
Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-821506

Jeronimo Castrillon, Matthias Lieber, Sascha Klüppelholz, Marcus Völp, Nils Asmussen,
Uwe Aßmann, Franz Baader, Christel Baier, Gerhard Fettweis , Jochen Fröhlich, Andres
Goens, Sebastian Haas, Dirk Habich, Hermann Härtig, Mattis Hasler et. al.

A Hardware/Software Stack for Heterogeneous Systems

Erstveröffentlichung in / First published in:

IEEE Transactions on Multi-Scale Computing Systems. 2018, 3 (4), S. 243-259. IEEE. ISSN
2332-7766.

DOI: http://dx.doi.org/10.1109/TMSCS.2017.2771750

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-821506
http://dx.doi.org/10.1109/TMSCS.2017.2771750

A Hardware/Software Stack
for Heterogeneous Systems

Jeronimo Castrillon , Matthias Lieber , Sascha Kl€uppelholz , Marcus V€olp, Nils Asmussen,

Uwe Aßmann, Franz Baader, Christel Baier, Gerhard Fettweis , Jochen Fr€ohlich, Andr�es Goens,

Sebastian Haas, Dirk Habich, Hermann H€artig, Mattis Hasler, Immo Huismann, Tomas Karnagel,

Sven Karol, Akash Kumar, Wolfgang Lehner, Linda Leuschner, Siqi Ling, Steffen M€arcker,

Christian Menard, Johannes Mey, Wolfgang Nagel, Benedikt N€othen, Rafael Pe~naloza,

Michael Raitza, J€org Stiller, Annett Ungeth€um, Axel Voigt, and Sascha Wunderlich

Abstract—Plenty of novel emerging technologies are being proposed and evaluated today, mostly at the device and circuit levels.

It is unclear what the impact of different new technologies at the system level will be. What is clear, however, is that new technologies

will make their way into systems and will increase the already high complexity of heterogeneous parallel computing platforms, making it

ever so difficult to program them. This paper discusses a programming stack for heterogeneous systems that combines and adapts

well-understood principles from different areas, including capability-based operating systems, adaptive application runtimes, dataflow

programming models, and model checking. We argue why we think that these principles built into the stack and the interfaces among

the layers will also be applicable to future systems that integrate heterogeneous technologies. The programming stack is evaluated on

a tiled heterogeneous multicore.

Index Terms—cfaed, orchestration, post-CMOS, heterogeneous systems, programming stack, hardware/software abstractions,

emerging technologies, cross layer design

Ç

1 INTRODUCTION

OVER the past five decades, the ever-increasing computa-
tional power enabled by Moore’s Law has nurtured

many innovations in our daily life, including the Internet,
smartphones, and autonomous cars. However, the continu-
ing scaling of transistors, predicted by Moore in 1965, will
ultimately end, mainly due to miniaturization limits and
power density constraints [1].

There are today many coordinated research efforts to
find alternative technologies that could prevent stagnation
of computational power [2], [3], [4]. A similar initiative was
launched in 2012 at TU Dresden – the large-scale research
project Center for Advancing Electronics Dresden (cfaed)1 to
explore new technologies along with research in new hard-
ware and software architectures. The project, on the one
hand, has various sub-projects focusing on developing
novel technologies like silicon nanowires (SiNW) and car-
bon nanotubes (CNT), among others. On the other hand,
the project also emphasizes the need to already start think-
ing of integrating these devices at the system level and
develop techniques to deal with the system-design and reli-
ability challenges. In particular, the goal of the Orchestration
sub-project of cfaed is to design hardware and software
architectures for the yet unknown components and devices
emerging from the aforementioned technologies and pro-
vide significant gains in application performance.

A couple of inflection points are notable when it comes to
providing continued improvements in application perfor-
mance. The first inflection point was marked by a shift from
frequency increasing to parallel systems, i.e., multicores [5].
The end of Dennard scaling made it impossible to operate all

� J. Castrillon,M. Lieber, S. Kluppelholz,N. Asmussen, U.Aßmann, F. Baader,
C. Baier, G. Fettweis, J. Frohlich, A. Goens, S. Haas, D. Habich, H. Hartig,
M. Hasler, I. Huismann, S. Karol, A. Kumar, W. Lehner, L. Leuschner,
S. Ling, S. Marcker, C. Menard, J. Mey, W. Nagel, B. Nothen, M. Raitza,
J. Stiller, A. Ungethum, A. Voigt, and S. Wunderlich are with the Center for
Advancing Electronics Dresden, Technische Universitat Dresden, Dresden
01069, Germany. E mail: {jeronimo.castrillon, matthias.lieber, sascha.
klueppelholz, uwe assmann, Christel.Baier, gerhard.fettweis, andres.goens,
Sebastian.Haas, jochen.froehlich, dirk.habich, immo huismann, akash.kumar,
wolfgang.lehner, linda.leuschner, siqi.ling, christian.menard, johannes mey,
wolfgang.nagel, michael.raitza, joerg.stiller, annett.ungethuem, axel.voigt,
sascha.wunderlich}@tu dresden.de, {mattis.hasler, benedikt.noethen}@ifn.et.
turesden.de, {nils, haertig}@os.inf.tu dresden.de, sven.karol@gmx.de, {baader,
maercker}@tcs.inf.tu dresden.de.

� M. Volp is with the Center for Advancing Electronics Dresden, Technische
Universitat Dresden, Dresden 01069, Germany, and SnT CritiX, Univer
sity of Luxembourg, Esch sur Alzette 4365, Luxembourg.
E mail: voelp@os.inf.tu dresden.de.

� T. Karnagel is with the Center for Advancing Electronics Dresden, Techni
sche Universitat Dresden, Dresden 01069, Germany, and Oracle Labs,
Zurich 8001, Switzerland. E mail: tomas.karnagel@tu dresden.de.

� R. Penaloza is with the Center for Advancing Electronics Dresden, Technische
Universitat Dresden, Dresden 01069, Germany, and the KRDB Research
Centre, Free University of Bozen Bolzano, Bolzano 39100, Italy.
E mail: rpenalozan@gmail.com.

Manuscript received 17 Dec. 2016; revised 27 Oct. 2017; accepted 2 Nov.
2017. Date of publication 9 Nov. 2017; date of current version 14 Sept. 2018.
(Corresponding author: Jeronimo Castrillon.)
Recommended for acceptance by S. Le Beux, P.V. Gratz, and I. O’Connor.
For information on obtaining reprints of this article, please send e mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMSCS.2017.2771750 1. http://www.cfaed.org

Final edited form was published in "IEEE Transactions on Multi-Scale Computing Systems" 3 (4), S. 243-259. ISSN: 2332-7766
http://dx.doi.org/10.1109/TMSCS.2017.2771750

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

https://orcid.org/0000-0002-5007-445X
https://orcid.org/0000-0002-5007-445X
https://orcid.org/0000-0002-5007-445X
https://orcid.org/0000-0002-5007-445X
https://orcid.org/0000-0002-5007-445X
https://orcid.org/0000-0003-3137-0648
https://orcid.org/0000-0003-3137-0648
https://orcid.org/0000-0003-3137-0648
https://orcid.org/0000-0003-3137-0648
https://orcid.org/0000-0003-3137-0648
https://orcid.org/0000-0003-1724-2586
https://orcid.org/0000-0003-1724-2586
https://orcid.org/0000-0003-1724-2586
https://orcid.org/0000-0003-1724-2586
https://orcid.org/0000-0003-1724-2586
https://orcid.org/0000-0003-4622-1311
https://orcid.org/0000-0003-4622-1311
https://orcid.org/0000-0003-4622-1311
https://orcid.org/0000-0003-4622-1311
https://orcid.org/0000-0003-4622-1311
http://www.cfaed.org

parts of a chip at full frequency over extended periods of time,
an effect known as dark silicon [6]. This led to a second inflec-
tion point, marked by a shift from homogeneous to heteroge-
neous architectures. For example, today, almost every server,
desktop, and high-end embedded system includes some sort
of heterogeneous architecture. Examples are GPGPU sys-
tems [7], heterogeneous systems with homogeneous instruc-
tion sets [8], [9] and systems with heterogeneous cores [10].
Similarly, accelerators have become common in general pur-
pose [11], domain specific [12] and supercomputing applica-
tions [13]. Additionally, as Borkar predicted in 2005 [14], the
costs for compensating failing transistors will soon outweigh
the benefits of technology scaling if faults or partial function-
ality are not exposed at the architectural level, which can be
regarded as another form of heterogeneity.

Due to the ultimate scaling limits of CMOS, we expect
the third inflection point to be the integration of heteroge-
neous components potentially based on different emerging
post-CMOS technologies in combination with various
design alternatives of classical CMOS hardware. These com-
ponents can be specialized processing elements (e.g., accel-
erators), heterogeneous (non-volatile) memories, or novel
interconnects (e.g., photonic or wireless). Components can
also be partially reconfigurable circuits combining different
processing elements or providing a platform for applica-
tion-specific and even software-delivered circuits. Regard-
less of which combination of processing, memory, and
interconnect technology is ultimately used in future sys-
tems, we envision the heterogeneity to only increase, thus
forming “wildly heterogeneous” systems. This trend has
been predicted by other researchers [1], [2], [15], [16].

This paper describes the Orchestration stack, a hardware/
software architecture for heterogeneous systems and a
research platform towards future wildly heterogeneous sys-
tems (see Fig. 1). We believe that to handle the upcoming
complexity of wildly heterogeneous systems a holistic
approach is needed that touches upon several layers of a
hardware/software stack. In this paper we focus on the
lower layers of the stack, which combine and extend well-
understood principles from different areas, including net-
works-on-chip, operating systems, parallel programming
models, and model checking. To design software for not yet
available hardware, we rely on (i) CMOS hardware as a
proxy with interfaces that can potentially allow connecting
post-CMOS components, (ii) event-based simulation of pro-
cessors, memories, and interconnect, as well as (iii) formal

verification and quantitative analysis using (probabilistic)
model checking.

The paper is organized as follows. Section 2 provides an
overview of the Orchestration stack and its underlying prin-
ciples. Section 3 introduces Tomahawk, a family of tiled
multicore platforms that serves to demonstrate the princi-
ples in the lower layers of the stack. Section 4 describes M3,
an OS that leverages hardware support in Tomahawk to
encapsulate components. In Section 5, we discuss a compila-
tion flow and a runtime system for dataflow applications
to demonstrate variant generation and deployment onto
heterogeneous systems. The new formal methods devel-
oped to deal with these kinds of heterogeneous designs are
described in Section 6. Formal methods and the lower layers
of the stack are evaluated in Section 7. We then put this
paper in perspective with respect to future technologies in
Section 8. This is followed by related work and conclusions
in Section 9 and Section 10, respectively.

2 ORCHESTRATION STACK OVERVIEW

This section gives an overview of our hardware/software
stack that is detailed in Sections 3, 4, 5, and 6. A conceptual
view of the stack is shown in Fig. 1. Each layer hides certain
aspects of heterogeneity, propagating just enough for
higher-level layers to adjust and use the available resources
efficiently.

At the hardware level all we require is that the components
have a well-defined interface that allows embedding them
into a tile-based architecture and that allows exchanging
data and commands using some kind of network (e.g., a
network-on-chip (NoC) [17]). New architectures and/or
technologies providing such an interface can hence be
embedded into this framework, enabling flexible design of
future heterogeneous systems. As we make no additional
assumptions on neither the internal operational behavior of
components nor their healthiness, we developed hardware
features to effectively isolate components at the NoC level
and control mechanisms for data and command exchange.

These hardwaremechanisms are then used by the operating
system (OS) to isolate applications and establish communica-
tion channels to other tiles and remote memories. Since we
need to support a heterogeneous underlying architecture
with varying processing capabilities, it may not be feasible to
run a full-fledgedOS on each of them.We, therefore, useNoC-
level isolation, where kernel instances are run ondedicated tiles
and control the applications, running on the remaining tiles
(e.g., an accelerator or an FPGA) on baremetal, remotely.

On top of the OS, application runtimes make decisions
based on information queried from the OS. For example,
they consider global metrics such as resource utilization,
power, and the performance of applications and determine,
among others, the mapping of applications to the tiles. Dur-
ing this mapping, the expected future resource-performance
trade-offs are also evaluated. While these decisions are
made by the runtimes, they are enabled by the compiler,
which identifies application demands specific to the hard-
ware, while exploiting heterogeneous computation, com-
munication, and storage resources.

The upper layers of the stack in Fig. 1, namely adaptable
application algorithms and programming abstractions, are not the
subject of this paper. These layers deal with describing, algo-
rithmically and programmatically, applications semantics in a
way thatmakes it easier to adapt to and exploit heterogeneous

Fig. 1. The Orchestration stack (focus of this paper in bold).

Final edited form was published in "IEEE Transactions on Multi-Scale Computing Systems" 3 (4), S. 243-259. ISSN: 2332-7766
http://dx.doi.org/10.1109/TMSCS.2017.2771750

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

hardware, striving for future-proof programming. To this
end, we develop parallel skeletons [18] and domain specific
languages (DSLs) together with domain experts. Examples
are parallel skeletons and semantic composition [19] for
computational fluid dynamics (CFD) applications [20], DSLs
for CFD and particle-based simulations [21], [22], and hard-
ware acceleration for data bases [23].

Last but not least, we integrate formal methods in our
design process to quantitatively analyze low-level resource
management protocols for stochastically modeled classes of
applications and systems [28]. The model-based formal quan-
titative analysis, carried out using probabilistic model check-
ing techniques, is particularly useful for the comparative
evaluation of (existing and future) design alternatives, to
compare the performance of heuristic approaches for sys-
tem management with theoretical optimal solutions or to
determine optimal system parameter settings.

3 THE TOMAHAWK ARCHITECTURE

Asmentioned in the stack overview in Section 2, we consider
two key aspects at the hardware level to handle heterogene-
ity. First, we think tile-based systems are promising for easy
integration of heterogeneous components at the physical
level (see further discussion in Section 8). This architectural
paradigm has already proven effective for handling design
complexity and scalability up to 1,000 processing elements
(PEs) [29], [30], [31] and for heterogeneity [32], [33]. Second,
andmore importantly, the hardware should include efficient
mechanisms to provide uniform access to specialized units
via the NoC. Hardware support for message passing and
capabilities is key for system performance as will be dis-
cussed in Section 4. In this section we briefly describe actual
silicon prototypes of tiled systems in Section 3.1, followed by
a detailed description of the unified access control mecha-
nisms in Section 3.2.

3.1 Tomahawk Overview
Tomahawk is a family of tiled heterogeneous multi-proces-
sor platforms with a NoC-based interconnect [34]. A total of
four generations of the Tomahawk architecture have been
designed, which are displayed in Fig. 2. A Tomahawk plat-
form consists of multiple heterogeneous tiles, peripherals, an
FPGA interface, and off-chip memory. All tiles contain inter-
facing logic to the associated NoC router. Apart from the
required NoC interface, tiles may include different kinds of
processing elements (standard or specialized instruction-set
architectures (ISAs) or hardwired accelerators).

Most of the tiles found in the first four Tomahawk
generations contain one or more processing elements and a
local scratchpad memory. In particular, Tomahawk4 [27]

includes in total six tiles which are connected by a hexago-
nal NoC: four data processing modules (DPM), one base-
band processing module (BBPM), and one application
control module (ACM), as depicted in Fig. 3. The DPMs
comprise a Tensilica Xtensa LX5 and an ARM Cortex-M4F
processor as well as 128 kB local memory, and a data trans-
fer unit (DTU). The Xtensa is built upon an ASIP approach
and accelerates basic database operators by instruction set
extensions (similar to [26]). Both cores share the same local
memory while only one core is active at a time. The DTU is
responsible for data transfers between the tiles and provides
isolation capabilities (more details in Section 3.2). The BBPM
is tailored to signal processing applications and integrates
an Xtensa LX5 as well as application-specific integrated
circuits (Sphere Detector (SD), Turbo Decoder (TD)) with
separate memories. The Tensilica 570T CPU, included in the
ACM, is a general-purpose core with full MMU and 32 kB
cache which is used as host processor. The FPGA interface
allows chip-to-chip interconnections and the LPDDR2 inter-
face provides access to an 128 MB SDRAM.

3.2 Uniform Access and Control
Heterogeneity allows, on the one hand, increasing energy
efficiency due to specialization. On the other hand, it creates
significant challenges for the hardware and software integra-
tion. A novel hardware mechanism is needed that provides a
unified access and protection of system resources, but does
not rely on specific features of the processing elements (e.g.,
user/kernel mode). This is similar to what a memory man-
agement unit (MMU) accomplishes in a traditional system.

Fig. 2. Chip photos of Tomahawk generations. (a) Tomahawk1 [24] (UMC 130 nm). (b) Tomahawk2 [25] (TSMC 65 nm). (c) Tomahawk3 [26] (GF
28 nm). (d) Tomahawk4 [27] (GF 28 nm).

Fig. 3. Block diagram of Tomahawk4 architecture.

Final edited form was published in "IEEE Transactions on Multi-Scale Computing Systems" 3 (4), S. 243-259. ISSN: 2332-7766
http://dx.doi.org/10.1109/TMSCS.2017.2771750

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

In the presence of heterogeneous tiles, this mechanism has to
be provided at the tile-system interface. In this way, one can
ensure that future heterogeneous tiles can be embedded
safely without tampering with the state of the system. The
unified access must be simple enough to not incur perfor-
mance penalties on running applications.

In Tomahawk, unified access control and isolation is pro-
vided by a Data Transfer Unit (DTU) [35] in every tile. This
peripheral represents a single access point to tile-external
resources, which yields a mechanism to provide isolation
at the NoC level. The DTU can be configured, e.g., by the
OS as discussed in Section 4, so that a functionality running
on a tile can communicate via message passing to a clearly
defined set of tiles. Message passing is the mechanism used
to implement remote system calls, which allows tiles not
capable of running an OS to access system services.

For memory access and message passing, the DTU
provides a set of endpoints. Each of these endpoints can be
configured to: (i) access a contiguous, byte-granular, tile-
external range of memory, (ii) receive messages into a ring
buffer in tile-internal memory, or (iii) send messages to a
receiving endpoint. Once their DTU is configured, tiles
can communicate and access external memory. Given the
distributed memory paradigm of the hardware, memory
coherency can be implemented through message passing as
a layer on top of the DTU. Furthermore, for dataflow appli-
cations the DTU can be used to directly implement channels
and by that lower the communication overhead on the
CPU. The DTU implementation in the Tomahawk4 occupies
an area of 0.063mm2 which is about 6 percent of a DPM tile.

4 THE M3 OS

In a heterogeneous setting, with general-purpose and
application-specific tiles like the Tomahawk, we cannot
expect all units to have the ISA and other architectural proper-
ties required to run full-fledgedOSs. Therefore,we designed a
novel OS architecture calledM3 [35], where the kernel runs on
dedicated tiles and remotely controls the applications running
on the remaining tiles. The M3 kernel is not entered via inter-
rupt or exception as traditional kernels. Instead, it interacts
with the applications viamessages. In spite of this, we still call
it “kernel” since, as with traditional kernels, itsmain responsi-
bility is to decidewhether an operation is allowed or not.Mes-
sage passing is supported and isolation is ensured by theDTU
described in Section 3.2. In this model, the task of the OS then
becomes to setup the processing elements and their interac-
tion structures using the endpoints of the DTUs. This design
removes all requirements on features of heterogeneous proc-
essing elements, with the sole exception that they can copy
data to a certain address to initiate a message or memory
transfer to another tile. We explain how M3 ensures isolation
in Section 4.1, give details of the software architecture in
Section 4.2 and closewith a discussion of the limitations of the
approach in Section 4.3.

4.1 M3 Overview
Asmentioned earlier,we useNoC-level isolation to provide iso-
lation even for tiles that are not able to run an OS kernel. It is
based on the DTU as the common interface of all tiles and
the differentiation between privileged and unprivileged tiles.
The key for isolation is that only privileged tiles can configure
the DTU’s endpoints to, e.g., create communication channels
for message passing. At boot, all tiles are privileged. Since the

M3 kernel deprivileges the application tiles, only the kernel
tiles can configure endpoints. Once an endpoint has been
configured, applications can use it directly for memory access
or communication, without involving any OS kernel. Who
is allowed to communicate with whom is controlled via capa-
bilities as discussed in Section 4.2.

There are also other approaches that target heterogeneous
systems such as Barrelfish [36], K2 [37], and Popcorn
Linux [38]. However, they assume that all cores can execute a
traditional kernel, requiring user-/kernel-mode separation
and MMUs. Approaches using software-based isolation such
as Helios [39], do not require an MMU, but are restricted to
units that execute software and limited to a certain set of pro-
gramming languages. Our DTU-based approach allowsM3 to
control any kind of tile, e.g., containing a general purpose
core, a hardware accelerator, or a reconfigurable circuit.

We illustrate how the communication via the DTU works
using a system call as example (see Fig. 4). On traditional
systems, system calls are issued by switching from user
mode into kernel mode. On M3, system calls are requested
by sending a message via the DTU to the corresponding ker-
nel tile. First, the application prepares the message in the
local memory (marked in orange in the figure) of Tile 1. The
application then instructs the DTU to use the pre-configured
send endpoint S in Tile 1 to send the message to the receive
endpoint R at the kernel’s DTU in Tile 2. In the third step,
the DTU streams the message over the NoC to the receiving
tile into a ring buffer of Tile 2, pointed by the receive end-
point. The DTU wakes up the kernel, which in turn will
check for new messages, and, in the final fifth step, process
the message in its local memory.

4.2 Software Architecture
M3 follows the microkernel-based approach [40], [41], [42],
where OS functionality is divided into a small kernel and
several services running on top of the kernel. The reason for
this design is not specifically enabling heterogeneity, but
its security and reliability advantages. In such microkernel-
based systems, the kernel enforces separation of processes
(applications and services) and provides some forms of com-
munication between them. To decide which processes are
allowed to interact with each other, the kernel uses capabili-
ties and enforces rules on how the capabilities can be created,
passed on, and otherwise manipulated by service and appli-
cation processes. A capability is thereby a pair of a reference
to a kernel object and permissions for the object. In classical
microkernel OSs, for example L4-based systems [41], the
enforcement of separation and capabilities relies on memory
management and user/kernel mode. Message passing
between processes, for example between an application and
a file service, requires a call to the microkernel. In contrast, in
DTU/M3-based systems, separation and capability enforce-
ment relies on the DTUs. Once a communication channel is

Fig. 4. Illustration of a system call via DTU.

Final edited form was published in "IEEE Transactions on Multi-Scale Computing Systems" 3 (4), S. 243-259. ISSN: 2332-7766
http://dx.doi.org/10.1109/TMSCS.2017.2771750

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

set up, i.e., the involved send and receive capabilities have
been mapped to endpoints in the sending and receiving
DTUs, exchanging messages no longer needs kernel interac-
tion. Thus, the DTU is responsible for enforcing the config-
ured constraints (e.g., a maximummessage size).

On top of capabilities, M3 adds POSIX-like abstractions
for, e.g., files and pipes. They free the programmer from
directly dealing with capabilities and also provide support
for legacy applications. However, if desired, applications
can also use capabilities directly. One example is Canoe,
which allows to run dataflow applications on M3, as will be
explained in more detail in Section 5.4. M3’s concepts allow
Canoe to run multiple, mutually distrusting dataflow appli-
cations simultaneously in an isolated fashion.

4.3 Discussion
The strict separation of application tiles and kernel tiles has
several benefits. Since resources are not shared (e.g., regis-
ters, caches, or translation lookaside buffers), registers do
not need to be saved on system calls and the potential for
cache misses after a system call is also reduced. With the
right programmingmodel, it is also easier to add tiles, poten-
tially with appropriate specializations, to a running applica-
tion (similar to invasive computing [32] or the mapping
variants discussed in Section 5). Finally, the kernels will not
compete with applications for specialized resources, as they
do not necessarily benefit from the same hardware features
(e.g., reconfigurable and application-specific circuits).

For more general systems, the DTU/M3 concept requires
several extensions. For example, for multiple applications to
share a tile, we have an extension to theM3 kernel that allows
multiplexing remote tiles. We have also designed an exten-
sion to support complex cores with fully integrated caches
and virtual memory (such as modern x86 cores) and to trans-
parently add caches and virtual memory to arbitrary units
such as accelerators. Finally, to scale to systems with larger
amount of tiles, we have an ongoing project to allowmultiple
instances of the M3 kernel, that synchronize their state. All
these extensions are however out of the scope of this paper.

5 DATAFLOW PROGRAMMING AND RUNTIMES

Having introduced the Tomahawk architecture and the M3

OS, we now focus on application programming and run-
time systems. Given the increased complexity of heteroge-
neous systems, we opt for an automatic approach instead
of resource-aware programming, where the programmer
is responsible for handling resource allocation and de-
allocation. An automatic approach builds on (i) hardware
cost models to enable heterogeneity-aware optimizations,
(ii) runtime systems that intelligently assign resources to
applications depending on the system state, and (iii) parallel
programming models with clear execution semantics that
allow to reason about parallel schedules at compile time.
To this end we employ dataflow programming languages
which cover a broad range of applications while still being

mostly analyzable. The analysis and information collected at
compile time is then exploited at run time to deploy the appli-
cation to the heterogeneous fabric in near-optimal way. Addi-
tionally, dataflow programming represents a good match to
the message-passing non-coherent memory architecture of
the system.

In this section we provide an overview of the dataflow
programming flow in Section 5.1, discuss hardware models
for automatic optimization in Section 5.2, explain the meth-
odology to find multiple static mappings in Section 5.3, and
describe how these mappings are deployed at run time by
the the Canoe runtime system in Section 5.4.

5.1 Compilation Overview
As mentioned above, we use a dataflow programming
model to represent applications. In this model, an applica-
tion is represented as a graph of communicating actors (sim-
ilar to task graphs). This explicit parallel representation
offers a better analyzability than, for example, programming
with threads (or abstractions thereof like OpenMP) [43]. The
clear separation between communication, state, and compu-
tation makes it easier to change the implementation of actors
without affecting the rest of the application. This, in turn,
enables deploying actors to adequate heterogeneous resour-
ces in a safe and transparent way. From the perspective of
the overall stack (recall Fig. 1), dataflow can be seen as one
of multiple intermediate abstractions. Higher-level models
or DSLs map to one of these abstractions, empowering the
compiler to reason about resource allocation in a similar
way as with dataflow (e.g., ordering data accesses for tensor
computations in CFD [22]).

An overview of the compilation flow is shown in Fig. 5.
Dataflow applications are written in the language “C for
Process Networks” (CPN) [44]. CPN allows to specify Kahn
Process Networks [45], a dynamic dataflow programming
model with a higher expressivity than static models like
synchronous dataflow [46]. Apart from the CPN code, the
compiler receives application constraints, application meta-
information and an abstract model of the target architecture.
Constraints specify, among other, set of resources the applica-
tion should run on or real time constraints (latency and
throughput). The architecture model and the meta-informa-
tion are further explained in Section 5.2. Due to the dynamic
application model, we use a profile-directed compilation,
i.e., we collect execution information to feed the optimization
process. The optimizer determines near-optimal mappings,
i.e., an assignment of actors to processors and data to memo-
ries. This is done iteratively to find multiple mappings with
different trade-offs (e.g., performance and resource utiliza-
tion). Mapping variants differ from each other in the amount
and type of resources they use. Which variant is actually
deployed is decided at run time by the Canoe runtime system.

The generated variants (right hand-side of Fig. 5) use
target-specific C code with calls to the Canoe application
programming interfaces (APIs) for resource allocation, task
management and communication. With this programming

Fig. 5. Compiler tool flow.

Final edited form was published in "IEEE Transactions on Multi-Scale Computing Systems" 3 (4), S. 243-259. ISSN: 2332-7766
http://dx.doi.org/10.1109/TMSCS.2017.2771750

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

flow we aim at relieving the programmer from dealing
with resource management herself. We believe that with
higher heterogeneity and core counts, resource allocation,
utilization, and resizing should be transparent and handled
by the software stack.

There are many frameworks for analysis, mapping, and
code generation for dataflow applications [47], [48], [49],
[50], [51]. We focus on generating variants that exploit
resource heterogeneity and on methods to allow these var-
iants to be transformed by the runtime system depending
on resource availability (see Section 5.3).

5.2 Compiler: Taming Heterogeneity
To support heterogeneity, an abstract model of the hardware
platform is used. The model describes the topology of the
hardware, including programmable PEs, hardware accelera-
tors, interconnect, and memories. PEs are described by the
instruction set, the number of resources (e.g., functional units,
pipelines, and number of registers), and latency tables [52].
Accelerators are annotated with a list of design parameters
(e.g., data representation or number of points of a fast Fourier
transform). Latency, area, and other cost functions are defined
as arbitrary functions of the parameters [53]. This high-level
modeling of hardware resources can be applied in the future
to components implementedwith emerging technologies.

To be able to use accelerators, if available, meta-
information is added. This information indicates the com-
piler that a given actor is actually an instance of a known
algorithmic kernel (e.g., filter or a decoder) [53]. Together
with the abstract platform model, the compiler can then
automatically generate code and use accelerators from a
functional specification of the application.

Communication is modeled with cost functions that indi-
cate how many cycles are required to transmit a given
amount of bytes. These cost models account for the position
of source and sink tiles as well as the selected path through
the hardware topology [54]. A cost model can be obtained
by measuring actual communication costs on the target plat-
form. For instance, the upper plot in Fig. 6 shows a cost
measurement for communicating data tokens on the Toma-
hawk via DRAM. Further, the plot illustrates the derivation
of a cost function using piecewise linear regression.

Theses analytical cost models have two applications
within the compiler. First, the optimizer bases its decisions
on the cost models in order to find a near-optimal mapping.
Second, a simulation module uses the cost models to simu-
late a complete execution of an application provided a given
variant. This allows the compiler to provide estimations of
the application’s performance. For instance, the middle plot
in Fig. 6 compares the estimated and measured costs for a
simple test application.2 The plots show two variants, one
that implements channels by placing data in the scratchpad
memories of producing PEs, and one that places data in the
scratchpad of consuming PEs.

To add better support for NoC-based platforms, we
extended the analytical communication model by an anno-
tation of shared resources (e.g., a link). During simulation,
a process first has to acquire all resources before it can initi-
ate a transfer. This allows for simulation of contention in
the network. The bottom plot in Fig. 6 shows performance
estimation results for the same application as in the middle

plot but in a congested network. The network congestion
was achieved by choosing a worst case mapping that maxi-
mizes the interference of independent communications on
the network links.

5.3 Mapping Variants and Symmetries
When generating code, we create different execution var-
iants. These variants have different execution properties,
different goals (e.g., energy-efficiency or execution time),
and different resource utilization. Concretely, a variant cor-
responds to a mapping of the application to a given set of
platform resources, including tasks to PEs, communication
to links, and data to memories. Based on the hardware mod-
els, each variant is annotated with the estimated perfor-
mance, energy usage, and resource utilization. These
annotated variants are given to the Canoe runtime system.
It can then select and adapt the variant that best suits the
system’s load and current objectives. Generating variants
and modifying them at run time is non-trivial for heteroge-
neous systems. To accomplish this, we worked on an
abstract characterization of symmetries in heterogeneous
systems that serves at exploring the space of variants at
compile time and transforming variants at run time. These
two aspects are further discussed in the following.

5.3.1 Obtaining Static Variants

To obtain each variant, we fix constraints on resources and set
the objectives of the variant. We then use compile-time heu-
ristics based on profiling information and the architecture
model [55], [56] to obtain a static mapping and its predicted
performance, which corresponds to the desired variant.

Fig. 6. Abstract models of Tomahawk for compiler optimizations.

2. The test application consists in an 8 stage pipeline transferring a
total of 6,000 tokens.

Final edited form was published in "IEEE Transactions on Multi-Scale Computing Systems" 3 (4), S. 243-259. ISSN: 2332-7766
http://dx.doi.org/10.1109/TMSCS.2017.2771750

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Intelligently exploring subsets of heterogeneous resources
for constraints is non-trivial3. For this purpose we exploit
symmetries in the target platform to reduce the search
space [57]. This is achieved by identifying that several map-
pings have the exact same properties, by virtue of symmetries
of the architecture and application. For example, consider the
mapping shown as the lower variant in Fig. 7, using three
tiles. To the right, four mappings that are equivalent to it are
illustrated: they all schedule the same processes in equivalent
tiles, and the communication patterns between said tiles are
also identical. Out of these equivalent mappings, only one
has to be evaluated to produce a variant during the compile-
time design-space exploration (see examples in Section 7.2).

5.3.2 Deploying Variants with Symmetries

Having produced several annotated mappings at compile
time, they need to be deployed at run time by the system. For
this, we use symmetries again. However, instead of removing
equivalent mappings, we generate them. The mapping rep-
resented by a variant can be transformed to an equivalent
mapping. This transformation is performance-preserving,
i.e., the mappings before and after the transformation have
the same expected performance [58]. Again, this is non-trivial
for heterogeneous systems.

By efficiently storing these transformations, the runtime
system can find any equivalent mappings for a given vari-
ant with negligible overhead [58]. When a new application
is executed, the system only needs to know the resources
it can allocate, and a variant to be used. Given a variant,
it uses the symmetries to find an equivalent mapping that
fits the current, dynamic resource constraints of the system.

5.4 The Canoe Runtime System
Canoe is a runtime environment for process networks.
It supports KPNs and an extension thereof that combines
KPNs with task graphs, i.e., it is possible to dynamically
spawn short-lived tasks in Canoe. From the point of view of
the stack, Canoe is an application on top ofM3, as illustrated
in Fig. 8.

The Canoe application model is compatible to that of
the dataflow programming model discussed in Section 5.1.
In Canoe, a dataflow application is a network composed
of three basic building blocks, namely tasks, channels and
blocks. A task specifies a computational processwith its com-
munication defined by a set of input and output ports. Each
port has a direction (inbound and outbound) on which the

data is read or written in a sequential fashion. Each task has
an associated set of binaries, one for each PE type. A channel
is a FIFO buffer connecting an outbound port of one task to
an inbound port of another task. Finally, a block is an immu-
table data object that can also be connected to task ports.
Blocks are intended to store intermediate results between the
execution of two tasks. To honor the immutability attribute, a
block can be connected to an outbound port exactly once.
After that it can be used on a arbitrary number of inbound
ports. In both cases the block will act as a data sink or source
that accepts or provides a number of bytes equal to the block
size. Canoe ensures that all inbound blocks are fully available
at task start and all outbound blocks are filled at task termina-
tion. This results in a dependency network that influences the
execution order of tasks connected via blocks.

At startup, Canoe runs its manager process on one PE allo-
cated byM3. From there the manager creates a working node
pool by requesting additional PEs from M3, forking to them,
and possibly later releasing them back to M3. Depending on
load and policy, the manager process can grow or shrink its
node pool at any time as far as M3 provides additional PEs.
The manager starts a Canoe worker instance on each PE. It
will be connected to the manager with two channels allowing
both sides to send requests to the other. These control chan-
nels are used to define tasks, channels, and blocks in the man-
ager aswell as instantiate these in the worker nodes. To create
a channel reaching from one worker to another, the PE’s DTU
must be configured using anM3 capability of an communica-
tion endpoint on the remote PE’s DTU. In order to establish a
connection, the manager requests a communication prepara-
tion from both workers, which results in a capability each. It
will then issue the kernel to transfer each capability to the
other worker. Only then it will request bothworkers to initial-
ize the connection. SinceM3 prohibits the configuration of the
local DTU by the PE itself, the worker will request the kernel
to program the DTU using the received capability finally cre-
ating the connection. Once established, neither the Canoe
manager nor the M3 kernel are involved on the communica-
tion anymore.

Fig. 7. Illustration of variants for a baseband processing application.

Fig. 8. The software stack. Applications may run directly on top of the
M3 operating system or, in case of dataflow applications, on top of the
Canoe runtime.

3. It is trivial in a homogeneous setup. It simply consists in itera
tively adding one more resource. A naive approach for heterogeneous
systems would explore the power set of the set of system resources.

Final edited form was published in "IEEE Transactions on Multi-Scale Computing Systems" 3 (4), S. 243-259. ISSN: 2332-7766
http://dx.doi.org/10.1109/TMSCS.2017.2771750

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

When creating an application for Canoe, the compiler pro-
duces a description of a network from the CPN specification
(see Section 5.1) by using the three basic building blocks,
including the FIFO sizes. The compiler also specifies one or
more mapping variants that assign each task to one PE.
Depending on the current system status, Canoe selects the
best suitedmapping by checking the compiler providedmap-
pings for resource conflicts. Once a conflict-free mapping
is found the deploy process is started. The system status
includes the PE pool and the already active mapping of other
networks that may block some PEs. Furthermore, it has to be
ensured that for each task a binary exists that matches the PE
type the task is supposed to run on. Parameter sets in the input
specification can be expressed as blocks that are connected to
tasks as additional input. A FIFO channel is implemented by
opening a communication using the DTU mechanism as
described above. Since aDTUcommunication has a fixedmes-
sage size but a FIFO does not, Canoe implements an interme-
diate layer that slices the FIFO data to DTU message size
blocks and reassembles themat the receiver side.

Apart from the actual functionality, the compiler gener-
ates code to start an M3 application. This code includes (i) a
connection to the Canoe runtime to add itself to the node
pool, (ii) commands to Canoe to create channels, blocks,
and tasks, and (iii) logic to fill blocks with its own local data
to pass it to the process network and request to collect out-
put data from sink blocks. The latter allows the application
to communicate with the process network. Note that the M3

application is itself in the Canoe node pool, which means
it can hold channels and block instances.

6 FORMAL METHODS

Asmentioned in Section 2, we address cross cutting concerns
with formal methods (see Fig. 1). Formal methods, e.g., for
verification, have been used for a long time in hardware
design to ensure correct-by-construction systems. We argue
that formal methods should play a fundamental role in ana-
lyzing and verifying not only the hardware, but also the
interplay with the software put in place to leverage the sys-
tem’s heterogeneity. Given global metrics such as resource
utilization, energy consumption, performance of applica-
tions, and trade-offs thereof, formal methods can, e.g., help
finding and improving existing heuristics for themapping of
application tasks to heterogeneous tiles. Such formal analysis
(and synthesis) demands for new formal methods for model-
ing and quantitative analysis. This includes automated
abstraction techniques and symbolic methods that enable
more efficient treatment of larger-scale systemmodels.

In Section 6.1 we will first provide a brief introduction to
probabilistic model checking (PMC), which is our method of
choice for a quantitative analysis of heterogeneous comput-
ing platforms. In Section 6.2 we give an overview on the
essential concepts for the modeling and quantitative analysis
and in particular the newmethods for a PMC-based trade-off
analysis. The section closes with a short remark on the com-
plexity of using PMC for (large-scale) heterogeneous com-
puting platforms.

6.1 Probabilistic Model Checking
Formal methods include techniques for the specification,
development, analysis and verification of hardware/soft-
ware systems, which complement the classical approach of
simulation-based (performance) analysis and testing. They

provide the foundations of a methodical system design and
contribute to the reliability, robustness, and performance of
systems (see, e.g., [59], [60], [61], [62]).

In this work, we focus on formal verification and (quantita-
tive) analysis using (probabilistic)model checking techniques.
Model checking is a formal algorithmic approach that uses
graph algorithms to exhaustively explore the state space of a
given model to verify/falsify a temporal logic property. The
major benefit ofmodel-based techniques such asmodel check-
ing is the ability to predict and analyze systems that are still in
their design phase, which is of great importance in the context
of future post-CMOS technology, especially when there are
no hardware realizations available yet. Model checking
allows for proving the functional correctness of hardware/
software systems with respect to a given temporal specifica-
tion. Probabilistic model checking (PMC) is a variant for the
verification and quantitative analysis of stochastic systems.

Our goal is to use PMC techniques to support the design
of the Orchestration stack in various ways: (i) modeling and
formal analysis of orchestration concepts developed at each
layer in isolation (e.g., automatic resource allocation used in
M3 and Canoe as in Section 4 and Section 5.4, or the viability
of the abstractions in Section 3.2), (ii) the interplay of con-
cepts on two or more layers (e.g., advice for the compiler
layer (see Section 5) with respect to OS and hardware specif-
ics), as well as (iii) the effects on the whole system when
combining orchestration methods across all layers of the
stack. This demands for modeling approaches and methods
enabling the PMC-based quantitative analysis of heteroge-
neous computing platforms. The next section provides an
overview on the fundamental concepts.

6.2 PMC for Heterogeneous Computing Platforms
PMC-based analysis requires abstract operationalmodels that
are compositional and capture the operational behavior of the
hardware and/or software components together with their
interplay. The compositional approach allows to easily derive
model variants, refinements, and abstractions of a system
model by exchanging specific components only. Component
variants exposing the sameoperational behavior, butwith dif-
ferent characteristics, e.g., in terms of performance, reliability,
and energy consumption can often be derived by simply
exchanging the characteristic parameters within the model.
For this part, we rely on an extension of our modeling frame-
work for tiled architectures as introduced in [63] (used to ana-
lyze the Tomahawk4 in Section 7.1). The model is based on a
feature-based modeling of probabilistic systems as presented
in [64] that enables a family-based analysis, i.e., the simul-
taneous analysis of amodel familywithmembers formultiple
different design variants. The underlying semantics are
Markovian models such asMarkov chains that feature proba-
bilistic branching only, and Markov decision processes
(MDPs) with additional nondeterministic choice. The nature
of probabilism can be used, e.g., to model stochastic assump-
tions on the environment, i.e., the application load, or to
abstract some complex system behavior such as caching into
stochastic distributions. Another use for probabilism is, e.g.,
to incorporate hardware failuremodels.

In Markov chains, the classical PMC-based analysis allows
to compute single objectives such as probabilities of temporal
properties. For instance, in a multicore we can compute the
probability to acquire a shared resource without waiting for
competing processes, or the likelihood of finishing a batch of

Final edited form was published in "IEEE Transactions on Multi-Scale Computing Systems" 3 (4), S. 243-259. ISSN: 2332-7766
http://dx.doi.org/10.1109/TMSCS.2017.2771750

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

tasks within given time bounds. Moreover, by providing
annotations for costs or rewards to the models, the classical
PMC analysis allows for computing expected values of the
respective random variables. Examples are the expected wait-
ing time to acquire the resource or the expected amount of
energy required to finish a batch of tasks. The nondeterminis-
tic choice among different actions in the states of an MDP is
used tomodel important decisions to bemade at run time. For
example, for the Tomahawk, this could be assigning a certain
task to a specific PE or deciding on the powering or scaling of
PEs. The classical PMC analysis allows to compute minimal
andmaximal probabilities over all resolutions of these nonde-
terministic choices. From the extremal resolutions we can
derive (nearly) optimal policies which can provide valuable
feedback for all layers of the Orchestration stack, e.g., for
resource management with respect to performance or energy
consumption. Here, the optimality refers to the single objec-
tivemeasure, i.e., probability or expectation.

Beyond classical PMC methods, we have developed new
methods enabling the computation of more complex multi-
objective criteria that combine multiple measures for costs
and/or utility in different ways. Among others, we have
developed new PMC algorithms for computing conditional
probabilities and expectations [65], [66], [67] as well as cost-
utility ratios and p-quantiles [68], [69], [70] in MDPs. The lat-
ter can, e.g., stand for the minimal time bound t such that
there is policy to schedule tasks in such a way that the exe-
cution of the tasks of a given list is completed within t time
units with probability at least p. Another example for a
p-quantile is the maximal utility value u such that there is a
policy to schedule tasks such that the achieved utility value is
at least uwhen having completed all tasks with probability at
least p. Such methods are essential for the evaluation of the
resource management policies as provided on the different
layers of the Orchestration stack, as they enable multi-objec-
tive and trade-off analysis [71], [72]. With these methods at
hand one can now optimize for the trade-off between contra-
dicting objective measures, e.g., energy and performance.
For instance, one can compute a policy that minimizes the
energy consumption while guaranteeing a certain through-
put with sufficient probability. In Section 7.1 we report on the
results of our analysis of the Tomahawk4 platform where we
apply classical PMCmethods aswell as our new algorithms.

6.3 Remark on Complexity
It is well-known that model checking techniques suffer from
the state-space explosion problem, as the size of the underly-
ing model grows exponentially in the number of compo-
nents. The general problem is finding the right level of
abstraction to capture just exactly the information needed for
the respective analysis. Except from expert knowledge that
is needed here, there are several sophisticated (semi-)auto-
mated abstraction techniques adapted for probabilistic sys-
tems such as partial-order reduction [73], [74], [75] and
symmetry reduction [76], [77]. Besides such abstraction tech-
niques, symbolic model representations and methods based
on variants of binary decision diagrams such as in [78], [79],
[80] can be used in parallel and yield the basis for compact
representations and efficient treatment of stochastic system
models. In [81] we present symbolic algorithms for comput-
ing quantiles in MDPs as well as general improvements to
the symbolic engine of the prominent probabilistic model
checker PRISM [79], [82] that potentially help treating

models of larger scale more efficiently. Beyond this, even
when considering very abstract models of larger systems,
e.g., when reasoning about a reduced number of PEs or hid-
ing many operational details of the underlying hardware,
we argue that our methods are still applicable and can pro-
vide guidelines for the design, e.g., by revealing trends and
tendencies that are expected to occur in real hardware.

7 EVALUATION

We now study the techniques in Sections 3, 4, 5, and 6 on the
Tomahawk testbed. We start by demonstrating the applica-
bility of the formal methods to the Tomahawk hardware
and particular layers of the stack. With increased system’s
heterogeneity, these methods are crucial to ensure correct-
by-construction systems. We then analyze the behavior of
the lower layers of the stack on a simulated tiled architec-
ture inspired by the Tomahawk architecture. We show how
the compiler-generated variants can be deployed on differ-
ent, heterogeneous resources by the Canoe runtime, and
how Canoe interacts with M3 to claim resources when mul-
tiple applications run on the system. Using a simulator
allows us to scale the system beyond what we currently can
afford to put in a hardware prototype and, in future, add
hardware based on emerging, not yet existing technologies.

7.1 PMC for Tomahawk
In this section we report on the main results gained in the
quantitative analysis of the Tomahawk4 (T4) platform using
probabilistic model checking (see Section 6.1). The general
goal of our analysis is to (i) provide feedback to the compiler
and the Canoe runtime system on how to use the T4 most
efficiently and (ii) provide guidelines for the design of sub-
sequent versions of the Tomahawk platform and wildly het-
erogeneous tiled architectures of the future in general.

In our modeling framework, a concrete instance is cre-
ated by providing a list of task types (e.g., general computa-
tion task, FFT task, etc.) and/or code variants (e.g., parallel
versus sequential), a list of tiles and their type (e.g., ARM,
or FFT accelerator) along with their operational modes (e.g.,
frequency), performance characteristics (per task type and
mode), and energy profiles. This framework can easily be
used for creating models for variants of the Tomahawk
(e.g., increasing the number of BBPM PEs) and including
tiles based on future hardware with properties substantially
different from those existing today.

7.1.1 PMC-Based Analysis of the Tomahawk4

For the analysis we consider the T4 platform with four
DPMs and one BBPM as detailed in Section 3 and in [27].
The PEs can be powered on and off and operated at two dif-
ferent frequencies (see Table 1a). We use a discrete-time
model and we fix one time step to represent 10.0 ms.

On the application side we consider a batch processing sce-
nario of two different task types (DPM- or BBPM-accelerated,
see Table 1b) and a fixed number of tasks to be finished per
task type. We assume that the execution time of each task
follows a geometric distribution with an expected mean of
150.0 ms. The actual execution time depends on the type
of the PE and the speed-step, i.e., the speedup provided by the
respective PE and the selected frequency. For instance, if a
DPM-accelerated task is scheduled on a fitting PE with
a speedup of 12 that runs at 400 MHz, the actual expected

Final edited form was published in "IEEE Transactions on Multi-Scale Computing Systems" 3 (4), S. 243-259. ISSN: 2332-7766
http://dx.doi.org/10.1109/TMSCS.2017.2771750

9

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

execution time is about 20.0ms. The usedperformance charac-
teristics in the Tables 1a and 1b are based on the values
measured on the T4.

The first goal (G1) of our analysis is to evaluate and quan-
tify the benefits of heterogeneity. For this we compare the T4
configuration with a homogeneous variant consisting of five
DPM and no BBPM. The second goal (G2) is to evaluate the
impact of using alternative code variants. We mimic this by
varying the ratio between the numbers of tasks of the different
types. This corresponds to having variability on the compiler
layer, which can for ten tasks decide to, e.g., generate only
DPM tasks and no BBPM task or five tasks of each type. In the
third setting addressing goal (G3), we study optimal strategies
for powering the PEs and choosing their frequencies. Results
obtained from the formal analysis in these three dimensions
support design decisions at the hardware level (see Section 3),
the compiler level (see Section 5 and Section 5.1) and the run-
time management level as realized in Canoe (see Section 5.4),
respectively.When comparing the variants in one of the above
settings (G1–G3), we leave the other choices nondeterminis-
tically open, e.g., when considering (G1), we compare the het-
erogeneous with the homogeneous hardware variant, on the
basis of the best possible resolution of the remaining nondeter-
ministic choices, in the respective variant. Hence, we do the
comparison in (G1), while considering a resource manage-
ment policy that is optimal for the respective variant. For the
evaluation of the variants we use the following quantitative
measures, each for time and energy. The first measure (M1) is
the minimal expected time/energy consumption for finishing
a certain number of tasks. Here, the minimum in among
all possible resolutions for the remaining nondeterministic
choices (e.g., on powering or scaling PEs) within the underly-
ing MDP structure, as we aim to minimize the time/energy
consumption. The second measure (M2) is a p-quantile: the
minimal time/energy budget to guarantee the completion of
all tasks with a maximal probability of at least p. Here, we use
the maximal probability that can be achieved among all possi-
ble resolutions of the remaining nondeterministic choices
(e.g., on assigning tasks to PEs), since we aim to maximize the
probability of finishing a given number of tasks. The reason
for considering the best resolution of the remaining nondeter-
minism in (M1) and (M2) is based on the assumption that this
resolution is still under our control (e.g., by providing sched-
uling or dynamic voltage/frequency scaling strategies) and
not in the hand of an uncontrollable environment.

7.1.2 Queries and Results

The full set of the following results was obtainedwithin a few
days of computation time andwith atmost 32GB ofmemory.

In the first scenario we address goal (G1), and show that
heterogeneity in hardware pays off, if the application can be
compiled to code that utilizes the respective strengths of the
different PE types. Table 2 a compares the results for mea-
sure (M1), the minimal expected energy consumption and
execution time to finish five tasks of each type for the het-
erogeneous T4 case and an hypothetical homogeneous case
with five DPMs and no BBPM. Fig. 9a depicts the results for
measure (M2), the p-quantiles, namely the minimal energy
and time budgets to finish ten tasks with a maximal proba-
bility of at least p. The heterogeneous configuration is both
faster and more energy efficient. By considering alternative
heterogeneous configurations of PEs featuring different
accelerated functions, one could for example find an advan-
tageous ratio of components for a certain application sce-
nario. These insights can either be used at design time
determining the concrete numbers within the architecture
or at run time deciding how many PEs of certain types
should be reserved for this application scenario.

In the second part of the analysis we focus on goal (G2).
For this we assume that the total number of tasks to be
finished is ten, for each of which the compiler can decide to
produce DPM- or BBPM-accelerated code. We are now inter-
ested in the best ratio between alternative code variants and
consider again measure (M1) (see Table 2b) and measure
(M2) (see Fig. 9b) for the comparison. Again, we measure for
the best possible way of using the PEs, i.e., considering the
minimal expected time/energy and maximum-probabilities
among all possible resolutions of nondeterministic choices.
Surprisingly, to have only DPMs is the best variant in terms
of minimal expected energy and, to a lesser extend, minimal
expected time. This results from their greater acceleration on
the corresponding PEs (see Table 1b). This result will be very
different in an even more heterogeneous setting with restric-
tions on the compatibility of task types and PEs. Hence, for a
given hardware configuration and application scenario the
results yield the basis for finding promising code variants,

TABLE 1
System Parameters for PMC

(a) Power consumption of PEs

load @100 MHz @400 MHz

idle 1.3 mW 8.8 mW
full 3.3 mW 25.5 mW

(b) Speedup for task types of PEs

PE DPM accelerated BBPM accelerated

DPM 12 1
BBPM 1 8

TABLE 2
Expected Energy and Time Consumption for Finishing a

Task Quota for Comparisons

(a) homogeneous versus heterogeneous

PEs minimal expected
#DPM #BBPM energy time

homogeneous 5 0 2.5 mJ 99.9 ms
heterogeneous 4 1 0.6 mJ 90.4 ms

(b) code variants

accelerated tasks minimal expected
DPM BBPM energy time

10 0 53.3 mJ 90.4 ms
8 2 56.8 mJ 90.4 ms
5 5 62.0 mJ 90.4 ms
2 8 67.2 mJ 91.0 ms
0 10 70.7 mJ 94.3 ms

(5) PE modes

strategy minimal expected
power speed energy time

optimal powersave 62.0 mJ 110.0 ms
optimal performance 281.0 mJ 90.4 ms
always on powersave 106.3 mJ 110.0 ms
always on performance 599.8 mJ 90.4 ms

Final edited form was published in "IEEE Transactions on Multi-Scale Computing Systems" 3 (4), S. 243-259. ISSN: 2332-7766
http://dx.doi.org/10.1109/TMSCS.2017.2771750

10

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

e.g., lookup tables could be used for helping the runtime sys-
tem to decide for code variants that are optimal with respect
to the measures (M1) and (M2) assuming the hardware is
used themost efficient way possible.

Finally, we focus on the combinations of heuristics for (1)
turning PEs on and off (either always on or no heuristic) and
(2) selecting their frequency mode (either power save, perfor-
mance, or no heuristic). The case where no heuristic is applied
means that all choices are left open. Additionally, Table 2c
confirms that it is the best strategy to turn PEs off if not needed
and to use the lowest frequency in order to assure maximal
power savings. Locking the frequency dominates the overall
energy consumption, no matter if PEs can be turned off. On
the other hand, minimal execution times can be expected if
the highest frequency is chosen. However, the relative differ-
ence in execution times between the strategies is quite small.
These observations carry over to the trade-off analysis as
shown in Fig. 9c. Interestingly, the performance heuristic is
less affected by the timebudgets than the powersave heuristic.

7.2 Running Software on Tomahawk
In this section we analyze the behavior of the lower layers of
the stack (recall Fig. 8). We first introduce the experimental
setup to then discuss results and give insight in the run
time overheads incurred by Canoe andM3.

7.2.1 Experimental Setup

Asmentioned above,we evaluate the proposed approach on a
system simulator thatmimics the Tomahawk architecture and

allows analyzing larger, heterogeneous systems. An overview
of the simulated platform is shown in Fig. 10. The simulator is
based on the gem5 simulation framework [83] extended by
a SystemC model of the Tomahawk NoC. To enable this co-
simulation,we use the SystemCbinding from [84].

The simulated platform includes gem5 models of the
ARM instruction set architecture (used in T4) in a bigLIT-
TLE configuration (to add more heterogeneity). The plat-
form consists of 25 tiles in a five-by-five mesh topology,
with 20 ARM tiles (12 big and 8 little). Apart from process-
ors, the system contains four hardware accelerators for fast
Fourier transformations (FFTs), typical in signal processing
applications, similar to the ones in the actual T4. Further,
there is one memory tile that connects to the off-chip RAM.
Each tile includes a model of the DTU as well as a network
interface that binds to the SystemC model of the Tomahawk
NoC. The processing and accelerator tiles also include a
scratchpad local memory. On this simulator, it is possible to
run full applications, theM3 OS, and the Canoe runtime.

For the analysis in this paper, we use a dataflow imple-
mentation of a stripped-down version of the Long-Term
Evolution (LTE) standard for mobile networks. The LTE-
like application benchmark (see left-hand side of Fig. 7) rep-
resents the baseband processing of an LTE frame at a cellu-
lar base station. It consists of applying an FFT transform on
data reaching the radio frontend and distributing chunks of
data to user-specific data processing pipelines. For illustra-
tion purposes, we include equalization and inverse FFTs for
each user. Additionally, we include a filesystem application
that runs directly on top ofM3, without using Canoe.

7.2.2 Single-Application Perspective

We first evaluate the execution of the LTE-like application
on the virtual platform. In order to generate code, we
require a mapping of the processes in the application to
hardware resources, which in turn requires a model of the
target architecture. Concretely, this model is given as an
XML description, and includes information about the PEs,
including clock frequencies and properties of the ISA, as
well as information like the interconnect types, bandwidth
and topology. Using a modified version of the commercial
SLX tool suite [85] we can generate code for different map-
ping variants, as described in Section 5.3.

Variant Evaluation. Fig. 11a shows four different mapping
variants to the virtual platform from Fig. 10. The first three
variants, big, little and mix use only big ARM cores, only

Fig. 9. Energy and time budgets to guarantee finishing the task quota
with a certain best-case probability.

Fig. 10. The virtual platform used for evaluation consisting of a NoC,
a memory tile, four FFT accelerators, 12 ARM big cores, and eight ARM
little cores.

Final edited form was published in "IEEE Transactions on Multi-Scale Computing Systems" 3 (4), S. 243-259. ISSN: 2332-7766
http://dx.doi.org/10.1109/TMSCS.2017.2771750

11

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

little ones, and both. The last mapping, accel, uses the FFT
accelerators as well as big cores. The execution times for the
LTE-like application with different mappings are also
shown in Fig. 11b. It is clear how leveraging heterogeneity
is very beneficial for this application, while it obviously uti-
lizes the limited resources of the system. Finally, Fig. 11c
also shows an execution trace for the mix mapping variant.
A similar trace for the big variant will be described in detail
in the following. We see how, by using this programming
flow, code can be generated transparently from the same
source program to target heterogeneous hardware, includ-
ing variants with different resource utilization and perfor-
mance properties.

Application Startup—Canoe and M3 Signaling. As men-
tioned in Section 5.4, both Canoe itself and the dataflow
application start as M3 applications. Canoe then creates a
worker pool from resources made available by M3. The LTE
application then opens a channel to the Canoe manager and
sets up the dataflow network. The communication between
the LTE application, the Canoe Manager and its workers is

done by M3 but does not require the interference of the ker-
nel. An actual chart of the setup process is displayed in
Fig. 12 in the bottom overlay. In the row labeled app the green
bars identify the intervals where the application registers
actual data to the manager, also marked data inject in the
example. With its knowledge about the worker pool and the
received network description, Canoe selects a mapping
(marked with the labelmapping in Fig. 12). In the row labeled
manager, we can identify the setup of application channels as
green bars at the bottom. As an example, one such channel
setup event is marked as comm setup in the figure. The system
calls to the M3 kernel needed to setup the channels from the
side of the workers and the manager are marked as thin red
bars in the figure. The time spent inM3 syscalls for setting up
a communication channel on manager’s side is 7 ms, which
represents 1 percent of the total communication setup time.
Table 3 lists this time, alongside the times of several other dif-
ferent events in the benchmark. Blue bars, like the ones con-
nected with an arrow labeled block transfer in the bottom
overlay of Fig. 12, represent the moment at which a transfer

Fig. 11. Execution of different mapping variants of the LTE-like application on a heterogeneous platform.

Fig. 12. Trace of simulator running LTE app using the big mapping variant. Bottom overlay: setup phase concerning application and manager core.
Highlighted is the mapping decision point (mapping), an interval of the app passing data to the manager (data inject), a setup interval for a inter
worker communication channel (comm setup), and an actual data transfer as a result of a data inject (block transfer). Top overlay: detailed view of
an in-KPN data transfer. Blue arrows: examples of in-KPN data transfers around circled communication hot spots.

Final edited form was published in "IEEE Transactions on Multi-Scale Computing Systems" 3 (4), S. 243-259. ISSN: 2332-7766
http://dx.doi.org/10.1109/TMSCS.2017.2771750

12

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

of a data block becomes active. Finally, workers start com-
puting, and their execution is represented with gray bars,
blocking reads with teal bars and blocking writes with cyan
bars. The actual transfer of data through the channel corre-
sponds to the time elapsed from the end of a write request
block (cyan) and the end of the corresponding read request
block (teal). The top overlay zooms in on a series of data
transfers between workers. The two red bars surround the
interval of the data being transferred, which takes 15 ms as
stated in Table 3. This transition time, however, is less than
0.3 percent of the computation time of a FFT or EQ kernel.
The Dataflow of the LTE application is shown with blue
arrows pointing from the origin of some data to its destina-
tion in the figure for three selected communication hotspots
markedwith blue circles.

7.2.3 Multiple-Application Perspective

In multi-application scenarios, it might not be possible to use
a mapping variant due to constraints on available resources.
As described in Section 5.3.2, we overcome this problem by
transforming a mapping into an equivalent one, which will
keep desired properties in a predictable fashion. This is cru-
cial in many application domains, e.g., real time systems. To
evaluate this, we first show that performance is stable among
equivalentmappings. For this, we set up a system simulation
with the LTE application, blocking some cores for execution
to force the system to use a different but equivalentmapping.

To verify isolation and time-predictability, we also run
simulations with a separate application running simulta-
neously to the LTE benchmark. To this end, we use a native
M3 application that produces a high load on the filesystem.
At setup time, the filesystem intensive application starts as
an M3 application. It uses the M3 API to connect to the file-
system and performs several operations in an endless loop.

In Table 4, we show the total run times of several simula-
tions, as well as the length of one iteration of the LTE
receiver (i.e., the inverse of the network’s throughput).
Additionally to the four mappings from Fig. 11, the mix
setup has been simulated in modified versions noisy and
equiv., which mean the addition of the filesystem intensive
application and the usage of a different albeit equivalent
mapping, respectively. Note that, as expected, neither the
introduction of an noisy environment nor the usage of an
equivalent mapping changes the run time.

The run time values listed in Table 4 represent the time
between the connection initiation of the application to
Canoe manager and the end of the second iteration of the
pipeline’s last block. It is therefore dependent on the startup
phase of the network. The iteration column, however,

describes the iteration length in a settled network, where
the throughput of a pipeline is always limited by its slowest
element. From Table 3 we learn that the most computation
time is spent in the EQ kernel, and thus, the iteration length
difference only depends on the placement of these kernels
on big or little cores. Unfortunately, this means that the
speed-up of 450 obtained when using the FFT accelerator
core cannot be fully exploited in this benchmark.

8 DISCUSSION

The previous sections described the cfaed Orchestration
hardware/software stack consisting of a tiled heteroge-
neous hardware platform with network-on-chip, a capabil-
ity-based operating system, as well as a runtime system and
a compiler for dataflow applications. As mentioned in the
introduction, we develop our stack as a research platform to
prepare to what we think will be the third inflection point
in computing, i.e., a shift towards “wildly heterogeneous”
systems composed of fundamentally new hardware tech-
nologies. Since it is currently still unclear which transistor
technology could replace CMOS and sustain the perfor-
mance growth of the past [1], [2], [86], in the medium term,
the main increase in power and efficiency of future electron-
ics will be driven mainly by two mutually stimulating tech-
nological directions: (i) processing: further parallelization
and specialization, including application-specific, reconfig-
urable, neuromorphic, and analog circuits, leading to more
heterogeneous hardware and (ii) data: non-volatile and
potentially heterogeneous memories, their tight (3D) inte-
gration with logic, integrated sensing, and novel intercon-
nects (e.g., photonics or wireless).

In this regard, partner projects within cfaed are develop-
ing reconfigurable transistors based on silicon nanowires
(SiNW) [87], [88] and carbon nanotubes (CNT) [89], [90] as
well as radio frequency electronics based on CNTs [91],
plasmonic waveguides for nanoscale optical communica-
tion [92], and sensors based on SiNWs [93].

Wildly heterogeneous systems resulting from the twomen-
tioned directions will pose both challenges and opportunities
to the hardware/software stack. We believe that the concepts
discussed in this paper are key principles to handle this kind
of heterogeneity. Still, several open questions remain. We dis-
cuss some of them in the following paragraphs.

Hardware architecture. Given a tight integration of hetero-
geneous PEs, memories, and sensors, potentially based
on emerging technologies (e.g., SiNW, CNT, and novel
memories), a tiled-based approach with a NoC and DTUs
as uniform hardware interfaces makes it easy to combine
and interface these units. However, the limits of the DTU

TABLE 3
Execution Times of Distinct Actions and

Kernels in the Simulation

action big LITTLE accelerator

app setup 12,752 ms
comm setup 664 ms
manager syscall 7 ms
worker syscall 3 ms
FIFO transition 15 ms
FFT kernel 4629 ms 7744 ms 10 ms
EQ kernel 15,040 ms 25,048 ms
Disp kernel �1 ms �2 ms

TABLE 4
Execution Times of Experimental Setups with
Different Mappings in the System Simulator

name iteration run time

big 15,254 ms 54,662 ms
little 25,313 ms 88,254 ms
mix 15,254 ms 57,838 ms
accel 15,276 ms 42,793 ms
mix (noisy) 15,254 ms 57,830 ms
mix (equiv.) 15,254 ms 58,065 ms

The first four correspond to Fig. 11b.

Final edited form was published in "IEEE Transactions on Multi-Scale Computing Systems" 3 (4), S. 243-259. ISSN: 2332-7766
http://dx.doi.org/10.1109/TMSCS.2017.2771750

13

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

concept with respect to a potential disruption of the mem-
ory hierarchy are currently unclear.

Memory. Novel, non-volatile memories, such as spin
transfer torque magnetic RAM (STT-MRAM) and resistive
RAM (RRAM) [2], will open a new space of optimizations
for many applications. We have seen how new memory
technologies can bring a positive impact both for perfor-
mance and energy efficiency [94]. Hybrid memory architec-
tures are also being proposed that combine multiple
different technologies [95], [96]. Given these systems, one
could place data items, depending on their usage patterns,
in the most efficient type of memory. Some of the novel
memory technologies are more amenable for a tight inte-
gration with logic, opening opportunities for near and in-
memory computing [97]. Given a high-level specification of
the application, compilers together with runtimes and flexi-
ble memory controllers can automate the process of data
mapping (and near memory operations). Additionally, all
these new memory architectures will certainly impact
the system software (OSs, paging, security, and others).
The concrete impact is still unclear though.

Programming. It is questionable whether today’s standards
like OpenCL and OpenMP are able to address wild hetero-
geneity and non-von-Neumann paradigms (e.g., neuromor-
phic, quantum, reconfigurable, or analog) beyond manual
offloading. Alternative models that provide a higher level of
abstraction, like dataflow programming and domain-specific
languages, could enable automatic utilization of heteroge-
neous resources. Therefore, we are working on abstractions
for computational fluid dynamics [20], [22] and particle-based
simulations [21].

Co-design. Given a huge design space, tools are needed
that help co-designing from the specific application problem
down to the hardware architecture and the materials. For
example, image processing implemented with coupled
oscillators provides higher efficiency compared to an appli-
cation-specific CMOS circuit [98]. As presented in Section 7,
we are using system-level simulation and probabilistic
model checking to evaluate design alternatives.

9 RELATED WORK

This section focuses on large initiatives that cover the hard-
ware/software stack comparable to our holistic approach.
Works relevant to the individual layers are discussed
throughout Sections 3, 4, 5, and 6.

The Aspire Lab at UC Berkeley emphasizes two areas:
hardware-specific optimizations hidden by pattern-specific
languages [99] and agile hardware development based on
the hardware construction language Chisel [100]. Chisel has
been applied to create cycle-accurate simulators and to
tape-out various research processors. OmpSs [101], [102] is
a task-based programming model developed at the Barce-
lona Supercomputing Center that extends and influences
the OpenMP standard. It has been applied to run applica-
tions on clusters, multicores, accelerators, and FPGAs. The
Teraflux project [103] investigates OmpSs-based dataflow
programming on a simulated massively parallel multicore
architecture. The German collaborative research center
InvasIC [32] introduces invasive computing as a new pro-
gramming paradigm for heterogeneous tiled architectures.
They use an FPGA implementation of their MPSoC architec-
ture as well as simulation to demonstrate their software
stack. In contrast to our automated approach, invasive

computing is resource-aware, i.e., computing resources
have to be allocated manually. Another project working on
heterogeneous tiled architectures is the Euretile EU proj-
ect [33]. They developed a complete stack consisting of a
programming paradigm based on process networks, a run-
time supporting fault management, a lightweight OS, and
a hardware platform with a custom torus network. While
they apply a dataflow approach similar to ours, we addi-
tionally investigate run-time adaptivity.

The above mentioned projects work with various hetero-
geneous CMOS-based hardware, either off-the-shelf or cus-
tom design. However, none of the projects consider systems
with post-CMOS hardware. The IEEE Rebooting Computing
Initiative[3], founded in 2012, proposes to rethink the con-
cept of computing over the whole hardware/software stack
and acts as a scientific platform for research on the CMOS
scaling challenge and emerging post-CMOS technologies.
Besides such important stimulating initiatives, few projects
are working on a concrete hardware/software stack based
on emerging technologies. The six US STARnet centers
mainly focus on developing new materials, technologies,
and hardware architectures, but less on the software stack [4].
N3XT, for example, is an approach within STARnet towards
a memory-centric architecture based on new technologies
including CNTFET, RRAM, and STT-MRAM [16], targeting
big data applications. Another novel memory-centric archi-
tecture called “The Machine” is developed by HPE. It serves
as a pre-commercial testbed for large shared non-volatile
memories accessed via photonic interconnects with a big
data centric software stack [104]. In a joint division, CEA-
Leti/List [105] develop hardware based on emerging tech-
nologies as well as software for future embedded systems,
but without a common integrated hardware/software stack.

10 CONCLUSION

In this paper we presented the design of a programming
stack for heterogeneous systems and evaluated a prototype
of it for a tiled CMOS heterogeneous multicore. We expect
the layer-wise mechanisms and the interfaces among the
layers to be applicable to future systems that integrate post-
CMOS components. More precisely, the paper described (i)
a simple hardware-level interfacing via message passing
that will make it possible to integrate new exotic compo-
nents; (ii) an OS architecture that leverages hardware sup-
port for message passing to implement isolation and makes
OS services available remotely to tiles that may not have a
conventional ISA; (iii) an application runtime that reserves
resources from the OS, and deploys and transforms a vari-
ant accordingly; and (iv) an automatic approach for data-
flow applications that uses abstract cost models of the
architecture to produce near-optimal application mapping
to resources. Furthermore, we developed novel formal
methods to provide the kind of quantitative analysis
required to reason about trade-offs and system interfaces
in such a heterogeneous setup. The evaluation served to
(i) demonstrate the potential of the formal methods for a
real multicore platform, (ii) measure the overhead of the
software layers on a virtual prototype, and (iii) show the
validity of the claims (isolation, performance-preserving
transformation and run-time adaptability).

In the future we will extend the simulator to integrate
models of components built with post-CMOS technologies,
allowing us to test the programming stack on wildly

Final edited form was published in "IEEE Transactions on Multi-Scale Computing Systems" 3 (4), S. 243-259. ISSN: 2332-7766
http://dx.doi.org/10.1109/TMSCS.2017.2771750

14

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

heterogeneous systems. We believe that the simulator and
the programming stack will allow technologists and system
architects to explore system-level aspects of new devices.
This requires more modeling formalisms for both hard-
ware (i.e., emerging technologies) and application models
(beyond dataflow models), at different levels (e.g., for auto-
matic compilation or formal analysis). This will eventually
contribute to narrowing down and structuring the current
landscape of alternative technologies, both within and out-
side cfaed. We are convinced that more such early initia-
tives are needed to prepare systems that can cope, to some
extent, with yet unknown technologies.

ACKNOWLEDGMENTS

This work is supported by the German Research Foundation
(DFG) and the Free State of Saxony through the cluster
of excellence “Center for Advancing Electronics Dresden”
(cfaed).

REFERENCES

[1] T. N. Theis and H. S. P. Wong, “The end of Moore’s Law: A new
beginning for information technology,” Comput. Sci. Eng., vol. 19,
no. 2, pp. 41 50, 2017.

[2] “More Moore,” White Paper, IEEE IRDS, 2016.
[3] T. M. Conte, et al., “Rebooting computing: The road ahead,”

Comput., vol. 50, no. 1, pp. 20 29, 2017.
[4] “STARnet Research,” Semiconductor Research Corporation.

[Online]. Available: https://www.src.org/program/starnet/,
Oct. 2017.

[5] D. Geer, “Chip makers turn to multicore processors,” Comput.,
vol. 38, no. 5, pp. 11 13, 2005.

[6] H. Esmaeilzadeh, et al., “Dark silicon and the end of multicore
scaling,” in Proc. Symp. Comput. Archit., 2011, pp. 365 376.

[7] J. D. Owens, et al., “A survey of general purpose computation on
graphics hardware,” Comput. Graph. Forum, vol. 26, pp. 80 113,
2007.

[8] R. Kumar, et al., “Single ISA heterogeneous multi core architec
tures: The potential for processor power reduction,” in Proc.
Symp. Microarchitecture, 2003, pp. 81 92.

[9] P. Greenhalgh, “big.LITTLE Technology: The Future of Mobile,”
ARM Limited, White Paper, 2013, p. 12, [Online]. https://www.
arm.com/files/pdf/big LITTLE Technology the Futue of
Mobile.pdf

[10] E. Biscondi, et al., “Maximizing multicore efficiency with naviga
tor runtime,” White Paper, Texas Instruments, 2012.

[11] M. Taylor, “A landscape of the new dark silicon design regime,”
IEEE Micro, vol. 33, no. 5, pp. 8 19, Sep./Oct. 2013.

[12] M. Ferdman, et al., “Toward dark silicon in servers,” IEEE Micro,
vol. 31, pp. 6 15, Jul./Aug. 2011.

[13] P. Kogge and J. Shalf, “Exascale computing trends: Adjusting to
the new normal for computer architecture,” Comput. Sci. Eng.,
vol. 15, no. 6, pp. 16 26, 2013.

[14] S. Borkar, “Designing reliable systems from unreliable compo
nents: The challenges of transistor variability and degradation,”
IEEE Micro, vol. 25, no. 6, pp. 10 16, Nov./Dec. 2005.

[15] L. Ceze, et al., “Arch2030: A Vision of Computer Architecture
Research over the Next 15 Years,” arXiv preprint arXiv:1612.03182,
2016.

[16] M. M. Sabry Aly, et al., “Energy efficient abundant data com
puting: The N3XT 1,000x,” Comput., vol. 48, no. 12, pp. 24 33,
2015.

[17] A. Hemani, et al., “Network on chip: An architecture for billion
transistor era,” in Proc. IEEE NorChip Conf., 2000, pp. 1 11.

[18] S. Gorlatch andM. Cole, “Parallel skeletons,” in Encyclopedia of Par
allel Computing. Berlin, Germany: Springer, 2011, pp. 1417 1422.

[19] S. Karol, “Well formed and scalable invasive software com
position,” Ph.D. dissertation, Technische Universitt Dresden,
Dresden, Germany, 2015.

[20] J. Mey, et al., “Using semantics aware composition and weaving
for multi variant progressive parallelization,” Procedia Comput.
Sci., vol. 80, pp. 1554 1565, 2016.

[21] S. Karol, et al., “A domain specific language and editor for paral
lel particle methods,” ArXiv e prints, https://arxiv.org/abs/
1704.00032, Sep. 2017.

[22] A. Susungi, et al., “Towards compositional and generative tensor
optimizations,” in Proc. Conf. Generative Program. Concepts Experi
ence, 2017, pp. 169 175.

[23] T. Karnagel, et al., “Adaptive work placement for query process
ing on heterogeneous computing resources,” in Proc. Conf. Very
Large Data Bases, 2017, pp. 733 744.

[24] T. Limberg, et al., “A heterogeneous MPSoC with hardware sup
ported dynamic task scheduling for software defined radio,” in
Proc. Des. Autom. Conf., 2009, pp. 97 98.

[25] B. Noethen, et al., “A 105GOPS 36 mm2 heterogeneous SDR
MPSoC with energy aware dynamic scheduling and iterative
detection decoding for 4G in 65nm CMOS,” in Proc. Solid State
Circuits Conf., 2014, pp. 188 189.

[26] S. Haas, et al., “An MPSoC for energy efficient database query
processing,” in Proc. Des. Autom. Conf., 2016, Art. no. 112.

[27] S. Haas, et al., “A heterogeneous SDRMPSoC in 28 nm CMOS for
low latency wireless applications,” in Proc. 54th Annu. Des.
Autom. Conf., 2017, Art. no. 47.

[28] C. Baier, et al., “Probabilistic model checking for energy utility
analysis,” inHorizons of the Mind. A Tribute to Prakash Panangaden.
Berlin, Germany: Springer, 2014, pp. 96 123.

[29] C. Ramey, “TILE Gx100 manycore processor: Acceleration inter
faces and architecture,” in Proc. Hot Chips Symp., 2011, pp. 1 21.

[30] B. D. de Dinechin, et al., “A clustered manycore processor archi
tecture for embedded and accelerated applications,” in Proc.
High Performance Extreme Comput. Conf., 2013, pp. 1 6.

[31] B. Bohnenstiehl, et al., “A 5.8 pJ/Op 115 billion ops/sec, to 1.78
trillion ops/sec 32 nm 1000 processor array,” in Proc. Symp. VLSI
Technol. Circuits, 2016, pp. 1 2.

[32] J. Teich, Ed., “Invasive computing,” (special issue) it Inform. Tech
nol., vol. 58, no. 6, pp. 263 265, 2014.

[33] P. S. Paolucci, et al., “Dynamic many process applications on
many tile embedded systems and HPC clusters: The EURETILE
programming environment and execution platforms,” J. Syst.
Archit., vol. 69, pp. 29 53, 2015.

[34] O. Arnold, et al., “Tomahawk: Parallelism and heterogeneity in
communications signal processing MPSoCs,” Trans. Embedded
Comput. Syst., vol. 13, no. 3s, pp. 107:1 107:24, 2014.

[35] N. Asmussen, et al., “M3: A hardware/operating system co
design to tame heterogeneous manycores,” in Proc. Conf. Archit.
Support Programm. Languages Operating Syst., 2016, pp. 189 203.

[36] A. Baumann, et al., “The multikernel: A new OS architecture for
scalable multicore systems,” in Proc. Symp. Operating Syst. Princi
ples, 2009, pp. 29 44.

[37] F. X. Lin, et al., “K2: A mobile operating system for heteroge
neous coherence domains,” in Proc. 19th Int. Conf. Archit. Support
Program. Languages Operating Syst., 2014, pp. 285 300.

[38] A. Barbalace, et al., “Popcorn: Bridging the programmability gap
in heterogeneous ISA platforms,” in Proc. Conf. Comput. Syst.,
2015, pp. 29:1 29:16.

[39] E. B. Nightingale, et al., “Helios: Heterogeneous multiprocessing
with satellite kernels,” in Proc. Symp. Operating Syst. Principles,
2009, pp. 221 234.

[40] P. B. Hansen, “The nucleus of a multiprogramming system,”
Commun. ACM, vol. 13, no. 4, pp. 238 241, 1970.

[41] J. Liedtke, “On m kernel construction,” in Proc. Symp. Operating
Syst. Principles, 1995, pp. 237 250.

[42] D. B. Golub, et al., “Microkernel operating system architecture
and Mach,” in Proc. USENIX Workshop Microkernels Other Kernel
Archit., 1992, pp. 11 30.

[43] E. A. Lee, “The problem with threads,” Comput., vol. 39, no. 5,
pp. 33 42, 2006.

[44] J. Castrillon, “Programming heterogeneous MPSoCs: Tool flows
to close the software productivity gap,” Ph.D. dissertation,
RWTHAachen University, Aachen, Germany, Apr. 2013.

[45] G. Kahn, “The semantics of a simple language for parallel pro
gramming,” in Proc. Inform. Process., 1974, pp. 471 475.

[46] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,”
Proc. IEEE, vol. 75, no. 9, pp. 1235 1245, Sep. 1987.

[47] C. Ptolemaeus, Ed., System Design, Modeling, and Simulation Using
Ptolemy II, Ptolemy.org, Berkeley, CA, 2014.

[48] L. Thiele, et al., “Mapping applications to tiled multiprocessor
embedded systems,” in Proc. Conf. Appl. Concurrency Syst. Des.,
2007, pp. 29 40.

Final edited form was published in "IEEE Transactions on Multi-Scale Computing Systems" 3 (4), S. 243-259. ISSN: 2332-7766
http://dx.doi.org/10.1109/TMSCS.2017.2771750

15

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

https://www.src.org/program/starnet/
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf

[49] R. Jordans, et al., “An automated flow to map throughput con
strained applications to a MPSoC,” in Proc. Bringing Theory Prac
tice: Predictability Performance Embedded Syst., 2011, pp. 47 58.

[50] J. Castrillon, et al., “Trends in embedded software synthesis,” in
Proc. Conf. Embedded Comput. Syst. Archit., Model. Simul., 2011,
pp. 347 354.

[51] R. Leupers, et al., “MAPS: A software development environment
for embedded multicore applications,” in Handbook of Hardware/
Software Codesign, S. Ha and J. Teich, Eds. Berlin, Germany:
Springer, 2017.

[52] J. F. Eusse, et al., “CoEx: A novel profiling based algorithm/
architecture co exploration for ASIP design,” ACM Trans. Recon
figurable Technol. Syst., vol. 8, no. 3, 2014, Art. no. 17.

[53] J. Castrillon, et al., “Component based waveform development:
The nucleus tool flow for efficient and portable software defined
radio,”Analog Integr Circ Sig Proc, vol. 69, no. 2, pp. 173 190, 2011.

[54] C. Menard, et al., “High level NoC model for MPSoC compilers,”
in Proc. Nordic Circuits Syst. Conf., 2016, pp. 1 6.

[55] J. Castrillon, et al., “Communication aware mapping of KPN
applications onto heterogeneous MPSoCs,” in Proc. DAC Des.
Autom. Conf., 2012, pp. 1262 1267.

[56] J. Castrillon, et al., “MAPS: Mapping concurrent dataflow appli
cations to heterogeneous MPSoCs,” Trans. Ind. Inform., vol. 9,
no. 1, pp. 527 545, 2013.

[57] A. Goens, et al., “Symmetry in software synthesis,” ACM Trans.
Archit. Code Op., vol. 14, no. 2, pp. 20:1 20:26, 2017.

[58] A. Goens, et al., “Tetris: A multi application run time system for
predictable execution of static mappings,” in Proc. Workshop
Softw. Compilers Embedded Syst., 2017, pp. 11 20.

[59] J. Sifakis, “System design automation: Challenges and limi
tations,” Proc. IEEE, vol. 103, no. 11, pp. 2093 2103, Nov. 2015.

[60] E. M. Clarke, et al., “Model checking: Back and forth between
hardware and software,” in Proc. Conf. Verified Softw. Theories
Tools Experiments, 2005, pp. 251 255.

[61] E. M. Clarke and Q. Wang, “25 years of model checking,” in Proc.
Conf. Perspectives Syst. Informat., 2014, pp. 26 40.

[62] O.Grumberg andH.Veith, Eds., 25Years ofModel Checking History,
Achievements, Perspectives. Berlin, Germany: Springer, 2008.

[63] C. Baier, et al., “Towards automated variant selection for hetero
geneous tiled architectures,” in Models, Algorithms, Logics and
Tools. Berlin, Germany: 2017, pp. 382 399.

[64] P. Chrszon, et al., “ProFeat: Feature oriented engineering for
family based probabilistic model checking,” Formal Aspects Com
put., pp. 1 31, 2017.

[65] C. Baier, et al., “Computing conditional probabilities in Markov
ian models efficiently,” in Proc. Conf. Tools Algorithms Construc
tion Anal. Syst., 2014, pp. 515 530.

[66] C. Baier, et al., “Maximizing the conditional expected reward for
reaching the goal,” in Proc. Conf. Tools Algorithms Construct. Anal.
Syst., 2017, pp. 269 285.

[67] S. Marcker, et al., “Computing conditional probabilities: Imple
mentation and evaluation,” in Proc. Conf. Softw. Eng. Formal
Methods, 2017, pp. 349 366.

[68] M. Ummels and C. Baier, “Computing quantiles in Markov
reward models,” in Proc. Conf. Foundations Softw. Sci. Comput.
Struct., 2013, pp. 353 368.

[69] C. Baier, et al., “Energy utility quantiles,” in Proc. NASA Formal
Methods Symp., 2014, pp. 28 299.

[70] D. Kr ahmann, et al., “Ratio and weight quantiles,” in Proc. Symp.
Math. Found. Comput. Sci., 2015, pp. 344 356.

[71] C. Baier, et al., “Probabilistic model checking and non standard
multi objective reasoning,” in Proc. Conf. Fund. Approaches Softw.
Eng., 2014, pp. 1 16.

[72] K. Etessami, et al., “Multi objective model checking of Markov
decision processes,” Log. Meth. Comput. Sci., vol. 4, no. 4,
pp. 1 21, 2008.

[73] C. Baier, et al., “Partial order reduction for probabilistic systems,”
in Proc. Conf. Quantitative Eval. SysTems, 2004, pp. 230 239.

[74] P. R. D’Argenio and N. Peter, “Partial order reduction on concur
rent probabilistic programs,” in Proc. Conf. Quantitative Eval. Sys
Tems., 2004, pp. 240 249.

[75] M. Gr oßer, et al., “On reduction criteria for probabilistic reward
models,” in Proc. Conf. Found. Softw. Technol. Theoretical Comput.
Sci., 2006, pp. 309 320.

[76] M. Kwiatkowska, et al., “Symmetry reduction for probabilistic
model checking,” in Proc. Conf. Comput. Aided Verification, 2006,
pp. 234 248.

[77] A. F. Donaldson and A. Miller, “Symmetry reduction for proba
bilistic model checking using generic representatives,” in Proc.
Symp. Autom. Technol. Verification Anal., 2006, pp. 9 23.

[78] C. Baier, et al., “Symbolic model checking for probabilistic
processes,” in Proc. Colloq. Automata Languages Program., 1997,
pp. 430 440.

[79] M. Z. Kwiatkowska, et al., “Probabilistic symbolic model check
ing with PRISM: A hybrid approach,” Int. J. Softw. Tools Technol.
Transfer, vol. 6, pp. 128 142, 2004.

[80] H. Hermanns, et al., “On the use of MTBDDs for performability
analysis and verification of stochastic systems,” J. Logic Algebraic
Program., vol. 56, pp. 23 67, 2003.

[81] J. Klein, et al., “Advances in probabilistic model checking with
PRISM: Variable reordering, quantiles and weak deterministic
Buchi automata,” J. Softw. Tools Technol. Transfer, pp. 1 16, 2017.

[82] M. Z. Kwiatkowska, et al., “PRISM 4.0: Verification of probabilis
tic real time systems,” in Proc. Conf. Comput. Aided Verification,
2011, pp. 585 591.

[83] N. Binkert, et al., “The gem5 simulator,” ACM SIGARCH Comput.
Archit. News, vol. 39, no. 2, pp. 1 7, 2011.

[84] C. Menard, et al., “System simulation with gem5 and SystemC:
The keystone for full interoperability,” in Proc. Conf. Embedded
Comput. Syst. Archit. Model. Simul., 2017, pp. 1 8.

[85] SLXMapper, Silexica GmbH, 2016. [Online]. Available: http://
www.silexica.com

[86] J. M. Shalf and R. Leland, “Computing beyond Moore’s Law,”
Comput., vol. 48, no. 12, pp. 14 23, 2015.

[87] W. M. Weber, et al., “Reconfigurable nanowire electronics a
review,” Solid State Electron., vol. 102, pp. 12 24, 2014.

[88] A. Heinzig, et al., “Dually active silicon nanowire transistors
and circuits with equal electron and hole transport,” Nano Lett.,
vol. 13, no. 9, pp. 4176 4181, 2013.

[89] M. Haferlach, et al., “Electrical characterization of emerging tran
sistor technologies: Issues and challenges,” IEEE Trans. Nanotech
nology, vol. 15, no. 4, pp. 619 626, Jul. 2016.

[90] S. Mothes, et al., “Toward linearity in schottky barrier CNTFETs,”
IEEE Trans. Nanotechnology, vol. 14, no. 2, pp. 372 378,Mar. 2015.

[91] M. Schr oter, et al., “Carbon nanotube FET technology for radio
frequency electronics: State of the art overview,” IEEE J. Electron.
Devices Soc., vol. 1, no. 1, pp. 9 20, Jan. 2013.

[92] F. N. Gr, et al., “Toward self assembled plasmonic devices: High
yield arrangement of gold nanoparticles on DNA origami
templates,” ACS Nano, vol. 10, no. 5, pp. 5374 5382, 2016.

[93] D. Karnaushenko, et al., “Light weight and flexible high
performance diagnostic platform,” Adv. Healthcare Materials,
vol. 4, no. 10, pp. 1517 1525, 2015.

[94] F. Hameed, et al., “Efficient STT RAM last level cache architec
ture to replace DRAM cache,” in Proc. Symp. Memory Syst., 2017,
pp. 141 151.

[95] J. C. Mogul, et al., “Operating system support for NVM+DRAM
hybrid main memory,” in Proc. 12th Conf. Hot Topics Operating
Syst., 2009, pp. 14 14.

[96] S. Onsori, et al., “An energy efficient heterogeneousmemory archi
tecture for future dark silicon embedded chip multiprocessors,”
IEEE Trans. Emerging Topics Comput., to be published, doi: 10.1109/
TETC.2016.2563323.

[97] S. Khoram, et al., “Challenges and opportunities: From near
memory computing to in memory computing,” in Proc. Symp.
Physical Des., 2017, pp. 43 46.

[98] N. Shukla, et al., “Pairwise coupled hybrid vanadium dioxide
MOSFET (HVFET) oscillators for non boolean associative
computing,” in Proc. IEEE Int. Electron Devices Meet., 2014,
pp. 28.7.1 28.7.4.

[99] B. Catanzaro, et al., “SEJITS: Getting productivity and perfor
mance with selective embedded JIT specialization,” University
of California, Berkeley, CA, USA, Tech. Rep. UCB/EECS 2010
23, 2010.

[100] Y. Lee, et al., “An agile approach to building RISC V microproc
essors,” IEEE Micro, vol. 36, no. 2, pp. 8 20, Mar./Apr. 2016.

[101] J. Bueno, et al., “Productive programming of GPU clusters with
OmpSs,” in Proc. Parallel Distr. Process. Symp., 2012, pp. 557 568.

[102] A. Filgueras, et al., “OmpSs@Zynq all programmable SoC
ecosystem,” in Proc. Symp. Field Programmable Gate Arrays, 2014,
pp. 137 146.

[103] R. Giorgi, et al., “Teraflux: Harnessing dataflow in next genera
tion teradevices,” Microprocessors Microsystems, vol. 38, no. 8,
pp. 976 990, 2014.

Final edited form was published in "IEEE Transactions on Multi-Scale Computing Systems" 3 (4), S. 243-259. ISSN: 2332-7766
http://dx.doi.org/10.1109/TMSCS.2017.2771750

16

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

http://www.silexica.com
http://www.silexica.com

[104] K. Keeton, “Memory driven computing,” in Proc. Conf. File
Storage Technol., 2017, https://www.usenix.org/sites/default/
files/conference/protected files/fast17 slides keeton.pdf

[105] M. Belleville, et al., Eds., Architecture and IC Design, Embedded
Software Annual Research Report 2015. Grenoble, France: CEA
Leti, 2016.

Jeronimo Castrillon, photograph and biography not available at the
time of publication.

Matthias Lieber, photograph and biography not available at the time of
publication.

Sascha Kluppelholz, photograph and biography not available at the
time of publication.

Marcus Volp, photograph and biography not available at the time of
publication.

Nils Asmussen, photograph and biography not available at the time of
publication.

Uwe Aßmann, photograph and biography not available at the time of
publication.

Franz Baader, photograph and biography not available at the time of
publication.

Christel Baier, photograph and biography not available at the time of
publication.

Gerhard Fettweis, photograph and biography not available at the time
of publication.

Jochen Frohlich, photograph and biography not available at the time of
publication.

Andrés Goens, photograph and biography not available at the time of
publication.

Sebastian Haas, photograph and biography not available at the time of
publication.

Dirk Habich, photograph and biography not available at the time of pub-
lication.

Hermann Hartig, photograph and biography not available at the time of
publication.

Mattis Hasler, photograph and biography not available at the time of
publication.

Immo Huismann, photograph and biography not available at the time of
publication.

Tomas Karnagel, photograph and biography not available at the time of
publication.

Sven Karol, photograph and biography not available at the time of publi-
cation.

Akash Kumar, photograph and biography not available at the time of
publication.

Wolfgang Lehner, photograph and biography not available at the time
of publication.

Linda Leuschner, photograph and biography not available at the time of
publication.

Siqi Ling, photograph and biography not available at the time of publica-
tion.

Steffen Marcker, photograph and biography not available at the time of
publication.

Christian Menard, photograph and biography not available at the time
of publication.

Johannes Mey, photograph and biography not available at the time of
publication.

Wolfgang Nagel, photograph and biography not available at the time of
publication.

Benedikt Nothen, photograph and biography not available at the time of
publication.

Rafael Penaloza, photograph and biography not available at the time of
publication.

Michael Raitza, photograph and biography not available at the time of
publication.

Jorg Stiller, photograph and biography not available at the time of publi-
cation.

Annett Ungethum, photograph and biography not available at the time
of publication.

Axel Voigt, photograph and biography not available at the time of publi-
cation.

Sascha Wunderlich, photograph and biography not available at the
time of publication.

Final edited form was published in "IEEE Transactions on Multi-Scale Computing Systems" 3 (4), S. 243-259. ISSN: 2332-7766
http://dx.doi.org/10.1109/TMSCS.2017.2771750

17

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	ADP7A94.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Jeronimo Castrillon, Matthias Lieber, Sascha Klüppelholz, Marcus Völp, Nils Asmussen, Uwe Aßmann, Franz Baader, Christel Baier, Gerhard Fettweis , Jochen Fröhlich, Andres Goens, Sebastian Haas, Dirk Habich, Hermann Härtig, Mattis Hasler, Immo Huismann...

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

