

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-867558

Sven Schmidt, Thomas Legler, Sebastian Schär, Wolfgang Lehner

Robust Real-time Query Processing with QStream

Erstveröffentlichung in / First published in:

ICMI05: Seventh International Conference on Multimodal Interfaces 2005. Trondheim, 30.
August – 2. September 2005, S. 1299–1301. ACM. ISBN 978-1-59593-154-2.

Link: https://dl.acm.org/doi/10.5555/1083592.1083756

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-853467

Robust Real-time Query Processing with QStream

Sven Schmidt Thomas Legler Sebastian Schär Wolfgang Lehner

Dresden University of Technology
Database Technology Group

dbgroup@mail.inf.tu-dresden.de

Abstract

Processing data streams with Quality-of-
Service (QoS) guarantees is an emerging area
in existing streaming applications. Although
it is possible to negotiate the result qual-
ity and to reserve the required processing re-
sources in advance, it remains a challenge to
adapt the DSMS to data stream characteris-
tics which are not known in advance or are dif-
ficult to obtain. Within this paper we present
the second generation of our QStream DSMS
which addresses the above challenge by using
a real-time capable operating system environ-
ment for resource reservation and by applying
an adaptation mechanism if the data stream
characteristics change spontaneously.

1 Introduction

Currently, many existing Data Stream Management
Systems (DSMS), such as [2, 3, 5], aim at an efficient,
flexible, and sometimes also distributed evaluation of
standing queries against streaming data. Often, it
is very valuable for the user if the DSMS assures a
certain Quality-of-Service (QoS) for query processing.
For example, such QoS requirements may include up-
per bounds for the tuple processing delay or a guar-
anteed result data rate. In [5], we presented an ap-
proach of running a DSMS on top of a real-time- ca-
pable operating system to meet the QoS requirements
mentioned above. Our work was based on the cal-
culation and reservation of necessary resources in ad-
vance. However, the main assumptions of our real-
time DSMS approach were that the data-dependent
parameters (e.g. data rate, data distribution) are

©2005 Copyright held by the owner/author(s). Publication rights licensed
to ACM. This is the author’s version of the work. It is posted here for
your personal use. Not for redistribution. The definitive Version of
Record was published in Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005.

known a-priori and, moreover, are constant on aver-
age. Only a cumulatively limited jitter of processing
time or data amount was allowed and thus, had influ-
ence on the resource calculation and reservation pro-
cess. It is obvious that these assumptions do not hold
for many application scenarios, and thus, an exten-
sion towards a more flexible management regarding
the data-dependent parameters is required. With this
second QStream prototype, we establish a so-called
adaptation framework on the basis of the real-time-
capable and QoS-guaranteeing system core. The ben-
efits are twofold: on the one hand, we are able to
handle arbitrary input data streams, whether or not
the stream characteristics are known a-priori. On the
other hand, we enable the user to adjust the robust-
ness of the DSMS by granting more or less resources.
As a result, processing of arbitrary input streams may
be achieved in real-time, but will be interrupted from
time to time to adapt the system to changes in the
streaming environment.

2 Adaptation Framework

The general way of resource reservation based on QoS
requirements is illustrated in figure 1. First of all,
the QoS requirements are negotiated. Then, if the
calculated resources are available, they are reserved
and guaranteed during runtime. With the resource
guarantee, the quality requirements are guaranteed as
well.

QoS Negotiation

Resource Assurance

Resource Reservation

QoS Assurance

Figure 1: QoS negotiation process

For our work, we make use of a resource calcula-
tion model which is extensively described in [1]. We
implement a standing query as a network of indepen-
dently running basic operators. For optimum resource
usage, and in order to enable QoS guarantees, we ad-

Final edited form was published in "
ICMI05: Seventh International Conference on Multimodal Interfaces 2005", S. 1299–1301, ISBN 978-1-59593-154-2

https://dl.acm.org/doi/10.5555/1083592.1083756

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

just the ’speed’ of this operator network based on the
data throughput requirements. The data throughput
is determined firstly, by the individual period length of
an operator’s run (called frequency) and secondly, by
the amount of data which is processed during one run.
For successful operation, a FIFO buffer is established
between each pair of operators.

DSMS Steady State

Once the resource-determining parameters (like input
data rate, selectivity of filter and join operators, etc.)
are known or estimated, we schedule the DSMS op-
erators to work in real-time at the presumed network
speed, thereby achieving the desired data throughput
as well as the maximum tuple delay. As this schedul-
ing is based on average parameters, these parameters
(mainly the data rate, which we will focus on) may
jitter around their average. It is up to the user to
limit the amount of jitter while calculating necessary
resources. Toleration of more jitter leads to higher in-
termediate buffer sizes, a longer tuple delay and higher
resource requirements. We suppose the DSMS to run
in a steady state as long as tolerated jitter is sufficient
for the fluctuating data stream characteristics. Only
while being in this steady state, the DSMS runs in real-
time and all time-dependent QoS requirements (tuple
delay, data throughput) can be met.

Unsteady DSMS - Indication

From time to time, certain situations require a
rescheduling of the DSMS operators. Such situations
include, for example, changing input data rates as well
as varying filter predicate and join selectivities. An
indicator for a transition into an unsteady state can
be found when the continuous data flow through net-
work operators and FIFO buffers cannot be held up
any longer due to blocking buffer accesses: operators
repeatedly try either to write data into full buffers or
to read data from empty buffers. Thereby, not every
(small) increase or decrease of the data rate causes a
buffer fault: whether our DSMS is able to overcome
fluctuations of the input data rate, and thus, stays in
a steady state depends mainly on the tolerated jitter
included in the calculation.

Unsteady DSMS - Adaptation

If the DSMS becomes unsteady, the initially negoti-
ated QoS requirements cannot be assured any longer.
More precisely, this means that once a buffer read fault
or a buffer write fault has occurred, the tuple delay
guarantees (and thus the data throughput) are consid-
ered broken and, hence, we have to adapt the running
DSMS as soon as possible. Thereby, the DSMS’s pro-
cessing speed has to be adjusted to the new situation.

Our general goal of the adaptation is to bring the
system back into a steady state. This comprises three

subgoals:

• Depending on the direction of the adaptation
(faster or slower network), we either have to free
some of the initially occupied resources or, if pos-
sible, we have to implement further allocations.

• If the new amount of required resources is avail-
able, we will be able to reschedule the DSMS to
work at optimum speed regarding the data stream
parameters.

• Based on the new DSMS speed, we are able to
negotiate new QoS requirements with the DSMS
user, and as long as the DSMS stays steady, we
are able to give QoS guarantees.

Within QStream, we define the robustness of a
DSMS by the duration of its steady states. Figure
2 illustrates the influence of data stream characteris-
tics and generous resource allocation (jitter tolerance)
on the robustness.

robustness

jitter tolerance

stream characteristics
fluctuation

Figure 2: Robustness-determining factors

If the stream characteristics do not change signif-
icantly, and if a high amount of jitter was tolerated
when calculating and reserving the required resources,
the system will become very robust to any change of
its real-time behavior, and thus, the time spans of the
steady states are maximal.

Generally, it’s up to the users how much resources
they are willing to spend for covering jitter within
the stream characteristics. The more resources they
spend, the more robust the DSMS will run.

3 Prototype

Our QStream prototype is implemented on top of the
Realtime Application Interface (RTAI, [4]). The over-
all architecture is illustrated in figure 3.

Queries

Data
Sensor

Result
Query

DSMS Engine

QoS Requirements

real−time capable environment

Controller QoS Monitor

Adaption

Figure 3: Architecture of the QStream system

Final edited form was published in "
ICMI05: Seventh International Conference on Multimodal Interfaces 2005", S. 1299–1301, ISBN 978-1-59593-154-2

https://dl.acm.org/doi/10.5555/1083592.1083756

2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

The system’s core for evaluating standing queries
against incoming data streams consists of an operator
network running stepwise at a fixed speed to achieve
the desired data throughput. Within the operator net-
work, FIFO buffers are implemented as shared mem-
ory areas to hand over the tuples. A monitor com-
ponent is a central part of QStream and may be con-
nected to each operator or to each point of the data
flow, where it can gather low-level information, such
as operator runtimes and data throughput statistics,
as well as high-level information, like filter predicate
selectivities or even histograms of the streaming data.
Depending on the amount and on the level of detail,
this information forms the basis for planning the re-
sources of the DSMS. Every time the system is being
transferred from one steady state into another one, the
resources for the future state have to be determined
based on statistics and current runtime information.

The following diagrams show how QStream adapts
to new data characteristics:

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000 1200 1400 1600 1800 2000

da
ta

 r
at

e
/

kb
yt

e/
s

time / s

source data rate
DSMS data rate, FIFO buffer = 1000 bytes

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000 1200 1400 1600 1800 2000

da
ta

 r
at

e
/

kb
yt

e/
s

time / s

source data rate
DSMS data rate, FIFO buffer = 3000 bytes

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000 1200 1400 1600 1800 2000

da
ta

 r
at

e
/

kb
yt

e/
s

time / s

source data rate
DSMS data rate, FIFO buffer = 5000 bytes

Figure 4: Data rate adaptation example

In figure 4, the adaptation scenarios for three differ-
ent values of jitter tolerance (which directly correlates
with the size of the buffer) are illustrated. The larger
the tolerated jitter, the less often the system has to
adapt its processing speed, and the longer the steady
states last. The latter comes along with long-lasting
and stable QoS guarantees.

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 1000 2000 3000 4000 5000 6000 7000

ro
bu

st
ne

ss

tolerated jitter (FIFO buffer size / bytes)

Figure 5: Robustness measure

In figure 5, we define the robustness as the inverse
of the number of adaptations per time unit and mark
it depending on the tolerated jitter. The general ob-
servation is that a larger tolerated jitter, and thus a
higher resource consumption, leads to a higher robust-
ness of our prototype.

With the QStream demonstration, we will show how
data stream processing can be achieved in real-time
even if the data stream characteristics change over
time. As a quantitative measure, the robustness en-
ables us to reason about how steady a DSMS is and
how stable QoS guarantees can be met.

References

[1] H. Berthold, S. Schmidt, W. Lehner, and C.-J.
Hamann. Integrated resource management for data
stream systems. In Proc. of the Annual ACM Sym-
posium on Applied Computing (SAC’05, March 13-
17, Santa Fe (NM), USA), pages 555–562, 2005.

[2] Don Carney, Ugur Çetintemel, Alex Rasin, Stan
Zdonik, Mitch Cherniack, and Michael Stone-
braker. Operator scheduling in a data stream man-
ager. In Proc. of 29th International Conference on
Very Large Databases (VLDB’03, September 9-12,
Berlin, Germany), pages 838–849, 2003.

[3] Charles D. Cranor, Theodore Johnson, Oliver
Spatscheck, and Vladislav Shkapenyuk. Gigascope:
A stream database for network applications. In
Proc. of the 2003 ACM SIGMOD International
Conference on Management of Data (SIGMOD
2003, June 9-12, San Diego (CA), USA), pages
647–651, 2003.

[4] Lorenzo Dozio and Paolo Mantegazza. Real
time distributed control systems using rtai. In
Proc. of the 6th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing
(ISORC 2003, May 14-16, Hakodate, Hokkaido,
Japan), pages 11–18, 2003.

[5] S. Schmidt, H. Berthold, and W. Lehner. Qstream:
Deterministic querying of data streams. In
Proc. of International Conference on Very Large
Data Bases (VLDB’04, August 30 - September 3,
Toronto, Canada), pages 1365–1368, 2004.

Final edited form was published in "
ICMI05: Seventh International Conference on Multimodal Interfaces 2005", S. 1299–1301, ISBN 978-1-59593-154-2

https://dl.acm.org/doi/10.5555/1083592.1083756

3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

	ADP8297.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	Sven Schmidt, Thomas Legler, Sebastian Schär, Wolfgang Lehner

