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Abstract

In this manuscript, we provide foundations of properties of homoge-
neous polynomials such as the half-plane property, determinantal rep-
resentability, being weakly determinantal, and having a spectrahedral
hyperbolicity cone. One of the motivations for studying those properties
comes from the “generalized Lax conjecture” stating that every hyper-
bolicity cone is spectrahedral. The conjecture has particular importance
in convex optimization and has curious connections to other areas. We
take a combinatorial approach, contemplating the properties on matroids
with a particular focus on operations that preserve these properties. We
show that the spectrahedral representability of hyperbolicity cones and
being weakly determinantal are minor-closed properties. In addition,
they are preserved under passing to the faces of the Newton polytopes
of homogeneous polynomials. We present a proved-to-be computation-
ally feasible algorithm to test the half-plane property of matroids and
another one for testing being weakly determinantal. Using the computer
algebra system Macaulay2 and Julia, we implement these algorithms and
conduct tests. We classify matroids on at most 8 elements with respect
to the half-plane property and provide our test results on matroids with
9 elements. We provide 14 matroids on 8 elements of rank 4, including
the Vámos matroid, that are potential candidates for the search of a
counterexample for the conjecture.
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Introduction

A polynomial, all of whose monomials have the same degree, is called homo-
geneous. Properties of homogeneous polynomials with real coefficients have
been motivated and studied by different branches of mathematics; differential
equations [24, 42, 8], real algebraic geometry [30, 58, 51], convex optimization
[29, 5, 54], combinatorics [61, 10, 18], etc. Being hyperbolic is one of these
properties. A homogeneous polynomial h ∈ R[x1, . . . , xn] is called hyperbolic
if there exists a direction e ∈ Rn such that h(e) does not vanish, and for all
v ∈ Rn the univariate restriction h(et − v) is real rooted. For every such h,
the set of points v ∈ Rn for which the univariate restriction h(et− v) has only
non-negative roots is called the hyperbolicity cone Ch(e) of h. In particular,
by [24], such a polynomial h is hyperbolic with respect to every point from the
interior of its hyperbolicity cone Ch(e).

Hyperbolicity cones are closed and convex and feasible sets of hyperbolic
programming that optimizes a linear function on hyperbolicity cones. Another
type of optimization, called semidefinite optimization (SDP), uses sections of
the cone of positive semidefinite matrices as feasible sets. Those sets can be
defined as the solution set of linear matrix inequalities and are called spectra-
hedral, or to have a spectrahedral representation. While spectrahedral cones
can be expressed as hyperbolicity cones of some polynomials, whether every
hyperbolicity cone can be defined by linear matrix inequalities is an open ques-
tion that the Generalized Lax conjecture posits. For results supporting the
conjecture, we refer to [19, 49, 12, 2].

The studies motivated by the conjecture took a new perspective with the
connection between the hyperbolicity and the half-plane property. In combi-
natorics, being hyperbolic with respect to every point in the positive orthant is
called the half-plane property (HPP). This property was initially motivated by
the theory of electrical networks. An electrical network can be seen as a finite,
connected, un-directed graph G whose edges and vertices represent cables and
joints, respectively. An application of Kirchoff’s matrix tree theorem yields
a well-known result in engineering; the spanning tree polynomial of any such
graph G has the half-plane property. One can then consider matroids, which
generalize the concept of linear independence. In particular, they allow one to
consider the half-plane property of objects that are not necessarily constructed
from graphs.

A matroid M is a finite set E = [n] with a collection B of its subsets
called the collection of bases whose elements satisfy the following basis exchange
axiom:

If B1, B2 ∈ B and e ∈ B1 \ B2, then there exists e′ ∈ B2 \ B1 such that
(B1 \ {e}) ∪ {e′} ∈ B.
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Subsets of bases are called independent, and as we intuitively expect, the
rank of a subset S ⊂ E is the cardinality of the biggest independent set it
contains. Also, every basis has the same cardinality. There are several ways
to define matroids; once we know one concept, for example, the bases, we can
deduce the dependent sets, independent sets, etc. Matroids can be produced
from matrices by enumerating their column vectors and considering the inde-
pendence relation of their columns. They can also be defined from graphs by
enumerating the set of their edges and setting the subsets that give rise to
spanning trees as bases. On the other hand, there exist some matroids that
neither come from matrices nor from graphs. Indeed matroids are broader
combinatorial objects.

The basis generating polynomial of a matroid M is

hM :=
∑
B∈B

∏
i∈B

xi.

Such polynomials are homogeneous, multiaffine (i.e., every variable has degree
at most 1 in it), and in particular, their support elements satisfy the basis
exchange axiom. One can then ask whether or when such polynomials are
hyperbolic with respect to every point on the positive orthant. A matroid is
called to have the half-plane property when its basis generating polynomial has
the half-plane property.

In their seminal paper [18] by Choe et al. showed that the support of every
homogeneous multiaffine polynomial with the half-plane property is the collec-
tion of bases of some matroid. This implies, in particular, that homogeneous
multiaffine polynomials with the half-plane property give rise to matroids. On
the other hand, not every matroid has the half-plane property. For example,
Brändén in [10] showed that the collection of bases of the Fano matroid (F7)
cannot be the support of a polynomial with the half-plane property.

In the context of the generalized Lax conjecture, finding matroids that have
the half-plane property (thus hyperbolic) and investigating the spectrahedrality
of their hyperbolicity cones gives a way to search for potential counterexamples.

Having a determinantal representation and being weakly determinantal are
yet other properties of homogeneous polynomials. A homogeneous polynomial
h ∈ R[x1, . . . , xn] is called to have a determinantal representation if there exists
real symmetric positive semi-definite matrices A1, . . . , An and a non-zero λ ∈ R
such that h = λ det(x1A1 + · · · + xnAn). Moreover, if there exists a power
N ∈ N>0 such that hN has a determinantal representation, then h is called
weakly determinantal. Notably, being weakly determinantal implies the half-
plane property, and the matrices that give the determinantal representation
take a role in the spectrahedral representation of the hyperbolicity cone. On the
other hand, not every hyperbolic polynomial is weakly determinantal. Brändén
in [11] showed that the basis generating polynomial of the Vámos matroid (V8)
has the half-plane property, but it is not weakly determinantal.
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V8 F7

In particular, V8 provides a counterexample for a stronger version of the
conjecture. Further such examples can be found in [15, 3].

Moreover, Helton and Vinnikov in [30] gave a criterion for a hyperbolicity
cone to be spectrahedral;

The hyperbolicity cone Ch ⊇ R≥0 of h is spectrahedral if there exists an-
other hyperbolic polynomial g with Ch ⊆ Cg such that h · g is weakly determi-
nantal.

This brings another facet to the quest to find matroids with the half-plane
property that are possible candidates for a counterexample to the generalized
Lax conjecture. In particular, one should aim to find more matroids with the
half-plane property that are not weakly determinantal.

Furthermore, finding matroids that have the half-plane property and those
that do not have it is interesting on its own. It is not easy, in general, to
detect the half-plane property of a given matroid. Oxley, for instance, asks for
a “practically feasible algorithm for testing whether a matroid is HPP” in his
book [50, Problem 15.8.10].

One may then ask the following questions:

• Which operations on polynomials preserve the half-plane property, being
weakly determinantal and spectrahedral representability of hyperbolicity
cones?

• Which matroids have the half-plane property?

• Are there more matroids that have the half-plane property that are not
weakly determinantal?

• Is there a computationally feasible way to test the half-plane property of
matroids?

In this manuscript, we first give the necessary background on the mentioned
properties and their relations with matroids. We then focus on the first ques-
tion; the operations on homogeneous polynomials and matroids that preserve
those properties.

Especially deletion and contraction operations of matroids have particular
importance. Depending on whether a matroid is simple (i.e., has no element
that appears in every basis or does not have an element that appears in no ba-
sis), their effects on the basis generating polynomial boil down to setting some
variables equal to zero or taking derivatives with respect to them. Deletion
and contraction operations create new smaller matroids called minors from a
given matroid. Therefore, minor closedness of the operations of our interest
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would suggest searching those properties on smaller matroids first, making a
classification, and then moving on to the bigger ones.

In [18], Choe et al. showed that the half-plane property of polynomials is
closed under taking minors, and in [38], Kummer et al. showed that deter-
minantal representability is minor-closed. We give details about those results
while viewing the half-plane property from the perspective of stability (see,
for example, [8]). Moreover, in § 2.2, we prove that having a spectrahedral
hyperbolicity cone and being weakly determinantal are minor-closed proper-
ties. Considering the polarization of a homogeneous not necessarily multiaffine
polynomial in order to turn it into a multiaffine polynomial in more variables
is one of the methods we use. It especially allows us to apply some results
on multiaffine polynomials. The mentioned results are part of [39], joint work
with Kummer. In summary, we have the following diagram for the properties
mentioned above.

Matroid M M has the property of interest

=⇒

M ′ has the property of interestA minor M ′ of M

We further take a geometric approach and consider the Newton polytopes
of matroids called matroid polytopes. We consider the operation of going from
the matroid polytope of a given matroid to one of its faces and then going to
the matroid corresponding to that face (by [26] faces of matroid polytopes are
matroid polytopes of some matroids). We then show the preservation of the
properties under this operation for homogeneous polynomials and their Newton
polynomials in general.

Matroid M Matroid Polytope P (M)

A Face FMatroid MF

Further, in § 3, we discuss the criteria for a matroid to have the half-plane
property and to be weakly determinantal. Brändén in[10] gave a criterion for
the half-plane property of a matroid M that relies on the non-negativity of the
Rayleigh differences

∆ij(hM ) :=
∂hM

∂xi
· ∂hM

∂xj
− ∂2hM

∂xi∂xj
· hM

of its basis generating polynomial hM for all indices i, j. In particular,
Wagner and Wei in [63] showed that when all proper minors of a matroid have
the half-plane property, it is enough to find only one pair of indices for which
the Rayleigh difference is non-negative. These criteria create a bridge between
the studies on hyperbolic polynomials and the non-negativity of polynomials.

We list several methods one can apply for testing the half-plane property
and being weakly determinantal. For the latter, we introduce the SOS-Rayleigh
property and show that it is minor closed. A homogeneous multiaffine polyno-
mial is SOS-Rayleigh when all of its Rayleigh differences are sums of squares. In
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particular, by [38], weakly determinantal polynomials are SOS-Rayleigh. An-
other way to test being weakly determinant is due to [11]; the rank functions of
weakly determinantal matroids satisfy the Ingleton inequalities. We implement
those criteria and provide an algorithm (Algorithm 1) for testing the half-plane
property and another one (Algorithm 2) for testing the SOS-Rayleigh property
(in order to use it to disprove being weakly determinantal).

We implement the algorithms using the computer algebra systemMacaulay2
[28] and Julia. We use packages “Matroids” by Chen [16, 17] for manipulating
matroids in Macaulay2, and “SumsOfSquares” by Cifuentes et. al. [20, 21]
for producing symbolic certificates for non-negativity. The Julia package “Ho-
motopyContinuation.jl” by Breiding and Timme [14] is used to compute the
critical points in order to disprove the half-plane property.

Using the algorithms, we classify matroids on 8 elements with respect to the
half-plane property and also provide our test results on matroids on 9 elements
(§ 4). Our classification yields a list of 32 matroids with at most 8 elements
that are minor-minimal with respect to not having the half-plane property.
These include the ten forbidden minors of rank 3 on 7 elements that were
already found in [63], namely the Fano matroid, three of its relaxations, the
free extension of M(K4) by one element and their duals. All other forbidden
minors are of rank 4 on 8 elements. We found that 14 matroids of rank 4 on
8 elements, including the Vámos matroid, have the half-plane property but
are not weakly determinantal. In particular, they are potential candidates for
searching for a counter example for the conjecture. Another particularity is
that they have some Rayleigh differences that are non-negative but not a sum
of squares of polynomials.

Further, our tests confirm that the Pappus, non-Pappus, and (non-Pappus
\9)+e matroids are the only forbidden minors for the half-plane property that
are on 9 elements with rank 3. Among those of rank 4, we provide a list of
4125 matroids that have the half-plane property and a list of 1218 matroids
that are forbidden (minimal) minors for the half-plane property.

As future perspectives, our results on the minor closedness of spectrahedral
representability suggest the search of spectrahedrality of matroids with the
HPP starting from matroids on a small ground set. By using characterizations
of matroids from [50] and results supporting the generalized Lax conjecture
[12, 2], we conclude that every matroid on at most 5 elements is spectrahedral.
There are two matroids on 6 elements whose spectrahedrality is not known.
We conclude the script with some open questions.
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Chapter 1

Background

1.1 Some Properties of Homogeneous Polynomials

In this section, we provide the necessary background for a better understand-
ing of the main subjects of our study such as Hyperbolic polynomials, Half-
plane property, determinantal representability, spectrahedral representability,
and their relation to one another. We refer to [24], [54], [9], [63], [30], [59], [11]
as main references for more information on this topic.

Hyperbolic Polynomials

A polynomial h ∈ R[x1, . . . , xn] of degree d is called homogeneous if all of its
monomials have degree d. Another characterization of homogeneous polyno-
mials is the following property:

h(λx1, . . . , λxn) = λdh(x1, . . . , xn)

for all λ ∈ C. Moreover, h is called multiaffine if every variable xi has degree
at most one in each monomial. Now, we focus on homogeneous polynomials
that are hyperbolic.

Definition 1.1.1. A homogeneous polynomial h ∈ R[x1, . . . , xn] is called hy-
perbolic with respect to e ∈ Rn if h(e) ̸= 0 and for all v ∈ Rn the univariate
restriction h(et− v) ∈ R[t] is real rooted.

In other words, a polynomial h of degree d is hyperbolic with respect to
e ∈ Rn if lines going through e pierce the real hypersurface defined by h exactly
d times counted with multiplicity.

The hyperbolicity cone Ch(e) of a hyperbolic polynomial h is the set of
points v ∈ Rn for which the restriction h(et − v) has only non-negative roots
that is

Ch(e) := {v ∈ Rn : h(et− v) = 0 =⇒ t ≥ 0} .

Observe that when r is a root of h(et− v), ar+ b is a root of h(et− (av+ eb))
for a, b ∈ R. Thus if v ∈ Ch(e), then cv ∈ Ch(e) for all c > 0 such that Ch(e)
is a cone.

1



1.1. SOME PROPERTIES CHAPTER 1. BACKGROUND

Figure 1.1: The real variety of a non-hyperbolic polynomial of degree 4

Example 1.1.2. • Consider the polynomial f(x1, x2, x3) = x1x2x3 and
e = (1, 1, 1). Its univariate restriction f(t − v1, t − v2, t − v3) = (t −
v1)(t − v2)(t − v3) is real rooted for all v ∈ R3, thus f is hyperbolic
with respect to e. Its hyperbolicity cone is the set of points v ∈ R3 such
that the univariate restriction of f has only non-negative roots. It is
immediate to observe that this holds for v ∈ R3

≥0, so Cf (e) = R3
≥0.

• Let X =

(
x1 x3

x3 x2

)
, e =

(
1 0
0 1

)
and consider h(x1, x2, x3) =

det(X). Its univariate restriction h(v1−t, v2−t, v3) = det

(
v1 − t v3
v3 v2 − t

)
(h is homogeneous, so one can take out the factor −1 and use the restric-
tion to v− et) is nothing but the characteristic polynomial of the matrix

V :=

(
v1 v3
v3 v2

)
for all v ∈ R3. Therefore, the hyperbolicity cone Ch(e)

is the cone of positive semi-definite (PSD) 2 × 2 matrices, i.e.,

Ch(e) =
{
v ∈ R3 : V ⪰ 0

}
.

Linear programming optimizes a linear form on some linear slices of the
non-negative orthant, and semi-definite programming optimizes a linear form
on some slices of the cone of PSD matrices. The examples show that both the
non-negative orthant and the cone of PSD matrices are hyperbolicity cones for
some polynomials.

Example 1.1.3. Consider the polynomial h = x4
3 − x4

2 − x4
1. By considering

the shape of its variety VR(h) :=
{
x ∈ R3 : h(x) = 0

}
shown in Figure 1.1, one

can see that it is not possible to find a line that intersects VR(h) at 4 points.

We continue with some propositions that help us understand the hyper-
bolic polynomials better. First, we show that applying an invertible linear
transformation to a hyperbolic polynomial does not harm hyperbolicity.

Proposition 1.1.4. Let h ∈ R[x1, . . . , xn] be hyperbolic with respect to e ∈ Rn,
and let T : Rn → Rn be an invertible linear map. Then h(T(x)) is hyperbolic
with respect to T−1(e).

Proof. Since h is hyperbolic, we have that h(et−v) is real rooted for all v ∈ Rn.
Then, h(T(T−1(e)t− v)) = h(et− T(v)) is also real rooted as T(v) ∈ Rn.

2



CHAPTER 1. BACKGROUND 1.1. SOME PROPERTIES

Moreover, we can use univariate restrictions to different lines in order to
define hyperbolic polynomials.

Proposition 1.1.5. If h ∈ R[x1, . . . , xn] is hyperbolic with respect to e ∈ Rn,
then the polynomials, h(et+ v), h(vt− e) and h(vt+ e) are also real rooted.

Proof. Since h is hyperbolic, we know that h(et − v) is real rooted. Consider
the linear map T(x) = −x. By Proposition 1.1.4, h(T(x)) is hyperbolic with
respect to T−1(e), thus h(et − T(v)) = h(et + v) is real rooted. Let a ̸= 0
be a root of h(vt − e). Then, a is also a root of h(v − e

t ), and
1
a is a root of

h(v − et) which has to be real as h is hyperbolic with respect to e. Moreover,
a = 0 cannot be a root of h(vt − e) as h(−e) ̸= 0 by hyperbolicity. The same
argument applies to h(vt+ e).

When we change the line we restrict the polynomial h to, we also adopt the
definition of its hyperbolicity cone accordingly. For example,

Ch(e) = {v ∈ Rn : h(et− v) = 0 =⇒ t ≥ 0}
= {v ∈ Rn : h(−et− v) = 0 =⇒ t ≤ 0}
= {v ∈ Rn : h(et+ v) = 0 =⇒ t ≤ 0} .

Further, an application of Rolle’s theorem shows that taking derivatives
preserves hyperbolicity.

Proposition 1.1.6. If h ∈ R[x1, . . . , xn] of degree d is hyperbolic with respect
to e ∈ Rn, then Deh(x1, . . . , xn) :=

∑n
i=1 ei

∂
∂xi

h(x1, . . . , xn) is hyperbolic with
respect to e.

Proof. Since h is hyperbolic, h(et−v) has d real roots for all v ∈ Rn. By Rolle’s
theorem, the univariate restriction Deh(et − v) = ∂

∂th(et − v) has d − 1 real
roots that lie in the open intervals between the roots of h(et− v). When h has
a root b with multiplicity r, then Deh(et− v) has b as a root with multiplicity
r − 1.

Let us focus on the hyperbolicity cones, their structures, and their proper-
ties. By homogeneity, if h is hyperbolic with respect to e, then h is hyperbolic
with respect to −e. When h is a constant polynomial, it is hyperbolic with
respect to every e ∈ Rn and the hyperbolicity cone Ch(e) for each e is the
whole Rn. When h has degree at least 1, by the definition of the hyperbol-
icity cone, one observes that Ch(e) ∩ Ch(−e) = {0}, and Ch(−e) = −Ch(e).
Note that when h is hyperbolic with respect to e and e′ ∈ Ch(e), h is not
necessarily hyperbolic with respect to e′. For example consider the case when
h(e′) = 0. Moreover, when h is hyperbolic with respect to e and e′, we do not
necessarily have e ∈ Ch(e

′) or e′ ∈ Ch(e). Take for instance e′ = −e. One can
observe that if f, g ∈ R[x1, . . . , xn] are two polynomials that are hyperbolic
with respect to e ∈ Rn, then f · g is also hyperbolic with respect to e and
Cfg(e) = Cf (e) ∩ Cg(e). The following proposition gives a description of the
interior of the hyperbolicity cone.

Proposition 1.1.7. The hyperbolicity cone Ch(e) of h ∈ R[x1, . . . , xn] is the
closure of the cone C◦h(e) := {v ∈ Rn : h(et− v) = 0 =⇒ t > 0}, and C◦h(e) is
the interior of Ch(e).
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Proof. Since h(et − e) = 0 implies that t = 1 > 0 is a root and h(e) ̸= 0
(without loss of generality we can assume that h(e) > 0) we have e ∈ C◦h(e). If

v ∈ Ch(e), then v + ea ∈ C◦h(e) for all a > 0. Thus Ch(e) ⊂ C◦h(e). Note that
for any family of univariate polynomials whose coefficients continuously vary
in v, their roots continuously vary in v (see for example [52, Theorem 1.3.1]).
This gives C◦h(e) ⊂ Ch(e).

In order to show the second part, let v ∈ C◦h(e). Since the roots of the
univariate restriction continuously depend on the coefficients, we can find small
enough ε such that for each a from the ε neighborhood of v, h(et − a) has
non-negative roots. Thus, v is in the interior of Ch(e). Now, let w be from
the interior of Ch(e) and assume that h(et − w) has zero as a root. For any
0 < ε < 1, we have that w+ eε and w− eε are in some δ neighborhood of w for
a small δ > 0 (we can take δ arbitrarily small as it depends on ε). Moreover,
h(et−w+ eε) and h(et−w− eε) have roots −ε and ε respectively. This gives
a contradiction with the assumption that w is from the interior of Ch(e).

Here is another description of the interior of the hyperbolicity cone. It was
first mentioned by G̊arding in [24].

Proposition 1.1.8 (Proposition 1, in [54]). The cone C◦h(e) is the connected
component of

{x ∈ Rn : h(x) ̸= 0}

which contains e.

Proof. LetK be the connected component of {x ∈ Rn : h(x) ̸= 0} that contains
e. For any v ∈ K, zero is a root of the restriction h(et − v) only if h(v) = 0.
Since e ∈ C◦h(e) and roots of the univariate restriction continuously depend
on the coefficients, K ⊂ C◦h(e). For the other direction, let w ∈ C◦h(e). Then
w + be ∈ C◦h(e) for all b > 0. Therefore,

h(aw + (1− a)e+ be) = adh(w +
(1− a+ b)

a
e) ̸= 0

for 0 < a ≤ 1 and b > 0 where d is the degree of h. In particular, h(aw + (1−
a)e+ te) ∈ R[t] has positive roots, so that aw+(1−a)e ∈ C◦h(e) for 0 ≤ a ≤ 1.
Thus, we obtained a path between any point in C◦h(e) and e to show that C◦h(e)
is connected.

Therefore, hyperbolicity cones are semi-algebraic sets, i.e., they can be de-
fined by finite union of sets defined by polynomial inequalities (by [7, Propo-
sition 2.2.4] complements of semi-algebraic sets are semi-algebraic, and by
[7, Theorem 2.4.4], connected components of semi-algebraic sets are semi-
algebraic).

Below are some more properties of hyperbolicity cones due to G̊arding.

Theorem 1.1.9 (Theorem 2, in [24]). Let h ∈ R[x1, . . . , xn] be hyperbolic with
respect to e ∈ Rn.

(i) If e′ ∈ C◦h(e), then h is hyperbolic with respect to e′ and C◦h(e) = C◦h(e
′).

(ii) The cones Ch(e) and C◦h(e) are convex.

4
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Proof. (i) : Let e′ ∈ C◦h(e). Since h(e′) = 0 implies that zero is a root of
h(et + e′), we have that h(e′) ̸= 0. In order to show that h(e′t + v) has
only real roots, let a ∈ R>0 be fixed, v ∈ Rn be arbitrary, and consider
h(aie+e′t+bv) ∈ C[t] for all b ∈ Rn

≥0. We first prove the following claim.

Claim: For all b ∈ Rn
≥0, all roots of h(aie+e′t+ bv) ∈ C[t] have negative

imaginary part.

Proof. For b = 0, we have that all roots of h(aie + e′t) have negative
imaginary part, since e′ ∈ C◦h(e) and h is homogeneous. Now, assume
that there is a b > 0 for which h(aie+ e′t+ bv) ∈ C[t] has a non-negative
imaginary part. Then, by the continuity of roots in b, there is a 0 < c ≤ b
such that h(aie+ e′t+ cv) ∈ C[t] has a real root r. It follows, that ai is a
root of h(xe+e′r+cv) ∈ C[x]. Since z := e′r+cv is real, the existence of
such a vector for which h(xe+ z) ∈ C[x] has a non-real root contradicts
the hyperbolicity of h with respect to e, and proves the claim.

Since all roots of h(aie + e′t + v) ∈ C[t] have negative imaginary part
without depending on the fixed positive value of a, we can consider the
limit of h(aie+ e′t+ v) when a is approaching to zero. The continuity of
roots in a gives that roots of h(e′t+v) ∈ C[t] have non-positive imaginary
parts. Since the coefficients of h(e′t+v) ∈ C[t] are real and complex roots
come in conjugates, all roots of h(e′t+v) are real for an arbitrary v ∈ Rn

so that h is hyperbolic with respect to e′.

For the equality of the hyperbolicity cones, recall that C◦h(e) is the con-
nected component of {x ∈ Rn : h(x) ̸= 0} that contains e and e′, and
C◦h(e

′) is the connected component of {x ∈ Rn : h(x) ̸= 0} that contains
e′. Thus C◦h(e) = C◦h(e

′). One can also observe the equality for their

closures, such that Ch(e) = C◦h(e) = C◦h(e
′) = Ch(e

′).

(ii) : Let v, w ∈ C◦h(e) and a, b > 0 with a + b = 1. Consider the restriction
h(et − (av + bw)) ∈ R[t]. By (i), we may assume that w = e. Then the
roots of h(et− (av + be)) are ari(v) + b > 0 where ri(v) are the roots of
h(et− v) so that av + bw ∈ C◦h(e) shows the convexity.

We now know that if a homogeneous h ∈ R[x1, . . . , xn] is hyperbolic with
respect to a direction e ∈ Rn, then it is also hyperbolic with respect to every
point from the interior of Ch(e). That does not imply however that we can
recover from C◦h(e) every direction for which h is hyperbolic. Recall for example
that h is also hyperbolic with respect to every point from C◦h(−e) = −C◦h(e).
Moreover, there can be some points e′ that are neither in C◦h(e), nor in −C◦h(e)
such that h is hyperbolic with respect to e′. In short, the hyperbolicity cone
Ch(e) varies with respect to e.

Example 1.1.10. Consider the polynomial h(x1, x2) = x2
2−x2

1 and e = (1, 0).
The univariate restriction h(t−v1, v2) = v22−(t−v1)2 is real rooted for all v ∈ R2

and the defining inequalities of its hyperbolicity cone Ch(e) are v1 + v2 ≥ 0
and v1 − v2 ≥ 0. When we take e′ = (−1, 0), we see that h is also hyperbolic
with respect to e′, and Ch(e

′) is defined by −v1 − v2 ≥ 0 and v2 − v1 ≥ 0. As
illustrated in Figure 1.2, Ch(e) ∩ Ch(e

′) = {0}.

5
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Figure 1.2: Hyperbolicity cones Ch(e) and Ch(e
′), and the point e′′

Now consider e′′ = (0, 2). In this case h(v1, 2t− v2) = (2t− v2)
2− v21 is real

rooted for all v ∈ R2, thus h is hyperbolic with respect to e′′. On the other
hand, we have that e′′ /∈ Ch(e) and e′′ /∈ Ch(e

′) as illustrated in Figure 1.2.
The hyperbolicity cone Ch(e

′′) is defined by the inequalities v2 + v1 ≥ 0 and
v2 − v1 ≥ 0.

Hyperbolicity cones of non-constant polynomials are convex cones that are
not the whole Rn. They might however contain a non-trivial linear subspace.
In that case we can intersect the hyperbolicity cone with the orthogonal com-
plement of the subspace in order to obtain a regular cone. When a hyperbolic
polynomial depends on all the variables (i.e., each variable from its polynomial
ring appears at least once after applying arbitrary linear change of coordinates),
its hyperbolicity cone contains only the trivial subspace as a subspace so that
the cone is regular.

For a hyperbolic polynomial h ∈ R[x1, . . . , xn] of degree d, for each 0 ≤
m ≤ d, let Cm be the set of v ∈ Rn for which zero has multiplicity m as a root
of h(et − v). Renegar in [54] shows that the cones Cm give a partition of the
boundary of the hyperbolicity cone Ch(e). Moreover, the faces of Ch(e) have
the following structure.

Theorem 1.1.11 (Theorem 26 in [54]). Let h ∈ R[x1, . . . , xn] be hyperbolic
with respect to e ∈ Rn, F be a face of Ch(e) and x ∈ F . The multiplicity of
zero as a root of h(et− x) is the minimum of multiplicities of zero of h(et− y)
among all y ∈ F if and only if x is in the relative interior of F .

Remark 1.1.12. Hyperbolic programming optimizes a linear form on slices
of a hyperbolicity cone of some polynomials. It was first introduced by Güler
in [29] (see also [5], [54]). As we showed in the Example 1.1.4, the feasible sets
of linear programming and semi-definite programming are also feasible sets of
hyperbolic programming. The question whether every hyperbolic program can
be written as a semi-definite program still remains open as Generalized Lax
Conjecture. We will give more details on the conjecture and the improvements
on it in the following chapters.
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Now, let us explore more on the signs of coefficients of univariate real rooted
polynomials and their effect on the roots.

Proposition 1.1.13. Let h ∈ R[t] be a univariate real rooted polynomial. Then
the following are equivalent:

(i) For x ∈ R, h(x) = 0 =⇒ x ≤ 0.

(ii) All non-zero coefficients of h have the same sign.

Proof. Assume that (i) is true. Let d be the degree of h. We can factor h as
h = λ

∏n
i=1(t− ri) where ri are the roots of h, and λ ∈ R is a constant. Since

−ri ≥ 0, the number of sign variation is zero. Now, assume that (ii) is true.
Let var(h) denote the number of sign variations of h, and pos(h) denote the
number of positive roots of h. By Descartes’ law of signs (see for example [4,
Theorem 2.33]), var(h) ≥ pos(h). Since var(h) = 0 in our case, we have that
pos(h) = 0.

This gives us another way to express the hyperbolicity cone of a hyperbolic
polynomial.

Corollary 1.1.14. Let h ∈ R[x1, . . . , xn] be hyperbolic with respect to e ∈ Rn

with h(e) > 0. Then,

Ch(e) = {v ∈ Rn : h(et+ v) ∈ R[t] has only non-negative coefficients} .

The following proposition illustrates the connection between a hyperbolic
polynomial whose coefficients have the same sign, and the containment of the
non-negative orthant in its hyperbolicity cone.

Proposition 1.1.15. Let h ∈ R[x1, . . . , xn] be hyperbolic with respect to e =
(1, . . . , 1) ∈ Rn. If h has only non-negative coefficients, then Rn

>0 ⊂ C◦h(e) and
Rn
≥0 ⊂ Ch(e).

Proof. Consider the univariate restriction h(et + v) for all v ∈ Rn
≥0. Since h

has only non-negative coefficients and h(e) > 0, h(et+v) also has non-negative
coefficients. Thus, by Corollary 1.1.14, Rn

≥0 ⊂ Ch(e). For the inclusion of the
positive orthant in the interior of Ch(e), let e′ ∈ Rn

>0. Zero cannot be a root
of h(et + e′) as h(e′) > 0 by the non-negativity of the coefficients of h. This
together with the fact that Rn

>0 ⊂ Ch(e) gives that h(et+e′) = 0 implies t < 0.
Thus, Rn

>0 ⊂ C◦h(e).

In particular, a polynomial satisfying the assumptions of the proposition is
hyperbolic with respect to every point in the positive orthant.

Moreover, when the hyperbolicity cone of some polynomial does not con-
tain the positive orthant, we can find an invertible linear transformation that
translates the cone in a way that it contains the positive orthant.

Lemma 1.1.16. Let h(x) ∈ R[x1, . . . , xn] be hyperbolic with respect to e ∈ Rn

such that Ch(e) does not contain Rn
>0. Then, there exists an invertible linear

transformation T : Rn → Rn such that h(T(x)) is hyperbolic with respect to
e′ := T−1(e) with Rn

>0 ⊂ Ch(T(x))(e
′).

7
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Proof. Since e ∈ C◦h(e), the interior of the hyperbolicity cone is non-empty, and
is the connected component of {x ∈ Rn : h(e) ̸= 0}, it is dense in Ch(e). Let
v1, . . . , vn ∈ C◦h(e) be linearly independent vectors. Then, there is an invertible
map T : Rn → Rn such that T−1 transforms v1, . . . , vn to standard basis
vectors. By Proposition 1.1.4, h(T(x)) is hyperbolic with respect to T−1(e),
and the image of the map T−1 applied on the hyperbolicity cone Ch(e) contains
the positive orthant.

Observe that, by the relation of the roots of a polynomial and the roots
of its derivative, the hyperbolicity cone of the derivative of a hyperbolic poly-
nomial contains the hyperbolicity cone of the other. Generally, for any two
hyperbolic polynomials, the containment relation of their hyperbolicity cones
requires some condition on the roots of their univariate restriction, as shown
in the following lemma.

Lemma 1.1.17 (Lemma 3.4 in [39]). Let h, g ∈ R[x1, . . . , xn] be hyperbolic
with respect to e ∈ Rn. For v ∈ Rn, let gmin(v), gmax(v) be the smallest and
greatest roots of g(et − v) and hmin(v), hmax(v) be the smallest and greatest
roots of h(et− v) respectively. Then,

hmin(v) ≤ gmin(v) ≤ gmax(v) ≤ hmax(v)

for all v ∈ Rn if and only if Ch ⊂ Cg.

Proof. Assume that Ch ⊂ Cg and let y := t + hmin(v) for v ∈ Rn. Then,
h(ey − v) has its smallest root zero, so that h(ey − v) has only non-negative
zeros. Moreover, −ehmin(v) + v ∈ Ch, thus in Cg. Now, consider g(et −
(−ehmin(v) + v)) = g(ey − v). By the definition of Cg, g(ey − v) has only
non-negative zeros, therefore hmin(v) ≤ gmin(v).

For the relation of the maximal roots, let y′ := t + hmax(v) for v ∈ Rn.
Then, h(ey′ + v) has its maximal root zero, and ehmax(v) + v ∈ Ch so that
ehmax(v) + v ∈ Cg. Hence, g(et + (ehmax(v) + v)) = g(ey′ + v) has only
non-positive roots so that hmax(v) ≥ gmax(v).

For the other direction, assume that hmin(v) ≤ gmin(v) ≤ gmax(v) ≤ fmax(v)
holds for all v ∈ Rn. Without loss of generality, assume that hmin(v) ≥ 0, and
let v ∈ Ch. Then, h(et − v) = 0 implies that t ≥ 0. By the assumption and
hyperbolicity of g with respect to e ∈ Rn, g(et − v) = 0 implies that t ≥ 0.
Hence v ∈ Cg.

The Half-Plane Property and Stability

The half-plane property and stability properties of a polynomial are about the
half-spaces where the polynomial does not vanish.

Definition 1.1.18. A polynomial h ∈ C[x1, . . . , xn] said to have the half-plane
property (HPP) if there exists an open half-plane H ⊂ C with 0 ∈ ∂H such
that

h(x1, . . . , xn) ̸= 0

whenever x1, . . . , xn ∈ H.

8
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Definition 1.1.19. A polynomial h ∈ C[x1, . . . , xn] is called stable if

h(x1, . . . , xn) ̸= 0

whenever x1, . . . , xn ∈ H ′ where H ′ := {x ∈ C : Im(x) > 0}.

The following theorem by Hurwitz is an important tool for the theory of
stable polynomials that we use several times throughout the text.

Hurwitz’s Theorem (Theorem 1.3.8 in [52]). Let Ω ⊆ Cn be an open, con-
nected set and (hk : k ∈ N) be a sequence of analytic functions that do not
vanish on Ω such that it converges uniformly to a function h on every compact
subset of Ω. Then h is either non-vanishing on Ω or identically zero.

Below are some operations that preserve the stability. See also [8] for de-
tailed work by Borcea and Brändén on differential operators that preserve
stability.

Lemma 1.1.20 (Lemma 2.4 in [60]). Let h ∈ C[x1, . . . , xn] be a stable polyno-
mial.

(i) Permutation of variables: h(xσ(1), . . . , xσ(n)) is stable where σ : [n]→ [n]
is a permutation.

(ii) Scaling: For λ ∈ C and c ∈ Rn
>0, λh(c1x1, . . . , cnxn) is stable or identi-

cally zero.

(iii) Diagonalization: For {i, j} ⊆ [n], h(x1, . . . , xn)|xi=xj
is stable.

(iv) Specialization: For z ∈ H ′, h(x1, . . . , xi−1, z, xi+1, . . . , xn) is stable or
identically zero.

(v) Inversion: If the degree of xi in h is di, then

xdi
i h(x1, . . . , xi−1,−x−1i , xi+1, . . . , xn)

is stable.

(vi) Differentiation: ∂
∂xi

h(x1, . . . , xn) is stable or identically zero.

Proof. We only give the provide the proof of (iv), (v) and (vi) as (i)− (iii) are
clear.

(iv) When Im(z) > 0, h(x1, . . . , xi−1, z, xi+1, . . . , xn) is stable. For the case
Im(z) = 0, consider the sequence(

h(x1, . . . , xi−1, z + i2−k, xi+1, . . . , xn) : k ∈ N
)

and take the limit when k goes to infinity. By Hurwitz’s theorem,

h(x1, . . . , xi−1, z, xi+1, . . . , xn)

is stable or identically zero.

(v) If z ∈ H ′, then −z−1 ∈ H ′.

9
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(vi) Without loss of generality, let us assume that i = 1. For all z2, . . . , zn ∈
H ′, the polynomial h̃(t) = h(t, z2, . . . , zn) ∈ C[t] has degree d1 that is
the degree of x1 in h. This follows from the fact that the limit of the
sequence

(
k−d1h(kx1, . . . , xn) : k ≥ 1

)
when k goes to infinity, is a non-

zero polynomial (we may assume that d1 ≥ 1 or it falls back to the
identically zero case). Now, consider h̃(t) and ∂

∂t h̃(t). By Gauss-Lucas

theorem (see for example [52, Theorem 2.1.1]), the zeros of ∂
∂t h̃(t) lie

in the convex hull of the zeros of h̃(t). Thus the derivative is stable or
identically zero.

The last part of the lemma yields the following corollary.

Proposition 1.1.21 (Proposition 2.8 in [18]). Let h ∈ C[x1, . . . , xn] be stable
and let λi ∈ R≥0 . Then,

∑n
i=1 λi

∂
∂xi

h(x1, . . . , xn) is stable or identically zero.

Proof. Follows from part (vi) of Lemma 1.1.20. For each i ∈ [n], ∂
∂xi

h(x1, . . . , xn)
is stable, thus it does not vanish when we insert z1, . . . , zn ∈ H ′ unless the
derivative is identically zero. Now it remains to show that their non-negative
combinations are either identically zero or non-vanishing. We first need to
prove the following claim.

Claim: Given that h is not identically zero, the rational function

h−1

(
n∑

i=1

λi
∂h

∂xi

)

has negative imaginary part on (H ′)n, for λi ∈ R, i ∈ [n] except when it is
identically zero.

Proof. First consider the univariate case. If h has degree zero, its derivative is
identically zero, thus the claim holds. When h is a stable polynomial of degree
d ≥ 1, it is of the form h(x) = λ

∏d
i=1(x − αi) ∈ C[x] with λ ̸= 0 and αi ∈ R

(stability in one variable implies real-rootedness). Then, for all z ∈ H ′

h′(z)

h(z)
=

d∑
i=1

1

z − αi
̸= 0 and Im(

h′(z)

h(z)
) < 0.

For the multivariate case, consider

h(z1, z2, . . . , zi−1, xi, zi+1, . . . , zn) ∈ C[xi]

for all z1, . . . , zi−1, zi+1, . . . , zn ∈ H ′ for i ∈ [n]. In this case h−1 ∂h
∂xi

has non-
positive imaginary part on (H ′)n for all i ∈ [n], therefore

h−1(z1, . . . , zn)

(
n∑

i=1

λi
∂h

∂xi
(z1, . . . , zn)

)

also has non-positive imaginary part for all z1, . . . , zn ∈ H ′ for λi ∈ R≥0. By

the open mapping theorem, the image of h−1
(∑n

i=1 λi
∂h
∂xi

)
on (H ′)n is either

10
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open in C or h−1
(∑n

i=1 λi
∂h
∂xi

)
is a real constant. But it cannot be a non-zero

constant because of the degree difference. Therefore, h−1
(∑n

i=1 λi
∂h
∂xi

)
has

only negative imaginary part on (H ′)n or it is identically zero.

Since h−1
(∑n

i=1 λi
∂h
∂xi

)
either has a negative imaginary part on (H ′)n or it

is identically zero, and since h is non-vanishing on (H ′)n,
∑n

i=1 λi
∂h
∂xi

is either
non-vanishing on (H ′)n or it is identically zero.

For homogeneous polynomials the notion of stability and the half-plane
property coincide. This implies that for homogeneous polynomials stability
is not about a specific half-plane, but about the existence of a half-plane for
which the polynomial has the required property.

Proposition 1.1.22. A homogeneous polynomial h ∈ R[x1, . . . , xn] is stable if
and only if h has the half-plane property.

Proof. The if direction is clear. For the only if direction, assume that h has the
half-plane property for a half-plane H ⊂ C, and that there exists x1, . . . xn ∈ C
with Im(xi) > 0 such that h(x1, . . . , xn) = 0. Since h is homogeneous, we can
find a c ∈ C such that cdh(x1, . . . , xn) = h(cx1, . . . , cxn) = 0 where cxi ∈ H.
This contradicts with the half-plane property.

The fact that in one variable, stability implies real rootedness hints at the
connection between stable polynomials and hyperbolic polynomials.

Proposition 1.1.23. A homogeneous polynomial h ∈ R[x1, . . . , xn] has the
half-plane property if and only if it is hyperbolic with respect to every e ∈ Rn

>0.

Proof. Let h have the half-plane property, and thus be stable. Since stability in
one variable implies real-rootedness, for any e ∈ Rn

>0, the univariate restriction
h(et−v) is real rooted for every v ∈ Rn. The stability of h(et−v) follows from
the fact that

(H ′)n = {et− v : v ∈ Rn, e ∈ Rn
>0 and t ∈ H ′} .

Assume that h(e) = 0 for some e ∈ Rn
>0. Then idh(e) = h(e1i, . . . , eni) = 0

which contradicts the stability. For the other direction, let h be hyperbolic
with respect to every point in the positive orthant. Then for any e ∈ Rn

>0,
h(et − v) is real rooted for every v ∈ Rn. In particular for t = i, h(et − v) =
h(e1i−v1, . . . , eni−vn) ̸= 0 for all e ∈ Rn

>0 and v ∈ Rn so that h(x1, . . . , xn) ̸= 0
for x1, . . . , xn ∈ H ′ shows the half-plane property.

By Lemma 1.1.16, we can always find a linear transformation to bring a
hyperbolic polynomial and its hyperbolicity cone in a form that it is stable.
Therefore for further studies on properties of hyperbolic polynomials and their
hyperbolicity cones, we can restrict our focus on hyperbolic polynomials that
are stable. Below are some examples of stable polynomials.

11
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Example 1.1.24. • Elementary symmetric polynomials

Ek,n(x1, . . . , xn) =
∑

1≤i1<···<ik≤n

xi1 . . . xik

are stable since they are hyperbolic with respect to e = (1, . . . , 1) and
their hyperbolicity cone contains Rn

>0 [18, Theorem 9.1].

• For n× n positive semi-definite (PSD) matrices A1, . . . An and an n× n
real symmetric matrix B,

h(x1, . . . , xn) = det (A1x1 + · · ·+Anxn +B)

is stable [9, Proposition 2.4]

• The basis generating polynomial of the Vámos matroid has the half-
plane property [63] (see §1.2 for the definition of the basis-generating
polynomial of a matroid).

When there is zero sign variation among the coefficients of a hyperbolic
polynomial, we obtain an easier characterization of stability.

Corollary 1.1.25. Let h ∈ R[x1, . . . , xn] be a homogeneous polynomial whose
coefficients have the same sign. Then, h is stable if it is hyperbolic with respect
to e = (1, . . . , 1).

Proof. By Proposition 1.1.15, h is hyperbolic with respect to every e ∈ Rn
>0.

Note that the condition on the sign variations of coefficients is essential for
the previous corollary.

Further, the coefficients of stable polynomials do not have sign variation.

Proposition 1.1.26 (Theorem 6.1 in [18]). Let h ∈ R[x1, . . . , xn] be a stable
polynomial of degree d. Then all non-zero coefficients of h have the same sign.

Proof. We apply induction on n. For n = 1, the claim holds as h(x1) = adx
d
1

for some ad ∈ R. For n ≥ 2 assume that the claim holds for n− 1. Let dn ≤ d
be the degree of xn in h. One can write h as

h(x1, . . . , xn) =

dn∑
k=0

xk
nhk(x1, . . . , xn−1)

where hk(x1, . . . , xn−1) := 1
k!

∂k

xk
n
h(x1, . . . , xn)|xn=0. In particular, ever coef-

ficient of h corresponds to exactly one coefficient of hk. Since each hk is a
homogeneous polynomial in R[x1, . . . , xn] and by Lemma 1.1.20 taking deriva-
tives and setting some variables equal to zero preserves stability, hk is stable.
Therefore, by the induction hypothesis all non-zero coefficients of each hk have
the same sign. Now we need to show that all hk have the same sign.

Note that by Proposition 1.1.15, h is hyperbolic with respect to every point
in the positive orthant. In particular, h(e) ̸= 0 for e ∈ Rn

>0. Now consider
h(e′t+ v) for e′ = (0, . . . , 0, 1) ∈ Rn and v = (1, . . . , 1, 0) ∈ Rn. We have

h(e′t+ v) = h(1, . . . , 1, t) =

dn∑
k=0

tkhk(1, . . . , 1).

12
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This polynomial has only non-positive zeros, since for t > 0, e′′ := (1, . . . , 1, t) ∈
Rn

>0 is in the interior of the hyperbolicity cone of h, thus h(e′′) = h(e′t+v) ̸= 0.
Moreover, since h is stable, by Lemma 1.1.20, h(1, . . . , 1, t) is stable, hence
real-rooted. By Proposition 1.1.13, for a univariate real rooted polynomial,
having only non-positive zeros implies that there is no sign variation among
its non-zero coefficients. Therefore, all hk(1, . . . , 1) have the same sign for
0 ≤ k ≤ dn.

The following theorem illustrates the connection between the stability of
polynomials that are not necessarily homogeneous and hyperbolicity of their
homogenization.

Theorem 1.1.27 (Proposition 1.1 in [8]). Let h ∈ R[x1, . . . , xn] be a polyno-

mial of degree d, and ĥ ∈ R[x1, . . . , xn+1] be the unique homogeneous polyno-

mial of degree d such that ĥ(x1, . . . , xn, 1) = h(x1, . . . , xn). Then, h is stable

if and only if ĥ is hyperbolic with respect to every e ∈ Rn+1
≥0 with en+1 = 0 and

(e1, . . . , en) ∈ Rn
>0.

Proof. Let h be stable of degree d and

ĥ(x1, . . . , xn+1) := xd
n+1h(x1x

−1
n+1, . . . , xnx

−1
n+1)

be its homogenization. Consider the limit hhom of the sequence(
k−dh(kx1, . . . , kxn) : k > 0

)
when k goes to infinity. This limit is the homogeneous degree d part of h. By
Hurwitz’s theorem, hhom is stable, and by Proposition 1.1.23, it is hyperbolic
with respect to every e ∈ Rn

>0. In particular, hhom(e) ̸= 0 for all e ∈ Rn. Hence,

for all e ∈ Rn+1
≥0 with en+1 = 0 and (e1, . . . , en) ∈ Rn

>0, ĥ(e1, . . . , en, 0) =

hhom(e1, . . . , en) ̸= 0. Now consider the univariate restriction ĥ(et + v) =

ĥ(e1t+v1, . . . , ent+vn, vn+1) for all v ∈ Rn+1. When vn+1 = 0, the restriction
is just hhom(e1t+ v1, . . . , ent+ vn), which by the hyperbolicity of hhom, is real
rooted for all (v1, . . . , vn) ∈ Rn. When vn+1 ̸= 0,

ĥ(e1t+ v1, . . . , ent+ vn, vn+1) = vdn+1h((e1t+ v1)v
−1
n+1, . . . , (ent+ vn)v

−1
n+1)

is real rooted since h(e1t+ v1, . . . , ent+ vn) is real rooted by the stability of h.

Hence, ĥ is hyperbolic with respect to the desired vectors.
Now assume that ĥ is hyperbolic with respect to all e ∈ Rn+1

≥0 with en+1 = 0

and (e1, . . . , en) ∈ Rn
>0. Then, ĥ(e1, . . . , en, 0) ̸= 0 for all (e1, . . . , en) ∈ Rn

>0.
In particular,

ĥ(e1t+ v1, . . . , ent+ vn, 1) = h(e1t+ v1, . . . , ent+ vn)

is real rooted for all (v1, . . . , vn) ∈ Rn and (e1, . . . , en) ∈ Rn
>0 so that h(x1, . . . , xn)

does not vanish for all x1, . . . , xn ∈ H ′. Thus, h is stable.

One can further consider the polarization of a homogeneous polynomial
in order to turn it into multiaffine symmetric polynomial. A homogeneous
polynomial h ∈ R[x1, . . . , xn] of degree d can be written as

h(x1, . . . , xn) =

n∑
i1,...,id=1

ai1...idxi1 . . . xid

13



1.1. SOME PROPERTIES CHAPTER 1. BACKGROUND

with symmetric coefficients ai1...id . Then, its polarization is the unique poly-
nomial

h̃(x11, . . . , x1d, . . . , xn1, . . . , xnd)

that is multiaffine and symmetric in xi1, . . . , xid with

h̃(x1, . . . , x1︸ ︷︷ ︸
d times

, . . . , xn, . . . , xn︸ ︷︷ ︸
d times

) = h(x1, . . . , xn).

The following theorem is one of the Grace-Walsh-Szegö theorems. It is a
useful tool for relating polynomials with their polarizations.

Walsh’s Coincidence Theorem (Theorem 3.4.1b in [52]). Let h ∈ C[x1, . . . , xn]
be symmetric multiaffine polynomial. Then every open half-plane H ⊆ C con-
taining points z1, . . . , zn contains at least one y ∈ H such that

h(z1, . . . , zn) = h(y, . . . , y).

As a consequence, we obtain the stability of polarization of a stable poly-
nomial as below.

Corollary 1.1.28. Let h ∈ R[x1, . . . , xn] be a stable polynomial of degree d.
Then, there exists a stable multiaffine polynomial

h̃ ∈ R[x11, . . . , x1d, . . . , xn1, . . . , xnd]

such that
h(x1, . . . , xn) = h̃(x1, . . . , x1︸ ︷︷ ︸

d times

, . . . , xn, . . . , xn︸ ︷︷ ︸
d times

).

Proof. Assume that h is stable and consider its polarization

h̃(x11, . . . , x1d, . . . , xn1, . . . , xnd).

Since h̃ is multiaffine, it can be written as sum of the product of some elemen-
tary symmetric polynomials Ei := Ek,d(xi1, . . . , xid) ∈ R[xi1, . . . , xid] of degree
k for 1 ≤ i ≤ n and for some 0 ≤ k ≤ d, thus it is symmetric in each block
xi1 . . . xid of variables for 1 ≤ i ≤ n. Let H ′ ⊆ C be the upper half-plane and
assume that there are z11, . . . , z1d, . . . , zn1, . . . , znd ∈ H ′ such that

h̃(z11, . . . , z1d, . . . , zn1, . . . znd) = 0.

Then, after applying Walsh’s coincidence theorem on each block of variables,
we obtain the existence of y1, . . . , yn ∈ H ′ with

h̃(y1, . . . , y1︸ ︷︷ ︸
d times

, . . . , yn, . . . , yn︸ ︷︷ ︸
d times

) = 0.

Since h̃(y1, . . . , y1︸ ︷︷ ︸
d times

, . . . , yn, . . . , yn︸ ︷︷ ︸
d times

) = h(y1, . . . , yn︸ ︷︷ ︸
n times

), this contradicts with the

stability of h.

Let h ∈ R[x1, . . . , xn] be a homogeneous polynomial. The following diagram
summarizes the relation of the properties we have seen so far.

14
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h is stable ⇐⇒ h has HPP ⇐⇒ h is hyperbolic
with resp. to all e ∈ Rn

≥0

Therefore, throughout the text, we use the terms half-plane property, stable
and hyperbolic interchangeably.

Determinantal Representability

In this section we focus on polynomials that can be expressed as the determi-
nant of a linear pencil of positive semi-definite matrices. First let us recall the
definition of positive semi-definiteness and recall their properties.

Definition 1.1.29. A real symmetric matrix A of size n× n is called positive
semi-definite (PSD) if for all x ∈ Rn, xTAx ≥ 0, and it is indicated by A ⪰ 0.
When we have xTAx > 0 for all non-zero x ∈ Rn, A is called positive definite
(PD), and indicated as A ≻ 0.

As one can see from the definition, those matrices are closely related to non-
negativity of quadratic forms. Throughout the text, Symn

R presents the set of
real symmetric matrices of size n × n. One can more generally define semi-
definiteness and definiteness on complex Hermitian matrices A and complex
vectors x, but throughout the text we are interested in the real case. There
are several equivalent ways to define (semi)definiteness as below.

Proposition 1.1.30. Let A ∈ Symn
R be a real symmetric matrix. The following

are equivalent.

(i) A is positive semi-definite, i.e., A ⪰ 0.

(ii) For all x ∈ Rn, xTAx ≥ 0.

(iii) All 2n − 1 principal minors of A are non-negative.

(iv) All eigenvalues of A are non-negative

(v) There exists a factorization A = BBT where B is a real n× r matrix, r
is the rank of A.

Proposition 1.1.31. Let A ∈ Symn
R be a real symmetric matrix. The following

are equivalent.

(i) A is positive definite, i.e., A ≻ 0.

(ii) For all non-zero x ∈ Rn, xTAx > 0.

(iii) All leading principal minors of A are positive.

(iv) All eigenvalues of A are positive

(v) There exists a factorization A = BBT where B is a real non-singular,
square matrix.

Now, let us give the definition of determinantal representability of a homo-
geneous polynomial.

15
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Definition 1.1.32. A homogeneous polynomial h ∈ R[x1, . . . , xn] of degree d
is called to have a determinantal representation if there exists PSD matrices
A1, . . . , An in Symd

R such that h = λ det(A1x1 + · · ·+Anxn) for some λ ∈ R.
If there exists a positive integer r ∈ N such that hr has a determinantal

representation, then h is called to have a weak determinantal representation.

Remark 1.1.33. The determinantal representability of a polynomial h ∈
R[x1, . . . , xn] of degree d can alternatively be defined with real symmetric ma-
trices (not necessarily PSD) A1, . . . , An in Symd

R for which

h = λ det(A1x1 + · · ·+Anxn)

for some λ ∈ R, and there exists an e ∈ Rn such that e1A1 + · · ·+ enAn ≻ 0.

We are interested in polynomials with the half-plane property that have a
determinantal representation. The following proposition shows that if a poly-
nomial with a determinantal representation as given in Remark 1.1.33 is sta-
ble, the existence of a vector e ∈ Rn with

∑n
i=0 Aiei is equivalent to the

condition that Ai’s in the representation are positive semi-definite. Hence,
Definition 1.1.32 is just an adapted version.

Proposition 1.1.34. Let A1, . . . , An ∈ Symd
R be real symmetric matrices and

e = (1, . . . , 1) ∈ Rn. If the polynomial h(x1, . . . , xn) = det(x1A1 + · · ·+ xnAn)
has the half-plane property then the following are equivalent:

(i) A(e) := e1A1 + · · ·+ enAn =
∑n

i=1 Ai ≻ 0.

(ii) A1, . . . , An are positive semi-definite.

Proof. Assume that A(e) ≻ 0. Then, h(e) > 0. Since h is stable, by Propo-
sition 1.1.23, h is hyperbolic with respect to every e′ ∈ Rn

>0. Moreover, the
univariate restriction h(e′− et) for all e′ ∈ Rn

>0 has only positive roots. By the
continuity of roots in e′, we have that h(e′′ − et) for standard basis vectors e′′

has only non-negative roots. Since A(e) ≻ 0, there exists an invertible real ma-
trix M ∈ Rd×d such that M−1A(e)M = D where D is diagonal whose entries
are eigenvalues λi of A(e) (thus they are all positive). The polynomial

h(e′′ − et) =
1

det(M)2
det(M−1A(e′′)M −Dt)

=
1

det(M)2 det(D)
det(B − It)

where B is obtained by scaling the ith row of M−1A(e′′)M by 1/λi for 1 ≤
i ≤ n has only non-negative roots. Similar matrices have same eigenvalues and
the eigenvalues of B are positive scalings of the eigenvalues of A(e′′). Then,
matrices Ai = A(e′′) for some standard basis vector e′′ for 1 ≤ i ≤ n have only
non-negative eigenvalues, hence are positive semi-definite.

Now, assume that A1, . . . An are positive semi-definite. Then, their positive
linear combinations are also positive semi-definite. Since h is hyperbolic with
respect to every e′ ∈ Rn

>0, we especially have that h(e) = det(
∑n

i=1 Ai) ̸= 0.
Hence, A(e) does not have zero as an eigenvalue so that it is positive definite.
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When a homogeneous polynomial with a determinantal representation is
hyperbolic, we can express its hyperbolicity cone in terms of semi-definiteness
of the pencil of its representing matrices.

Corollary 1.1.35. Let h ∈ R[x1, . . . , xn] be a homogeneous polynomial with a
determinantal representation

h(x1, . . . , xn) = det(A(v)) = det(A1x1 + · · ·+Anxn)

with PSD matrices A1, . . . An. If h is hyperbolic with respect to e = (1, . . . , 1) ∈
Rn, then

Ch(e) = {v ∈ Rn : A(v) ⪰ 0}
C◦h(e) = {v ∈ Rn : A(v) ≻ 0} .

Proof. Since h is hyperbolic with respect to e = (1, . . . , 1), we have that h(e) =
det(

∑n
i=1 Ai) ̸= 0. By the positive semi-definiteness of Ai, it follows that

A(e) =
∑n

i=1 Ai is positive definite and there exists an invertible matrix M ∈
Rd×d such that M−1A(e)M = D, where D is the diagonal matrix whose entries
are eigenvalues of A(e) (they are all positive). Then, for all v ∈ Rn, the roots
of the univariate restriction

h(v − et) = det(A(v)− tA(e)) =
1

det(M)2
det(M−1A(v)M −Dt)

are scalings of the roots of the characteristic polynomial of A(v) by the eigen-
values of D. Thus, the restriction has only non-negative roots if and only if
A(v) has non-negative eigenvalues, and it has only positive roots if and only if
A(v) has only positive eigenvalues for all v ∈ Rn.

Example 1.1.36. The polynomial

h(x1, x2, x3) = 2x2
1x2 + 3x2

1x3 + 2x1x
2
2 + 10x1x2x3 + 6x1x

2
3 + 5x2

2x3 + 6x2x
2
3

is the determinant of a linear pencil of PSD matrices since

h(x1, x2, x3) = det

((
1 0 0
0 1 1
0 1 1

)
x1 +

(
1 0 1
0 1 0
1 0 1

)
x2 +

(
0 0 0
0 2 2
0 2 2

)
x3

)
= det

(
x1 + x2 0 x2

0 x1 + x2 + 2x3 x1 + 2x3
x2 x1 + 2x3 x1 + x2 + 5x3

)
.

Moreover, h is hyperbolic with respect to e = (1, 1, 1) since h(1, 1, 1) ̸= 0 and
h(et − v) has real roots for all v ∈ R3 because real symmetric matrices have
real eigenvalues. The hyperbolicity cone of Ch(e) is

Ch(e) =

{
v ∈ R3 :

(
v1 + v2 0 v2

0 v1 + v2 + 2v3 v1 + 2v3
v2 v1 + 2v3 v1 + v2 + 5v3

)
⪰ 0

}
depicted in Figure 1.3.

The following proposition illustrates the relation between determinantal
representability and stability.

Proposition 1.1.37. Let h ∈ R[x1, . . . , xn] be a homogeneous polynomial. If
h has a determinantal representation, then it has the half-plane property.
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(a) Variety VR(h) of h (b) Hyperbolicity cone Ch(e) of h

Figure 1.3: Hyperbolicity cone of a polynomial with a determinantal represen-
tation and its variety.

Proof. Let d > 0 be the degree of h and assume that h has a determinantal
representation. Then, there exists PSD matrices A1, . . . , An of size d× d such
that h = det(A1x1 + · · ·+Anxn). By the degree argument, at least one of the
Ai’s has rank d. As

∑n
i=1 Ai is PSD and has rank d, it is PD. Thus, h(e) > 0

for e = (1, . . . , 1).
Now, consider the univariate restriction h(v − et) for all v ∈ Rn. Without

loss of generality, we may assume that
∑n

i=1 Ai = I. Then, h(v − et) =
det(A(v) − It) is the characteristic polynomial of the real symmetric matrix
A(v), thus is real rooted. Therefore, h is hyperbolic with respect to e. Note
that if the coefficients of h have the same sign, then by Corollary 1.1.25 we are
done. For the general case, note that by Corollary 1.1.35, Ch(e) is the set of
points v ∈ Rn for which A(v) is PSD. Since each Ai is PSD, for the standard
basis vectors e′ ∈ Rn

≥0, A(e′) are also PSD. Thus, they are in Ch(e) and the
univariate restriction h(e′− et) has only non-negative roots. Since the roots of
the univariate restriction h(v− et) continuously depend on the coefficients and
e ∈ C◦h(e), we have that v ∈ Rn

>0 are in C◦h(e). Thus, h is stable.

One asks whether every homogeneous polynomial with the half-plane prop-
erty has a determinantal representation. Peter Lax, in 1958 in [42], conjectured
a positive answer for this question for polynomials in 3 variables. Later, Lewis,
Parillo, and Romana in [43] pointed out that the results of Helton and Vinnikov
in [30] prove the Lax conjecture.

Theorem 1.1.38 (Helton-Vinnikov [30]). A homogeneous polynomial h ∈
R[x1, x2, x3] of degree d is hyperbolic with respect to e ∈ R3 with h(e) =
1 if and only if there exist d × d real symmetric matrices A1, A2, A3 with
A1e1 +A2e2 +A3e3 = I such that

h(x1, x2, x3) = det(A1x1 +A2x2 +A3x3).

Note that, by Lemma 1.1.16, we can apply a transformation on the hyper-
bolicity cone of h and adjust the statement of the theorem for stable polyno-
mials.

In 2007, Helton and Vinnikov in [30] conjectured that every real zero poly-
nomial in n variables has a determinantal representation. Note that real zero
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polynomials in homogeneous setting correspond to hyperbolic polynomials, and
rigidly convex sets in the homogeneous setting correspond to hyperbolicity
cones. Brändén in [11] gave a counter-example to their conjecture and showed
that the basis generating polynomial h of the Vámos matroid does not have a
weak determinantal representation (h is stable due to Wagner and Wei in [63]).
This example also shows that the answer is still negative when we restate the
conjecture with weak determinantal representation.

Example 1.1.39. The basis generating polynomial of the Vámos matroid has
the half-plane property and it does not have a weak determinantal representa-
tion ([11, Theorem 3.3]). We define the Vámos matroid in § 1.2.

Brändén uses the properties of the rank functions of matroids and counts
parameters to prove that this polynomial gives a counter-example. In the fol-
lowing sections, we will discuss matroids and their relation with the half-plane
property and determinantal representability. After introducing spectrahedral
cones, we give more details about other versions of the conjecture.

Let h ∈ R[x1, . . . , xn] be a homogeneous polynomial. Below, we illustrate
the relation of determinantal representability to stability.

h is weakly
determinantal

=⇒ h has the HPP⇐⇒
h is hyperbolic

with resp. to all e ∈ Rn
≥0

=⇒

h has a determinantal
representation

=⇒

Spectrahedral Representability

This section is about spectrahedral representability of convex sets. We will
illustrate how this property is closely related to determinantal representability
of polynomials and also to hyperbolicity cones.

A convex set is called spectrahedral if it can be represented as the solution
set of a system of linear matrix inequalities.

Definition 1.1.40. A set S ⊆ Rn is called a spectrahedron if it has the form

S = {v ∈ Rn : A0 +A1v1 + · · ·+Anvn ⪰ 0}

for some given real symmetric matrices A0, A1, . . . , An of size d× d.
A convex cone C ⊆ Rn is called spectrahedral if there exists real symmetric

matrices A1, . . . , An of size d× d such that

C = {v ∈ Rn : A1v1 + · · ·+Anvn ⪰ 0} .

In other words, spectrahedra are sections of the cone of PSD matrices.
Moreover, polyhedral cones are spectrahedra defined by diagonal matrices. Be-
low are some examples of spectrahedra and spectrahedral cones.
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Example 1.1.41. • A tetrahedron T can be defined as

T =

{
v ∈ R3 :

(
v1 + v2 − v3 0 0 0

0 v1 − v2 + v3 0 0
0 0 −v1 + v2 + v3 0
0 0 0 −v1 − v2 − v3 + 2

)
⪰ 0

}
.

The positive semi-definiteness of this matrix is given by non-negativity
of the diagonal entries, thus it is defined by linear inequalities. Polytopes
are specialization of spectrahedra.

• The spectrahedron S defined as

S =

{
v ∈ R3 :

(
1 v1 v2
v1 1 v3
v2 v3 1

)
⪰ 0

}
is called Samosa depicted in Figure 1.4a.

• A slice of the spectrahedron S′, defined as

S′ =

{
v ∈ R3 :

(
1 x y
x 1 0
y 0 z + 1

)
⪰ 0

}
is depicted in Figure 1.4b

• The spectrahedral cone C defined as

C =

{
v ∈ R3 :

(
x1 x2

x2 x3

)
⪰ 0

}
is the cone of PSD 2× 2 matrices.

• Consider the spectrahedral cone C ′ defined as

C ′ =

{
v ∈ R6 :

(
X 0
0 X ′

)
⪰ 0

}
where X :=

(
x1 x2

x2 x3

)
and X ′ :=

(
x4 x5

x5 x6

)
. It is the direct sum of

two cone of PSD 2× 2 matrices in R6.

The spectrahedral cones have the following properties.

Proposition 1.1.42. Let S ⊆ Rn be a spectrahedral cone given by real sym-
metric matrices A1, . . . , An. Then,

(i) S is closed and convex.

(ii) If there exists w ∈ Rn such that A(w) =
∑n

i=1 Aiwi ≻ 0, then S◦ :=
{v ∈ Rn : A(v) ≻ 0} is the interior of S.

(iii) Intersection of two spectrahedral cones is spectrahedral.

Proof. (i) Since a matrix is positive semi-definite if and only if all its princi-
pal minors are non-negative, S is defined by finite number of polynomial
inequalities, thus it is a closed semi-algebraic set. In order to show the
convexity, let v, w ∈ S and a, b > 0 with a+ b = 1. Since A(V ) ⪰ 0 and
A(w) ⪰ 0, aA(v) + bA(w) ⪰ 0, therefore av + bw ∈ S.

20



CHAPTER 1. BACKGROUND 1.1. SOME PROPERTIES

(a) Samosa (b) A slice of a spectrahedron

Figure 1.4: Examples of spectrahedra

(ii) Let v ∈ S◦. Then the characteristic polynomial det(A(v) − tI) of A(v)
has only positive roots, and by the definition of S, v ∈ S. Since the
roots continuously depend on coefficients, there exists a neighborhood of
v such that for every point w from the neighborhood the characteristic
polynomial of A(w) has only positive roots. Thus v cannot be at the
boundary so that v is in the interior of S.

For the other inclusion, let v′ be in the interior of S. By the definition of
S, the characteristic polynomial of A(v′) has non-negative roots. Since
it is in the interior, there exists a neighborhood of v′ that is also in the
interior of S. Roots of univariate polynomials continuously depend on
their coefficients, and by the assumption, there exists a w in the interior
of S for which A(w) ≻ 0. Since w is in some neighborhood of v′, we have
A(v′) ≻ 0, thus v′ ∈ S◦.

(iii) Let S1 and S2 be spectrahedral cones defined by the pencils B(v) ⪰ 0 and
B′(v) ⪰ 0 respectively where B1, . . . , Bn, B

′
1, . . . , B

′
n are real symmetric

matrices. Their intersection S1 ∩ S2 is then defined by the pencil(
B(v) 0
0 B′(v)

)
⪰ 0.

The following proposition shows that, translations of the linear pencil A(v) ⪰
0 by a real symmetric matrix A0 do not change a spectrahedron that has a non-
empty interior.

Proposition 1.1.43. Let S be a spectrahedral cone with a non-empty interior
defined as S := {v ∈ Rn : A0 +A(v) ⪰ 0} and S′ := {v ∈ Rn : A(v) ⪰ 0} for
some real symmetric matrices A0, . . . , An. Then S = S′.

Proof. Since 0 ∈ S, A0 ⪰ 0. Then, for every point v ∈ S′, we have that
A(v) + A0 ⪰ 0 as A(v) ⪰ 0 by the definition of S′. Thus v ∈ S and S′ ⊆ S.
Now let w ∈ S and assume that A(w) has at least one negative eigenvalue. Since
S is a convex cone, we can find a big enough λ > 0 such that A0 + λA(w) ∈ S
has at least one negative eigenvalue. This contradicts with the definition of S.
Thus A(w) ⪰ 0 for all w ∈ S so that w ∈ S′ shows the other inclusion.
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We continue with an example of a special type of spectrahedra called Gram
spectrahedra. They especially have an important role on non-negativity of
polynomials.

Example 1.1.44. A homogeneous polynomial h ∈ R[x1, . . . , xn] of degree 2d
is a sum of squares (thus non-negative) if there exists a real symmetric PSD
matrix G, called Gram matrix, of size

(
n+d
d

)
×
(
n+d
d

)
such that h = mTGm

where m is the vector of all monomials of degree d. The Gram spectrahedron
of h is the set of all real symmetric PSD matrices G′ that give a sum of square
representation of h, that is

SG(h) :=

{
G′ ∈ Sym

(n+d
d )

R : G′ ⪰ 0, mTG′m = h

}
.

By Corollary 1.1.35 we have that, when a homogeneous polynomial has a
determinantal representation, it is hyperbolic and its hyperbolicity cone is de-
fined by linear matrix inequalities. Further, given a spectrahedral cone defined
by a pencil A1 + · · · + An ⪰ 0 of some real symmetric matrices A1, . . . , An,
consider the polynomial h := det(

∑n
i=1 Aixi). The following proposition shows

that one can always find some matrices that define a spectrahedron S which
makes it a hyperbolicity cone for some polynomial h.

Proposition 1.1.45. Let S ⊆ Rn be a spectrahedral cone with a non-empty
interior. Then, there exists d ≥ 0 and real symmetric matrices B1, . . . , Bn ∈
Symd

R such that

S = {v ∈ Rn : B1v1 + · · ·+Bnvn ⪰ 0}

and there exists w ∈ Rn for which B(w) ≻ 0.

Proof. Since S is spectrahedral, there exists real symmetric matrices A1, . . . , An

of some size m ≥ 0 such that S is defined by the pencil A(v) ⪰ 0. Then there
exists a d ≥ 0 that is the maximal rank of A(v) for all v ∈ S. Let w ∈ S with
rk(A(w)) = d. Since A(w) ⪰ 0, there exists an orthogonal matrix M such that
MTA(w)M =: D is a diagonal matrix whose diagonal entries are the eigenval-
ues of A(w). As A(w) has rank d, without loss of generality, we may assume
that all the non-zero entries of D are in the upper left d × d diagonal block.
Matrices Ai are real symmetric, and (MTAiM)T = MTAiM for all 1 ≤ i ≤ n.
Therefore, MTAiM are real symmetric and can be written of the form

MTAiM =

(
Bi Ci

CT
i Ei

)
where Bi are real symmetric matrices of size d× d, and Ei are real symmetric
matrices of size (m− d) × (m− d) for all 1 ≤ i ≤ n. Since the w ∈ Rn with
A(w) ⪰ 0 is in the interior of S, there exists an ε > 0 neighborhood of w that
is also in S. In particular, for all −ε < λ < ε, A(w) + λAi ⪰ 0 holds for all
1 ≤ i ≤ n. Therefore, for all λ from the range above, we have

D + λMTAiM ⪰ 0

for all 1 ≤ i ≤ n. By the structure of D, we have −Ei ⪰ 0 and Ei ⪰ 0, thus
Ei = 0 for all 1 ≤ i ≤ n. Consider the Laplace expansion formula (see [31,
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Formula 0.3.1]) for computing det(D+ λMTAiM) for all 1 ≤ i ≤ n. From the

corresponding indices, the sign of det(C)2 in the expansion is (−1)m×(m+1)/2
,

thus it is always negative. By the non-negativity of det(D + λMTAiM), we
conclude that Ci = 0 for all 1 ≤ i ≤ n. Therefore,

S = {v ∈ Rn : B1v1 + · · ·+Bnvn ⪰ 0} .

Note that for the chosen w ∈ S above, the entries of the upper diagonal
d× d block are non-zero, and as A(w) ⪰ 0, they are positive. Hence, we have
B(w) ≻ 0.

Hence, every spectrahedral cone is a hyperbolicity cone for some polynomi-
als h. One can then wonder whether all hyperbolicity cones are spectrahedral
or when they are spectrahedral. The theorem below follows from [30] of Hel-
ton and Vinnikov and describes the necessary and sufficient conditions for a
hyperbolicity cone to be spectrahedral.

Theorem 1.1.46 (Theorem 2.1 in [59]). Let Ch ⊆ Rn be a hyperbolicity cone
of some stable polynomial h ∈ R[x1, . . . , xn]. The cone Ch is spectrahedral if
and only if there exists a hyperbolic polynomial g ∈ R[x1, . . . , xn] with Ch ⊆ Cg

such that h · g has a determinantal representation.

The hyperbolicity cone of the product of two hyperbolic polynomials is the
intersection of their hyperbolicity cones. Thus, the condition about the in-
clusion of cones in the theorem ensures that the determinantal representation
for the product h.g gives exactly the linear matrix inequalities of the hyper-
bolicity cone of Ch. Notice also that the polynomial h itself does not need
to have a weak determinantal representation for its hyperbolicity cone to be
spectrahedral.

The Generalized Lax Conjecture claims that every hyperbolicity cone sat-
isfies the conditions of the theorem above.

Conjecture 1.1.47 (Generalized Lax Conjecture). Every hyperbolicity cone
is spectrahedral.

There has been extensive work on the conjecture, providing positive results
for some special cases. Below is a summary of the developments on Conjec-
ture 1.1.47.

• Homogeneous cones, i.e., convex cones whose automorphism group acts
transitively on their interior, are spectrahedral [19, Chua in 2003].

• Hyperbolicity cones of quadratic polynomials are spectrahedral [49, Net-
zer and Thom in 2012].

• Hyperbolicity cones of elementary symmetric polynomial are spectrahe-
dral [12, Brändén in 2014].

• Hyperbolicity cones of multivariate matching polynomials are spectrahe-
dral [2, Amini in 2019].

For more positive results on weaker versions of the conjecture, we refer to
[36], [48], [56].

In the following chapters we show that spectrahedral representability is
preserved under certain operations.

23



1.1. SOME PROPERTIES CHAPTER 1. BACKGROUND

Remark 1.1.48. Recall that semi-definite programming optimizes linear func-
tions on the slices of spectrahedra. Therefore, on the programming point of
view, the generalized Lax conjecture posits that every hyperbolic program can
be written as a semi-definite program. Further, the criterion for hyperbolicity
cones to be spectrahedral implies that the smallest size of the matrices that
give the LMIs for a hyperbolicity cone can be bigger than the degree of the
polynomial. So even if the conjecture is true, the computational advantages of
it depend on the sizes of the matrices.

One can further ask whether the spectrahedrality of the hyperbolicity cone
of a polynomial with a determinantal representation is preserved when we take
its derivative. The following result by Saunderson provides a positive answer.

Theorem 1.1.49 (Theorem 1 in [56]). Let h ∈ R[x1, . . . , xn] be a homogeneous
polynomial with a determinantal representation. Then the hyperbolicity cone
of Deh(x1, . . . , xn) for any direction e ∈ Rn is spectrahedral.

Later, Kummer in [37, Corollary 5.13] gave an analogous positive answer
for higher derivatives.

Remark 1.1.50. By Corollary 1.1.28, it is sufficient to prove Conjecture 1.1.47
for homogeneous multiaffine polynomials.

Let h ∈ R[x1, . . . , xn] be a homogeneous polynomial. The following diagram
summarizes the relation between the properties.

h is weakly
determinantal

=⇒

h has the HPP

=⇒

≠⇒

=⇒≠⇒

h is hyperbolic
with resp. to all e ∈ Rn

≥0
and Ch is spectrahedral

⇐
⇒

∃ a hyperbolic g
with Ch ⊆ Cg

such that
h.g is weakly determinantal

=⇒

h has a determinantal
representation

=⇒
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1.2 Matroids

In Example 1.1.39, we mentioned that the basis generating polynomial of the
Vámos matroid has the half-plane property but is not weakly determinantal.
In this section, we will define the terms such as matroid, basis generating
polynomial etc., that might be unknown to the reader. We introduce the
basics of the matroid theory and explain their connection to the properties we
have seen so far.

Basic Definitions

Matroids are generalizations of the concept of linear independence we are fa-
miliar with from linear algebra. They provide a way to keep independence, like
combinatorial data, on different objects. There are several equivalent defini-
tions of matroids; however, we give only the ones related to our interests.

Definition 1.2.1. A matroid M is a finite set E = [n] := {1, . . . , n} and a
collection I of subsets called independent sets that satisfy the following axioms:

• ∅ ∈ I.

• If I1 ∈ I and I2 ⊂ I1, then I2 ∈ I.

• If I1, I2 ∈ I with |I1| < |I2|, then there exists e ∈ I2 \ I1 such that
I1 ∪ {e} ∈ I.

Those axioms give us a way to define linear independence on objects that are
different than finite set of vectors such as matrices. The maximal independent
sets are called bases, and one can also define a matroid in terms of its collection
of bases as follows.

Definition 1.2.2. A matroid M is a finite set E = [n] := {1, . . . , n} (called
ground set) with a collection of subsets B called collection of bases that satisfy
the following property:

• If B1, B2 ∈ B and e ∈ B1 \ B2, then there exists e′ ∈ B2 \ B1 such that
(B1 \ {e}) ∪ {e′} ∈ B.

The property is also called the basis exchange axiom. It follows from axioms
of independence that every element in the collection of bases has the same
cardinality. One can also observe that independent sets are subsets of bases.

The basis generating polynomial hM ∈ R[x1, . . . , xn] of a matroid M on
E = [n] is

hM =
∑
B∈B

∏
i∈B

xi.

In particular, basis generating polynomials are homogeneous and multiaffine.
The rank rk(S) of an element S ⊆ E of a matroid M is the cardinality of

the maximal independent set contained in S. The rank rk(M) of the matroid
M is the cardinality of its bases elements. One can then identify a matroid by a
function called rank function, defined from the power set of E to non-negative
numbers, which encodes the rank of every element of M .
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Definition 1.2.3. A matroid M is a ground set E = [n] with a function
rkM : 2E → N called the rank function of M satisfying

• If S ⊆ E, then 0 ≤ rkM (S) ≤ |S|.

• If S ⊆ S′ ⊆ E, then rkM (S) ≤ rkM (S′).

• If S and S′ are subsets of E, then

rkM (S ∪ S′) + rkM (S ∩ S′) ≤ rkM (S) + rkM (S′).

We denote the rank function of M with rkM (·) when there is ambiguity,
otherwise we denote it by rk(·).

Example 1.2.4. • Matrices are finite set of column vectors and those vec-
tors have some linear independence relation among each other. Consider
the matrix

A =

 1 0 1 0
1 1 0 0
0 0 0 1

.

1 2 3 4

We now numerate its columns and see it solely as a finite set E = [4].
A subset of E is independent if the corresponding columns are linearly
independent. For example {1, 4} is independent and the matroid M has
the collection of bases {{2, 3, 4} , {2, 1, 4} , {1, 3, 4}}. Thus, its basis gen-
erating polynomial is hM = x2x3x4+x2x1x4+x1x3x4. Matroids defined
from matrices over some field are called linear matroids.

• Consider the following graph

2 3

41

with 4 vertices. We enumerate its edges with E = [4] and define the
collection B of its bases as the set of subsets S ⊆ [4] such that the
corresponding edges give a spanning tree, i.e., they give a shortest path
visiting every vertex. One can check that this collection satisfies the basis
exchange axiom, thus we obtain a matroid M ′. Moreover, M ′ has the
basis generating polynomial hM = x2x3x4+x2x1x4+x1x3x4. A matroid
which is defined from a graph is called a graphical matroid.

Those two examples indeed define the same matroid, so that the combina-
torial relation they have is the same. They both have rank 3, and they have
the same collection of bases.
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Some other components of matroids are circuits, flats and hyperplanes.
A matroid can further be defined axiomatically in terms of its collection of
circuits, flats, hyperplanes respectively. We only give their definitions in terms
of their effect on the rank of a subset. For more information on matroids and
their different definitions, we refer to [50].

Definition 1.2.5. Let M be a matroid on a ground set E = [n].

• Circuits are minimal dependent sets of a matroid. A subset C ⊆ E is
called a circuit if for any e ∈ C, C \ {e} is independent.

• The closure of a subset S ⊆ E is defined as

cl(S) := {e ∈ E : rk(S ∪ {e}) = rk(S)} .

Flats correspond to closed sets, i.e., they are equal to their closure. In
linear algebra terminology, they are all elements contained in a subspace.
A subset F ⊆ E is called a flat of M if for any e ∈ E \ F , rk(F ∪ {e}) =
rk(F ) + 1. Flats of rank r − 1 are called hyperplanes. The set of flats of
a matroid M has a lattice structure ordered with inclusion.

The following propositions demonstrate some properties of the closure op-
erator that we will use in a sequel.

Proposition 1.2.6 (Lemma 1.4.2 in [50]). Let M be a matroid on a ground
set E = [n]. For every S ⊆ E, S and its closure have the same rank, i.e.,

rk(S) = rk(cl(S)).

Proof. Let I be the collection of independent sets of M and I ∈ I be a maximal
independent set contained in S. For each x ∈ cl(S) \ S, we have rk(I ∪ {x}) ≤
rk(S ∪ {x}). Since x ∈ cl(S), by the definition of the closure, rk(S ∪ {x}) =
rk(S). Since the rank of S is the size of I and I is independent, rk(S ∪ {x}) =
|I| = rk(I) ≤ rk(I ∪ {x}). Then rk(S ∪ {x}) = rk(I ∪ {x}) = rk(I) < |I ∪ {x} |
such that I ∪ {x} is dependent. This implies that I is a maximal independent
set of cl(S), thus rk(S) = rk(cl(S)).

Proposition 1.2.7 (Lemma 1.4.3 in [50]). Let M be a matroid on a ground
set E = [n]. The closure operator of M has the following properties:

(i) If S ⊆ E, then S ⊆ cl(S).

(ii) If S ⊆ S′ ⊆ E, then cl(S) ⊆ cl(S′).

(iii) If S ⊆ E, then cl(cl(S)) = cl(S).

Proof. Let I be the collection of independent sets of M .

(i) It is clear from the definition of the closure of S.

(ii) Assume that S ⊆ S′ and let x ∈ cl(S) \ {x}. Let I ∈ I be a maximal
independent set contained in S. By the definition of closure, rk(S∪{x}) =
rk(S). Thus, I is also a maximal independent set of S ∪ {x}. Then
S′ ∪ {x} contains a maximal independent set I ′ ∈ I such that I ⊆ I ′

and x /∈ I ′. In particular, I ′ is a maximal independent set in S′, thus
rk(S′ ∪ {x}) = |I ′| = rk(S′) so that x ∈ cl(S′). Therefore, cl(S) ⊆ cl(S′).
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(iii) By (i), cl(S) ⊆ cl(cl(S)). For the other inclusion, let x ∈ cl(cl(S)). Then
by the definition of the closure and by Proposition 1.2.6,

rk(cl(S) ∪ {x}) = rk(cl(S)) = rk(S).

Since by the properties of the rank function

rk(S) ≤ rk(S ∪ {x}) ≤ rk(cl(S) ∪ {x})

and we have equality between the fist part and the last part, we obtain
that rk(S ∪ {x}) = rk(S). Thus, x ∈ cl(S).

The following lemma illustrates the relation between the rank of the inter-
section of closures of independent sets of a matroid, and the independence of
their union.

Lemma 1.2.8. Let I, J ⊆ E be two independent sets of a matroid M on E.
Then

I ∪ J is independent ⇐⇒ rk(cl(I) ∩ cl(J)) = 0.

Proof. In order to prove the lemma, we first need to prove the following claim.
Claim:

rk(I ∪ J) = rk(I ∪ cl(J)).

Proof. rk(I ∪J) ≤ rk(I ∪cl(J)) since I ∪J ⊆ I ∪cl(J). For the other direction,
by Proposition 1.2.6 we have rk(cl(I ∪ J)) = rk(I ∪ J). Moreover,

rk(I ∪ J) = rk(cl(I ∪ J)) ≥ rk(I ∪ cl(J))

since I ⊂ cl(I ∪ J) and cl(J) ⊂ cl(I ∪ J). Thus, rk(I ∪ J) ≥ rk(I ∪ cl(J)).

Since the rank of an independent set equals to its cardinality,

I ∪ J independent ⇐⇒ rk(I ∪ J) = rk(I) + rk(J).

By the claim we have rk(I ∪ J) = rk(cl(I) ∪ J) = rk(cl(I) ∪ cl(J)) so that

I ∪ J independent ⇐⇒ rk(cl(I) ∪ cl(J)) = rk(I) + rk(J).

Then by the last property of the rank function,

I ∪ J independent

⇐⇒ rk(cl(I)) + rk(cl(J))− rk(cl(I) ∩ cl(J)) = rk(cl(I)) + rk(cl(J))

⇐⇒ rk(cl(I) ∩ cl(J)) = 0.

Matroids in general do not need to be produced by a graph or a matrix.
They can be constructed by projective geometries or they can sometimes be
not representable over any field, i.e., there is no matrix in any field that has the
same combinatorial structure. Below are some examples of special matroids.
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F7
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g

(a) Fano Plane

V8
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b
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e

f

g

h

(b) Vámos Cube

Figure 1.5: Fano matroid F7 and Vámos matroid V8.

Example 1.2.9. A special class of matroids is the uniform matroid. A uniform
matroid Ur,n is a matroid on n elements of rank r such that its collection of
bases is all subsets of [n] of size r. For example U2,5 has the collection of bases
B = {S ⊂ [5] : |S| = 2}. Basis generating polynomial of Ur,n is the elementary
symmetric polynomial Er,n.

Example 1.2.10. • The Fano matroid F7 is a matroid defined on the pro-
jective Fano plane depicted in Figure 1.5a on its points (we identify
the ground sets given by n letters with [n]). A 3-element subset B of
E = {a, . . . , g} is a basis if the corresponding points do not lie on the
same line on the Fano plane. For example {a, c, d} is a basis of F7.

• The Vámos matroid V8 is a rank 4 matroid on E = {a, . . . , h}. It is
defined on the vertices of the Vámos cube depicted in Figure 1.5b . A 4
element subset B of E is not a basis if they do not all lie on one of the
painted quadrilaterals. It is not representable over any field. Unlike a
graph or a projective geometry, Vámos cube is only a picture to illustrate
its non-bases. For example {a, b, c, d} is a non-bases.

• The matroid P8 has ground set E = [8] and it has rank 4. It is represented
by the matrix 

1 0 0 0 0 1 1 2
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 2 1 1 0


overQ. The circuit hyperplanes of P8 are {1, 2, 3, 8}, {1, 2, 4, 7}, {1, 3, 4, 6},
{2, 3, 4, 5}, {1, 4, 5, 8}, {2, 3, 6, 7}, {1, 5, 6, 7}, {2, 5, 6, 8}, {3, 5, 7, 8} and
{4, 6, 7, 8}. We denote by P ′8, P

′′
8 and P ′′′8 the matroids obtained by re-

laxing the first, the first and the second, resp. all three of the following
circuit hyperplanes: {1, 4, 5, 8}, {2, 3, 6, 7} and {4, 6, 7, 8}.

Some Operations on Matroids

In this section we introduce some operations on matroids such as deleting or
contracting an element, taking a direct sum of two matroids, taking duals.
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Definition 1.2.11. Let M be a matroid on a ground set E = [n] of rank r
with the collection of bases B. The dual matroid M∗ of M is a matroid on E
of rank n− r with the collection of bases B∗ := {E \B : B ∈ B} . The dual M∗
is indeed a matroid, see for example [50, Theorem 2.1.1 in].

Hence the basis generating polynomial hM∗ of M∗ is

hM∗ =
∑
B∈B∗

∏
i∈B

xi = x1 . . . xnhM (x−11 , . . . , x−1n ).

A circuit C of a matroid M of rank r that is also a hyperplane is called a
circuit hyperplane. A matroid M ′ obtained by adding a circuit hyperplane to
the set of bases of M is called a relaxation of M . It corresponds to deleting a
relation that creates some dependencies.

Definition 1.2.12. Let M be a matroid on E = [n] of rank r with the collec-
tion of bases B and a circuit hyperplane C. The matroid M ′ on E with the
collection of bases B′ = B ∪ C is called a relaxation of M .

The following theorem shows that a relaxation of a matroid is indeed a
matroid.

Proposition 1.2.13. Let M be a matroid on E = [n] with the collection of
bases B and a circuit hyperplane C. Then B′ = B ∪ C is the set of bases of a
matroid M ′.

Proof. Since B is non-empty, B′ is also non-empty. Let B1, B2 ∈ B′ and e ∈
B1 \ B2. If B1, B2 ∈ B, then there exists an element e′ ∈ B2 \ B1 such that
(B1 \ {e}) ∪ {e′} ∈ B thus it is also in B′. So for the non-trivial case, assume
that B1 := C,B2 ∈ B′ and e ∈ B1 \ B2. Since C is both a circuit and a
hyperplane, B1 \{e} is independent, and rk(M)−1 = |B1 \{e} | < |B2|. Then,
by the third property of the independent sets, there exists e′ ∈ B2 \ (B1 \ {e})
such that (B1 \ {e}) ∪ {e′} is an independent set of M and it is contained in
a maximal independent set. Since, | (B1 \ {e}) ∪ {e′} | = |B1| = |B2|, we have
that (B1 \ {e}) ∪ {e′} is the maximal independent set containing itself so that
it is a basis of M . In the case B1 := C and B2 := C, we know that C \ {e} for
e ∈ C is an independent set of M as C is a circuit hyperplane. By the axioms
of independent sets, there exists a basis B ∈ B, with C \ {e} ⊂ B. Thus B′
satisfies the basis exchange axiom in all cases.

One can further delete an element from the ground set of a matroid, de-
pending on the effects this operation has on the collection of the bases of M or
M∗, the operations are called deletion and contraction respectively.

Definition 1.2.14. Let M be a matroid on E = [n] of rank r with the collec-
tion of bases B and e ∈ E.

• The matroid M\e on E \{e} with the collection of bases consisting of the
elements of the set

{B \ {e} : B ∈ B}
that have maximal cardinality is called the deletion M\e of M .

For a subset S ⊂ M , the deletion M\(E\S) of E \ S is also called the
restriction of M to S, and is denoted as M |S .
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F−7
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(a) Relaxation F−
7 of F7.

(F7)\f

c

a e

b d

g

(b) Deletion (F7)\f of F7.

Figure 1.6: Relaxation of the circuit hyperplane C = {b, f, d} of F7 and deletion
of the element f from F7.

• The dual matroid (M∗\e)
∗ of M∗\e is called the contraction M/e of M . Its

collection of bases consists of the maximal elements of the set

{B′ ⊆ E \ {e} : there is a basis B ∈ B with B′ ⊂ B} .

Note that one can apply deletion and contraction operations for a subset
T ⊆ E by repeating the operation element-wise for elements of T . An element
e of the ground set E of a matroid M is called a loop if it is not contained in
any basis of M , and it is called a co-loop if it is contained in every basis of M .
A matroid without loops or co-loops is called simple. We can describe the basis
generating polynomials of deletions and contractions of a matroid in terms of
its basis generating polynomial.

Proposition 1.2.15. Let M be a matroid on E = [n] of rank r with the
collection of bases B.

(i) If M is simple, then for e ∈ E,

hM\e = hM |xe=0 and hM/e =
∂

∂xe
hM .

(ii) If e ∈ E is a co-loop of M , then hM\e =
∂

∂xe
hM .

(iii) If e ∈ E is a loop of M , then hM/e = hM .

Proof. It follows from the definitions.

For a polynomial h ∈ R[x1, . . . , xn] of degree r, the polynomial that is the
sum of its degree r terms is denoted by h#, and the polynomial that is the sum
of lowest degree terms is denoted by h#. In other words,

h# := lim
k→∞

k−rh(kx1, . . . , kxn) and h# := lim
k→0

k−lh(kx1, . . . , kxn)

where l is the degree of the lowest degree monomial of h. We will refer to them
as leading form and initial form respectively. Then, one can express the basis
generating polynomials of deletions and contractions of a simple matroid M as
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hM\e = hM |xe=0 = (hM |xe=1)
#

and hM/e =
∂

dxe
hM = (hM |xe=1)# .

Another operation on matroids is taking minors by applying deletion and
contraction operators.

Definition 1.2.16. A minor M ′ of a matroid M on E = [n] is a matroid
obtained by some deletion and/or contraction operations for a T ⊆ E.

In general, we can express deletion and/or contraction of a set of elements
in terms of the leading form and initial form as follows.

Lemma 1.2.17 (Lemma 2.7 in [39]). Let M be a matroid on a ground set E.
For any S ⊂ E we have:

(i) hM/S = c · (hM |xi=1 for i∈S)# for some constant c.

(ii) hM\S = c′ · (hM |xi=1 for i∈S)
# for some constant c′.

Proof. By Definition 1.2.14, a subset I ⊂ E \ S is a basis of M/S if and only if
there is a basis B of M such that B \ I is a basis of M\(E\S), i.e., a maximal
independent subset of S. Therefore, the support of hM/S agrees with the
support of f := (hM |xi=1 for i∈S)#. Moreover, it also follows from the definition
that the coefficient of each monomial in f is the number of bases of M\(E\S).

By the same argument we obtain that the support of hM\S agrees with the

support of g := (hM |xi=1 for i∈S)
# and that the coefficient of every monomial

in g is the number of bases of M/(E\S).

A minor M ′ of a matroid M is called a forbidden minor for a property if
M ′ does not have the property and all of its proper minors have the property.

Example 1.2.18. A matroid M is a sixth root of unity matroid ( 6
√
1-matroid)

if it can be represented by a matrix A with complex entries such that all minors
of A lie in the multiplicative group of complex sixth root of unity. Choe et.
al. in [18, Theorem 8.9] showed that the class of 6

√
1-matroids and the class

of complex uni-modular matroids, i.e., they can be represented by a complex
matrix all of whose minors have modulus 1, are equal.

One can also characterize sixth root of unity matroids in terms of forbidden
minors.

• A matroid M is a 6
√
1-matroid, if and only if it has no minors isomorphic

to U2,5, U3,5, F7, F
∗
7 , F

−
7 , (F−7 )∗ or P8 ([18, Theorem 8.15], see also [25]).

In particular, one then only needs to check whether a given matroid has one
of the forbidden minors in order to determine whether the matroid is a 6

√
1-

matroid.

Example 1.2.19. Another class of matroids is transversal matroids. Let S
be a finite set, and D = (D1, . . . , Dn) be a finite family of subsets of S, i.e.,
Di ⊆ S for all i ∈ S, whose members are not necessarily distinct. Let J = [n]
and consider the bipartite graph G′ with the vertex set S ∪ J and the edge set
{xj : x ∈ S, j ∈ J and x ∈ Dj}. A matching in a graph is a set of edges of G′
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such that no two edges have a common endpoint. A subset X of S is called
a partial transversal of D if there is a matching in G′ in which every edge has
one end point in X.

Let D be a family of subsets of a finite set S. By Theorem 1.6.2 in [50],
S with the set of partial transversals of D as its collection of independent sets
defines a matroid M . Matroids defined this way are called transversal.

• Let S = {w1, . . . , w4} and D = (D1, D2, D3) where D1 = {w1, w2, w3},
D2 = {w3, w4} and D3 = {w1, w4}. Then, we have the following bipartite
graph.

w1

w2

w3

w4

1

2

3

Some of the matchings of maximal size of this graph are {w13, w21, w32},
{w21, w32, w43} and {w11, w32, w43} such that, the corresponding partial
transversals

{w1, w2, w3} , {w2, w3, w4} , and {w1, w3, w4}

appear in the collection of bases of the constructed transversal matroid
on S.

Moreover, a transversal matroid M on S defined from a bipartite graph G′

is called nice if there is a collection {λe}e∈E of non-negative edge weights such
that

c(B;λ) :=
∑

matchings m
V (m)∩S=B

∏
i∈m

λi

has the same non-zero value for all the bases B of M where E is the edge set
of G′ and V (m) is the vertex set of the matching m. In particular, the basis
generating polynomial of a nice transversal matroid can be written in terms of
the matching polynomial of the corresponding bipartite graph. See §10 of [18]
for more details.

The direct sum of two matroids is an operation that creates a new matroid
from the given ones.

Definition 1.2.20. The direct sum M ⊕N of matroids M and N on disjoint
ground sets E and E′, with collection of bases B and B′ respectively is a matroid
on E ∪ E′ such that its collection of bases is

{B ∪B′ : B ∈ B and B′ ∈ B′} .

Matroids that cannot be expressed as a direct sum of two other matroids
are called connected.

Extension and co-extension operations on matroids are two different ways to
construct a bigger matroid from a given matroid. For the proofs of propositions
1.2.23, 1.2.24, and for more information on these operations, we refer to [50,
§7].
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Definition 1.2.21. If a matroid M is obtained from a matroid N by deleting
an element e from the ground set of N , then N is called a single-element
extension of M . If N∗ is an extension of the dual M∗ of M , then N is called
a co-extension of M .

In order to learn more about the structure of the matroid that is an exten-
sion or a co-extension, we need to consider modular pairs.

Definition 1.2.22. A pair (F1, F2) of flats F1, F2 of a matroid M is called a
modular pair if the following holds:

rk(F1) + rk(F2) = rk(F1 ∩ F2) + rk(F1 ∪ F2).

The proposition below gives some insights about the relation between the
flats of a matroid and the flats of its extension.

Proposition 1.2.23 (Lemma 7.2.2 in [50]). Let N be an extension of M by
e and let S be the set of flats F of M such that F ∪ {e} is a flat of N with
rkN (F ∪ {e}) = rkM (F ). Then S has the following properties:

• If F ∈ S and F
′
is a flat of M with F ⊆ F

′
, then F

′ ∈ S.

• If F1, F2 ∈ S and (F1, F2) is a modular pair, then F1 ∩ F2 ∈ S.

A set S of flats of M is called a modular cut if it satisfies the conditions
above.

Moreover, a modular cut of a matroid gives a unique extension of it.

Proposition 1.2.24 (Lemma 7.2.3[50]). Let S be a modular cut of a matroid
M on a set E. Then there is a unique extension N of M with e such that S
consists of all flats of M for which F ∪ e is a flat of N with rkN (F ∪ {e}) =
rkM (F ). Moreover, for all L ⊆ E,

• rkN (L) = rkM (L)

• rkN (L ∪ {e}) =
{

rkM (L) if clM (L) ∈ S
rkM (L) + 1 if clM (L) /∈ S

Then, we obtain the structure of the flats of the extension of M that cor-
responds to a modular cut S in terms of the flats of M as follows.

Lemma 1.2.25. Let F be the set of flats of a matroid M . Let S be a modular
cut such that F \ S ̸= ∅. Let N be the one element extension of M by the
element e corresponding to the modular cut S. Then,

(i) For F ∈ S, F ∪ {e} is a flat of N having the same rank as F .

(ii) For F ∈ F \ S, if there is not any F
′ ∈ S with

F
′
⊃ F and rkM (F

′
) = rkM (F ) + 1,

then F ∪ {e} is a flat of N of rank rkM (F ) + 1.
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(iii) For F ∈ F \ S, if there exists F
′ ∈ S with

F
′
⊃ F and rkM (F

′
) = rk(F ) + 1,

then F ∪ {e} is not a flat of N .

(iv) For F /∈ S, F is a flat of N with rkM (F ).

Proof. (i) : It follows from the definition of the extension with respect to
the modular cut.

(ii) : Let F ∈ F \S such that there is no F
′ ∈ S with F

′ ⊃ F and rkM (F
′
) =

rk(F ) + 1. Since F = clM (F ) is not in S, by Proposition 1.2.24

rkN (F ∪ {e}) = rkM (F ) + 1.

Now, we need to show that F ∪ {e} is a flat of N . Assume that clN (F ∪
{e}) ̸= F ∪ {e}. Then there exists a flat F

′
of M of rkM (F ) + 1 with

F
′ ⊃ F such that clN (F ∪ {e}) = F

′ ∪ {e}. Therefore,

rkN (F
′
∪ {e}) = rkN (clN (F ∪ {e})) = rkM (F ) + 1

so that F
′ ∈ S. This contradicts with the assumption that there is not

an F
′ ⊃ F in S that has rank rkM (F ) + 1. Thus F ∪ {e} is a flat of N

with rank rk(F ) + 1.

(iii) : Let F ∈ F \ S, and F
′ ∈ S be a flat of M with rkM (F

′
) = rkM (F ) + 1

such that F
′ ⊃ F . Assume that F ∪ {e} is a flat of N . Then, for any

a ∈ E \ F ,

rkN (F ∪ {e} ∪ {a}) = rkN (F ∪ {e}) + 1 = rkM (F ) + 2. (1.1)

Without loss of generality, we may assume that clM (F ∪ {a}) = F
′
.

Claim: rkN (clN (F ∪ {e} ∪ {a})) = rkN (clM (F ∪ {a}) ∪ {e}).

Proof. Since F ∪{e}∪{a} ⊆ {e}∪ clN (F ∪{a}) = {e}∪ clM (F ∪{a}), by
the properties of closure, clN (F ∪ {e} ∪ {a}) ⊆ clN ({e} ∪ clM (F ∪ {a})),
thus

rkN (F ∪ {e} ∪ {a}) ≤ rkN ({e} ∪ clM (F ∪ {a})).

For the other direction, note that clN (F∪{e}∪{a}) ⊇ {e}∪clN (F∪{a}) =
{e} ∪ clM (F ∪ {a}). Then, by the properties of closure

rkN (F ∪ {e} ∪ {a}) ≥ rkN ({e} ∪ clM (F ∪ {a})).

However,

rkN (F
′
∪ e) = rkM (F

′
) = rkM (F ) + 1

contradicts with 1.1.
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(a) P7 (b) CoExt(P7)

Figure 1.7: The matroids P7 and CoExt(P7).

(iv) : By the properties of the rank function on N , we have that if a flat
F /∈ S, then for any a ∈ (E ∪ e) \ F , rkN (F ∪ {a}) = rkM (F ) + 1. Thus,
F is a flat of N having rank rkM (F ).

Example 1.2.26. When S = {E}, the extension N has the flat E ∪ {e} of
rank rkM (M), and flats F ∪ {e} of rank rkM (F ) + 1 where F is a flat of M
with rkM (F ) ≤ rkM (M)− 2. An extension produced that way is called a free
extension of M .

The Half-Plane Property of Matroids

In this section, we connect the properties we have seen in §1.1 with matroids
we defined in §1.2.

Recall that the basis generating polynomial

hM =
∑
B∈B

∏
i∈B

xi

of a matroid M on n elements with the collection of bases B is a homogeneous
multiaffine polynomial. Therefore, hM might have the half-plane property, or
it can be weakly determinantal. A matroid is called to have the half-plane
property and to be weakly determinantal if its basis generating polynomial
has the respective property. Moreover, a matroid M is called hyperbolic if
hM is hyperbolic with respect to the vector e = (1, . . . , 1), and it is called
spectrahedral if the hyperbolicity cone ChM

(e) is spectrahedral.
Since the coefficients of the basis generating polynomials have the same sign,

we have a more straightforward characterization of their half-plane property.

Corollary 1.2.27. A matroid M on E = [n] has the half-plane property if and
only if it is hyperbolic with respect to e = (1, . . . , 1) ∈ Rn.

Proof. It follows from Corollary 1.1.25 as the basis of the generating polynomial
hM of M has no sign variation on its coefficients.
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Moreover, some operations on matroids preserve the half-plane property.
Below we specify some of them.

Proposition 1.2.28 (Proposition 4.2 in [18]). Let M be a matroid on n ele-
ments of rank r with the half-plane property. Then M∗ also has the half-plane
property.

Proof. Let hM ∈ R[x1, . . . , xn] be the basis generating polynomial of M . The
basis generating polynomial of M∗ is

hM∗ = (−1)rx1 . . . xnhM (−x−11 , . . . ,−x−1n ).

Since inversion −x−1i of xi stays on the same half-plane and scaling preserves
stability, hM∗ is stable.

The following proposition shows that the half-plane property is closed under
taking minors.

Proposition 1.2.29. Let M be a matroid on E = [n] with the half-plane
property and e ∈ E. Then M\e and M/e also have the half-plane property.

Proof. First assume that e is not a loop or co-loop. Then, by Proposition 1.2.15

hM\e = hM |xe=0 and hM/e =
∂

∂xe
hM .

Therefore stability of hM\e and hM/e follows from Lemma 1.1.20. When e is

a co-loop of M , hM\e = ∂
∂xe

hM , thus it is stable and when e ∈ E is a loop of
M , hM/e = hM is stable.

Corollary 1.2.30. The half-plane property is minor-closed.

Proof. It follows from the fact that minors of matroids are obtained by some
deletion and contraction operations.

Recall that the basis generating polynomial of a deletion or contraction of a
matroid can be expressed in terms of setting a variable equal to one and taking
upper degree or lower degree components.

Proposition 1.2.31. Let h ∈ R[x1, . . . , xn] be a homogeneous multiaffine poly-

nomial of degree d with the half-plane property. Then for e ∈ [n], (h|xe=1)
#

and (h|xe=1)# also have the half-plane property.

Proof. Since h is homogeneous and multiaffine, when h does not have xe as a
factor with xe appearing in at least one term of h, we have

(h|xe=1)
#
:= lim

k→∞
k−dh(kx1, . . . , kxn)|xe=1 = h|xe=0 and

(h|xe=1)# := lim
k→0

k−d+1h(kx1, . . . , kxn)|xe=1 =
∂

∂xe
h.

When h does not have xe as a factor with xe not appearing in any of the terms
of h, both expressions are just h itself.

On the other hand, when h has xe as a factor we have
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(h|xe=1)
#
:= lim

k→∞
k−dh(kx1, . . . , kxn)|xe=1 =

∂

∂xe
h and

(h|xe=1)# := lim
k→0

k−d+1h(kx1, . . . , kxn)|xe=1 =
∂

∂xe
h.

Therefore, by Lemma 1.1.20 and by the assumption they all have the half-
plane property.

Moreover, taking the direct sum of two matroids preserve the half-plane
property.

Proposition 1.2.32 (Proposition 4.5 in [18]). Let M , N be two matroids on
disjoint ground sets that have the half-plane property. Then M ⊕ N also has
the half-plane property.

Proof. It follows from the fact that hM⊕N = hM · hN .

For more operations preserving the half-plane property, we refer to [18].
We have seen some operations on matroids that preserve the half-plane

property. One can then wonder which matroids have the half-plane property
and whether every hyperbolic matroid is spectrahedral. The basis generating
polynomials of matroids with the half-plane property give rise to examples of
homogeneous, multiaffine polynomials with the half-plane property. Choe et
al. with the following theorem showed that, on the other hand, the supports
of homogeneous multiaffine polynomials with the half-plane property give rise
to matroids by making up the collection of bases for some matroids M .

Theorem 1.2.33 (Theorem 7.1 in [18]). Let h =
∑

S⊂[n] αS

(∏
i∈S xi

)
in

R[x1, . . . , xn] be a homogeneous multiaffine polynomial of degree d with the
half-plane property. Then the support

Supp(h) := {S ⊂ E : αS ̸= 0}

of h is the set of bases B for some matroid M of rank d.

By Remark 1.1.50, it is enough to prove the generalized Lax conjecture
for homogeneous multiaffine polynomials. While basis generating polynomials
of matroids are in the class of multiaffine polynomials, there are multiaffine
polynomials that are not a basis generating polynomial for some matroids,
for example, those having coefficients different than 1. By Proposition 1.1.26,
non-zero coefficients of a homogeneous multiaffine polynomial with the half-
plane property have the same sign. Therefore, we can obtain homogeneous
multiaffine stable polynomials that do not have all 1 coefficients by applying
coordinate changes on the basis generating polynomials of some matroids.

Moreover, Theorem 1.2.33 implies that the support of homogeneous mul-
tiaffine polynomials with the half-plane property satisfies the basis exchange
axiom. For more information on the structure of the support of stable polyno-
mials, we refer to [18], and [10].

There have been several developments regarding the classification of ma-
troids with respect to the half-plane property. Below, we list some positive
evidence for the conjecture from matroid theory.
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(b) F−−
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(c) F−3
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Figure 1.8: Some matroids on 7 elements that are forbidden minors for the
half-plane property.

• Uniform matroids have the half-plane property [18, Theorem 9.2], and
are spectrahedral [12].

• Sixth root of unity matroids have the half-plane property and are spec-
trahedral [18].

• Vámos matroid has the half-plane property [63], it is not weakly determi-
nantal [11], and a specialized version of its basis generating polynomial
is spectrahedral [35].

• Graphical matroids have the half-plane property and their hyperbolicity
cones are spectrahedral [2].

In addition, the following classes of matroids known to have the half-plane
property.

• Matroids of rank or co-rank 2 have the half-plane property [18, Corol-
lary 5.5].

• All matroids on at most 6 elements have the half-plane property [18,
Proposition 10.4].

• Nice transversal matroids have the half-plane property [18, Corollary 10.3].

On the other hand, not all matroids have the half-plane property.

• Matroids F7, F
−
7 , F−−7 , F−3,M(K4) + e and their duals do not have the

half-plane property [18].

• Pappus, non-Pappus and (non-Pappus\9)+e matroids do not have the
half-plane property [18].

• No projective geometry has the half-plane property [13].

• Matroids P8 and P ′′8 do not have the half-plane property [18].
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(a) Pappus

1 32

4 65

7
8

9

(b) non-Pappus
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4 65
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e

(c) (non-Pappus\9)+e

Figure 1.9: Some matroids on 9 elements that are forbidden minors for the
half-plane property.

Remark 1.2.34. There is a weaker version of the half-plane property called the
weak half-plane property. A homogeneous polynomial h ∈ R[x1, . . . , xn] has
the weak half-plane property if there exist another homogeneous polynomial
g ∈ R[x1, . . . , xn] with the half-plane property such that h and g have the same
support. In other words, such polynomials only need to adjust their coefficients
in order to have the half-plane property.

Besides the matroids that have the half-plane property, another class of
matroids is known to have the weak half-plane property:

• All matroids that are representable over C have the weak half-plane prop-
erty [18].

• Transversal matroids have the weak half-plane property [18].

One may ask whether the collection of bases of any matroid is the sup-
port of some homogeneous multiaffine polynomial with the half-plane property.
Brändén in [10] showed that the Fano matroid F7 gives a negative answer to
this question as it does not have the weak half-plane property. More generally,
there is a class of matroids that are known to not have the weak half-plane
property:

• No projective geometry has the weak half-plane property [13].

For more details on the weak half-plane property, see for example [18], [10]
and [13]. Throughout the text, we will only focus on the half-plane property.

In this manuscript, we are interested in the following questions:

Question 1. Can we classify all matroids on at most 8 elements in terms of
the half-plane property?

Question 2. Are there more matroids like the Vámos matroid so they have
the half-plane property, but they are not weakly determinantal?

Question 3. Is there a computationally feasible algorithm to detect the half-
plane property of a matroid?
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sentability and/or spectrahedral representability?





Chapter 2

Operations Preserving
Determinantal and Spectrahedral
Representability of Matroids

This chapter focuses on operations on homogeneous multiaffine polynomials
that preserve their determinantal representability and the spectrahedral repre-
sentability of their hyperbolicity cone. We are especially interested in opera-
tions that concern the minors of a matroid. For more information, we refer to
[11], [38], [39].

2.1 Determinantal Representability of Matroids

This section focuses on matroids with a determinantal representation, investi-
gates their structure and further considers operations on matroids that preserve
their determinantal representability.

A matroid M on a ground set E = [n] has a determinantal representation if
its basis generating polynomial hM has one, i.e., if there exists real symmetric
PSD matrices A1, . . . , An such that hM = λ ·det (A1x1 + · · ·+Anxn) for some
λ ∈ R.

By Proposition 1.1.37, we know that if a matroid M has a determinan-
tal representation, then it has the half-plane property. In particular, M is
hyperbolic with respect to every point in the positive orthant.

We first define the hyperbolic rank function of a polynomial which will be
of use for further results.

Definition 2.1.1. Let h ∈ R[x1, . . . , xn] be hyperbolic with respect to e ∈ Rn.
The hyperbolic rank function rh : 2[n] → Z of h is defined for all S ⊆ [n] as

rh(S) = deg

(
h(e+ t

∑
i∈S

δi)

)

where δi is the i-th standard basis vector.

Let M be a matroid on the ground set E = [n], and A = [a1, . . . , an]
be a matrix with real entries whose columns ai have the same independence
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relation as the independent sets of M . Then by definition, for all S ⊆ E, the
rank rkM (S) of S in M is

rkM (S) = dim(spanR{ai : i ∈ S}).

Given PSD rank at most one matrices, one can construct a determinantal
polynomial whose hyperbolic rank is the rank function of a linear matroid.

Lemma 2.1.2 (cf. p. 5 in [11]). Let A1 = a1a
T
1 , . . . , An = ana

T
n be PSD

matrices in Symd
R of rank at most one, and let Vi be the column space of Ai

for i ∈ [n]. Then

rkM (S) = dim(
∑
i∈S

Vi) = deg(det(I + t
∑
i∈S

Ai))

for all S ⊆ [n], where rkM is the rank function of the matroid M defined by
the matrix A = [a1, . . . , an] and I is the identity matrix of size d.

Proof. Let S ⊆ [n] be a subset and let B := (I, A) be the matrix constructed
by concatenating the identity matrix and A, and D be the diagonal matrix
defined as

D :=

(
I 0
0 tI

)
.

Then we have I+t
∑

i∈S Ai = BDBT so that det(I+t
∑

i∈S Ai) = det(BDBT ).
By Cauchy-Binet theorem [31, Formula 0.8.7 ],

det(BDBT ) =
∑

S∈([n+d]
d )

|B([d], S)|2t|S∩{d+1,...,d+n}|

where B([d], S) is the d× d minor of B with columns indexed by S. Therefore,
the degree of the polynomial on the right-hand side is the cardinality of the
maximal linearly independent subset of S, that is rkM (S) = dim(

∑
i∈S Vi).

The following lemma shows, that the hyperbolic rank function of a homo-
geneous multiaffine polynomial with a determinantal representation is the rank
function of a matroid that is representable over R. Further, the matrices giving
the determinantal representation have rank at most 1.

Lemma 2.1.3 (cf. Section 3 in [11]). Let h ∈ R[x1, . . . , xn] be a homogeneous,
multiaffine polynomial with a determinantal representation with PSD matrices
A1, . . . , An ∈ Symd

R, i.e., h = λ · det(A1x1 + · · ·+Anxn) with non-zero λ ∈ R.
Then, the hyperbolic rank function rh(·) is the rank function of a matroid M
that is representable over R, and the degree of xi in h is the rank of Ai.

Proof. Let A :=
∑n

i=1 Ai. Since h has a determinantal representation, it is
stable, thus, it is hyperbolic with respect to every point in the positive orthant.
Therefore, A is positive definite. Let V ∈ Rd×d be an invertible matrix such
that V TAV is the identity matrix I. For S ⊆ [n] and e = (1, . . . , 1) ∈ Rn,

rh(S) =deg(h(e+ t
∑
i∈S

δi)) = deg(λ · det(A+ t
∑
i∈S

Ai))

=deg(
λ

det(V )2
det(I + t

∑
i∈S

V TAiV ))
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where δi is the i-th standard basis vector. Let Wi be the column space of
V TAiV . By Lemma 2.1.2, we have rh(S) = dim(

∑
i∈S Wi). Since by stability

all non-zero coefficients of h have the same sign (Proposition 1.1.26), the degree
of xi in h is rh({i}) = dim(Wi) that is the rank of Ai. As h is multiaffine,
Ai are of rank at most 1. One can then easily check that rh satisfies the
properties for being a rank function of a matroid M (see Definition 1.2.3 for
the properties). The rank function rh = rkM is defined in terms of the linear
independence relation between the columns of the real matrix V TAiV , hence
M is representable over R.

Moreover, for any matroid that is representable over R, there is a homoge-
neous stable polynomial with a determinantal representation whose hyperbolic
rank function is the rank function of the matroid.

Lemma 2.1.4 (cf. Section 3 in [11]). Let M be a matroid on the ground set
E = [n] that is representable over R, and rkM be its rank function. Then
there is a homogeneous, multiaffine stable polynomial h with a determinantal
representation such that its hyperbolic rank function is rh = rkM .

Proof. Let A = [a1, . . . , an] ∈ Rd×n be the matrix that defines M , and Vi be
the column space of ai for i ∈ [n]. Then, for all S ⊆ E,

rkM (S) = dim

(∑
i∈S

Vi

)
.

Let Ai = aTi ai for i ∈ [n]. Note that by construction, each Ai is a real
symmetric, PSD matrix. Then by Lemma 2.1.3, the polynomial

h = det (A1x1 + · · ·+Anxn)

has its hyperbolic rank function as rkM .

Remark 2.1.5. Note that there is an analog of the results in Lemma 2.1.3
and Lemma 2.1.4 for homogeneous, not necessarily multiaffine, polynomials
with determinantal representability, relating the rank of Ai to the degree of
xi in the polynomial. In this case, one considers rank functions that define
polymatroids. Polymatroids are the generalization of matroids. Their rank
function criteria differ from the rank function of matroids by the criterion that
the rank of a finite set cannot exceed its cardinality. For more information on
polymatroids and the extension of the results, we refer to [11].

Recall that a matroid M is representable over a field if there exists a matrix
with entries in the field that defines M . A matroid that is representable over
every field is called regular. By Theorem 6.6.3 in [50], a matroid is regular
if and only if it is representable over R with a matrix all of whose square
sub-determinants are −1, 1 or 0.

Let M be a matroid on E = [n] with a determinantal representation given
by PSD real symmetric matrices A1, . . . An ∈ Rd×d such that hM (x1, . . . , xn) =
λ det(A1x1 + · · ·+Anxn), for some non-zero λ ∈ R. By Lemma 2.1.3, we may
assume that Ai have rank one. Then the Ai have the form Ai = aia

T
i with
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ai ∈ Rd×1 for i ∈ [n]. Let A := [a1, . . . , an] so that hM = det(AXAT ) where
X is the diagonal matrix with xi, i ∈ [n]. By the Cauchy-Binet theorem [31,
Formula 0.8.7 ],

hM (x1, . . . , xn) =
∑

S∈([n]
d )

|A([d], S)|2
∏
i∈S

xi =
∑
B∈B

∏
i∈B

xi (2.1)

where A([d], S) is d × d minor of A with columns indexed by S and B is
the collection of bases of M . In particular, all minors of A need to be −1, 1 or
0. As mentioned above, by Theorem 6.6.3 in [50], such a representation in R
implies regularity. Thus, if a matroid has a determinantal representation, then
it is representable over every field.

Conversely, if a matroid M on E = [n] is regular, then there is a real matrix
A all of whose minors are −1, 0 or 1. Let a1, . . . , an be the columns of A and
let Ai = aia

T
i . By construction, Ai are real symmetric PSD matrices. Consider

the polynomial h defined the same way as hM in 2.1. By Lemma 2.1.4, the
hyperbolic rank function of h is the same as rkM and all non-zero coefficients
of h are 1. Therefore, h is the basis generating polynomial of M . Then, M has
a determinantal representation.

Corollary 2.1.6. A matroid has a determinantal representation if and only if
it is regular.

Example 2.1.7. • The Fano matroid F7 is representable only over fields of
characteristic two (see [50, Proposition 6.8.7]). By Example 11.1 in [18],
it does not have the half-plane property. Since by Proposition 1.1.37
having a determinantal representation implies the half-plane property,
F7 does not have a determinantal representation.

• Consider the uniform matroid U2,4. By Theorem 9.1 in [18], it has the
half-plane property. On the other hand, by Theorem 6.6.6 in [50] it is one
of the forbidden minors for being regular. Therefore, it does not have a
determinantal representation (see also Example 2.1.14 ).

• A graphical matroid M(G), constructed from a graph G, can be rep-
resented over R by the incidence matrix AG of D(G) with entries in
{−1, 0, 1}, where D(G) is the directed graph obtained by assigning an
arbitrary direction to each edge of G. The matrix AG indeed gives a rep-
resentation of M(G) over any field (see [50, Lemma 5.1.3]). Therefore,
graphical matroids are regular (see also [50, Proposition 5.1.2]) and they
have a determinantal representation.

A Criterion for Determinantal Representability

We consider the preservation of determinantal representability under certain
operations. Especially a criterion for determinantal representability plays an
essential role in obtaining desired results. The content of this section highly
relies on the paper [38] by Kummer, Plaumann, and Vinzant.

In order to characterize determinantal representability of homogeneous mul-
tiaffine polynomials, we first need to define their Rayleigh differences.
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Definition 2.1.8. Let h ∈ R[x1, . . . , xn] be a homogeneous polynomial, and
let i, j ∈ [n]. The Rayleigh difference ∆ijh of (i, j) is defined as

∆ijh =
∂h

∂xi
· ∂h
∂xj
− ∂2h

∂xi∂xj
· h.

The lemma below shows the structure of the Rayleigh differences of a ho-
mogeneous polynomial that is the product of two other polynomials. Wagner
and Wei first used this identity in [63].

Lemma 2.1.9. Let h = f · g where f, g ∈ R[x1, . . . , xn] and i, j ∈ [n]. Then,

∆ijh = f2∆ijg + g2∆ijf.

Proof. By the definition of the Rayleigh difference ∆ij and the properties of
derivatives, we have

∆ijh =
∂

∂xi
(f · g) · ∂

∂xj
(f · g)− (f · g) · ∂2

∂xi∂xj
(f · g)

=

(
∂f

∂xi
· g + ∂g

∂xi
· f
)
·
(

∂f

∂xj
· g + ∂g

∂xj
· f
)

− (f · g) ·
(
g · ∂2f

∂xi∂xj
+

∂f

∂xi
· ∂g
∂xj

+
∂g

∂xi
· ∂f
∂xj

+ f · ∂2g

∂xi∂xj

)
= f2 ·

(
∂g

∂xi
· ∂g
∂xj
− g

∂2g

∂xi∂xj
·
)
+ g2 ·

(
∂f

∂xi
· ∂f
∂xj
− f

∂2f

∂xi∂xj

)
.

Therefore, ∆ijh = f2∆ijg + g2∆ijf .

The following result by Kummer, Plaumann, and Vinzant characterizes the
determinantal representability of a homogeneous polynomial via the squareness
of its Rayleigh differences.

Theorem 2.1.10 (Corollary 5.7 in [38]). Let h ∈ R[x1, . . . , xn] be a homoge-
neous, multiaffine and stable polynomial. Then the following are equivalent:

• h has a determinantal representation.

• ∆ijh is a square for all i, j ∈ [i].

Using this criterion, one obtains that having a determinantal representation
is minor-closed.

Theorem 2.1.11 (Corollary 5.8 in [38]). Let h ∈ R[x1, . . . , xn] be a homoge-
neous, multiaffine, stable polynomial and 1 ≤ k ≤ n. If h has a determinantal
representation, then so do ∂h

∂xk
and h|xk=0.

Proof. Let 1 ≤ k, i, j ≤ n, p := ∂h
∂xk

and q = h|xk=0. One can write h as
h = xkp+ q. Then

∆ijh =

(
xk

∂p

∂xi
+

∂q

∂xi

)
·
(
xk

∂p

∂xj
+

∂q

∂xj

)
−
(
xk

∂2p

∂xi∂xj
+

∂2q

∂xi∂xj

)
· h.

After inserting xkp+ q for h and expanding the expression, we obtain
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∆ijh = x2
k∆ijp+ xkg +∆ijq

where g := ∂p
∂xi

∂q
∂xj

+ ∂q
∂xi

∂p
∂xj
−
(

∂2q
∂xi∂xj

p+ ∂2p
∂xi∂xj

q
)

does not depend on xk.

Since h has a determinantal representation, ∆ijh is a square, therefore ∆ijp
and ∆ijq are squares as well. This shows that p and q have a determinantal
representation.

Corollary 2.1.12. Determinantal representability is minor-closed.

Proof. It follows from the fact that a minor of a matroid is obtained by deletion
and contraction operations. By Proposition 1.2.15, a simple matroid obtained
by deleting or contracting e ∈ E has the basis generating polynomial hM |xe=0

or ∂
∂xe

hM respectively. Moreover, if e ∈ E is a co-loop of M , the deletion M \e
has the basis generating polynomial ∂

∂xe
hM and when e ∈ E is a loop of M ,

the contraction M\e has the basis generating polynomial hM . Therefore, they
are covered by Theorem 2.1.11.

Recall that for homogeneous, multiaffine polynomials, taking derivative
with respect to a variable or setting a variable equal to zero can be expressed
as setting that variable equal to one and taking the sum of the lower degree
terms or the sum of the upper degree terms respectively.

Corollary 2.1.13. Let h ∈ R[x1, . . . , xn] be a homogeneous multiaffine poly-
nomial of degree d with a determinantal representation. Then for e ∈ [n],

(h|xe=1)
#

and (h|xe=1)# also have a determinantal representation.

Proof. Since h is homogeneous and multiaffine, when xe appears in h and it is
not a factor of h we have

(h|xe=1)
#
:= lim

k→∞
k−dh(kx1, . . . , kxn)|xe=1 = h|xe=0 and

(h|xe=1)# := lim
k→0

k−d+1h(kx1, . . . , kxn)|xe=1 =
∂

∂xe
h

for e ∈ [n]. On the other hand, when xe is a factor of h we have

(h|xe=1)
#
= lim

k→∞
k−d−1h(kx1, . . . , kxn)|xe=1 =

∂

∂xe
h = (h|xe=1)#

and when xe does not appear in h we have

(h|xe=1)# = lim
k→0

k−dh(kx1, . . . , kxn)|xe=1 = h = (h|xe=1)
#
.

Therefore, by Theorem 2.1.11, they have a determinantal representation.

Here is an example of the usage of the criterion given in Theorem 2.1.10.
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Example 2.1.14. Consider the uniform matroid U2,4. Its basis generat-
ing polynomial hU2,4

is the elementary symmetric polynomial E2,4. As we
mentioned in the previous chapter, this polynomial is stable. However, it
does not have a determinantal representation since the Rayleigh difference
∆12E2,4 = x2

3 + x3x4 + x2
4 is not a square. In general, consider the elementary

symmetric polynomial Er,n ∈ R[x1, . . . , xn] of degree r. For all 1 ≤ i < j ≤ n

we have, ∆ijE1,n = 1, ∆ijEn−1,n = (x1 . . . xn/xixj)
2
and ∆ijEn,n = 0. For

other values of r, Er,n does not have a determinantal representation (see for
example [55, Theorem 1.3]).

One can further consider polynomials with a determinantal representation
that can be written as a product of two or more polynomials. The following
lemma gives an analog of the criterion for this case.

Lemma 2.1.15 (Lemma 5.6 in [38]). Let h ∈ R[x1, . . . , xn] such that the
degree of xi and xj are at most 1 in h for some i, j ∈ [n]. If h = f · g with
f, g ∈ R[x1, . . . , xn], then ∆ijh is a square if and only if ∆ijf and ∆ijg are
squares.

Proof. Assume that ∆ijh is a square. Since xi and xj have degree at most
1 in h (i.e., h is affine in xi and xj), f and g are also affine in xi and xj .

Therefore, either ∂f
∂xi

= 0 or ∂g
∂xi

= 0 (same holds for j) so that either ∆ijf = 0

or ∆ijg = 0. Since ∆ijh = f2∆ijg + g2∆ijf by Lemma 2.1.9 and ∆ijh is a
square, we conclude that each of ∆ijf and ∆ijg is either zero or a square.

For the other direction, assume that ∆ijf and ∆ijg are squares. By the
degree argument above, we have again that either ∆ijf = 0 or ∆ijg = 0. Since
∆ijh = f2∆ijg + g2∆ijf , h is a square.

We then immediately obtain that a homogeneous multiaffine polynomial
that is the product of two or more polynomials has a determinantal represen-
tation if and only if the factors have a determinantal representation.

Corollary 2.1.16 (Corollary 5.9 in [38]). Let h ∈ R[x1, . . . , xn] be homoge-
neous and multiaffine. If h = f · g with f, g ∈ R[x1, . . . , xn], then h has a
determinantal representation if and only if f and g have a determinantal rep-
resentation.

Proof. It follows from Theorem 2.1.10 and Lemma 2.1.15.

The example below illustrates how Corollary 2.1.16 fails for non-multiaffine
polynomials.

Example 2.1.17. Consider the polynomial

h = (x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + 2x3x4)
2.

It has a determinantal representation with

h = det


x1 + x2 + 2x4 x4 0 −x2 − x4

x4 x2 + x3 + x4 x2 + x4 0
0 x2 + x4 x1 + x2 + 2x4 x4

−x2 − x4 0 x4 x2 + x3 + x4

 .

However, its factor g := x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + 2x3x4 does not
have a determinantal representation as ∆3,4 = x2

1 + x2
2 is not a square.
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Rayleigh differences of homogeneous multiaffine polynomials and their prop-
erties, such as non-negativity, will appear in the following sections. We first
introduce a term for multiaffine polynomials, all of whose Rayleigh differences
are sum of squares.

Definition 2.1.18. A multiaffine polynomial h ∈ R[x1, . . . , xn] is called SOS-
Rayleigh if for all 1 ≤ i, j ≤ n, the Rayleigh difference ∆ijh is sum of squares
of polynomials. A matroid is called SOS-Rayleigh if its basis generating poly-
nomial is SOS-Rayleigh.

In particular, weakly determinantal polynomials are SOS-Rayleigh.

Theorem 2.1.19 (Corollary 4.3 in [38]). Let h ∈ R[x1, . . . , xn] be weakly de-
terminantal. Then for all 1 ≤ i, j ≤ n, the Rayleigh difference ∆ijh is a sum
of squares.

Below, we show that being SOS-Rayleigh is preserved under taking deriva-
tives and setting some variables equal to zero.

Theorem 2.1.20 (Theorem 1.12 in [39]). Let h ∈ R[x1, . . . , xn] be a multiaffine
stable polynomial and k ∈ [n]. If h is SOS-Rayleigh, then ∂h

∂xk
and h|xk=0 are

SOS-Rayleigh as well.

Proof. Let g = ∂h
∂xk

and f = h|xk=0. One calculates

∆ijh = x2
k ·∆ijg + xk · p+∆ijf

for some p ∈ R[x1, . . . , xn] that does not depend on xk. By assumption ∆ijh
is a sum of squares so that it is of the form ∆ijh =

∑m
l=1 s

2
l for some sl ∈

R[x1, . . . , xn]. Comparing degrees on both sides we obtain that sl = alxk + bl
for some polynomials al, bl ∈ R[x1, . . . , xn] that do not depend on xk. It follows
that ∆ijg =

∑m
l=1 a

2
l and ∆ijf =

∑m
l=1 b

2
l .

Corollary 2.1.21. Being SOS-Rayleigh is minor closed.

Furthermore, being SOS-Rayleigh is closed under taking direct sums.

Proposition 2.1.22. Let M , N be two matroids on disjoint ground sets that
are SOS-Rayleigh. Then M ⊕N is also SOS-Rayleigh.

Proof. Since hM⊕N = hM · hN , it follows from the identity

∆ijhM⊕N = h2
N∆ijhM + h2

M∆ijhN

given in Lemma 2.1.9.

2.2 Spectrahedral Representability of Matroids

In this section, we present our main result on operations preserving spectrahe-
dral representability. Most of the results presented here are a part of [39] joint
work with Mario Kummer.

Our main objects are homogeneous multiaffine polynomials with the half-
plane property whose hyperbolicity cones are spectrahedral, i.e., they can be
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defined by linear matrix inequalities. Recall that Theorem 1.1.46 gives a crite-
rion for a hyperbolicity cone to be spectrahedral. A homogeneous multiaffine
stable polynomial h ∈ R[x1, . . . , xn] has a spectrahedral hyperbolicity cone Ch

if and only if there exists another hyperbolic polynomial g ∈ R[x1, . . . , xn] with
Ch ⊂ Cg such that h · g has a determinantal representation. One observes that
this criterion has two components: the determinantal representability of h · g
and the inclusion of the hyperbolicity cones.

The following lemmas focus on the structure of hyperbolicity cones with an
inclusion relation.

Lemma 2.2.1 (Lemma 3.5 in [39]). Let (hi)i∈N, (gi)i∈N two sequences of poly-
nomials in R[x1, . . . , xn] that are hyperbolic with respect to e ∈ Rn. Assume
that we have h = limi→∞ hi and g = limi→∞ gi for polynomials g, h that are hy-
perbolic with respect to e. If Chi

(e) ⊂ Cgi(e) for all i ∈ N, then Ch(e) ⊂ Cg(e).

Proof. Since for all v ∈ Rn and i ∈ N, the roots of hi(et − v) and gi(et − v)
continuously depend on coefficients, and by Lemma 1.1.17, the minimal root
of hi(et − v) is smaller than the minimal root of gi(et − v), their limits have
the same property. Therefore Ch ⊆ Cg.

Below, we consider the structure of the hyperbolicity cone of a polynomial
h, which does not depend on all of the variables in its polynomial ring (i.e., its
hyperbolicity cone contains a linear subspace). In particular, one can construct
a new polynomial with the unused variables and exploit the relation between
the hyperbolicity cones when the constructed polynomial is hyperbolic.

Lemma 2.2.2 (Lemma 3.6 in [39]). Let h ∈ R [x1, . . . , xn] be a homogeneous
polynomial that does not depend on xk and let h′ := xm

k h, m ≥ 0. If h′ (and
thus h) is hyperbolic with respect to e ∈ Rn, then

Ch(e) = {v ∈ Rn : ∃λ ∈ R : v + λδk ∈ Ch′(e)}

where δk is the k-th standard basis vector.

Proof. Taking the product of hyperbolic polynomials corresponds to intersect-
ing their hyperbolicity cones. As the hyperbolicity cone of the polynomial xm

k is
the half-space defined by the inequality xk ≥ 0, Ch′ = Cxm

k
(e)∩Ch(e) ⊆ Ch(e).

Since h does not depend on xk, for every v ∈ Ch′(e) and λ ∈ R, v + λδk ∈ Ch.
For the other direction, let v ∈ Ch. Then h′(et− (v+vkδk)) = atmh(et−v)

has only non-negative roots for some constant a ∈ R so that v+vkδk ∈ Ch′ .

Corollary 2.2.3 (Corollary 3.7 in [39]). Let h1, h2 ∈ R[x1, . . . , xn] be ho-
mogeneous polynomials that do not depend on xk and let h′1 := xm1

k h1 and
h′2 := xm2

k h2. Assume that h′1, h
′
2 (and thus h1, h2) are hyperbolic with respect

to e ∈ Rn. If Ch′1
(e) ⊆ Ch′2

(e), then Ch1
(e) ⊆ Ch2

(e).

Proof. Follows from Lemma 2.2.2.

We are especially interested in deletion and contraction operations. In
particular, Corollary 2.1.13 motivates the exploration of the initial form and
leading form of polynomials and their effect on the inclusion relation of the
hyperbolicity cones.
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Let h ∈ R[x1, . . . , xn] be hyperbolic with respect to e ∈ Rn that does not

have xk as a factor for k ∈ [n], and consider (h|xk=1)
#
. In this case, we have

(h|xk=1)
#

= h|xk=0. Then, the hyperbolicity cone C
(h|xk=1)

#(e) is nothing

but the intersection of Ch(e) with the hyperplane xk = 0. Therefore, applying
the upper sharp operation on two polynomials h, g ∈ R[x1, . . . , xn] that are
hyperbolic with respect to e ∈ Rn with Ch(e) ⊂ Cg(e), will not affect the
inclusion relation.

The proposition below concerns the lower sharp operation.

Proposition 2.2.4 (Corollary 3.8 in [39]). Let h1, h2 ∈ R [x1, . . . , xn] be stable
and Ch1

(e) ⊂ Ch2
(e). Let h′1 = (h1|xk=1)# and h′2 = (h2|xk=1)#. Then

Ch′1
(e) ⊂ Ch′2

(e).

Proof. Let di be the degree of hi, and ri, be the smallest degree of a monomial
of hi|xk=1 for i = 1, 2. For all γ > 0 we denote

hi,γ = γ−rihi(γx1, . . . , γxk−1, xk, γxk+1, . . . , γxn).

Since (x1, . . . , xk−1, xk, xk+1, . . . , xn) 7→ (γx1, . . . , γxk−1, xk, γxk+1, . . . , γxn)
is an invertible linear map, we have Ch1,γ

(e) ⊂ Ch2,γ
(e) for all γ > 0. Since

hi is homogeneous, the limit limγ→0 hi,γ kills all the monomials, except those

that are divisible by xdi−ri
k . Thus, we have

lim
γ→0

hi,γ = xdi−ri
k (hi|xk=1)# .

By Lemma 2.2.1 and Corollary 2.2.3, we obtain Ch′1
(e) ⊂ Ch′2

(e).

The following theorems are our main results on the preservation of spectra-
hedral representability under deletion and contraction operations on matroids.

Theorem 2.2.5 (Theorem 3.9 in [39]). Let h ∈ R [x1, . . . , xn] be a homoge-
neous, multiaffine and stable polynomial and e = (1, . . . , 1) the all-ones vector.
If ∂h

∂xk
̸= 0 and the hyperbolicity cone Ch(e) is spectrahedral, then the hyperbol-

icity cone of ∂h
∂xk

is also spectrahedral.

Proof. Let h ∈ R [x1, . . . , xn] be hyperbolic with respect to e ∈ Rn and assume
that Ch(e) is spectrahedral. Then, by Theorem 1.1.46, there exists a stable
polynomial g ∈ R [x1, . . . , xn] such that Ch(e) ⊆ Cg(e) and p := h · g has a
determinantal representation. We can assume that k = 1 and that

0 ̸= p = det(x1A1 + . . .+ xnAn)

where the Ai are positive semidefinite matrices of rank ri ≥ 1 for i ∈ [n]. Please
note that p does not need to be multiaffine. We write each Ai as the sum of
rank 1 matrices:

Ai = Ai1 + . . .+Airi ,

where Aij are positive semidefinite matrices of rank 1, i ∈ [n] , j ∈ [ri]. Now
consider the polarization of p, and define a new polynomial

p̃ = det(x11A11 + x12A12 + · · ·+ x1r1A1r1 + · · ·+ xnrnAnrn)
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in
∑n

i=1 ri variables. The degree of each variable xij in p̃ is the rank of Aij so
that p̃ is multiaffine. Moreover, since the rank of Ai is ri by Lemma 2.1.3 (and
Remark 2.1.5), there are monomials of p̃ that are divisible by xi1 · · ·xiri . By
Theorem 2.1.11 the polynomial

∂r1 p̃

∂x11 · · · ∂x1r1

= (p̃|x1j=1 for j∈[r1])#

has a determinantal representation. The same is thus true for the polynomial
p̂ obtained from ∂r1 p̃

∂x11···∂x1r1
by setting xir1 = · · · = xirk = xi for all i ∈ [n]. By

construction we have that

p̂ = (p|x1=1)# = (h|x1=1 · g|x1=1)# = (h|x1=1)# · (g|x1=1)#.

Since h is multiaffine, we have (h|x1=1)# = ∂h
∂x1

. Thus in order to prove the
claim it remains to show that the hyperbolicity cone of (h|x1=1)# is contained
in the hyperbolicity cone of (g|x1=1)#. This follows from Proposition 2.2.4.

Note that the proof of Theorem 2.2.5 crucially relies on the assumption that
h is multiaffine and it is not known whether one can drop this assumption.

Kummer in [37] proved that if h (not necessarily multiaffine) has a deter-
minantal representation, then the hyperbolicity cone of any iterated derivative
in direction e of h is spectrahedral.

Lemma 2.2.6 (Lemma 3.11 in [39]). Let h ∈ R [x1, . . . , xn] be a homogeneous,
multiaffine and stable polynomial and e = (1, . . . , 1) the all-ones vector. If
h|xk=0 ̸= 0 and the hyperbolicity cone Ch(e) is spectrahedral, then the hyper-
bolicity cone of h|xk=0 is also spectrahedral.

Proof. The hyperbolicity cone of h|xk=0 is the intersection of Ch(e) with the
hyperplane xk = 0 and thus spectrahedral.

Corollary 2.2.7 (Corollary 3.12 in [39]). The class of spectrahedral matroids
is minor-closed.

Proof. If a matroidM is spectrahedral, then the same is true for its contractions
by Theorem 2.2.5 and for its deletions by Lemma 2.2.6.

Further, taking direct sums preserves spectrahedral representability.

Proposition 2.2.8. Let M , N be two matroids on disjoint ground sets that
are spectrahedral. Then M ⊕N is also spectrahedral.

Proof. Since hM⊕N = hM ·hN , the hyperbolicity cone of products of two poly-
nomials is the intersection of their hyperbolicity cones, and that M and N have
disjoint ground sets, the spectrahedral representation of the hyperbolicity cone
of hM⊕N comes from the matrix constructed by the block matrices coming from
the spectrahedral representation of hM and the spectrahedral representation
of hN .

One of the consequences of Theorem 2.2.5 and Lemma 2.2.6 is that being
weakly determinantal is preserved under deletion and contraction operations
on matroids.

53



2.3. MATROID POLYTOPES CHAPTER 2. SOME OPERATIONS

Corollary 2.2.9 (Corollary 3.13 in [39]). Let h ∈ R [x1, . . . , xn] be multiaffine,
stable and weakly determinantal. Then ∂h

∂xk
and h|xk=0 are also weakly deter-

minantal.

Proof. For ∂h
∂xk

we can apply the proof of Theorem 2.2.5 to the case g = hr for

some r ≥ 0. The claim for h|xk=0 follows directly from the definition.

Corollary 2.2.10. The class of weakly determinantal matroids is minor-closed.

Moreover, being weakly determinantal is closed under taking direct sums.

Proposition 2.2.11. Let M , N be two matroids on disjoint ground sets that
are weakly determinantal. Then M ⊕N is also weakly determinantal.

Proof. Since M and N are weakly determinantal, there are powers r, s such
that hr

M and hs
N have a determinantal representation. In particular, hrs

M and
hrs
N have a determinantal representation. As M and N have two disjoint ground

sets and hM⊕N = hM ·hN , the rṡ-th power of the product has a determinantal
representation with the matrix constructed by block matrices coming from the
determinantal representation of hrs

M and hrs
N . Therefore, it is weakly determi-

nantal.

2.3 Matroid Polytopes

In this section, we take a geometric approach and observe the effect of going
to the faces of the matroid polytope of a matroid M on its basis generating
polynomials.

The matroid polytope of a matroid is the Newton polytope of its basis
generating polynomial.

Definition 2.3.1. Thematroid polytope P (M) of a matroidM on a non-empty
ground set E = [n] with its non-empty collection of bases B is defined as

P (M) = conv

{∑
i∈B

δi : B ∈ B

}

where δi ∈ Rn denotes the i-th unit vector.

One can further give the description of the matroid polytope of a matroid
M in terms of the half-spaces defined by its flats as follows:

P (M) =

{
x ∈ r ·∆n :

∑
i∈S

xi ≤ rk(S) for all flats S ⊆ E

}
(2.2)

where r ·∆n ⊂ Rn denotes r-fold dilation of the standard n-simplex ∆n ⊂ Rn

(see for example [46, §4.4]).
Below is an example of a matroid polytope.
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(1, 1, 0)

(1, 0, 1)

(0, 1, 1)

(0, 2, 0)

(2, 0, 0)

(0, 0, 2)

Figure 2.1: Matroid polytope P (U2,3)

Example 2.3.2. Consider the uniform matroid U2,3. Its matroid polytope has
vertices (1, 1, 0), (1, 0, 1) and (0, 1, 1). We can also express it in terms of linear
inequalities coming from its flats and from the defining inequalities of 2 ·∆3. In
this case, its flats are {x1, x2, x3} of rank 2, and {x1} , {x2} and {x3} of rank
1. Then we have the inequalities

x1 + x2 + x3 ≤ 2, x1 ≤ 1, x2 ≤ 1, and x3 ≤ 1

that come from the flats. The matroid polytope P (U2,3) is depicted in Fig-
ure 2.1.

Lemma 2.3.3. Let M be a matroid on E = [n] of rank r with the collection
of bases B. Then the set of vertices of its matroid polytope P (M) is

VP (M) :=

{∑
i∈B

δi : B ∈ B

}

where δi ∈ Rn denotes the i-th unit vector.

Proof. First, note that the definition of a matroid polytope concerns only ma-
troids on non-empty ground sets with at least one basis. Therefore, matroid
polytopes are non-empty. Let V be the set of vertices of P (M). Since P (M) is
the convex hull of the elements of VP (M), we have V ⊆ VP (M) (see [64, Propo-
sition 2.2]). Assume that there is a v ∈ VP (M) \V and let B ∈ B be its defining
basis such that v =

∑
i∈B δi. Since v is not a vertex and v ∈ P (M) = conv(V ),

by Cathéodory’s theorem (see [57, Theorem 1.1.4]) there is a minimal k ∈ N
such that v =

∑k
i=1 λivi where vi ∈ V , λi > 0 and

∑k
i=1 λi = 1. On the other

hand, by construction every vi ∈ V (and also v) has its coordinates in {0, 1}n
and has exactly r non-zero entries. Thus for each i ∈ [k], we have λi = 0 or
λi = 1 and there cannot be more than one non-zero λi. Then, v = vi for some
vi ∈ V so that VP (M) ⊆ V .

The faces of a matroid polytope are matroid polytopes of some matroids.

Proposition 2.3.4 (Theorem 4.1 in [26]). Let M be a matroid on E = [n] of
rank r, P (M) be its matroid polytope. Then, every face F of P (M) is a matroid
polytope P (MF ) for some matroid MF , and MF is uniquely determined by F .
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Proof. It is sufficient to prove the claim for facets F of P (M). Since F is a
facet, the set of its vertices VF is a subset of the set of vertices VM(P ) of P (M).

By Lemma 2.3.3, VP (M) =
{∑

i∈B δi : B ∈ B
}
where B is the collection of bases

of M . Let BF be the collection of B ∈ B that corresponds to a vertex of F . In
other words, vj ∈ VF are

∑
i∈B δi for some B ∈ BF ⊆ B where δi are standard

basis vectors. We need to show that the elements of BF ⊆ B satisfy the basis
exchange axiom.

By the description in 2.2, a facet F of P (M) there is either a flat S ⊆ E of
M such that F is the intersection of P (M) with the hyperplane

HS :=

{
x ∈ Rn :

∑
i∈S

xi = rk(S)

}
,

or it is the intersection of P (M) with a coordinate hyperplane xi = 0.
For the first case, let B1, B2 ∈ BF be two distinct bases of M and e ∈

B1 \ B2. In the first case, there is a non-empty flat S of M such that all
vj ∈ VF satisfy the equation of HS . Then S = cl(B1 ∩ S) = cl(B2 ∩ S)
and |B1 ∩ S| = |B2 ∩ S| = rk(S). If rk(S) = r, then F = P (M) is not a
facet. For 0 < rk(S) < r, let I1 := B1 \ (B1 ∩ S) and I2 := B2 \ (B2 ∩ S).
If e ∈ B1 \ I1, then |B2 \ I2| > | (B1 \ I1) \ {e} | therefore, by the properties
of independent sets, there exists e′ ∈ (B2 \ I2) \ ((B1 \ I1) \ {e}) such that
I3 := ((B1 \ I1) \ {e}) ∪ {e′} ⊂ S is independent. Since I1 is not a subset of S
and S is a flat,

rk(S ∪ I1) = rk(S) + |I1| = rk(cl(I3)) + |I1| = rk(I3) + |I1| = r

by the properties of the closure. Therefore I1 ∪ I3 is a basis satisfying the
equation of HF so that (B1 \ {e}) ∪ {e′} = I1 ∪ I3 ∈ BF . If e ∈ I1, then
|I2| > |I1 \ {e} | and again by the properties of independent sets there exists
e′ ∈ I2\(I1 \ {e}) such that I4 := {e′}∪(I1 \ {e}) is independent. By the similar
arguments on the definition of flat and the properties of closure, (B1 \ {e}) ∪
{e′} = I1 ∪ I4 ∈ BF . Then, F is the matroid polytope of the matroid MF

defined with the collection of bases BF .
In the second case, F is the intersection of P (M) with the hyperplane

H := {x ∈ Rn : xi = 0} .

In particular, F consists of all points in r · ∆n ⊂ Rn that satisfy
∑

i∈S xi =
rk(S) where S = E \ {i}. Then the vertices in VF correspond to B ∈ B with
B ∩ {i} = ∅. If there are no such B ∈ B, then BF consists of the maximal
independent sets I contained in E\{i}. In both possibilities, BF is the collection
of the bases of the matroid M\i obtained by the deletion of the element i in M .
Since the vertices of F are encoded by the elements of BF , F is the matroid
polytope of MF = M\i.

One can further describe the basis generating polynomial of the matroid
that corresponds to a face of a matroid polytope of a matroid M in terms of
initial form and leading form of hM .

Proposition 2.3.5 (Corollary 4.5 in [39]). Let M be a matroid on E = [n]
and F be a facet of P (M). Then is a subset S ⊂ E and a constant c such that

hMF
= c · (hM |xi=1 for i∈E\S)

# · (hM |xi=1 for i∈S)#.
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Proof. Let F be a facet of P (M) defined as the intersection P (M) ∩ HS

for some non-empty flat S ⊆ E of M , where HS is the set of all points
in Rn satisfying

∑
i∈S xi = rk(S). Then the set of vertices of F is VF ={∑

i∈B ei : B ∈ B and |B ∩ S| = rk(S)
}
. As the bases of corresponding ma-

troid MF are encoded by the vertices of F (by Proposition 2.3.4 and by
Lemma 2.3.3 ), we have

hMF
=

∑
B∈B and
|B∩S|=rk(S)

∏
i∈B

xi.

Let p :=
(
hM |xi=1 for i∈E\S

)#
and q := (hM |xi=1 for i∈S)#. Then the mono-

mials of p and q are of the form∏
i∈B∩S

xi and
∏

i∈B∩(E\S)

xi

for B ∈ B with |B ∩ S| = rk(S) respectively. Note that for all B ∈ B with
|B ∩S| = rk(S), S is the closure of the independent set B ∩S. Let B1, B2 ∈ B
be bases with B1 ∩S ̸= B2 ∩S and |B1 ∩S| = |B2 ∩S|. Then by Lemma 1.2.8,
for any independent set I of rank rk(M)− rk(S),

I ∪ (B1 ∩ S) is independent

⇐⇒ rk(cl(B1 ∩ S) ∩ cl(I)) = rk(S ∩ cl(I)) = rk(cl(B2 ∩ S) ∩ cl(I)) = 0

⇐⇒ (B2 ∩ S) ∪ I is independent.

Therefore, product of a monomial of p and a monomial of q appears as a
monomial of hMF

. Letting A := {s ⊂ S : rk(s) = |s| = rk(S)}, we conclude
that each monomial of q has coefficient |A|. Similarly, the coefficient of each
monomial of p is |A′| where A′ := {s ⊂ E \ S : rk(s) = |s| = r(M)− rk(S)}.

If F is the intersection of r · ∆n with the coordinate hyperplane xi = 0,
then as mentioned in the last part of the proof of Proposition 2.3.4, F is
the matroid polytope of MF = M\i. By Lemma 1.2.17, for S = E \ {i},
hF = c · (hM |xi=1 i∈E\S)

# = c′ · (hM |xi=1 i∈E\S)
#(hM |xi=1, i∈S)#.

In addition, for a face F of a matroid polytope P (M), one can express the
corresponding matroid MF in terms of the direct sum of some deletion and
contraction operations.

Corollary 2.3.6 (Theorem 2 in [27]). Let M be a matroid on E = [n] and F
be a face of P (M). Then there is S ⊂ E such that

MF = M\(E\S) ⊕M/S .

Proof. By Proposition 2.3.5, there is S ⊆ E such that

hMF
= c · (hM |xi=1 for i∈E\S)

# · (hM |xi=1 for i∈S)#.

By Lemma 1.2.17, the components of the product are the basis generating
polynomials of M\(E\S) and M/S respectfully. Then by the definition of the
direct sum of matroids, MF = M\(E\S) ⊕M/S .
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Given a matroid, we consider its matroid polytope, and its faces. We then
switch from the faces to the matroids they uniquely determine. We are es-
pecially interested in properties that are preserved under this operation. The
diagram below illustrates the process.

M P (M)

FMF

Corollary 2.3.6 boils this operation down to the direct sum of some deletion
and contraction operations. Hence we obtain the following desired result on
the preservation of properties we are interested in.

Corollary 2.3.7 (Corollary 4.4 in [39]). Let M be a matroid and F a face
of its matroid polytope P (M). Let P be a property that is minor-closed and
preserved under taking the direct sum of matroids. If M has property P , then
MF has property P .

This applies to the half-plane property, being weakly determinantal, spectra-
hedral and SOS-Rayleigh.

Proof. It suffices to show the claim for facets F of the matroid polytope. It then
follows from the description MF = M\(E\S) ⊕M/S given in Corollary 2.3.6.
By Corollary 1.2.30, half-plane property is minor closed. Similarly, the minor-
closeness of being weakly determinantal, being SOS-Rayleigh, and spectrahe-
dral representability follow from Corollary 2.2.10, Corollary 2.1.21 and Corol-
lary 2.2.7 respectively.

By Proposition 1.2.32, taking direct sums preserves the half-plane prop-
erty. Moreover, being weakly determinantal, being spectrahedral and being
SOS-Rayleigh are also closed under taking direct sums by Proposition 2.2.11,
Proposition 2.2.8 and Proposition 2.1.22 respectively.

Example 2.3.8. Let M be the matroid with basis generating polynomial

hM = x1x2 + x2x3 + x1x4 + x2x4 + x3x4.

Its matroid polytope P (M) is depicted in Figure 2.2a. The nonempty proper
flats of M are S1 = {2}, S2 = {4} and S3 = {1, 3}. Thus P (M) has the
following representation in terms of inequalities:

P (M) =

x ∈ 2∆4 :


0 1 0 0
0 0 0 1
1 0 1 0
1 1 1 1



x1

x2

x3

x4

 ≤


1
1
1
2


 .

Consider for instance the flat {1, 3}, the hyperplaneH =
{
x ∈ R4 : x1 + x3 = 1

}
and the face F = P (M) ∩ H. The matroid MF is the matroid whose bases
are encoded by the vertices of the face F that is illustrated in Figure 2.2b. Its
basis generating polynomial is

hMF
= x1x2 + x2x3 + x1x4 + x3x4 = (x1 + x3) (x2 + x4) .

which is consistent with Proposition 2.3.5.
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(0, 0, 0, 2)
(0, 2, 0, 0)

(0, 0, 2, 0)
(2, 0, 0, 0)

v42
(0, 1, 0, 1)

v23
(0, 1, 1, 0)

v14
(1, 0, 0, 1) v12

(1, 1, 0, 0)
v34

(0, 0, 1, 1)

(a) P (M)

(0, 0, 0, 2)
(0, 2, 0, 0)

(0, 0, 2, 0)
(2, 0, 0, 0)

v42
(0, 1, 0, 1)

v23
(0, 1, 1, 0)

v14
(1, 0, 0, 1) v12

(1, 1, 0, 0)
v34

(0, 0, 1, 1)

(b) P (MF )

Figure 2.2: Matroid polytopes P (M) and P (MF )

Newton Polytopes of Stable Polynomials

We further extend our results on matroid polytopes and their faces to the New-
ton polytope Newt(h) of any homogeneous stable polynomial h ∈ R[x1, . . . , xn]
and its faces F . In this section, by the support of h, we mean the set of all
α ∈ Zn such that the monomial xα := xα1 · · ·xαn has a non-zero coefficient
in h. Then the Newton polytope Newt(h) is nothing but the convex hull
in Rn of the support of h. If h has the support S ⊂ Zn, it has the form
h =

∑
α∈S cαx

α where cα are non-zero coefficients in the suitable field (R in
the setting above). Restricting S to F ∩ S, we denote the restriction polyno-
mial by hF :=

∑
β∈F∩S cβx

β . The following proposition shows that stability
is preserved when we apply the operation described above.

Proposition 2.3.9 (Proposition 2.6 in [39]). Let h ∈ C[x1, . . . , xn] be stable
and F be a face of Newt(h). Then the restriction hF is stable.

Proof. Let h =
∑

α∈S cαx
α with support S ⊂ Zn

≥0 for non-zero cα ∈ C. Con-
sider the hyperplane that defines F . Namely, let a ∈ Rn and b ∈ R such
that ⟨a, x⟩ ≥ b for all x ∈ Newt(h) with equality exactly when x ∈ F . By
Lemma 1.1.20, polynomials in the sequence(

hε := ε−b · h(εa1x1, . . . , ε
anxn) =

∑
α∈S

ε⟨a,α⟩−bcαx
α : ε > 0

)
are stable. Then by Hurwitz’s theorem, the limit hF = limε→0 hε is stable.

Moreover, for homogeneous multiaffine polynomials, going from the New-
ton polytope to its faces preserves the determinantal representability of the
corresponding polynomial.

Lemma 2.3.10 (Lemma 4.7 in [39]). Let h ∈ R[x1, . . . , xn] be a homogeneous
and multiaffine polynomial. Let F be a face of Newt(h). If h has a determi-
nantal representation, then hF has a determinantal representation.

Proof. Without loss of generality, we can assume that F is a facet of P :=
Newt(h). Since h is multiaffine, by Lemma 2.1.3 we can write

h = det(x1A1 + . . .+ xnAn)
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for some positive semi-definite matrices of rank at most 1, i.e., we have Ai =
aTi · ai for some ai ∈ Rd for i ∈ [n]. Let M be the matroid represented by the
matrix V = [a1, . . . , an]. Then we have P = P (M). Further, by Corollary 2.3.6
there is a subset S of the ground set of M such that F consists of all y ∈ d ·∆n

that satisfy
∑

i∈S yi = rk(S) =: r. We write A :=
∑n

i=1 xiAi = V XV T where
X is a diagonal matrix with diagonal entries xi for 0 ≤ i ≤ n. Considering
Ã := WTAW for some invertible matrix W , we may assume that the variables
xi for i ∈ S appear in the upper left r × r block R1 of Ã. Let R2 be the
lower right (d− r) × (d− r) block matrix. We apply Laplace expansion (see
[31, Formula 0.3.1]) to the determinant of Ã and observe that the sum of the
terms with maximal degree in xi for i ∈ S is the determinant of the matrix(

R1|xj=0, j /∈S 0
0 R2

)
therefore, it gives the determinantal representation of hF .

Lemma 2.3.11 (Lemma 4.8 in [39]). Let h ∈ R[x1, . . . , xn] be homogeneous.
Let F be a face of Newt(h). If h has a determinantal representation, then hF

has a determinantal representation.

Proof. As in the proof of Theorem 2.2.5, by considering the polarization of h, we
can find a multiaffine homogeneous polynomial p ∈ R[x11, . . . , x1r1 , . . . , xnrn ]
which has a determinantal representation such that h = p|xij=xi

. In particular,
the polytope Newt(h) is the image of Newt(p) under a linear map. There is a
face F ′ of Newt(p) such that hF = (pF ′)|xij=xi

. Thus the claim follows from
Lemma 2.3.10.

Corollary 2.3.12 (Corollary 4.9 in [39]). Let h ∈ R[x1, . . . , xn] be a homo-
geneous and stable polynomial. Let F be a face of Newt(h). If h is weakly
determinantal or spectrahedral, then hF is weakly determinantal or spectrahe-
dral .

Proof. Let a ∈ Rn and b ∈ R such that ⟨a, p⟩ ≥ b for all y ∈ Newt(h) with
equality exactly when y ∈ F . If f is spectrahedral, then by Theorem 1.1.46
there is a stable polynomial g whose hyperbolicity cone contains the one of h
such that h · g has a determinantal representation. Let F ′ and F ′′ be the faces
of Newt(g) and Newt(h · g) where ⟨a,−⟩ attains its minimum. Then we have
(h · g)F ′′ = hF · gF ′ and this polynomial has a determinantal representation by
Lemma 2.3.11. Writing hF and gF ′ as limits as in the proof of Proposition 2.3.9,
it follows from Lemma 2.2.1 that the hyperbolicity cone of gF ′ contains the one
of hF . Thus we conclude that hF is spectrahedral. If h is weakly determinantal,
then we can proceed in the same way by letting g = hr for some r ≥ 0.
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Chapter 3

Testing the Properties of
Matroids: An Algorithm

In the previous chapter, we focused on operations on matroids that preserve
the operations of our interest. In this chapter, we will take further steps to
answer the questions posed at the end of §1.2 that are motivated by Conjec-
ture 1.1.47. We list some criteria for having the half-plane property and focus
on finding ways to implement them together with the ones for determinantal
representability. Further, we present an algorithm that posits to be computa-
tionally feasible and efficient throughout our tests. The methods listed in the
section were used for conducting tests on matroids on 8 and 9 elements that
are part of [39].

In particular, the results on the minor closedness of determinantal rep-
resentability, half-plane property, being SOS-Rayleigh, and being weakly de-
terminantal have exciting consequences. If a matroid has one of the above
properties, all its minors have the property. Therefore, classifying matroids on
small elements with respect to the desired property provides us the following:
if a given matroid M has the property, then all of its minors have the property,
and if it does not have the property, then no matroid having M as a minor has
the property. Especially in terms of not possessing the property, it helps us
drive conclusions for bigger matroids. Therefore, being able to test those prop-
erties in practice helps us come up with potential counter-example candidates
for the Generalized lax conjecture. In that context, finding some matroids that
have the half-plane property but are not weakly determinantal is primarily of
interest.

The Half-Plane Property

In §2.1, Rayleigh differences appeared to be a helpful tool for determining
determinantal representability and being weakly determinantal. Brändén, in
2007 showed through the following characterization of homogeneous multiaffine
stable polynomials that they also provide a criterion for the half-plane property.

Theorem 3.0.1 (Theorem 5.6 in [10]). Let h ∈ R[x1, . . . , xn] be a multiaffine
polynomial. The following are equivalent:

(i) h is stable,
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(ii) for all 1 ≤ i, j ≤ n, the Rayleigh difference

∆ij(h) :=
∂h

∂xi
· ∂h
∂xj
− ∂2h

∂xi∂xj
· h

is nonnegative on Rn.

Consider a simple matroid M on n elements with the half-plane property.
Since its basis generating polynomial hM is multiaffine, for any i, j ∈ [n] we
can express hM as

hM = xip+ xjq + xixjf + g.

where p := ∂hM

∂xi
|xj=0, q := ∂hM

∂xj
|xi=0, f := ∂2hM

∂xi∂xj
and g := hM |{xi=0, xj=0}.

After plugging in this expression in the Rayleigh difference ∆ijhM , we obtain

∆ijhM = (p+ xjf) · (q + xif)− f · (xip+ xjq + xixjf + g)

= pq − gf =
∂hM

∂xi
|xj=0 ·

∂hM

∂xj
|xi=0 −

∂2hM

∂xi∂xj
· hM |{xi=0, xj=0}.

Recall that the minors of M are matroids obtained as the direct sum of deletion
and contraction of some elements ofM . By Proposition 1.2.15, these operations
correspond to setting some variables of the basis generating polynomial zero
and taking derivatives with respect to some variables, respectively. Then we
can write the Rayleigh difference ∆ijhM as

∆ij(hM ) = hM/i\j · hM/j\i − hM/{i,j} · hM\k{i,j} .

The following theorem by Wagner and Wei proved that when all proper
minors of a matroid M have the half-plane property, it suffices to find one
Rayleigh difference which is non-negative.

Theorem 3.0.2 (Theorem 3 in [63]). Let M be a matroid on E = [n] all of
whose proper minors have the half-plane property. If there exist distinct indices
i, j ∈ [n] such that ∆ijhM (x) ≥ 0 for all x ∈ Rn, then M has the half-plane
property.

Proof. Assume that every minor M ′ of M has the half-plane property, and that
for the pair of distinct indices i, j ∈ [n], ∆ijhM is non-negative on Rn. Note
that for any k ∈ [n], M/k and M\k are minors of M , therefore, by assumption,
they have the half-plane property. Moreover, for any k ∈ [n] (we may assume
that k ∈ [n] \ {i, j}), we have

hM = xkhM/k
+ hM\k

such that by the same calculation as in the proof of Theorem 2.1.11, the
Rayleigh differences of hM are of the form

∆rshM = x2
k∆rshM/k

+ xkg
′ +∆rshM\k (3.1)

where r, s ∈ [n] \ {k}, and

g′ := hM/{k,r}hM\k/s
+ hM/{k,s}hM\k/r

−
(
hM\k/{r,s}hM/k

+ hM/{r,s,k}hM\k

)
.

62



CHAPTER 3. TESTING THE PROPERTIES: AN ALGORITHM

Since hM is multiaffine, the degree of xk in (3.1) is at most 2. By expanding the

discriminant formula (g′)
2 − 4

(
∆rshM/k

)
·
(
∆rshM\k

)
, one can observe that it

is symmetric under the permutation of indices {r, s, k} (see [63, Proposition 1]
for the explicit expansion). We will use this symmetry for passing to the non-
negativity of other Rayleigh differences.

Note that each coefficient of (3.1) is some combination of minors of hM ,
which by assumption are non-negative on Rn and by the hypothesis, ∆ijhM is
non-negative on Rn. Let k ∈ [n] \ {i, j} and fix real values for xl for l ∈ [n] \
{i, j, k}. By symmetry, the discriminant of ∆ijhM as a quadratic polynomial
in xk is equivalent to the discriminant of ∆i,khM as a quadratic form in xj .
Moreover, the sign of the first and the last coefficient of the second quadratic
polynomial do not change, and if any of these two coefficients is zero, then the
middle coefficient is also zero (by the construction of g′ in (3.1)). Therefore,
∆i,khM is non-negative on Rn. By applying this process repetitively, we obtain
that for indices s, r ∈ [n] \ {i, j}, ∆s,khM is non-negative on Rn as well.

One of the methods to certify the non-negativity of a polynomial is to find a
way to write it as a sum of squares of polynomials. While polynomials with an
SOS representation are non-negative on Rn, not every non-negative polynomial
is a SOS of polynomials. Still, trying to find one pair of indices for which the
corresponding Rayleigh difference has an SOS representation is one way to test
and, if applicable, certify the half-plane property of a matroid. We continue
listing some criteria that we apply in computational tests we conduct.

Criterion 1. By Theorem 3.0.2, if all proper minors of a matroid M have the
half-plane property and there exists a Rayleigh difference of hM that is a sum
of squares of polynomials, then M has the half-plane property.

Note in particular that the non-zero Rayleigh differences of the basis gen-
erating polynomial of a matroid of rank r are homogeneous and have degree
2r − 2.

Theorem 3.0.3 (Theorem 3.39 in [6]). Let h ∈ R[x1, . . . , xn] be a homogeneous
polynomial of degree 2d, and m be the vector of all monomials of degree d. Then
h is a sum of squares of polynomials if and only if there exists a PSD matrix

G ∈ Sym
(n+d

d )×(n+d
d )

R such that

h(x1, . . . , xn) = mTGm.

Recall that a matrix defined as in the theorem is called a Gram matrix.
Moreover the condition h(x1, . . . , xn) = mTGm, G ⪰ 0 is a semi-definite pro-
gram. In particular, the set of possible Gram matrices is given by the intersec-
tion of the PSD cone with an affine subspace; letting G be a matrix of entries
gij as variables,

h(x1, . . . , xn) = mTGm

defines a system of equations, and finding a PSD matrix satisfying those equa-
tions defines an SDP program.

Several computer algebra systems implement SOS decomposition algorithms
using various SDP solvers (CSDP, SDPA, MOSEK, DSDP, etc.). For example,
the Macaulay2 [28] package “SumsOfSquares” by Cifuentes, Kahle, Parrilo, and
Peyrl [20, 21] uses interior point methods for producing SOS certificates. For
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more information on methods for solving SDP and producing non-negativity
certificates, we refer to [6]. Numerical algorithms first attempt to find an
approximate solution with a Gram matrix with approximate (floating point)
entries and, if successful, try to round them to rational numbers. In particular,
the existence of a Gram matrix with rational entries certifies the non-negativity
of a polynomial with its SOS decomposition.

Theorem 3.0.4 (Theorem 3.43 in [6]). A polynomial h ∈ Q[x1, . . . , xn] is a
sum of squares of polynomials in Q[x1, . . . , xn] if and only if there exists a PSD
gram matrix G with rational entries such that describes h.

Since the basis generating polynomial of a matroid of rank r on n elements
is multiaffine, we consider the vector of multiaffine monomials of degree r.
Further, since the Rayleigh differences have degree 2r−2, the size of the Gram
matrices we want to find is

(
n

r−1
)
×
(

n
r−1
)
.

Another way to test the half-plane property of a given matroidM on E = [n]
is to use the minor closedness of the half-plane property.

The first criterion that needs to be applied for disproving the half-plane
property is the following.

Criterion 2. By Corollary 1.2.30, if M has one of the forbidden minors for
the half-plane property as one of its minors, then it does not have the half-plane
property.

In addition, minor closedness can also be used for proving the half-plane
property.

Criterion 3. By Corollary 1.2.30, if there exists another matroid M ′ on E′ =
[m],m > n with the half-plane property such that M is a minor of M ′, then M
has the half-plane property as well.

However, Criterion 3 is only efficient when the structure of the matroid is
known and related to matroids with specific properties. For example, Amini
and Brändén in [3] describe a way to construct non-representable matroids with
the weak half-plane property from d-uniform hyper-graphs. Those matroids
have similar properties to the Vámos matroid. In particular, they are good
candidates to use as matroids on a large number of elements in the minor
search test.

Remark 3.0.5. There are algorithms for testing the half-plane property us-
ing quantifier elimination methods that are infeasible in practice. For more
information, see [18, §2.6], [53].

When it is not possible to certify the non-negativity of Rayleigh differences
of a given matroid that does not have any known forbidden minors as a minor,
one can use other methods to disprove the property.

By Proposition 1.1.23, a matroid M on E = [n] with the half-plane property
is hyperbolic with respect to e = (1, . . . , 1) ∈ Rn and the hyperbolicity cone
of hM contains the non-negative orthant. Moreover, the univariate restrictions
hM (et− v) for v ∈ Rn are real rooted. This leads to the following criterion.
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Criterion 4. By Proposition 1.1.23 and by the fact that zeros of a univariate
polynomial continuously depend on its coefficients, if there exists e′, v ∈ Rn

≥0 for
which hM (e′t−v) has some complex zeros, then M does not have the half-plane
property.

In practice, checking the number of real roots of hM (e′t−v) for e, v ∈ {0, 1}n
provides a quick way to disprove the stability of a matroid.

Moreover, one can use the criterion given in Theorem 3.0.2 for disproving
the half-plane property.

Criterion 5. By Theorem 3.0.2, if there are some points in Rn for which one
of the Rayleigh differences of hM takes a negative value, then M does not have
the half-plane property.

To search for such points, we dehomogenize hM and compute its critical
points using the Julia package “HomotopyContinuation.jl” by Breiding, and
Timme [14]. We later insert the critical points in the Rayleigh differences and
check whether the value is negative.

After applying the criteria given above and conducting tests on matroids on
8 elements, we chose the most efficient methods and implemented them as the
algorithm described in Algorithm 1. Our test results on 9 elements support the
efficiency of the algorithm (see § 4 for the test results). We first check whether a
given matroid has a forbidden minor as its minor. If it passes this criterion, then
we proceed with the algorithm. The algorithm first uses the computer algebra
system Macaulay2 for sums of squares tests on the Rayleigh differences, and in
case a matroid fails the tests, it switches to Julia for finding negative points to
disprove the half-plane property. The function solveSOS in the algorithm is a
built-in function in the Macaulay2 package “SumsOfSquares”. It attempts to
find a PSD Gram matrix with rational entries to produce the sum of squares
representation of the Rayleigh difference.

Being SOS-Rayleigh and Weak Determinantal
Representability

Recall that a matroid is called SOS-Rayleigh if all Rayleigh differences of hM

are sums of squares of polynomials. While, for matroids all of whose proper mi-
nors have the HPP, it is enough to find an SOS representation for one Rayleigh
difference of hM to prove that it has the half-plane property, one needs to go
through all the Rayleigh differences and certify that they are sums of squares.

Criterion 6. By definition, if ∆ijhM is a sum of squares of polynomials for
all i, j ∈ [n], then M is SOS-Rayleigh.

In application, we use the Macaulay2 package “SumsOfSquares” for finding
SOS representations of the Rayleigh differences.

Further, a matroid without the half-plane property cannot be SOS-Rayleigh.

Criterion 7. By Theorem 3.0.2, if M does not have the half-plane property,
then it is not SOS-Rayleigh.
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Algorithm 1: An algorithm for testing the HPP of a matroid

Data: A matroid M on E = [n] with the collection of bases B, all of whose
proper minors have the HPP

Result: Whether M has the HPP

E← {1, . . . , n};
B ← {B : B is a Basis of M};
R← R[x1, . . . , xn];
hM ←

∑
B∈B

∏
i∈B xi ;

J← {(i, j) : 1 ≤ i, j ≤ n, i ̸= j} ;
for (i, j) ∈ J do

∆ij ← ∂hM

∂xi

∂hM

∂xj
− ∂2hM

∂xi∂xj
hM;

Sols← solveSOS(∆ij) ; /* SDP for SOS decomposition */

if status(Sols) == “SDP solved primal-dual feasible” then
if ring(GramMatrix(Sols)) == Q then

/* ∆ij is a SOS */

return “M has the HPP”
end

end

end
J′ ← {(i, j) : 2 ≤ i, j ≤ n, i ̸= j} ;
for (i, j) ∈ J′ do

∆ij ← ∂hM

∂xi

∂hM

∂xj
− ∂2hM

∂xi∂xj
hM;

dehom = ∆ij|x1←1;
/* Critical points are found using ‘‘Homotopy Continuation’’ */

CritPts←
{
p ∈ Rn−3 : p is a critical point of dehom

}
;

E′ ← E \ {1, i, j};
for p ∈ CritPts do

Subst = dehom|{
xE′

i
←pi for i∈[n−3]

};
if Subst < 0 then

return “M does not have the HPP”
end

end

end
return “Undetected”
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When there is no Gram matrix with rational entries found that gives the
SOS decomposition of a Rayleigh difference, we can try to disprove the prop-
erty. In order to show that a polynomial is not a sum of squares, one needs to
prove that its Gram spectrahedron is empty.

Lemma 3.0.6 (Lemma 5.14 in [39]). Let h ∈ R[x1, . . . xn] be a non-zero homo-
geneous polynomial of degree 2d− 2, and SG be its Gram spectrahedron defined
by the pencil

G0 + λ1G1 + . . . λkGk ⪰ 0

for some real symmetric matrices G1, . . . , Gk ∈ R(
n

d−1)×(
n

d−1). If there exists a

positive definite matrix A ∈ R(
n

d−1) such that tr(AGi) = 0 for all i = 0, . . . , k,
then SG is empty.

Proof. Assume that SG ̸= ∅. Then there exists λ ∈ Rk such that

G = G0 + λ1G1 + . . . λkGk

is positive semidefinite with tr(AG) = 0. Since A is positive definite, there

exist an invertible matrix B ∈ R(
n

d−1)×(
n

d−1) such that BBt = A. Since G is
positive semi-definite and non-zero,

0 = tr(AG) = tr(BBtG) = tr(BtGB) > 0

gives a contradiction.

In application, a certificate of not being SOS is produced by solving a
semi-definite program. The condition of the trace of products of matrices and
positive definiteness provide equations for defining the SDP.

Criterion 8. If there exists a Rayleigh difference of hM that is certified for
not being a sum of squares, then M is not SOS-Rayleigh.

Implementing the criteria above, we give an algorithm described in 2 for de-
termining the SOS-Rayleigh property of a matroid using the computer algebra
system Macaulay2.

By Theorem 2.1.19, being weakly determinantal implies being SOS-Rayleigh.
Therefore, one can use negative test results on the SOS-Rayleigh property in
order to conclude that a matroid does not have a weak determinantal repre-
sentation.

Criterion 9. By Theorem 2.1.19, if a matroid is not SOS-Rayleigh, then it is
not weakly determinantal.

Another method for disproving the weak half-plane property was used by
Brändén in [11] for giving a counter-example for a stronger version of the
generalized Lax Conjecture. Using the following characterization, he showed
that the Vámos matroid V8 is not weakly determinantal, although it has the
half-plane property (see [63]).
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Algorithm 2: An algorithm for testing the SOS-Rayleigh property of
a matroid
Data: A matroid M on E = [n] with the collection of bases B with the HPP
Result: Whether M is SOS-Rayleigh

E← {1, . . . , n};
B ← {B : B is a Basis of M};
r← rk(M);
hM ←

∑
B∈B

∏
i∈B xi ;

J← {(i, j) : 1 ≤ i, j ≤ n, i ̸= j} ;
for (i, j) ∈ J do

∆ij ← ∂hM

∂xi

∂hM

∂xj
− ∂2hM

∂xi∂xj
hM;

Sols← solveSOS(∆ij) ; /* SDP for SOS decomposition */

if status(Sols) ==“SDP solved primal-dual feasible” then
if ring(GramMatrix(Sols)) == Q then

/* ∆ij is a SOS */

end

else
/* Produce a non-SOS certificate */

m←
(

n
r−1
)
;

k← m(m+ 1)/2;
S← R[a1, . . . , ak][x1, . . . , xn];
Inds← {T ⊂ E \ {i, j} : |T| = r− 1};
G← GenericMatrix ∈ Symm

S ;
/* Initial Gram matrix with entries a1, . . . , ak */

M←
(∏

i∈T xi
)
T∈Inds ∈ S1×m;

/* Vector of multiaffine monomials */

Solve(MGMT −∆ij); /* Obtain the relations */

G← G|solution(Solve); /* Insert the relations */

NZInd← {i ∈ [k] : ai appears in G};
/* G0 +

∑
i∈NZInd Giai is the linear pencil defining the Gram

spectrahedron */

Gs←
{
G|{ ai←1

aj←0 for all j∈NZInd\{i}

} ∈ Rm×m : i ∈ NZInd ∪ {0}
}
;

b← 0 ∈ R|GS|;
C← 0 ∈ Rm×m;
Sdp← SDP(C,Gs, b);
if status(Sdp) ==“SDP solved primal-dual feasible” then

if the solutionmatrix is PD then
/* A non-SOS certificate is produced */

return “M is not SOS-Rayleigh”
else

return “Undetected”
end

else
return “Undetected”

end

end

end
return “M is SOS-Rayleigh”
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Theorem 3.0.7 (Brändén [11]). Let M be a weakly determinantal matroid on
the ground set [n]. Then its rank function rk satisfies the Ingleton inequalities:

rk(P1 ∪ P2) + rk(P1 ∪ P3) + rk(P1 ∪ P4) + rk(P2 ∪ P3) + rk(P2 ∪ P4)

≥ rk(P1) + rk(P2) + rk(P1 ∪ P2 ∪ P3) + rk(P1 ∪ P2 ∪ P4) + rk(P3 ∪ P4)

for all P1, P2, P3, P4 ⊂ [n].

Criterion 10. Matroids that violate the Ingleton inequalities are not weakly
determinantal.

For the Vámos matroid, there exist disjoint subsets P1, P2, P3, P4 ⊂ [8] of
size 2 that violate this inequality. Paving matroids with a similar property are
called Vámos-like and defined as follows.

Definition 3.0.8. A sparse paving matroid M on a ground set E of rank r
is called Vámos-like if there exist pairwise disjoint sets P1, P2, P3, P4,K where
|P1| = |P2| = |P3| = |P4| = 2 and |K| = r − 4 such that K ∪ Pi ∪ Pj for
i < j, (i, j) ̸= (3, 4) are non-bases, while K ∪ P3 ∪ P4 is a basis.

A matroid M of rank r is a sparse paving matroid if each size-r subset of
its ground set is either a basis or a circuit-hyperplane.

In [47] it was shown that Vámos-like matroids violate the Ingleton inequal-
ities.

Criterion 11. Vámos like matroids are not weakly determinantal.
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Chapter 4

Test Results on Matroids on 8
and 9 Elements

In this chapter, by applying Algorithm 1, we classify all matroids on a ground
set E with |E| ≤ 8 that have the half-plane property. Moreover, we present
our test results on the half-plane property of matroids on 9 elements. Since
matroids with the half-plane property on at most 7 elements were classified
in [18], we start with considering matroids on 8 elements. The test results
appear in the pre-print [39]. Source code for the tests can be found at https:
//github.com/busrasert/HPP-of-Matroids.

4.1 Matroids on 8 Elements

We start by narrowing down the set of matroids that have to be considered. For
this, we use the results on the half-plane property matroids and preservation
of the half-plane property. Note that by [18, Prop. 4.2], having the half-plane
property is closed under taking the dual of the matroid. Thus it is enough to
consider matroids on 8 elements with rank at most four.

Further, the half-plane property is preserved by direct sums, adjoining
loops, or parallel elements [18, §4]. Consequently, it is enough to consider
simple connected matroids on 8 elements of rank at most four. Moreover, by
[18, Cor. 5.5], all rank-1 and rank-2 matroids have the half-plane property.
Thus we only need to consider matroids on eight elements of rank three and
four.

We use the Macaulay2 [28] package “Matroids” by Chen [16, 17] where
a list of all matroids on at most 8 elements is implemented: The command
allMatroids(8) yields a list of all matroids on 8 elements. In the following,
we will denote byMi the i-th element of this list (counting starts from zero).
Code files for the tests are available at: https://github.com/busrasert/

HPP-of-Matroids.

We obtain the number of non-isomorphic matroids on 8 elements with rank
3 or 4 is 1265. While 685 of them are simple, 659 of them are simple and
connected. Since the half-plane property is minor-closed, we continue with
excluding the forbidden minors for the half-plane property. Choe et. al. in [18]
showed that Fano matroid F7, Non-Fano matroid F−7 , F−−7 , F−37 , M(K4) +
e and thus their duals do not have the half-plane property. Therefore, any
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Number of pairs (e,v) for which
Matroids hM(et − v) One of the pairs (e,v)

has non-real roots
M435 4 ((1, 1, 1, 1, 1, 1, 0, 1) , (1, 1, 0, 0, 0, 0, 1, 1))
M437 8 ((0, 0, 0, 0, 1, 1, 1, 1) , (1, 1, 1, 1, 1, 1, 0, 1))
M439 4 ((1, 0, 1, 1, 1, 1, 1, 1) , (1, 1, 1, 1, 0, 0, 0, 0))
M443 2 ((1, 1, 1, 1, 0, 1, 1, 1) , (0, 0, 0, 0, 1, 1, 1, 1))
M450 4 ((0, 1, 1, 1, 1, 1, 1, 1) , (1, 1, 0, 0, 1, 1, 0, 0))
M455 2 ((1, 1, 0, 1, 0, 1, 0, 1) , (0, 1, 1, 0, 1, 0, 1, 1))
M460 2 ((0, 0, 1, 1, 1, 1, 1, 1) , (1, 1, 0, 0, 0, 0, 1, 1))
M461 12 ((1, 1, 1, 1, 0, 1, 1, 1) , (0, 0, 1, 1, 1, 1, 0, 0))
M465 10 ((0, 1, 1, 1, 1, 1, 1, 1) , (1, 1, 0, 0, 0, 0, 1, 1))
M466 38 ((0, 0, 1, 1, 1, 1, 0, 1) , (1, 1, 0, 0, 0, 0, 1, 1))
M467 62 ((1, 1, 0, 1, 1, 0, 1, 1) , (0, 0, 1, 1, 1, 1, 0, 0))
M548 6 ((1, 1, 1, 1, 0, 0, 0, 1) , (0, 0, 0, 0, 1, 1, 1, 1))
M549 4 ((1, 1, 1, 1, 0, 0, 1, 1) , (1, 1, 1, 1, 0, 0, 1, 1))
M570 78 ((1, 1, 0, 0, 1, 1, 1, 1) , (0, 0, 1, 1, 1, 1, 0, 0))
M575 158 ((1, 1, 1, 1, 1, 1, 0, 1) , (0, 0, 0, 1, 1, 0, 1, 1))

Table 4.1: 15 matroids and a sample of directions for which they fail the
hyperbolicity test.

matroid that has one of those matroids as a minor does not have the half-
plane property. After excluding such matroids, we are left with 309 simple and
connected matroids, all of whose proper minors have the half-plane property.

As described in Algorithm 1, we run a sum of squares test using the
Macaulay2 package “SumsOfSquares” by Cifuentes, Kahle, Parrilo, and Peyrl
[20, 21] on all Rayleigh differences of the basis generating polynomials of all
these 309 matroids. We obtain that for 287 matroids from this list, there ex-
ists some indices i, j such that ∆ij(hM ) is a sum of squares. In particular,
for each of the 287 matroids, there were some indices i, j for which the SDP
solver could find a Gram matrix with rational entries. This gives a symbolic
certificate for being a sum of squares, and thus by Theorem 3.0.2 it proves that
the corresponding matroid has the half-plane property.

For the remaining 22 matroids, we do not know whether they have the
half-plane property: the fact that for those 22 matroids, there are no i, j for
which the Rayleigh difference is a sum of squares does not imply that these
matroids do not have the half-plane property. In particular, there are nonneg-
ative polynomials that are not a sum of squares. On the other hand, we apply
some methods listed in the previous chapter in order to eliminate those that
do not have the half-plane property. Since all these 22 matroids have rank 4,
we conclude that among the matroids on eight elements with rank 3 there are
no new forbidden minors for the half-plane property.

We first apply Criterion 4 and test whether there is any matroid M among
the 22 matroids, for which hM (et− v) has some complex roots for some e, v ∈
{0, 1}8. We obtain that 15 of the 22 matroids do not pass this test, and the
remaining 7 matroids require more tests to prove or disprove that they have the
half-plane property. For the list of these 15 matroids whose basis generating
polynomials fail this test and for the corresponding points e, v, we refer to
Table 4.1.

For each of the remaining 7 matroids M , we found a point x ∈ R6 for which
∆67(hM )(x) < 0, which confirms that they do not have the half-plane property
by using the Julia package “HomotopyContinuation.jl” by Breiding and Timme
[14]. More precisely, we computed all critical points of the Rayleigh difference
and plugged in nearby rational points. The list of points where the Rayleigh
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(a) M424 (b) M430

(c) M431 (d) M436

Figure 4.1: Examples of Matroids on 8 elements that are forbidden minors for
the HPP.

Matroids x ∈ R6 s.t. ∆6,7(hM)(x) < 0
M424 (4, 30, 1, 7,−32,−4)
M430 (80, 19,−31,−31,−17,−4)
M431 (60, 27,−90,−22, 27, 5)
M436 (40, 309,−40,−306, 9, 73)
M462 (20, 55,−11,−4,−52,−19)
M463 (30, 399,−111,−10,−368,−28)
M550 (50,−25, 94,−45,−142, 66)

Table 4.2: Seven matroids and points x ∈ R6 at which one of their Rayleigh
differences is negative.

difference is negative is given in Table 4.2.
We therefore obtain the following result.

Theorem 4.1.1 (Theorem 5.2 in [39]). There are exactly 22 matroids on 8
elements all of whose minors have the half-plane property but which do not
have the half-plane property themselves. These 22 matroids are the matroids
Mk for k in the following list:

{424, 430, 431, 435, 436, 437, 439, 443, 450, 455, 460, 461, 462, 463, 465,
466, 467, 548, 549, 550, 570, 575} .
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All of them are sparse paving matroids of rank 4. Furthermore, all of these
matroids are self-dual except for the following dual pairs: M424 = M∗436,
M430 =M∗548,M450 =M∗549 andM455 =M∗550.

Below, give examples of those 22 matroids and some details about their
characteristics.

Example 4.1.2. The matroid M430 is the co-extension CoExt(P7) of the
ternary 3-spike P7. Both are depicted in Figure 1.7. Further minors of M430

include P6, Q6, R6, CoExt(R6) and Ext(Q6) which all have the half-plane
property. Its dual is the matroidM548.

Example 4.1.3. Recall that Choe et. al. in [18] showed that P8, P
′
8 and P ′′8

do not have the half-plane property. In our list, these are the matroids M575,
M570 andM467. Furthermore, the matroidM466 is the relaxation P ′′′8 , which
does not have the half-plane property as well. In [45, Prop. 4] the matroid P ′′′8
is denoted by P3, and it is shown that it is not representable over any field.
Further note that in [50] the matroid P ′′8 is denoted by P=

8 . It is an excluded
minor for being representable over the field of 4 elements.

Example 4.1.4. The matroidM431 has only four circuit hyperplanes:

{1, 2, 3, 4} , {1, 2, 5, 6} , {1, 3, 5, 7} and {2, 3, 5, 8} .

Example 4.1.5. Matroid Betsy Ross (B11) is a matroid on 11 elements of
rank 3 defined by the relations depicted in Figure 4.1. It hasM430 as a minor,
therefore it does not have the half-plane property.

Example 4.1.6. The Extended Ternary Golay code is the matroid represented
by the following generating matrix of the Extended Ternary Golay code over
the field F3 

1 0 0 0 0 0 1 1 1 2 2 0
0 1 0 0 0 0 1 1 2 1 0 2
0 0 1 0 0 0 1 2 1 0 1 2
0 0 0 1 0 0 1 2 0 1 2 1
0 0 0 0 1 0 1 0 2 2 1 1
0 0 0 0 0 1 0 1 1 1 1 1

 .

The supports of the codewords form a Steiner System S(5, 6, 12), i.e., a 12
element set with a collection D of 6 element subsets (called blocks) such that
every 5 element subset of S is contained in exactly one block. Here, a ground
set E with 12 elements with the collection D of hyperplanes define a matroid.
It does not have the half-plane property since it has P8 as a minor.

By minor closedness of the half-plane property, any matroid having one of
the listed 22 matroids as a minor does not have the half-plane property.

Additionally, co-extensions

CoExt(P8), CoExt(J), CoExt(T8), CoExt(S8),

CoExt(N1), CoExt(N2), CoExt(AG(2, 3)),

extensions Ext(P8), Ext(T8), Ext(J), Ext(N1) and the matroid AG(3, 3) have
one of the 22 matroids as a minor. These all do not have the half-plane property.
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(a) M462 (b) M465

(c) M549 (d) M575

Figure 4.2: Some more examples of the forbidden minors for the HPP.

Figure 4.3: Matroid Betsy Ross (B11)
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Example 4.1.7. Pappus, non-Pappus matroids, and a free extension (Non-
Pappus\9) +e do not have the half-plane property (see [18]). The authors of
[18] suspect that they are minor minimal. By Theorem 4.1.1, there are no
minor-minimal matroids of rank 3 on 8 elements, and none of the forbidden
minors in 7 elements of rank 3 is a minor of any of the 3 matroids listed above.
Therefore, Pappus, non-Pappus, and (Non-Pappus\9) +e matroids are minor
minimal with respect to the half-plane property. In Section 4.2, we confirm
that they are the only minimal forbidden minors for the half-plane property of
rank 3 on 9 elements.

Remark 4.1.8. A matroid M with ground set E is called Rayleigh, if

∆ij(hM )(x) ≥ 0

for all i, j ∈ E and all x in the nonnegative orthant. It is clear from Theo-
rem 3.0.1 that the half-plane property implies Rayleigh. The converse is not
true. For instance every matroid of rank 3 is Rayleigh [62]. When searching
for critical points of Rayleigh differences using the Julia package “Homotopy-
Continuation.jl”, we found that the matroidsMk for k from the following list
are not Rayleigh:

{768, 816, 821, 825, 878, 879, 882, 883, 891, 894, 895, 896, 910, 911, 912}.

Note that the matroidM912 is the matroid S8 [50, p. 648].
Furthermore, for fixed indices i, j, we can express hM as hM = axixj+bxi+

cxj + d where a, b, c, d ∈ R[x1, . . . , xn] are polynomials that do not depend on
xi and xj . Then we have ∆i,jhM = ad − bc, and the supremum of the ratio
bc
ad (x) over all x in the nonnegative orthant and all i, j is called the correlation
constant of the matroid M . If M is not Rayleigh, then the correlation constant
is larger than 1. It was conjectured in [32] that the correlation constant cannot
exceed 8

7 . Our computations support their conjecture, see also Table 4.3

SOS-Rayleigh and Weakly Determinantal Matroids

Concerning the SOS-Rayleigh property, the tests applied using Algorithm 2
shows that among the 287 matroids with the half-plane property, 256 matroids
are SOS-Rayleigh, i.e., for those matroids all Rayleigh differences are a sum of
squares.

Remark 4.1.9. For the matroidsMk where k is in

{393, 395, 397, 399, 400, 401, 403, 404, 405, 410, 411, 412, 421, 423, 433, 664, 717}

there are some indices i, j such that the SDP solver cannot find positive semidef-
inite rational Gram matrices during the SOS test on ∆i,j but only positive
semidefinite Gram matrices having floating points as entries (i.e, they are ap-
proximate). These numerical results indicate that these matroids might be
SOS-Rayleigh but we do not have a symbolic certificate for that. However,
there is always another pair of indices for which we can find a rational pos-
itive semidefinite Gram matrix, so this issue does not affect the proof of the
half-plane property.
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(i, j) Points p ∆i,j(p)
ad
bc

(p)

M768 (0, 7)
(x1, . . . , x6)(

1, 1151
50000

, 1151
50000

, 11
12500

, 121
6250

, 121
6250

) − 137044575881655277
244140625.1018

7087627531101625600
7086494931300950763

M816 (5, 2)
(x0, x1, x3, x4, x6, x7)(

1, 256
625

, 2117
5000

, 493
10000

, 1071
10000

, 373
10000

) − 44144993633423974179
1024

1677835309713405241630
1675733167159432671431

M821 (5, 2)
(x0, x1, x3, x4, x6, x7)(

1, 2337
2500

, 81
200

, 81
200

, 799
10000

, 799
10000

) − 244470035602773648449
25.1022

2106739084957900875
2101723183203601984

M825 (5, 2)
(x0, x1, x3, x4, x6, x7)(

1, 23
250

, 1
10

, 7
1000

, 13
250

, 1
250

) − 428814189
390625.1010

17057286016
17041404009

M878 (0, 5)
(x1, x2, x3, x4, x6, x7)(

1, 2673
10000

, 1411
5000

, 147
2000

, 141
1250

, 63
10000

) − 7274235177449194527
1024

1073182847598931250930
1072374599245881340427

M879 (0, 5)
(x1, x2, x3, x4, x6, x7)(
1, 17

25
, 61
20

, 32
5
, 12
25

, 7
100

) − 167603609619
625.108

6212735812250
6206528271153

M882 (0, 5)
(x1, x2, x3, x4, x6, x7)(

1, 47
500

, 51
500

, 11
1000

, 7
125

, 1
500

) − 1444139463
125.1015

574575099022
574093719201

M883 (0, 5)
(x1, x2, x3, x4, x6, x7)(
1, 13

100
, 13
100

, 1
50

, 1
25

, 1
250

) − 423857
15625.108

208804463
208562259

M891 (0, 7)
(x1, . . . , x6)(

1, 19
100

, 141
100

, 141
100

, 19
100

, 19
100

) − 3136366917
2.1011

2377183363
2371329748

M894 (0, 7)
(x1, . . . , x6)(

1, 37
500

, 73
1000

, 7
1000

, 73
1000

, 3
1000

) − 55652830199
1018

88756978376279
88701325546080

M895 (0, 7)
(x1, . . . , x6)(

1, 37
1000

, 9
250

, 1
500

, 9
250

, 1
1000

) − 673510083
25.1016

1113113239348
1112439729265

M896 (0, 7)
(x1, . . . , x6)(

1, 3
1000

, 3
1000

, 3
1000

, 3
1000

, 3
1000

) − 29157813
1025

3202760405
3202400432

M910 (0, 7)
(x1, . . . , x6)(

1, 3
100

, 3
100

, 1
500

, 3
100

, 1
1000

) − 1784831
25.1014

5380022943
5378238112

M911 (0, 7)
(x1, . . . , x6)(

1, 1
50

, 1
50

, 1
1000

, 1
50

, 1
1000

) − 480249
25.1014

263808
263687

M912 (0, 7)
(x1, . . . , x6)(

1, 1
4000

, 1
4000

, 1
4000

, 1
4000

, 1
4000

) − 1
64.1015

16010001
16008001

Table 4.3: List of non-Rayleigh matroids on 8 elements and their correlation
constants.

(a) M411 (b) M423

Figure 4.4: Examples of matroids with the HPP whose SOS-Rayleigh property
could not be certified.
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(a) M409 (b) M438

Figure 4.5: Examples of matroids that are not weakly determinantal.

Example 4.1.10. The matroid M411, shown in Figure 4.4a, has only four
circuit hyperplanes: {1, 2, 3, 4}, {1, 2, 5, 6},{1, 3, 5, 7} and {4, 6, 7, 8}. It is one
of the 17 matroids whose SOS-Rayleigh property could not be certified, but is
strongly suspected.

Mayhew and Royle in [45] show that among the matroids on eight elements,
there are 44 non-representable matroids, and 39 of them are Vámos-like. The
remaining 5 matroids are four relaxations of P8 and a relaxation of L8. Our
tests concluded that out of these 44 matroids, which are not representable over
any field, only the Vámos matroid has the half-plane property. Furthermore,
the minor-minimal matroids from Theorem 4.1.1 all satisfy Ingleton’s inequal-
ities. Therefore Criterion 11 was not helpful for this case.

For finding further instances of matroids with the half-plane property that
are not weakly determinantal, we use the Criterion 9 by applying Algorithm 2.
At the end of our tests, we found 14 matroids, including the Vámos matroid
M502, for which some Rayleigh differences are a sum of squares but not all. In
particular, they have the half-plane property but are not weakly determinantal.

Theorem 4.1.11 (Theorem 5.13 in [39]). The matroids Mk for k in

{409, 413, 414, 415, 417, 418, 419, 438, 440, 445, 498, 500, 501, 502}

have the half-plane property but are not SOS-Rayleigh. In particular, these
matroids are not weakly determinantal.

For each of the matroids M in the list, we produce symbolic certificates
for the existence of a pair i, j such that ∆i,jhM is not an sum of squares.
The certificates were produced by applying Lemma 3.0.6 and showing that the
Gram spectrahedron of the corresponding Rayleigh difference is empty.

Example 4.1.12. The matroid M409 shown in Figure 4.5a with circuit hy-
perplanes {1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 7}, {3, 4, 6, 8} and {1, 2, 7, 8} is not
SOS-Rayleigh, therefore it is not weakly determinantal. A non-SOS certificate
was produced for ∆27hM409

.
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(a) M417 (b) M498

Figure 4.6: More examples of matroids that are not weakly determinantal.

Properties Count
Half-plane property 287

Certified SOS-Rayleigh 256
Half-plane property but not SOS-Rayleigh 14

Not having the HPP 22

Table 4.4: Summary of the classification of simple connected matroids on 8
elements of rank 3 or 4 all of whose proper minors have the half-plane property.

Example 4.1.13. Another non-weakly determinantal matroid is M438 il-
lustrated in Figure 4.5b. It has non-bases {1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 7},
{3, 4, 6, 8}, {1, 2, 7, 8} . A non-SOS certificate was produced for ∆63hM438 . The
matrix that certifies the emptiness of the Gram spectrahedron of ∆63hM438

has eigenvalues

990.535, 725.807, 560.358, 346.281, 240.059, 546.759, 107.165, 81.6063,

217.501, 120.738, 3.63865, 5.95991, 1.22469, 0.0918248, 0.200458, 0.302676,

0.971657, 0.754552, 0.709615, 0.719758.

Example 4.1.14. MatroidM498 depicted in Figure 4.6b is not weakly deter-
minantal. Its non-bases are {1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 6}, {1, 3, 7, 8} and
{2, 3, 7, 8}. Like other 13 non-SOS-Rayleigh matroids listed in Theorem 4.1.11,
it is a paving matroid, i.e., its circuits have size at least rk(M498) = 4.

Remark 4.1.15. Let M be a matroid that is not weakly determinantal listed
in Theorem 4.1.11 and i, j ∈ [n] be the pair of indices for which ∆ijhM is
not a sum of squares. Since M has the half-plane property, by Theorem 3.0.1
∆ijhM is non negative on Rn. In particular it is non-negative, but not a sum
of squares. Therefore, matroids listed in Theorem 4.1.11 give rise to new non-
negative, non-SOS polynomials.
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Example 4.1.16. For the matroid M417 the Rayleigh difference
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is non-negative on R8, however it is not a sum of squares. The circuit hyper-
planes ofM417 are given by the quadrilateral faces of the heptahedron depicted
in Figure 4.6a.

We provide the list of simple matroids on 8 elements of rank 3 and 4 that
are HPP, that are not HPP, some matroids that are not SOS-Rayleigh, and
matroids for which we could not detect whether they are SOS-Rayleigh at
https://zenodo.org/record/6108027 .

4.2 Matroids on 9 Elements

In this section, we apply Algorithm 1 on simple and connected matroids on
9 elements of rank 3 and 4. We use the list of all simple matroids on nine
elements provided by Matsumoto, Moriyama, Imai, and Bremner in [44]. They
encode the set of bases of matroids after ordering the subsets of the ground set
with respect to the reverse lexicographic order.

Definition 4.2.1. Two distinct r-element sets S1, S2 are said to have the
relation S1 ≺ S2 with respect to the reverse lexicographic order if max(S1) <
max(S2) or max(S1) = max(S2) = a and S1 \ {a} ≺ S2 \ {a}.

Let n and r be fixed, and all size r subsets of [n] be increasingly ordered in
the reverse lexicographic order. We then encode each subset among the ordered
subsets with the character “∗” if it appears in the collection of bases of a given
matroid M (on E = [n] of rank r), and we encode the subsets that are not
bases of M with the character “0”. That way, every matroid can be identified
by the fingerprint given by the sequence of symbols constructed above.

Example 4.2.2. The fingerprint

∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗0

represents the matroid on 8 elements of rank 2 that has all size two subsets of
E = [8] as bases except the subsets {2, 3} and {7, 8} represented on the 3rd
and 28th positions respectively.
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(a) A matroid with the HPP for which
it is unknown whether it is SOS-
Rayleigh.

(b) A matroid with the HPP that is
SOS-Rayleigh.

Figure 4.7: Examples of two matroids on 9 elements.

Figure 4.8: Fingerprints of ten matroids on 9 elements of rank 3 for which
SOS-Raileigh property could not be detected

After excluding forbidden minors, we conduct an SOS test on the Rayleigh
differences of simple connected matroids on 9 elements of rank 3. Our tests
show that the only minimal forbidden minors for the half-plane property on 9
elements of rank 3 are the Pappus, non-Pappus, and (non-Pappus\9)+e ma-
troids. The remaining 116 matroids have the half-plane property. For ten of
these matroids, there are some indices (i, j) such that for ∆i,j the SDP solver
can only find positive semidefinite Gram matrices with floating point entries
(i.e., they are approximate). On the other hand, we could not certify that they
are not SOS-Rayleigh. The numerical data from the SDP outputs suggests
that such ∆i,j are sum of squares with non-rational coefficients only.

Example 4.2.3. The matroid M shown in Figure 4.7a on ground set E = [9]
with non-bases {1, 2, 3}, {1, 4, 5}, {2, 4, 6} , {3, 7, 8} and {5, 7, 9} is one of the
ten matroids of rank 3 with the HPP for which our algorithm cannot prove or
disprove that they are SOS-Rayleigh.

There are 185982 simple matroids on 9 elements of rank 4. We first extend
the list of excluded minors (by adding those of rank 3 on 9 elements and of rank
4 on 8 elements) and eliminate matroids having one of the 35 forbidden minors
as a minor. By applying a sum of squares test described in Algorithm 1 on the
Rayleigh differences of the remaining connected matroids, we found that 4125
matroids have the half-plane property. For each, there is a pair (i, j) such that
the SDP solver could find positive semidefinite rational Gram matrices during
the SOS test on ∆i,j . In addition, there are 819 matroids for which the SDP
solvers could only find positive semi-definite Gram matrices with floating point
entries (i.e., they are approximate). The numerical results suggest they might
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Properties Count
Half-plane property 116

Undetected SOS-Rayleigh 10
Not having the HPP 3

Table 4.5: Summary of the classification of simple connected matroids on 9
elements of rank 3 all of whose proper minors have the half-plane property.

Properties Count
Half-plane property 4125

Candidates for having the HPP 819
Not having the HPP 1218

Undetected 556

Table 4.6: Summary of the test results on simple connected matroids on 9
elements of rank 4 all of whose proper minors have the half-plane property.

have the half-plane property, but our computations do not provide a proof. We
list those matroids under the category “Candidates for having the half-plane
property”.

We found 1218 matroids that do not have the half-plane property, all of
whose proper minors have the half-plane property. By using the Julia package
“Homotopy Continuation” on the second part of Algorithm 1, for each such
M , we were able to find indices (i, j) and x ∈ R7 such that ∆i,j(hM )(x) < 0.

Remark 4.2.4. Our experiments do not provide a complete classification with
respect to the half-plane property for matroids on 9 elements with rank 4.
There are 556 matroids that neither pass the SOS test nor the test for finding
negative points. We suspect that the Rayleigh differences of those matroids
are non-negative, but not sum of squares. However, our computations do not
provide a proof. These are listed under the name “Undetected”. Due to com-
putational time constraints, we did not perform tests using Algorithm 2 on
matroids on 9 elements of rank 4: Once we found a sum of squares repre-
sentation for one pair of indices, we did not continue to check the remaining
ones.

Below we list some examples of matroids on 9 elements of rank 4.

Example 4.2.5. Matroid M with non bases {1, 2, 3, 4}, {1, 2, 5, 6}, {1, 3, 5, 7},
{3, 4, 6, 8}, {2, 4, 7, 8}, {2, 6, 7, 9}, and {5, 6, 8, 9} is one of the 556 matroids for
which Algorithm 1 could not detect whether it has the half-plane property.
The SDP solver could not find any SOS decomposition, and we were not able
to find any points for which one of its Rayleigh differences takes a negative
value. Its combinatorial structure is illustrated in Figure 4.11.

Example 4.2.6. MatroidM ′ with non bases {1, 2, 3, 4} , {1, 2, 5, 6}, {1, 3, 5, 7},
{2, 4, 5, 8}, {3, 5, 6, 9} and {4, 7, 8, 9} is a candidate for having the half-plane
property. It has at least one Rayleigh difference for which the SDP solver
could find a Gram matrix with floating point entries, and there are no Rayleigh
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Figure 4.9: Matroid M ′′ whose non bases elements are given by the depicted
quadrilaterals is a candidate for having the HPP.

Figure 4.10: A matroid on 9 elements that does not have the HPP.

Figure 4.11: A matroid on 9 elements whose HPP could not be detected.
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2

6

1

4
3

5
7

Figure 4.12: The quadrilateral faces of the shown polytope represent the non
bases of a matroid on 9 elements with the HPP.

differences for which the solver could find a Gram matrix with rational entries.
We suspect that it has the half-plane property, however we don’t have a proof.
The combinatorial structure of M ′ is depicted in Figure 4.9.

Example 4.2.7. MatroidM ′′ with non bases {1, 2, 3, 4}, {1, 2, 5, 6}, {1, 3, 5, 7},
{1, 4, 6, 7}, {4, 5, 7, 8}, {1, 6, 7, 9} and {2, 3, 8, 9} does not have the half-plane
property. The Rayleigh difference ∆21hM ′′ ∈ R[x3, . . . , x9] takes the value
−7641.00833538555809163215183/2 at

(1, 6.4556, 10.268, 78.1388,−5.1065,−6.688, 4.6387).

It is depicted in Figure 4.10.

Example 4.2.8. MatroidM ′′′ with non bases {1, 2, 3, 4}, {1, 2, 5, 6}, {1, 3, 5, 6}
and {2, 4, 6, 7} illustrated in Figure 4.12 has the half-plane property. In par-
ticular, every 4-element subset S ⊂ [9] that contains 8, 9 or both is a basis.

We provide data-base description of matroids that appear in our test results
at https://zenodo.org/record/6108027.
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Chapter 5

Conclusion and Future
Perspectives

Throughout the manuscript, we revisited the properties of homogeneous poly-
nomials, some operations one may apply to them, and the operations that
preserve their properties. The minor closedness of the half-plane property, be-
ing weakly determinantal, being SOS-Rayleigh, and being spectrahedral had
a special highlight ([18, 38, 39],§ 2.2). In particular, these results imply that
for each of the properties, one can start searching for small matroids that do
not have it. Using this fact and also the criteria for the half-plane property
and being weakly determinantal ([10, 63]), we suggest an algorithm to test the
half-plane property and weak determinantal representability of a matroid.

In summary, given a matroid M , we follow the following steps in order to
test the HPP:

• Check whether M has any of the forbidd en minors as a minor.

– If it has a forbidden minor as a minor then it does not have the
HPP.

– If it does not have such a minor, apply Algorithm 1.

∗ Test the non-negativity of the Rayleigh differences. If all proper
minors of M have the HPP, it is enough to prove the non-
negativity of one of the Rayleigh differences.

∗ If the test does not give a positive result, try to find points on
which a Rayleigh difference takes a negative value to disprove
the HPP.

• If any of above methods does not work, try to find some other methods.

For being weakly determinantal, we only have methods to disprove it, one
of which yields to Algorithm 2, and the other one is about showing that a
matroid does not satisfy the Ingleton inequalities.

Using these algorithms, we classified the matroids on 8 elements with re-
spect to the half-plane property. Our tests on matroids on 8 and 9 elements
yield a long list of forbidden minors for the half-plane property, making testing
the bigger matroids’ half-plane property more feasible. In addition, we found
14 matroids on 8 elements of rank 4, including the Vámos matroid, that are
not weakly determinantal. All these contributions suggest the following further
research directions.
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5.1 Spectrahedral Matroids

In the context of the generalized Lax conjecture, we are interested in the spec-
trahedral representability of the hyperbolicity cones. In particular, the result
on the minor closedness of the spectrahedral representability suggests a search
for a counterexample starting from matroids on smaller elements. From the
results of Bránden [12] and Amini [2] that support the conjecture, we know
that uniform matroids and graphical matroids are spectrahedral. In addition,
the hyperbolicity cone of polynomials with a determinantal representation are
spectrahedral and matroids that are representable over every field (thus over
R) have a determinantal representation (see § 2.1 ). Therefore, by construc-
tion, 6

√
1-matroids are spectrahedral (note that there are 6

√
1-matroids that are

only weakly determinantal). In order to implement these results, we use the
following characterizations:

Theorem 5.1.1 (Theorem 14.7.9 in [50]). A matroid M is a 6
√
1-matroid if

and only if it has no minor isomorphic to any of U25, U35, F7, F
∗
7 , F

−
7 ,
(
F−7
)∗

or P8.

Theorem 5.1.2 (Theorem 10.1.1 in [50]). A matroid is regular (thus repre-
sentable over R) if and only if it has no minor isomorphic to U24, F7 and
F ∗7

Theorem 5.1.3 (Theorem 10.3.1 in [50]). A matroid M is graphical if and only
if it has no minor isomorphic to any of U24, F7, F

∗
7 , M(K5)

∗ or M(K3,3)
∗.

Matroids M(K5) and M(K3,3) are constructed from the complete graph K5

and the 3-connected graph K3,3 respectively. Since graphical matroids have the
half-plane property and it is preserved under taking duals (Proposition 1.2.28),
M(K5)

∗ and M(K3,3)
∗ have the half-plane property. Among the forbidden

minors mentioned above, F7, F
−
7 , P8 and their duals are forbidden minors for

the half-plane property. Therefore, matroids with a minor isomorphic to any of
them are not hyperbolic. Thus, matroids with the half-plane property with any
minor isomorphic to any of U24, U25, U35, M(K5)

∗ or M(K3,3)
∗ are candidates

for our search for spectrahedrality. Since proper minors of a matroid M have
at least one less element than M , we start searching on matroids on 5 elements.

We use the command allMatroids(5) in Macaulay2 with the package “Ma-
troids” ([16, 17]) to obtain the list of all non-isomorphic matroids on 5 elements.
The basis generating polynomial of the direct sum of two spectrahedral ma-
troids is the product of their basis generating polynomials. The hyperbolicity
cone of the product is the intersection of the hyperbolicity cones of the compo-
nents. Since the intersection of spectrahedral cones is again spectrahedral, it is
enough to consider connected matroids. Moreover, a non-simple matroid either
has a linearity space in its hyperbolicity cone, or its hyperbolicity cone is inter-
section of a hyperbolicity cone with some coordinate hyperplanes. Therefore,
we can also restrict our attention to simple matroids. By conducting a test on
the minors of simple non-isomorphic matroids from the list, we conclude the
following:

Theorem 5.1.4. Every matroid on at most 5 elements is spectrahedral.
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Proof. Note that all matroids on at most 6 elements have the half-plane prop-
erty ([18, Proposition 10.10]). There are 3 non-isomorphic simple connected
matroids on 5 elements that have U24 as a minor; namely U35, U25 and one
more matroid which does not have neither U25 nor U35 as a minor. By The-
orem 5.1.1, the latter is a 6

√
1-matroid. The claim follows from the results on

the spectrahedrality of uniform and 6
√
1-matroids ([12, 2]).

Then, the next step is checking the minors of simple matroids on 6 elements.
This time we use the command allMatroids(6) and obtain the list L of all
non-isomorphic matroids on 6 elements. There are 5 simple connected matroids
on 6 elements that have the matroid U25 as a minor (thus they are not 6

√
1-

matroids), two of which are U36 and U26 and the other 3 are

• the matroid P6 (L31 (counting starts from 0)) with non-basis {1, 2, 3},

• the matroid Q6 (L33) with non-bases {1, 2, 3} and {1, 4, 5},

• the matroid L39 with non-bases {1, 2, 3}, {1, 2, 4}, {1, 3, 4} and {2, 3, 4}.

All of them have the matroid U24 as a minor, therefore by Theorem 5.1.2, they
are not regular. Moreover, P6 and Q6 have U35 as a minor, while L39 does not.
We can further restrict the list by applying some more results. The basis gen-
erating polynomial of a nice transversal matroid corresponds to the matching
polynomial of the bipartite graph it is constructed from (see Example 1.2.19).
By [18, Corollary 10.3], those matroids have the half-plane property, and since
they have graphical interpretation, by [2], they are spectrahedral. In [18, Ex-
ample 10.7], Choe et al. show that the matroids P6 and Q6 are nice transversal
and, thus by [2], spectrahedral.

Moreover the matroid L69 with non-bases {2, 3, 4, 5} does not have U25 as
a minor, but has the matroids U35 and U24 as its minors. Therefore, it is not
regular, it is not 6

√
1 and it is not graphical.

Hence, we are left with matroids L39 and L69 whose spectrahedrality needs
to be shown.

Question 5. Are the matroids L39 and L69 spectrahedral? In other words, are
all matroids on at most 6 elements spectrahedral?

By the criteria given in [30], in order to show the spectrahedrality of L39,
One needs to find a hyperbolic polynomial g with ChL39

⊆ Cg such that hL39 ·g
has a determinantal representation. Moreover, the following result shows that
for smooth hyperbolic polynomials, one can always find another hyperbolic
polynomial such that their product has a determinantal representation (without
ensuring the inclusion condition on their hyperbolicity cones).

Theorem 5.1.5 (Theorem 6 in [36]). Let h ∈ R[x1, . . . , xn] be hyperbolic with
respect to some e ∈ Rn

≥0. Assume that h has no real singularities (i.e. ∇h(v) ̸=
0 for all 0 ̸= v ∈ Rn). Then there is a hyperbolic polynomial h ∈ R[x1, . . . , xn],
such that h · g has a determinantal representation.

Kummer, for instance, applied this result in [35] to show that the hyperbol-
icity cone of the specialized Vámos matroid is spectrahedral. The construction
of the method used in the mentioned paper can be transferred to our case as
follows:
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Let p be a vector of size m with polynomial entries in R[x1, . . . , x6] of
degree d′ ≥ deg(hL39

) − 1 = 2 such that p has at least one component that is
not divisible by hL39

. Further, let A1, . . . , An ∈ SymR(m) and q be a vector of
size m with polynomial entries of size d′ − deg(hL39) + 1. Fix p and consider
the following SDP program

(A1x1 + · · ·+Anxn) · p = q · hL39

in the entries of Ai and the coefficients of the entries of q. If this program
has a solution, then there exists a hyperbolic polynomial g with g · hL39 =
λ det(A1x1 + · · · + Anxn). Finding a suitable p and the desired polynomial g
and exploring the inclusion of the hyperbolicity cones is ongoing work.

One can further consider the following questions:

Question 6. Are all matroids on at most 7 elements with the HPP spectrahe-
dral?

Question 7. Are all matroids on at most 8 elements with the HPP spec-
trahedral? Especially, are all 14 non-weakly determinantal matroids listed in
Theorem 4.1.11 spectrahedral?

Question 8. Is there a computationally feasible algorithm to check spectrahe-
dral representability of matroids with the HPP?

Another approach could be finding a particular (feasible) characterization
of spectrahedral cones and checking whether hyperbolicity cones also satisfy
them. For example in [1], Allamigeon et al. introduce tropical spectrahedra,
taking a tropical geometric approach for a characterization.

5.2 Non-negative Non-SOS Polynomials

Non-negative polynomials and non-negativity certificates have an important
role in convex optimization ([40], [6], [41]). In particular, the certification of
non-negativity of polynomials that are not a sum of squares is of interest. For
instance, there are studies (see, e.g., [33, 34, 22] ), on non-negative polynomials
supported on circuits that establish new methods (sums of non negative circuit
polynomials (SONC) method) for producing non-negativity certificates.

Each of the 14 matroids listed in Theorem 4.1.11 has at least one Rayleigh
difference that is non-negative but is not a sum of squares of polynomials. Fur-
ther, the non-negativity of each such polynomial was certified via a criterion
([63]) on Rayleigh differences, namely by finding another Rayleigh difference
that is a sum of squares. In other words, matroids that are not weakly determi-
nantal give rise to a new way of producing non-negative, non-SOS polynomials.
This suggests further research on the common properties of these Rayleigh dif-
ferences, such as their support structure.

Definition 5.2.1. Let h ∈ R[x1, . . . , xn] := R[x] be a polynomial and S be its
support such that the vertices of its Newton polytope Newt(h) are in (2N)n.
Then h is called a circuit polynomial if it is of the form

h(x) =

m∑
i=1

cix
αi − dxβ
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where m ≤ n + 1, ci ∈ R>0 for i ∈ [m], d ∈ R∗, {α1, . . . , αm} is the set of
vertices of Newt(h), and β is in the interior of Newt(h).

Example 5.2.2. Consider the matroid M417 and ∆27hM417
as in Exam-

ple 4.1.16. The Newton polytope of ∆27hM417
has 15 vertices given in the

columns of

2 0 2 2 0 0 0 2 2 0 2 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 2 0 2 2 0 2 0 2 0 2 0 2 0
2 2 0 2 2 0 2 0 2 2 0 0 0 0 0
2 2 0 0 0 2 2 0 0 0 2 2 0 0 2
0 0 2 2 2 2 2 0 0 0 0 0 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 2 2 2 2 2 2 2


.

Moreover, ∆27hM417
has 81 exponents and only the monomial with the expo-

nent {2, 0, 1, 1, 1, 1, 0, 0} has a negative coefficient −1. Clearly it is not of the
form of a circuit polynomial, but it might be a sum of non-negative circuit
polynomials.

Question 9. Are non-negative non-SOS polynomials produced by non-SOS-
Rayleigh matroids sums of non-negative circuit polynomials?

5.3 Completing the Classification of Matroids on 9
Elements and More

While Algorithm 1 was sufficient for the classification of the half-plane prop-
erty of matroids on at most 8 elements, one needs further methods to classify
matroids on 9 elements with respect to the half-plane property. Investigating
the matroids whose half-plane property could not be detected, and coming up
with new methods to test the HPP are among the future perspectives.

Question 10. Are there other computationally feasible methods for testing the
half-plane property of matroids?
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Birkhäuser/Springer Basel AG, Basel, 2012.

[59] Victor Vinnikov. Lmi representations of convex semialgebraic sets and de-
terminantal representations of algebraic hypersurfaces: past, present, and
future. In Mathematical methods in systems, optimization, and control,
pages 325–349. Springer, 2012.

[60] David Wagner. Multivariate stable polynomials: theory and applications.
Bulletin of the American Mathematical Society, 48(1):53–84, 2011.

[61] David G. Wagner. Matroid inequalities from electrical network theory.
Electron. J. Combin., 11(2):Article 1, 17, 2004/06.

[62] David G. Wagner. Rank-three matroids are Rayleigh. Electron. J. Com-
bin., 12:Note 8, 11, 2005.

[63] David G. Wagner and Yehua Wei. A criterion for the half-plane property.
Discrete Math., 309(6):1385–1390, 2009.

[64] Günter M Ziegler. Lectures on Polytopes, volume 152. Springer Science &
Business Media, 2012.

95





Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige
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