polynomials of a degree greater than four [Ż+00], we propose a nu-
merical solution, represented by Algorithm 1. The algorithm minimizes a target function
with a minimum equivalent to the solution of Eq. (2.15). The main workhorse is Brent’s
method [Bre71], a combination of the bisection method, the secant method, and inverse
quadratic interpolation.

Algorithm 1 takes two predicates (subexpressions) as input and returns the respective
correlation estimate p(A|B). The essential task of Algorithm 1 is to derive both distri-
butions BA|B,BA|B , and prepare the input parameters of Brent’s method. Before deriv-
ing shape parameters (Line 1, 18-19), the algorithm ensures that we have observations
when the sample is (pre)filtered by PB, PB , respectively (Line 16-17). Otherwise, there is
nothing to balance and the estimate of p(A|B) is reduced to p(A). Since Brent’s method
requires as input a target function and bounds within the minimum can be found (Line
23, 25), these components are discussed next.

Target Function. As it is the standard approach, we could define the following target
function ψ:

ψ(zA|B) :=
(
(CDF(zA|B,BA|B) − CDF(zsub,BA|B)

)2
,

where the cumulative distribution function is computed efficiently for every value of zA|B
(zsub) by calling Boost’s implementation of the incomplete beta function [cpp].

40 Chapter 2 Select (-Project) Stage

Algorithm 1: balanceEstimate
Input: Subexpression PA, PB, Sample S
Output: Estimated correlation p(A|B)

1 def shapeParams(k,m):
// implementation of Eqn. 2.11

2 def getBounds(k,m):
3 return max(k−1

m , 0),min(k+1
m , 1)

4 def targetA|B(zA|B): // Eqn. 2.16
5 if zA|B = 0 or zA|B = 1 then return ∞
6 derive zsub according to rhs of Eqn. 2.12
7 cdfA|B = CDF(zA|B,B(a1, b1))
8 cdfA|B = CDF(zsub, B(a2, b2))
9 return max(cdfA|B/cdfA|B, cdfA|B/cdfA|B)

10 def targetA|B(zA|B): // Eqn. 2.16
11 if zA|B = 0 or zA|B = 1 then return ∞
12 derive zsub according to lhs of Eqn. 2.12
13 cdfA|B = CDF(zA|B,B(a2, b2))
14 cdfA|B = CDF(zsub, B(a1, b1))
15 return max(cdfA|B/cdfA|B, cdfA|B/cdfA|B)
16 if Cnt(PB, S)∈{0, |S|} then // nothing to balance
17 return traditional estimate of p(A)
18 a1, b1 = shapeParams(Cnt(PA ∧ PB, S),Cnt(PB, S))
19 a2, b2 = shapeParams(Cnt(PA ∧ PB, S),Cnt(PB, S))
20 zlo

A|B, z
up
A|B = getBounds(Cnt(PA ∧ PB, S),Cnt(PB, S))

21 zlo
A|B, z

up

A|B = getBounds(Cnt(PA ∧ PB, S),Cnt(PB, S))
// minimize target function

22 if zup
A|B − zlo

A|B < zup

A|B − zlo
A|B then

23 z′
A|B = Brent(targetA|B, (zlo

A|B, z
up
A|B))

24 else
25 z′

A|B = Brent(targetA|B, (zlo
A|B, z

up

A|B))

26 derive z′
A|B wrt. lhs of Eqn. 2.12, using zA|B =z′

A|B
27 return z′

A|B

However, since calculating the difference of two (potentially) vastly different floating
point numbers is imprecise, we use:

max
(

CDF(zA|B,BA|B)
CDF(zsub,BA|B) ,

CDF(zsub,BA|B)
CDF(zA|B,BA|B)

)
(2.16)

Depending on whether we substituted zA|B or zA|B , we have two target functions accord-
ing to Line 4-9 and Line 10-15.

Tight Bounds. In order to narrow down the search space of Brent’s method, we use
the uncertainty of our observation. Remember, we assumed the sample to be accurate,
however unable to model the correct selectivity due to its limited size. Therefore, we
know that max(k−1

m , 0) < l
n < min(k+1

m , 1). Accordingly, we derive the lower (lo) and

2.3 Beta Estimator for 0-Tuple-Situations 41

Figure 2.9: Beta Estimator.

upper (up) bound for the conditional selectivities (Line 2-3, 20-21). Brent’s method is
known to be faster with tighter bounds. Algorithm 1 therefore uses the target function
for which the bounds are tighter (Line 22-23, 24-26).

Selectivity Estimation Algorithm

To manage an arbitrary complex conjunction, we introduce Algorithm 2, which divides
a conjunctive filter into subexpressions and recombines them as input for Algorithm 1.
In the following, we call the combined algorithm Beta Estimator. Figure 2.9 comprises the
complete scheme, detailed next.

Algorithm 2 takes a fixed order of predicates and returns the combined estimate. As will
be discussed later, the algorithm can incorporate predicate enumeration, such that we
no longer rely on a predetermined order. However, to bypass basic heuristics whenever
possible, we distinguish two phases:

In the first phase (Line 6-20), and according to the given order, we combine as many
predicates as possible so that we still have qualifying tuples in the sample. We call Algo-
rithm 1 if adding the next predicate would otherwise lead to a 0-TS. This gives the first
partial estimate and ends the first phase. In the second phase (Line 21-30) we combine
the residual predicates and connect them to the previously visited predicates by calling
Algorithm 1 once again. In essence, the trick is to treat combined predicates as a sin-
gle expression and estimate correlations in 0-TS. In case of qualifying sample tuples, we
return the traditional estimate (Line 4-5).

We proceed by illustrating the execution of Algorithm 2. To keep the explanation simple,
we assume that there is at least one qualifying sample tuple for each atom, i.e. only
(partial) conjunctions lead to a 0-TS. Nevertheless, if an atom leads to a 0-TS, we use the
unbiased estimate according to Equation (2.10) in Line 10.

Suppose, we are given a sample and a predetermined order of predicates PA, . . . , PG.
After evaluating the predicates on the sample, we follow the steps outlined in Figure 2.10:

Figure 2.10: Example of a conjunctive query containing seven predicates, evaluated over
attributes A-G.

42 Chapter 2 Select (-Project) Stage

Algorithm 2: estimateSelectivity
Input: Predicates allPred, Sample S
Output: Selectivity estimate of full conjunction

1 m = |S| // number of rows in S
2 selectivity = 1; visitedPred = empty list
3 Pall = conjunction of predicates in allPred
4 if Cnt(Pall, S) ≥ 1 then // traditional estimate
5 return Cnt(Pall, S)/m

/* start first phase */
6 for predicate Pnew in allPred do
7 residualPred = allPred\visitedPred
8 Pvis = conjunction of predicates in visitedPred
9 Pres = conjunction of predicates in residualPred

/* get p(B) and take care of corner cases */

10 pB =

ln(2)/(2m) if Cnt(Pnew, S) = 0
1 − ln(2)/(2m) if Cnt(Pnew, S) = m

Cnt(Pnew, S)/m otherwise
11 if Cnt(Pvis ∧ Pnew, S) > 0 then
12 use traditional estimate and continue
13 if Cnt(Pvis, S) = 0 and Cnt(Pres, S) > 0 then
14 end first phase and start second phase
15 if Cnt(Pvis, S) = 0 and Cnt(Pres, S) = 0 then
16 selectivity = selectivity ∗ pB // AVI
17 else // Pvis ∧ Pnew leads to 0-TS, use beta
18 p′

A|B = balanceEstimate(Pvis, Pnew, S)
19 selectivity = p′

A|B ∗ pB

20 add Pnew to end of visitedPred

/* start second phase */
21 while visitedPred ̸= ∅ do
22 Ptest = conjunction of predicates in visitedPred
23 if Cnt(Ptest ∧ Pres, S) > 0 then
24 pA|B = Cnt(Ptest ∧ Pres, S)/Cnt(Ptest, S)
25 return pA|B ∗ selectivity
26 if Cnt(Ptest ∧ Pres, S) > 0 then
27 p′

A|B = balanceEstimate(Pres, Ptest, S)
28 return p′

A|B ∗ selectivity
29 remove last predicate of visitedPred
30 return selectivity ∗ Cnt(Pres, S)/m // AVI

1. We start with predicate PA and step-wise add PB and PC to the conjunction (Line
20). In general, we proceed as long as qualifying sample tuples can be observed
(Line 11). With respect to the example, we stop right before the predicate over
attribute D. To this point the conjunction of predicates over ABC can be treated
as a single predicate PABC for which we get the traditional estimate p(ABC) =
Cnt(PA∧PB ∧PC , S)/m.

2. We apply PD and observe: Cnt(PABC ∧ PD, S) = 0. However, we know that

2.3 Beta Estimator for 0-Tuple-Situations 43

kABCD := Cnt(PABC ∧ PD, S) > 0 must hold. Having PA = PABC , PB = PD,
we call Algorithm 1 (from Algorithm 2, Line 18) and derive both beta distributions:

BABC|D = B(0.634,mD),

BABC|D = B(kABCD + 1
3 ,mD −kABCD + 1

3),

where mD := Cnt(PD, S). As previously discussed, both estimates are balanced in
Algorithm 1, so that:

CDF(zABC|D,BABC|D) = CDF(zABC|D,BABC|D)

The adjusted estimate p′(ABC|D) = z′
ABC|D is returned to Algorithm 2, giving the

partial estimate p′(ABCD) = p′(ABC|D)p(D) in Line 19. If at least one sample
tuple qualifies for the expression over EFG, we end the first phase in Line 13-14 and
estimate p(EFG|ABCD) in the second phase, which connects the residual and the
visited predicates.

3. Given that Cnt(PE ∧PF ∧PG, S) > 0, we try to apply as many previously visited
predicates as possible (Line 21-29). We prioritize PA ∧ PB over PB ∧ PC , assuming
that we are given an efficient plan, which starts with the most selective and anti-
correlated predicates. (Otherwise, we run the risk to underestimate the first pred-
icates.) We observe qualifying sample tuples for PEF G ∧PAB , while PEF G ∧PABC

leads to a 0-TS. Since Cnt(PEF G, S)> 0 and Cnt(PEF G ∧PAB, S)> 0, we know that
Cnt(PEF G ∧ PABC , S) > 0. Note that predicate PD is not considered as the conjunc-
tion of the predicates over ABC already leads to a 0-TS. PD ,therefore, contributes to
a single independence assumption needed in the next step.

4. With PA = PEF G, PB = PABC we call Algorithm 1 in Line 27. Similar to Step 2, the
following shape parameters and beta distributions are derived:

B1 = B(0.634,mABC),

B2 = B(kEF G|ABC + 1
3 ,mABC −kEF GABC + 1

3)

Algorithm 1 returns p′(EFG|ABC), giving the adjusted estimate of the combined
filter predicate (Line 30):

p′(ABCDEFG) = p′(EFG|ABC)p′(ABCD)

In conclusion, rather than assuming independence among all atoms, we only assume
p(EFG|ABCD)=p(EFG|ABC).

Predicate Enumeration

To add the benefit of handling 0-TS during predicate enumeration, we extend the Greedy
Heuristic by Babu et al. [BMM+04] by incorporating Algorithm 2.

The extended algorithm takes a set of predicates and returns the enumerated predicates
along with their combined selectivity. The enumeration starts according to Algorithm 3,
Line 3-4, and Line 6. Suppose the predicates over ABC are already enumerated and
adding any of the residual predicates leads to a 0-TS. Analogously to Algorithm 2, Line 18,

44 Chapter 2 Select (-Project) Stage

Algorithm 3: Greedy – correlated selection ordering
Input: Predicates allPred, Sample S, Costmodel Cost
Output: List of enumerated predicates enumPred

1 enumPred = empty list, subExp = true
2 for predicate Pi in allPred \ enumPred do
3 if Pi ∧ subExp does not lead to 0-TS then
4 p(Pi|subExp) = Cnt(Pi∧subExp,S)

Cnt(subExp,S)
5 else estimate p(Pi|subExp) acc. to first or second phase of Algorithm 2
6 Add Pi with lowest p(Pi|subExp)−1

Cost(Pi) to enumPred
7 Set subExp = Pi ∧ subExp

8 return enumPred

we estimate the selectivity of the first subexpression resulting in a 0-TS. However, be-
sides p(D|ABC) = p(ABC|D)∗p(D)

p(ABC) , we also provide estimates for p(E|ABC), p(F |ABC),
and p(G|ABC). According to Algorithm 3, Line 6, we choose the one with smallest
rank [Hel98], e.g., p(D|ABC). Assuming we have qualifying tuples for the combined
subexpression over EFG, we start the second phase and otherwise fall back to AVI (Al-
gorithm 2, Line 16). In the second phase, we estimate p(E|ABC) and do the same for
p(F |ABC), p(G|ABC), while assuming the only independence: p(∗|ABC)=p(∗|ABCD).
If p(E|ABC) has the best selectivity to cost ratio, we continue with p(FE|ABC), etc.,
where all combinations of residual predicates (e.g., the subexpression overFE) are treated
as a single predicate. We only call Brent’s method for subexpressions that are expected to
reduce the number of qualifying sample tuples, i.e. only if p(FE) < p(F).

Although we use the Greedy Heuristic, we are not limited to it. The optimizer might enu-
merate the predicates according to any policy (e.g., using dynamic programming [KM16])
while continuously consulting Algorithm 2 for subexpressions that lead to a 0-TS.

Discussion k=1

In Section 2.3.3, we discuss the unbiased estimate (median) of the result size l in 0-TS
(k = 0). Interestingly, following the same rationale when exactly one tuple qualifies in
the sample leads to the unbiased estimate of l for k= 1. If k= 1 is observed, we assume
a 50% chance of observing one or more qualifying sample tuples and a 50% chance of
observing less than one, i.e.

Pr[X < k = 1] ≥ 0.5 and Pr[X ≥ k = 1] ≥ 0.5
⇐⇒ Pr[X = k = 0] = Pr[X ≥ k = 1] = 0.5

From Equation (2.10), we conclude that l = n ln(2)
m is the unbiased estimate when exactly

one sample tuple qualifies. Our experiments show that estimating the selectivity as ln(2)
m

instead of 1
m is most beneficial for skewed distributions, which is in perfect agreement

with the common rule of thumb that the median better represents data centrality than
the mean. Since using the median consistently reduces the maximum estimation error (cf.
Section 2.3.5), we add the following lines, shown in Patch 1, to Algorithm 2.

2.3 Beta Estimator for 0-Tuple-Situations 45

Patch 1: special case k = 1
3.a if Cnt(Pall, S) = 1 then // k = 1
3.b return ln(2)/m

2.3.5 Evaluation

Real-world data. Our evaluation relies on three real-world data sets that cover different
challenges for selectivity estimation, such as varying distinct values, predicate correla-
tions, and data skew.

1. Forest (Frt): The forest data set [L+13] comprises a moderate number of 580k tu-
ples across 55 attributes and has been used in previous work [DWN+19, GKTD05,
HKM15, MMK18]. Due to its popularity and balanced mixture of challenging data
characteristics, we reuse this data set throughout this chapter to provide a consistent
evaluation and a fair comparison to the related work.

2. Weather (Wtr): Weather subsumes observations of the daily global historic climatology
network [MDV+12], yielding more than 3.4M tuples across seven attributes. Queries
over this data emphasize the attribute value independence and generally lead to
very few result tuples – thus imitating point queries.

3. Anonymized customer data (Acd): Holds anonymized business data from a real-world
customer application. It provides over 13.9M tuples across 24 attributes. This data
entails strong correlation across some attributes and enables us to assess the real-life
cost of sub-optimal plans due to the 0-TS.

Synthetic Data. In order to systematically analyze the effect of skew and correlation, we
additionally generate six synthetic data sets containing n = 106 tuples and three attributes
each. The first attribute is the key in every table. The remaining attributes are generated
according to ⌊rndexp,λ ∗ n+ s⌋ modn, where rndexp,λ generates exponentially distributed
floating point numbers in [0, 1] and s adds a shift. Using λ = {1, 5, 10}, we are able to
modify skew from mildly non-uniform (λ = 1) to highly skewed (λ = 10). While the
second attribute is not shifted (s = 0), the third attribute is shifted by s = 0.5 ∗ 106. Since
the third attribute is a shifted copy of the second, both attributes are highly correlated. To
evaluate the effect of attribute correlations, we replicate each table and randomly shuffle
each column.

Workload. In line with the related work, we execute 10,000 random range queries with r
predicates according to the following pattern:

SELECT * FROM data_set WHERE
attribute A1 BETWEEN value v⊥

1 AND value v⊤
1 AND

· · ·
attribute Ar BETWEEN value v⊥

r AND value v⊤
r

After randomly choosing subsets of attributes, range predicates are generated from two
uniformly and randomly selected values from the attribute’s domain. In line with other
work and to avoid any interference with the q-error-metric (cf. Appendix A.2), we only
generate queries with non-empty result sets.

46 Chapter 2 Select (-Project) Stage

We apply seven predicates for the real-world data (bound by Weather data set) and three
predicates for the synthetic data. Interestingly, due to the low distinct count of some
real-world attributes, 12% to 40% of the predicates are effectively of type equal.

Lightweight Estimators. We identified the following heuristics, commonly used in 0-TS.
We denote pr the fraction of qualifying sample tuples over the rth attribute and return
the traditional estimate k

m if at least one sample tuple qualifies.

1. Attribute Value Independence (AVI): Assumes complete independence among all pred-
icates and returns:

∏d
r=1(pr).

2. Exponential Backoff (EBO): Is a heuristic by Microsoft [SQLb] that only considers the

four most selective predicates and estimates: p(1)∗p1/2
(2) ∗p1/4

(3) ∗p1/8
(4) , with p(r) ≤ p(r+1).

3. Min Sel: “Returns the combined selectivity as the minimum selectivity across indi-
vidual attributes” [DWN+19].

4. Optimistic Sampling (Opt): Can be considered as a technical workaround “to prevent
faulty prunings in query plans” [MMK18]. It estimates one qualifying result tuple,
thus returning 1/|R|.

5. Pessimistic Sampling (Pess): Is used in our evaluation to complement Pessimistic Sam-
pling, it returns 1/|S|.

6. Unbiased Estimator (ln(2)
2m): The unbiased estimate in 0-TS as described in Section 2.3.3.

Note that the Lightweight Estimators 4-6 are independent of individual predicates. That
is, they always return a constant estimate and thus cannot be used for predicate enumer-
ation where individual estimates for sub-expressions are necessary.

Heavyweight Estimators. For the Forest workload, we asked authors of three state-of-
the-art cardinality estimators to directly evaluate or assist with the evaluation of their
approaches. We thank the authors of [MMK18, WHT+19, HKM15] for supporting the
comparison. The respective approaches have been discussed in Section 2.2 and can be
summarized as follows:

1. Artificial Neural Network (ANN): A modern ML approach capable of learning arbi-
trary functions. The best model configuration, described in [WHT+19], is trained
on 40,000 separate queries that are similar to the evaluated queries.

2. CSE: Combines sampling with multi-dimensional histograms, using the Maximum
Entropy approach [MHK+07]. CSE is not exclusively designed for 0-TS and may
return different estimates than k/m, regardless of qualifying sample tuples.

3. Kernel Density Estimator (KDE): A sample-based approach tailored for numerical data.
Each sample tuple of r attributes marks a point in an r-dimensional space. The KDE
model assigns a high probability to regions of high density and approximates the
selectivity of new queries by their distance to the high density regions.

2.3 Beta Estimator for 0-Tuple-Situations 47

0 2000 4000 6000 8000 10000
Query

100

101

102

Q
-E

rr
or

empty samples: 5008CSE
KDE
ANN
Beta Estimator

Figure 2.11: Evaluation of advanced estimators on Forest using 5,810 sample tuples (1%).

Estimation Accuracy

As a first experiment, Figure 2.11 compares the q-error distribution of the Heavyweight
Estimators to the Beta Estimator (our approach). We sort the 10k individual q-errors of each
estimator in ascending order and plot them on a logarithmic scale. Based on a moderate
sample fraction of 1% the Beta Estimator outperforms the Heavyweight Estimators with
regard to the average and maximum q-error. However, there is no clear picture when
comparing the Heavyweight Estimators to each other. While KDE outperforms ANN and
CSE on a majority of the queries, it entails significantly worse outliers.

A comprehensive evaluation of all estimators can be found in Table 2.3. In line with Fig-
ure 2.11 the table provides the average and maximum q-error of 10,000 queries over the
Forest data set with respect to the sample size. When using small samples, a vast majority
of queries are entailed with non-qualifying samples. As expected, greater sample sizes

Sample m = 103 (0.2%) m = 2∗103 (0.4%) m = 5.8∗103 (1%) m = 104 (2%)
avg max avg max avg max avg max

AVI 18.51 12372 14.24 10179 12.81 10514 10.41 2926
EBO 438.83 8517 348.18 73993 336.48 75902 305.05 48563
MinSel 2259.03 160360 1825.85 142638 1769.59 146603 1652.21 132602
Pess 98.36 581 40.6 290 14.39 100 7.56 50
Opt 72.25 2926 34.99 1321 12.95 744 7.37 261
ANN 6.07 854 6.07 854 6.07 854 6.07 854
CSE 9.21 3144 - - 7.77 1178 - -
KDE 26.17 5635 25.25 4024 23.79 3757 23.13 3650
ln(2)
2m 28.63 201 14.87 201 5.83 69 3.5 35

Beta 6.7 315 5.17 111 3.49 93 2.86 89
0-TS 70% of queries 64% of queries 50% of queries 42% of queries

Table 2.3: Forest data set – average (avg) and maximum (max) q-error of 10,000 queries.

48 Chapter 2 Select (-Project) Stage

0 2000 4000 6000 8000 10000
Query

100

101

102

103

Q
-E

rr
or

empty samples: 3119

AVI
Optimistic Sampling
Pessimistic Sampling
Unbiased Estimator
Beta Estimator

(a) Acd – using 13,919 sample tuples (0.1%).

0 2000 4000 6000 8000 10000
Query

100

101

102

103

Q
-E

rr
or

empty samples: 9177

AVI
Optimistic Sampling
Pessimistic Sampling
Unbiased Estimator
Beta Estimator

(b) Weather – using 34,751 sample tuples (1%).

Figure 2.12: Q-error of 10,000 queries sorted in ascending order.

increase the probability of having at least one qualifying sample tuple. Across all esti-
mators and sample sizes, the Beta Estimator achieves the best or second-best accuracy. In
line with our theoretical considerations, the Unbiased Estimator strikes the middle ground
between under- and overestimation and consistently outperforms other lightweight esti-
mators. While the estimates from EBO and MinSel are far off, it remains unclear whether
AVI improves over returning a traditional constant in 0-TS (Pess, Opt).
In line with the related work [DWN+19], machine learning well captures attribute corre-
lations and outperforms sampling when it falls back to AVI in 0-TS. However, using the
Beta Estimator instead, reveals that sampling becomes competitive with moderate sample
sizes and outperforms ANN when medium-sized samples are provided.
We observe that the CSE approach improves over the Lightweight Estimators while there
is no clear picture for KDE which appears less affected by the sample size.

Robustness. Real-world data is known to vastly differ in the number of distinct values,
correlations, and skew. This fact, as can be seen in Figure 2.12, results in a strong perfor-
mance deviation of the Lightweight Estimators with regard to the anonymized customer
and weather data. While Pessimistic Sampling and the Unbiased Estimate clearly outper-
form Optimistic Sampling and AVI on the anonymized customer data (Figure 2.12a), they
fall short on the weather data (Figure 2.12b). Both Optimistic Sampling and AVI show
a considerably stronger performance on the weather data compared to the anonymized
customer data. Note that the forest data (Table 2.3) reveals yet another performance shift.
However, the Beta Estimator consistently outperforms all Lightweight Estimators by achiev-
ing the overall best accuracy. Further, note that besides a relatively large sample size of
35k tuples (1%) on the weather data and 14k tuples (0.1%) on the anonymized customer
data, we see that 90%, and 30% respectively, of the queries lead to empty samples.

Synthetic data. To highlight the robustness of our scheme we analyze synthetic data and
scale down the number of predicates. The average and maximum q-errors for a sample
fraction of 1% on the synthetic data are reported in Table 2.4 and Table 2.5. We omit the
results of Exponential Backoff and Min Sel as they are far off in 0-TS. Estimates for k = 1 (1-
TS) are separated for the median ln(2)

m (used in our approach) and the traditional estimate
1
m . For k > 1 there is no difference. With regard to different levels of skew (λ), we note:

2.3 Beta Estimator for 0-Tuple-Situations 49

0-TS 1-TS k > 1
λ Beta AVI Pess Opt ln(2)

2m
ln(2)

m 1/m k/m

1
µ 4.71 11.41 10.67 61.13 4.95 2.68 2.43 1.13
↑ 35 1046 100 501 35 35 50 12

5
µ 4.5 32.31 12.15 53.25 5.25 3.20 3.38 1.14
↑ 41 6736 100 485 35 69 100 9

10
µ 5.46 32.21 26.09 26.53 9.46 3.77 4.85 1.26
↑ 35 6047 100 483 34 69 100 14

Table 2.4: Uncorrelated – average (µ) and max. (↑) q-error.

0-TS 1-TS k > 1
λ Beta AVI Pess Opt ln(2)

2m
ln(2)

m 1/m k/m

1
µ 4.57 1914.5 8.01 79.28 4.51 3.07 2.65 1.18
↑ 35 41715 100 593 35 69 100 22

5
µ 4.56 1095.19 8.08 74.43 4.41 2.66 2.43 1.2
↑ 39 43886 100 526 35 35 50 18

10
µ 6.56 234.05 18.46 42.22 7.19 2.95 2.99 1.24
↑ 38 83002 100 590 35 35 50 14

Table 2.5: Correlated – average (µ) and max. (↑) q-error.

(1) The average q-error of AVI competes with Pessimistic Sampling for the mildly skewed
uncorrelated distribution and fails – as expected – in the presence of correlation. The
maximum q-error of AVI is strongly affected by skew. (2) Optimistic Sampling improves
with increasing skew as true selectivities become smaller. (3) Pessimistic Sampling is the
second-best approach, providing a constant maximum q-error. (4) The Beta Estimator and
the Unbiased Estimator are mostly unaffected by correlation and skew, and consistently
achieve the best accuracy. (5) Using the median when k = 1 (1-TS) is most beneficial
for skewed data, supporting the intuition that the median better represents data central-
ity than the traditional estimate of the mean. The median consistently shows a smaller
maximum q-error. (6) For k > 1, the traditional estimate is – no matter the skew and
correlation – precise and shows a small average and maximum error.

Effect of Predicate Order. Although we enumerate predicates according to the Greedy
Heuristic [BMM+04], the basic implementation of the Beta Estimator (Algorithm 2) takes a
fixed order of predicates and processes one after another. If a combination of subexpres-
sions leads to a non-qualifying sample, we call Algorithm 1 and continue with the partial
estimate. Changing the initial order of predicates potentially affects the execution struc-
ture of our algorithm, which may lead to different estimates. Therefore, we investigate
the following enumeration policies, commonly used for filter ordering:

1. Ascending (ASC): Predicates are ordered ascending, according to their individual
selectivities.

2. Greedy Heuristic (GH): Predicates are sorted according to their rank [Hel98], i.e.
using conditional selectivities.

3. Dynamic Programming (DP): Returns the optimal order of predicates with regard
to the cost model.

50 Chapter 2 Select (-Project) Stage

ASC GH DP Best Worst AVI

Frt 1%
µ 3.45 3.49 3.47 1.87 8.41 12.82
↑ 108 93 94 69 217 10514

Acd 1%
µ 1.87 1.84 1.83 1.66 3.30 151.46
↑ 192 192 192 41.5 296 180020

Wtr 1%
µ 5.18 5.11 5.11 3.53 18.59 9.81
↑ 69 69 69 69 84 7203

Table 2.6: Filter orderings – avg. (µ) and max. (↑) q-error.

Table 2.6 comprises the effect of different enumeration policies based on the real-world
data workload with seven predicates and a sample fraction of 1%. We observe a negli-
gible deviation of the average q-error and a marginal difference of the maximum q-error
for ASC, GH, and DP. To assess the maximum individual q-errors we run each of the
10k queries with all 5040 (7!) possible predicate permutations on the respective data set.
Therefore, Table 2.6 reports the average and maximum q-error of the best and worst pred-
icate orderings. Despite the considerable difference to the best predicate order, using the
single worst enumeration for every query still performs well in comparison to AVI.

Intermediate Size and Response Time

Intermediate Size. As described in Section 2.3.4, we implement the Beta Estimator in
combination with the Greedy Heuristic (Algorithm 3), considering both, correlations and
the cost model. Therefore, we enable the enumerator to handle 0-TS. The extended algo-
rithm (Beta+GH) is compared to a basic enumerator, arranging predicates in ascending
order along their single selectivities (AVI+ASC). Since the enumeration effort of Beta+GH
might not meet the runtime savings when intermediate results are very small already, we
additionally evaluate the following approach:

Early Break is a hybrid approach that enumerates predicates according to Beta+GH until
the estimated cardinality of an intermediate result falls below 1,000 tuples. The remaining
predicates are enumerated using AVI+ASC, thus without calling the optimization routine
entailed by Brent’s method (cf. Algorithm 1).

Table 2.7 comprises the cumulative number of intermediate result tuples for queries that
lead to 0-TS, depending on the enumeration strategy and sample size. The fraction of
queries leading to a 0-TS is given on the right. We observe a significant reduction in the
number of intermediate result tuples for the anonymized customer data, while the impact
of our scheme is far less pronounced on the forest and weather data set. These results are
in line with the estimation accuracy (cf. Sec. 2.3.5) where AVI performs comparatively
well on the forest and weather data and significantly worse on the anonymized customer
data due to more complex attribute correlations.
When using Early Break at an estimated number of 1,000 intermediate result tuples, we
notice a minor effect on plan quality in comparison to Beta+GH. However, there is no
clear picture since Early Break performs marginally worse on Forest, Weather, and slightly
better on the anonymized customer data.

Query response time. To assess the cost of sub-optimal plans in 0-TS on SAP HANA, we
consider filters with seven predicates using the types equal and range. However, note
that – from a sample perspective – the predicate type does not matter as a sample tuple
either satisfies a (sub)expression or not (cf. Sec. 2.3.2). That is, conjunctive filters only
differ in the degree of correlation among their subexpressions. In line with the reduction

2.3 Beta Estimator for 0-Tuple-Situations 51

AVI+ASC Beta+GH Early Break 0-TS
Frt 1k 175,074,226 166,036,137 166,064,336 70%
Frt 1% 100,483,366 93,513,808 93,519,627 50%
Acd 1k 430,172,313 315,340,600 315,197,293 55%
Acd 0.1% 149,855,639 101,975,156 101,937,513 31%
Wtr 1k 102,084,560 99,723,991 99,729,249 99%
Wtr 1% 73,180,481 70,002,332 70,006,279 92%

Table 2.7: Number of intermediate result tuples in 0-TS.

of intermediate result sizes on the anonymized customer data, we achieve a speed-up
of 1.368x in query response time on SAP HANA when evaluating filters with correlated
predicates. This includes sampling and optimization time as SAP HANA natively ap-
plies sampling at query time [SAP]. Apart from the better predicate order, the improved
estimates guide the optimizer towards more efficient scan operators, e.g. by triggering
just-in-time compilation. In the best-case scenario where two completely anti-correlated
predicates already lead to an empty result set, we achieve a speed-up of 1.738x on SAP
HANA. In the worst-case scenario with mostly independent predicates and therefore no
correlation to exploit, we still observe a marginal end-to-end speed-up of 1.016x.
As we are constrained to reporting relative speed-ups for SAP HANA, we decided to
evaluate the execution time of our plans with a varying number of single predicates
(atoms) on MonetDB [Mon]. Here we assume access to a sample of 1k tuples. Recent
work of Birler et al. [BRN20] shows that an offline sample can be maintained with vir-
tually no overhead. Evaluating the sample takes ≪ 1ms. We enumerate the predicates
according to our scheme (Beta+GH) and the traditional heuristic (AVI+ASC). The final
plans are executed in MonetDB, running on a 64-bit Linux machine with a single socket
Intel Core i7-6700 CPU and 16GiB of main memory.
While the combined predicates lead to an empty sample (0-TS), the respective result sets
contain between 13 and 562 tuples. Our filter predicates cover a wide spectrum of cor-
relations: Two single predicates are strongly anti-correlated and heavily reduce the in-
termediate result size. These atoms are part of each filter, with one having the small-
est and one having the largest single selectivity. The remaining predicates are either
strongly correlated or mainly independent. Figure 2.13 demonstrates the cost of sub-
optimal plans. Our scheme applies the two anti-correlated atoms as early as possible. In
contrast, AVI+ASC only considers individual selectivities and postpones one of the anti-
correlated predicates to the very end. While there is no difference for two predicates,
accounting for correlations becomes crucial with an increasing number of atoms.

2 atoms 3 atoms 4 atoms 5 atoms 6 atoms 7 atoms
0

20

40

60

80

100

120

ex
ec

ut
io

n
tim

e
in

 [m
s]

71.7 71.5 71.7 71.6 71.7 71.771.5

88.4

98.5
104.5

109.8
116.6Beta + GH AVI + ASC

Figure 2.13: Execution time of conjunctive filters in MonetDB.

52 Chapter 2 Select (-Project) Stage

Frt 1k Frt 1% Acd 1k Acd 0.1% Wtr 1%

Fixed
µ 36.55 30.6 33.0 26.5 25.36
↑ 127 93 134 95 69

GH
µ 115.79 86.17 60.99 49.9 110.05
↑ 774 679 622 559 678

Early-
Break

µ 49.52 38.78 52.72 29.96 29.76
↑ 172 132 372 156 107

Table 2.8: Specific overhead of our scheme entailed by Brent’s method – avg. (µ) and
max. (↑) time in [µs] for seven atoms.

Optimization overhead. We report the optimization overhead that is specific to our ap-
proach. In particular, we exclude sampling and predicate evaluation over the sample
as it is done in any case on SAP HANA. The specific optimization overhead of our ap-
proach, therefore, is virtually completely consumed by Brent’s method. That is, the real
implementation provides a bitvector for each predicate, representing qualifying sample
tuples where additional intersections of bitvectors, necessary to combine subexpressions,
are negligible (< 1µs). Accordingly, there is no additional overhead in case of non-empty
samples. As a reminder: Algorithm 2 (Section 2.3.4) takes a predetermined plan and calls
Brent’s method at most twice (Line 18 and 27). The extended version additionally ap-
plies predicate enumeration and calls Brent’s method according to the Greedy Heuristic
(GH) and the number of qualifying subexpressions. Early Break starts identically to the
extended algorithm and enumerates remaining predicates according to their single selec-
tivities if the estimated intermediate size is small. Table 2.8 reports the respective exe-
cution time, using C++ Boost’s single threaded implementation of Brent’s method [cpp].
Without using Early Break, our algorithm has to deal with an increasing uncertainty for
small (estimated) intermediate results. Increasing the sample size reduces the overhead
of Brent’s method due to tighter bounds (smaller search space).

Lesson Learned

The Beta Estimator presents a novel approach that derives more precise selectivity esti-
mates when no sample tuple matches the filter while preserving strong points of tradi-
tional sampling. Given access to a sample, our scheme allows seamless integration into
any generic plan enumerator. To handle 0-TS, we take the certainty of estimates and cor-
relations of subexpressions into account and demonstrate a substantially improved esti-
mation accuracy. While there has not yet been a single best heuristic in 0-TS, our novel
selectivity estimator proves to be robust with respect to the data distribution. Our experi-
ments on a real-world customer application show that the marginal estimation overhead
of less than 1% is well amortized by considerably faster query execution times.

2.4 CUSTOMIZED SAMPLING TECHNIQUES

In the previous sections, we discussed statistical properties, limitations, and novel con-
cepts of sampling-based cardinality estimation. So far, we assumed that a sample is pro-
vided by the underlying optimization infrastructure of the database management system
(DBMS). However, sample generation is not free and requires a careful trade off between
space, time, and freshness of the sampled data. While ad-hoc sampling is feasible on in-
memory systems due to efficient random accesses, it is generally considered in-practical

2.4 Customized Sampling Techniques 53

to sample from fresh data at query time on disk-based systems. For instance, Birler et
al. [BRN20] use Reservoir Sampling to trade-off strict data freshness in order to maintain
base table samples on a disk-centric DBMS.

In this section, and in line with modern systems (e.g. [Oraa, SAP]), we focus on ad-hoc
sampling on in-memory systems. In this regime, a sample is retrieved from fresh data at
query time and only stored for the lifetime of the query to limit the memory footprint. As
we apply sampling on a per-query basis, we are able to gracefully modify the sampling
process according to the current workload characteristics and storage layout. Depending
on the storage layout, we treat sampling like query execution by exploiting certain access
patterns and use common database objects such as indices, zone-maps, and histograms.
In particular, we propose the following customized sampling techniques:

Focused Sampling: a new approach to accelerate sampling by exploiting the column-
store format. Focused Sampling achieves the same estimation quality as traditional
sampling while reducing the number of random accesses.

Conditional Sampling: employs any index structure to sample more meaningful tuples
and therefore increase estimation accuracy. Conditional Sampling especially miti-
gates poor estimates for highly selective filters by increasing the number of qualify-
ing sample tuples in comparison to traditional sampling.

As will be discussed in a decision guideline (Section 2.4.4), our sampling techniques can
be combined to increase sampling speed or estimation accuracy. In particular, our pro-
posed techniques help with an upfront reduction of the challenging 0-Tuple-Situations
(cf. Section 2.1). In line with Section 2.3.5, our sampling experiments are carried out on
the forest data set, using 10,000 random range queries with r predicates (atoms).

2.4.1 Focused Sampling

Although sampling might be reasonably fast for in-memory systems due to efficient ran-
dom access, ad-hoc sampling entails a considerably stronger space and time overhead in
comparison to histograms. In the following, we describe an online sampling approach
that provides fast estimates from fresh data stored in a columnar fashion.

Instead of materializing tuples—referenced by sampled tuple identifiers (TIDs)—and
evaluating the filter on the materialized sample afterward, we directly evaluate the filter
predicates over the respective base columns of the tuples. The advantages are two-fold:

Figure 2.14: Pages of base table referenced by random tuple identifiers (TIDs). Grey parts
are not accessed.

54 Chapter 2 Select (-Project) Stage

Firstly, there is no necessity to duplicate or update tuples separately from the base table.
Second, we potentially skip page accesses for conjunctive filters: Given a conjunctive fil-
ter of four predicates, we skip the evaluation of three predicates if the respective attribute
of the random tuple does not qualify the first predicate. This is especially appealing for
in-memory column stores where different attributes of one tuple are stored across differ-
ent pages. Thus, the number of random page accesses can be effectively reduced during
the sampling process.
The example given in Figure 2.14 summarizes our core idea and demonstrates that we
skip half of the random accesses due to non-qualifying values (depicted in red font) of
the first attributes. Similar to traditional sampling, we divide the number of qualifying
tuples by the total number of sample tuples, giving a selectivity estimate of 1/6 for the
conjunctive filter. To bypass the overhead of generating random numbers (TIDs), a vector
of n random numbers is generated only once. Accordingly, each query evaluated over
a sample of size k uses the same first k TIDs of the vector. Note, the random vector re-
quires just a fraction of the memory consumed by an equally sized materialized sample
with all attributes (1/55 in case of forest data) and only needs to be updated if the base
table cardinality and therefore the sample space changes.

Evaluation: For different sample sizes from 1,000 to 11,000 tuples and filters with r con-
junctive predicates, r ∈ {3, 5, 7}, we measure the cumulative estimation time for 10,000
random range queries according to the following approaches:

(1) traditional: Generate random TIDs and copy attribute values of r columns, refer-
enced by the TIDs. Evaluate r filter predicates over the materialized sample.

(2) trad. – fixed TIDs: Same as (1), but instead, random TIDs are generated only once
for each query.

(3) focused – w/o enumeration: Filter predicates are evaluated over table tuples, refer-
enced by (fixed) random TIDs, while skipping unnecessary accesses (cf. Fig. 2.14).

(4) focused – with enumeration: Same as (3), but the filter predicates are sorted in as-
cending order according to their single selectivity, e.g. using histograms, to skip
random accesses as early as possible.

In this evaluation, we use a custom storage engine implementation that imitates a mod-
ern in-memory column store. Again, we run all experiments on a 64-bit Linux machine
with an Intel i7-6700 CPU and share the implementation*.

1 3 5 7 9 11
0

1

2

3

4

ru
nt

im
e

in
 [s

]

3 predicates
traditional
trad. - fixed tids

3 5 7 9 11
sample size in [103]

5 predicates
foc. - w/o enum.
foc. - w/ enum.

3 5 7 9 11

7 predicates

Figure 2.15: Cumulative sampling time for 10,000 queries.

*https://github.com/axhertz/SimplicityDoneRight

2.4 Customized Sampling Techniques 55

https://github.com/axhertz/SimplicityDoneRight

As can be seen in Figure 2.15, reusing random TIDs drastically reduces the required es-
timation time. Besides circumventing the generation overhead, fixed random TIDs in-
crease the probability of accessing cached values. Further, evaluating the filter predicates
directly over the base table and skipping accesses by focusing on references that still may
contribute qualifying tuples, consistently demonstrates fast estimates. Prioritizing se-
lective predicates achieves a speedup of 65% on our focused approach. Irrespective of
the number of predicates, starting with the most selective predicates results in an aver-
age estimation latency of 7µs using 103 random TIDs and around 100µs for 104 random
TIDs. The gap between the reported methods continues to widen as filters become more
complex —a likely scenario in real-world applications [VHF+18].

2.4.2 Conditional Sampling

To improve estimation accuracy, we integrate common index (or index-like) structures.
Thus, our conditional sampling approach can be seen as a conceptual extension of index-
based join sampling [LRG+17] to filter selectivity estimation.

Let q := A=1 ∧B=2 ∧C=3 ∧D=4 be a conjunctive filter over the attributes A, B, C, D.
Assuming an available index for attribute A, we proceed as follows: Using the index, we
sample TIDs of tuples that qualify the respective predicate A = 1, uniformly at random.
Similar to our focused sampling approach, we access and count the qualifying tuples for
the subexpression B=2 ∧C=3 ∧D=4. This gives the conditional probability, that is the
fraction of tuples qualifying B = 2 ∧ C = 3 ∧ D= 4 under the condition A = 1. In other
words, we apply sampling to estimate the conditional probability p(B = 2, C = 3, D =
4|A=1). Since we are interested in the joint probability, we apply Bayes’ rule:

p(A=1, ..., D=4) = p(B=2, C=3, D=4|A=1)p(A=1),

where p(A=1) is given by a traditional histogram or by the index itself. Figure 2.16 sum-
marizes our core concept. Here, we revisit our example from Figure 2.14 and apply our
conditional sampling approach on top of focused sampling. Due to the predicate selec-
tivity p(A=1) = 0.5, we only need to consider half of the random TIDs. Since we already
know that the residual TIDs qualify A = 1, there is no need to access the respective at-
tribute. If we use the same number of random accesses as before, this approach virtually
increases the sample size by a factor of p(A = 1)−1 and therefore improves estimation
quality. Note, that the conditional sample is still a traditional random sample. Therefore,
all statistical characteristics including probabilistic bounds are preserved for estimating
p(B=2, C=3, D=4|A=1) and enumerating predicates over B,C,D, respectively.

Figure 2.16: Conditional Sampling.

56 Chapter 2 Select (-Project) Stage

103 5 * 103 104

sample size

100

101

102
q-

er
ro

r
traditional cond. - random pred.

cond. - most selective
cond. - random pred.
cond. - most selective

Figure 2.17: Estimation accuracy for 10,000 queries.

0-Tuple-Situation. Although, we may skip a highly selective predicate, the worst-case
of a (conditional) sample with no qualifying tuple remains an issue. Depending on the
workload scenario, we distinguish two cases: (1) If predicate enumeration is required,
e.g. due to very complex filter operations, we use Conditional Sampling without Focused
Sampling and apply the Beta Estimator according to Section 2.3.4. However, this requires
an index over the most selective predicate as our enumeration scheme starts with the
most selective predicate and enumerates the remaining predicates according to their cor-
relation with the first predicate (Algorithm 3). Since the Beta Estimator exploits additional
information from non-qualifying tuples, Focused Sampling cannot be applied. (2) If pred-
icate enumeration is not a concern (and data is stored in a columnar layout), we use
Conditional Sampling with Focused Sampling and apply the unbiased estimate according to
Section 2.3.3 to achieve the best accuracy when no further information is provided.

Evaluation: We consider a fixed budget of sampled tuples and analyze the effect of our
conditional sampling approach on estimation accuracy. Besides the traditional approach of
directly sampling for the joint probability, we analyze:

(1) conditional - random pred.: Using an index, we sample conditional TIDs (cf. Figure
2.16) for a randomly selected predicate of the conjunctive filter.

(2) conditional - most selective: An index is used to sample conditional TIDs for the
most selective predicate.

To measure estimation accuracy, we again use the q-error metric (cf. Section A.2) and
apply the unbiased estimate in case of a 0-Tuple-Situation (cf. Section 2.3.3).
Figure 2.17 comprises the q-error on a logarithmic scale for conjunctive queries with r = 5
predicates and three different sample sizes. The whiskers of each box span the 1% to 99%
quantile. While using an index for the targeted attribute of a randomly selected pred-
icate significantly improves over traditional sampling, we see a tremendous accuracy
boost when conditional TIDs are sampled for the most selective predicate. In fact, con-
ditional sampling with 1k tuples achieves a median q-error of 1.2 and outperforms tra-
ditional sampling using 10k tuples. Interestingly, if the selectivity of the predicate over
the indexed attribute falls below the sample fraction, the conditional sample explores all
qualifying tuples and thus gives an exact estimate.

Avoiding the 0-TS. From the previous sections, we know that estimation accuracy heav-
ily decreases for samples with few or no qualifying tuples. In line with Figure 2.17, Ta-
ble 2.9 shows that Conditional Sampling gracefully avoids 0-Tuple-Situations which in turn
translates to an improved estimation accuracy.

2.4 Customized Sampling Techniques 57

m = 103 m = 5 ∗ 103 m = 104

r = 3 r = 5 r = 7 r = 3 r = 5 r = 7 r = 3 r = 5 r = 7
traditional 4161 6388 7788 2226 4310 6045 141 2879 4488
random pred. 1396 3493 5511 702 1934 3471 467 1391 2649
most selective 233 1049 2357 52 247 674 11 103 270

Table 2.9: Number of 0-TS: Comparing traditional sampling with Conditional Sampling
using an index over a random predicate and the most selective predicate.

2.4.3 Zone Pruning

In addition to traditional indices, we can use zone-maps [SK13] to further prune sample
tuples. Zone-maps are independent table access structures commonly used in commer-
cial systems, e.g. [Orab]. A zone-map virtually divides a column into subsequent and
equally sized partitions and stores the minimal and maximum value of each partition.
Usually, zone-maps are used to skip data blocks that cannot satisfy the given predicate,
thus saving I/O. As zone-maps store information per zone instead of per row, they are
much more compact than traditional indices.

In line with our Focused Sampling approach, we can use zone-maps to prune certain TIDs
from our set of sampled TIDs. In particular, assuming zone-maps on each column that
is accessed by a conjunctive predicate consisting of r single predicates, we intersect the
valid zones for each predicate. Thereby, a zone is valid whenever there is a non-empty
overlap between the value range of the respective predicate and the min-max interval of
the zone. If a random TID lies within a zone that is invalid for at least one predicate, we
count the tuple as non-qualifying without having to access it.

To test the potential of zone-map-based sample pruning, we reevaluate our queries using
four zone-map configurations. Figure 2.18 reports the relative number of skipped sam-
ple tuples in comparison to traditional sampling (higher is better). In this experiment,
and resembling a row-oriented storage, we assume that a tuple is either fully sampled or
completely skipped. As can be seen in the figure, the amount of skips is mostly indepen-
dent of the number of predicates. We observe that using a moderately sized zone-map
with 1000 buckets already allows us to skip half of the sample tuples.

10 100 1000 2000
number of zones per attribute

0%

20%

40%

60%

80%

100%

sa
m

pl
es

 p
ru

ne
d

3 predicates 5 predicates 7 predicates

Figure 2.18: Pruning sample tuples using zone maps.

58 Chapter 2 Select (-Project) Stage

columnar store row store

index available
Focused Sampling -
Conditional Sampling Conditional Sampling
(Zone Pruning) (Zone Pruning)

index not available
Focused Sampling -
- -
(Zone Pruning) (Zone Pruning)

Table 2.10: Replacing or extending traditional sampling with customized techniques.

2.4.4 Discussion

Table 2.10 summarizes our sampling techniques and provides a general guideline with
regard to existing index structures and the storage layout. Compared to traditional sam-
pling, we can use our customized techniques to either decrease sampling time for a fixed
number of tuples or to improve estimation accuracy by sampling more tuples within the
same time frame. Depending on the index availability Conditional Sampling and Zone
Pruning can be applied to both a row- and column-oriented database. While Conditional
Sampling exploits traditional indices over individual attributes, Zone Pruning skips ran-
dom accesses by identifying and only accessing those partitions where all subexpres-
sions of the conjunctive filter can have potential matches. In contrast, Focused Sampling
exploits specific access patterns of a column-oriented storage. The vertical decomposi-
tion of attributes usually requires multiple page accesses to retrieve all values of a tuple.
Thereby, Focused Sampling skips random accesses once a value does not qualify the re-
spective subexpression of a conjunctive filter.

2.5 SUMMARY

In this chapter, we discussed advantages of sampling-based selectivity estimation and
demonstrated challenging aspects of highly selective, complex filter expressions. Thereby,
we distinguish two important scenarios in the context of SPJ query optimization:

(1) Sophisticated Predicate Enumeration. In hindsight of this chapter, we can apply sam-
pling for selectivity estimation and predicate enumeration. Based on a state-of-the-art in-
memory columnar store, we have seen that sophisticated filter predicate enumeration is
of paramount importance to reduce query response time – especially when dealing with
highly complex conjunctive filter predicates over large (denormalized) tables. To achieve
accurate selectivity estimates and a sophisticated predicate enumeration even for highly
selective conjunctive expressions, we proposed the Beta Estimator in Section 2.3. In case
of a 0-TS, the Beta Estimator takes information from non-qualifying samples into account
and estimates predicate correlations that cannot be directly observed. Using Algorithm 3
(Section 2.3.4), we sort single predicates of a conjunctive expression according to their
(anti-)correlation – either observed or estimated in case of a 0-TS. Given access to an in-
dex over the most selective (cost-effective) predicate, Conditional Sampling can be applied
in tandem with the Beta Estimator to reduce the number of 0-TS’s while still providing
a sophisticated predicate enumeration. However, as the Beta Estimator actively exploits
non-qualifying sample tuples, neither of the tuple-skipping techniques (Focused Sampling,
Zone Pruning) can be applied in this scenario.

2.5 Summary 59

(2) Selectivity Estimation For Join Enumeration. In foresight of Chapter 3, we can apply
base table filter selectivity estimates to employ a join cardinality upper bound for a pes-
simistic join enumeration concept. In these situations, we usually deal with moderately
sized tables that are normalized to some extent. As will be shown, precise filter selectiv-
ities are required for a downstream join enumeration rather than sophisticated predicate
ordering. That is, we use common heuristics or an already existing query optimization
infrastructure for predicate enumeration in favor of applying more of our customized
sampling techniques (Conditional Sampling, Focused Sampling, Zone Pruning) to decrease
sampling time or improve estimation accuracy by reducing the number of 0-TS.

60 Chapter 2 Select (-Project) Stage

3
JOIN STAGE: LOGICAL ENUMERATION

After addressing the requirements of robust query optimization within the select stage,
we shift our focus to robust join enumeration. Join enumeration is critical for efficient
analytical query processing and poses some of the most studied challenges in this field.
These challenges include:

(i) Optimization Time. One of the most crucial aspects is to keep the query optimization
time practical, which implies that the cost of optimizing a query should be outweighed by
the reduction in query execution time achieved through optimization. Unfortunately, this
problem is inherently difficult, as the search space grows exponentially with the number
of joins [Moe23]. To handle many-join-queries, optimizers often employ strategies to
restrict the search space and utilize fast-to-calculate statistics.

(ii) Database Updates. In real-world scenarios, databases are dynamic and constantly
evolving, with modifications to the schema and updates to the data. Robust query op-
timizers should be capable of adapting to these changes without compromising the effi-
ciency and reliability of the execution plans. In the same vein, a query optimizer should
be able to handle diverse data types seamlessly, ensuring consistent performance regard-
less of the underlying data representation.

(iii) Consistent Performance. After all, consistent performance ensures that users can
rely on the query optimizer to consistently deliver efficient execution plans, thereby max-
imizing the system’s overall throughput and responsiveness.

Addressing challenges (i) and (ii) is a strict requirement for real-life query optimizers, as
they must generate execution plans for all valid queries. To accomplish this, optimizers
often rely on heuristics that make simplifying assumptions about the data distribution
(cf. Section 1.3.3). However, these assumptions occasionally lead to poor planning deci-
sions and slow query responses, thus, failing to meet challenge (iii).
To achieve consistent performance, sophisticated approaches target more precise cardi-
nality estimates by building extensive secondary statistics. However, these approaches
either introduce impractical optimization overhead or do not fully support data and
schema updates. For example, join sampling can provide accurate join cardinality esti-
mates while supporting database updates, but the cost of sampling increases significantly
with a growing number of joins. On the contrary, machine learning models– once fully
trained– can offer precise estimates with minimal optimization time overhead. However,
they are prone to schema changes and data updates, limiting their applicability in a dy-
namic database environment.

61

To make robust join ordering practical even for complex queries, we present a novel up-
per bound based join ordering concept in this chapter. Our join ordering concept essen-
tially mitigates the potentially long optimization times of current approaches while pre-
serving the desirable traits of robust optimization. Therefore, we employ a customized
enumeration scheme in combination with a fast-to-calculate upper bound that is based
on precise filter selectivity estimates and rudimentary base table statistics. However, as
there is no such thing as a free lunch, our bounds might heavily overestimate the true join
cardinalities in comparison to related work. Consequently, our approach relies on hash
joins as they perform most consistently given large intermediate results [ZG90]. To lift
the full potential of our join concept, we separate logical join ordering from a fine-grained
physical join operator selection using a two-stage optimizer design. While this chapter is
dedicated to join ordering, Chapter 4 elaborates on physical join operator selection. To
underline the advantages of a two-stage optimizer design, we provide a comprehensive
and consistent evaluation in comparison to the traditional design in both chapters. In
summary, our guiding principles can be summarized as follows.

(1) Use pessimistic join ordering to prevent long-running queries. Without further
knowledge apply hash joins to account for (potentially) large intermediates.

(2) Learn from past query executions and refine the physical join operator selection
of the initial query execution plan based on previous experience (Chapter 4).

In the following, we provide an overview of related research and specifically examine a
recent upper bound approach based on sketches. Throughout this discussion, we empha-
size practical limitations of existing designs. To address these limitations, we introduce
a new upper-bound-driven pessimistic join ordering concept in Section 3.2 with more
technical details given in the appendix (A.4). Finally, in Section 3.3, we evaluate the ap-
plicability and effectiveness of our design by comparing it to state-of-the-art optimizers.

3.1 RELATED WORK

Join cardinality estimation has been intensively studied in the literature and continues to
be a topic of active research. With respect to Figure 3.1, we generally classify existing join
cardinality estimation strategies into the following categories:

Point Estimates: Query optimizers traditionally depend on unbiased cardinality estimates
to determine logical join orders and physical operator selections. That means that these
estimates can either overestimate or underestimate the true join cardinalities. However,
such unbiased point cardinality estimates often suffer from a high degree of impreci-
sion and uncertainty, particularly as the number of joins increases. Despite this, query
optimizers treat all input cardinalities as accurate and generate query plans without rec-
ognizing that these cardinality estimates usually become less reliable with more joins.
Consequently, achieving reliable plan quality requires increasing efforts to maintain suf-
ficiently precise join cardinality estimates.

Upper Bound Estimates: Alternatively, pessimistic approaches establish upper bounds
for intermediate relations, enabling the optimizer to reason based on these bounds. De-
pending on the available statistics, upper bound approaches indirectly account for the
uncertainty of join cardinalities by providing larger overestimates when uncertainty is
higher. By prioritizing more reliable (smaller) cardinalities, upper bound methods signif-
icantly reduce the risk of making disastrous planning decisions for the query optimizer.

62 Chapter 3 Join Stage: Logical Enumeration

Point Estimates Upper Bound

Two-Level
Join Sampling

slow but tight

sketch-based

fast but less tight

Join Cardinality
Estimation Approaches

Index-Based
Join Sampling

Ours

Join Sampling

data-
driven

workload-
driven

Machine Learning

Figure 3.1: Classification of different cardinality estimation approaches.

Next, we detail selected approaches of the point estimation regime. These approaches
encompass join sampling techniques that assess value distributions and join crossing cor-
relations using a subset of the available data. Additionally, we briefly reiterate machine
learning methods, which train mathematical models to predict unknown join cardinali-
ties of future queries. Subsequently, in Section 3.1.2, we delve into the details of upper
bound join cardinality approaches.

3.1.1 Point Estimates

Join Sampling. Judging from the advantages of sampling for filter selectivity estimation,
it seems appealing to apply sampling to join cardinality estimation as well. The basic idea
is to draw independent tuples from tables A,B each with a sampling probability p. The
sample tables SA, SB are then joined and divided by the squared sampling probability:

estimate(|A ▷◁ B|) = |SA ▷◁ SB|
p2

This is known as Bernoulli Sampling [HNSS96]. Unfortunately, this estimate can introduce
strong estimation errors as there is no statistically sound connection between joining two
independent base table samples and sampling tuples from the join result [CMN99], i.e.

sample(A) ▷◁ sample(B) ̸= sample(A ▷◁ B)

Vengerov et al. [VMZC15] noted that especially in a case of a 1:1 mapping of join values,
Bernoulli Sampling often fails to identify matching tuples since tuples in SA are selected
independent of those in SB . Therefore Vengerov et al., propose Correlated Sampling. Based
on a hash function, join values are mapped into the interval [0, 1] and are included in a
sample ŜA, ŜB whenever the hash value is smaller than the sampling probability p. Ac-
cordingly, applying the same hash function to both tables ensures the maximum number
of joining tuples for each sampled join value, giving the following estimate:

estimate_correlated(|A ▷◁ B|) = |ŜA ▷◁ ŜB|
p

It can be seen that in case of a 1:1 mapping of join values, Correlated Sampling degener-
ates to base table selectivity estimation since |SA ▷◁ SB|= |SA|= |SB|. However in the
other extreme case of only one distinct join value that is shared across both tables, Cor-
related Sampling –depending on the hash function– either selects all tuples from the base

3.1 Related Work 63

tables or none, thus rendering the estimate meaningless. To overcome the disadvantages
of Correlated and independent Bernoulli Sampling, Chen et al. [CY17] propose a Two-Level
Sampling approach. The first stage of this approach applies Correlated Sampling to identify
potential sample tuples with a guaranteed match in both tables. Based on these candi-
dates, independent Bernoulli Sampling is applied to select a subset of matching tuples for
each group of join values. While this hybrid approach works for single joins, the esti-
mation quality unfortunately heavily degrades already in case of two joins. To maintain
an acceptable quality, the sampling size has to be substantially increased, which in turn
affects sampling speed and therefore optimization time. To mitigate the join sampling
overhead to some degree, Index-Based Join Sampling [LRG+17] probes qualifying base ta-
ble samples against existing index structures. By using an index, random accesses can be
limited to the number of tuples that satisfy the join predicate. However, this estimator is
neither independent nor uniform [YKL+21].

Sketches. Other works like COMPASS [IDRS21] replace base table samples with compact
numerical representations, known as sketches, that encode information such as distinct
and frequency counts. Similar to join sampling, these sketches can vary in size and are
combined (joined) to estimate join intermediate result sizes.
Popular sketches include AGMS sketches and their variants [DGGR02, DGGR04, CY17].
While AGMS sketches –in line with join sampling– lack statistically sound characteristics
for multiple joins, Section 3.1.2 shows that the bound sketch of Cai et al. [CBS19] is able
to guarantee an upper bound cardinality for arbitrary joins.

Machine Learning. In addition, Neural Networks as mentioned in Section 2.2.3 are not
limited to filter selectivity estimation. Works like [KKR+19, WHT+19] apply this ma-
chine learning (ML) direction to join cardinality estimation. Besides a more complex
vector encoding of the given query, the core principles stay the same. Therefore, train-
ing pairs consist of a vector encoded query and the join cardinality output. The major
drawback of these models is the large corpus of queries required to train the model. Gen-
erating ground truth join cardinalities entails actual query execution and may take days
or weeks [W+20]. In case of frequent database updates, these models need to be periodi-
cally retrained –or even rebuild– to account for schema changes.
In contrast to workload-driven approaches, Hilprecht et al. [HSK+19] propose a novel
data-driven ML approach. Therefore, they develop so called Relational Sum Product Net-
works (RSPN), which are tree-like structures that partition individual tables into subsets,
such that all sibling leaf nodes represent different, uncorrelated attribute values. To es-
timate join cardinalities, attribute value counts from the leaf nodes are adequately com-
bined. However, with an increasing number of attributes, this approach becomes re-
source intensive [YKL+21] and inherits problems of other ML approaches such as the
missing support for categorical attributes.

3.1.2 Join Cardinality Upper Bound

Upper-bound-based query optimization prioritizes the avoidance of poor plans over se-
lecting the fastest plan, even at the cost of slightly suboptimal execution times. While
there exists a significant body of research (e.g. [AGM08, VV09, GLVV12]) on theoretical
join cardinality upper bounds, they received less attention in the context of cost-based
query optimization. However, Cai et al. successfully bridged the gap between theoreti-
cal research and practical implementation by integrating their recent sketch-based upper
bound technique [CBS19] into PostgreSQL. In the following, we provide more details
on this approach and use it in the course of this chapter to evaluate our pessimistic join
ordering concept.

64 Chapter 3 Join Stage: Logical Enumeration

x y
1 4
2 3
3 4
4 4
5 2
6 3
7 4

0 0

4 4

0 1

2 3

6 3

1 0
1 4

3 4

5 2

7 4

1 1

(a) Partitioning of table R over attributes x and y.

a b
2 7
2 6
3 5
4 4
4 3
3 2
4 1

0 0

2 6

4 4

0 1
2 7

4 3

4 1

1 0

3 2

1 1

3 5

(b) Partitioning of table S over attributes a and b.

Table 3.1: Partitioning of two tables R,S using the hash function %2 (modulo 2).

The sketch-based upper bound join ordering of Cai et al. [CBS19] uses small table rep-
resentations (sketches) to capture maximum frequency counts of join values. These ta-
ble representations are then combined (joined) to derive join cardinalitiy upper bounds.
Based on these upper bounds for join intermediate results, a generic enumeration al-
gorithm is applied to determine the final join order. For convenience, we explain the
upper bound calculation according to an example shown in Table 3.1. The example de-
picts two tables R,S, each with two join attributes R.x,R.y and S.a, S.b. In the first step,
both tables are partitioned by a hash function. In our example, we use ’%2’ (modulo 2)
as a partitioning hash function. Based on the two join attributes, each table is divided
into four partitions that represent the respective combination of even and uneven hash
values. Then, sketches are derived by storing the number of tuples for each partition in
matrices cR, cS . Additionally, for each partition, matrices dR[x], dR[y], dS [a], dS [b] store the
maximum frequency of a single attribute value. The respective matrices are as follows:

cR =
(

1 2
4 0

)
, dR[x] =

(
1 1
1 0

)
, dR[y] =

(
1 2
3 0

)

cS =
(

2 3
1 1

)
, dS [a] =

(
1 2
1 1

)
, dS [b] =

(
1 1
1 1

)

The number of entries for each matrix is therefore dictated by the number of hash par-
titions. For instance, the 1 as the first entry of cR means that the partition of relation R
–where values for both columns are even– contains only one entry. Accordingly, the 4 in
the bottom left of the matrix tells us, that there are 4 entries in the partition where x is
odd and y is even. Regarding the maximum frequency counts: dR[y] for example, tells us
the frequency of the most frequent values in R.y depending on the hash partition. Since
value 4 occurs three times in the third partition of R, the bottom left entry of dR[y] is 3.
With matrices cR, cS , dR[x], dR[y], dS [a], dS [b], we have the necessary sketches to calculate
an upper bound for joining R with S. Let R ▷◁y=a S be the join of tables R and S where
R.y = S.a. To calculate an upper bound for |R ▷◁y=a S|, we can multiply the correspond-
ing values of sketch matrices cR and dS [a] and sum up their results. For instance, the first
entry of cR is multiplied with the first row of dS [a] as it is only possible to join tuples with
the same hash value. According to the example, combining cR and dS [a] gives:

(1 ∗ 1 + 1 ∗ 2) + (2 ∗ 1 + 2 ∗ 1) + (4 ∗ 1 + 4 ∗ 2) + (0 ∗ 1 + 0 ∗ 1) = 19

3.1 Related Work 65

Figure 3.2: Sketch-based upper bound calculation and join enumeration [CBS19].

which is a much tighter bound than the worst-case assumption of the cartesian product
7 ∗ 7 = 49. However, instead of combining cR and dS [a], we may combine cS and dR[y] to
calculate the upper bound:

(2 ∗ 1 + 2 ∗ 3) + (3 ∗ 1 + 3 ∗ 3) + (1 ∗ 2 + 1 ∗ 0) + (1 ∗ 2 + 1 ∗ 0) = 24

While both upper bounds are valid, one is tighter than the other. To derive the final es-
timate Cai et al. take the minimum of all possible combinations and apply conditional
entropic formulas to further tighten the bound [AGM13].
Given the bound calculation, Figure 3.2 summarizes the core concept. First, sketches are
built for all tables accessed by the given query. In case of base table filters, sketch-building
requires a full table scan. Otherwise, pre-populated (cached) sketches can be used. De-
pending on the number of join attributes, table sketches either consist of single vectors
(one join attribute) or matrices (two join attributes). Second, sketches are combined to
derive upper bound join cardinalities for join intermediate results (subqueries). Based on
the (over-)estimated intermediate result sizes the final join order is determined.

Although (and as will be shown), the sketch-based upper bound approach of Cai et al.
achieves very reliable join orders, it becomes impractical for queries with lots of joins. In
particular, optimization time is heavily affected by (i) the full base table scan in case of
filter expressions, (ii) the number of possible sketch combinations for a single bound cal-
culation, and (iii) the number of subquery bounds required for a generic join enumerator.

3.2 UPPER BOUND JOIN ENUMERATION WITH SYNOPSIS (UES)

To comprehensively tackle the shortcomings of existing pessimistic join ordering con-
cepts, we introduce UES in this section. Our objective is to minimize the computational

66 Chapter 3 Join Stage: Logical Enumeration

overhead for calculating upper bounds –especially with regard to complex queries– while
still preserving the reliability of pessimistic join orders. To achieve scalability within the
number of joins our approach is based on three essential building blocks:

U-Block: Assuming basic attribute statistics and accurate filter selectivity estimates, we
demonstrate a simple, yet effective Upper bound for an arbitrary number of joins.
Our upper bound calculation neither requires base table scans nor sketch building.

E-Block: Appropriately Enumerating joins according to our upper bound prevents overly
optimistic (and sometimes disastrous) join orderings. Our customized enumeration
algorithm effectively prunes the search space of possible plans, and thus, reduces
the number of necessary bound calculations.

S-Block: To guarantee accurate selectivity estimates even for complex filters that are com-
monly found in SPJ queries and required by the U-block, we propose using our cus-
tomized Sampling strategies as discussed in Section 2.4. In case of less challenging
filter operations, other synopses such as standard histograms might be used.

3.2.1 U-Block: Simple Upper Bound for Joins

The first building block U includes a simple upper bound for an arbitrary number of
joins. To describe our upper bound, we start with a single join and discuss arbitrary joins
afterwards. Given the (estimated) cardinality of two (pre-filtered) tables, we calculate the
smallest number of distinct values each table can contain and assume as many joining
values as possible. Note, the naïve worst-case assumption expects both tables to share
the same single distinct value which leads to a join size equal to the cartesian product.
However, we use top-k statistics to narrow down the upper bound.

Figure 3.3 illustrates the core concept, using an example. The left-hand side depicts the
worst-case – used to derive the upper bound – constrained by the table statistics, while
the right-hand side depicts the actual join. Using table statistics, we denote MF(R.x),
MF(S.y), the maximum frequency a value can occur in attribute x, y of table R,S. Ac-
cording to the example, each value of the joining attributes can occur at most five times
and two times, respectively. Dividing the table cardinality by the maximum value fre-
quency gives the minimum number of distinct values. Thus, in the worst-case, σ(R.x)

Figure 3.3: Illustration of our upper bound (U-block).

3.2 Upper Bound Join Enumeration with Synopsis (UES) 67

contains two and σ(S.y) five distinct values. As both join partners need to have the same
value, we take min(2, 5) = 2 and multiply it with the respective frequencies. Although
the number of distinct values may differ in reality, the following inequality (upper bound)
holds true in any case:

|σ(R) ▷◁ σ(S)|≤ upper(|σ(R) ▷◁ σ(S)|)

= min
(|σ(R)|

MF(R.x) ,
|σ(S)|

MF(S.y)

)
∗ MF(R.x) ∗ MF(S.y)︸ ︷︷ ︸

=: MF(R ▷◁ S)

The right-hand side of Figure 3.3 gives an intuition of why the inequality holds: While
value a occurs with the respective maximum frequency in both tables, value b appears—
contrary to the assumption on the left-hand side—only two times. Thus, the former
bucket of σ(R.x), containing only value b is split into three buckets (with values b, c,
and d). Since the maximum value frequency in σ(S.y) can be at most MF(S.y) = 2, each
bucket in σ(R.x) is at most twice the size after the join. Hence, having three smaller buck-
ets of size 2 (value b), size 2 (value c), and size 1 (value d) in σ(R.x) that can expand by a
factor of at most two, we can never exceed the upper bound given by a single bucket of
size 5 (value b) that doubles its size after the join (cf. Figure 3.3). A more formal proof of
the upper bound characteristic can be found in the appendix (Section A.4).

Joining multiple tables. In case of multiple joins, we start by deriving the upper bound
for the first two (potentially pre-filtered) tables according to the stated inequality, giving
an estimate of |σ(R) ▷◁ σ(S)|. The upper bound after joining an additional table σ(T)
over attribute z, is given by:

upper(|(σ(R) ▷◁ σ(S)) ▷◁ σ(T)|) =

min
(upper(|σ(R) ▷◁ σ(S)|)

MF(S.y) ∗ MF(R.x) ,
|σ(T)|

MF(T.z)

)
∗ MF(R ▷◁ S ▷◁ T),

where MF(R ▷◁ S ▷◁ T) = MF(R.x) ∗ MF(S.y) ∗ MF(T.z) is the maximum possible value
frequency after joiningR,S, T . Note that similar to the sketch-based approach of [CBS19],
the join order may determine the tightness of our upper bound.

3.2.2 E-Block: Customized Enumeration Scheme

The second building block E for our scalable join ordering is a customized enumera-
tion scheme using our upper bound. We detail our scheme in Figure 3.4 on an example
query of the Join-Order-Benchmark, whereby we transform the implicit where clauses
(Figure 3.4a) into an explicit join order (Figure 3.4b). The key idea of our enumeration
scheme is (i) to push down the non-expanding operators, i.e. filters and primary-foreign-
key joins (pk-fk joins) and (ii) to enumerate the (potentially expanding) n:m joins accord-
ing to our upper bound and to the following greedy heuristic:

For all n:m join candidates (red part in Figure 3.4a), ci, mi, mi_idx, the upper bounds for
the pk-fk joins (green part in Figure 3.4a) with t, it1, it2, n are derived. Note, we consider
pk-fk joins special filters as they may shrink (but never expand) n:m candidate sizes before
applying the n:m join. However, we distinguish two cases: Pk-fk joins are either applied
directly or within a subquery. While a subquery may reduce the size of an n:m join
candidate before applying the actual n:m join, it employs an additional pipeline-breaker, and
thus result-tuples of preceding joins may need to wait for the result of the subquery (cf.
Section A.1). Therefore, we only employ subqueries when our upper bound guarantees
that the preceding pk-fk join reduces the size of the respective n:m join candidate.

68 Chapter 3 Join Stage: Logical Enumeration

(a) Implicit Syntax – Joins yet to be ordered.

(b) Explicit Join Order - Physical operators yet to be determined.

Figure 3.4: Rewriting of JOB query 18a (cf. Section 3.3) according to our UES approach.
Non-expanding operators (pk-fk joins, filters) are highlighted green and potentially ex-
panding operators (n:m joins) are highlighted red.

According to the steps outlined in Figure 3.4b, we proceed as follows:
1 We start with the n:m join candidate mi_idx, as it is—according to our upper bound—

the smallest candidate after applying all non-expanding operations. 2 We compute the
upper bound for the join with the (pre-filtered) candidates ci and mi. Despite having
no guarantee that the pk-fk join n.id = ci.person_id reduces the size of ci, the n:m join
ci.movie_id = mi_idx.movie_id provides a smaller upper bound compared to joining
mi.movie_id = mi_idx.movie_id and is therefore applied next. Note, the primary-key
join t.id = ci.movie_id is not present in the explicit join order since t.id = mi_idx.movie_id
has already been applied. 3 Before applying the last n:m join, mi is filtered by a sub-
query that is—according to our upper bound—guaranteed to shrink the table.

3.2.3 UES Algorithm

This section provides a formal walk-through of our building blocks with regard to Al-
gorithm 4. Starting with the problem definition: The algorithm takes as input a set of
relations and outputs a tree that dictates the join order. Here, we expect that there is at
least one join-path that connects all tables without using cross-products. If cross-products
are necessary, we apply them as late as possible in the join tree. S-Block: As we always

3.2 Upper Bound Join Enumeration with Synopsis (UES) 69

Algorithm 4: UES Join Enumeration
Input: set of relations to be joined with respective filter and join predicates
Output: join tree T

1 T = empty join tree
2 |·|σ = cardinality estimate for filtered base table, e.g. using our customized sampling
3 n_m_tab = set of not yet enumerated tables that are part of any n:m join
4 pk_fk_tab = set of not yet enumerated tables that only contribute to 1:n joins
5 MF = dictionary that maps pairs of tables (trees) and attributes to their maximum

value frequencies, initialized by the respective base table statistics
6 upper = dictionary that maps tree or base table to upper bound
7 joinAttributes = function that takes two tables (or join trees) as input and

returns pairs of attributes that are connected by a join predicate
8 while n_m_tab ̸= ∅ do
9 for Ri ∈ n_m_tab do // upper bounds w.r.t. non-expanding operators

10 upper(Ri) = min{min(|Ri|σ, MF(Ri, fk_attr) ∗ |Sj |σ) | Sj ∈ pk_fk_tab
∧ (fk_attr, pk_attr) ∈ joinAttributes(Ri, Sj)}

11 if T is empty then // retrieve first table and apply pk-fk joins
12 T = (((argmin

Ri∈n_m_tab
upper(Ri) ▷◁ S1

i) ▷◁ S2
i)...Sn

i), such that:

Sj
i ∈ pk_fk_tab with joinAttribute(Ri, S

j
i) ̸= ∅

and |Sj
i |σ ≤ |Sj+1

i |σ where Sj
i ̸= Sk

i for all j ̸= k
13 update pk_fk_tab, n_m_tab and continue
14 best_upper = ∞, next_n_m = empty table
15 for Ri ∈ n_m_tab do // greedy selection of next n:m join
16 current_upper = min{min

(upper(T)
MF(T,a1) ,

upper(Ri)
MF(Ri,a2)

)
∗ MF(T, a1) ∗ MF(Ri, a2)

| (a1, a2) ∈ joinAttributes(T,Ri)}
17 if current_upper < best_upper then
18 best_upper = current_upper
19 next_n_m = Ri

20 MF_T, MF_next_n_m = argmin
MF(T,a1),MF(next_n_m,a2)

{MF(T, a1) ∗ MF(next_n_m, a2)},

such that: (a1, a2) ∈ joinAttributes(T, next_n_m)
21 upper(T) = best_upper
22 if upper(next_n_m) < |next_n_m|σ then // apply pk-fk joins first
23 T = (T ▷◁ (...((next_n_m ▷◁ S1

i) ▷◁ S2
i)...Sn

i)), such that:
Sj

i ∈ pk_fk_tab with joinAttributes(next_n_m,Sj
i) ̸= ∅

and |Sj
i |σ ≤ |Sj+1

i |σ where Sj
i ̸= Sk

i for all j ̸= k
24 else // apply n:m join first
25 T = (...(((T ▷◁ next_n_m) ▷◁ S1

i) ▷◁ S2
i)...Sn

i), such that:
Sj

i ∈ pk_fk_tab with joinAttributes(next_n_m,Sj
i) ̸= ∅

and |Sj
i |σ ≤ |Sj+1

i |σ where Sj
i ̸= Sk

i for all j ̸= k
26 for attribute a ∈ T.attributes do // update MF(T,a) w.r.t. Lines 15, 20
27 if a ∈ next_n_m.attributes then
28 MF(T, a) = MF(T, a)∗MF_T
29 else
30 MF(T, a) = MF(T, a)∗MF_next_n_m
31 update pk_fk_tab and n_m_tab
32 return T

70 Chapter 3 Join Stage: Logical Enumeration

push-down filter operators, our scheme relies on precise estimates for the number of
qualifying tuples from the base table. To achieve these cardinality estimates fast and in-
dependent of the filter type, we provide our custom sampling approach (cf. Section 2.4)
in Line 2. In case of no filter expression, we return the base table cardinality. Besides
pushing down the regular filter operators, we always apply pk-fk joins prior to n:m joins.
Remember that pk-fk joins cannot expand the n:m candidates, and thus are treated as
special filters. U-Block: In Line 9-10, we assess the maximum size of the n:m candidates
after applying each non-expanding operator. Therefore, we combine the bound formula
for pk-fk joins with the (sample-based) cardinality estimates of pre-filtered base tables.
Although a combination of pk-fk joins may reduce the join cardinality beyond a single
pk-fk join, there is always one pk-fk join that drives the guaranteed upper bound towards
its minimum. Since pk-fk joins are a special case, we can transform the bound formula
and minimize the following in Line 10:

upper(σ(Ri) ▷◁ σ(Sj)) = min
(

|σ(Ri)|
MF(Ri)

,
|σ(Sj)|
MF(Sj)

)
∗ MF(Ri) ∗ MF(Sj)

= min
(|σ(Ri)|

MF(Ri)
,
|σ(Sj)|

1

)
∗ MF(Ri) ∗ 1

= min (|σ(Ri)|, |σ(Sj)|∗ MF(Ri))

where Sj is a pk-fk join partner ofRi. E-Block: We initialize the join tree with the n:m can-
didate that provides the smallest estimated cardinality after applying all non-expanding
operators in Line 11-13. In the consecutive iterations, we order the n:m joins according to
the greedy policy whereby Line 15-19 determines the minimal upper bound of the next
intermediate join result. Thereby, composite join predicates can be handled quite natu-
rally: Since a conjunctive predicate requires each individual join predicate to be fulfilled,
the final upper bound can be constrained by the one leading to the smallest estimate. In
Line 20-21, we store the minimal bound for the selected n:m join along with the frequen-
cies used to generate bespoken bound. After determining the next n:m join, we decide the
tree structure for the respective pk-fk joins in Line 22-25. If we are guaranteed to reduce
the size of the n:m candidate, we apply the pk-fk joins first, thus adding a new branch
to the tree. Otherwise, we apply the pk-fk joins after the n:m join which gives a linear
sub-tree. In Line 26-30, we update the frequency statistics of the extended join tree in
accordance with the frequencies stored in Line 20. Lastly, we remove already considered
tables from the remaining join candidates.

3.3 EVALUATION

To show the effectiveness and applicability of our UES approach for a scalable join order-
ing, we present an evaluation based on the popular Join-Order-Benchmark [LGM+15].

In general, a database benchmark specifies (i) a database schema, (ii) the database con-
tents, and (iii) a query workload. While Benchmarks like TPC-H, TPC-DS, or the Star
Schema Benchmark (SSB) [BBF15] have proven their value for evaluating query engines,
they are less suitable to analyze query optimizers [LGM+15]. In order to easily scale the
benchmark data, data generators of the TPC family are using the same simplifying as-
sumptions (uniformity, independence, principle of inclusion) that are used by traditional
query optimizers (cf. Sec. 1.3.3). However, real-world data sets entail more challenging
characteristics such as attribute correlations and non-uniform data distributions, which
are much harder to capture for query optimizers.

3.3 Evaluation 71

Figure 3.5: Schema of the Internet-Movie-Database [LRG+18].

The disconnect between the characteristics of artificial data sets and real-world databases
is addressed by the Join Order Benchmark (or JOB). This benchmark is designed specif-
ically to evaluate the query optimizer in a realistic analytical workload scenario. It uses
a snapshot of the Internet Movie Database (IMDB) and therefore contains data that natu-
rally represents data skew, varying numbers of distinct values, and attribute correlations.
Figure 3.5 describes the database schema: JOB specifies a total of 21 tables that contain be-
tween 4 and 36,000,000 tuples. The query workload consists of 113 queries that are based
on 33 templates of varying complexity (number of joins). Each query is derived from a
template with up to 16 joins by slight adaptations, e.g. by changing the filter conditions,
while still answering a meaningful question in the domain of movies. Therefore, JOB has
been established as de facto standard in the optimizer community. We use a 10GiB snap-
shot of this benchmark for an end-to-end evaluation of our approaches in comparison to
related work. In particular, we run our experiments on a 64-bit Linux machine with a
single-socket Intel Core i7-6700k CPU, 16GiB of main memory and SSD storage. Further,
all queries are run after a dedicated warm-up phase.

3.3.1 General Performance

In order to evaluate our UES approach, we convert all JOB queries into the explicit join
syntax, as shown in Figure 3.4, which represents the determined join order. To accom-
plish this, we rely on Postgres’ default histograms and table statistics to obtain reason-
ably accurate selectivity estimates. These estimates serve as the basis for generating the
required upper bounds for our join enumeration. It is worth noting that we do not incor-
porate any external knowledge (such as true filter selectivities) for a fair comparison with
the default Postgres optimizer. To generate the explicit query string, we use a Python
script. This script parses the implicit query, handles statistic requests, and applies our
enumeration scheme. The execution of this script incurs a planning time overhead of
approximately 7ms per query, which we include in the reported results.

72 Chapter 3 Join Stage: Logical Enumeration

Postgres v. 12.4 MonetDB
index plain hash UES plain UES∑
pk

464.4 472.5 254.0 90.5 29.8
max 57.4 78.9 5.1 9.9 0.9∑

pk+fk
289.5 418.3 253.4 153.3 34.2

max 44.1 136.4 6.2 45.5 2.1

Table 3.2: Query response time in [s], using different index configurations. Sum (
∑

)
comprises the cumulative and max the maximum individual response time.

Postgres v. 12.4: In our first experiment, we use Postgres v. 12.4. to compare the im-
plicit queries to our explicit join order queries. To bypass reordering of our explicit joins
(cf. Figure 3.4b), we use "set join_collapse_limit = 1" and use the default value for
the implicit join order (cf. Figure 3.4a). As our external enumeration scheme is agnos-
tic to Postgres’ fine tuned cost model, we initially limit our queries to hash joins (using
yet another SQL hint). The implicit JOB queries are evaluated with (hash) and without
(plain) restricting them to hash joins. Thereby, the plain setting encompasses Postgres’
native performance while the hash restricted setting eases comparison to our join orders.
Further, we analyze two configurations of primary key (pk) and foreign key (fk) indices.
While additional indices can boost performance, they also make room for poor planning
decisions. Table 3.2 shows the effectiveness of our approach in comparison to the de-
fault Postgres optimizer. The robustness of our design is most evident with regard to
the longest-running queries where we achieve speedups of an order of magnitude. By
forcing the same physical join operator, we demonstrate a considerably smaller cumu-
lative and maximum query response time compared to Postgres hash, thus confirming
more efficient join orders. In particular, we achieve faster query response times for 62%
of the workload. That is, Postgres’ optimistic query optimization actually finds a better
join orders in many cases. However, in these cases, our response times are at most 1.5
seconds behind those of Postgres.

MonetDB v. 11.37.11: In our second experiment, we use MonetDB [BKM08] to compare
the implicit queries with our explicit join order queries. Again, our UES approach consid-
erably reduces query response times in all considered scenarios as depicted in Table 3.2.
We achieve faster query response times for 80% of the workload. In this experiment,
our response times are at most 0.3 seconds behind those of MonetDB, while MonetDB’s
plans require up to 9.1 seconds more time to run the query. Thus, both experiments con-
firm that our UES approach produces more efficient join orders than query optimizers in
state-of-the-art database systems, using the same rudimentary base table statistics.

Postgres v. 9.6: As explained in Section 3.1.2, the recent approach of Cai et al. [CBS19]
proposes sketches to estimate upper bounds for SPJ query optimization. This approach
has been integrated into a Postgres v. 9.6 instance which is publicly available at [Mod].
Thus, we also compare our UES approach with the sketch-based technique and show the
results in Figure 3.6, using only primary-key indices.
From a query execution plan perspective, both approaches produce similar plans over
all different numbers of joins resulting in similar query execution times. In some cases,
we still achieve slightly better plans. For example, analyzing the slowest sketch-based
query (16b) reveals: While the sketch-based plan directly applies the n:m join candidate
ci on mk, our UES approach forces all pk-fk joins on mk prior to the n:m joins, reducing
the respective intermediate results. However, both approaches greatly differ in the time
spent to determine the join order. In particular, as Figure 3.6 reveals, the planning time of
the sketch-based approach greatly exceeds the execution time with an increasing number
of joins. In contrast, our much simpler UES approach entails virtually no planning time
for join ordering, and thus, is barely visible in Figure 3.6.

3.3 Evaluation 73

3 4 5 6 7 8 9 10 11 12 13 16
number of joins

0

20

40

60

80

100

120

tim
e

in
 [s

]

Cai et al.
planning time
execution time

3 4 5 6 7 8 9 10 11 12 13 16
number of joins

UES (ours)
planning time
execution time

Figure 3.6: Comparison of average planning and execution time grouped by the number
of joins, using a Postgres (v. 9.6) instance, modified by Cai et al. [CBS19]. The black band
marks the standard deviation of the execution time.

3.3.2 Discussion

Overestimation. To shed light on the fundamental trade-off of our approach, we break
out the overestimation factor of our fast UES upper bound calculation and compare it
to the sketch-based approach of Cai et al. [CBS19]. Accordingly, Figure 3.7 reports the
factor between the real output cardinalities and the bound estimates for the JOB queries
sorted along the x-axis. We see that –as expected– the sketch approach leads to a much
tighter bound estimate due to an extensive secondary statistic. However, based on our
customized enumeration algorithm, UES achieves similar join orders with negligible op-
timization time overhead.
Interestingly, we observe that our join cardinality upper bounds are generally less accu-
rate compared to standard approaches that potentially underestimate actual intermediate
result sizes – still our upper bounds lead to overall better join orders. That is, depending
on the available statistics, upper bound approaches indirectly mediate the uncertainty of
join cardinalities by providing respectively large overestimates. By definition, our upper
bound only grows larger when adding more n:m joins. This effectively guides the opti-
mizer towards safer join orders, e.g. by applying 1:n joins before n:m joins or applying
base table joins before joining two intermediate join results.

0 20 40 60 80 100
query (ordered by overestimation)

100

102

104

106

108

1010

1012

1014

1016

ov
er

es
tim

at
io

n
fa

ct
or

fast to calculate but less tight

UES Bound
Sketch Bound

Figure 3.7: Upper bound overestimation.

74 Chapter 3 Join Stage: Logical Enumeration

0 10 20 30 40 50 60 70 80 90 100 113
JOB-Query (sorted)

1

2

5

10

20

in
di

vi
du

al
 s

pe
ed

-u
p

[s
]

3s
54s

Δ(UES deep tree, UES subquery default)

(a) Linear execution plan.

0 10 20 30 40 50 60 70 80 90 100 113
JOB-Query (sorted)

1

2

5

in
di

vi
du

al
 s

pe
ed

-u
p

[s
]

5s

36s

Δ(UES bushy tree, UES subquery default)

(b) Bushy execution plan.

Figure 3.8: Comparison of different subquery policies.

Subquery. A central idea of UES is the evaluation of primary key/foreign key joins in
subqueries to achieve an up-front reduction of the foreign key cardinality. However, in-
troducing subqueries also implies additional pipeline breakers during query execution.
The default policy introduces subqueries whenever they are guaranteed to reduce the for-
eign key cardinality. To investigate the impact of a forced primary key/foreign key join
push down, we optimize the JOB workload with two additional settings: The first one
never generates subqueries, thus all queries result in deep trees while the second setting
covers the other extreme by employing subqueries whenever possible, thus, always re-
sulting in bushy trees. Figure 3.8 compares both subquery policies to our (recommended)
default setting. Individual queries are sorted according to their response time differ-
ence. The green area represents queries that execute faster with the default setting, while
the red area shows queries that execute faster with the alternative setting. Thereby, Fig-
ure 3.8a demonstrates the risk of omitting subqueries. While the slowest query in the de-
fault setting executes within 6s, we observe a maximum response time of 23s in the deep
tree setting. As Figure 3.8b depicts, tail latencies are less affected by the bushy tree setting.
However, we observe an overall slowdown due to unnecessary pipeline-breakers.

Base Table Statistic. As shown above, our simple but effective building blocks U and E
provide better join orderings, resulting in faster query execution times for the JOB work-
load compared to state-of-the-art and recent approaches while only using rudimentary
base table statistics. However, that only applies because Postgres’ default histograms are
sufficient to estimate filter selectivities in case of the Join-Order-Benchmark. Without ac-
curate filter selectivity estimates, such as for complex filter predicates, our upper bound
may not hold and can result in sub-optimal join orders.
As an illustration, we run a small experiment by artificially adding multiple LIKE expres-
sions of the form mi.info LIKE ’%e%’ as conjunctive filter predicate to JOB query 19d.
This leads to a vast underestimate of the filter selectivity based on histograms, which
invalidates our upper bound and drives our enumerator towards a sub-optimal plan.
While the former join order is executed in 5s in Postgres, this single misestimate causes
a join order that takes 25s. To achieve such precise estimates, we recommend using our
customized sampling as presented in Section 2.4. Regarding the overhead: Assuming a
maximum sample size of 104 and a state-of-the-art in-memory columnar store, our Fo-
cused Sampling would entail an additional planning time overhead of < 1s for all 113 JOB
queries in total while the sketch-based approach of Cai et al. [CBS19] takes > 1000s.

Join Operator Selection. As our UES scheme is agnostic to the cost model, it heavily
relies on hash joins and therefore does not benefit from additional foreign-key indexes
and potentially more efficient index-based joins. The next chapter is therefore dedicated
to refining the physical operator selection of the UES generated query plans. In line with
UES, we propose a physical operator selection component that does not rely on error-
prone point estimates or overly optimistic assumptions.

3.3 Evaluation 75

3.4 SUMMARY

In this chapter, we discussed crucial aspects of robust query optimization in the join stage
and highlighted challenges faced by query optimizers in handling queries with many
joins, adapting to database updates, and ensuring consistent execution times. Thereby,
various approaches have been mentioned, including current optimistic heuristics, join
sampling, and machine learning models, each with its strengths and limitations. To ad-
dress the challenges of robust query optimization in the join stage, we introduced a novel
upper-bound-based join ordering concept. Our concept aims to make robust join order-
ing practical for complex queries by tackling the significant optimization overhead of
existing approaches. Therefore, we utilize a customized enumeration scheme along with
a fast-to-calculate upper bound, leveraging precise (sampling-based) filter selectivity es-
timates and rudimentary base table statistics.
Our insight: Using this fast-to-calculate upper bound and our customized join enumera-
tion strategy leads to considerably faster workload execution on state-of-the-art database
systems. In particular, while we observe highly inconsistent query execution times on
a vanilla Postgres setup, using Postgres with UES shows consistent performance across
all queries with a significantly lower tail latency profile. However, the bounds produced
by our approach may significantly overestimate the true join cardinalities compared to
existing methods. As a result, our stand-alone UES design heavily favors join operators
that usually perform well on large intermediate results.

76 Chapter 3 Join Stage: Logical Enumeration

4
JOIN STAGE: PHYSICAL OPERATOR

SELECTION

So far, we stated that the join stage of SPJ query optimization presents two significant
challenges: (i) determining a robust join order and (ii) selecting the most suitable phys-
ical join operator for each individual join operation within the chosen join order. While
previous research has predominantly focused on finding good join orders, the impor-
tance of selecting the appropriate physical join operator for achieving good plan quality
has been relatively overlooked. In this chapter, we start with analyzing the join opera-
tor selection quality of different query optimizers. Thereby, our analysis indicates that
fine-grained join operator selections are crucial and that none of the investigated query
optimizers reaches the full potential of optimal operator decisions. To harness this un-
tapped potential, we propose TONIC, a novel, cardinality-estimation-free extension for
generic SPJ query optimizers. TONIC is a learning-based approach that refines operator
decisions for any join path by leveraging feedback from previous query executions. Un-
like existing approaches, TONIC ensures transparent planning decisions and consistently
improves performance. In particular, as will be shown, TONIC’s passive operator selec-
tion policy perfectly complements our pessimistic join ordering concept from the previ-
ous section. The remainder of this chapter is structured as follows. After analysing the
join operator selection quality of different query optimizers in Section 4.1, we overview
related work in Section 4.2. In Section 4.3, we introduce our novel physical join opera-
tor refinement component with a comprehensive evaluation in Section 4.4. We further
highlight interesting results and implications of our work beyond join operator selection.

4.1 OPERATOR SELECTION VS JOIN ORDERING

Despite many years of research and to the best of our knowledge, no clear understanding
has evolved yet to which extent the selection of physical join operators accounts for the
plan quality of complex SPJ queries. To test the operator selection quality on a diversity
of query plans and to simultaneously evaluate the impact of cardinality estimation, we
investigate different query optimizer designs using: (1) fast but error-prone point cardinality
estimates, e.g., based on standard histograms, (2) costly but precise cardinality estimates, e.g.,
based on machine learning or sketch building, and (3) fast upper bound based pessimistic join
enumeration. In particular, we again use the following instances as representatives:

1. Postgres Vanilla (v9.6 / v12.4): A vanilla installation of the open-source disk-centric
row store PostgreSQL [Posb].

77

0 10 20 30 40 50 60 70 80 90 100 113
JOB-Query (sorted)

−101

−100

0

100

101

102

in
di

vi
du

al
 s

pe
ed

-u
p

[s
]

-131s

260s

time savings due to
good operator selections

time loss due to
bad operator selections

Δ(Postgres Hash Join, Postgres Native)
Δ(Postgres Hash Join, Postgres Optimal)

(a) Vanilla (v12.4).

0 10 20 30 40 50 60 70 80 90 100 113
JOB-Query (sorted)

−4

−2

0

2

4

6

8

10

12

-19s

388s

time savings due to
good operator selections

time loss due to
bad operator selections

Δ(Sketch Hash Join, Sketch Native)
Δ(Sketch Hash Join, Sketch Optimal)

(b) Sketch (v9.6).

Figure 4.1: Distribution of sub-optimal planning decisions showing the effect of good
physical operator selections.

2. Postgres Sketch (v9.6): An instance, modified by Cai et al. [CBS19] that provides
tight cardinality upper bounds. It is publicly available at [Mod]. Based on the tight
bounds, Postgres determines the join order and physical operator selection.

3. Postgres UES (v9.6 / v12.4): Postgres Vanilla enhanced with our fast UES upper
bound approach that, however, lacks a fine-grained physical operator selection.

To assess the effect of physical join operator decisions, we keep the logical join order
fixed and only substitute physical join operators. In particular, given the query execu-
tion plan of a generic optimizer, we compare the optimizer’s native plan (native) to (i)
an equivalent plan only using hash joins (hash) and (ii) to an equivalent plan with op-
timal physical operator selections (optimal). The optimal selections are determined by
exhaustive execution of all possible operator combinations. Moreover, the restriction to
(index) nested loop joins is not considered as multiple plans did not finish in this case –
despite providing foreign-key and primary-key indices. In line with Section 3.3, we run
all queries after a warm-up phase on a 64-bit Linux machine with a single-socket Intel
Core i7-6700 CPU, 16GiB of main memory, and SSD storage. To force the execution of a
particular physical join operator selection, we use the pg_hint_plan extension [Yam21] and
"set join_collapse_limit=1" to bypass logical join reordering.

Table 4.1 comprises the cumulative query response time for all 113 JOB queries using
different query optimizers and different physical operator selection alternatives. Since
Sketch is only available on Postgres v9.6, we report the results of Vanilla and UES using
both, a recent Postgres instance (v12.4), and Postgres v9.6 as well. Moreover, as Sketch im-
poses a substantial planning overhead, we break out the planning time for this approach.
With regard to Table 4.1, Figure 4.1 indicates the distribution of sub-optimal planning
decisions for physical join operators. The individual queries are sorted according to their
time difference in comparison to their hash join restricted plan equivalent for (i) using the
native optimizer’s operator selection and (ii) using the optimal operator selection. While
query plans of the red area execute faster with the restriction to hash joins, the green area
represents native plans that outperform their hash join restricted equivalent. The blue
gap indicates the missed potential with respect to the optimal operator selection.

Postgres Vanilla. While a recent Postgres (v12.4) achieves decent query response times
for JOB, using an older version (v9.6) fails to execute JOB within a 1h time limit (cf. Ta-
ble 4.1). However, by limiting the physical execution to hash joins, the benchmark com-
pletes, showcasing the implications of sub-optimal operator selections. Comparing the

78 Chapter 4 Join Stage: Physical Operator Selection

hash join restricted native operator selection optimal operator selection
Vanilla (v12.4) 418s 296s 102s
UES (v12.4) 253s 253s 102s
Vanilla (v9.6) 641s did not finish 191s
UES (v9.6) 658s 658s 244s
Sketch (v9.6) 622s (+1325s planning) 252s (+1325s planning) 167s (+1325s planning)

Table 4.1: Cumulative query response times using different query optimizers and differ-
ent physical plan alternatives (hash restricted, native, and optimal). The relative speedup
compares the native and optimal operator selection.

hash join restricted and native plans, we observe that as many as 20% of the queries
execute significantly faster when avoiding loop joins completely (cf. red area in Fig-
ure 4.1a). The distribution of potential time savings due to the optimal operator selection
(cf. dashed line in Figure 4.1a) shows that all 113 benchmark queries benefit from the
revised operator selection. Substituting the native operator selections with the optimal
join operators reveals a significant speed-up of factor 2.8x.

Sketch. The sketch-based approach of Cai et al. [CBS19] captures data correlations and
provides high-quality estimates (upper bounds) for intermediate result sizes. As a result,
Sketch performs close to the optimal operator selection. We observe that less than 10%
of the native plans execute marginally faster when avoiding loop joins completely (cf.
Figure 4.1b). However, as reported in Table 4.1 (and Section 3.3), online sketch building
imposes a substantial planning overhead that exceeds plan execution time by a factor
of more than 6x. Unfortunately, such serious planning overhead renders this approach
impractical for queries requiring plenty of joins. Despite the high-quality estimates, a
marginal speed-up of 1.1x with planning time and 1.5x without planning time can be
achieved when using the optimal selection of join operators across all queries.

UES. The UES strategy reflects our lightweight upper bound approach to minimize the
risk of disastrous planning decisions (cf. Section 3.2). The bound calculation only re-
quires the selectivity of base table filter expressions and basic frequency counts (top-k
statistics). In line with the upper bound join enumeration, UES relies on hash joins as
they generally lead to a more stable performance for a wider range of (estimated) inter-
mediate result sizes compared to loop joins [ZG90]. Thus, there is no difference between
the native and the hash join restricted plan (cf. Table 4.1). Accordingly, Figure 4.2 only
highlights the difference to the optimal operator selection. This distribution of potential
time savings demonstrates that a significant speed-up requires good operator selection

0 10 20 30 40 50 60 70 80 90 100 113
JOB-Query (sorted)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

151s

potential gain based on
optimal operator selections

Δ(UES Hash Join, UES Optimal)

Figure 4.2: UES (v12.4).

4.1 Operator Selection vs Join Ordering 79

across all queries instead of optimizing single outliers. Overall, comparing the native
(hash restricted) plans to the optimal operator assignment reveals a substantial speed-up
of factor 2.5x that is missed due to the simplistic operator selection.

Lesson Learned

Our experimental analysis exhaustively tested execution plans of three different query
optimizers while systematically substituting the native physical operator selections for
JOB. By comparing the response times of the hash join restricted plans of each optimizer,
we see the implications of different join orders produced by the optimizers. Moreover,
while the fast but error-prone cardinality estimates of Vanilla v12.4 result in better oper-
ator selections than purely relying on hash joins, Vanilla v9.6 proposes plans that cannot
be executed within the given time limit. In contrast, Sketch showcases that high-quality
cardinality estimates achieve operator combinations that perform close to the optimal
operator selection. However, these accurate estimates often entail substantial overheads.
Moreover, our results show that good operator selection matters and usually requires
accurate cardinality estimates. Still, none of the considered optimizers fully reaches the
potential of optimal operator selections.
By applying the optimal operator selection and given access to all relevant indices, the
cumulative query response times land in the same ballpark, regardless of the join order-
ing concept. Providing the lightweight optimizers (Vanilla, UES) with optimal operator
selections achieves a speed-up between 2.5x and 2.8x compared to the native operator
selections. On the one hand, we observe that good join operator selections can substan-
tially improve single long-running queries. For instance, the Vanilla (v12.4) QEP of query
19d executes in 138s in the hash restricted scenario. In case of Vanilla, this is as much as
30% of the cumulative response time of all 113 benchmark queries. Fine-tuning query
19d with the optimal operator selection reduces the response time from 138s to 8s. On
the other hand, all UES query plans execute in less than 10s. Still, running the refined
QEPs of UES, the benchmark executes more than twice as fast as with the native plans.

4.2 RELATED WORK

While most approaches do not consider operator selection separate from join ordering,
we identified representative work that is most common in spirit with our design. That is,
TONIC is strongly related to Adaptive Query Processing (AQP). The survey by Babu and
Bizarro [BB05] provides a comprehensive introduction to AQP. In this section, we start
with a general overview and give more details on a recent approach afterward.

4.2.1 Adaptive Query Processing

DB2’s optimizer LEO [SLMK01] pioneered AQP by integrating a query feedback loop
to account for estimation errors. The workflow is as follows: First a query is optimized
according to the textbook optimization approach while using simplifying assumptions
for join cardinality estimation. After query execution, when the true sizes of intermedi-
ate results are known, LEO computes healing factors that are multiplied with the initial
estimate to account for previous misestimates. By continuously tracking query feedback
and storing healing statistics, LEO tries to revise future planning decisions that are similar
to already experienced situations. However, LEO stores its healing factors in dedicated

80 Chapter 4 Join Stage: Physical Operator Selection

statistic tables that inherit shortcomings of traditional histograms. That is, LEO’s healing
statistics are unable to capture complex filter predicate- and join crossing correlations.
Further, updating existing base table statistics might invalidate the healing factors.
In contrast, we are going to propose an approach that is decoupled from cardinality es-
timates and that uses a novel synopsis to store cost feedback based on the exact sizes of
join intermediate results that can be subject to arbitrary predicate correlations.

Other approaches like Eddies [AH00] and Cuttlefish [KBCG18] drastically break with tra-
ditional, cost-based optimizer designs and change join orders (or physical operators, re-
spectively) on a tuple granularity at query runtime. Especially Eddies and their exten-
sion [DH+04] fostered the idea of tuple routing. Instead of determining a fixed exe-
cution plan before actual query execution, Eddies treat query execution as a process of
routing tuples through join operators. Therefore, if a join path is deemed sub-optimal
during execution, Eddies may change routing decisions for subsequent tuples. While Ed-
dies mainly focus on join ordering, Cuttlefish introduces adaptive operator decisions for
complex pipelines using reinforcement learning [SB18]. Therefore, Cuttlefish employs a
planner routine that selects operators by a trial and error paradigm that eventually con-
verges to the optimal operator combination.
In contrast to tuple routing, our approach is going to holistically refine planning decisions
across different queries and is further meant as an extension rather than a replacement of
an existing (traditional) optimization infrastructure.

4.2.2 Bandit Optimizer (Bao)

In the context of this work, Bao (Bandit Optimizer) [MNM+21] is a very relevant and
recent competitor. Bao is a reoptimization component that builds on top of a generic
query optimizer, providing per-query optimization hints, e.g. "set enable_nestloop to
false" that guide the underlying optimzer. Therefore, Boa combines modern tree con-
volutional neural networks [MLZ+16] and reinforcement learning [SB18] to learn from
query feedback. As the authors claim, Boa automatically learns from its mistakes and
adapts to changes of the query workload, data, and schema. We will use Bao in our eval-
uation (Section 4.4) as it represents recent advances in AQP and has a well-maintained
code base with a tutorial on how to set the system up [Mar22].

Figure 4.3 overviews Boa’s core architecture. Given n possible hint set combinations, Bao
instantiates the underlying optimizer to generate n execution plans –one for each hint set.

Figure 4.3: Bao system overview [MNM+21].

4.2 Related Work 81

Thereby, hint sets need to be defined up-front as any combination of hints that are sup-
ported by the database system, e.g. [MyS, Posa, SQLa]. In particular, one hint set can be
left empty to represent an unmodified query plan. Afterward, each (tree-like) query plan
is translated into a vector tree representation with nodes consisting of feature vectors.
Such feature vectors contain a one-hot-encoded representation of the operator (e.g. index
scan or hash join) as well as cardinality and cost information. These vector trees can then
be fed into Bao’s value model – a tree convolutional network, which predicts the quality
(execution time) of each query plan. Based on the value prediction, Bao can either select
the best-value-plan or employ any strategy to balance the exploration of new plans with
the exploitation of the known best. After selecting a plan, it is sent to the query execution
engine. Once execution has been completed, Bao stores a combination of the selected plan
with the observed performance as an experience item. These experience items are peri-
odically used to retrain the predictive value model, thus, creating a feedback loop. As a
result, Boa’s predictive model improves over time and leads to more reliable selections of
hint sets. To strike a balance between exploration and exploitation in the main training
loop, the original work proposes using Thompson Sampling [Tho33], a common technique
for solving contextual multi-armed bandit problems.
However, like other machine learning approaches and as will be shown, Bao carries the
same burden of long training periods. Further, according to [MNM+21], Bao’s hint se-
lection is incapable of making fine-grained planning decisions, e.g. avoiding a loop join
between tableA andB, while still allowing a loop join between tableC andD. To address
these challenges, we introduce our operator refinement component in the next section.

4.3 TONIC: LEARNED PHYSICAL JOIN OPERATOR SELECTION

This section presents our lightweight learning-based physical execuTiOn plaN refInement
Component called TONIC to fine-tune query execution plans (QEPs) with learned phys-
ical join operator selections. TONIC bootstraps an existing cost model and learns from
previous query executions. The input of TONIC is a QEP determined by a generic op-
timizer, while the output is a QEP with the same join order but with learned physical
operator selections. To solve the selection problem within TONIC, we apply Case-Based-
Reasoning (CBR), a well-established paradigm in the area of artificial intelligence [Kol92].
As illustrated in Figure 4.4, the core of CBR is the case base, which is a collection of pre-
viously made and stored solutions called cases. Transferred to TONIC, the case base is a
collection of already executed join orders with a summary of the exact costs for the avail-
able physical join operators. In particular, a case based reasoner solves new problems
by reusing solutions from cases in the case base. For this purpose, one or several rele-
vant cases are collected (RETRIEVE-stage). Once a similar case is selected, the solution is
adapted to solve the current problem (REUSE-stage). Transferred to TONIC, we match the
join order of a new QEP with join orders of previous QEPs and assign physical join oper-
ators according to the stored solutions. Finally, when a new solution to the new problem
is found (REVISE-stage), the new solution is stored in the case base (RETAIN-stage), thus

(2) REUSE

Learned Case

Repaired Case

Retrieved Case

Solved Case

Case Base

New Case
New Problem

(1) RETRIEVE

(3) REVISE

(4) RETAIN

Figure 4.4: Case-Based-Reasoning Life-Cycle.

82 Chapter 4 Join Stage: Physical Operator Selection

reflecting the learning behavior. Transferred to TONIC, costs of physical join operators
are computed and stored after query execution when join cardinalities of intermediate re-
sults are known. Thereby, the advantages of the CBR concept are as follows: (i) no need
for an elaborate training phase for initialization and (ii) continuous learning to adapt
to new circumstances. However, challenges are: (i) defining the problem statement for
CBR, (ii) organizing the case base to quickly find similar prior problem solutions, and (iii)
adapting the prior solution to fit new needs.

To present TONIC, Section 4.3.1 introduces our Query Execution Plan Synopsis (QEP-S)
as main ingredient of TONIC. While Section 4.3.2 gives a general overview of TONIC,
Section 4.3.3 details different design considerations for the query execution plan synopsis.

4.3.1 Query Execution Plan Synopsis (QEP-S)

The core idea of TONIC is to continuously learn and reuse the exact costs of physical
join operator alternatives. TONIC is based on the insight that different SPJ queries share
join orders such that optimal physical join operator selections of previous queries can be
reused. To realize that, we argue that Case-Based Reasoning (CBR) is the perfect foundation
of TONIC. As illustrated in Figure 4.4, CBR requires a case base storing target problems
and their experienced solutions. As target problem for our TONIC reasoner, we define
the join order given by a generic query optimizer (e.g., extracted from the determined
QEP for an SPJ query). Accordingly, the solution of the target problem requires the se-
lection of optimal physical join operators for the given join order to minimize the cost or
query response time, respectively.
To enable an efficient case base representation for TONIC, we introduce the concept of
a Query Execution Plan Synopsis (QEP-S) that captures core characteristics of query ex-
ecution plans in a concise data structure. In particular, QEP-S is a prefix tree (trie) that
consolidates arbitrary join orders from multiple query execution plans. Since join orders
already comply with a tree-like structure, we build the QEP-S as a trie where nodes repre-
sent tables or intermediate results and edges represent the respective joins. Additionally,
each QEP-S node T stores a cost summary CT for different physical operator implemen-
tations – e.g., nested loop (nlj) and hash join (hash) – for joining table T with the join
intermediate result that combines all tables in the node’s prefix. Thus, the cost summary
at every node sketches multiple query execution plans of previous queries that share join
orders to some extent. Based on previous executions, we are able to reuse already exist-
ing QEP-S prefixes to select physical join operators of minimal cost for new queries.
Figure 4.5 showcases the prefix recycling for the join orders of four query plans. As the
result set of R ▷◁ S is the first intermediate result of (R ▷◁ S) ▷◁ U , both join orders share
the same prefix. In the shown example, CT is the cost summary for the join S ▷◁ T , which
stores the sum of costs for different join operators from previous query executions. Given
CT , we can identify the physical join operator of minimal cost that we reuse for the first
intermediate result of (S ▷◁ T) ▷◁ U and (S ▷◁ T) ▷◁ V .

Figure 4.5: TONIC‘s case base: QEP-S trie.

4.3 TONIC: Learned Physical Join Operator Selection 83

Figure 4.6: TONIC’s operation mode.

4.3.2 QEP-S Life-Cycle

Next, we apply QEP-S as TONIC’s case base following the general CBR life cycle. Starting
with an empty QEP-S, TONIC continuously copies the join order of each executed query
and annotates it with the cost of each physical join operator alternative. As illustrated by
Figure 4.6, TONIC applies the Case-Based-Reasoning stages as follows:

1⃝ RETRIEVE: In the first stage, TONIC receives the execution plan of a new SPJ query
determined by a generic query optimizer, extracts the join order and searches for the
longest prefix match within the QEP-S to find the most similar case.
2⃝ REUSE: In the second stage it will be tried to use the retrieved prefix for solving the

operator selection for the new QEP. The physical join operators that resulted in the lowest
cost in previous executions are selected for each node (join) in the retrieved prefix. Then,
we overwrite the given execution plan with the selected operators for matching joins and
keep the default optimizer’s operator selections for the remaining joins. Afterward, the
re-optimized query execution plan is executed.
3⃝ REVISE: After query execution, the actual sizes of join intermediate results as feed-

back from the execution engine are available. In the third stage, we use the actual join
cardinalities as input for the default optimizer’s cost model to determine the cost of ev-
ery physical join operator alternative. Based on the cost feedback, we revise the operator
decisions of the previous stage.
4⃝ RETAIN: After retrieving the exact costs for each join and each physical operator al-

ternative of the refined QEP, we integrate the adjusted solution into QEP-S in the fourth
stage. For existing prefixes, we only add the determined cost feedback to the correspond-
ing QEP-S nodes. If the considered join order includes joins that are not yet represented
by a QEP-S prefix, we extend an existing QEP-S branch or add a new branch to the trie
where we store the determined operator costs to derive new solutions. Thus, this stage
represents the learning phase.

To sum up, TONIC builds and continuously maintains a lightweight query execution
plan synopsis (QEP-S) which is used to fine-tune execution plans with learned physical
join operator selections of previous, similar plans.

84 Chapter 4 Join Stage: Physical Operator Selection

U:[12,125] � NL Join

R:

SELECT * FROM R
JOIN S ON (R.a = S.b)
JOIN T ON (T.c = S.d)
JOIN U ON (U.e = T.f);

Cost FeedbackNLJ Hash

>

<

>

S:[195,98] � Hash Join

T:[53,42] � Hash Join

(a) 1st query: build initial QEP-S.

SELECT * FROM R
JOIN S ON (R.a = S.b AND S.y = x)
JOIN T ON (T.c = S.d)
JOIN U ON (U.e = T.f);

S:[195+92,98+81] � Hash Join

T:[53+11,42+39] � NL Join

U:[12+9,125+86] � NL Join

R: Cost FeedbackNLJ Hash

<

(b) 2nd query: conflict at node T.

S:[287+195,179+98]

T:[64,81]

U:[21,211]

R:

SELECT * FROM R
JOIN S ON (R.a = S.b)
JOIN V ON (V.c = S.d)
JOIN W ON (W.e = V.f);

V:[44,37]

W:[14,17]

FeedbackNLJ Hash

(c) 3rd query: add new branch.

Figure 4.7: Detailed Example of the QEP-S Life-Cycle. Join orders are depicted by the
explicit join syntax.

Example Walk Through

As query optimizers are commonly challenged with the choice between hash- and in-
dex nested loop joins, we use these physical join operator variants as a running example.
However, our QEP-S case base can capture an arbitrary number of operator alternatives,
e.g., different hash join or sort-merge join implementations [RAD15].
Figure 4.7 illustrates the evolution of the QEP-S case base for three query plans. For ease
of reading, we assume that the join orders of the query execution plans correspond to
the join orders given in the explicit SQL syntax. Let ((R ▷◁ S) ▷◁ T) ▷◁ U be the join
order of tables R,S, T, U . Starting from an empty trie, we execute every join according
to the default optimizer’s decisions. After query execution, TONIC uses the actual join
cardinalities to initialize the QEP-S with the cost of all available join operator alterna-
tives. As Figure 4.7a depicts, the corresponding QEP-S node of T stores the operator
costs cnlj(I1 ▷◁ T), chash(I1 ▷◁ T), where I1 is the intermediate result R ▷◁ S, cnlj the
cost function of a nested loop join, and chash the cost function of a hash join. Analo-
gous to traditional query optimization, TONIC searches for the operator sequence that
minimizes the combined cost, e.g., minCost = 98 + 42 + 12 for using a hash join for I1,
I2 = I1 ▷◁ T , and a loop join for I3 = I2 ▷◁ U . As illustrated by Figure 4.7b, adding a filter
condition to the first query may still result in the same join order. However, the optimal
operator selection now requires a loop join for I1 ▷◁ T instead of a hash join due to the
filter selectivity. To decide which operator to recommend, TONIC keeps adding the cost

4.3 TONIC: Learned Physical Join Operator Selection 85

of operator alternatives for each execution of a particular join path. Thus, rather than
capturing optimal individual join operator selections, the plain QEP-S design captures op-
erator selections that are – based on the current workload – considered most efficient for
an abstract join order. Figure 4.7c depicts another query that continues the existing pre-
fix R-S by joining V,W . Since the prefix R-S is already contained, TONIC explicitly uses
the QEP-S to recommend a hash join. Thus, although the join order of the third query
is not yet fully contained in the QEP-S, we can still exploit the operator recommenda-
tion of the already existing prefix. As the prefixes R-S-V and R-S-V-W have not yet been
considered, TONIC implicitly falls back to the default optimzer’s operator selections for
I ′

2 = I1 ▷◁ V, I
′
3 = I ′

2 ▷◁ W . After query execution, the respective cost feedback for I ′
2, I

′
3 is

stored in a new branch V-W under the existing prefix R-S.

Algorithm 5 summarizes the QEP-S’ life-cycle as foundation of our Case-Based-Reasoning
selection strategy. Given the logical join order from the underlying optimizer, we traverse
the join order while searching for corresponding QEP-S nodes (Line 3-15). For the opera-
tor recommendation, we distinguish the following cases: If the prefix does not contain at
least two tables, there is no join and therefore no operator selection (Line 14-15). If the join
path does not match any existing QEP-S prefix, we initialize a new QEP-S node and fall
back to the operator selection of the underlying query optimizer (Line 7-12). Otherwise,
we reuse an existing QEP-S prefix and apply the operator with the minimal associated
cost for the join (Line 15). After executing the query with the recommended join opera-
tors (Line 16), we reiterate and update all previously considered QEP-S nodes according
to the cost feedback based on the actual join cardinalities (Line 17-21).

Algorithm 5: QEP-S life-cycle
Input: logical join order logicalPlan, plan synopsis QEP-S

/* retrieve and reuse */
1 initialize empty prefix;
2 QNode = root node of QEP-S;
3 while logicalPlan.hasNode() do
4 nextNode = logicalPlan.nextNode();
5 nextId = nextNode.identifier;
6 add nextId to prefix;
7 if not QEP-S.contains(prefix) then
8 initialize new QEP-S node newQNode;
9 newQNode.identifier = nextId;

10 newQNode.costSummary = empty list;
11 newQNode.recommended = operator selection of DBM’s native optimizer;
12 QNode.childNodes[nextId] = newQNode;

/* get matching QEP-S node */
13 QNode = QNode.childNodes[nextId];
14 if prefix contains IDs of at least two tables then
15 use QNode.recommended to join next table;
16 execute query with recommended join operators;

/* revise and retain */
17 collect actual cardinalities of intermediate results;
18 foreach QEP-S node corresponding to logicalPlan do
19 get cost of operator alternatives from cost model;
20 add operator cost to the nodes’s cost summary;
21 set node.recommended to operator with minimal cost;

86 Chapter 4 Join Stage: Physical Operator Selection

4.3.3 QEP-S Design Considerations

The Query Execution Plan Synopsis (QEP-S) as case base is the most important ingredi-
ent of TONIC. To give a general overview of TONIC, we previously introduced only a
rudimentary version of the QEP-S. This section is dedicated to elaborate on specific chal-
lenges and their solutions. These challenges are as follows: (C1) While a QEP-S prefix
corresponds to a linear join order so far, how can we incorporate bushy join plans into
the QEP-S trie? (C2) While QEP-S nodes continuously accumulate the cost of operator
alternatives for each query execution, how can we ensure the freshness of the cost feed-
back? (C3) While two query plans may have the same join order, how can we account for
different optimal operator selections due to different base table filters?

C1 - Integrating Bushy Query Plans

This section discusses the QEP-S representation of bushy join plans. In line with previous
discussions (e.g. Section 3.2.2), we use the term subquery as a synonym for independent
branches of a bushy join tree. Given a QEP-S that is contains the prefix R-S-T-U for joining
tables R,S, T, U , how can we distinguish the bushy plan (R ▷◁ S) ▷◁ (T ▷◁ U) from the
linear join path ((R ▷◁ S) ▷◁ T) ▷◁ U? While the QEP-S prefix R-S-T-U tracks the cost
of subsequently joining single tables to the intermediate result of the preceding joins, the
bushy plan requires the cost of joining two intermediate results. Further, the linear prefix
stores the cost for joining U with R ▷◁ S ▷◁ T but the bushy plan requires a subquery
where U joins with T before joining with R ▷◁ S.

Node identifier. The integration of bushy trees into the QEP-S trie requires the identifica-
tion of join intermediate results. In case of a linear join order, we implicitly used the base
table IDs as identifiers for QEP-S nodes along the prefix. To distinguish single table nodes
from subquery nodes, we use "#" as unique tag and combine the IDs of all tables consid-
ered in the subquery, e.g., #T#U for subquery (T ▷◁ U). Accordingly, a QEP-S node can
either represent a single table or a join intermediate result. Analogously to single table

Figure 4.8: Dealing with sub-queries.

4.3 TONIC: Learned Physical Join Operator Selection 87

nodes, subquery nodes summarize the cost feedback for joining the embodied interme-
diate result with the result of the preceding joins. To account for single table joins within
a subquery (T ▷◁ U), we add a dedicated QEP-S branch #T-#U which tracks the cost of
joining T with U before joining T ▷◁ U with R ▷◁ S.

Figure 4.8 illustrates the previous example for storing bushy join plans. The subquery join
T ▷◁ U is highlighted yellow. We store the subquery’s join path #T–#U to indicate that this
QEP-S branch participates in a subquery. The result of the subquery is represented by the
subquery node #T#U on the QEP-S prefix R–S–#T#U while the prefix R-S-T-U depicts a
linear join plan. By integrating sub-queries, we get a rudimentary QEP-S version that
supports arbitrary join orders. We call this version plain QEP-S.

C2 - Adapting to Changes

So far, TONIC recommends physical join operators according to the QEP-S prefix tree,
where each node contains an unbiased cost summary from previous query feedback. That
is, TONIC decides for the operator associated with the smallest sum of costs:

n∑
i=0

ci = c0 + c1︸ ︷︷ ︸
stale over time

+ · · · + cn︸︷︷︸
most recent

, (4.1)

where ci is an operator’s cost for the i-th query (cf. Figure 4.7). As more queries are pro-
cessed, we can be sure that the operator with minimal accumulated cost is –holistically
seen– the single best choice for the encountered workload. However, the stored costs of
previously executed queries might become stale over time due to changing workload or
data characteristics. Therefore, it is appealing to give more weight to recent queries. To
strike the right balance between an exact cost accumulation and a fast workload adapta-
tion, we use the following gamma-weighted sum:

Cn =
n∑

i=0
γn−ici = γnc0 + γn−1c1 + ... + γ0cn, γ ∈ (0, 1]

As we only add the current cost cn to the previous sum Cn−1, we can use the gamma-
weighting recursively:

Cn = cn + γ ∗ Cn−1, with C0 = c0.

Thereby, the choice of γ mediates the bias towards the most recent queries. The smaller
the gamma-weight, the more we focus on the most recent history and vice versa. Using
γ = 1 will degenerate the weighted sum to Equation (4.1). Further, using γ < 1 circum-
vents an ever-increasing cumulative sum of costs for frequent queries. That is, consid-
ering a specific join with operator-cost cost, which is executed an arbitrary number of
times, the weighted sum will never exceed the following fixpoint:

γ ∗ fixpoint +cost = fixpoint ⇐⇒ cost

1 − γ
= fixpoint

Thus, the gamma-weighted sum bounds the cost representation within a QEP-S node,
mediates the bias to recent queries, and can be seamlessly integrated due to its recursive
equivalent.

88 Chapter 4 Join Stage: Physical Operator Selection

C3 - Filter Sensitive Branching

So far, we have described the plain QEP-S as synopsis which captures abstract join orders
of query execution plans. Recall that TONIC only adds new branches to the plain QEP-S
when no existing prefix matches the given join order. Otherwise, existing branches are
updated with the join operator costs of the current query. While two queries can result in
the same logical join order, their physical join costs and optimal operator decisions can
differ due to different base table filter expressions. For instance, given filter expressions
with small selectivities, a chain of index nested loop joins might be more cost-efficient
than scanning and building hash maps from base tables. These situations are not covered
by the plain QEP-S design.

Filter-aware QEP-S. To reduce conflicting operator decisions for identical join orders, we
propose the filter-aware QEP-S, a QEP-S that is highly sensitive to filter expressions. In-
stead of defining a prefix as plain concatenation of table IDs, we additionally add the
respective filter expressions to the prefix, thus achieving a filter-sensitive distinction of
QEP-S nodes. Accordingly, the filter-aware QEP-S might introduce new branches for al-
ready considered join orders to account for different filter expressions. Let (R ▷◁ S) and
(σR.x=y(R) ▷◁ S) be two logical query plans for joining R,S that only differ in the base
table select statement σR.x=y(R). While a plain QEP-S branch R—S would match both
plans, the filter-aware version of TONIC adds a dedicated QEP-S branch R[x=y]—S to ac-
count for the filter expression. Essentially, we only extend the identifier of a QEP-S node
and use a more detailed prefix to distinguish join orders subject to different base table
filter expressions. Other than that, all previously considered concepts stay the same.

In addition, we investigated another branching policy that uses base table filter selec-
tivities instead of actual filter expressions. This selectivity-aware branching policy can be
found in the appendix (A.5). As the selectivity-aware branching policy performed similar
to the plain QEP-S in our experiments, it is not further considered in this chapter.

4.4 EVALUATION

To evaluate TONIC, we use two real-world SPJ benchmarks. In addition to the Join-Order-
Benchmark (cf. Sec. 3.3), we use the Stack benchmark [MNM+21]. While JOB is based on
10GiB of data extracted from the Internet Movie Database, Stack contains over 18 mil-
lion questions and answers from StackExchange websites with a total size of 100GiB. From
a query perspective, JOB consists of 113 SPJ queries that can be separated into 33 SPJ-
patterns. In contrast, Stack provides fewer join patterns than JOB but vastly more queries
with more diverse filter predicates per SPJ-pattern. For the Stack benchmark, we restrict
ourselves to 1,000 randomly selected queries from 10 patterns.
All experiments are carried out under the same hardware environment as reported in Sec-
tion 4.1. We implemented our QEP-S core data-structure in C++ and use Python scripts as
communication link between Postgres and TONIC. We decided for this loosely-coupled
integration in order to perform a flexible evaluation with different Postgres versions –
namely v12.4 and v9.6. Moreover, to enable non-trivial decisions between hash and in-
dex loop joins, we run the benchmarks with all foreign key indices available and analyze
particular index requirements in Section 4.4.5. Further and in line with related work, we
execute all benchmark queries in a random order. The following results are consistent
with a downstream re-evaluation based on different execution orders.

General performance. As shown in Figure 4.9, TONIC significantly reduces response
times for both benchmarks. The response times were determined using Postgres Vanilla

4.4 Evaluation 89

plain QEP-S design filter-aware QEP-S
nodes: 437 nodes: 751

ex
ec

ut
io

n
tim

e
[s

]
296

157

213

114 103

native
optimal

empty QEP-S
pre-populated

(a) JOB.

plain QEP-S design filter-aware QEP-S
nodes: 66 nodes: 5375

938
834 823

752

646

native
optimal

empty QEP-S
pre-populated

(b) Stack.

Figure 4.9: Tonic performance overview (Vanilla v12.4).

v12.4 with an explicit warm-up run. In this warm-up run, the respective benchmark has
been executed to fill the database caches. Moreover, both branching policies (plain and
filter-aware) for our QEP-S have been evaluated and the TONIC learning approach uses a
perfect cost model based on actual response times. The term empty QEP-S indicates that
TONIC starts with an empty trie for the benchmark evaluation and updates the QEP-S
after each query execution. As a result, already learned operator selections for abstract
join paths become available for the remaining benchmark queries. The term pre-populated
indicates that TONIC has already seen every query, e.g. during the preceding empty QEP-
S run. That is, the pre-populated QEP-S stores operator selections for all relevant join paths.
As each join has a guaranteed prefix match, the operator selection is fully dictated by
TONIC’s knowledge base. While running the benchmark from an empty QEP-S evaluates
adaptation capabilities, we can judge the information loss (distance to optimal planning
decision) when running the benchmark with a pre-populated QEP-S.

From the JOB experiment shown in Figure 4.9a, we see that TONIC with the plain QEP-S
already heavily reduces query response times during the first benchmark iteration (empty
QEP-S run). Re-running the benchmark and therefore applying the pre-populated QEP-
S reveals that the filter-aware QEP-S is able to match the best-performing operator se-
lection (fastest benchmark response time). Additionally, Figure 4.9b reveals interesting
characteristics of the Stack benchmark. Again, TONIC considerably reduces benchmark
response times. However, the vast difference between node counts for the plain and filter-
aware design indicates less complex join patterns and a stronger focus on filter expres-
sions. As a result, the filter-aware QEP-S clearly outperforms the plain design in terms of
query response times but requires substantially more nodes.

4.4.1 Performance Factors

The results so far only promote a rough impression of TONIC’s promising behavior. In
this section, we provide a representative in-depth analysis of external performance fac-
tors such as different join orders and cost models. Therefore, we examine TONIC with
multiple optimizers (cf. Section 4.1), where (i) Vanilla is the standard Postgres v12.4 op-
timizer, (ii) Sketch is the standard Postgres v9.6 optimizer with access to costly but precise
cardinality estimates [CBS19], and (iii) UES our pessimistic join ordering concept restricted to
hash joins. Moreover, we evaluate the following scenarios:

90 Chapter 4 Join Stage: Physical Operator Selection

cold start. We run the benchmark without a dedicated warm-up phase of the database.
This scenario corresponds to loading data and directly executing the workload.

hot start. We run the benchmark after a dedicated warm-up phase. This scenario corre-
sponds to periodically issuing the same workload, e.g., to update a dashboard.

cold start + TONIC. We start the benchmark according to the cold setting and an empty
QEP-S. After each query execution, the QEP-S is updated. As a result, already
learned operator selections for abstract join paths become available for the remain-
ing workload queries. Join paths without a QEP-S prefix match are executed with
the underlying optimizer’s default operator selection.

hot start + TONIC. We run the benchmark according to the hot start setting with a pre-
populated QEP-S. That is, the QEP-S has already seen the optimal operator selections
for all relevant join paths, e.g., during a preceding run with the cold start setting.
As each join has a guaranteed prefix match, the operator selection is purely based
on the QEP-S in this setting.

Since TONIC bootstraps the cost model of the Postgres optimizer, we further evaluate
TONIC’s performance with two cost functions:

costmodel 1. We use the untuned cost model of a default Postgres instance. Based on the
actual join cardinalities, we search for the operator selection that minimizes the cost
approximation of the default optimizer. Using the optimizer’s cost model requires
no additional query execution. As a cost function usually is a relatively simple
algebraic expression, the imposed overhead is ≪ 1%, and thus, can be neglected.

costmodel 2. To avoid approximation errors, the second model simulates a perfect cost
model based on real response times. That is, the operator selection that minimizes
the cost of costmodel 2 directly minimizes the response time of the benchmark. As
this model requires additional plan executions, its imposed overhead is tied to the
respective query.

Since TONIC might integrate several cost models for asynchronous QEP-S updates, we
do not report dedicated cost model overheads. For instance, we can use costmodel 1 for
ad-hoc QEP-S updates and costmodel 2 to fine-tune the QEP-S during low traffic times.

Figure 4.10 shows representative evaluation results for JOB and TONIC using the plain
QEP-S. The following statements apply in a similar way to Stack and TONIC using the
filter-aware QEP-S. In accordance with Figure 4.9, Figure 4.10 demonstrates that building
TONIC’s case-base in the cold start, empty QEP-S setting positively affects query response
times in all considered scenarios – no matter the underlying query optimizer and cost
model. Applying a QEP-S pre-populated with feedback from costmodel 2 substantially
outperforms the native operator selections with query response times close to the optimal
selection. In line with Section 4.1, Vanilla and UES receive substantial improvements
while Sketch performs already well due to high-quality cardinality estimates. In contrast
to UES, we observe a vast difference between the hot start and cold start setting when
using the unmodified Vanilla plans. This gap indicates a strong caching behavior for
the native plans. Unfortunately, Postgres’ native cost function (costmodel 1), does not
account for these caching effects. Surprisingly, TONIC’s refined plans result in smaller
cost estimates according to costmodel 1 but execute slower than the Vanilla native plans
in the hot start setting. However, using costmodel 2 fixes this issue as it accounts for the
caching behavior. As individual outliers and the caching behavior of Postgres Vanilla
combined with costmodel 1 make it hard to separate TONIC’s performance from caching
effects, we use costmodel 2 and a hot database state in the following experiments.

4.4 Evaluation 91

native plan TONIC costmodel 1 TONIC costmodel 2

tim
e

[s
]

caching
effects

604

458 453

296

368

114

point of reference
optimal selection

cold start
hot start

(a) Vanilla (v12.4).

native plan TONIC costmodel 1 TONIC costmodel 2

TONIC per-
formance

292
272

251253

162

110

(b) UES (v12.4).

native plan TONIC costmodel 1 TONIC costmodel 2

665
608 618

252 269

182

(c) Sketch (v9.6).

Figure 4.10: Response times with and without TONIC. To raise awareness of the different
time scales we add a point of reference.

4.4.2 Rate of Improvement

As has been shown, TONIC with a fully pre-populated QEP-S delivers the fastest response
times for the considered optimizers and benchmarks. This pre-population can also be in-
terpreted as a training phase. In this section, we analyze this aspect in more detail and
show that TONIC achieves satisfying results with significantly fewer training samples
than Bao [MNM+21]. In the following, we refer to the achieved response time improve-
ment based on a certain amount of training data as rate of improvement.

Comparison to recent learning-based approach

As explained in Section 4.2.2, Bao [MNM+21] is a very relevant and recent competitor.
Like TONIC, Bao is build on top of an existing query optimization infrastructure – e.g.,
Postgres Vanilla – and issues planning decisions on a per-query base. In order to en-
sure a fair comparison, we run TONIC and Bao with Postgres Vanilla v12.4. Moreover,
we evaluate TONIC’s rate of improvement in comparison to Bao. That means, we train
TONIC and Bao based on a certain fraction of retrieved queries and freeze the respective
models (QEP-S and Neural Network) afterwards. We use the frozen snapshot and run the
full benchmark queries to assess the rate of improvement for both approaches. To enable

92 Chapter 4 Join Stage: Physical Operator Selection

plain 0 88 161 198 241 261 305 364 388 405 437

filter 0 100 189 260 326 378 458 546 616 669 751

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
fraction of retrieved queries

100

150

200

250

300

350

400

450

500

re
sp

on
se

 ti
m

e
[s

]
no

de
s

native plan Bao (fully trained)
filter-aware QEP-S
plain QEP-S design
optimal hint selection

(a) Join-Order-Benchmark.

plain 0 51 54 54 66 66 66 66 66 66 66

filter 0 653 1242 1767 2302 2830 3299 3835 4372 4904 5375

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
fraction of retrieved queries

650

700

750

800

850

900

950

1000

1050

re
sp

on
se

 ti
m

e
[s

]
no

de
s

native plan
Bao (fully trained)
optimal hint selection

plain QEP-S design
filter-aware QEP-S

(b) Stack-Benchmark.

Figure 4.11: Rate of improvement: Comparison between TONIC and Bao [MNM+21].

Bao’s full potential, we exhaustively use Bao’s exploration mode [Mar22] where Bao exe-
cutes and collects actual response times for every query and hint combination. Thus, Bao
is trained with the maximum amount of feedback possible.

Figure 4.11 reports benchmark response times of Bao and TONIC depending on the num-
ber of learned queries. The red line marks the optimal benchmark response time as theo-
retical optimum within Bao’s search space. Figure 4.11a reveals that Bao significantly re-
duces query response times after receiving 80% of JOB-queries. Given only few training
examples, Bao’s performance seems unreliable and strongly fluctuates between training
fractions. Interestingly, TONIC already performs well with few training queries and is
able to surpass the optimal hint selection of Bao due to more fine-grained planning de-
cisions. Further, Figure 4.11b shows that Bao reliably outperforms the native Postgres
plans on the Stack-Benchmark with a performance close to TONIC with the plain QEP-S
design. However, using TONIC with the filter-aware branching policy substantially de-
creases query response times even for small training fractions, resulting in a much better
rate of improvement. In contrast to Bao, TONIC falls back to the underlying optimizer for
completely unknown query patterns and therefore shows stable improvements with an
increasing number of retrieved queries.

4.4 Evaluation 93

plain 0 92 134 185 218 251 293 325 361 369
filter 0 110 198 280 346 404 488 579 673 735

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
fraction of retrieved queries

10

30

50

70

90

110

130

150

tim
e

di
ff.

 to
 o

pt
im

al
 s

el
ec

tio
n

[s
]

no
de

s

optimal, reuse disabled
filter-aware QEP-S
plain QEP-S design

(a) TONIC: rate of improvement.

11 22 33 45 56 67 79 90 101
58 73 87 90 99 100 101 101 105

10% 20% 30% 40% 50% 60% 70% 80% 90%
fraction of retrieved queries

2
3

4
5

6
7

8
pr

ef
ix

 le
ng

th

78 102 108 108 111 111 111 113 113

76 91 97 103 106 106 106 108 108

44 59 73 76 83 86 86 90 91

40 58 71 76 81 86 86 90 91

24 43 51 60 71 73 76 84 85

20 25 39 50 60 64 65 68 69

19 25 39 50 59 64 65 68 69

learned-
faster-

plain QEP-S design

11 22 33 45 56 67 79 90 101
25 44 53 60 68 77 83 94 102

10% 20% 30% 40% 50% 60% 70% 80% 90%
fraction of retrived queries

30 56 68 77 86 94 97 103 106

26 42 54 61 68 77 86 93 97

19 28 36 45 51 57 68 75 81

15 25 33 45 51 57 68 75 81

13 23 28 37 45 54 62 70 77

9 13 21 28 33 41 48 55 62

9 13 21 28 33 41 48 55 62

filter-aware QEP-S

20

30

40

50

60

70

80

90

100

(b) QEP-S prefix reutilization.

Figure 4.12: TONIC + UES: rate of improvement and prefix reutilization.

Pessimistic Join Ordering

To demonstrate a broad applicability and symbiosis with our pessimistic join ordering,
we reiterate the previous experiment with UES. In addition, we detail the reuse of already
retrieved query patterns (prefixes) to understand why TONIC is able to achieve a good
performance given only few training examples.

Figure 4.12a shows the benchmark response time difference to the best operator selection
depending on the fraction of already retrieved queries. As a baseline, we use the optimal
operator selection for already retrieved queries and the native operator selection for the
remaining benchmark queries. Comparing node counts for the filter-aware and plain QEP-
S, we see that the filter-aware branching again manifests in a significantly higher number
of QEP-S nodes. Using the plain QEP-S, TONIC is able to transfer meaningful operator
decisions to unknown queries. After retrieving 30% of the queries, the plain QEP-S al-
ready reduces the cumulative benchmark time by 82s (>50% of maximum reduction). In
contrast, the filter-aware QEP-S performs close to the native operator selection of UES.

To analyze the reuse of learned query patterns, we attach a counter to QEP-S nodes that
is increased whenever a node is accessed. In line with the previous experiment, we freeze

94 Chapter 4 Join Stage: Physical Operator Selection

the QEP-S after receiving a certain fraction of queries and re-run the full benchmark with
the frozen snapshot while only incrementing node counters whenever a query pattern
matches the respective prefix. Figure 4.12b comprises the frequency with which pre-
fixes of a particular length are accessed across all benchmark queries depending on the
number of retrieved training queries and the QEP-S branching policy. Access counts are
indicated by a blue color gradient where brighter tones mean more accesses. To highlight
differences between the filter-aware and plain QEP-S design, the presentation is limited to
prefixes with up to eight nodes (maximum length is 18). The table at the bottom reports
the absolute number of retrieved (learned) queries used to populate the QEP-S. Further,
out of the 113 JOB queries, we see the number of queries that execute faster than the na-
tive plans based on the number of learned queries.
With regard to Figure 4.12a, we observe that the smaller node counts of the plain QEP-S
coincide with a stronger prefix reutilization. That is, after retrieving 10% of the workload,
TONIC with the plain QEP-S already improves response times for more than 50% of the
JOB queries. After retrieving 40% of the workload, 90% of the queries have a guaranteed
prefix match for the first two joins (prefix length three). Note that not all queries with
a prefix match receive a response time improvement as the underlying optimizer might
already select the optimal operators in some cases.

4.4.3 Data Shift

Due to TONIC’s learning capabilities, a quick adaptation to query changes within work-
loads is possible. In this section, we analyze TONIC’s adaptation capabilities under a
heavy data shift. Therefore, we create another JOB instance where we randomly remove
half the tuples from tables with at least 100k tuples. Due to the multiplicity of join cardi-
nalities the combined tuple count of all query result sets decreases from 28.8Mio to 196K.
To simulate a data shift, we run TONIC with the reduced dataset and use the resulting
pre-populated QEP-S to run the default benchmark afterward. That is, instead of starting
with an empty QEP-S, we consecutively reuse and update the pre-populated QEP-S.

Figure 4.13a comprises the benchmark response time difference to the best operator selec-
tion and node counts depending on the fraction of retrieved queries for the pre-populated
QEP-S. As a comparison, we mark the initial performance for starting with an empty (not
pre-populated) QEP-S by dashed lines. Interestingly, this comparison reveals that both
QEP-S designs heavily benefit from query feedback collected during a single run over
the reduced dataset. We already observe a response time reduction of 80s for applying
the pre-populated QEP-S without any feedback from the default dataset (query fraction
0%). Thus, the QEP-S structure enables TONIC to maintain meaningful operator deci-
sions under a heavy data shift. Since the reduced dataset leads to different join orders
than the default JOB dataset, we see a slight increase of QEP-S nodes compared to the
initial empty QEP-S run.

Gamma. To understand to which extent the gamma-weighted cost feedback (cf. Sec. 4.3.3)
affects adaptation speed, we evaluate different values of γ next. By running queries sev-
eral times, we continuously add cost feedback to the QEP-S nodes and increase the cost
difference between operator alternatives. Thus, previously accumulated costs may pre-
vent fast adaptation under data shifts as we need to override the outdated decisions with
a similar amount of feedback. To simulate stagnating operator decisions, we use TONIC
with the plain QEP-S design and run the benchmark queries 100 times on the reduced
dataset while continuously updating the QEP-S. Afterward, we run the queries 100 times
over the default dataset while updating the pre-populated QEP-S with fresh feedback.
As shown in Figure 4.13b, we consider γ ∈ [0.6, 1] and report the time difference to the op-
timal operator selection depending on the number of completed update cycles (workload

4.4 Evaluation 95

plain 301 307 312 325 328 330 338 357 376 376 378

filter 667 682 710 725 746 751 767 811 835 840 852

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
fraction of retrieved queries

10

30

50

70

90

110

130

150

tim
e

di
ff.

 to
 o

pt
im

al
 s

el
ec

tio
n

[s
]

no
de

s

filter-aware, not pre-populated
plain QEP-S, not pre-populated
filter-aware, pre-populated
plain QEP-S, pre-populated

(a) TONIC’s performance after heavy data shift.

1 10 100
update cycle / workload iteration

10

20

30

40

50

60

70

tim
e

di
ff.

 to
 o

pt
im

al
 s

el
ec

tio
n

[s
]

gamma = 1.00
gamma = 0.99
gamma = 0.95
gamma = 0.90
gamma = 0.80
gamma = 0.70
gamma = 0.60

(b) Adaptation speed of plain QEP-S with regard to gamma.

Figure 4.13: Data shift: Adaptivity after single workload iteration (left) and 100 iterations
(right) depending on gamma.

iterations). Note that the x-axis is log-scaled as we are most interested in the first itera-
tions. Iteration 1 corresponds to the first data point of Figure 4.13a, that is, applying the
pre-populated QEP-S’ operator decision without feedback from the default dataset. While
setting γ = 1 corresponds to an unweighted cost accumulation, it entails the slowest
adaptation speed. Due to the heavy bias on the deprecated operator decisions, TONIC
needs to revise and retain the QEP-S more than 60 times for each query to reach near
peak performance. Setting γ = 0.99 considerably accelerates the adaptation speed. Us-
ing 0.8 ≤ γ ≤ 0.95 achieves the fastest adaption while preserving the decision quality of
the unweighted feedback history (γ = 1). Using 0.6 ≤ γ ≤ 0.7 still achieves a similar
performance as the larger γ values when directly applying the deprecated operator deci-
sions (iteration 1). However, since these smaller values of γ add a massive bias towards
the very recent feedback, they provide quick adaptation but degrade the holistic oper-
ator selection quality. In particular, using γ = 0.7 indicates a breakpoint where TONIC
erratically switches to the optimal operator selection of the most recent query. Therefore,
frequently used prefixes optimize single queries instead of capturing operator combina-
tions that minimize the workload-wide cost of all matching join paths.

96 Chapter 4 Join Stage: Physical Operator Selection

∑
JOB memory maintenance reuse (lookup)

plain QEP-S 33.8 KB 0.42 ms 0.01 ms
filter-aware 102.3 KB 1.03 ms 0.15 ms

Table 4.2: QEP-S runtime traits.

4.4.4 TONIC - Runtime Traits

To test the runtime overhead of TONIC, we analyze our prototypical C++ implementation
of the QEP-S. Recall that the plain QEP-S constitutes a standard prefix tree where nodes
are composed of a table identifier, the accumulated cost feedback, and references to child
nodes. Child nodes are stored in a standard STL map where keys correspond to the
identifiers of the next join partners considered along the logical join path (prefix). For the
filter-aware QEP-S, we extend the string type identifier with base table filter expressions
to achieve a filter-sensitive distinction of the abstract join patterns.

Table 4.2 comprises the memory consumption of each fully populated QEP-S design after
benchmark completion. We observe that the plain QEP-S consumes very little memory
due to its simple structure and small number of nodes. Although the filter-aware QEP-
S uses the same data structure as the plain QEP-S, it requires more memory due to the
higher node count and the extended identifier. Moreover, the table comprises the cu-
mulative time spent in any interaction with the QEP-S structure split into maintenance
and reuse. Maintenance is the time required to generate the pre-populated QEP-S during
the first workload iteration. This includes all QEP-S life-cycle stages (cf. Sec. 4.3.2). In
contrast, reuse only reports lookup times for existing prefixes and thus excludes the time
to integrate new feedback. This is equivalent to a second workload iteration with a pre-
populated, frozen QEP-S. On average, both QEP-S designs spent less than 20µs per query
to recommend operator selections and integrate new query feedback. Due to the STL
map’s constant lookup time complexity (O(1)), maintenance and reuse times are mostly
unaffected by the branching degree of the QEP-S.

4.4.5 Discussion

Comparing the plain and filter-aware design, we observe a fundamental trade off between
fast generalization and fine-grained case-by-case decisions. Therefore, we may conclude
that the plain design is more practical for applications that are expected to run an ana-
lytical workload once, while the filter-aware design better fits dashboard-like applications
that periodically issue a set of analytical queries.

Node Eviction. Despite the low memory consumption, we note an occasionally strong
increase of QEP-S nodes –especially for the filter-aware design– in some scenarios (cf.
Fig. 4.11). To limit the size of the QEP-S, we consider adding timestamps or access coun-
ters to evict nodes according to a standard policy like LFU or LRU.

Order of Query Execution. The percentage of executed queries to reach a certain reduc-
tion in cumulative time might depend on the order in which the queries are executed.
As with most learning-based methods, the rate of improvement depends on how similar
past queries are to future queries. In line with related work, e.g. Bao, we executed the
queries in a (fixed) random order throughout this section. Nevertheless, we analyzed
additional query execution orders and did not observe any significant performance dif-
ferences. More details can be found in the appendix (Section A.6).

4.4 Evaluation 97

Algorithm 6: QEP-S foreign-key analysis

1 idxGain = dictionary that maps join participants to relative cost savings due to
(potential) fk-indices;

2 for node in QEP-S do
3 if not node.identifier in idxGain.keys then
4 idxGain[node.identifier] = 0;
5 if node.hashJoinCost > node.indexLoopJoinCost then
6 idxGain[node.identifier] +=

node.hashJoinCost - node.indexLoopJoinCost;

Index selection

We showed that TONIC’s learned operator selections for hash joins and index loop joins
considerably reduce query response times. However, as index loop joins require the re-
spective indices, TONIC’s performance also depends on index availability. Since Postgres
uses clustered primary-key indices as default, we only consider changing foreign-key in-
dices. Starting with all indices available, we systematically analyze response time regres-
sions after dropping foreign-key indices. Interestingly, since TONIC accumulates the cost
of operator alternatives, we can approximate an index significance rating from the QEP-
S cost history. Therefore, standard cost functions can be used to simulate index-based
joins without having access to the actual index [SSG04]. Using Algorithm 6, we assess
the relevance of (potential) indices by traversing all QEP-S nodes and summarizing the
(potential) performance gain of index loop joins for each join participant. Afterward, the
estimated performance gains can be sorted (ranked).

To test the relevance of a particular index, we run JOB with and without having access to
the respective index while using TONIC with the plain QEP-S design. Thereby, Figure 4.14
reports benchmark response time regressions depending on the index availability sorted
by the actual response time difference. Moreover, the figure indicates TONIC’s approxi-
mated time difference for different values of γ (cf. Section 4.3.3). Remarkably, for high
values of γ (≥ 0.9), the ranking lines up with the actual response time differences. Fur-
ther, Algorithm 6 commonly identifies indices (e.g. pi.person_id) that do not contribute
to any response time savings, and thus, can be dropped to free resources.

other

mk.movie_id

ci.p
erso

n_id

mi.in
fo_ty

pe_id

mc.m
ovie_id

mi.m
ovie_id

ci.m
ovie_id

0

10

20

30

40

50

Δ
re

sp
on

se
 ti

m
e

[s
]

<0.5 1.0

7.2 7.9
10.1

18.3

49.0actual index relevance
QEP-S rating: gamma = 1
QEP-S rating: gamma = 0.9
QEP-S rating: gamma = 0.8

Figure 4.14: Indices sorted by response time savings.

98 Chapter 4 Join Stage: Physical Operator Selection

4.5 SUMMARY

In this chapter, we analyzed the quality of join operator selections for different query op-
timizers. The analysis revealed that precise join operator selections are crucial, and none
of the investigated optimizers fully reaches the potential of optimal operator decisions.
To address this untapped potential, the chapter introduced TONIC, a novel extension for
generic SPJ query optimizers. TONIC is a learning-based approach that enhances oper-
ator decisions for any join path using feedback from previous query executions. Unlike
existing approaches, TONIC ensures transparent planning decisions and consistently im-
proves performance. Interestingly, the combination of Postgres UES and TONIC offers a
comprehensive way for SPJ query optimization. As described in Section 3.2, UES uses a
lightweight upper bound and prioritizes 1:n over n:m joins instead of relying on error-
prone point cardinality estimates. In the same vein, TONIC directly incorporates query
feedback without using dedicated point cardinality estimates. Since UES lacks a fine-
grained operator selection strategy, TONIC perfectly complements the –initially– hash
join restricted plans. By combining UES and TONIC, we envision a novel two-stage opti-
mizer design that separates logical join enumeration from fine-grained operator selection.
While stage one relies on the pessimistic join enumeration of UES, stage two refines the
pessimistic join orders by appropriate operator selections according to TONIC. Although
we emphasize the combination of UES and TONIC, any suitable approach can substitute
either optimizer stage. To pave the way for future research in this direction, we provide
a two-stage query optimization framework in the next chapter.

4.5 Summary 99

100 Chapter 4 Join Stage: Physical Operator Selection

5
TWO-STAGE OPTIMIZER FRAMEWORK

To conclude the thesis, we present PostBOUND*, a novel framework that ties together
the optimization concepts discussed throughout this work. In particular, the framework
enables upper-bound-driven optimization of SPJ queries in PostgreSQL with the flexi-
bility to modify individual components to gain further insights. Therefore, PostBOUND
automatically parses the query string, provides a join graph ready to be enumerated with
any algorithm, and takes care of the final plan execution without having to recompile or
modify the PostgreSQL source code.
At its core, PostBOUND consists of two optimization stages as depicted in Figure 5.1:
On the one hand, for each incoming SPJ query, the join ordering component determines
the logical join order which is fixed for query execution. The underlying process applies
a generalized and extensible implementation of our pessimistic UES concept. The out-
put of this first component is a query string in explicit join order syntax. On the other
hand, the subsequent physical operator selection component forces the usage of individu-
ally selected join operators. The resulting query annotations are used together with the
rewritten SQL statement of the first component to execute the query according to the
previous planning decisions on an arbitrary PostgreSQL instance.

5.1 UPPER-BOUND-DRIVEN JOIN ORDERING COMPONENT

The upper-bound-driven join ordering is the first component of PostBOUND. The main
goal of this component is to optimize the join order of an arbitrary SPJ query by insert-

input SQL
query

Upper-bound-driven
join ordering

annotated +
optimized
SQL query

Physical operator
selection

optimized
SQL
query

PostBOUND

SELECT *
FROM R, S, T
WHERE ...

SELECT *
FROM S
 JOIN R ON ...
 JOIN T ON ...
WHERE ...

SELECT *
FROM S
 JOIN R ON ...
 JOIN T ON ...
WHERE ...

/*+
 NestLoop(S R)
 HashJoin(S R T)
*/

Figure 5.1: The basic PostBOUND query optimization workflow.

*available at: https://github.com/rbergm/PostBOUND

101

https://github.com/rbergm/PostBOUND

input SQL
query Join graph Join graph

enumerator Join tree optimized
SQL query

<<policy>>
Base table
estimator

<<policy>>
Upper bound

calculator

<<policy>>
Subquery
generation

⋈

⋈
⋈⋈

Figure 5.2: Interaction between the core PostBOUND components for join ordering.

ing explicit join clauses, which are respected by PostgreSQL during execution. Figure 5.2
shows the general steps involved in this process: First, a join graph is constructed by
parsing the incoming query. In the join graph, tables are represented as nodes and join
predicates as edges. This graph serves as the central data structure for optimization and
describes the context of each table within the query. To enumerate joins, we apply our
UES concept from Chapter 3 and iterate over all n:m join candidates while calculating
the respective bound for applying all non-expanding operators (1:n joins and filter pred-
icates). In each iteration, the n:m join candidate with the minimum bound is selected and
inserted into the join tree. Since we treat primary-key joins as special filter-condition,
they are inserted into the join tree together with their foreign-key counterpart. Depend-
ing on the selected policy, the join between the next n:m candidate and its primary-key
join partners can be executed in a subquery, thus, forcing the push down of the ”special
filter-conditions”. Once all joins have been enumerated, the rewritten query with an ex-
plicit join order syntax is returned. The entire enumeration process can be modified by
custom policies to change specific planning decisions. These policies include:

Base table estimates: The join ordering component of PostBOUND is not limited to a spe-
cific filter selectivity estimator. It simply takes a selectivity estimate and makes no
assumption about how it is obtained. So far, we provide the following basic strate-
gies: (i) delegating the estimation process to Postgres’ native optimizer, (ii) sampling
a fraction of the filtered table, or (iii) executing the entire filter predicate and count-
ing the result tuples. Nevertheless, new strategies can be injected easily.

Upper bound calculation and statistics: To obtain upper bound join cardinalities, we
propose using our UES strategy. However, PostBOUND does not restrict the choice
of any particular formula as long as it is capable of providing a join cardinality (up-
per bound) for arbitrary n-ary joins. Currently, the UES bound formula and two
variations are provided within PostBOUND. Therefore, the framework provides in-
terfaces to access the default statistics of Postgres. However, if a cardinality esti-
mator requires a secondary statistic (e.g. sketches) that cannot be provided by the
default Postgres, the source code has to be modified accordingly.

Subquery generation: The join ordering component of PostBOUND delegates the deci-
sion when to generate subqueries for primary key/foreign key joins to custom poli-
cies. In this case, four strategies are already provided: (i) a greedy strategy that
always generates subqueries (bushy plans), (ii) a defensive strategy, as used in our
experiments, that generates subqueries if they are guaranteed to reduce the size of
the foreign-key table, (iii) a “smart” strategy that generates subqueries if a reduction
below a user-defined threshold is guaranteed, and finally (iv) a strategy that never
generates subqueries at all, thereby leaving all join paths linear.

102 Chapter 5 Two-Stage Optimizer Framework

5.2 PHYSICAL OPERATOR SELECTION COMPONENT

As Chapter 4 elaborates, efficient query execution requires a fine-grained selection of the
best-fitting physical operators. In PostBOUND, this selection process is handled by a ded-
icated physical operator selection component (cf. Figure 5.1). In state-of-the-art query opti-
mizers, the operator selection and determination of join orders are usually intertwined.
However, our upper bound approach makes this difficult due to the pronounced over-
estimation as discussed in Section 3.3. To overcome this challenge, Section 4.3 presents
TONIC, a learning-based concept that allows physical operator decisions for arbitrary
join paths based on query feedback. Other approaches such as [MNM+21] are also con-
ceivable. Therefore, PostBOUND provides interfaces that force individual joins to be ex-
ecuted with specific operators. This feature is based on the pg_hint_plan† extension that
specifies a number of query hints. Essentially, a hint is a preceding comment of an SQL
query that modifies the execution and optimization behavior of Postgres for the given
query. For example, the hint /*+ HashJoin(movies actors) */ would enforce the join
between movies and actors to be executed by a hash join. Further, these hints can be
used to overwrite Postgres’ default estimates. For instance, /*+ Rows(movies actors
#100)*/ injects a cardinality of 100 as ground truth for joining movies and actors. In
general, users can generate hints using any operator selection strategy.
To enable a fine-grained operator selection with TONIC, PostBOUND breaks out the join
order determined in the first optimization stage. Based on this join order, TONIC identi-
fies similar cases and generates suitable hints according to the pg_hint_plan extension. In
order to provide feedback for TONIC, the final query execution can be monitored using
the ANALYZE command. To reiterate and further analyze our experiments, the framework
bootstraps Postgres’ native operator selection and also allows for the restriction to hash
joins as default operator selection mode.

5.3 EXAMPLE QUERY OPTIMIZATION

To demonstrate our two-stage optimizer design, we reiterate the optimization of JOB
query 8c from the beginning of the thesis (Section 1.4.1) that initially led to poor planning
decisions and an exceptionally long execution time:

SELECT COUNT (*)
FROM aka_name AS an ,

cast_info AS ci ,
company_name AS cn ,
movie_companies AS mc ,
name AS n1 , title AS t,
role_type AS rt

WHERE cn. country_code = ’[us]’
AND rt.role = ’writer ’
AND an. person_id = n1.id
AND n1.id = ci. person_id
AND ci. movie_id = t.id
AND t.id = mc. movie_id
AND mc. company_id = cn.id
AND ci. role_id = rt.id
AND an. person_id = ci. person_id
AND ci. movie_id = mc. movie_id

†https://github.com/ossc-db/pg_hint_plan/

5.2 Physical Operator Selection Component 103

https://github.com/ossc-db/pg_hint_plan/

an

t

rt

ci

cn

mc

n1

(a) Base join graph.

an

t

rt

ci

cn

mc

n1

(b) Join graph after base table selection.

an

t

rt

ci

cn

mc

n1

(c) Join graph after selection of the first join.

an

t

rt

ci

cn

mc

n1

(d) Final join graph after selecting all joins.

Figure 5.3: Iterative enumeration of JOB query 8c based on the query’s join graph.

Query 8c entails a moderate number of six joins and base table filter expressions over
string-typed data. Before enumerating joins, the optimizer requires the sizes of all input
tables. While base table sizes are usually stored in a system catalog, filter selectivities for
cn.country_code = ’[us]’ and rt.role = ’writer’ need to be estimated and multi-
plied with the base table cardinalities to assess the number of qualifying tuples. In case of
these rather simple filter expressions, basic n-grams [JKNS00] might be sufficient. How-
ever, as has been shown in Chapter 2 more complex conjunctive expressions with corre-
lated and highly selective sub-expression require sampling to achieve accurate estimates.

Given, the input sizes of all join candidates, PostBOUND generates the join graph accord-
ing to Figure 5.3. In the figure, we see that n:m (foreign-key/foreign-key) joins have two
edges whereas 1:n (primary-key/foreign-key) joins have arrows pointing in the direction
of the foreign-key join partner. In addition, n:m join candidates have a blue border and
1:n candidates a yellow one. As soon as a table is included in the final join tree, it is tinted
in grey. We see that, query 8c only contains two n:m joins – one between aka_name and
cast_info and the other one between cast_info and movie_companies. In this case, our
optimizer decides to use aka_name as the initial base table which is included in the join
tree together with the corresponding primary-key join partner name. This leaves only the
join with cast_info as a candidate for the next iteration, which is inserted together with
its primary-key joins on title and role_type. Finally, the last remaining n:m candidate
movie_companies is included with its primary-key join partner company_name during the
last iteration. In the second stage, TONIC takes the logical join order, matches it against
previously learned join paths, and assigns the best-fitting physical join operators respec-
tively. Eventually, PostBOUND generates the following SQL statement:

LOAD pg_hint_plan ;
SET join_collapse_limit = 1;
/*+
NestLoop (an n1) HashJoin (ci rt) HashJoin (ci rt t)
HashJoin (an n1 ci rt t) HashJoin (mc cn) HashJoin (an n1 ci rt t mc cn)
*/
EXPLAIN ANALYZE
SELECT COUNT (*)

104 Chapter 5 Two-Stage Optimizer Framework

FROM aka_name AS an
JOIN name AS n1

ON an. person_id = n1.id
JOIN

(SELECT
ci. person_id AS ci_person_id ,
ci. movie_id AS ci_movie_id

FROM cast_info AS ci
JOIN role_type AS rt

ON ci. role_id = rt.id
AND rt.role = ’writer ’

JOIN title AS t
ON ci. movie_id = t.id

) AS ci_rt_t
ON n1.id = ci_rt_t . ci_person_id
AND an. person_id = ci_rt_t . ci_person_id

JOIN
(SELECT movie_id as mc_movie_id
FROM movie_companies AS mc

JOIN company_name AS cn
ON mc. company_id = cn.id
AND cn. country_code = ’[us]’

) AS mc_cn
ON ci_rt_t .t_id = mc_cn . mc_movie_id
AND ci_rt_t . ci_movie_id = mc. movie_id ;

Query 8c is now in the explicit join syntax where SET join_collapse_limit = 1; forces
the given join order. The final plan corresponds to our initial example in Section 1.4.1
where we demonstrated pitfalls of optimistic query optimization. While the initial plan
executes in 122s, the plan from our two-stage optimizer can be executed in less than 6s.

5.3 Example Query Optimization 105

106 Chapter 5 Two-Stage Optimizer Framework

6
CONCLUSION

In this thesis, we presented current challenges and approaches of analytical query pro-
cessing with a clear focus on query optimization. Although a lot of research has been
conducted, not all challenges have yet been solved to satisfaction. In the thesis, we orga-
nized these challenges according to the stages of the select-project-join query pattern.

For the select stage, we identified the support of arbitrary predicate types, predicate
correlation, and estimation quality with regard to highly selective (sub-)expressions as
most prominent challenges. Thereby, Chapter 2 highlighted sampling-specific advan-
tages with regard to predicate types and attribute correlation. However, we explained
the lack and need for statistically sound estimates in case of highly complex, selective
filters. To tackle this weak point of current sampling-based approaches, we contributed
the Beta Estimator– a novel estimator that substantially improves estimation quality and
predicate ordering when no sample tuple matches the filter expression. To guarantee
estimates from fresh data while keeping the sampling overhead at bay, we proposed var-
ious customized sampling techniques. Depending on the database design and workload
requirements, we presented a guideline on how to combine these techniques.

For the join stage, we noted that logical join ordering and physical operator selection are
traditionally intertwined and depend on accurate join cardinality estimates that might
not be achievable with proportional resource consumption. Therefore, optimizers rely on
optimistic assumptions that can manifest in poor join orders combined with sub-optimal
choices of physical operators. To prevent such error-propagation based on inaccurate
point estimates, we decoupled join ordering and physical operator selection in a two-
stage optimizer design. Thereby, Chapter 3 was subject to logical join ordering – the first
stage of our two-stage optimizer design. Here, we discussed shortcomings of existing
approaches, such as impractical optimization times for queries with many joins, and ar-
gued that pessimistic join enumeration offers interesting opportunities to generate robust
execution plans with minimal tail latencies. To enable such a join ordering with virtually
no additional optimization overhead, UES combines a customized enumeration scheme
with a fast-to-calculate upper bound that is based on precise selectivity estimates and
rudimentary base table statistics. Our evaluation based on a popular real-life benchmark
confirmed the desired traits of our UES design.
Chapter 4 was then dedicated to the physical operator selection – the second stage of our
two-stage optimizer design. In this chapter, we contributed TONIC, a whitebox-learning
approach to revise the operator selection of any generic optimizer. Therefore, TONIC
learns from previous query executions and aligns the most efficient operator sequences
of similar queries with the current query. If no suitable alignment can be found, TONIC
falls back to the operator selection policy of the underlying optimizer and adopts query

107

execution feedback for similar future queries. We demonstrated that TONIC considerably
improves benchmark execution times without having to worry about performance re-
gressions during a cold start phase. In particular, combing UES with TONIC instantiates
a two-stage optimizer that prevents initially long-running tail queries while continuously
accelerating execution plans with a fine-grained operator selection.

Future Research

To facilitate further research in this direction, we contribute PostBOUND, a framework to
systematically evaluate different approaches for (pessimistic) query optimization. Post-
BOUND is designed to operate independently from any specific benchmark or database
scheme and fetches all required information from a Postgres instance. This enables users
to modify, substitute, and analyze optimization components without needing to recom-
pile the system. In particular, the framework parses incoming queries, provides the join
graph, and takes care of the final plan execution. Based on the join graph, users can imple-
ment, test, and compare different algorithms in a reproducible and transparent manner
across different workloads and hardware environments.

Extending the upper bound calculation within the join enumeration component might be
an appealing entry point for future studies. That is, our upper bound formula is based on
rudimentary statistics that are provided by most database systems – however, we may
not exploit the full potential of these statistics. For instance, our formula only considers
the very most frequent value of a join attribute while top-k lists usually contain more than
one frequency. Integrating information from the remaining k-1 frequency counts could
tighten the bound and improve join orders. It is also conceivable that tighter bounds can
be used to directly select join operators in some cases. However, to keep upper bounds
practical, new bound formulas should use easy-to-maintain statistics that can be com-
bined fast for many joins. Investigating further approaches to limit the search space for a
larger number of joins seems also appealing to keep the optimization time at bay.

Besides modifying, substituting, and analyzing various components in our optimizer de-
sign, it would be appealing to investigate the leeway of decent planning decisions. Based
on the entire search space of equivalent execution plans, what is the ratio of fast execut-
ing, intermediate, and slow-executing query plans? This fundamental question requires
extensive query execution over a variety of hardware and software environments. Nev-
ertheless, it would be of great help to frame recent advances in the optimization commu-
nity. Such research might even help to develop an understanding of whether it is hard to
find near-optimal plans or –in the same vein– to avoid very slow-running plans.

Further, it would be interesting to run additional real-life benchmarks. Currently, the
number of publicly available benchmarks that are suitable for analytical query process-
ing is very limited. This poses a risk to develop a certain bias towards these benchmarks.
Generating new benchmarks with a varying number of joins, distinct values, base ta-
ble sizes, complex filter expressions and data distributions would be valuable to better
understand the ins and outs of existing and upcoming approaches.

108 Chapter 6 Conclusion

BIBLIOGRAPHY

[AGM08] Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query
plans for relational joins. In 2008 49th Annual IEEE Symposium on Foundations
of Computer Science, pages 739–748, 2008.

[AGM13] Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query
plans for relational joins. SIAM Journal on Computing, 42(4):1737–1767, 2013.

[AH00] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously adaptive query
processing. In SIGMOD, page 261–272. ACM, 2000.

[APS95] GE Alefeld, Florian A Potra, and Yixun Shi. Algorithm 748: Enclosing zeros
of continuous functions. ACM Transactions on Mathematical Software (TOMS),
21(3):327–344, 1995.

[BB05] Shivnath Babu and Pedro Bizarro. Adaptive query processing in the looking
glass. In CIDR 2005, 2005.

[BBF15] Melyssa Barata, Jorge Bernardino, and Pedro Furtado. An overview of deci-
sion support benchmarks: Tpc-ds, tpc-h and ssb. New Contributions in Infor-
mation Systems and Technologies: Volume 1, pages 619–628, 2015.

[BC05] Brian Babcock and Surajit Chaudhuri. Towards a robust query optimizer: a
principled and practical approach. In SIGMOD, pages 119–130. ACM, 2005.

[BCCN18] Simone Bianco, Remi Cadene, Luigi Celona, and Paolo Napoletano. Bench-
mark analysis of representative deep neural network architectures. IEEE
Access, 6:64270–64277, 2018.

[BCG01] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. STHoles: A multidi-
mensional workload-aware histogram. In SIGMOD, pages 211–222. ACM,
2001.

[BHH+23] Rico Bergmann, Axel Hertzschuch, Claudio Hartmann, Dirk Habich, and
Wolfgang Lehner. Postbound: Postgresql with upper bound spj query opti-
mization. BTW 2023, 2023.

[BiB19] Public Bi Benchmark. https://github.com/peterboncz/public_bi_
benchmark-1, 2019. Accessed: 2020-05-21.

[BKM08] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. Breaking the mem-
ory wall in monetdb. Commun. ACM, 51(12):77–85, dec 2008.

[BLNZ95] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited
memory algorithm for bound constrained optimization. SIAM Journal on
scientific computing, 16(5):1190–1208, 1995.

109

https://github.com/peterboncz/public_bi_benchmark-1
https://github.com/peterboncz/public_bi_benchmark-1

[BMM+04] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa, and
Jennifer Widom. Adaptive ordering of pipelined stream filters. In SIGMOD,
pages 407–418. ACM, 2004.

[Bre71] Richard P. Brent. An algorithm with guaranteed convergence for finding a
zero of a function. The Computer Journal, 14(4):422–425, 1971.

[BRN20] Altan Birler, Bernhard Radke, and Thomas Neumann. Concurrent online
sampling for all, for free. In DaMoN, pages 5:1–5:8. ACM, 2020.

[BS09] José M Bernardo and Adrian FM Smith. Bayesian theory, volume 405. John
Wiley & Sons, 2009.

[CBS19] Walter Cai, Magdalena Balazinska, and Dan Suciu. Pessimistic cardinality
estimation: Tighter upper bounds for intermediate join cardinalities. In SIG-
MOD, pages 18–35, 2019.

[CCMN00] Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya.
Towards estimation error guarantees for distinct values. In Proceedings of
the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 268–279, 2000.

[CGHJ11] Graham Cormode, Minos Garofalakis, Peter J. Haas, and Chris Jermaine.
Synopses for massive data: Samples, histograms, wavelets, sketches. Foun-
dations and Trends in Databases, 4(1–3):1–294, 2011.

[CMN99] Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. On random sam-
pling over joins. ACM SIGMOD Record, 28(2):263–274, 1999.

[Cod70] Edgar F Codd. A relational model of data for large shared data banks. Com-
munications of the ACM, 13(6):377–387, 1970.

[cpp] C++ Boost library. https://www.boost.org. Accessed: 2020-07-02.

[CY17] Yu Chen and Ke Yi. Two-level sampling for join size estimation. In SIGMOD,
pages 759–774, 2017.

[DGGR02] Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Pro-
cessing complex aggregate queries over data streams. In Proceedings of the
2002 ACM SIGMOD international conference on Management of data, pages 61–
72, 2002.

[DGGR04] Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi.
Sketch-based multi-query processing over data streams. In Advances in
Database Technology-EDBT 2004: 9th International Conference on Extending
Database Technology, Heraklion, Crete, Greece, March 14-18, 2004 9, pages 551–
568. Springer, 2004.

[DH+04] Amol Deshpande, Joseph M Hellerstein, et al. Lifting the burden of history
from adaptive query processing. In VLDB, pages 948–959. Citeseer, 2004.

[DKLM05] Frederik Michel Dekking, Cornelis Kraaikamp, Hendrik Paul Lopuhaä, and
Ludolf Erwin Meester. In A Modern Introduction to Probability and Statistics:
Understanding why and how, pages 45–47. Springer Science & Business Media,
2005.

[DWN+19] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek
Narasayya, and Surajit Chaudhuri. Selectivity estimation for range pred-
icates using lightweight models. In PVLDB, volume 12, pages 1044–1057.
VLDB Endowment, 2019.

110 BIBLIOGRAPHY

https://www.boost.org

[EWK90] Lars Eldén and Linde Wittmeyer-Koch. Numerical analysis: an introduction.
Academic Press Professional, Inc., 1990.

[FML+12] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo Müller,
Hannes Rauhe, and Jonathan Dees. The SAP HANA database – an architec-
ture overview. IEEE Data Eng. Bull., 35(1):28–33, 2012.

[Gib01] Phillip B Gibbons. Distinct sampling for highly-accurate answers to distinct
values queries and event reports. In VLDB, volume 1, pages 541–550, 2001.

[GKTD05] Dimitrios Gunopulos, George Kollios, Vassilis J Tsotras, and Carlotta
Domeniconi. Selectivity estimators for multidimensional range queries over
real attributes. The VLDB Journal, 14(2):137–154, 2005.

[GLVV12] Georg Gottlob, Stephanie Tien Lee, Gregory Valiant, and Paul Valiant. Size
and treewidth bounds for conjunctive queries. Journal of the ACM (JACM),
59(3):1–35, 2012.

[Hel98] Joseph M. Hellerstein. Optimization techniques for queries with expensive
methods. In TODS, volume 23, page 121. ACM, 1998.

[HHHL21] Axel Hertzschuch, Claudio Hartmann, Dirk Habich, and Wolfgang Lehner.
Simplicity done right for join ordering. CIDR, 2021.

[HHHL22] Axel Hertzschuch, Claudio Hartmann, Dirk Habich, and Wolfgang Lehner.
Turbo-charging spj query plans with learned physical join operator selec-
tions. Proceedings of the VLDB Endowment, 15(11):2706–2718, 2022.

[HKM15] Max Heimel, Martin Kiefer, and Volker Markl. Self-tuning, GPU-accelerated
kernel density models for multidimensional selectivity estimation. In SIG-
MOD, pages 1477–1492. ACM, 2015.

[HML+21] Axel Hertzschuch, Guido Moerkotte, Wolfgang Lehner, Norman May, Flo-
rian Wolf, and Lars Fricke. Small selectivities matter: Lifting the burden of
empty samples. In Proceedings of the 2021 International Conference on Manage-
ment of Data, pages 697–709, 2021.

[HNSS96] Peter J Haas, Jeffrey F Naughton, S Seshadri, and Arun N Swami. Selectivity
and cost estimation for joins based on random sampling. Journal of Computer
and System Sciences, 52(3):550–569, 1996.

[HR01] Theo Härder and Erhard Rahm. Datenbanksysteme: Konzepte und Techniken
der Implementierung, 2. Auflage. Springer, 2001.

[HSK+19] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina,
Kristian Kersting, and Carsten Binnig. Deepdb: Learn from data, not from
queries! arXiv preprint arXiv:1909.00607, 2019.

[IC91] Yannis E. Ioannidis and Stavros Christodoulakis. On the propagation of
errors in the size of join results. In Proceedings of the 1991 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’91, page 268–277,
New York, NY, USA, 1991. Association for Computing Machinery.

[IDRS21] Yesdaulet Izenov, Asoke Datta, Florin Rusu, and Jun Hyung Shin. Compass:
Online sketch-based query optimization for in-memory databases. In Pro-
ceedings of the 2021 International Conference on Management of Data, SIGMOD
’21, page 804–816, New York, NY, USA, 2021. Association for Computing
Machinery.

BIBLIOGRAPHY 111

[Ioa03a] Yannis Ioannidis. The history of histograms (abridged). In PVLDB, pages
19–30. VLDB Endowment, 2003.

[Ioa03b] Yannis Ioannidis. The history of histograms (abridged). In Proceedings 2003
VLDB Conference, pages 19–30. Elsevier, 2003.

[JKNS00] HV Jagadish, Olga Kapitskaia, Raymond T Ng, and Divesh Srivastava. One-
dimensional and multi-dimensional substring selectivity estimation. The
VLDB Journal, 9:214–230, 2000.

[JS11] T Jayalakshmi and A Santhakumaran. Statistical normalization and back
propagation for classification. International Journal of Computer Theory and
Engineering, 3(1):1793–8201, 2011.

[KB80] Rob Kaas and Jan M Buhrman. Mean, median and mode in binomial distri-
butions. Statistica Neerlandica, 34(1):13–18, 1980.

[KBCG18] Tomer Kaftan, Magdalena Balazinska, Alvin Cheung, and Johannes Gehrke.
Cuttlefish: A lightweight primitive for adaptive query processing. arXiv
preprint arXiv:1802.09180, 2018.

[KBJ04] Samuel Kotz, Narayanaswamy Balakrishnan, and Norman L Johnson. Con-
tinuous multivariate distributions, Volume 1: Models and applications, volume 1.
John Wiley & Sons, 2004.

[KBNb21] Mohamed Kechar, Ladjel Bellatreche, and Safia Nait-bahloul. Bringing com-
mon subexpression problem from the dark to light: Towards large-scale
workload optimizations. In Proceedings of the 25th International Database En-
gineering & Applications Symposium, IDEAS ’21, page 27–35, New York, NY,
USA, 2021. Association for Computing Machinery.

[KBZ86] Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo. Optimization of non-
recursive queries. In VLDB, volume 86, pages 128–137, 1986.

[Ker11] Jouni Kerman. A closed-form approximation for the median of the beta dis-
tribution. arXiv preprint arXiv:1111.0433, 2011.

[KKR+19] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz,
and Alfons Kemper. Learned cardinalities: Estimating correlated joins with
deep learning. CIDR, 2019.

[KM16] Fisnik Kastrati and Guido Moerkotte. Optimization of conjunctive predi-
cates for main memory column stores. In PVLDB, volume 9, pages 1125–
1136. VLDB Endowment, 2016.

[KN11] Alfons Kemper and Thomas Neumann. Hyper: A hybrid oltp&olap main
memory database system based on virtual memory snapshots. In 2011 IEEE
27th International Conference on Data Engineering, pages 195–206. IEEE, 2011.

[Kol92] Janet L Kolodner. An introduction to case-based reasoning. Artificial intelli-
gence review, 6(1):3–34, 1992.

[KVM+19] Andreas Kipf, Dimitri Vorona, Jonas Müller, Thomas Kipf, Bernhard Radke,
Viktor Leis, Peter A. Boncz, Thomas Neumann, and Alfons Kemper. Es-
timating cardinalities with deep sketches. In SIGMOD, pages 1937–1940.
ACM, 2019.

[L+13] Moshe Lichman et al. UCI machine learning repository, 2013.

112 BIBLIOGRAPHY

[LGM+15] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons
Kemper, and Thomas Neumann. How good are query optimizers, really?
PVLDB, 9(3):204–215, 2015.

[LLZZ07] Per-Ake Larson, Wolfgang Lehner, Jingren Zhou, and Peter Zabback. Cardi-
nality estimation using sample views with quality assurance. In SIGMOD,
pages 175–186. ACM, 2007.

[LRG+17] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and
Thomas Neumann. Cardinality estimation done right: Index-based join
sampling. In CIDR, 2017.

[LRG+18] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter A.
Boncz, Alfons Kemper, and Thomas Neumann. Query optimization through
the looking glass, and what we found running the join order benchmark.
PVLDB, 27(5):643–668, 2018.

[Mar22] Ryan Marcus. Bao documentation. https://rmarcus.info/bao_docs/,
2022. Accessed: 2022-05-11.

[MBK02] Stefan Manegold, Peter Boncz, and Martin L Kersten. Generic database cost
models for hierarchical memory systems. In VLDB’02: Proceedings of the 28th
International Conference on Very Large Databases, pages 191–202. Elsevier, 2002.

[MDM+14] Guido Moerkotte, David DeHaan, Norman May, Anisoara Nica, and
Alexander Boehm. Exploiting ordered dictionaries to efficiently construct
histograms with q-error guarantees in SAP HANA. In SIGMOD, pages 361–
372. ACM, 2014.

[MDV+12] Matthew J Menne, Imke Durre, Russell S Vose, Byron E Gleason, and
Tamara G Houston. An overview of the global historical climatology
network-daily database. Journal of Atmospheric and Oceanic Technology,
29(7):897–910, 2012.

[Meh92] Sanjay Mehrotra. On the implementation of a primal-dual interior point
method. SIAM Journal on optimization, 2(4):575–601, 1992.

[MH20] Guido Moerkotte and Axel Hertzschuch. α to ω: the g(r)eek alphabet of
sampling. CIDR, 2020.

[MHK+07] Volker Markl, Peter J Haas, Marcel Kutsch, Nimrod Megiddo, Utkarsh Sri-
vastava, and Tam Minh Tran. Consistent selectivity estimation via maximum
entropy. The VLDB journal, 16(1):55–76, 2007.

[MLZ+16] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neu-
ral networks over tree structures for programming language processing. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16,
page 1287–1293. AAAI Press, 2016.

[MMK18] Magnus Müller, Guido Moerkotte, and Oliver Kolb. Improved selectivity es-
timation by combining knowledge from sampling and synopses. In PVLDB,
volume 11, pages 1016–1028. VLDB Endowment, 2018.

[MNM+21] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad
Alizadeh, and Tim Kraska. Bao: Making learned query optimization practi-
cal. In SIGMOD, pages 1275–1288. ACM, 2021.

[MNS09] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. Preventing bad
plans by bounding the impact of cardinality estimation errors. In PVLDB,
volume 2, pages 982–993. VLDB Endowment, 2009.

BIBLIOGRAPHY 113

https://rmarcus.info/bao_docs/

[Mod] W. Cai et al. https://github.com/waltercai/pqo-opensource. Accessed:
2020-08-07.

[Moe23] Guido Moerkotte. Building query compilers. https://pi3.informatik.
uni-mannheim.de/~moer/querycompiler.pdf, 2023.

[Mon] MonetDB Team. https://www.monetdb.org/. Accessed: 2020-10-05.

[Mül22] Magnus Müller. Selected problems in cardinality estimation. 2022.

[MWL23] Magnus Müller, Lucas Woltmann, and Wolfgang Lehner. Enhanced featur-
ization of queries with mixed combinations of predicates for ml-based car-
dinality estimation. EDBT, 2023.

[MyS] MySQL hints. https://dev.mysql.com/doc/refman/8.0/en/
server-system-variables.html#sysvar_optimizer_switch. Accessed:
2022-01-06.

[Oraa] Reference for Oracle DB 18c. https://docs.oracle.com/en/database/oracle/oracle-
database/18/tgsql/options-for-optimizer-statistics-gathering.html#GUID-
DEE2AF8B-5F4B-4FE7-9F0E-7D188921EBCC. Accessed: 2020-07-02.

[Orab] Oracle Corporation. https://docs.oracle.com/database/121/DWHSG/
zone_maps.htm#DWHSG-GUID-BEA5ACA1-6718-4948-AB38-1F2C0335FDE4t.
Accessed: 2022-12-15.

[PD85] Hill Peter D. Kernel estimation of a distribution function. Communications in
Statistics-Theory and Methods, 14(3):605–620, 1985.

[Posa] PostgreSQL hints. https://www.postgresql.org/docs/current/
runtime-config-query.html. Accessed: 2022-01-06.

[Posb] Postgres Team. https://www.postgresql.org/. Accessed: 2020-07-22.

[PR20] Orestis Polychroniou and Kenneth A Ross. Vip: A simd vectorized analytical
query engine. The VLDB Journal, 29(6):1243–1261, 2020.

[RAD15] Stefan Richter, Victor Alvarez, and Jens Dittrich. A seven-dimensional analy-
sis of hashing methods and its implications on query processing. In PVLDB,
page 96–107. VLDB Endowment, 2015.

[Ric06] John A Rice. Mathematical statistics and data analysis. Cengage Learning, 2006.

[RKT87] AHG Rinnooy Kan and GT Timmer. Stochastic global optimization methods
part ii: Multi level methods. Mathematical Programming, 39(1):57–78, 1987.

[Rob55] Herbert Robbins. A remark on stirling’s formula. The American mathematical
monthly, 62(1):26–29, 1955.

[SAC+79] P Griffiths Selinger, Morton M Astrahan, Donald D Chamberlin, Raymond A
Lorie, and Thomas G Price. Access path selection in a relational database
management system. In Proceedings of the 1979 ACM SIGMOD international
conference on Management of data, pages 23–34, 1979.

[SAP] Reference for SAP HANA Platform 2.0 SPS 04.
https://help.sap.com/viewer/4fe29514fd584807ac9f2a04f6754767/2.0.02/en-
US/4ba9edce1f2347a0b9fcda99879c17a1.html. Accessed: 2020-07-02.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018.

114 BIBLIOGRAPHY

https://github.com/waltercai/pqo-opensource
https://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
https://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
https://www.monetdb.org/
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_optimizer_switch
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_optimizer_switch
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm#DWHSG-GUID-BEA5ACA1-6718-4948-AB38-1F2C0335FDE4t
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm#DWHSG-GUID-BEA5ACA1-6718-4948-AB38-1F2C0335FDE4t
https://www.postgresql.org/docs/current/runtime-config-query.html
https://www.postgresql.org/docs/current/runtime-config-query.html
https://www.postgresql.org/

[Sco15] David W Scott. Multivariate density estimation: theory, practice, and visualiza-
tion. John Wiley & Sons, 2015.

[SFA+19] Reza Sherkat, Colin Florendo, Mihnea Andrei, Rolando Blanco, Adrian
Dragusanu, Amit Pathak, Pushkar Khadilkar, Neeraj Kulkarni, Christian
Lemke, Sebastian Seifert, et al. Native store extension for sap hana. PVLDB,
12(12):2047–2058, 2019.

[SK13] Lefteris Sidirourgos and Martin L. Kersten. Column imprints: a secondary
index structure. In SIGMOD, pages 893–904, 2013.

[SKS20] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System
Concepts. McGraw-Hill Education, 7 edition, 2020.

[SLMK01] Michael Stillger, Guy M Lohman, Volker Markl, and Mokhtar Kandil. Leo-
db2’s learning optimizer. In PVLDB, pages 19–28. VLDB Endowment, 2001.

[SQLa] SQL Server hints. https://learn.microsoft.com/en-us/sql/t-sql/
queries/hints-transact-sql-query?view=sql-server-ver16. Ac-
cessed: 2022-01-06.

[SQLb] The new and improved cardinality estimator in SQL Server 2014.
https://cloudblogs.microsoft.com/sqlserver/2014/03/17/the-new-and-
improved-cardinality-estimator-in-sql-server-2014/. Accessed: 2020-07-02.

[SSG04] K-U Sattler, Eike Schallehn, and Ingolf Geist. Autonomous query-driven
index mining. In IDEAS, pages 439–448. IEEE, 2004.

[Sva02] Krister Svanberg. A class of globally convergent optimization methods
based on conservative convex separable approximations. SIAM journal on
optimization, 12(2):555–573, 2002.

[Tho33] William R Thompson. On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples. Biometrika, 25(3-
4):285–294, 1933.

[VHF+18] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Vik-
tor Leis, Tobias Mühlbauer, Thomas Neumann, and Manuel Then. Get real:
How benchmarks fail to represent the real world. In Alexander Böhm and
Tilmann Rabl, editors, DBTest, pages 1:1–1:6. ACM, 2018.

[Vit85] Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Transactions on
Mathematical Software, 11(1):37–57, 1985.

[VMZC15] David Vengerov, Andre Cavalheiro Menck, Mohamed Zait, and Sunil P
Chakkappen. Join size estimation subject to filter conditions. Proceedings
of the VLDB Endowment, 8(12):1530–1541, 2015.

[VV09] Gregory Valiant and Paul Valiant. Size bounds for conjunctive queries with
general functional dependencies. arXiv preprint arXiv:0909.2030, 2009.

[W+20] Lucas Woltmann et al. Machine learning-based cardinality estimation in
dbms on pre-aggregated data. In arXiv, 2020.

[WHT+19] Lucas Woltmann, Claudio Hartmann, Maik Thiele, Dirk Habich, and Wolf-
gang Lehner. Cardinality estimation with local deep learning models. In
AiDM. ACM, 2019.

BIBLIOGRAPHY 115

https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query?view=sql-server-ver16

[WMWS18] Florian Wolf, Norman May, Paul R Willems, and Kai-Uwe Sattler. On the
calculation of optimality ranges for relational query execution plans. In Pro-
ceedings of the 2018 International Conference on Management of Data, pages 663–
675, 2018.

[Yam21] Tatsuro Yamada. Postgres pg_hint_plan extension. https://pghintplan.
osdn.jp/pg_hint_plan.html, 2021. Accessed: 2023-4-12.

[YKL+21] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen,
and Ion Stoica. NeuroCard: One cardinality estimator for all tables. In
PVLDB, pages 61–73. VLDB Endowment, 2021.

[YKZ06] Xiaohui Yu, Nick Koudas, and Calisto Zuzarte. Hase: A hybrid approach
to selectivity estimation for conjunctive predicates. In EDBT, pages 460–477.
Springer, 2006.

[YLK+19] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan,
Peter Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion
Stoica. Deep unsupervised cardinality estimation. In PVLDB, volume 13.
VLDB Endowment, 2019.

[Ż+00] Henryk Żoładek et al. The topological proof of abel-ruffini theorem. Topo-
logical Methods in Nonlinear Analysis, 16(2):253–265, 2000.

[ZG90] Hansjörg Zeller and Jim Gray. An adaptive hash join algorithm for multiuser
environments. In PVLDB, pages 186–197. VLDB Endowment, 1990.

116 BIBLIOGRAPHY

https://pghintplan.osdn.jp/pg_hint_plan.html
https://pghintplan.osdn.jp/pg_hint_plan.html

LIST OF FIGURES

1.1 General query processing workflow. 12
1.2 Example query execution plan. 13
1.3 Execution times of query plans based on two different optimization princi-

ples. (The blue line serves as orientation.) 17
(a) Postgres (native) optimistic optimization. 17
(b) Postgres robust optimization. 17

1.4 Comparison between optimistic and pessimistic (robust) join ordering. . . 18
(a) Postgres native: Error propagation of optimistic cardinality estimates

leading to suboptimal join order and potentially long-running query. 18
(b) Upper bound pessimistic join ordering reducing the risk of disastrous

planning decisions. 18

2.1 k-Curves. 26
2.2 ω-0-curve. 27
2.3 Relative number of queries that lead to empty samples (0-TS) with regard

to the number of single predicates (atoms) and the sample size. 28
2.4 Maximum entropy solution example. 31
2.5 A Kernel Density Estimator approximates the underlying distribution of a

given dataset (a) by picking a random sample of data points (b), centering
local probability distributions (kernels) around the sampled points (c), and
averaging those local distributions (d). Reprinted from [HKM15]. 32
(a) Points in database. 32
(b) Sampled points. 32
(c) Kernels. 32
(d) Estimated distrib. 32

2.6 Process for cardinality estimation with learned models [WHT+19]. 33
2.7 Structure and building blocks. 34
2.8 Beta distribution modeling the certainty of an estimate regarding the num-

ber of observations. The certainty is balanced by equally distributing the
probability mass. 35
(a) Observed conditionals . 35
(b) Adjusted conditionals . 35

2.9 Beta Estimator. 42
2.10 Example of a conjunctive query containing seven predicates, evaluated over

attributes A-G. 42
2.11 Evaluation of advanced estimators on Forest using 5,810 sample tuples (1%). 48
2.12 Q-error of 10,000 queries sorted in ascending order. 49

(a) Acd – using 13,919 sample tuples (0.1%). 49
(b) Weather – using 34,751 sample tuples (1%). 49

2.13 Execution time of conjunctive filters in MonetDB. 52
2.14 Pages of base table referenced by random tuple identifiers (TIDs). Grey

parts are not accessed. 54
2.15 Cumulative sampling time for 10,000 queries. 55
2.16 Conditional Sampling. 56
2.17 Estimation accuracy for 10,000 queries. 57
2.18 Pruning sample tuples using zone maps. 58

117

3.1 Classification of different cardinality estimation approaches. 63
3.2 Sketch-based upper bound calculation and join enumeration [CBS19]. . . . 66
3.3 Illustration of our upper bound (U-block). 67
3.4 Rewriting of JOB query 18a (cf. Section 3.3) according to our UES approach.

Non-expanding operators (pk-fk joins, filters) are highlighted green and
potentially expanding operators (n:m joins) are highlighted red. 69
(a) Implicit Syntax – Joins yet to be ordered. 69
(b) Explicit Join Order - Physical operators yet to be determined. 69

3.5 Schema of the Internet-Movie-Database [LRG+18]. 72
3.6 Comparison of average planning and execution time grouped by the num-

ber of joins, using a Postgres (v. 9.6) instance, modified by Cai et al. [CBS19].
The black band marks the standard deviation of the execution time. 74

3.7 Upper bound overestimation. 74
3.8 Comparison of different subquery policies. 75

(a) Linear execution plan. 75
(b) Bushy execution plan. 75

4.1 Distribution of sub-optimal planning decisions showing the effect of good
physical operator selections. 78
(a) Vanilla (v12.4). 78
(b) Sketch (v9.6). 78

4.2 UES (v12.4). 79
4.3 Bao system overview [MNM+21]. 81
4.4 Case-Based-Reasoning Life-Cycle. 82
4.5 TONIC‘s case base: QEP-S trie. 83
4.6 TONIC’s operation mode. 84
4.7 Detailed Example of the QEP-S Life-Cycle. Join orders are depicted by the

explicit join syntax. 85
(a) 1st query: build initial QEP-S. 85
(b) 2nd query: conflict at node T. 85
(c) 3rd query: add new branch. 85

4.8 Dealing with sub-queries. 87
4.9 Tonic performance overview (Vanilla v12.4). 90

(a) JOB. 90
(b) Stack. 90

4.10 Response times with and without TONIC. To raise awareness of the differ-
ent time scales we add a point of reference. 92
(a) Vanilla (v12.4). 92
(b) UES (v12.4). 92
(c) Sketch (v9.6). 92

4.11 Rate of improvement: Comparison between TONIC and Bao [MNM+21]. . 93
(a) Join-Order-Benchmark. 93
(b) Stack-Benchmark. 93

4.12 TONIC + UES: rate of improvement and prefix reutilization. 94
(a) TONIC: rate of improvement. 94
(b) QEP-S prefix reutilization. 94

4.13 Data shift: Adaptivity after single workload iteration (left) and 100 itera-
tions (right) depending on gamma. 96
(a) TONIC’s performance after heavy data shift. 96
(b) Adaptation speed of plain QEP-S with regard to gamma. 96

4.14 Indices sorted by response time savings. 98

5.1 The basic PostBOUND query optimization workflow. 101
5.2 Interaction between the core PostBOUND components for join ordering. . . 102
5.3 Iterative enumeration of JOB query 8c based on the query’s join graph. . . 104

(a) Base join graph. 104

118 LIST OF FIGURES

(b) Join graph after base table selection. 104
(c) Join graph after selection of the first join. 104
(d) Final join graph after selecting all joins. 104

A.1 Iterator-based query execution, e.g. used by PostgreSQL [SKS20]. 124
A.2 Illustration of the selectivity-aware QEP-S. 129
A.3 JOB with different query execution orders. 130

(a) TONIC + Postgres UES . 130
(b) TONIC + Postgres Vanilla . 130

LIST OF FIGURES 119

120 LIST OF FIGURES

LIST OF TABLES

2.1 Notation. 25
2.2 Sample S of R showing more certainty for the conditional selectivity esti-

mate p(Audi|Blue) compared to p(Audi|Blue). 34
2.3 Forest data set – average (avg) and maximum (max) q-error of 10,000 queries. 48
2.4 Uncorrelated – average (µ) and max. (↑) q-error. 50
2.5 Correlated – average (µ) and max. (↑) q-error. 50
2.6 Filter orderings – avg. (µ) and max. (↑) q-error. 51
2.7 Number of intermediate result tuples in 0-TS. 52
2.8 Specific overhead of our scheme entailed by Brent’s method – avg. (µ) and

max. (↑) time in [µs] for seven atoms. 53
2.9 Number of 0-TS: Comparing traditional sampling with Conditional Sampling

using an index over a random predicate and the most selective predicate. . 58
2.10 Replacing or extending traditional sampling with customized techniques. . 59

3.1 Partitioning of two tables R,S using the hash function %2 (modulo 2). . . . 65

4.2 QEP-S runtime traits. 97

121

122 LIST OF TABLES

A
APPENDIX

A.1 BASICS OF QUERY EXECUTION

Once a query has been optimized and the execution plan has been generated, it is the task
of the query execution engine to actually run the query and determine its result set. To do
so, a number of abstract models exist with the iterator model and the materialization model
being the basic ones. To provide an overview of these concepts, we adopt the presentation
from Silberschatz et al. [SKS20] and Härder and Rahm [HR01].

The central abstraction behind the iterator model is the eponymous iterator: all opera-
tors share this common interface which supplies their result set on a per-tuple basis. An
iterator provides at least two primitives: one to check whether there are still tuples left
and one that supplies the next tuple. Depending on the specific system, such an iterator
can then operate in a push-based manner (i.e. by actively pushing tuples to their parent
operator), or in a pull-based manner (i.e. by having the parent operator actively retrieve
the input tuples from its children). Figure A.1 shows the pull-based iterator model as it
is used by Postgres. Every time a tuple from the result set is requested, a correspond-
ing next() call on the projection iterator is issued. Since this iterator operates on top of
another iterator, it delegates the retrieval of that next tuple to its child hash join iterator,
again using the next() interface. This process continues until a scan operator is reached
which supplies the actual tuple from the raw data record. At this point, the tuple can be
propagated “upwards”. During this second phase, each operator can perform its specific
logic, e.g. checking whether the tuple matches the index condition. Applying the itera-
tor model as sketched also demonstrates a central advantage of this method: a tuple can
be completely processed in one pass from scan to final projection. This allows for cache
resident execution until reaching a pipeline-breaker, e.g. the build side of a hash join. On
the contrary, a lot of iterator-calls are necessary, which can lead to a significant overhead.

The materialized execution model tries to mitigate the overhead of multiple iterator calls
by executing operators at once and supplying result sets in materialized batches. Al-
though this approach limits scalability due to higher memory consumption, it enables
very fast operator execution and instruction cache re-utilization. In particular, MonetDB
[BKM08] popularized the materialized execution model for analytical query processing.
A third hybrid approach that is also attractive for OLAP systems is the vectorized execu-
tion model. The vectorized execution model provides small batches of result tuples to the
pipeline. These batches are a natural target for vectorization approaches such as SIMD
instructions, as for example described in VIP [PR20].

123

<<sequential scan>>
actors

<<sequential scan>>
movies

<<filter>>
release_date >= '2022-01-01'

<<hash join>>
movie.id = most_famous_movie

<<projection>>
actor.name

next()

<<hash>>
most_famous_movie

next()

next()

next()

SELECT actor.name
FROM movies, actors
WHERE release_data >= '2022-01-01'
 AND movie.id = most_famous_movie

 pipeline-
breaker

Figure A.1: Iterator-based query execution, e.g. used by PostgreSQL [SKS20].

A.2 WHY Q?

We use the q-error throughout the thesis since it is the only error metric known to have
a tight connection to plan quality [MNS09, KM16]. Note that the q-error is quite old (cf.
[CCMN00, Gib01]) and already found its way into textbooks (cf. [CGHJ11]). This section
reviews some findings which motivate the usage of the q-error. We start by reviewing a
theorem from [MNS09] and introduce the following abbreviation:

||y||Q:= min{y, 1/y}.

Let x > 0 be a value and x̂ > 0 be an estimate for x. Then, the q-error of the estimate x̂ is
defined as

q-error(x̂) := ||x̂/x||Q.

Let C(e) denote the result of some cost function applied to some algebraic expression e,
and let M(e) denote the actual measured costs (e.g., runtime). Then, according to our
definition, the q-error of the cost function C(e) is

q-error(C(e)) = ||C(e)/M(e)||Q.

Let E = {e1, ..., ek} denote a set of plans. This set could be, for example, a set of plans
equivalent to a given query and generated/explored by the plan generator. Further, let
eopt be the optimal plan for a query Q, minimizing M(e), and ebest the best plan, mini-
mizing C(e). We are now interested in the factor by which the true cost of ebest is larger
than the true cost of the optimal plan eopt. An upper bound for this factor is given in the
following theorem.

Theorem 1

If for all ei ∈ E and for some q : ||C(ei)/M(ei)||Q≤ q,

then ||C(ebest)/M(eopt)||Q≤ q2.

An important corollary to the theorem is:

124 Appendix A Appendix

Theorem 2

If for all ei ∈ E and for some q : ||C(ei)/M(ei)||Q≤ q,

and for all ei ̸= eoptq <
√

||C(ei)/M(eopt)||Q,

then M(ebest) = M(eopt).

That is, if we are able to make the q-error of our cost function small enough, then Theo-
rem 2 guarantees that we will find an optimal plan.

To provide a result similar to Theorem 1 but for the propagation of cardinality estimation
errors through cost functions, Moerkotte et al. [MNS09] prove that if the q-error of all
cardinality estimates used during query optimization is below q, then:

||M(ebest)/M(eopt)||Q≤ q4.

Here, we assume that the cost function is precise and errors only occur for the cardinality
estimates. If both the cost function and the cardinality estimates contain errors, their
q-errors multiply. Comparing a quality loss of factor q2 for cost function errors to the
loss of factor q4 for cardinality estimation errors, leaves us to conclude that cardinality
estimation errors are more severe than cost function errors. Unfortunately, estimation
errors seem to propagate exponentially through joins [IC91].

A.3 0-TS PROOF OF UNBIASED ESTIMATE

To prove P(n,m, k = 0, l) = 0.5 ⇐⇒ l = n ln(2)
m , we consider to solve l for the more

general problem:
P(n,m, 0, l) = c, (A.1)

where we are given n, m, and c. We simplify the hypergeometric distribution and then
use Stirling’s approximation of n!. For k = 0, we can simplify P(n,m, k, l) as follows:

P(n,m, 0, l) =
(n−l

m−0
)(l

0
)(n

m

) =
(n−l

m

)(n
m

)
= (n− l)!

(n− l −m)! ∗ (n−m)!
n! = (n− l)! (n−m)! m!

(n− l −m)! m! n!

Stirling’s approximation:

n! ≈
√

2πn(n
e

)n =
√

2πnn+ 1
2 e−n

According to Robbin’s bounds [Rob55] the following is precise:

P(n,m, 0, l) = (n− l)!
(n− l −m)! ∗ (n−m)!

n!

≈
√

2π(n− l)(n−l)+ 1
2 e−(n−l)√2π(n−m)(n−m)+ 1

2 e−(n−m)
√

2π(n− l −m)(n−l−m)+ 1
2 e−(n−l−m)

√
2πnn+ 1

2 e−n

= (n− l)(n−l)+ 1
2 (n−m)(n−m)+ 1

2

(n− l −m)(n−l−m)+ 1
2nn+ 1

2

A.3 0-TS Proof of Unbiased Estimate 125

Taking the logarithm:

ln(P(n,m, 0, l)) ≈
(n− l + 0.5) ln(n− l) + (n−m+ 0.5) ln(n−m)
− (n− l −m+ 0.5) ln(n− l −m) − (n+ 0.5) ln(n)

Approximating the resulting terms

We start by expressing l and m in terms of n. Define s, t such that l=sn; m=tn. Accord-
ingly, s is the predicate selectivity and t is the sample fraction. Then

ln(P(n,m, 0, l))
≈ (n− sn+ 0.5) ln(n− sn) + (n− tn+ 0.5) ln(n− tn)

− (n− sn− tn+ 0.5) ln(n− sn− tn) − (n+ 0.5) ln(n)
= ((1 − s)n+ 0.5) ln(1 − s) + ((1 − t)n+ 0.5) ln(1 − t)

− ((1 − s− t)n+ 0.5) ln(1 − s− t) (A.2)

The above approximation is quite precise. However, solving for s is not easy, therefore
we apply the following:

ln(x) ≈ x− 1; x ln(x) ≈ x− 1

These approximations are precise if x ∈ [0.9, 1]. In practice, this restriction of x is not
severe as the sample fraction is typically far below 10%. Since one approximation is an
upper and the other a lower bound, we use the arithmetic mean of both and start by
substituting ln(x) ≈ x− 1 in Equation (A.2):

ln(P(n,m, 0, l))
≈ ((1 − s)n+ 0.5)(−s) + ((1 − t)n+ 0.5)(−t)

− ((1 − s− t)n+ 0.5)(−s− t)=−2stn

Next, we use x ln(x) ≈ x − 1. Before we apply this approximation, we eliminate the 0.5
from Equation (A.2), which we assume to be rather small compared to (1 − s− t)n.

ln(P(n,m, 0, l))
≈ n[(1−s) ln(1−s) + (1−t) ln(1−t)−(1−s−t) ln(1−s−t)]
≈ n[−s− t+ s+ t]=0

Taking the arithmetic mean, we get our main result:

ln(P(n,m, 0, l)) ≈ −2stn+ 0
2 = −stn

Using this, we can now solve our original problem:

P(n,m, 0, l) = c ⇐⇒ ln(P(n,m, 0, l)) = ln(c)
⇐⇒ −stn = ln(c)
⇐⇒ l = − ln(c) n

m

Coming back to Eq. (A.1) and determining l so that P(n,m, 0, l) = 0.5, we see that l =
− ln(0.5) n

m = ln(2) n
m .

126 Appendix A Appendix

A.4 UES UPPER BOUND PROPERTY

In this section we seek to show that –given precise base table cardinalities– the following
inequality holds true:

|R ▷◁ S|≤ upper(|R ▷◁ S|) = min
(|R|

MF(R.x) ,
|S|

MF(S.y)

)
∗ MF(R.x) ∗ MF(S.y),

where MF(R.x), MF(S.y), denotes the maximum frequency a value can have in attribute
x, y of table R,S. In essence, our upper bound is based on two principles: First, we
assume as few as possible distinct values. For instance, given MF(R.x), we know that
table R contains at least |R|/MF(R.x) distinct values. That is, we virtually fill the join
attributes with values that comply to the maximum possible frequency.
Second, we assume as many as possible matching values across the join partners, given
by n = min {|R|/MF(R.x), |S|/MF(S.y)}. To account for the frequency of each join value
in the upper bound join result, we multiply n with MF(R.x), MF(S.y). To demonstrate
that these assumptions are sufficient for a guaranteed join cardinality upper bound, we
start with the most basic case where we only have one distinct value that is shared across
both join partners. Afterward, we increase the number of (matching) distinct values to
show the dynamic of the upper bound.

Base Case: One distinct value that is shared across both join partners with respective
frequencies MF(R.x)= a, MF(S.y)= b. Accordingly, |R|= a, |S|= b, giving:

upper(|R ▷◁ S|) = min
(
a

a
,
b

b

)
∗ a ∗ b = ab.

Since ab is the cardinality of the cartesian product –i.e. the maximum cardinality of any
join result– our bound formula clearly holds true in this case.

General case. In general our bound assumes n = min {|R|/MF(R.x), |S|/MF(S.y)} match-
ing distinct values with frequencies MF(R.x) = a,MF(S.y) = b. Therefore, we know that
R.x contains (at least) n distinct values with frequencies a1, ..., an for which we assume
ai = a. In the same vein, S.y contains (at least) n distinct values with frequencies b1, ..., bn

for which we assume bi = b. This leads to the following bound:

upper(|R ▷◁ S|) = n ∗ a ∗ b =
n∑

i=1
ab =

n∑
i=1

aibi.

Next, we include an additional distinct value of frequency a′ in table R. If the new value
does not match any value in S.x the bound clearly holds. Assume, that the new value in
R.x matches an already existing value in S.y of frequency b′. To include the additional
distinct value inR.x, we need to decrease some frequencies ai by some value ni to comply
to the fixed size table cardinalities, giving:

|R ▷◁ S|=
n∑

i=1
(ai − ni)bi + a′b′ =

n∑
i=1

aibi −
n∑

i=1
nibi + a′b′,

where
∑n

i=1 ni = a′. Since we started with the fewest number of distinct values –that is
using values with the highest frequency– we know that a′ ≤ a and b′ ≤ b. Therefore:

a′b′ ≤ a′b =
n∑

i=1
nib =

n∑
i=1

nibi.

A.4 UES Upper Bound Property 127

Hence:

upper(|R ▷◁ S|) =
n∑

i=1
aibi =

n∑
i=1

aibi −
n∑

i=1
nibi +

n∑
i=1

nibi

≥
n∑

i=1
aibi −

n∑
i=1

nibi + a′b′ = |R ▷◁ S|.

Accordingly, having more distinct values will never exceed our upper bound. We can
apply the procedure as outlined in the general case to simulate joins with any number of
distinct values. To do so, we add new values sorted in descending order with respect to
their frequency. Eventually, we set MF(R.x) (MF(S.y)) to the highest frequency after the
new value has been added while reiterating the previous steps.

A.5 TONIC – SELECTIVITY-AWARE BRANCHING

As an attempt to strike a balance between generalization and specification, we propose
the selectivity-aware QEP-S as a further variant. The selectivity-aware QEP-S uses selectivity
intervals instead of fully specified filter expressions to achieve a filter-sensitive distinc-
tion of join orders. Therefore, TONIC adds a new branch to the QEP-S if (i) the given join
order does not match an existing prefix or (ii) the revised operator selection contradicts
an existing operator recommendation due to changed filter selectivities. Otherwise, base
table filters contribute to a selectivity interval of an existing prefix, where the respective
operator decision is considered to be optimal.

Figure A.2 illustrates an example based on a workload with four queries where the tables
are already ordered, and we are given access to (precise) filter selectivity estimates:

Query 1: TONIC adds the prefix R-S-T-U to the empty QEP-S along with the optimal
operator selection and cost feedback. Each node initializes a selectivity interval with the
respective filter selectivities as lower (↓) and upper (↑) bound.

Query 2: Although the second query applies different filter conditions, it requires the
same join order and physical join operators as the first query. Since the filter selectivity of
0.8 over table S does not change the recommended operator, TONIC adjusts the interval
from [1, 1] to [0.8, 1] for node S and does the same for node T .

Query 3: The next query only joins R and S. However, the filter over table S is much
more restrictive (selectivity of 0.3) compared to the previous queries (selectivities of 0.8
and 1). As a result, the optimal decision for joining S on R requires a nested loop join in
this scenario. Therefore, TONIC starts another branch after R, where S is associated with
a loop join and the initial interval [0.3, 0.3].

Query 4: The last query entails an even more restrictive filter condition over table S
(selectivity of 0.1) and again achieves the fastest query response by using a nested loop
join. In line with the previous queries, TONIC adjusts the interval of node S from [0.3, 0.3]
to [0.1, 0.3] and adds a new node for joining T to this selectivity-aware branch alternative.

128 Appendix A Appendix

R: None

T: Hash Join

U: NL Join

[↓:0.2, ↑:0.2]

[↓:0.8, ↑:1.0]

[↓:0.5, ↑:0.6]

[↓:1.0, ↑:1.0]

[↓:0.1, ↑:0.3]

T: NL Join[↓:0.4, ↑:0.4]

root

S: NL Join S: Hash Join

query 1:
sel(R)=0.2, sel(S)=1.0, sel(T)=0.5, sel(U)=1.0

query 2:
sel(R)=0.2, sel(S)=0.8, sel(T)=0.6, sel(U)=1.0

query 3:
sel(R)=0.2, sel(S)=0.3

query 4:
sel(R)=0.2, sel(S)=0.1, sel(T)=0.4

selectivity-
aware branch

Figure A.2: Illustration of the selectivity-aware QEP-S.

A.6 TONIC – SEQUENCES OF QUERY EXECUTION

As has been mentioned in Section 4.4.5, the rate of TONIC’s improvement may depend on
the order in which the workload queries are executed. To test different query orders, we
start with an empty (untrained) QEP-S using the plain branching policy. In particular, we
use join orders based on our pessimistic UES design as well as the join orders of a native
Postgres instance. Figure A.3 shows JOB execution times for different query executions
sequences where random order #1 has been used in our initial experiments. Depending
on the query execution order, we only observe slightly different execution times when
starting with an empty QEP-S. Further, applying the pre-populated (trained) QEP-S in a
second workload iteration results in identical execution times for all query orders.

A.6 TONIC – Sequences of Query Execution 129

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
random orders of query execution

0

50

100

150

200

250

300

350

400

ex
ec

tu
io

n
tim

e
[s

]

native plan empty QEP-S pre-populated

(a) TONIC + Postgres UES

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
random orders of query execution

0

50

100

150

200

250

300

350

400

ex
ec

tu
io

n
tim

e
[s

]

native plan empty QEP-S pre-populated

(b) TONIC + Postgres Vanilla

Figure A.3: JOB with different query execution orders.

130 Appendix A Appendix

CONFIRMATION

I confirm that I independently prepared the thesis and that I used only the references and
auxiliary means indicated in the thesis.

Dresden, July 17, 2023

131

	Introduction
	Analytical Query Processing
	Select-Project-Join Queries
	Basics of SPJ Query Optimization
	Plan Enumeration
	Cost Model
	Cardinality Estimation

	Robust SPJ Query Optimization
	Tail Latency Root Cause Analysis
	Tenets of Robust Query Optimization

	Contribution
	Outline

	Select (-Project) Stage
	Sampling for Selectivity Estimation
	Related Work
	Combined Selectivity Estimation (CSE)
	Kernel Density Estimator
	Machine Learning

	Beta Estimator for 0-Tuple-Situations
	Methodology
	Beta Distribution in Non-0-TS
	Parameter Estimation in 0-TS
	Selectivity Estimation and Predicate Ordering
	Evaluation

	Customized Sampling Techniques
	Focused Sampling
	Conditional Sampling
	Zone Pruning
	Discussion

	Summary

	Join Stage: Logical Enumeration
	Related Work
	Point Estimates
	Join Cardinality Upper Bound

	Upper Bound Join Enumeration with Synopsis (UES)
	U-Block: Simple Upper Bound for Joins
	E-Block: Customized Enumeration Scheme
	UES Algorithm

	Evaluation
	General Performance
	Discussion

	Summary

	Join Stage: Physical Operator Selection
	Operator Selection vs Join Ordering
	Related Work
	Adaptive Query Processing
	Bandit Optimizer (Bao)

	TONIC: Learned Physical Join Operator Selection
	Query Execution Plan Synopsis (QEP-S)
	QEP-S Life-Cycle
	QEP-S Design Considerations

	Evaluation
	Performance Factors
	Rate of Improvement
	Data Shift
	TONIC - Runtime Traits
	Discussion

	Summary

	Two-Stage Optimizer Framework
	Upper-Bound-Driven Join Ordering Component
	Physical Operator Selection Component
	Example Query Optimization

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Appendix
	Basics of Query Execution
	Why Q?
	0-TS Proof of Unbiased Estimate
	UES Upper Bound Property
	TONIC – Selectivity-Aware Branching
	TONIC – Sequences of Query Execution

