
Faculty of Computer Science Institute of System Architecture, Chair of Computer Networks

Streaming-Based Progressive
Enhancement of Websites for Slow
and Error-Prone Networks

Lucas Jacob Vogel

Dissertation

to achieve the academic degree

Doktoringenieur (Dr.-Ing.)

First referee

Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill

Second referee

Prof. Dr. Piotr Gaj

Advisor

Prof. Dr. Raimund Dachselt

Submitted on: February 15, 2023

Acknowledgements

Thanks to my supervisor Dr. Thomas Springer for his guidance and feedback and to Prof.
Alexander Schill for the opportunity to work on this topic. Also, thanks to my family
and friends, who supported me on this journey. Additionally, I want to thank 3m5. for
enabling me to contact one of their customers, Solarwatt, for providing their source code
without conditions to be evaluated as part of this work. Also, thanks to Prof. Gai for his
report. Special thanks go to Nicole Schneider for her valuable feedback and insight into the
technologies used to speed up web pages in real-world commercial projects.

Plagiatism check

This work was checked for plagiarism and self-plagiarism using Turnitin, provided by Scribbr
(report ID: oid:3471:137844881).

I

Contents

III

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Problem Discussion . 3

1.3 Problem Areas . 4

1.4 Goal of the Thesis . 4

1.5 Research Questions . 5

1.6 Conflict of Interest . 5

1.7 Structure of the Thesis . 5

2 Fundamentals 7

2.1 Render Pipeline and Render-Blocking . 9

2.2 HTML, CSS, and JavaScript . 9

2.2.1 HTML . 9

2.2.2 JavaScript . 10

2.2.3 CSS . 10

2.3 HTTP . 11

2.4 Browser Web APIs . 12

2.5 Existing Streaming Techniques . 12

2.5.1 Server Push . 12

2.5.2 Server-Sent Events . 13

2.5.3 WebSockets . 13

Protocol Structure . 13

Compatibility of Functions . 14

2.6 Server Techniques . 14

2.6.1 Server-side Optimizations and SSR . 14

2.6.2 Middleware/Proxy . 15

External Proxy . 15

Client-side Proxy . 16

2.7 Performance Marker . 16

2.7.1 First Contentful Paint . 16

2.7.2 Largest Contentful Paint . 16

2.7.3 DOM Interactive . 16

2.8 Initial Page Load . 17

2.8.1 DOM Content Loaded . 17

2.9 Existing Optimizations . 17

2.9.1 CSS Rendering . 17

2.9.2 JavaScript Code Splitting and Dead Code Elimination 18

2.9.3 Google Pagespeed . 18

3 Related Work 19

3.1 Research Method . 21

3.2 Related Work for CSS Optimization . 21

3.2.1 Frameworks . 21

CSS Rendering in React . 21

“Critical” Package for Node.JS . 23

3.2.2 Tailwind CSS . 23

3.2.3 Critical-Based Research Paper . 23

”Critical CSS Rules — Decreasing time to first render by inlining CSS
rules for over-the-fold elements” 23

”On the Impact of the Critical CSS Technique on the Performance and
Energy Consumption of Mobile browsers” 23

V

Contents

3.2.4 General CSS Optimizations . 24
”Eliminating Code Duplication in Cascading Style Sheets” 24

3.2.5 Summary of Related Work for CSS Optimizations 24
3.3 Related Work for JavaScript Optimization . 24

3.3.1 Bundling and Code Removal . 25
”Silo: Exploiting JavaScript and DOM Storage for Faster Page Loads” 25
Dead Code Elimination . 25

3.3.2 Frameworks . 25
Partytown . 25
Qwik . 26

3.3.3 Other Approaches . 26
”Speed index and critical path rendering performance for isomorphic

single page applications” . 26
Closure Compiler . 26

3.3.4 Summary of Related Work for JavaScript Optimization 27
3.4 Related Work for Streaming HTML . 27

3.4.1 Commercial Apps and Software . 27
3.4.2 Opera Mini . 27

Puffin OS . 28
3.4.3 Streaming Frameworks . 28

Turbo by Hotwire . 28
3.4.4 Marko . 28
3.4.5 Progressive Loading Techniques . 28

”Progressive loading” . 29
”Progressive page loading” . 29

3.4.6 Server-Side Pre-rendering . 29
”Initial server-side content rendering for client-script web pages” . . . 29
”Comparison between client-side and server-side rendering in the web-

development” . 29
”A Hybrid Web Rendering Framework on Cloud” 29

3.4.7 Prefetching and Dependency Tracking 30
”System and method for improving webpage loading speeds” 30
”Polaris: Faster Page Loads Using Fine-grained Dependency Tracking” 30
”VROOM: Accelerating the Mobile Web with Server-Aided Depen-

dency Resolution” . 30
3.4.8 General Approaches and Bundling . 30

”Progressive consolidation of web page resources” 31
”Improving a website’s first meaningful paint by optimizing render-

blocking resources - An experimental case study” 31
3.4.9 Summary of Related Work for Streaming HTML 31
3.4.10 Summary . 31

4 Analysis 33
4.1 Necessity of Analysis . 35
4.2 Related Analysis Approaches, Methods and Limitations 35

”Structural Profiling of Web Sites in the Wild” 35
Wappalyzer . 35
HTTP Archive . 36
Summary . 36

4.3 Overview Over All Structural Aspects Which Directly Impact Render Time . 36
4.4 Type of Measurements . 37

4.4.1 Measurement Summary . 39

VI

Contents

4.5 Crawling Limitations . 39
4.6 Test Setup . 39
4.7 Technical Implementation . 39
4.8 Results . 40

4.8.1 Desktop vs. Mobile . 44
4.8.2 Frameworks . 44

4.9 Optimization Potential . 45
4.10 Summary and Effects on the Concept . 45

5 Concept 47
5.1 Concept Idea . 49
5.2 Summary and Next Steps . 51
5.3 Concept for CSS Streaming and Rendering 52

Summary of Related CSS Optimization Techniques 52
5.3.1 Concept . 53

Server-Side CSS Processing . 53
Preparing CSS for Streaming . 54

5.3.2 Preparation Results of Essential . 55
5.3.3 Algorithm Summary . 55
5.3.4 Implementation . 56
5.3.5 Evaluation . 56

Test Setup . 56
Code Efficiency . 57
Code Size Change . 57
Visual Similarity . 57
Conversion Times . 58
Loading Times . 59

5.3.6 Limitations . 60
5.3.7 Conclusion . 61

5.4 Concept for Javascript Splitting or Delaying 62
Summary of Related Work . 62

5.4.1 Concept . 62
5.4.2 Waiter . 62

Call Syntax . 63
Detecting Resource Availability . 64
Implementation of Waiter . 64

5.4.3 AUTRATAC . 64
Implementing AUTRATAC . 67

5.4.4 Preparing for Streaming . 67
5.4.5 Evaluating Waiter and AUTRATAC . 67

AUTRATAC: Conversion Speed . 68
AUTRATAC Code Correctness . 68
Loading Speed . 68
Challenges and Limits . 70
Usability for Streaming . 71
Conclusion . 71

5.5 Concept for Streaming Html-Based Web Pages 72
Summary of Related Work . 72

5.5.1 Concept . 72
Splitting HTML Into Chunks . 72
HTML Package Types . 73
Delivery of the Pages . 74

VII

Contents

Current Streaming Options . 75
5.5.2 Conclusion . 76

6 Evaluation 77
6.1 Test Overview . 79
6.2 Test Metrics . 79

6.2.1 Code Coverage and Efficiency . 79
6.2.2 Loading Time Measurements . 79
6.2.3 User Satisfaction . 80

6.3 Automatic Performance Test . 80
6.3.1 Test Pages and Preparation . 80
6.3.2 Preparation Steps . 80
6.3.3 Loading Times . 81
6.3.4 Initial Page Size . 81
6.3.5 Results of First and Last Package . 81
6.3.6 Data Reduction . 81

First Contentful Paint . 83
6.3.7 Comparing WebSocket and SSE . 83
6.3.8 Conversion Time . 84
6.3.9 Validity of Results and Limitations . 84

6.4 Case Study Test . 85
6.4.1 Type of Measurements . 85
6.4.2 Test Setup . 85
6.4.3 Extend of Tests and JavaScript Functionality of the Page 86
6.4.4 Results of the Code Efficiency Tests 86
6.4.5 First Contentful Paint . 87
6.4.6 Data Above-the-Fold . 87
6.4.7 First Package and Overhead . 88
6.4.8 Last Package . 88
6.4.9 Interactive DOM . 90

6.5 User Satisfaction Tests . 91
6.5.1 Results of the User Evaluation . 91

6.6 Summary of the Evaluation Results . 91

7 Conclusion 93
7.1 Answers of the Research Questions . 95

7.1.1 RQ1: Are streamed web pages with a reordered loading schedule faster
than the traditionally loaded counterparts? 95

7.1.2 RQ2: Are current (streaming-) protocols sufficient for delivering such
web pages or are new protocols needed? 95

7.1.3 RQ3: To which extent can the new method be used for existing web
pages? . 95

7.1.4 RQ4: How much of this process can be automated in order to reduce
development effort? . 96

7.1.5 RQ5: To which extent is the new loading behavior accepted by users? 96
7.2 Discussion . 96

7.2.1 Reasons for Streaming a Web Page . 96
7.2.2 Advertisements . 97
7.2.3 Caching and CDNs . 97
7.2.4 Streaming Other Media . 97
7.2.5 Implications of Streaming Web Pages 97

7.3 Summary . 98

VIII

Contents

7.4 Future Work . 98

8 Appendix 101
8.1 CSS Processing Example . 103
8.2 JavaScript Preparation Example . 106
8.3 HTML Splitting Example . 109
8.4 Streaming HTML Example . 111

Bibliography 129

IX

1 Introduction

1

1.1 Motivation

1.1 Motivation

In this modern era, omnipresent access to information is often taken for granted. Through
services like the World Wide Web, seemingly all knowledge of modern humanity is obtain-
able by anyone with internet access. As a result of the ever-increasing expansion of web
services, users have become accustomed to short loading times, as it has an ever-increasing
importance in all areas of life. From online shopping to research, from media consumption to
work: users rely on fast, readily-available web applications. This is also reflected by user be-
havior. According to Nah et al., users expect web pages to load in about 2 seconds [Nah04].
Furthermore, 53% of users leave a web page if it is not loaded after 3 seconds [Kir16]. In
contrast, the average loading time of mobile web pages is 22 seconds (study by Google Re-
search and Webpagetest.org, a sample of 900.000 mobile pages, loaded via a 3G connection
[Laj19; Goo17]). As shown in reports of the HTTP Archive, improvements in network speed
are immediately consumed by larger web pages [HTT21a; 22s; HTT21b]. These limitations
have major economic consequences. According to Google, advertising revenue decreases by
20% when results take 0.9 seconds to load instead of 0.4 seconds [Lin06]. Amazon reports a
1% loss in sales if the results page takes 100ms longer to load [KL07; Opt08]. Accordingly,
it is in the interest of users as well as providers to load web pages faster. However, there are
multiple challenges that lead to slower loading times. Mainly, both sides cannot influence
the network speed of the connection between server and client. Still, what data is sent and
in which order is up to the page owner.

The technique described in this work proposes a new solution in which all code that
prevents the rendering of the page is streamed in chunks instead of being loaded as files.
Doing so continuously adds content to the page, making it possible to interact with the page
while it still loads. This is beneficial for both users and providers: the page loads faster,
even at slower network speeds, which results in fewer users leaving a page and, thus, higher
user satisfaction as well as revenue for the website providers. Furthermore, this technique
can be integrated into existing solutions without rewriting the entire code-base.

1.2 Problem Discussion

Currently, a trend is visible with HTTP. In the first generation of the web built with
HTTP/1.0, every request required a TCP Handshake. This caused multiple issues nega-
tively impacting loading speed, as detailed in the performance analysis of the W3C, which
concluded that ”HTTP/1.0 interacts badly with TCP” [97]. Therefore, developers used,
among other things, resource bundling as a way to optimize loading speed. With bundling,
multiple resources are combined into one file. As a result, only one handshake is needed, and
the impact caused by TCP slow start is reduced due to a larger file size [97; 22aq]. However,
the issue of requiring a new TCP connection for every request was addressed with HTTP/2.
There, multiplexing is introduced, which allows for transferring different files, and file types
over one stream [19a; 22al]. Furthermore, it allowed for stream prioritization, giving the
opportunity to load more important elements first, and less important elements later [19a].
This represents a contradiction to HTTP/1.0, as bundling does not represent a performance
benefit anymore. As Erwin Hofman, a web performance expert, explained: ”Bundling is an
anti-pattern in HTTP/2 [...] In HTTP/2, this behaviour will end up impacting the download-
time of other resources as well, because of the way HTTP/2 works.” [22aq]. He added, ”Even
better, try to keep framework, library and add-on resources codesplitted” [22aq]. Splitting
is, therefore, a better approach for optimizing resources when using HTTP/2, as it allows
prioritizing the streaming of code sections necessary to display the initial page and delay
everything else. This trend towards using streams is further reinforced with HTTP/3, as it
is built on top of QUIC to provide reliable streams directly on top of UDP [22am]. There are

3

1 Introduction

also other factors that influenced the move toward implementing a more significant portion
of the network stack. However, a clear trend is visible: streams have become a central aspect
of how web pages are transferred and will be in the future as well. While this change will lead
to new improvements in how browsers and servers communicate, modern front-ends are still
made on a file-by-file basis, for example React.js, Angular or Vue [22ai; 22g; 22av]. When a
user requests a web page, all required files are transmitted via streams and combined back
to files on the client side. While the system works, it does not utilize the full potential of
the streams, as in its current state, progress is made only when the whole file is transferred
[19b]. For example, if a user experiences a network timeout due to a slow-loading web page,
the resulting page is not shown due to incomplete files, even if all necessary code is loaded.

The techniques presented in this work build on top of both trends: users expect to access
ever-faster web pages with ever-increasing complexity while the web is heading towards a
streaming-based delivery. By delivering the whole web page via a stream, loading time
improvements can be made. However, this approach leads to further challenges on how to
split the main resource types (HTML, JavaScript and CSS) into streams. Therefore, new
techniques for all three elements are presented as well.

1.3 Problem Areas

The main challenges arise from the concept of stream-based delivery itself. Streaming an
entire web page is a high-level goal, which cannot directly benefit from (and be built on top
of) existing frameworks, as they do not exist. Therefore, the main problem areas are diverse:

1. Assessing the remaining improvement potential of modern web pages

2. Building a backward-compatible streaming approach for delivering HTML

3. Split resources necessary for displaying the page

a) Splitting CSS: Rendering CSS and sending it as-needed

b) Splitting or delaying JavaScript without breaking functionality

c) Splitting the final HTML with in-lined code

4. Create a course of action for including said techniques into a build workflow, which
separates actions required to take by the developer and fully automatic optimizations

Especially the integration of the developed techniques is necessary to ensure that the devel-
oped methods are applicable in real-world scenarios.

1.4 Goal of the Thesis

The main goal of this thesis is to research the performance impact of modified stream-based
loading behavior of web pages. More specifically, this thesis provides a set of tools that
allow web pages to be streamed instead of loading as a set of render-blocking files. For this
change, multiple sub-steps are required. First, a large-scale analysis is necessary to evaluate
the improvement potential and state of the art of current web pages. This itself brings
significant insight into the current state of the web. Next, based on the analysis results, a
concept will be created that targets the highest performance possible, also based on current
trends of the HTTP protocol. Furthermore, the goal is to create a backward-compatible
approach, which is also easy to integrate by developers with low manual effort. Lastly,
the evaluation will include code coverage measurements as well as loading speed and user
satisfaction tests, with the goal of testing and determining the scale of possible improvements.

4

1.5 Research Questions

1.5 Research Questions

The following research questions emerge based on the problem description:

RQ1: Are streamed web pages with a reordered loading schedule faster than the traditionally
loaded counterparts?
This is the most important question, as the technique needs to present significant loading
speed improvements to be viable.
RQ2: Are current (streaming-) protocols sufficient for delivering such web pages, or are new
protocols needed?
Streaming web pages does not fit directly into the file-based HTTP approach. However,
modern Streaming options like WebSockets and SSE exist, which both need to be evaluated
over their capabilities for delivering a web page’s content.
RQ3: To which extent can the new method be used for existing web pages?
For any modification of this scale, backward compatibility or at least compatibility without
changing client-side software must be possible. Otherwise, adaptation would not be feasible.
RQ4: How much of this process can be automated in order to reduce development effort?
When developing a framework that integrates deeply into multiple aspects of web develop-
ment, the effort for developers to use said tool has to be minimal.
RQ5: To which extent is the new loading behavior accepted by users?
The developed technique can only be successfully used in real-world applications if most
users accept a modified loading behavior.

1.6 Conflict of Interest

During the work on this thesis, the author worked a part-time job for the software develop-
ment company ”3m5. Media GmbH”. During this time, both this thesis and work stayed
completely separate, with one exception. For the final evaluation test, ”3m5.” provided the
code base of ”solarenergie.de” with the explicit permission of the customer, ”Solarwatt.” For
this, no extra compensation in any form was provided. It was also not bound to any condi-
tion. The code base was only provided ”as-is.” This allowed testing the software developed
as part of this work on a real-world web page.

1.7 Structure of the Thesis

First, the fundamentals of web technology relevant to loading performance are described in
chapter 2. These include explaining how web pages are built and how they interact with each
other when loading a website. Furthermore, it contains detailed descriptions and discussions
about the most important performance markers used to evaluate web page performance.
This is followed by the related work of all significant concept components in chapter 3.
These include research papers and popular open-source or industry technologies, focusing
on optimizing HTML, CSS, and JavaScript for a faster loading time and streaming web
pages. Next, a large-scale analysis is presented in chapter 4. This is required, as no existing
large-scale data set includes freely accessible and sufficient code usage information until
render and the render-blocking property of modern web pages. Only with this information
can a viable concept be built, as the problem scale is currently unknown. The concept
in chapter 5 is then based on said results. This chapter in itself is split into three separate
parts: First, a concept for optimizing and splitting CSS is described in section 5.3, developing
the Essential framework. Then, the same optimizing and splitting are conceptualized in
section 5.4 for JavaScript, presenting Waiter and AUTRATAC, which allow for more flexible
code splitting. Lastly, a combined concept of Essential, Waiter, and AUTRATAC is created

5

1 Introduction

in section 5.5, which also includes a splitting technique for HTML and conceptualizes the
backward-compatible streaming method. Afterward, the concept is evaluated in chapter 6.
There, the code efficiency until render is tested, as well as a case study of a real-world code
base. The user satisfaction of the modified loading behavior is also tested in this chapter.
Finally, the conclusion is described in chapter 7, summarizing all findings.

6

2 Fundamentals

7

2.1 Render Pipeline and Render-Blocking

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>page title</title>

5 <!-- head content -->

6 </head>

7 <body>

8 <!-- body content -->

9 </body>

10 </html>

Listing 1: Small example of the structure of a valid HTML file

In order to discuss existing approaches that speed up the loading times of websites, multiple
concepts have to be explained first. These include the basics of web pages, web data transfer,
and different modification areas of the delivered code. The described terms are also necessary
for the following concept.

2.1 Render Pipeline and Render-Blocking

When a web page is loaded, the browser first requests the main HTML file. Multiple depen-
dencies can be declared inside this file, like external CSS, JavaScript, or font files. Especially
CSS and JavaScript will be loaded in a render-blocking way by default, which means stopping
the main HTML file’s parsing process and loading and parsing the requested render-blocking
resource. Processing all render-critical files is called the critical rendering path, and opti-
mizing this process is one of the goals of modern web development [22i].

2.2 HTML, CSS, and JavaScript

The basis of all modern web pages consists of HTML, CSS, and JavaScript. All three
components interact with each other, allowing developers to build modern web pages and
web applications. Therefore, all three have to be considered separately.

2.2.1 HTML

The Hypertext Markup Language (HTML for short) is a text-based markup language that
defines the base of all web pages today [w3o19]. Listing 1 shows what a minimal web
page structure looks like. A valid HTML page starts with a Document Type Declaration
(DOCTYPE), followed by the main <html> tag. Inside, two standard tags can be seen, the
<head> and <body>-tags. Both serve different functions. Mainly, the head is used for meta
information and linking necessary resources, like setting the page’s title or linking CSS files.
Valid ”tags” and ”text” contained in the body are (by default) visible if the file is opened in
a browser. Specific tags are only valid in the context of other tags. For example, using the
<title>My title</title>-element in the head will set the page’s title. When the same
element is used in the body, it might be ignored [dev22]. However, modern browsers might
differ. It is possible that certain elements will still work, even though they are present in
the context of the wrong parent tag. For example, setting the title in the body will still set
the page title (tested in Chrome 97 and Firefox 96). As a result, more head-elements (like
linking CSS-files) are now ”body-ok” by the specification [wha22]. Therefore style files can
also be linked in the body, possibly shifting the declaration and loading ”up front” to a later
point. It has to be noted that CSS files can be added in the head at a later point by using

9

2 Fundamentals

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <script>

5 //in-file script block

6 function clickFunction(){

7 console.log("function 'a' called")

8 }

9 </script>

10 </head>

11 <body>

12 <!-- inline - JavaScript call: -->

13 <button onclick="clickFunction()">Click</button>

14

15 <!-- external - JavaScript file: -->

16 <script type="text/javascript" src="./externalFile.js"></script>

17 </body>

18 </html>

Listing 2: Different ways to incorporate JavaScript into a HTML-file

JavaScript. However, using this new flexibility is a necessary building block for the CSS
processor and the HTML streaming described in this work.

2.2.2 JavaScript

JavaScript, or JS for short, is one of the main building blocks of the modern web and is used
by nearly 98% of all web pages [w3t22]. It allows web pages to incorporate dynamic elements
and enables additional functionality outside the provided HTML5 elements. JavaScript can
be embedded inline, in-page script blocks, or as external files, as visible in Listing 2.
Parsing inline code and in-file JavaScript blocks is strictly render-blocking. This is also

true for external JavaScript files per default, but can be changed by additional attributes
like async and defer, as can be seen in figure 2.1 [Sop22]. The issue with async and defer
scripts is the possibility of the code missing listeners to the completion of the DOM or not
being available if other JavaScript functions depend on the availability of the included code.
Therefore it is necessary to modify the included code in a way that makes it robust for
being loaded asynchronously. This presents a challenge to developers, as they also need to
improve the time until all relevant elements are shown on a page, which might depend on the
execution of certain JavaScript functions. As optimizing JavaScript and making it robust
for asynchronous loading is a significant area of optimization, the async and defer loading
methods will be a central point in the techniques developed in this work.

2.2.3 CSS

CSS is a language that describes styling information for markup-language-based documents
like HTML. It is therefore considered one of the core technologies of the modern web [22w].
With CSS, the content and layout of a page are separated. Other than JavaScript, CSS
can technically be parsed and applied at every stage of the rendering process, as there
are no external factors like ”listeners” which influence the behavior of CSS without using
JavaScript. The only factor is the order in which the CSS files are loaded if the styling of
elements is overridden. However, there is no native or easy universal way of delaying the
loading and parsing of external CSS without JavaScript (excluding media attributes, which
are not universal).

10

2.3 HTTP

DOM-rendering Fetching
JavaScript

Parsing & Executing
JavaScript DOM-rendering

DOM-rendering

Fetching
JavaScript

Parsing & Executing
JavaScript DOM-rendering

DOM-rendering

Fetching
JavaScript

Parsing & Executing
JavaScript

default - render blocking

async

defer

Figure 2.1: Different loading methods of JavaScript are compared and displayed on the time
axis. It is shown that async and defer can improve loading speeds.

One factor is the movement created by applying CSS after the first render, called Cumu-
lative Layout Shift (CLS). While loading a page, layout shift is generally seen as unfavorable
behavior, as it might degrade the user experience [22l]. The straightforward solution is to
load all necessary CSS before rendering. CSS can be inserted in a page in different ways,
similar to JavaScript, as shown in Listing 2. All shown methods are render-blocking. Opti-
mizing the amount of CSS needed universally is, therefore, one of the major research areas
in this work.

2.3 HTTP

HTTP is a stateless, generic protocol used for data transmission in networks. It is mainly
used to transfer web pages, making it one of the foundations of the modern Internet [Fie99].
HTTP is under constant development, and the current version is HTTP/3. One of the main
problems with HTTP/1 is that a new TCP handshake must be performed for each resource.
This has been solved with HTTP/2 [BPT15b]. Since then, transmitting different requests
over a single TCP connection has been possible. This is done via streams, which are an
essential part of HTTP/2. The multiplexing capability also allows for asynchronous data
transfer. Figure 2.2 shows how this can shorten the request times of resources. However,
HTTP/2 still has multiple shortcomings. Mainly, as HTTP/2 is based on TCP, underlying
TCP blocking problems cannot be resolved by the protocol itself. Therefore, the multi-
plexing functionality is impacted at slow and lossy connections if TCP packets are lost or
delayed [sec21]. Therefore, HTTP/3 is based on QUIC, which is only based on UDP and
replaces TCP and TLS. As a result, a more significant portion of the protocol stack can be
controlled without needing updated infrastructure and kernels, which transport and process
TCP protocol packages. With this optimization, it is possible that the native multiplexing
functionality of HTTP/3 only halts individual streams if package loss occurs, which will im-
prove loading times for slow network conditions. However, this does not fix the fundamental
problem with render-blocking and file-based resources. When content is loaded from other
servers, a handshake must still be performed for each server. Thus, the problem regarding
reducing HTTP requests with the associated handshakes is not sufficiently solved. Neverthe-
less, HTTP forms the basis of the transmission of web pages in browsers and is, therefore,
unavoidable.

11

2 Fundamentals

Figure 2.2: Comparison of data transmission via TCP with HTTP/1 and HTTP/2. Image
Source: [Pol19]

2.4 Browser Web APIs

APIs of a browser provide various interfaces to the host system, the DOM, and functions
that can be used in connection with a server. This browser-side interface is standardized by
the W3C [W3C19]. Access to these interfaces is provided by the individual browser to the
JavaScript of a web page. For example, the device’s position, battery status, or WebSocket
API can be accessed. Browser APIs provide extra functionality that can be used on a client
by exposing certain System APIs to a web page.

2.5 Existing Streaming Techniques

Various methods exist to stream data from a server to a browser, with varying browser
support and flexibility. The most important techniques are described next, focusing on
browser support. Methods with better browser support will be preferred, as it improves
backward compatibility and enables real-world deployment.

2.5.1 Server Push

Server-Push works by providing the MIME-type ”multipart/x-mixed-replace.” This is then
interpreted by the browser as a file that is updated repeatedly every time the server sends
a new version. It can be used to stream a web page, as techniques exist to persist data
already sent to the client, for example, by using local storage. However, the most significant
disadvantage is the lack of browser support, as especially Chrome only supports server push
partially [22b].

12

2.5 Existing Streaming Techniques

2.5.2 Server-Sent Events

In contrast to Server Push, Server-Sent Events (SSE) are supported in a wide range of
browsers [22an]. Furthermore, the required functionality for SSE (the EventSource interface)
can be re-added to outdated browsers via Polyfill [Mod22]. According to the data provided
by CanIUse, the main browser which requires a Polyfill is Internet Explorer. However, this
browser is now deprecated, leaving only Opera Mini without direct support. The Opera
Mini browser provides its own server-side optimizations, which is why the lack of support
can be overlooked due to existing alternatives. However, SSEs have a limit of a maximum
of 6 simultaneous connections. They are limited by browsers (Firefox and Chrome). Even
though this is a known bug, it will not be fixed [22c; 22d]. Generally, this would not be
an issue. However, loading more pages or resources at once is still possible, leaving an edge
case. If more pages are loaded at the same time, starting at the seventh page, users would
only see a white page.

2.5.3 WebSockets

Based on HTTP, WebSockets can be used by means of an upgrade header [KL00]. After
the upgrade, these enable bidirectional, full duplex communication between client and server
with the lowest possible overhead [KL00]. No other interface allows this, and is provided as
a Browser API.

Protocol Structure

The protocol consists of two parts: Handshake and data transfer [KL00]. The handshake is
initiated by the client, which transfers the following data (source: [MF11]):

GET /chat HTTP/1.1

Host: server.example.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: xxxxxxxxxxxxxxxxxxxxxxxx

Origin: http://example.com

Sec-WebSocket-Protocol: chat, superchat

Sec-WebSocket-Version: 13

And the answer from the server (source: [MF11]):

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: xxxxxxxxxxxxxxxxxxxxxxxxx

Sec-WebSocket-Protocol: chat

After that, the WebSocket connection can be used. The prerequisites for this are a server
that supports WebSockets and a web browser on the client side that provides a WebSocket
API. On the server side, this can be realized by frameworks. For example, for Node, there
is the package websocket [McK19], which provides the client-side and server-side code for
this. WebSockets do not communicate classically over HTTP but use their own protocol.
For this purpose, the prefix ws:// is available for unencrypted connections, and wss:// for
encrypted connections, so the same port as for HTTP (port 80) can be used [MF11; KL00].
The client-side API standard is described by the W3C and is implemented in the majority of

13

2 Fundamentals

current browsers [API15]. According to CanIUse.com, more than 97% of browsers support
WebSockets, including all major browsers such as Chrome, Firefox, Safari, Internet Explorer,
Edge, or Opera. Especially on mobile devices (except for Opera Mini) [DS13]. Establishing a
connection to a compatible server is supported by default with just a single line of JavaScript.
Other code is necessary to intercept callbacks, such as receiving messages or terminating the
connection:

1 //Open connection

2 var socket = new WebSocket('ws://exampleWebsocketServer.com');

3 // Callback for receiving messages

4 socket.onmessage = function (event) {

5 console.log(event.data);

6 };

7 // Callback if errors occur

8 socket.onerror = function (error) {

9 console.error(error);

10 };

11 //Callback if the connection is closed

12 socket.onclose = function (closeEvent) {

13 console.log('connection closed: ' +closeEvent.reason);

14 };

The advantage of this is that this code can be executed correctly on all compatible browsers
without modification and without any additional framework (such as a Polyfill for older
browsers). Furthermore, this WebSocket code directly allows detection and reaction to con-
nection errors. WebSockets represent a solution to potentially minimize HTTP requests since
bidirectional communication can be performed.
Comparing approaches, streaming with WebSockets appears to be superior due to a lack

of limitations when compared to SSE and Server Push. However, this needs to be evaluated
to ensure real-world implementations match these expectations.

Compatibility of Functions

The introduction of browser APIs has created cross-browser interfaces standardized by the
W3C [W3C20]. However, the implementation is not the same in all browsers. Resources
such as caniuse.com provide compatibility tables for all default functions to check theoretical
executability. These show, for a particular function or API, which browsers support them and
since which version. Furthermore, information is provided on what percentage of browsers
support the feature. Figure 2.3 shows this table as an example for WebSockets. It is visible
that all current web browsers (except Opera Mini) support this feature. This web page is
used to check the compatibility of the produced work.

2.6 Server Techniques

The following optimization techniques are executed mainly on the server side. This method’s
advantage is that no additional software usually needs to be installed on the users’ devices.
The existing browser is sufficient.

2.6.1 Server-side Optimizations and SSR

If the optimization is done on the server that provides the original code, the web page can
structurally be delivered differently. One example is Nuxt JS, a popular framework for VUE

14

https://caniuse.com

2.6 Server Techniques

Figure 2.3: Exemplary compatibility table of WebSockets
Source: caniuse.com/websockets [DS13]

[JS20]. With Nuxt JS, the web page is rendered beforehand on the server side. This is done
by embedding attributes and JavaScript code directly in the HTML, which prevents having
to load and render them on the client side. The only disadvantage for the user is that this
technique optimizes only the specific website or web application. Until now, no universal
server-side rendering can be used without a framework. However, server-side optimization
is optimal for compatibility reasons since all the necessary resources of a web page can be
accessed there (see Google Pagespeed) [Pag20].

Server-side rendering (SSR for short) is commonly associated with loading and rendering
a website into the final state after executing all code on a web page. Sending a web page’s
final, rendered state can significantly reduce loading times, depending on the amount of
JavaScript necessary to display the entire page. As a result, the HTML sent to the client
includes a different DOM than the original. Therefore, the original JavaScript might break
if it is not adapted to this new change. This form of rendering is sufficient for static pages
without JavaScript but not dynamic web applications.

2.6.2 Middleware/Proxy

A middleware or proxy for optimizing web pages can be implemented in three locations.
These differ in the possible type of optimizations that can be implemented in each step.
Therefore, they are described separately below.

External Proxy

It is possible to create a proxy that optimizes web pages using additional hardware. Exam-
ples of this are Amazon’s Silk browser or Puffin-OS [Shi11; OS20]. However, both have the
disadvantage of either being able to optimize only unencrypted HTTP requests or breaking
end-to-end encryption. Optimizing HTTPS requests is not feasible in this way since the
headers are also encrypted [Res00]. Puffin-OS, in particular, uses its own apps, which ac-
cess the corresponding proxies and come with the required certificates pre-installed. The

15

2 Fundamentals

encryption ends at the Puffin-OS proxy. This represents a security risk since all website
data, including passwords, is transferred to the server [Müh19]. Accordingly, this is not an
acceptable solution to optimize a website for data security reasons.

Client-side Proxy

To a certain extent, it is possible to perform client-side optimization of the website. A proxy,
in this case, sits in the browser, most often as an Add-On, which can intercept network
requests locally. One example of this is the popular uBlock browser extension, which makes
it possible to remove advertisements and trackers from websites. In doing so, requests to
the respective servers are blocked, which can improve loading times [Hil20]. Furthermore, it
was shown that such client-side optimization could work without violating the encryption of
a request [Vog18]. To achieve this, an Add-on removes various parts of the web page on the
browser side before rendering (such as external resources) and loads them after displaying
the page. The disadvantage is that for mobile scenarios, the Add-on can currently only
be used on Android and requires the software to be installed. This is also not an optimal
solution.

2.7 Performance Marker

Measuring web loading performance depends on the tested subject. For example, a web page
can be marked as ”loaded” when all render-blocking resources are loaded, when all resources,
including images, are loaded, or when the web page displays the first content. In this case,
mainly user-centric performance markers are chosen.

2.7.1 First Contentful Paint

A website’s performance can commonly be measured with the help of the Performance-API,
provided by Browsers. One of the markers is the First Contentful Paint (FCP). It marks the
point in time when the first content appears on the screen. This timestamp is important as
it is user-centric and labels the first time when a user can form a decision if the requested
page suits the goal of visiting it [21]. It is, therefore, also an essential element in PageSpeed
Insights, a popular tool developed by Google to measure the loading times of web pages
[22af]. Various experiments in this work will reference the FCP, as it strongly indicates
whether a page loads faster or slower and if the developed techniques improve the status
quo.

2.7.2 Largest Contentful Paint

In contrast to the FCP, the Largest Contentful Paint (LCP) describes the largest appearance
of content on the page. As described by web.dev, the LCP marks the time when the main
content of a page has likely been loaded [22v]. While the FCP describes the beginning of
rendering a page, the LCP can give better insights into the actual appearance. However, no
metric is perfect, and the LCP does not guarantee that the content is actually usable. For
example, if a large image is placed as a background on the web page and loads slower than
the text, the LCP might not give valuable insight as it might detect the background but not
the content.

2.7.3 DOM Interactive

The ”DOM Interactive” Performance marker might be one of the most controversial mea-
surements provided by the performance API [22ag]. According to Ilya Grigorik on web.dev,

16

2.8 Initial Page Load

it ”[...] marks the point when the browser has finished parsing all of the HTML and DOM
construction is complete.” This, in theory, would allow scripts and users to interact with the
page. [Gri22]. However, as noted by Steve Sounders, web performance pioneer and author
of ”High Performance Web Sites,” this might not be a fully conclusive measurement [15].
This is only strengthened by the fact that asynchronous scripts exist. Therefore, the DOM
might be interactive, but the necessary code to react to user input still needs to load. As a
result, when using this performance marker to check for page interactivity, individual scripts’
loading behavior must also be considered.

2.8 Initial Page Load

Client-side caching can significantly improve the loading speeds of web pages and even pro-
vide offline functionality via Service Workers, as they prevent repeated fetching of resources.
However, these are ineffective if a client requests a web page or resource for the first time.
Techniques that reduce the size of resources or improve their effectiveness are also helpful
while caching, as they reduce their occupied caching space and, in turn, allow more resources
to be cached. Therefore, this work aims to primarily focus on the resources themselves and
not caching, as the overall benefit to page loading speeds is higher. This also implies that the
developed techniques of this work target the initial page load, which starts with an empty
cache.

2.8.1 DOM Content Loaded

The ”DomContentLoaded”-Event marks the moment when the DOM is fully created, and
no style-sheet file prevents JavaScript from running [Gri22]. In contrast, the FCP denotes
the start of rendering user-visible content. This marker was chosen because it demonstrates
advances in the execution of render-blocking resources, such as unaltered CSS referenced
in an HTML document’s HEAD. Depending on the browser’s implementation, faster CSS
execution will generally be noticeable in the ”DomContentLoaded”-Event end marker. It
will be considered in the evaluation as a result.

2.9 Existing Optimizations

Various optimizations already exist for all primary components of a web page. The following
ideas are broad methods that either describe an entire area of optimization techniques or one
that tries to achieve a multitude of optimizations together, which is why they are excluded
from the categories described in the related work. Some examples of this are compression
algorithms like gzip [18], modern image formats like webp [22f], or font subsetting [22ap].
However, optimizing the main render-blocking resources like CSS and JavaScript significantly
impacts the loading time performance. Both will be examined in detail next.

2.9.1 CSS Rendering

In contrast to SSR, the rendering aspect can also be limited to CSS. In this case, the page
is rendered similarly to SSR, but the only aspect changed is the included CSS. For this to
happen, popular frameworks like ”Critical” resort to using a remote-controlled browser on
a server [add22]. All included CSS is extracted using the browser and visiting the targeted
page. Then, the CSS is converted into an Abstract Syntax Tree (AST) representation to find
all CSS selectors. Next, a library like ”css-mediaquery” can be used to find every element
matching a selector [22k]. Finally, all selectors with one or more matches are classified as
”critical” for rendering, and the remaining CSS as ”uncritical.” By reducing the render-
blocking CSS to the ”critical” parts and delaying the rest, loading speed improvements can

17

2 Fundamentals

be made. In contrast to SSR, rendering CSS is highly unlikely to interfere with the JavaScript
of the page due to the delivered HTML being the same. The only exception consists of code
dependent on attributes set by the CSS, and only if it is marked as ”non-render-critical.”
However, this case is highly improbable.

2.9.2 JavaScript Code Splitting and Dead Code Elimination

Dead code elimination is an area of (web) code optimization in which an algorithm tries to
determine whether or not functions are used. The unused code is then removed, transferring
less code to the client. Therefore, the dead code elimination is done preemptively. While this
can be done reliably with code that relies on import and export statements via tree shaking,
all other types of JavaScript code present a greater challenge [22at]. One reason is the
multiple entry points and how JavaScript functions can be called. Especially the absence of
knowledge about every possible state makes this problem difficult. Sophisticated dead code
elimination tools like Muzeel try to emulate all possible user input [Kup+21]. However, in
practice, not even this type of emulation is 100% correct and can break the functionality of
a web page.
Therefore, another type of optimization emerges: code splitting. In this case, the code is

separated into smaller chunks or files, which are then loaded delayed (via async or defer)
or on-demand. The challenge is hereby to specify which part of the code can be delayed.
This requires the developer’s input but can result in even better performance than dead code
elimination if done correctly. However, it results in a higher initial effort.

2.9.3 Google Pagespeed

The 2015 published PageSpeed framework, developed by Google, is a plugin for Nginx and
Apache servers. It promises to automatically modify and improve the initial loading times by
enforcing as many best practices as possible [Pag20]. They include structural improvements
like resource bundling or code optimizations like removing comments. In contrast to other
frameworks like Amplified Mobile Pages, the PageSpeed platform does not require specific
code to be written, which makes it easier to implement even in large code bases. However,
no data exists on the performance and actual structural improvements which PageSpeed
produces. This technology could be helpful in the development of the final concept. However,
its capability has to be measured first.

18

3 Related Work

19

3.1 Research Method

The related work for the following chapters, including the concept, is discussed in this chap-
ter. The overview of all techniques and the structure of the following chapter is shown in
Figure 3.1.

3.1 Research Method

Part of the challenge of researching related work for this and the following chapters was
the trend of current articles related to streaming, primarily focusing on the streaming of
video and audio. In this case, the search engines Google Scholar and Scopus were used to
find scientific publications related to the streaming approach. However, both only returned
a limited number of relevant articles when excluding the keyword ”video.” These are all
evaluated in the following chapters. However, the search for related work was first focused
on the sub-categories, described in section 4.2, section 3.2, section 3.3 and section 3.4. Next,
the found articles are further used for a forward search using Google Scholar and a backward
search utilizing the references of found articles. Due to the scarce source of (text-) streaming-
related literature, no form of publication was excluded. Next, the same procedure was done
using Google and GitHub, searching for related technical implementations. These resulted
in a more extensive set of results. These results are then further researched via Google by
adding the keyword ”alternative” to every relevant technique. This was then repeated until
no more relevant techniques were found. After publishing the paper [VS22b], which targeted
the text streaming itself, the published article was searched on Scopus, and the ”Related
documents” feature was used to search for additional works. However, this also did not
return any more relevant publications. To the best of our knowledge, all relevant techniques
are discussed in this thesis.

3.2 Related Work for CSS Optimization

The following techniques are the foundation for optimizing CSS, discussed in more detail
in section 5.3. Improving CSS can be done in various ways. For streaming, the following
concepts are applicable: Reducing the amount of CSS transferred to the client, removing
code duplicates (due to the cascading property of CSS), and detecting the location where
CSS is used. Especially location detection is crucial, as only the necessary amount of CSS
should be transferred for every section of HTML.

3.2.1 Frameworks

This first category of optimizations are based on some form of framework, or provide their
own.

CSS Rendering in React

The popular React framework, developed by Meta (formerly known as Facebook), uses com-
ponents to subdivide the logic of an application [Rea21]. These components often have their
own CSS, which is loaded with the logic. This can create an overhead as the styling informa-
tion is not loaded in one piece but as separate elements. The reason for this is the client-side
logic handling. To transfer this concept to the server, another framework named next.js is
frequently used [Ver21]. With next.js, components can be rendered on the server, includ-
ing CSS. However, this technique mainly addresses the given overhead of React. The initial
website will still load as a block and closely resembles a traditional one. Therefore, problems
regarding the transmission of a website at low network speed remain.

21

3 Related Work

Related
Work

Related Work
for CSS

Optimization

Frameworks

CSS Rendering in React

“Critical” Package for Node.JS [add22]

Tailwind CSS [23c]

Critical-Based
Research
Paper

”Critical CSS Rules — Decreasing time to first
render by inlining CSS rules for over-the-fold ele-
ments” [JZ16]

”On the Impact of the Critical CSS Technique on
the Performance and Energy Consumption of Mo-
bile browsers” [Jan+22]

General CSS
Optimizations

”Eliminating Code Duplication in Cascading Style
Sheets” [Maz17]

Related Work
for JavaScript
Optimization

Bundling and
Code Removal

”Silo: Exploiting JavaScript and DOM Storage for
Faster Page Loads” [Mic10]

Dead Code Elimination

Frameworks

Partytown [22u]

Qwik [22q]

Other
Approaches

”Speed index and critical path rendering performance for

isomorphic single page applications”[Air13]

Closure Compiler [Goo20a]

Related Work
for Streaming
HTML

Streaming
Frameworks

Turbo by Hotwire [Hot21]

Marko [22y]

Progressive
Loading

Techniques

”Progressive loading” [SI06]

”Progressive page loading” [Sin+16]

Server-Side
Pre-rendering

”Initial server-side content rendering for client-
script web pages” [KL10]

”Comparison between client-side and server-side
rendering in the webdevelopment” [Isk+20]

”A Hybrid Web Rendering Framework on Cloud” [SG+16]

Prefetching
and Depen-

dency Tracking

”System and method for improving webpage load-
ing speeds” [SHB17]

”Polaris: Faster Page Loads Using Fine-grained
Dependency Tracking” [Net+16]

”VROOM: Accelerating the Mobile Web with
Server-Aided Dependency Resolution” [Rua+17]

General
Approaches
and Bundling

”Progressive consolidation of web page resources” [PD17]

”Improving a website’s first meaningful paint by
optimizing render-blocking resources - An experi-
mental case study” [Nat+17]

Figure 3.1: Overview of the related work chapter, classifying the approaches into multiple
categories.

22

3.2 Related Work for CSS Optimization

“Critical” Package for Node.JS

Multiple frameworks exist today which can render CSS on a server. These include Penthouse
[23b], Critical CSS [23a], and Critical [add22], the last one being the most promising.
The Critical framework will automatically render CSS for a page into ”critical,” and ”un-
critical” files, the ”critical” ones being visible ”Above-the-Fold” [Osm21]. However, all other
CSS is delayed by only including the part ”Above-the-Fold.” This also includes CSS necessary
to render the part ”Below-the-Fold.” This framework is, therefore, a valuable starting point.
However, for streaming a page, such a framework has to be modified to render the full page
and provide location-aware CSS, as the goal is to stream the entire page. Location-aware
in this concept describes the method of CSS code being loaded directly before the HTML
elements are parsed, which are styled by the respective section of CSS. In other words, the
optimization script must be aware of the position of elements targeted by the CSS. Both
aspects are not included in the current version of all mentioned Frameworks.

3.2.2 Tailwind CSS

The tailwind CSS library provides a different approach to writing and managing CSS [23c].
Instead of full-fledged CSS classes, it provides a significant set of classes mainly serving only
a single function, for example, only centering text. Therefore, the goal is to ideally not
require developers to write any CSS code themselves, instead relying on predefined tailwind
classes. This allows tailwind to detect which classes are used in a code-base and generate
CSS, which only contains the required code. This approach has the same goal as ”Critical.”
However, tailwind currently requires a full rewrite of all CSS classes to the tailwind presets,
as integrating existing CSS code at scale is not intended. Therefore, tailwind is not suitable
as it requires significant developer effort.

3.2.3 Critical-Based Research Paper

The following subsection explores research papers describing and evaluating techniques sim-
ilar or identical to ”Critical.”

”Critical CSS Rules — Decreasing time to first render by inlining CSS rules for
over-the-fold elements”

This paper [JZ16] describes a technique of rendering CSS ”Above-the-Fold,” using Phan-
tomJS to find all matching CSS declarations of an element. If the element is inside a
predefined viewport (Above-the-Fold), it is marked as critical and will be part of the CSS
included in the modified web page [VS22b]. This inlining works by collecting all critical
CSS declarations and inserting them in a style-element in the page header. All remaining
CSS is then asynchronously loaded with JavaScript once the page is finished loading [JZ16;
VS22b]. This concept is implemented with a now-popular framework called ”Critical,” de-
scribed next. In itself, the CSS rendering is insufficient for streaming, as it mainly optimizes
files. However, such a technique can be modified to use it as part of a streaming-ready CSS
renderer.

”On the Impact of the Critical CSS Technique on the Performance and Energy
Consumption of Mobile browsers”

Janssen et al. described in their experiment that using Critical CSS can speed up the time
until FCP and decrease loading times [Jan+22]. The evaluated websites were hosted on a
Raspberry Pi, that also served as the test device. They processed 40 websites, randomly
chosen using the Tranco list [Poc+18] and compared them to their unmodified original

23

3 Related Work

Name Usable? Comment
CSS Rendering in React ❍ Not applicable
“Critical” Package for Node.JS [add22] ◗ Base idea useful, not streaming-ready
”Critical CSS Rules — Decreasing time to first
render by inlining CSS rules for over-the-fold
elements” [JZ16]

◗ Similar to Critical, not streaming-ready

”On the Impact of the Critical CSS Technique
on the Performance and Energy Consumption
of Mobile browsers” [Jan+22]

◗ Similar to Critical, not streaming-ready

”Eliminating Code Duplication in Cascading
Style Sheets” [Maz17]

◗ Base idea useful, is only a prototype

● = complete solution, ◗ = partial solution, concepts applicable but not sufficient, and ❍ = no solution

Table 3.1: Overview over related work for CSS optimizations, comparing their usefulness for
the concept of this work. Sources to the individual techniques are linked in the
respective sections.

versions. However, this choice could affect the results’ validity because the data set might be
too small for reliable results. A list of the used web pages is also missing, and the version of
the Tranco list was not provided, which is why the gathered data has limited conclusiveness.

3.2.4 General CSS Optimizations

This last category includes one method defining a more broadly applicable CSS modification.
This idea can be applied to a broad spectrum of web pages and therefore defines its own
category.

”Eliminating Code Duplication in Cascading Style Sheets”

Davood Mazinanian described in his thesis that code duplication is a significant problem of
CSS [Maz17]. A solution was described for solving said issue. The thesis did not directly
focus on stream-ability or render-blocking CSS. Its application reduces the amount of CSS
data that needs to be transmitted, which also affects the loading speed of streamed web
pages. When CSS code is modified, code duplication must be avoided as much as possible.

3.2.5 Summary of Related Work for CSS Optimizations

No existing technique can provide a universal solution for optimizing CSS as described for all
related methods. This is also described in more detail in Table 3.1. The main problems are a
lack of testing parameters or a small sample size. Current popular approaches are not using
their full potential, as shown by the Critical and Critical-related techniques (section 3.2.1).
For example, it is unclear if code duplicates are removed, as they can significantly improve
loaded CSS’s efficiency. Therefore, no ideal solution for optimizing CSS is currently available.

3.3 Related Work for JavaScript Optimization

The following techniques discuss future-oriented methods for optimizing JavaScript on web
pages. In this section, current approaches for optimizing JavaScript are discussed. More
specifically, this focuses on all techniques that reduce or eliminate render-blocking JavaScript
code. Furthermore, their limitations are highlighted as well. In general, there are multiple
ways how to improve web page loading performance. However, for streaming web pages, un-
optimized code will delay the time until a user can interact with the page. Their applicability
for streaming web pages will be discussed.

24

3.3 Related Work for JavaScript Optimization

3.3.1 Bundling and Code Removal

This first sub-category includes methods that try to decrease overhead or try to delete unused
JavaScript. Using different approaches, both aim to load the least amount of code with the
least amount of requests.

”Silo: Exploiting JavaScript and DOM Storage for Faster Page Loads”

This paper describes the problem that by opening a multitude of HTTP connections, the web
page will load slower due to increased overhead [Mic10]. The authors also stated that caching
is not an option because 40-60% of users will visit any given website with an empty cache. The
proposed solution involves merging all resources into one file. By sending only a single file,
the amount of HTTP requests is drastically reduced [Mic10]. A currently available framework
for this kind of merging is webpack[web21]. However, this also introduces a different kind of
overhead, as all resources must load first to display a web page. For example, deferred loading
of scripts is not possible in this way. As a worst-case scenario, all data is transmitted, but no
function is actually called. Therefore, it describes the opposite of the streaming approach,
as all code is loaded before render.

Dead Code Elimination

One approach to optimize JavaScript is to detect and delete all code that is generally never
used. This procedure is also described in more detail in subsection 2.9.2. Many different
approaches exist which try to accurately detect unused JavaScript code [Obb+18; Kup+21;
QL20; Cha+20; GS20; Cha+21]. However, none of the mentioned approaches manage to
detect unused code perfectly. This is due to the high complexity of JavaScript. For example,
functions can be called from the HTML directly via user interaction with inline calls. How-
ever, some HTML code might not be visible to the user, and the code will, therefore, never
be executed. In this case, detecting whether or not the code will be used is difficult. One
of the most sophisticated approaches, Muzeel, tries to counteract this problem by emulating
all possible user interactions on a given page [Kup+21]. Still, no 100% accurate detection is
being made, which is why this approach cannot be used, at least not in the current state.
Only a 100% accurate detection algorithm is acceptable for any real-world web application,
as only a single missing character in the wrong location can break the entire code.

3.3.2 Frameworks

This sub-category includes methods that are based on a framework. These techniques are
mainly evaluated by their ease of use and optimization potential.

Partytown

The Partytown framework by builder.io is a solution for delaying JavaScript and executing it
in a ”web worker” [22u]. The main problem of render-blocking JavaScript, especially third-
party code, is the inability to modify the code itself while blocking the main thread of a
browser. This blocking behavior results in longer loading times and unresponsive web pages.
Partytown solves this issue by moving the code into a worker, which has a separate worker
thread. The main issue of worker threads is the inability to make synchronous DOM requests.
This is solved by the framework by exploiting synchronous XMLHttpRequests, which are
already deprecated. Still, as long as they exist, Partytown can move code to another thread.
When worker code tries to access the DOM, the synchronous request is made, which is, in
turn, captured by a service worker. This service worker then redirects the request to the
main thread, where the result is then returned via the initial request back to the worker. This

25

https://builder.io

3 Related Work

presents a novel idea that can be used to delay code with minimal effort from the developer.
However, even though the implementation effort is low, the possible improvements might
also be low (especially when considering it for streaming), as it only coarsely splits code.
Especially in large code bases, where the code is bundled, a more fine-grained option would
enhance the performance improvement of a streaming approach.

Qwik

In contrast to Partytown, the Qwik framework allows for the maximum fine granularity [22q].
Both are developed by builder.io, but targeting different ends of the JavaScript optimization
spectrum. In contrast to Partytown, the Qwik framework provides a platform to develop
highly code-efficient web pages from the ground up. The only way to integrate Qwik is by
rewriting the components of a web page. However, it results in a website that can delay
nearly all of the JavaScript included in a page. Instead, the necessary sections of code are
loaded on demand. This means that only a minimal part of the Qwik framework is needed
for the initial page load. While this is a highly sophisticated approach, it might overshoot
the need for more fine-grained optimization. Due to the lack of integration, it might also not
be an ideal approach for splitting up JavaScript for web pages. Ideally, for a stream-based
web page, a solution is created that combines the best of both worlds: acceptable developer
effort for integration and manual control over the level of granularity.

3.3.3 Other Approaches

In this category, other methods for optimizing JavaScript are discussed. These include
articles used as a leading example for all techniques using the same approach.

”Speed index and critical path rendering performance for isomorphic single page
applications”

This paper discusses the idea of isomorphic code [Hak16]. The term isomorphic JavaScript
was first described by Airbnb engineers in 2013 [Air13]. It describes a way to implement
JavaScript that runs simultaneously on the client and server. With this setup, client-side
HTML can be pre-rendered on the server, improving website loading times. The mentioned
paper compared this approach to traditional loading behavior. The results showed that the
performance of isomorphic web apps is better than traditional methods [Hak16]. However,
this does not change how a website is delivered to the client. A web page with large depen-
dencies will still load slowly on a slow network, which is why this approach is not viable for
stream-based web page delivery.

Closure Compiler

Starting in 2013, the still maintained Closure Compiler developed by Google is a JavaScript
transpiler that increases the performance of written code [Goo20a]. According to Google,
it ”compiles from JavaScript to better JavaScript” [Goo20a]. It works by applying vari-
ous optimizations to the code, ranging from renaming variables to dead code elimination.
However, the most effective modifications, like dead code removal, are only available in the
”advanced” compilation level [Goo20b]. This requires the code to be written in a certain
way, as the compiler has to make assumptions when processing the given code. If they are
not met, the produced code might not run. Furthermore, code splitting is not performed. If
some form of splitting technique is used, the closure compiler has to run separately for every
chunk of code [22e]. This makes it a non-viable option for streaming pages due to a lack of
optimization depth.

26

https://builder.io

3.4 Related Work for Streaming HTML

Name Usable? Comment
”Silo: Exploiting JavaScript and DOM Stor-
age for Faster Page Loads” [Mic10]

❍ Bundling is the opposite approach of
the concept pursued in this work

Dead Code Elimination ❍ The detection is not accurate enough,
can break entire page

Partytown [22u] ◗ Is easy to implement, but can lead to
unwanted results

Qwik [22q] ◗ Produces excellent results, but devel-
oper effort is too high to achieve high
coverage (requires rewrite)

”Speed index and critical path rendering per-
formance for isomorphic single page applica-
tions” [Hak16]

❍ Does not solve the core problem

Closure Compiler [Goo20a] ❍ Limited results, would require adhering
to code assumptions

● = complete solution, ◗ = partial solution, concepts applicable but not sufficient, and ❍ = no solution

Table 3.2: Overview over related work for JavaScript optimizations, comparing their useful-
ness for the concept of this work.

3.3.4 Summary of Related Work for JavaScript Optimization

As shown in Table 3.2, no existing method exists to reliably and universally optimize and
split the JavaScript of a given web page. Neither bundling approaches (like Silo), compilers
like the Closure Compiler, or Frameworks like Partytown or Qwik could achieve this goal
without some form of caveat. Furthermore, the well-researched optimization strategy of
dead code elimination proved insufficient due to a lack of detection accuracy. Therefore, no
existing method provides an acceptable and universal solution.

3.4 Related Work for Streaming HTML

The most important related works concerning streaming and content delivery will be reviewed
next. The techniques’ ability to collectively optimize resources and stream content is thereby
discussed. Streaming web pages requires a method to split and transfer the entire initial page.
Furthermore, the technique needs to be backward-compatible in order for it to be adapted
in real-world scenarios. Both will be discussed next.

3.4.1 Commercial Apps and Software

This first category consists of apps for mobile phones and other kinds of software which are
distributed commercially.

3.4.2 Opera Mini

This browser, published by Opera as a separate app, aims to improve page loading speeds
by compressing the requested data [Ope21]. It uses a proxy combined with Operas Presto-
engine to compress data up to 90% and, with that, improve loading speeds [Bov15]. However,
this approach does not fix the issue of the actual loading behavior. It only transfers data in
a significantly more efficient form. With that, at certain compression modes, the feature set
of websites is reduced as the website renders on a server. Furthermore, a very large website
will still load slowly, as the compression only reduces relatively to the original website size.
As far as publicly known, no streaming approach was chosen.

27

3 Related Work

Puffin OS

This operating system, developed by CloudMosa, offloads almost all computation from the
device to a server by rendering websites on a server [Clo20]. The device uses similar tech-
niques to Browsers like Opera Mini, but on a system-wide level [Ope21]. All installable apps
are, therefore, web apps. However, as far as publicly known, personal information like pass-
words or form data has to be sent to a puffin server [Kap19; Müh20]. This proposes security
risks, as (for example) user sessions tied to a real person’s personal account are stored on a
central server, which can be a significant security risk. Furthermore, the user cannot control
whether the submitted data is stored and handled safely. As this can be insecure, optimiza-
tion using pure server-side rendering with session handling is not an option. Furthermore,
no streaming approach is mentioned.

3.4.3 Streaming Frameworks

This next section discusses open-source frameworks which allow for streaming text-based
HTML content.

Turbo by Hotwire

Turbo and especially Turbo Streams is part of a series of frameworks provided by Hotwire
[Hot21]. The core idea is to send page changes via streams from the server to the client.
This significantly decreases the amount of JavaScript needed on the client, as the server can
render the page modification. For this to happen, the page is split into <turbo-stream>-
sections, which are self-contained. These sections can be updated with HTML sent mainly
via WebSockets or SSE. One example is updating the inbox of a mail web client if new mail
arrives. While this is directly in line with the concept presented in this work, it only applies
to updates, not loading the initial page itself. The initial page is still loaded as a block.
While it is a promising idea, it does not reach far enough.

3.4.4 Marko

Starting in 2014, the Marko web framework uses SSR to render web pages and allow for
streaming components [22y]. The core idea is to allow long-running tasks, like fetching APIs,
to occur on the server while the client renders the rest of the page. When the long-running
task is finished, it can then be streamed to the client. In theory, this solves a multitude of
challenges for streaming web pages. However, it also comes with significant caveats. Most
importantly, it is not intended to stream the entire page, as the focus lies on ”filling the
gaps” by delivering results in a delayed fashion[22y]. Secondly, similarly to section 3.4.3,
the whole code-base must be rewritten, which is unfavorable. Next, the streaming approach
used (chunked transfer encoding) is deprecated in HTTP/2 [BPT15a]. This can lead to
problems with CDNs and proxies, which the developers acknowledge [22au]. Lastly, HTML
is not directly split, as loading elements is done on a component-based level, which requires
additional client-side JavaScript [22as]. Therefore, it is not a viable solution for streaming
HTML.

3.4.5 Progressive Loading Techniques

The following techniques all describe methods of progressively adding content to a web page
or similar form of digital information access. The techniques that do not explicitly mention
web pages are included, as they lay a foundation of what is possible when transferring the
method to web pages.

28

3.4 Related Work for Streaming HTML

”Progressive loading”

The patent describes a system that only loads the currently visible elements of a web page
[Sch07]. Elements outside of the currently visible area are not loaded. This does not consider
that even those elements can be separated into smaller portions. No information is given on
how this system will split the original web page into those segments and how it is ensured that
those elements load correctly. The provided images only show an asynchronous loading of
images on an already loaded website. The patent does not include streaming and is expired.

”Progressive page loading”

This active patent from Microsoft claims the method of loading pages of a (digital) document
progressively [Sin+16]. It describes that digital documents and sets of documents can contain
large amounts of pages. However, not all pages might be needed. To solve this, a system is
designed that can provide individual pages or parts of pages to a user. As other pages are
requested, the software on the client device loads them progressively [Sin+16]. This system
is not designed for web pages. However, a similar approach can be made with parts of a
DOM tree. As described by the patent with a focus on documents, websites can also contain
large amounts of data. This technique can be adapted to progressively load or stream parts
of websites that are needed by a user.

3.4.6 Server-Side Pre-rendering

The next set of approaches use a form of server-side pre-processing in order to improve
loading speed.

”Initial server-side content rendering for client-script web pages”

This Microsoft patent describes how a website’s text that is constructed and loaded by
JavaScript can be rendered on a server [KL10]. The system described uses a form of
client-side emulation to execute the JavaScript beforehand and to extract the loaded content
[KL10]. This patent does not describe ways to render other elements like CSS. The patent
does not include streaming and is expired.

”Comparison between client-side and server-side rendering in the webdevelopment”

This paper compares the pre-rendering of websites on the server as well as JavaScript-based
loading on the client [Isk+20]. It argues, based on speed measurements, that server-side
rendering is faster and improves the SEO of the page, as it is easier for web crawlers to
read the content of the website [Isk+20]. However, no indication is made that the server-side
rendering will also include CSS rendering. Therefore this paper is missing crucial information
on the scope of optimization and details on the used test setup. No streaming approach is
discussed.

”A Hybrid Web Rendering Framework on Cloud”

The authors of this paper state that browsers like Opera Mini or UC Mini that use ”cloud-
assisted rendering” have shortcomings regarding rendering quality or animations [SG+16].
The proposed system translates the web page in different layers and maintains CSS attributes
like animation timing and z-order as an XML format [SG+16]. The client then renders the
layers. It can do so independently, receiving the data as rendering instructions. The web
page can be re-rendered for changes in resolution or zooming on the client. This approach
can reduce the used bandwidth by up to 47%, and the authors filed a patent claim for
this method. However, client-side JavaScript execution is not discussed in this paper. If

29

3 Related Work

JavaScript needs to access the DOM, new drawing instructions are needed, as the created
XML-Version does not preserve or transmit the original DOM. Even though the loading time
is faster, not the full feature set can be provided on the client. Furthermore, this concept
does not address streaming itself.

3.4.7 Prefetching and Dependency Tracking

The following methods aim to improve loading time by optimizing the loading behavior
of dependencies. This includes loading them before they are used (prefetching) and also
dependency tracking for optimizing the loading order.

”System and method for improving webpage loading speeds”

This patent uses several techniques to optimize the loading speed of a website via a proxy
[SHB17]. These techniques include (amongst other things) heuristic prefetching and multiple
simultaneous connections to one server, to load the resources. The goal is to optimize web
pages universally. However, the end-to-end encryption has to be broken on HTTPS requests,
as the header is also encrypted. In this form, no universal optimization is acceptable.

”Polaris: Faster Page Loads Using Fine-grained Dependency Tracking”

The authors of this paper describe the issue that websites have to load dependencies, which
themselves might require further resources [Net+16]. This dependency graph is render-
blocking, and the browser has to request all dependencies first. However, the current method
of loading these dependencies is insufficient. In this paper, two methods were presented. First
is a fine-grained analyzer that can search the included JavaScript for further dependencies.
Secondly, a client-side scheduler called Polaris that can decrease the median loading time by
34% by using the knowledge gained beforehand. This is a universal way of improving the
fetching of resources. However, no optimization is made to the resources. A website with
large dependencies will still load slowly, as it is only faster in reference to the original page.
No streaming was mentioned.

”VROOM: Accelerating the Mobile Web with Server-Aided Dependency Resolution”

The current loading behavior of websites requires clients to fetch all dependencies of a web
page. However, the authors of ”VROOM” [Rua+17] state that there is idle time in between
these requests, as the client only loads them at the time the parser encounters them or
when the JavaScript sends the request [Rua+17]. The proposed solution sends a list with
the initial HTML file and the URLs of all future dependencies. The client is, therefore,
capable of fetching all dependencies, even though the parser did not encounter them yet
[Rua+17]. The problem with this system lies in network conditions. The speedup only helps
if the fetching of resources is faster than the parser of the browser. With decreased network
speeds, the saved time decreases as well. Additionally, the initially transmitted data includes
an overhead, as the resource list has to be fetched with it. The concept does not mention
streaming.

3.4.8 General Approaches and Bundling

This last category of optimization methods includes other forms of optimizations that do not
belong to one of the before-mentioned categories or span multiple categories simultaneously
as they evaluate multiple techniques.

30

3.4 Related Work for Streaming HTML

”Progressive consolidation of web page resources”

This patent by Akamai describes an improvement in website loading speeds by consolidating
common resources like JavaScript or CSS [PD17]. Furthermore, the patent also claims that
those dependencies can be used without fully loading them onto the client device. Therefore,
the website can load faster. However, the patent describes no improvement to the resources
or the HTML-Page containing them. It might also be possible to slow down loading speeds,
as one of the claimed points refer to sub-pages being loaded into i-frames, which might induce
an overhead at low network speeds. The concept does not include streaming.

”Improving a website’s first meaningful paint by optimizing render-blocking resources -
An experimental case study”

This master thesis project aims to reduce the loading time of web pages by eliminating
unused CSS and delaying JavaScript [RN17]. As this is an experimental study, the authors
did not automate the process and instead used various existing frameworks and tools to
achieve this goal manually. Their experiment found that the render time can be reduced by
using both techniques. However, critical data is missing. In the timing evaluation, no details
are given on what website was used to test the technique. Furthermore, the technique does
not focus on streaming. As this might be a suitable base technique for automation, more
details are needed.

3.4.9 Summary of Related Work for Streaming HTML

As shown by the significant number of commercial products, frameworks, and research pa-
pers, the topic of streaming HTML and optimized content shows great potential. This is also
described in more detail in Table 3.3. However, none of the discussed techniques sufficiently
solves the issue, as in most cases, the resources are not modified and split. For example,
Opera Mini only compresses the files, while VROOM works by dependency tracking. Meth-
ods that do modify the actual JavaScript require a rewrite of the code-base, as shown by
Marko and Turbo. Both yield the most promising optimization potential. However, the
streaming and delivery do not go far enough in both cases. The two frameworks do not
allow streaming the initial page without loading a significant amount of JavaScript first.
Therefore, no technique exists to fully stream a web page.

3.4.10 Summary

The individual sections of the related work show that no concept exists that fulfills the
requirement of streaming web pages completely. The individual sections will be discussed
in more detail in their concept chapters respectively. However, in general, no acceptable
automatic optimization for JavaScript could be found, with Muzeel being the closest (but
not yet sufficient and acceptable) candidate. For CSS, methods like Critical can universally
optimize CSS. However, it lacks the required location of use detection, which is essential for
streaming web pages. Furthermore, no HTML splitting or streaming method exists which
can stream the entire initial page, with Turbo and Marko being close candidates. Both could
not be used, as they do not provide the initial streaming capabilities and require a complete
page rewrite.
Lastly, it is unclear to which proportion each of the three render-blocking resources

(HTML, JavaScript, and CSS) affect the loading performance to which extent. Not only
is there a lack of existing solutions for streaming web pages. The amount of optimization
potential for JavaScript and CSS is unclear as well. For this, an analysis is required, which
is described next.

31

3 Related Work

Name Usable? Comment
Turbo by Hotwire [Hot21] ◗ Valuable concept, not far enough, does

not stream initial page
Marko [22y] ◗ Valuable concept, not far enough, does

not stream initial page
”Progressive loading” [SI06] ◗ Valuable concept, not directly applica-

ble
”Progressive page loading” [Sin+16] ◗ Valuable concept, not directly applica-

ble
”Initial server-side content rendering for
client-script web pages” [KL10]

❍ Missing information, too vague

”Comparison between client-side and server-
side rendering in the webdevelopment”
[Isk+20]

❍ Too vague

”A Hybrid Web Rendering Framework on
Cloud” [SG+16]

❍ Highly complicated process, limited use

”System and method for improving webpage
loading speeds” [SHB17]

❍ Security risk due to broken encryption

”Polaris: Faster Page Loads Using Fine-
grained Dependency Tracking” [Net+16]

❍ No splitting and not streaming-ready

”VROOM: Accelerating the Mobile Web
with Server-Aided Dependency Resolution”
[Rua+17]

❍ Limited usability at slow network
speeds

”Progressive consolidation of web page re-
sources” [PD17]

❍ Bundling is an anti-pattern since
HTTP/2 [22ar]

”Improving a website’s first meaningful paint
by optimizing render-blocking resources - An
experimental case study” [Nat+17]

◗ Good proof of work, only manual pro-
totype

● = complete solution, ◗ = partial solution, concepts applicable but not sufficient, and ❍ = no solution

Table 3.3: Overview over related work for splitting and streaming HTML, comparing their
usefulness for the concept of this work.

32

4 Analysis

33

4.1 Necessity of Analysis

The following section describes a large-scale analysis of the current state of the art due to a
lack of existing data on how much HTML, JavaScript, and CSS affect the render-blocking
loading behavior of web pages. As described beforehand, various optimizations exist to
improve loading times. However, it is unclear how much each component influences the time
until a web page is loaded and usable. First, the question will be answered why this analysis is
necessary. Next, related analysis results are discussed, followed by details about the targeted
data which needs to be extracted. Next, the test software structure is explained, followed
by the evaluation of the gathered data. Finally, the conclusion summarizes the findings and
highlights areas with significant improvement potential.

4.1 Necessity of Analysis

Before creating a concept on improving the loading speed of web pages, the optimization
potential has to be measured first. In this analysis, the main focus lies within the render-
blocking properties of JavaScript and CSS, which, together with HTML, build the foundation
of modern web pages. If no optimizations like delaying or splitting code are used, web pages
will load slower. However, due to the diversity of the modern web and especially web
applications, the question changes from ”How fast are web pages?” to ”How fast can web
pages load if the code is optimized?”. In other words, data is missing on how efficiently the
delivered code is used by web pages, especially when focusing on render-blocking resources. In
order to develop the best possible version of stream-based web page loading, the current state
and remaining potential will be determined first. Furthermore, the impact of frameworks
will be measured as well. The following analysis results are published in [VS22a].

4.2 Related Analysis Approaches, Methods and Limitations

This section discusses related analysis approaches, as well as existing techniques. For both,
the pros and cons are highlighted, focusing on the limitations related to the before-mentioned
goal of analysis: analyzing web pages structurally, and determining code efficiency (how much
code is used until render), render-blocking properties, the impact of popular frameworks, and
differences between desktop and mobile.

”Structural Profiling of Web Sites in the Wild”

The authors analyzed the DOM structure of the internet’s 500 most popular web pages
[CH20]. A filtered list from moz.com was used. Some of the analyzed attributes were the
node depth, the name of the tags, if an element is visible or not based on the current viewport,
the location of an element, and the CSS selectors that target a given element. In order to
analyze said pages, the browser extension ”TamperMonkey” was used to inject additional
JavaScript into the pages, which in turn analyzed the page inside a browser context. Their
results showed that, on average, half of the DOM elements are not visible to the user and,
therefore, possibly unnecessary. However, the paper lacks context for other results like the
number of nodes or maximum DOM depth. It needs to be clarified what the measured data
means, especially for the page load. Information like setting the gathered data in relation to
the page load is missing. The authors acknowledged this by stating that the paper serves as
a future reference.

Wappalyzer

The core software and website of Wappalyzer provide insights into what tools and frameworks
were used when building a given web page [Wap21]. It analyzes the code base of a website
by searching markers that hint at the usage of a specific tool. With it, an analysis can be

35

4 Analysis

broadened by including the results of Wappalyzer, as measurements can thereby be connected
with the frameworks used. Wappalyzer will therefore be an essential part of the following
analysis.

HTTP Archive

One of the most significant online resources about web performance and statistics is the
HTTP Archive [HTT21a]. At the time of writing, the sample size for the monthly reports
exceeds 10 million pages on desktop and 15 million pages on mobile, making it one of the
most powerful web structure analysis platforms. By utilizing a hosted instance of Web Page
Test [Mee21], in-depth analysis data is fetched. Additionally, Wappalyzer is used to enrich
the data with the frameworks used. While this data exists, there is a lack of focus on
render-blocking resources, and any form of evaluation in this area is missing. Even if this
data existed, the raw data is only accessible via Google Big Query, which is a paid service.
Therefore, the data provided by the HTTP Archive is not sufficient.

Summary

In general, no available framework or data set sufficiently provides insights into what opti-
mization potential remains. Even the most sophisticated attempts are either not freely avail-
able or analyze the given topic insufficiently. Therefore, a large-scale analysis was needed to
focus on the mentioned aspects: extract the remaining optimization potential and evaluate
the impact of popular frameworks.

4.3 Overview Over All Structural Aspects Which Directly Impact

Render Time

Multiple aspects affect loading speed, for example, server response times. However, this is
the result of individual provider and developer choices. Generally, these aspects are subject
to change based on external factors, e.g., distance to the server, time of day, or server load.
As a result, measuring the absolute time it takes to load a web page only partially returns
meaningful data. A better, more cause-oriented approach is to look at the page structurally
and the choices that will affect loading times. By doing so, more meaningful measurements
will be made, independent of external factors. According to web.dev, two types of addi-
tional render-blocking resources directly affect loading times: unmodified loading of external
JavaScript and external CSS files [20]. The main resource, the HTML file, is, therefore, also
at least indirectly render-blocking. If fewer data is needed to be transferred to display a page,
the faster the loading will be. Therefore, both JavaScript and CSS and their render-blocking
property will be the main focus of the upcoming measurements. The main aspects that will
give clues into the remaining potential are the following:

1. Portion of code that is render-blocking

2. Total size percentage of the render-blocking resource

3. Percentage of code that is used until the rendering of the page (efficiency)

In detail, aspect 1 includes checks for how many external files are loaded, how they are
loaded, and at which location they are linked in the HTML file. The location aspect gives a
clue if advanced splitting techniques are already used. Aspect 2 affects loading time as the
size of the render-blocking file directly impacts download time. Lastly, aspect 3 determines if
the code is actually necessary for rendering. For example, a large, render-blocking JavaScript
file that is used 100% until the page is displayed will impact the time it takes to download,

36

4.4 Type of Measurements

but it cannot be avoided. As a result, no generalized statement can be made. Therefore, all
three aspects will be used as a base for the next measurements.

4.4 Type of Measurements

The following measurements are equivalent to what was published in paper [VS22a]. The
seven aspects are selected for their importance towards page loading times, described in more
detail next.

1) Number of external and internal JavaScript-blocks
Multiple ways exist to include JavaScript in a web page. The first option is to in-line the code
via special attributes, for example, with onclick="". The second option is to insert the code
via a code block, using the <script>-tag. The third option consists of externally linking
a JavaScript file. Only the external file can be loaded asynchronously by using the async

or defer-attributes. One exception are JavaScript modules, which are deferred by default.
This measurement does not only give insight into the ratio between external and internal
code blocks but also into the number of external files. A large number of (render-blocking)
external files can lead to slower loading times, as the available bandwidth of the client will
be shared to download the files. In turn, a small number of external files hints towards the
usage of optimizations like bundling, where all JavaScript files are combined into one large
file to reduce round trips for the requests. A large number of internal blocks hint towards
optimizing this step even further by eliminating the request completely. However, it also can
result in slower loading times due to their render-blocking property if they are executed on
the main thread.

2) Efficiency of JavaScript
While the quantity of render-blocking code on a given web page indicates slow loading times,
it does not represent the full story. For example, it is possible that a web application loads a
large quantity of JavaScript but uses every single loaded function. Or, as another example,
a web page loads an average amount of JavaScript but does not use a single piece of code.
To find out how much JavaScript code is used until the page render, the efficiency will be
tested. Ideally, every single character of render-blocking JavaScript will be executed before
the page is rendered. Therefore, the efficiency is calculated by the used characters divided
by all characters. If the percentage is small, it can be assumed that there is still a significant
amount of optimization potential left.

3) Efficiency of CSS
Similarly to measuring the efficiency of JavaScript, unused and render-blocking CSS will
also slow down the page. However, there is a lack of methods on how to load CSS asyn-
chronously, except for the limited functionality provided by the media-attributes. Frame-
works like Critical, therefore, resort to using JavaScript in order to enable this behavior.
For CSS, the optimal case would be 100% of the CSS code being used until the page render,
which is why the efficiency will be calculated in the same way: dividing the used characters
by all (render-blocking) characters. The lack of asynchronous loading options combined with
the benefit of using CSS frameworks leads to the assumption that the measured efficiency
might be lower compared to the efficiency of JavaScript. CSS frameworks allow for conve-
nient usage of pre-styled elements but add an additional overhead compared to individually
created style-sheet files. It is unlikely that all functionality of a CSS framework is used on a
single page. Furthermore, to the best of our knowledge, there is no simple and popular tool
to detect CSS that does not affect the page’s visual appearance.

4) CSS locations
As with JavaScript, the CSS of a page can also be inserted in multiple ways. The first and
most direct version uses the style=""-attribute active on various HTML tags. Secondly, CSS
can be inserted via the <style>-tag. Lastly, external CSS files can be linked in the <head>

37

4 Analysis

Test Number

T
es
ts

on
D
es
k
to
p
an

d
M
ob

il
e

JavaScript

Number of external and internal blocks 1

Efficiency
2

& Render-blocking and non-render-blocking property

CSS

Efficiency 3

Link locations 4

Render-blocking and non-render-blocking property 5

Matches per CSS rule 6

HTML
Resource distribution

7
& Element positions

Table 4.1: Overview over the measurements as they are described in subsection 4.4.1, showing
the groups to which every test belongs

of an HTML page via the <link>-element. On the one hand, this measurement will give
insights into how much external or internal CSS code is used. On the other hand, a higher
number of external files might indicate that the page uses multiple frameworks, as there is no
technical necessity to split the code. For example, using swiper.js as a complimentary slider
framework for images on a web page requires additional CSS 1. This is also provided by the
framework itself, even as a CDN-based link. Therefore, using a large number of external files
might indicate less CSS optimization effort.

5) Render-blocking and non-render-blocking CSS
In contrast to JavaScript, only limited methods are available to delay CSS due to the lack
of options like the media-attribute. As the most popular option is using JavaScript (like
Critical is using [add22]), it represents an additional effort for the developer. As with
JavaScript, all internal CSS is render-blocking. This measurement will check how much of
the total CSS is render-blocking and test if a widespread option exists to delay CSS code.
This is crucial for the concept of this work, as non-render-blocking CSS improves the time
until FCP.

6) Matches of CSS selectors
CSS is comprised of rules which use different selectors to affect parts of the page. These
selectors can be broad, for example, selecting every element of a given tag name, or specific,
like selecting one single element via the provided ID. A rule affecting a larger number of
elements or just one would not make a difference for the calculated efficiency in measurement
4. A large number of rules with just one selector would increase efficiency more than a single
selector with a significantly higher number of uses. Therefore, the matches have to be checked
as well to ensure accuracy.

7) Resource distribution and element positions
Streaming HTML content requires distributing the resources so they can be loaded on de-
mand. Therefore, it has to be checked how (mainly external) files are loaded. Additionally,
it is crucial to check the size of the <head>-element, as it might need to be loaded first
due to meta-information like encoding. If the results show that it exceeds the size of the
<body>, then the concept has to be adapted to consider mixing the data or filtering and
sending the most important parts affecting the visible part of the page first. For example,
the manifest.json of PWAs does not affect the functionality of a given page 2, but the
meta-information about the encoding used on a page can. Therefore, the distribution of
external resources is monitored.

1swiperjs.com/get-started
2web.dev/learn/pwa/

38

https://swiperjs.com/get-started
https://web.dev/learn/pwa/

4.5 Crawling Limitations

List of websites

List of websites

List of websites

Main controller

Saving crawled websitesCrawler

Analysis dataAnalyzer

ImagesVisualizer Analysis data

crawled websites Storage server

Figure 4.1: Structure of the analysis software. Source: [VS22a]

Additional Test Parameter: Desktop and Mobile
Devices with varying types and screen sizes can result in different code behavior. Responsive
design can lead to CSS not being used due to invisible elements, such as a menu that is only
visible on mobile clients. Therefore, all measurements are tested for desktop and mobile
platforms.

4.4.1 Measurement Summary

Table 4.1 shows the individual measurements visually grouped by their common category.
It is visible that the tests mainly focus on JavaScript and CSS as those are types of external
resources that can block the rendering of the web page.

4.5 Crawling Limitations

Due to availability, it is inevitable that some pages cannot be downloaded. There are multiple
reasons for this behavior. For example, a page might go offline, the connection is slow due to
accessing a server from another part of the world, or the page is unavailable from the region
accessing the page. Furthermore, some pages might not be able to be included in some of
the measurements mentioned in section 4.4. Due to this uncertainty, the number of pages
will be named for every test, with nd for desktop pages and nm for mobile.

4.6 Test Setup

In order to measure all parameters, the top 10.000 web pages of the research-oriented Tranco-
List were crawled and evaluated (downloaded April 29, 2021) [Poc+18]. The structure of
the analysis software itself is shown in Figure 4.1. The main controller first sends sections of
the full list of web pages to a given number of crawlers. They then download the whole page
and store it on a server for processing. Multiple crawlers are used in parallel to speed up
this process. After every page is downloaded, multiple parallel analyzers are used to process
the list of downloadable pages. Finally, one instance combines all analyzed data into one
file. Figure 4.1 further shows a visualization component. This part of the framework is used
to produce graphs in order to find patterns and correlations within the gathered data.

4.7 Technical Implementation

The crawlers were implemented using the puppeteer-framework for accessing and down-
loading a given website [22ah]. Puppeteer allows for remote-controlling headless Firefox or
Chromium browsers. In this case, the default Chromium browser was chosen, as this choice
does not affect the page structure itself. For the analysis itself, a feature was used that
allows for accessing the page’s final DOM after JavaScript execution. First, the remote-
controlled browser waits until the networkidle0 -marker. According to the puppeteer docs,
this is the point in time when no network connections are active for more than 500ms [22ah].
Then, JavaScript is injected in order to extract the targeted data. Puppeteer also allows

39

4 Analysis

90.98%

92.58%

68.41%

70.17%

2.92%

3%

25.48%

25.41%

6.11%

4.42%

6.11%

4.42%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Amount of characters (d)

Amount of characters (m)

Number of scripts (d)

Number of scripts (m)

External files
Distribution in %

M
ea
su

re
m
en

t

Internal script-blocks No JavaScript / Other

Figure 4.2: The average percentage of JavaScript locations in number of files/blocks and
characters on desktop (d) and mobile (m). Source: [VS22a]

for accessing the execution coverage of CSS and JavaScript. This coverage represents the
code that is executed until the measurement ends, which is therefore used to gather data for
measurements 2 and 3. The page’s HTML is analyzed using the htmlparser2-library and
the used libraries with Wappalyzer.

4.8 Results

The measured data will be discussed in order of appearance in section 4.4. When the perfor-
mance differences of the most popular frameworks are discussed, React, jQuery, Angular,
and Vue are mentioned in this order. This is based on a Statista survey for the most popular
web frameworks by extracting the four most popular tools that are front-end only [Sta21].
The following data is also published in paper [VS22a].

1) Number of external and internal JavaScript-blocks:
This measurement includes data from nd=8417 and nm=8468 pages. On average, external
files account for 68.41% of all included JavaScript blocks and 70.17% on mobile devices. The
distribution of external and internal sections are shown in Figure 4.2. There, it is visible
that 25.48% are internal script blocks on desktop and 25.41% on mobile. More crucially, on
desktop, external files make up 90.98% of characters compared to all JavaScript characters
on an average page (92.58% on mobile). This shows that external files might account for
fewer blocks but are responsible for the vast majority of code.

A large amount of external JavaScript does not directly indicate if a web page will load
slowly, as it could also be delayed and, therefore, would not impact the render time. However,
the data showed that 73.73% of the external JavaScript blocks are render-blocking on desktop
(76.25% on mobile, nd=8417, nm=8468) [VS22a]. In general, when including external and
internal JavaScript, 91.78% of JavaScript is render-blocking (on desktop, 93.36% on mobile,
when comparing the number of characters). Therefore, nearly three-quarters of all loaded
external JavaScript is slowing down the time until FCP, which indicates major optimization
potential.

Filtering the results by the technology used, some differences can be detected. 74.74% of all
pages with at least one detected framework use more than 95% render-blocking JavaScript
(on desktop, 87.37% on mobile). The least amount of render-blocking code were pages
built with the ”Twitter Flight” framework, with only 73.42% render-blocking JavaScript on
desktop and only 51.61% on mobile. In contrast, pages that use ”AlloyUI” (now deprecated)
or ”BEM” used 100% render-blocking JavaScript on desktop and mobile platforms [Edu22;
Vse22; VS22a]. This shows that optimizing render-blocking JavaScript is possible but is still
not widely used.

40

4.8 Results

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
jQuery (d)
jQuery (m)

React (d)
React (m)
Vue.js (d)
Vue.js (m)

Angular (d)
Angular (m)

Usage in %

Fr
am

ew
or

k

CSS used JavaScript used

Figure 4.3: The average percentage of CSS and JavaScript used until networkidle0 on desk-
top (d) and mobile (m). Source: [VS22a]

Framework
Number of websites
detected

Percentage of external
files (in characters)

Percentage of render-blocking
scripts (in characters)

React nd: 1413 nm: 1457 d: 95.51% m: 97.68% d: 94.56% m: 96.65%

jQuery nd: 5140 nm: 5222 d: 97.16% m: 98.24% d: 96.46% m: 97.39%

Angular nd: 378 nm: 373 d: 94.24% m: 98.65% d: 91.46% m: 95.53%

Vue nd: 418 nm: 432 d: 97.47% m: 98.36% d: 96.59% m: 97.29%

Table 4.2: Comparing values in percent of the most popular JavaScript-frameworks. d =
desktop, m = mobile. Source: [VS22a]

The differences are less prominent when focusing on the four most used JavaScript frame-
works. The individual results are shown in Table 4.2. Most notably, jQuery is the most
popular front-end framework. The usage of render-blocking scripts of React, Angular, and
Vue only differ by 5.13% on desktop and 1.86% on mobile, with all frameworks being more
than 90%. This could also be due to the fact that some of the frameworks can be used in
combination. For example, Angular can be used with jQuery. All four frameworks also use
over 90% externally linked JavaScript files, on both desktop and mobile. Therefore, it is
shown that even the most popular frameworks are not designed to optimize render-blocking
JavaScript, as they allow their co-existence.

2) Efficiency of JavaScript:
The efficiency of JavaScript in this context is calculated by the number of characters used
until render divided by the total detected JavaScript characters. In a perfect scenario, the
page uses 100% of the render-blocking code until the page is displayed.

When considering both render-blocking and non-render-blocking code, on average, 40.81%
of all code is used until render on desktop and 40.61 % on mobile [VS22a]. Examining only
render-blocking code reveals that there is no significant difference, with 40.94% of code being
executed on desktop and 40.65% on mobile (with nd=7741 and nm=7741). The code was
measured until networkidle0.

Differences are minimal but present when considering only the four most popular JavaScript
frameworks. As shown in Figure 4.3, both Rect.js and Angular improve code usage by ≈3-
5% compared to the other two frameworks. The lowest usage was measured on pages using
jQuery, which have less than average code efficiency. This could be explained by jQuery
having an extensive feature set, but its most popular feature of element selection and DOM
modification make up only a small percentage of the total framework. Therefore, not all
loaded functions are used, which decreases efficiency.

3) Efficiency of CSS: As speculated in the measurement mentioned above 3, the ef-
ficiency of CSS is lower compared to JavaScript. The efficiency is also calculated by di-
viding all used CSS characters by the total number of characters. When measuring until
networkidle0, on desktop, 15.86% of all CSS is used and 14.84% on mobile (nd=7739,
nm=7739). This includes both render-blocking and non-render-blocking CSS. When exam-

41

4 Analysis

89.5%

92.1%

69.8%

70.9%

6.0%

4.9%

25.7%

26.1%

4.6%

3.0%

4.6%

2.6%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Amount of characters (d)

Amount of characters (m)

Number of blocks (d)

Number of blocks (m)

M
ea
su

re
m
en

t

Distribution in %
External files Internal CSS-blocks No CSS /Other

Figure 4.4: The average percentage of CSS locations in the number of files and blocks and
characters on desktop (d) and mobile (m). Source: [VS22a]

ining only the render-blocking CSS, no significant difference can be found, with 15.87% on
desktop and 15.01% on mobile.
As front-end frameworks like React or Angular also manage the CSS of the developed

components, their CSS code efficiency is also evaluated. Shown in Figure 4.3, the average
CSS code usage is lower than the average of all measured pages. However, this also includes
code from jQuery, which itself does not manage CSS directly. This might be due to it being
used on pages that do not optimize the page in general, as the majority of the functionality
provided by jQuery can also be re-created by modern JavaScript 3.

4) CSS locations:
The location of CSS blocks, shown in Figure 4.4, is similar compared to JavaScript shown
in Figure 4.2. This also implies that a smaller number of external CSS files (≈70%) is
responsible for ≈90% of all CSS measured by the number of characters. An average page on
desktop links 8.50 external CSS files, and an average mobile page links 8.74. The increase in
average external files on mobile might be due to optimization techniques similar to Critical,
as internal files are always render-blocking [add22]. Therefore, the ratio of render-blocking
and non-render-blocking CSS has to be examined as well for testing this hypothesis.
5) Render-blocking and non-render-blocking CSS:

As also speculated in measurement 3, there is no flexible and native way to delay CSS without
using JavaScript. As a result, the average desktop page uses 89.47% render-blocking CSS
and 92.09% on mobile. Therefore, the additional files on mobile detailed in the previous
measurement are highly unlikely to be part of an asynchronous loading optimization. On
desktop, only 5.96% of pages (and 4.92% on mobile) use methods to load CSS asynchronously.
They include (but are not limited to) using media-queries. The remainder of the measured
pages do not link CSS externally or were unmeasurable (2.99% on mobile and 4.57% on
desktop). When considering external CSS only, on average, 63.65% of all characters on
desktop could be detected as render-blocking (with 65.40% on mobile). However, this might
be due to large fluctuations, as the median is 86.2% on desktop and 88.62% on mobile.
As described before, three out of the four most popular front-end frameworks manage the

CSS of the application as well. Their results are displayed in Figure 4.5. Compared to the
overall average, no significant difference can be found in the use of render-blocking and non-
render-blocking CSS. It has to be mentioned, that jQuery has similar results as well. This is
also because it is likely used in combination with other frameworks. React, Angular, or Vue
have all methods of linking external CSS via the framework itself. As a result, the usage
of render-blocking CSS is a conscious choice of the framework’s creators or the developer.
Either way, due to the disconnection from the actual compiling of the website’s HTML,
which is created by the frameworks, developers might be unaware of this issue. Another
explanation could be that the CSS was not delayed due to backward compatibility or for
clients who disabled JavaScript to ensure all clients see the page correctly.

3youmightnotneedjquery.com

42

https://youmightnotneedjquery.com

4.8 Results

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
jQuery (d)
jQuery (m)

React (d)
React (m)
Vue.js (d)
Vue.js (m)

Angular (d)
Angular (m)

renderblocking
Share in %

Fr
am

ew
or

k

non-renderblocking Other / not measurable

Figure 4.5: Average percentage of render-blocking and non-render-blocking CSS per most
popular framework on desktop (d) and mobile (m). Source: [VS22a]

6) Matches of CSS selectors:
Measuring the efficiency of CSS alone does not tell the whole picture, as CSS can be re-used
or written in a way to affect more than one element. Therefore testing the number of matches
for every CSS rule is important. However, it has to be mentioned that, on average, 24.64%
of the CSS selectors on desktop and 25.04% on mobile are pseudo-selectors. These include
rules like :focus or :hover, which are only active if a user interacts with the element. In
contrast, there are also elements like :root, which are commonly used to specify global CSS
variables that work without user input. The following statements all refer to elements that
do not require user input.

Averaging out all HTML documents, the CSS selectors have 3.07 matches on desktop and
2.98 matches on mobile (nd=8417, nm=8468). Therefore, every given CSS rule contains
code that affects three HTML elements on average until networkidle0. However, this data
contains large extremes. One of them is unused CSS, with 74.79% of rules on desktop and
77.26% on mobile having zero matches. Calculating the corresponding amount of CSS, it is
responsible for 73.57% of all CSS code on desktop and 75.87% on mobile [VS22a]. Therefore,
approximately three-quarters of all transmitted CSS code style selectors that require user
input, media-queries for responsive design or are entirely unused. Furthermore, it was found
that pages that load more external CSS have fewer average matches per selector.

7) Resource distribution and element positions:
According to the HTML specification, it is possible to link external JavaScript files in the
head or body4. Scripts linked in the head of an HTML document made up an average of
60.55% on desktop and 61.58% on mobile. 31.95% of scripts are linked on the body of an
HTML-document, and 32.73% on mobile (nd=8417, nm=8468). The remaining links are
linked outside both elements.

In contrast, linking CSS is only body-ok since a newer version of the HTML specification
[wha22]. Due to this change, 81.75% pages on desktop and 82.51% on mobile link external
CSS in the head of an HTML document. As expected, on desktop, only 5.06% of links to
external CSS is in the body, and only 0.41% on mobile. The significantly smaller percentage
on mobile could be due to a conscious change to ensure backward compatibility made by
the developers. The remaining web pages utilize locations outside the head and body to
link external CSS or do not use CSS at all. Comparing the sizes of the head and body is
important for a streaming-based delivery. The head of a document might contain crucial
meta information which is used for displaying the page, like links to external CSS or the
used encoding. As the data shows, the size of the body is responsible for 73.28% of the total
document size on desktop (72.75% on mobile), while the head spans 24.91% of the document
on desktop (and 15.8% on mobile). Therefore, the body contains the majority of transferred
data. 1.80% of the data on desktop and 0.09% on mobile are outside both elements.

4
html.spec.whatwg.org

43

html.spec.whatwg.org

4 Analysis

Desktop Mobile
% of used JavaScript until idle p: 39.05% r: 40.81% p: 39.93% r: 40.61%

% of used CSS until idle p: 10.84% r: 15.86% p: 11.10% r: 14.81%

% of renderblocking JavaScript (iaoc) p: 90.04% r: 91.78% p: 98.07% r: 93.36%

% of non-renderblocking JavaScript (iaoc) p: 1.96% r: 2.11% p: 1.93% r: 2.22%

% of unused CSS classes p: 79.25% r: 74.79% p: 84.21% r: 77.26%

% of CSS from selectors with 0 matches p: 77.54% r: 73.57% p: 82.39% r: 75.87%

Table 4.3: Average values of the page optimization framework Google PageSpeed for desktop
and mobile in comparison to the average of all analyzed pages (reference) with p
= PageSpeed, r = reference average, JS = JavaScript, idle = networkidle0, iaoc
= in amount of characters. Source: [VS22a]

Comparing the average amount of HTML, CSS, and JavaScript to each other, 13.29% of
the code consists of HTML, 70.07% JavaScript, and 16.64% CSS (11.54% HTML, 75.51%
JavaScript and 16.95% on mobile). The largest part of the transmitted code is, therefore,
JavaScript, followed by CSS. HTML represents the smallest fraction of data.
Similarly to CSS, external JavaScript files are mainly linked at the start of a document,

with a smaller fraction also being inserted at the end. This trend is the same for both desktop
and mobile. Render-blocking JavaScript files that are linked at the end of the document
ensure that all DOM elements are available, as the code is executed after all relevant HTML
is already parsed by the browser. JavaScript that is linked and executed at the beginning or
before the targeted elements are parsed needs an additional listener, which waits until the
elements are available. However, this is only true if the code accesses or modifies the DOM.
Therefore, code that is independent of the DOM can also be loaded at the beginning. If this
is the case, then it also could be loaded asynchronously.

4.8.1 Desktop vs. Mobile

As shown in the previous results, the data set for the crawled mobile pages was larger than
the number of crawled desktop pages. One possible reason is the crawler detection, as the
puppeteer user agent combined with the default (desktop) window size might indicate a bot,
which is correct. We argue that this difference is insignificant due to the number of crawled
pages, as only averages were used to evaluate the measurements. However, some differences
in the number of pages might be inevitable regardless of setup due to factors like timeouts.
Still, on average, the mobile pages performed worse than the same page on desktop in

nearly every scenario. This could be because it is common practice for developers to use
desktop computers to develop web pages, resulting in the desktop version of browsers being
the default development environment. Even though the mobile-first approach is now the
standard as it is used for indexing and ranking pages by Google [22aa], it might not be how
web pages are built. Instead of showing more data for desktop pages, the data suggests that
pages are still developed desktop first, removing elements for mobile later. However, the
code for the now-hidden elements is still sent to the client. This would explain the overall
worse results. For example, the JavaScript code is still part of the transmitted code-base,
but their functions are not called as a mobile platform is detected.

4.8.2 Frameworks

The previous measurements showed that the difference between the four most popular frame-
works is small. However, differences still exist. For example, the ”Twitter Flight” framework
showed that developing pages with significantly less render-blocking code is possible.
On average, 2.12 libraries and frameworks were detected by Wappalyzer on a given web

page, with identical results on both desktop and mobile.

44

4.9 Optimization Potential

HTML
13.3%

JavaScript (JS)
70.1%

CSS
16.6%

unused 84.1%40.8% used unused 59.2%
used

15.9%

89.5% render-blocking91.8% render-blocking

10.5% non-render-blocking8.2% non-render-blocking

Figure 4.6: Summary of the measured proportions (on desktop) of code (HTML, JavaScript,
and CSS) in the middle, with the percentages of render-blocking and non-render-
blocking code above, and the code usage until render below. [VS22a]

Google PageSpeed was described in section 2.9.3 and will be evaluated separately. While
it is not one of the most popular frameworks (nd=46, nm=49 of all crawled pages), it
promises a near-universal optimization of web pages by applying best practices to a code
base. When compared to the global average, pages that use PageSpeed fare worse in almost
all categories, as shown in 4.3. We hypothesize that this is due to developers over-estimating
the capabilities of the PageSpeed framework due to false expectations. With PageSpeed
claiming to improve the page, developers might be less careful with the amount and quality
of included resources, resulting in worse results. Therefore, PageSpeed does not achieve the
goal of better web pages, at least when compared to the global average on a structural level.

4.9 Optimization Potential

JavaScript and CSS are responsible for 86.7% of all transmitted code. The majority of
both resources are loaded in a render-blocking way (73.73% JavaScript and 89.47% CSS).
However, only a fraction of both resources is used until render (40.8% of JavaScript and
15.9% of CSS). As more render-blocking means more data must be loaded and parsed before
it is shown to the user, less render-blocking code will directly lead to loading improvements.
It was also shown that popular frameworks do not improve loading speed, as displayed in
Figure 4.3. It indicates that especially full-fledged front-end frameworks like React, Angular,
or Vue do not automatically contain optimization techniques and, as a result, do not deliver
faster pages by default. In general, JavaScript has to be modified in a form so that it does not
block the render of the page. CSS has to be split so that only render-critical elements load
synchronously. Both will significantly increase loading times due to the amount of unused
code until render.

4.10 Summary and Effects on the Concept

In order to gather data necessary for developing the concept of this work, a large-scale anal-
ysis was created by crawling and evaluating the top 10.000 web pages of the web, based
on the research-oriented Tranco list [Poc+18]. The evaluation was structured into seven
categories which consist of render-critical aspects of the page, which influence loading times.
These include, among others, the number of render-critical JavaScript and CSS, the code
efficiency of both until the page is rendered, and their distribution. The individual aspects
were also evaluated by testing the differences on desktop and mobile and extracting the data
of the four most popular front-end frameworks, respectively. Furthermore, the PageSpeed

45

4 Analysis

framework was evaluated separately. The results showed major optimization potential for
both JavaScript and CSS. The key points are also visualized in Figure 4.6. Both are respon-
sible for the majority of code, with a combined 86.7% of all data transmitted. For both, the
majority is transmitted in a render-blocking way, with 91.78% of JavaScript and 89.47% of
CSS being loaded render-blocking on desktop. However, only 40.8% of the loaded JavaScript
and 15.9% of CSS is used until the page render. This presents major optimization potential
since delivering unused JavaScript and CSS will slow down the time until FCP. Therefore,
when creating the concept, methods have to be developed in order to address both the CSS
and JavaScript inefficiency and render-blocking properties by presenting better solutions.

46

5 Concept

47

5.1 Concept Idea

Figure 5.1: Multiplexing comparison of HTTP/1.1 and HTTP/2. Image source: [22t]

In order to develop a concept for streaming web page content, the recent trends and changes
of the web itself, as well as demands for backward compatibility, have to be considered.
Mainly, the underlying HTTP protocol is changing how web pages are delivered. For every
change of the protocol, different optimizations are used in order to counteract limitations.
This will be detailed in the following sections. However, the base concept of splitting,
which first emerged in HTTP/2, will be taken as a starting point to create the concept goal
described next.

5.1 Concept Idea

As analyzed in section 4.9, there is a significant amount of optimization potential left. More
specifically, most JavaScript and CSS are loaded in a render-blocking way, with both being
used less than 50% until render. CSS, in this case, is only used by ≈ 16%. This implies that
there are significant pieces of code that can be delayed until after render, as they are (at least
initially) unused. By doing so, the time until FCP could be improved, as less data would
be required to display a given web page. However, the most important question remains:
Why are websites still inefficient to this extent? The answer lies in the way web pages are
built. The current popular approach is to consolidate code in the form of large external files,
libraries, or bundles [22aq; 22aj]. As Google Chrome software engineer Houssein Djirdeh
stated on web.dev: ”npm makes adding code to your project a breeze. But are you really
using all those extra bytes? [...] Registries like npm have transformed the JavaScript world
for the better by allowing anyone to easily download and use over half a million public pack-
ages. But we often include libraries we’re not fully utilizing.” [22aj]. In essence, it is easy for
developers to add and combine code but hard to detect if code is unused [22aj]. Furthermore,
popular frameworks like React, Angular, or Vue.js all use a bundler called webpack [Rea21;
22g; 22av; web21]. With webpack, even more resources can be combined, allowing for fewer
requests made to the server. Analyzing the size impact of bundled resources and installed
packages with webpack requires additional frameworks, as described by Djirdeh [22aj]. These
additional steps present another barrier for developers to create efficient code used until ren-
der. The necessary, modern solution to this problem is called splitting, a reaction to changes
in the underlying HTTP protocol [22ar]. To further explain splitting and the ever-increasing
issues with bundling, the major changes of HTTP versions need to be discussed first.
Differences between HTTP/1 and HTTP/2: As shown in Figure 5.1, multiplexing

49

5 Concept

is one of the most significant improvements of HTTP/2. With this change, a single TCP
connection can be shared to load different resource types. With HTTP/1, a new connec-
tion was necessary for each resource, which slowed down the loading times of a given web
page. Therefore, one possible countermeasure is to bundle resources together to decrease the
number of connections. This is also what webpack does [web21]. However, as described by
Erwin Hofman, bundling resources for web pages delivered via HTTP/2 is an ”anti-pattern.”
He stated: ”In HTTP/2, this behavior will end up impacting the download-time of other re-
sources as well, because of the way HTTP/2 works. So [...] you should be stepping away
from obsessively bundling your resources.” [22ar]. However, as stated before, popular frame-
works like React, Angular or Vue.js currently use bundler like webpack in order to deliver
the generated code. This is a significant factor for loading unused and, therefore, inefficient
code, as described by Vijay Dharap, who showed that the webpack bundle is often larger
than necessary: ”[...] one must pay attention to what kind of libraries are getting bundled
via webpack. This can have a large impact on application bundle sizes and thereby on your
first page load and parse time” [Dha18]. Due to the widespread usage of webpack resulting
from the popularity of the before-mentioned frameworks like React, bundling remains being
a relevant topic of modern front-end development. In contrast, Erwin Hofman suggested
doing the opposite: splitting resources instead of bundling them [22ar]. This has multiple
advantages. The most crucial being new ways of delaying parts of code, which are only
necessary after rendering the page itself. When all resources are bundled into one single
file, then these options don’t exist: either load everything as render-blocking code or delay
everything.

Comparing bundling and splitting: To summarize, the concept of bundling and split-
ting is now compared directly. As shown in Figure 5.1, resource consolidation approaches
were used to mitigate the negative performance aspect of needing new TCP connections for
every request with HTTP/1. This technique is called bundling and reduces the number of
handshakes by decreasing the number of linked external files. However, all sections of code
which are part of one bundle cannot be separated before all data is transferred due to the
nature of the bundling process itself.
In contrast, the opposite approach is true for splitting. Here, one resource file is divided into
multiple separate elements called chunks. Splitting can be done in newer HTTP versions
as an optimization step, as individual resources can be transferred based on their priority.
Furthermore, since HTTP/2, multiple files can be transferred over one TCP connection via
multiplexing, eliminating the overhead which is present in HTTP/1. Delaying code that is
not render-critical will therefore improve loading times. However, this is the opposite of what
bundling intends to do. As a result, bundling has been a deprecated concept since HTTP/2.

Resulting structure considering the future of the HTTP protocol: Even with new
splitting approaches, the underlying stream-based foundation described beforehand is not
fully utilized. When considering the current state of HTTP/2 and future improvements
like 0-RTT of HTTP/3, choices on how front-ends are built need to be re-evaluated. Code-
splitting techniques can help decrease the issues caused by loading large resources. However,
the next generation of web front-ends has to go one step further. The solution is provided
by HTTP itself: sending all render-blocking code of a given web page via streams. More
precisely, streaming the split chunks as packages. Splitting the code into a large number
of files would also result in a large number of requests, which can be eliminated using one
stream, sending data without requiring requests from the client at the correct time. This fine-
grained splitting approach has the potential to fully utilize the streaming features supported
by the new versions of HTTP. If necessary, this approach provides advantages over the all-
or-nothing approach of bundles, and even the splitting technique, by viewing the transfer
of data and the page rendering as a process over time. With streaming, page elements and
resources can be added continuously, not only when the page is initially displayed to the user.

50

5.2 Summary and Next Steps

341 412

HTML

CSS

Java-
Script

4

4

4

3

3

3

2

2

2

1

1

1

4

2

1

3

3

3

1

4

2

2

1

4

1. Splitting 2. Optimizing 3. Ordering

Figure 5.2: Stages of streaming web pages, starting with splitting individual files into chunks,
optimizing and filtering them (for example, including removing comments), and
ordering them based on the given priority.

Ideally, the individual elements would start with a code usage of 100% at the beginning, then
decrease until all code is transferred. For this, three steps are necessary:

1. Splitting the individual resources,

2. Optimizing each chunk by determining their priority, and

3. Ordering all chunks based on the priority given, which is also the order they will be
delivered and rendered later.

This order of elements can then be transferred. However, re-combining them back to files and
sending them to the client would defeat the improvements made by splitting code. Instead,
another solution is proposed: streaming all resources to the client. By doing so, it would
also allow for splitting the HTML of the page as well. Streaming in this context describes
the continuous addition of split resource chunks in an order determined by the server. To
achieve the splitting step 1, techniques need to be found for CSS, JavaScript, and HTML,
as they are the only render-blocking elements of web pages [20]. This is also visualized in
Figure 5.2, step 1. Other media, for example, images, are therefore not directly modified in
this concept. However, by the nature of HTTP/2 and the next generation HTTP/3, they
are implicitly streamed as well, just with a larger chunk size, determining the image in its
form as the smallest package. Next, CSS and JavaScript resources need to be optimized,
as shown in chapter 4 because they are used only partially on average. Optimization also
includes removing code parts, such as comments, as shown in Figure 5.2. This is the goal
of step 2. The required steps for CSS, JavaScript, and HTML are individually described in
section 5.3, section 5.4, and section 5.5, respectively. Next, the correct order of all elements
is needed based on their priority. This is the goal of step 3. As CSS and JavaScript can be
in-lined (and also delayed), this is mainly done as part of the HTML splitting described in
section 5.5.1. Lastly, as described before, the chunks are transferred via streams to optimally
decrease the first render time.

5.2 Summary and Next Steps

As shown in Figure 5.3, four relevant areas need to be addressed in order to be able to
stream web pages. These are HTML, CSS, JavaScript, and the streaming itself, visualized
as the four sections in the second shell in Figure 5.3. The outer ring displays the techniques
which allow these four sections to be implemented sufficiently for streaming. However, as
marked with grey sections, implementation gaps exist when considering the related work
in chapter 3. These grey gaps will be discussed in more detail in their respective sections

51

5 Concept

CSSHTML

Jav
aS

crip
tStreaming

HTML

spl
ittin

g

Streaming
web

pages

SSR

Location-
aware

splitting,
full page

render

Re-write
code-base

Delay all
code

Easy to
integrate delay

and splitting
technique

Existing
streaming

protocols like
WebSocket

or SSE
backward

compatibility?
Best solution?

Figure 5.3: The layers of required software tools to stream web pages. The missing concepts
are marked with grey, showing the required techniques necessary for a complete
solution

(section 5.3 for CSS, section 5.4 for JavaScript, and section 5.5 for HTML and Streaming). In
general, as the complete approach relies on render-critical resources like JavaScript and CSS,
their concepts are described first section 5.3 and section 5.4. Both describe solutions and
improvements which are required in order to create a developer-oriented and full-featured
solution. Afterward, the streaming concept will be described in section 5.5, incorporating
the previous JavaScript and CSS solutions. This also includes the technique necessary for
splitting HTML. With this setup, all gaps in Figure 5.3 will be addressed, which allows for
streaming web pages.

5.3 Concept for CSS Streaming and Rendering

As shown in chapter 4, CSS is the most inefficient render-blocking resource. Furthermore,
as the streaming-based approach requires some form of code-splitting, both aspects will be
addressed in this section.

Summary of Related CSS Optimization Techniques

The related work of the CSS concept can be found in section 3.2. All current methods
have drawbacks, as demonstrated by the techniques and papers described. This primarily
refers to articles that only examined a small number of web pages or lacked details on the
used parameters, such as the version of the list of tested pages. Furthermore, currently used
methods show significant remaining potential. Additionally, existing approaches do not focus
on a streaming-compatible system. Supporting quick user interaction after FCP requires
expanding the render by processing the entire page, as opposed to the current ”Above-the-
Fold” method. Furthermore, a location-aware renderer is necessary, which needs to support
a more fine-grained splitting of CSS.

52

5.3 Concept for CSS Streaming and Rendering

Loading a web page
which uses CSS

Extract CSS from
HTML-Document

Determine critical CSS

CS
S

pr
oc

es
sin

g

Generate new HTML-
File

with new CSS-Links

Loading a web page
which uses CSS

process CSS with a
viewport height set to
the full height of the

page

Save modified web
page and

critical/uncritical CSS
files

Determine full scroll
height of the page

Es
se

nt
ial

removing CSS
duplicates from result

A:
 In

lin
ing

all

 C
SS

B:
 E

xtr
ac

tin
g

all
 C

SS
 to

ex
te

rn
al

file
s

Figure 5.4: Workflow of Essential(right), including a detailed view of the CSS processing
(left). Source: [VS23b]

5.3.1 Concept

As shown in 3.2, no existing technique fulfills all necessities presented by a streaming-based
approach. More precisely, no full-page CSS renderer or location-aware CSS processing tech-
nique exists. Both are required if the source code should be able to split for a stream-based
approach.

The solution will be presented in this section, which is called Essential. The goal of
Essential is to extract the minimal amount of render-blocking CSS needed to display the
web page correctly and group it at the correct position of the HTML document so that the
necessary CSS is loaded directly before their matching elements are shown. Furthermore,
as described in 3.2, duplicated code will be removed, which should increase code efficiency
significantly. Placing the CSS in the correct positions and simultaneously optimizing it will
improve the time until FCP. This optimization is shown and described in more detail at
Figure 5.5. Furthermore, based on the related work, it is unclear if large amounts of in-line
CSS will decrease the render performance due to browser-specific implementations. This is
true for the streaming approach, as the CSS is not loaded as external files. Therefore, the
concept will include two versions, both shown in Figure 5.4. The orange path shows the first
version, ”A,” which in-lines all CSS. Version ”B” consists of the opposite and places all CSS
into external files. Both versions will be evaluated, focusing on their performance. Only
version ”A” can be efficiently used for the stream-based concept. However, if the in-lined
CSS shows to be significantly slower than external files, the main concept has to be adapted.

Server-Side CSS Processing

In order to specify the full concept, it is necessary to discuss how CSS processing generally
works. In order to extract the render-”critical” CSS, a given web page is opened with a
remote-controlled browser. Then, all CSS is extracted. With the aid of JavaScript, all CSS
selectors of the extracted code are then matched on the page. If a match is found, the tested
CSS can be marked as ”used for render” or, in other words, ”critical .”Otherwise, the tested
code is unnecessary for displaying the page (”uncritical).

53

5 Concept

1 <!doctype html>

2 <html>

3 <head>

4 <style>

5 p {

6 color: blue;

7 }

8 h1 {

9 color: red;

10 }

11 p { /* duplicated CSS */

12 color: blue;

13 }

14 </style>

15 </head>

16 <body>

17 <h1>Headline</h1>

18 <p>Text</p>

19 </body>

20 </html>

1 <!doctype html>

2 <html>

3 <head>

4 </head>

5 <body>

6 <style>

7 h1 {

8 color: red;

9 }

10 </style>

11 <h1>Headline</h1>

12 <style>

13 p {

14 color: blue;

15 }

16 </style>

17 <p>Text</p>

18 </body>

19 </html>

20

Figure 5.5: Two versions of the same web page, showing the traditional use of CSS on the
left and the CSS placed by a location-aware optimizer on the right. The pages
both result in an identical web page visually. However, the CSS on the page on
the right can be loaded in chunks via streams more efficiently. The reason is
that not all CSS needs to be loaded before showing the first section of HTML.
Furthermore, all duplicated CSS is also removed.

Essential also uses this method to extract critical and uncritical CSS. This is shown in
Figure 5.4.

Next, a copy of the original file is used and processed. All in-line CSS and links to
external CSS files are deleted in this step. Furthermore, CSS code duplicates are removed,
as described in 3.2. This copy of the original HTML file will be used in the next steps.

Preparing CSS for Streaming

However, until now, the CSS is not ready for streaming, as this only extracted the full amount
of render-critical and delay-able code. To fix this, the following steps are taken:

1. First, for every match of the selector, the targeted element is modified. A uniquely-
named attribute is added consisting of a list of numbers, which reflect a generated ID
of the parsed CSS rule.

2. After all CSS is matched, the CSS is iterated over again. This time, the code location
of every critical CSS rule is marked at the first occurrence of the matching ID in the
document, inside a style-tag. To illustrate this behavior, this location-aware placing
of CSS is shown in Figure 5.5. There, it can be seen that the CSS can be placed directly
before it is first used. For example, the p-tag is only styled after the headline.

3. For additionally preparing the CSS for streaming, the splitting, in general, will remove
comments and CSS duplicates, as shown in Figure 5.6. There, it is also visible how the
”critical” and ”uncritical” files are ordered in such a way that the most important CSS
will be sent first. For the shown example, the order is, therefore, purposefully placed
to allow the switch of CSS code to be made.

54

5.3 Concept for CSS Streaming and Rendering

CSS

a:visited{
 color: #419A95;
}
/* comment */
a{
 color: #1C4472;
}
a{
 color: #1C4472;
}

CSS (non-render-critical)

a:visited{
 color: #419A95;
}

CSS (render-critical)

a{
 color: #1C4472;
}

Comment

/* comment */

CSS duplicate

a{
 color: #1C4472
}

Figure 5.6: Simplified CSS splitting approach via Essential, showing how the original CSS
is processed, ordered, and split. The render-critical CSS is prioritized, with the
non-render-critical CSS being delayed. Duplicate CSS is also removed. The
location-aware splitting feature is shown in more detail in Figure 5.5, as this
example is only implying the targeted HTML of the link element (”a”).

5.3.2 Preparation Results of Essential

The main result is a list of CSS chunks or files, including information about their respective
priorities and targeted HTML locations. Furthermore, an HTML document is generated,
consisting of all required styling information in the form of in-lined CSS. There is also an
”uncritical” CSS file, which can be streamed later or loaded in a delayed way via JavaScript.
This describes version ”A” in Figure 5.4. For some of the tests in the following evaluation,
a ”delayed” link to the ”uncritical” CSS is inserted into the document in order to compare
the results to Critical. However, this step is not necessary for streaming.

For version ”B,” the original HTML is filtered by removing all in-line CSS and links to
CSS. Next, a render-blocking link to the ”critical” CSS is inserted, followed by a ”delayed”
link to the ”uncritical” CSS.

5.3.3 Algorithm Summary

To summarize the complete CSS preparation, the steps of the algorithm are described again
in detailed steps. These steps are also visualized as a full example in section 8.1.

1. First, the original page is opened via a remote-controlled browser to get the full height.

2. Then, the page is processed into critical and uncritical categories:

a) All CSS that is loaded (externally or internally) on the page is extracted.

b) Next, all selectors of the extracted CSS are gathered, and the CSS classes are
parsed.

c) All selectors are then queried in the HTML document. If a match is found in-
side the full height of the document (gathered in step 1), the CSS is marked as
”critical.” Otherwise, it is marked ”uncritical.”

d) Implicitly, both categories do not contain any CSS comments as they are missing
selectors. The parsing step removes code comments inside classes, as they are
simply ignored 2b.

3. After categorizing into ”critical” and ”uncritical,” all CSS duplicates are removed.
This includes duplicate classes with identical code in their respective category. The
categorization into ”critical” and ”uncritical,” as well as duplication removal, is also an
optimization method that allows for the next step to be quicker due to reduced input.

55

5 Concept

4. Next, the CSS is prepared for streaming.

a) First, the ”critical” CSS selectors are iterated over. Every critical selector is given
a unique ID, and their match location in the HTML document is marked with
this ID by matching them to all DOM-Elements.

b) After all matches are marked, the first marker location of every selector-ID is
used as the primary HTML-DOM target for the CSS class. This means that the
respective critical CSS class has to be streamed directly before the HTML of the
target is loaded in order to ensure that the page is displayed correctly.

5. At this point, the CSS processing is finished. However, the resulting CSS can be
processed in various ways to be more useful. Mainly, for streaming the CSS, the
critical and DOM-location-marked CSS can be placed inside the HTML file (with all
original CSS removed). This step is called in-lining and is also shown in Figure 5.4
version ”A .”Therefore, when splitting the document as pure HTML later, the CSS
in-lined via <style>-tags can also be processed. Alternatively, the CSS can be placed
in ”critical” and ”uncritical” files, as described in Figure 5.4 version ”B.”

5.3.4 Implementation

Essential is implemented by using Critical as a foundation. For this, the CSS pro-
cessing section shown in Figure 5.4 is replaced by Critical. As Critical only considers
CSS ”Above-the-Fold” by default, the measured height of the page is used as input to pro-
cess the full page. The full scrollable height of the original page is measured by opening
the page via puppeteer. One additional advantage of using Critical is the built-in CSS
generator. If Critical can process a page without errors, the resulting ”critical” and ”un-
critical” CSS files will always consist of syntactically correct and error-free CSS code. Even
Critical cannot process every page due to CSS code errors. But this behavior ensures that
if Critical can render a page, Essential will also work. This is taken advantage of in
the next step. In order to find the locations of every match, the ”critical” CSS is parsed by
the css package [22j]. The before-mentioned copy of the page is then loaded via puppeteer.
Next, the resulting selectors are then query-matched via JavaScript onto the page. It is also
important that the CSS rules are kept in the correct order due to CSS being ”cascading.”
Furthermore, elements like @media have to be considered as well in order for the page to
keep the responsive properties.

5.3.5 Evaluation

As described in subsection 5.3.1, there are three software versions that render CSS:
Essential with all in-lined CSS, Essential with all external CSS, and Critical. The
main factors that will be evaluated are visual similarity to the original, code efficiency, and
loading speed. All three have a direct or indirect impact on loading performance.

Test Setup

The following tests use the 1000 most popular web pages according to the Tranco-list (ID:
5Y67N)[Poc+18]. Downloading the pages was done using an automated script, which remote-
controlled Chrome version 103 to download the pages, including all external resources, like
images or CSS. The result is a set of 869 pages that could be downloaded.
The remaining 131 web pages could not be loaded or were unavailable in Germany, where
the test location was.

56

5.3 Concept for CSS Streaming and Rendering

0 10 20 30 40 50 60 70 80 90 100

Reference

Critical

Essential

Efficiency in %

T
ec
h
n
iq
u
e

Figure 5.7: Measured average CSS code efficiency (CSS used until render). The graph in-
cludes standard error bars. Source: [VS23b]

0 50 100 150 200 250 300 350 400 450 500 550 600

Reference

Critical

Essential

Size in 1000 Characters

T
ec
h
n
iq
u
e

Figure 5.8: Measured average code size of all transferred (render-critical) CSS in characters.
The graph includes standard error bars. Source: [VS23b]

Code Efficiency

The efficiency of CSS code is measured by measuring the number of CSS characters used
until page render and dividing it by the total number of loaded (render-blocking) CSS. This
was done by using the code-coverage feature of puppeteer.

Figure 5.7 shows, that Critical and the reference page is outperformed by Essential con-
sidering the code efficiency. The reference page utilizes 15.5% of the render-blocking CSS,
Critical uses 37.1%. However, Essential further improves code usage to 48.8%. One
explanation is the removal of code duplicates shown in Figure 5.5, which decreases the total
code size and, in turn, increases efficiency.

Code Size Change

Assuming that the CSS file was ASCII-encoded, and one Byte equals one character. The
original CSS would, on average, have a size of 529.9 KB. Using Critical decreases the size
to 246.4KB, and Essential further reduces it to 180.1 KB. In general, this represents a
decrease of 65.9%, comparing Essential with the CSS of the original pages.

Visual Similarity

The visual similarity of the web pages is arguably the most crucial aspect of this evaluation.
To test the similarity, a pixel-by-pixel approach was chosen. For this, screenshots were
created of all page variations, processed with the different frameworks. Then, the size of
the screenshots is equalized, as this is necessary for the next step. The remaining space of
smaller screenshots is filled with a contrasting color. Next, the popular pixelmatch-library1

was used, which calculates a factor of similarity between two given images. The test was
done with a 0.0 threshold, highlighting even minor changes in the provided images.

1npmjs.com/package/pixelmatch

57

https://www.npmjs.com/package/pixelmatch

5 Concept

95 95.5 96 96.5 97 97.5 98 98.5 99 99.5 100

Reference & Essential

Critical & Essential

Reference & Critical

Similarity in %

T
ec
h
n
iq
u
es

Figure 5.9: Visual similarity between fully processed versions, based on a pixel-by-pixel com-
parison. Note: The x-axis starts at 95% to highlight differences. The graph
includes standard error bars. Source: [VS23b]

0 10 20 30 40 50 60 70 80 90 100

Reference & Essential

Critical & Essential

Reference & Critical

Similarity in %

T
ec
h
n
iq
u
es

Figure 5.10: Visual similarity between versions, based on a pixel-by-pixel comparison. Both
Critical and Essential were loaded without the ”uncritical” CSS. The graph
includes standard error bars. Source: [VS23b]

Figure 5.9 shows the visual similarity of the three versions. All processed pages generally
had a high similarity score of more than 98.5%. However, this test included the ”uncritical”
CSS, as it is present in a real-world scenario.

When removing the ”uncritical” CSS before processing, differences can be seen more con-
cisely, as shown in Figure 5.10. Most notably, the similarity of Essential compared to
the original is significantly higher than the result of Critical. This is to be expected, as
Critical only considers the part ”Above-the-Fold.” However, it is unlikely that a user
would notice these differences, especially when using Essential. This can be seen in Fig-
ure 5.11, where both versions are compared. For this image, the shown page was chosen as
it highlights the difference in the modified area.

Conversion Times

Conversion times matter when using the software in a production environment. Mainly,
it determines if the software can be used in real-time or if it can be used as part of a
CDN deployment or build process. In order to test the speed, the conversion times of both
Critical- and Essential are measured. The results are shown in Figure 5.12. 650 of the
869 downloadable pages could successfully be converged by Critical. One main limiting
factor of the remaining pages was the inclusion of semantically incorrect CSS, which is
normally ignored by the browser. The graph shows that Essential took 7.62 seconds on
average to convert the pages. The test was conducted on a 2020 MacBook Pro with a 2.3
GHz Intel i7. It has to be higher than Critical, as Critical is part of Essential. On
average, Critical took 4.397 seconds to process a page. Furthermore, Figure 5.12 also
compares with an unmodified version of Critical. Therefore, real-time usage might not be
possible. Usage as part of a built- or delivery- chain would be favorable.

58

5.3 Concept for CSS Streaming and Rendering

Figure 5.11: Screenshots of wordpress.org modified using Critical (A) as well as
Essential (B), without including the CSS marked ”uncritical.” The dotted line
symbolizes the ”Above-The-Fold” mark when considering a 1920x1080 monitor.
Source: [VS23b]

Loading Times

The times until page load was measured by comparing the time until FCP and the DomCon-
tentLoaded event. Like previous tests, puppeteer was used with Chromium 105.0 and Firefox
Nightly 105.0a1. The network speed was limited by the ”Network Link Conditioner”2-tool
provided by Apple. The DSL preset with a download speed of 10 Mbps was used. Different
configurations were chosen in order to test their individual impact:

• reference: the original web page

• an unmodified Critical version

• a modified Critical version used as part of Essential

• Essential with only internal (render-blocking) CSS (see Figure 5.4 version ”A”)

• Essential with only external CSS (see Figure 5.4 version ”B”)

Figure 5.13 shows that any form of CSS processing will significantly decrease the loading
time compared to the original page. Most notably, loading all CSS as external files negatively
affects the time until FCP. Both Critical and Essential had similar loading times, even
though Essential targeted CSS of a significantly larger portion of the page. The results
show that in-lining CSS not only matches the performance of comparable methods but is
also favorable when a decrease in time until FCP is targeted.
The FCP represents one of the first performance markers, while ”DomContentLoad” rep-

resents one of the last. Therefore, differences can be seen more prominently, as shown in

2developer.apple.com/download/more/?q=Additional%20Tools

59

5 Concept

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Only Critical

Critical as part of Essential

Only Essential

Conversion time in seconds

T
ec
h
n
iq
u
e

Figure 5.12: Conversion times of different versions. ”Only Critical” describes a website’s
conversion with Criticalin a non-modified state. Essential is separated into
the Essential-exclusive and Critical parts. The graph includes standard
error bars. Source: [VS23b]

1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600

Reference

Critical for Essential

Pure Critical

Essential internal CSS

Essential external CSS

Loading time until FCP in ms

T
ec
h
n
iq
u
e

Chrome
Firefox

Figure 5.13: Average time until different versions take until the FCP at 10 Mbps. The x-axis
begins at 1000 ms to highlight differences. The graph includes standard error
bars. Source: [VS23b]

Figure 5.14. Especially when viewing the results of Firefox, it shows that, again, any form
of CSS processing will positively affect the loading time. In this case, Essential undercuts
the loading time of Critical when used with external CSS. One reason for this is the in-
crease in code efficiency (section 5.3.5) and the decrease in the amount of CSS (Figure 5.8).
However, Chrome showed faster loading times when used with version ”A” (all in-file CSS).
As the files and test setup matches in both cases, it can be explained by the implementation
differences of both browsers. In any case, Essential showed major performance increases.

5.3.6 Limitations

In this test setup, the number of pages was limited by the availability of the web page.
Furthermore, only the initial page was tested, as opposed to all available pages of a given
domain. This is due to a variety of limiting factors, like login-restricted areas. Furthermore,
the efficiency of Essential is still less than 50%. One explanation could be that modern
responsive design is based on media-queries, which are only active at a specific screen size.
Therefore, it might be sufficient for this area of application.

60

5.3 Concept for CSS Streaming and Rendering

2,000 2,500 3,000 3,500 4,000 4,500

Reference

Critical for Essential

Pure Critical

Essential internal CSS

Essential external CSS

Loading time in ms

T
ec
h
n
iq
u
e

Chrome
Firefox

Figure 5.14: Average time until different versions load the ”DomContentLoaded”-event end
at 10 Mbps. The x-axis begins at 2000 ms to highlight differences. The graph
includes standard error bars. Source: [VS23b]

5.3.7 Conclusion

This section presented a solution called Essential, which allows for processing CSS in a
way that allows streaming the web page’s source code. The developed software extended the
functionality of the popular Critical -framework by processing the whole page, removing
code duplicates, and inserting the resulting CSS into the correct locations inside the HTML
code. The software was then tested by downloading and rendering all available web pages
of the top 1000 list, according to Tranco. The results showed that pages rendered with
Essential have a high visual similarity compared to the original, produce on average
65.9% less CSS, and match or even surpass the performance of Critical. Therefore, a
sufficient CSS-processing solution for streaming web pages was created. These results were
also published as a paper: [VS23b].

61

5 Concept

5.4 Concept for Javascript Splitting or Delaying

Next, the necessary solution for optimizing JavaScript will be discussed. As described in
Figure 5.1, the importance of bundling code is steadily declining with the decreasing distri-
bution of HTTP/1. Instead, optimizing code tries to decrease the amount of code loaded,
whether the goal is a stream-based web page or not.

Summary of Related Work

As shown by the described techniques in section 3.3, three options exist to stream JavaScript:
eliminate all unused code and wait for all JavaScript to be transferred, split JavaScript into
smaller chunks, or delay all code. As shown with Muzeel, not even the most sophisticated
approaches allow for an acceptable result [Kup+21]. Furthermore, the render-blocking prop-
erties of unmodified external JavaScript files would hinder the fast rendering of a page. In
contrast, delaying all JavaScript would result in fast render times but would also increase the
time until the page is interactive, depending on how the page and JavaScript code are writ-
ten. It also shows that no fully automatic usage-based JavaScript optimization is currently
possible. The best option is to split the JavaScript into sections and load it on demand.
With a framework like Qwik, fine granularity like this can be achieved [22q]. Furthermore,
the resulting Code chunks could be streamed as well. However, this requires rewriting all
code, which might not be economically feasible. Instead, a flexible but easily integrate-able
approach is needed, which balances both ease of use and the degree of granularity.

5.4.1 Concept

In order to create an approach that combines the positive aspects of all mentioned working
approaches would represent a middle-ground between Partytown and Qwik. This missing
approach would require more work done by the developer compared to Partytown, but less
than Qwik, as the code-base does not have to be rewritten. Therefore, the goal is to provide a
straightforward approach to delay pieces of code like Partytown but allow developers to vary
the granularity of possible splits. The developed solution is called Waiter. By delaying pieces
of code, the render-time will be improved, as loading code via async or defer is not render-
blocking, as shown in 5.15. The schematic illustration also shows what Waiter allows code to
do: split code by waiting for functions to be available. Therefore, code becomes independent
of availability. In contrast to Partytown, the loss of user input before the entire code is loaded
can therefore be prevented by loading input-capturing JavaScript code first. Therefore, no
delayed hydration is necessary, and the state can be held implicitly via Waiter [22ao]. The
improvement in render times, therefore, originates from the developer’s decisions. However,
this does not solve the ease of use. To address this issue, another framework was created:
AUTRATAC. It is a helper framework that allows for automatic conversion code by inserting
Waiter into all asynchronous function calls. Both frameworks are described in more detail
next.

5.4.2 Waiter

The main goal of Waiter is to accept function calls or resource requests, wait until they are
available, and finally deliver the results. This requires asynchronous code to work. There
are three main objectives that Waiter has to achieve:

1. Waiter has to be usable in any form of asynchronous code

2. the core JavaScript required has to be as small as possible, and

3. Waiter has to be easy to use and understand by developers.

62

5.4 Concept for Javascript Splitting or Delaying

DOM-
rendering

DOM-
rendering

Fetching
JavaScript

Parsing &
Executing
JavaScript

DOM-
rendering

Fetching
JavaScript

Parsing &
Executing
JavaScript

DOM-
rendering

Fetching
more

JavaScript
Parsing &
Executing
JavaScript

default - renderblocking

async

async &
Waiter

DOM-rendering

Fetching
critical

JavaScript
Parsing &
Executing
JavaScript

Waiting with Waiter

DOM-
rendering

Figure 5.15: Comparison of the loading times of the default loading behavior, async and
async with Waiter. The yellow triangle marks the first possible render time.
Source: [VS23c]

The third objective is being achieved by using AUTRATAC to automatically insert Waiter into
asynchronous functions in a code-base. However, it is also possible for the developer to insert
calls manually. For it to be simple and easy, as required by objective 1 and 3, the call syntax
has to mimic the original calls as closely as possible. Therefore, the possible syntax is
discussed first. To achieve objective 2, a discussion of the options of use will follow.

Call Syntax

In order to specify the call syntax of Waiter, multiple challenges need to be addressed first.
Mainly, calling functions that are not previously loaded results in an error being thrown.
This also happens when this function call is never executed. When this occurs, all JavaScript
execution stops. To prevent this, two options are available. The first method requires the
use of eval(), as it allows the evaluation and execution of JavaScript code from a string.
Even though it works, it also has significant drawbacks: eval() is considered to be unsafe
[22o], and the written code does not highlight errors, as IDEs will interpret the call as a
string. Both issues are solved by using arrow functions, which are the second option.

1 function a(){ //is not called

2 eval('b()'); //will not throw an error before execution

3 (

4 ()=>b() //will not throw an error before execution

5)()

6 }

Listing 3: Comparison of eval and arrow functions. Function b() is undefined in this case.
Source: [VS23c]

Both eval() and arrow functions are compared in Listing 3. In this example, the function
named ”b” does not exist, and the function called ”a” is never called. If a call to function
”b” were made without both techniques, it would result in an error. Instead, both versions
can exist in valid code and, in this example, would only throw an error when called. Line
4 shows the use of an arrow-function, which in this case is wrapped in an IIFE to enforce
immediate execution of code when called. Otherwise, the arrow function would only declare

63

5 Concept

1 //Waiter is loaded beforehand

2 async function a(){

3 await __w(()=>b())

4 }

Listing 4: Example call syntax calling a function with Waiter. Source: [VS23c]

code. In the final version of Waiter, this expression is not needed.

One of the drawbacks of eval() is also visible in Line 2, where code-highlighting is not
working. Arrow functions, conversely, can even be made type-safe [22n]. As a result, the
arrow functions are chosen. Listing 4 shows the final syntax of how Waiter is called.
The parent function is marked asynchronous via the async-keyword. Waiter is then called
with w. The double underscores only serve to reduce double declarations, as it will be
inserted and provided globally. The await statement shown in line 3 is not strictly necessary,
depending on the goal of the code.

Detecting Resource Availability

Context determines the availability of resources in JavaScript. Therefore, availability has to
be checked repeatedly. As Waiter targets the modification of the DOM by the addition of
asynchronous, external JavaScript files, a MutationObserver provides the best solution. It
can be configured so that it is triggered if the DOM changes, which also listens to changes
in the code. This feature is supported by at least 98.5% of all tracked users by caniuse.com
[22ac]. It is also possible to check in a time interval. However, the observer only triggers
when changes occur, so it is preferred due to fewer checks needed. Both can also be used in
combination.

Implementation of Waiter

The goal of objective 2 was for Waiter to be as small as possible. Listing 5 shows the first
version. In its uncompressed state, it only consists of 23 lines of code. When compressed,
the size is reduced to 244 Byte. with less than a quarter kilobyte, objective 2 is achieved.
When Waiter is called, a Promise is returned. As both the call syntax and the framework
itself both use arrow functions, the original context is preserved. Therefore, calling objects
with this still works. The framework then listens via the observer for changes made in the
code. When a change is detected, the availability of the targeted resource is checked. If it is
available, the answer is returned, and the observer is disconnected. This test function is also
called once in line 21 to ensure the fastest possible return of data if the targeted resource is
already available when Waiter is called.

In summary, all three goals of Waiter can be solved. With a size of less than 250 Byte and
with a type-safe call syntax, it has a minimal footprint and can be used in any asynchronous
code. However, until this point, it requires manual insertion by the developer. To address
this issue, AUTRATAC is described next.

5.4.3 AUTRATAC

Even if manual insertion of Waiter allows the developer to have a high level of precision and
control, wrapping all calls in asynchronous functions in a large code-base might challenge
goal 3. To solve this issue, an automatic converter is necessary, which is called AUTRATAC.
In this case, all calls inside asynchronous functions are automatically wrapped with a call to

64

5.4 Concept for Javascript Splitting or Delaying

1 const __w = async (call) => {

2 return new Promise(async (resolve) => {

3 let isTesting = false; //Prevents double availability tests

4 const tf = async () => {

5 if (!isTesting) {

6 isTesting = true;

7 try {

8 resolve(await call());

9 observer.disconnect();

10 isTesting = false;

11 } catch (e) {

12 isTesting = false;

13 }

14 }

15 }

16 const observer = new MutationObserver(tf);

17 observer.observe(

18 document.documentElement,

19 { childList: true, subtree: true }

20);

21 tf();

22 });

23 }

Listing 5: First uncompressed version of the Waiter framework

Waiter. AUTRATAC has, therefore, three goals as well, similar to Waiter:

1. AUTRATAC has to convert asynchronous JavaScript code correctly,

2. it has to be easily integrate-able

3. calls to Waiter need to be inserted.

Before those goals are discussed, two important questions must be addressed first: If
AUTRATAC can transpile code, why is not all code converted with calls to Waiter? Is it
possible to convert all synchronous code to asynchronous code first?
One of the main downsides of both questions is the resulting overhead. Using jQuery

version 3.6.0 as an example, only adding the await-keyword and a wrapper for Waiter results
in a 34.7% file size increase. This amount of overhead might counteract improvements made
by splitting the code.
Next, promise chaining reduces the performance of the code. While this might not be

perceivable under average circumstances, adding Waiterand, in turn, a promise to every
function call can chain promises significantly. Shown in Figure 5.16, different results can be
measured on different browsers, depending on the individual implementation. The difference
between async and Promises was minor in most cases. However, the difference compared
to synchronous code is indisputable. Therefore, the amount of asynchronous code should be
kept at a minimal level until browser manufacturers fix the performance difference.
Finally, some challenges arise from automatically converting synchronous code into the

asynchronous equivalent. These include the inability to create asynchronous constructors
natively. Moreover, JavaScript allows functions to be instantiated as classes. The so-called
function-based classes represent a significant challenge to determine in which form the code
is used. Both forms would require different ways of conversion. Without a dynamic code
analysis, errors like the one shown in Listing 6 are nearly impossible to convert efficiently.

65

5 Concept

0

50

100

150

200

250

300

350

400

450

500

1
3
0

0

1
7
0

0

2
1
0

0

2
5
0

0

2
9
0

0

3
3
0

0

3
7
0

0

4
1
0

0

4
5
0

0

4
9
0

0

5
3
0

0

5
7
0

0

6
1
0

0

6
5
0

0

6
9
0

0

7
3
0

0

7
7
0

0

8
1
0

0

8
5
0

0

8
9
0

0

9
3
0

0

9
7
0

0

1
0
1

0
0

1
0
5

0
0

1
0
9

0
0

1
1
3

0
0

1
1
7

0
0

ti
m

e
 i

n
 m

s

recursion depth

Firefox async functions Firefox sync functions Firefox Promises

Chrome async functions Chrome sync functions Chrome Promises

Safari async functions Safari sync functions Safari Promises

Figure 5.16: The average time calling recursive functions (synchronous, async, and with
Promises) using different call depths called 100 times each on Chrome, Fire-
fox, and Safari. The depth of the recursion is shown on the x-axis. The test
was performed on a 2020 MacBook Pro with a 2.3 GHz Quad-Core Intel i7 and
32GB 3733 MHz RAM. Source: [VS23c]

66

5.4 Concept for Javascript Splitting or Delaying

1 function A(){}

2 const a = new A(); //works

3

4 async function B(){}

5 const b = new B(); //will throw TypeError "B is not a constructor"

Listing 6: Function-based class example with and without using an asynchronous function.
Source: [VS23c]

As a result, only converting already asynchronous code represents the only currently viable
option. This ensures maximum performance and minimal conversion issues.

Implementing AUTRATAC

In order to allow integration with minimal effort, the Babel framework was chosen. Babel
is a widely used and popular framework for transpiling JavaScript into another form of
JavaScript [bab22]. For example, it is used to convert the ”jsx”-files used by React into
syntactically correct JavaScript [22a]. Therefore, AUTRATAC is created via a Babel plugin,
as it ensures compatibility. Using Babel plugins requires minimal effort, as a large variety
of integration options are available [bab22].

5.4.4 Preparing for Streaming

A full visual example of the complete JavaScript processing steps can be found in sec-
tion 8.2. In order to stream the prepared JavaScript, the code splitting is decided by the
developer, with the help of Waiter and AUTRATAC. Figure 5.17 shows this process in action.
The original JavaScript code is prepared by the developer by making all targeted functions
asynchronous. In the shown example, it only requires adding async and await-keywords.
Then, AUTRATAC is used to convert the files. This example shows that the developer sep-
arated both functions into individual chunks. A JavaScript chunk is based on one input
file or one <script>-tag. In this case, it can contain one or more functions, depending
on the developer’s decision. In the future, other splitting techniques that already incorpo-
rate Waitermight be available. However, no such technique currently exists and far exceeds
the scope of this thesis. Still, both developed frameworks make it easy to set up this step
manually. Figure 5.17 also shows the removal of comments. This does not have to be imple-
mented, as AUTRATACis based on Babel, which provides the comment-removal functionality
already (by setting comments: false in the .babelrc-file or using –no-comments when using
the CLI). Lastly, the figure shows that both code chunks are interchangeable. As described
in section 3.3.1 about dead code removal, detecting which code needs to be prioritized au-
tomatically is not yet fully researched or commercially available. Waiter can eliminate this
issue by making the loading order arbitrary. Therefore, the stream-able JavaScript chunks
start with the Waiter-framework, followed by all AUTRATAC-converted code-chunks in the
order that the developer decided.

5.4.5 Evaluating Waiter and AUTRATAC

Both frameworks will be tested separately, as they target different elements: AUTRATAC is
used by the developers, while Waiter affects how the code works on the client. The test
for AUTRATAC contains conversion time measurements for different code lengths. Waiter is
tested by measuring the average time until FCP and the execution time of the JavaScript
code itself.

67

5 Concept

JavaScript (prepared)

async function a(){
 await b();
}
/* comment */
async function b(){
 return true;
}

Code-Chunk

async function a(){
 await __w(()=>b());
}

Waiter framework

const __w = async
(call) => { return
new Promise(...

Code-Chunk

async function b(){
 return true;
}

AUTRATAC
or manual

modification

Comment

/* comment */

Figure 5.17: Simplified JavaScript processing step by using AUTRATAC and Waiter, by mod-
ifying and splitting the code. The dotted lines represent interchangeability due
to the use of Waiter.

AUTRATAC: Conversion Speed

One of the main challenges for the conversion speed test is the lack of available data on what
and how many functions are used in an average web page. More specifically, the function-
to-call ratio is unknown. However, even if said data were available, it would not represent a
realistic basis, as only a smaller amount of asynchronous code is expected to be translated.
Instead, extremes are tested in order to extract relevant data. As a result, the conversion
speed test consists of a file containing JavaScript code with an ever-increasing number of
functions of varying types. Three tests were performed. The first test consisted of a number
x of functions that do not contain calls. Secondly, x functions with exactly one call were
converted. Lastly, a single function with x number of calls is used.
Test setup
In order to measure the three versions, a node script generates the individual code blocks
for all versions with increasing numbers x. Then, the code blocks are converted via the
AUTRATAC. The duration of this conversion was measured. For every x, the test ran 100
times. The results are an average of 100 runs. The test ranged from x = 1 to x = 500 and
was performed on a 2020 MacBook Pro with a 2.3 GHz Quad-Core Intel i7 and 32GB 3733
MHz RAM.
Results
Figure 5.18 shows the results of all three measurements. For all versions, linear growth is
perceivable. When the code complexity increased, the time for conversion also increased,
as shown by the blue line. As the combination of functions and calls create an Abstract
Syntax Tree (AST) of a larger size, a time increase is to be expected. Depending on the
size and complexity of the code, it might be possible to convert the code on-the-fly, as
AUTRATAC can translate code on a file-by-file basis, which can be done in parallel. To give
a frame of reference, jQuery in version 3.6.0 consists of 607 functions and 1826 calls, which
is an approximate ratio of 1:3.

AUTRATAC Code Correctness

As AUTRATAC consists of a plugin for Babel, it depends on what Babel considers as a call
or a function. If Babel detects both correctly, then this part of AUTRATAC will also work as
intended. The only additional logic AUTRATAC adds is a check which uses a Babel-provided
function to test if a call is already Waiter -wrapped. Ensuring that this procedure will
always produce syntactically correct code is therefore dependent on the correctness of Babel.

Loading Speed

Due to the unavailability of web page code-bases and the required effort, converting existing
web pages is not feasible. This is mainly because Waiter requires manual decisions made

68

5.4 Concept for Javascript Splitting or Delaying

0 100 200 300 400 500

0

10

20

30

40

x number of functions or calls

co
n
ve
rs
io
n
ti
m
e
in

m
s

x functions including one call
One function including x calls

x functions without calls

Figure 5.18: Average conversion times with AUTRATAC of 100 tests each for an increasing
number of functions to convert

by the developer. Instead, an artificial web page was created. The web page is created as
follows. From a 2022 Statista survey, it was determined that React is the most popular front-
end framework (when extracting frontend-exclusive frameworks) [22ab]. Using a framework
also tests if Waiter and AUTRATAC can be combined with existing code-bases and if it is
easy to integrate. Therefore, the ”Create React App”3 tool was used to generate a web page
with react version 18.2.0. From this, the pre-existing demo page, which is generated by the
tool, was used. Next, the amount of external, render-blocking JavaScript was calculated
using data from the previous analysis study [VS22a]. It was determined that, on average,
≈ 25 render-blocking external files are loaded per web page and that they contain 94756
JavaScript characters each. The web page was therefore modified by adding 25 render-
blocking external files. Each file consists of a callable function. The rest of the file contains
randomly generated characters. It was ensured that all functions are called in sequence in
the main App-component, with the time until full execution measured. This shows if an
additional delay is introduced by adding Waiter in this way. All modified JavaScript files
are marked as ”deferred” to delay the download. Furthermore, the execution was started at
the DOMContentLoaded event, ensuring the maximum possible delay was tested.

The main test consists of two machines communicating via a local network. The host
device provides both web servers serving one version each, built with the express node
framework [22p]. The ”client” is a 2020 MacBook Pro with a 2.3 GHz Quad-Core Intel i7
and 32GB 3733 MHz RAM, which uses Apple’s ”Network Link Conditioner”4 to load the
web pages at 2, 4, 6, 8 and 10 Mbps. This process was automated using puppeteer with
Chromium version 105.0 [22ah]. All timestamps are gathered using Chrome’s Performance-
API [22ag]. Every version was loaded 100 times, and mean values were calculated.
FCP
The times until the First Contentful Paint are shown in Figure 5.19. It can be observed that

3create- react-app.dev
4developer.apple.com/download/more/?q=Additional%20Tools

69

https://create-react-app.dev/

5 Concept

0 1 2 3 4 5 6 7 8 9 10 11

2 Mbps

4 Mbps

6 Mbps

8 Mbps

10 Mbps

time in s

n
et
w
or
k
sp
ee
d

With Waiter
Reference

Figure 5.19: Comparison of the average loading time until the First Contentful Paint of a
website optimized with and without Waiter when loaded at different network
speeds. The graph includes standard error bars. Source: [VS23c]

using Waiter improves loading times in every measured case. Especially at 2 Mbps, a time
difference of 9.14 seconds is visible. Using Waiter allows the tested web page to be loaded
in less than 2 seconds for all tested network speeds, fulfilling the estimation of acceptable
waiting times for users by Nah et al. [Nah04].
JavaScript Execution Time
All of the generated external JavaScript files include one callable function, which are all
called successively in the main ”App” component. The time for the execution of all calls is
measured via timestamps. The code modified by Waiter further includes ”await”-statements
to ensure the execution order. The measured time frame begins directly before the client
requests the page. The end timestamp is captured directly after the last call to the last
external file is returned. Therefore, all overhead is captured as well. This ensures to capture
most meaningful data, as the total overhead for including Waiter is critical for real-world
applicability.

Figure 5.20 displays the results of the measurement. Comparing the reference with the
version, which includes Waiter, it shows that execution time is nearly identical. The time
spans differ only by a maximum of 31ms, which is in the margin of error. Adding Waiterdoes
not introduce significant overhead, at least not at the tested number of calls.
Data Transferred
The total size of the code converted by AUTRATAC was also compared. Every function call
produces a file size increase of 17 characters. The 25 external files increased, therefore, by a
total of 425 characters. Waiter itself is 244 Bytes large, with the same number of characters
(244).

Challenges and Limits

Even though AUTRATAC converted all code successfully in all tests made as part of this
concept, there is no guarantee of correctness. As described in section 5.4.5, the dependence
on Babel increases the complexity of such proof even further. With the described possibility
of manual use, it is therefore outside the scope of this work.

70

5.4 Concept for Javascript Splitting or Delaying

0 1 2 3 4 5 6 7 8 9 10 11

2 Mbps

4 Mbps

6 Mbps

8 Mbps

10 Mbps

time in s

n
et
w
or
k
sp
ee
d

With Waiter
Reference

Figure 5.20: Comparison of the average loading time until all linked external JavaScript func-
tions are called and executed, showing a web page optimized with and without
Waiter loaded at different network speeds. The graph includes standard error
bars. Source: [VS23c]

Usability for Streaming

Waiter provides the functionality of delaying and executing code even if it is currently
unavailable. This allows for highly dynamic splitting approaches: in theory, if all code is
asynchronous, functions could be loaded randomly and one by one without breaking the web
page’s functionality. Therefore, it is ideal for streaming, as the order is unimportant. In any
case, as long as calling functions or resources outside the individual code block are made by
Waiter, the code will work. Optimizing the location of the files, however, is a decision that
has to be made by developers, as it depends on individual preference.

Conclusion

This section describes and evaluates a solution for delaying JavaScript code. With the first
developed solution, called Waiter, code can be called even though it is not loaded yet. The
framework will then handle function and resource availability. This requires asynchronous
code to work, as it is based on Promises. Then, Waiter can be wrapped around function
calls. In order to assist developers in this transition, a second framework was created.
Called AUTRATAC, it automatically adds the Waiter-wrapper to all calls inside asynchronous
functions. Ideally, a developer just has to add the ”async” keyword in front of targetted
functions. This reduces overhead, as described in subsection 5.4.3. The results show that
adding Waiter increases the time until FCP significantly, in one measured case, by more than
9 seconds at 2 Mbps. Simultaneously, the total execution time stays the same. Therefore,
an easy JavaScript splitting solution was presented, ready to be used for streaming. These
findings were also published in paper [VS23c].

71

5 Concept

5.5 Concept for Streaming Html-Based Web Pages

The stream-based loading of web pages will be based on the concept explained in section 5.3
and section 5.4. Both show examples of how CSS and JavaScript can be effectively split,
solving the gaps shown in Figure 5.3. What is left is developing a solution for splitting
HTML and testing the streaming itself.

Summary of Related Work

In summary, no existing technique focuses directly on streaming the initial page, as shown
in section 3.4. Existing methods for streaming, like Turbo or Marko, do not extend the
concept far enough. More specifically, no technique exists that streams the full initial page
or that can split HTML universally. Still, a large variety of different approaches are shown
that aim to improve the loading speed. It shows that this topic is still relevant and not
fully solved. Furthermore, most related techniques still focus on optimizing a file-based
delivery. Therefore, a method needs to be conceptualized which can incorporate frameworks
like Essential and Waiterwhile being able to split the produced content and especially
its HTML. Furthermore, this technique needs to be able to stream all initial content while
ideally being backward-compatible.

5.5.1 Concept

To create a concept which surpasses the features of the related work, it is necessary to include
the location-aware CSS rendering framework ”Essential,” described in section 5.3, and the
”Waiter” and ”AUTRATAC” frameworks detailed in section 5.4. The following goals need to
be met:

1. the approach has to be backward-compatible in order to be adapted realistically

2. the manual steps required by the developer need to be considered, as no automatic
approach for JavaScript is currently feasible, as described in section 5.4

3. All processed resources must be splittable as much as realistically possible.

In order to meet all three goals, the required process is shown in Figure 5.21. Generally,
two steps are visible: the preparation stage and the delivery step. First, the preparation
process starts with the manual modification of JavaScript by the developer. The Waiter and
AUTRATAC frameworks can and should be used, providing maximum splitting capability while
simultaneously reducing modification effort. Next, the prepared code-base is transferred to
the server, where automatic scripts process the page further. As described in section 5.3,
CSS can be rendered and inserted automatically using Essential, which is also location-
aware and streaming-ready. Lastly, the HTML and in-line CSS mixture will be split by the
method described in the following section 5.5.1, resulting in a mixture of split JavaScript,
CSS, and HTML. These chunks are then moved to a web server, ready for transfer. With
this, the preparation is finished. The delivery, as shown in Figure 5.21 is later described in
section 5.5.1.

Splitting HTML Into Chunks

The following steps of splitting HTML are also visualized as a full example in section 8.3.
If a client-side cache is used, splitting HTML could technically be done everywhere if it is
recombined before a page’s HTML in the browser is set. In other words, the HTML displayed
on the client could also be stored as a string. When new data arrives via stream, it can be
appended to the string, and the complete HTML can be updated. This works, but better

72

5.5 Concept for Streaming Html-Based Web Pages

Server

change
detected

generate
parts

Client

execute
Java-
Script

request page

send initial page

set up stream

stream parts

Initial
page

Developer

code-base with
delayed or split

JavaScript

prepares

Figure 5.21: Simplified diagram of streaming web pages, highlighting the steps of a client
loading a page after the chunks are generated. Modified from: [VS23a]

solutions exist, as this caching and full-updating approach has some major downsides. First,
the split can be inside a tag, which will be misinterpreted by the browser, which can lead
to unwanted behavior. This is especially true if custom HTML tags are registered and used.
Next, updating the whole page costs performance, as it requires a complete re-render. This
can lead to unresponsive pages or ”flickering,” as resources like images might be re-loaded
as well. Lastly, this leads to the deletion of all user input, which to a large part, would be
counterproductive to the performance increase made by splitting the page.
However, two issues can be solved simultaneously by splitting the HTML into start and

end tags, text, important tag attributes, and non-splittable HTML chunks. First, the HTML
code can be added to the page without using a cache. Secondly, no full-page updates are
necessary, as broken tags are now non-existent. Lastly, text can be split as desired, as it
can always be appended to the existing parent element. This splitting process is shown
in Figure 5.22. There, the individual chunks with their content type are displayed. This
splitting works, as browsers fail gracefully, by inserting a closing tag if it is not provided
[22m; 16; 22r]. Therefore, those main options will be defined as one ”package” of HTML
(or in-line CSS and JavaScript), respectively. However, there are sections of ”HTML”-code
that cannot be split, as inserting into these chunks can lead to errors. This mainly includes
the <noscript>-tag, which did not allow for adding content, at least in Firefox, where it
was tested. Therefore, edge cases exist where a small chunk of HTML has to be transferred
entirely and cannot be split further. Another edge-case are scripts. In-line scripts via
<script> can also be added like any other element. However, then the script would not
be executed. Therefore, it has to be marked differently, so it can be added by creating an
<script>-element at the page, ensuring execution. This approach was also published in
paper [VS22b].

HTML Package Types

Figure 5.22 Shows, in a simplified form, how HTML is classified into different types. However,
these do not represent all available types, as described beforehand. There are other types as
well, like comments, which are not necessary for streaming.

73

5 Concept

HTML

<div>

 <!-- Comment -->

 <h1>Headline</h1>

</div>

HTML-Chunk

<h1>

HTML-Chunk

Headline

HTML-Chunk

</div>

HTML-Chunk

</h1>

Comment

<!-- comment -->

HTML-Chunk

<div>

Start-tagStart-tagTextEnd-tagEnd-tag

Figure 5.22: Simplified process of splitting and processing HTML. It shows how HTML is
separated into multiple types of chunks: start- and end-tags, as well as text.
Comments get removed. To ensure simplicity, HTML code chunk reordering
is not shown in this specific example. To optimize the loading speed, it would
move entire sections, like sending body-content before head-content.

In summary, the following package types are therefore required:

1. Start-tag: The beginning of a DOM-element

2. End-tag: The end of a DOM-element

3. Text: Non-executable content of an element

4. Script: JavaScript-code

5. HTML: Non-splittable HTML, like ”noscript”

6. Attributes: Important attributes of the HTML or BODY element. As the minimal
initial HTML file provides the base HTML structure, these attributes need to be set
in order to ensure functionality and prevent layout shift (for example, if the body has
a specific class)

Delivery of the Pages

After the before-mentioned preparation stage is finished, the page is ready to be sent via
streams, as shown in Figure 5.21. This begins with a client requesting the page from the
server. Then, an initial, minimal HTML file containing a minimal amount of JavaScript
is transferred to ensure backward compatibility. This process is shown in more detail in
Figure 5.23. After the client parses the initial page, the containing JavaScript establishes
a streaming connection back to the server as soon as possible. The resulting connection is
then used to stream actual data to the client. When focusing on the best possible content
delivery performance, the order of the data which is sent to the client is the following: First,
all attributes of the HTML- and BODY-tag is transferred. This is necessary to ensure the
final HTML-DOM is identical to the original and can be styled correctly without layout shift.
Next, the content of the BODY is sent. Lastly, the HEAD elements follow. This process is
also detailed in the full example in section 8.4.

The initial connection process introduces an overhead. However, by doing so, the client-
side browser implementation does not need to be modified. This is necessary, as global
browser usage is highly diverse [22h]. It would be ideal to have full browser support from the
start, as then the browser could directly try to load a web page via stream, eliminating said
overhead. However, judging by the lack of implementation of currently available optimization
techniques as described in chapter 4, such an expectation would be unrealistic. Still, if such
an approach exists in the future, the concept does not have to be adapted, instead providing
a future-proof solution.

74

5.5 Concept for Streaming Html-Based Web Pages

Example

Initial
page

Contains
JavaScript

Preparation code

Generate
parts

Initial page

Parts

Internet

Server Browser

File
input

Traditional
transfer

SSE or
WebSocket

Web-
server

Stream
remaining

parts

Figure 5.23: Concept diagram showing the streaming of web pages, including the transfer of
the minimal initial page and a separate interface for streaming chunks. Source:
[VS23a]

Current Streaming Options

The main method of streaming has to be addressed as well. Currently, multiple existing
techniques allow for continuously sending data. All relevant approaches have pros and cons,
which is why they are described next in more detail. Some approaches, like chunked transfer
encoding, will not be compared due to irrelevance or deprecation [BPT15a]. This is followed
by a comparison, selecting one or more candidates who fit the requirements.

HTTP-Server-Push
When web data is sent with the MIME-type ”multipart/x-mixed-replace,” the browser rec-
ognizes it as a document that updates when new data arrives. However, two drawbacks
exist. First, a cache is needed to keep track of all data sent to the client. Secondly, not
all browsers support this feature fully, with Chrome being one of them [22b]. Server push
allows for one-way data transfer.
WebSocket
WebSocket is described in RFC 6455 preliminary as a protocol for continuous two-way com-
munication between a client and a server [22ak]. However, this is not strictly necessary for
this concept of stream-based delivery. Commonly browsers provide a built-in WebSocket
API, which allows for easy connections [API15]. Connecting to a server in this way requires
upgrading the protocol. This introduces an overhead, as described in paper [VS22b]. How-
ever, the broad support of all major browsers is a major positive aspect [22aw].
Server-Sent Events:
Server-Sent Events (SSE) do not need to upgrade to another protocol, compared to Web-
Socket. A Polyfill also exists, allowing to retrofit SSE capabilities to outdated browsers
[Mod22]. This increases browser support significantly. However, SSE has one significant
drawback: The number of simultaneously usable connections is limited by both Chrome and
Firefox browsers to a maximum of six. Even though it was marked as a bug, both browser
manufacturers decided not to fix the issue [22c; 22d]. As a result, if all connections are used
up, no new connection can be made. It is unlikely that such a scenario will occur if SSE is
only used for the initial page load and closed when finished, but it is not impossible.

Comparing all three options, only SSE and WebSockets are viable options. Both have
pros and cons, but in general, both fulfill the requirements of being able to stream HTML,
CSS, and JavaScript. Due to the non-exclusivity, both can be combined as a kind of fallback
system. However, WebSockets should be used if possible due to the missing connection
limitation. Still, both will be evaluated to test their capabilities.

75

5 Concept

5.5.2 Conclusion

The described concept showed that all goals of a stream-based web page delivery frame-
work could be addressed fully. The final concept includes the before-developed frameworks
Essential for CSS and Waiter as well as AUTRATAC for JavaScript. Combined with the
presented HTML splitting and streaming approach, a method is presented that addresses
all lacking areas shown in Figure 5.3. This concept was also published as a demo paper:
[VS23a]. The approach will be implemented and evaluated next.

76

6 Evaluation

77

6.1 Test Overview

HTML JavaScript CSS Streaming

Essential (5.3.5) ✔

Waiter/AUTRATAC (5.4.5) ✔

Automated Test (6.3) ✔ ✔ ✔

User Satisfaction Test (6.5) ✔

Case Study Test (6.4) ✔ ✔ ✔ ✔

Table 6.1: Overview over tests of the individual components. The check-mark represents
that the individual components (HTML, JavaScript, CSS and Streaming) were
tested in the section described on the left-most column.

The following section includes the tests for the complete system. At first, an overview is
given of the number and types of tests conducted in general as part of this work.

6.1 Test Overview

As shown in Table 6.1, multiple technical tests are performed, spanning one or more of
the main four components of this work. The table shows that every component will be
tested at least twice in this chapter. This is because some tests are more suitable for one
or more aspects if not all components are tested together. In this case, the individual tests
for Essential, Waiter, and AUTRATAC are done in their respective concept chapter, as they
showed that the component itself works individually. Now, in this chapter, three additional
tests will be performed. The first test checks the CSS processing and HTML splitting
capability on five popular web pages. The case study test is a full implementation of all
components together by modifying ”solarenergie.de” to be streamed. And lastly, the user
satisfaction test checks if and how much users prefer the streamed or non-streamed version.

6.2 Test Metrics

First, the main categories of test metrics will be explained, as well as their importance for
the overall evaluation. Generally, these consist of three types: code coverage and efficiency,
loading time tests, and user satisfaction. All three will be discussed in more detail next.

6.2.1 Code Coverage and Efficiency

This first metric calculates how much code is used by what kind of code. More specifically,
this allows testing how much render-blocking code is used until the page is displayed. This
includes both JavaScript and CSS code. This metric is important for the overall test, as a
large amount of render-blocking code that is used by 100% might not be ideal, but still valid
due to all code being necessary for displaying a page. This metric will be used to check how
the usage until render changes when comparing the original page to the one modified by the
technique developed as part of this thesis.

6.2.2 Loading Time Measurements

Testing and measuring a web page’s loading time is arguably the most relevant for the overall
concept. As described in section 1.1, web pages that load slower directly result in revenue
loss and user dissatisfaction. Therefore, measurements of the time it takes for content to
appear on the screen present a high level of importance. A set of different performance
markers will be used, like FCP or DOM Interactive, which are explained in more detail in

79

6 Evaluation

section 2.7. In essence, the goal is to capture the first time content is displayed on the page,
how long it takes for the whole page to be loaded, and how much overhead is produced for
the stream connection setup.

6.2.3 User Satisfaction

Testing how users react to this new way of loading web pages is important to ensure the
overall success of the developed technique. Therefore, an anonymous online questionnaire
will be used to determine the overall preference of users. This is because the streamed
version continuously adds content to the page, which is visible due to the non-render-blocking
property of the initial code. As a result, this aspect needs to be tested as well.

6.3 Automatic Performance Test

This first section of the evaluation focuses on the parts that can be automatically converted.
The main reason is the lack of access to the original code-base, which is necessary to convert
JavaScript correctly. However, as shown by implementations of techniques like Qwik and
Waiter, the maximum possible performance can be emulated by removing all render-blocking
JavaScript. The isolated performance test of Waiter and AUTRATAC in subsection 5.4.5
showed that such a presumption is realistic. On this basis, the following tested pages will
be prepared with both the described Essential framework in section 5.3 and the HTML
splitting and streaming technique described in section 5.5. This ensures that the outcome
reflects realistic results.

6.3.1 Test Pages and Preparation

For this automatic test, file input described in the concept diagram Figure 5.23 is gathered
by using the ”save page” feature, which is built into Google Chrome. It allows downloading
a page, including all external files. The tool also re-writes all links to external resources to a
local folder, which is also saved next to the initial HTML file. The pages were selected based
on the research-oriented ”Tranco” web page list from May 2022 (ID: 5Y67N) [Poc+18]. The
first five pages that could be downloaded successfully (including JavaScript and CSS) and
did not include syntax errors were selected. More specifically, the page must be parseable by
”Critical,” as it is the basis for Essential. This selection results in the following pages:
https://netflix.com, https://microsoft.com, https://amazonaws.com, https://wordpress.org,
and https://cloudflare.com. All web pages were part of the top 30 on the list.

6.3.2 Preparation Steps

First, all render-blocking JavaScript is removed to emulate the maximum achievable JavaScript
optimization performance. This emulates the full use of Waiter, which allows for this mod-
ification, as described in section 5.4. Next, the code is transferred to the server, where
automated scripts process the code further. In this case, Essential was used to render all
included CSS as location-aware. At this stage, all CSS is already split and in-lined into min-
imal style-blocks that contain only the CSS necessary for the next section of HTML. This
HTML file, which contains all render-blocking CSS, is split. As described in section 5.5.1,
this is done by start- and end-tag, pure text content, or a non-splittable HTML chunk. The
parts themselves are ordered in a specific way: first, the attributes of the HTML, HEAD, as
well as BODY-tag are transmitted. If styling was done via classes and not tag types, this
ensures that styling will be done correctly. Next, the content elements of the body (which
also contain the in-lined CSS) are transmitted to ensure the fastest time to FCP. Lastly, the
HEAD elements are sent. This order was chosen to measure the maximum content delivery

80

6.3 Automatic Performance Test

performance. However, other sequences are also possible. The described order of elements
is then saved as a JSON file for later use by the web server.

6.3.3 Loading Times

Similarly to the test in section 5.4.5, the loading speed test was performed via two machines
linked by a local network. One machine provided the web pages via a set of express servers
and a reverse proxy provided by caddy [22p; Ser22]. Overall, three versions were tested: one
streamed via WebSocket, one via SSE, and the reference pages. The server device consisted
of a 2021 MacBook Pro with 32GB RAM and an M1 Pro chip. The client was a 2020
MacBook Pro with a 2.3 GHz Intel i7, which used Apple’s Network Link Conditioner to
slow down connection speed to either 2, 4, 6, 8, or 10 Mbps. No additional package loss
or additional delay was set. The test itself consisted of a puppeteer-controlled Chromium,
which loaded the pages individually. The browser was reset and re-opened before every page
load to ensure the cache was empty. The built-in performance API of Chrome was used to
measure the loading speed. Additional performance markers were gathered to ensure that
comparable data could be gathered for the stream-based pages. These include the time until
the first package arrives at the client, as well as the time until the last package of the BODY.

6.3.4 Initial Page Size

As described in the concept in section 5.5, the initial transferred HTML file has to be as
small as possible to ensure fast loading times. In this case, the initial file in its uncompressed
state had a Size of 902 Byte for WebSocket and 862 Byte for SSE. The size difference is due
to different APIs being used to establish the stream.

6.3.5 Results of First and Last Package

The time it takes to transfer the first package of data to the client details the overall overhead
introduced by WebSocket or SSE, created by the backward-compatible approach chosen.

When comparing the time until the last package of the body, a user-centered transmission
time is created, which reflects the time it takes to stream or download all user-visible content.
The additional markers were set for both tested streaming approaches, and the DomComplete
event was used for the reference. For all gathered data, the time until the responseStart was
subtracted as a starting point to reduce fluctuations of network conditions [22ag].

The results for the first package are visible in Figure 6.1. As expected, there is a noticeable
overhead both for SSE and WebSockets. Both took up to 0.1 seconds longer. As described
before, optimizations are used to mitigate this issue. The results in Figure 6.2 show that this
can be done successfully. At most, the data transfer streamed with SSE was 18.98 s faster
than the reference. Therefore, initial streaming overhead can be neglected based on the total
transfer results. Both WebSocket and SSE transferred the BODY data significantly faster
than the reference.

6.3.6 Data Reduction

One of the main advantages of faster delivery is the optimizations made to the transferred
code. In total, a reduction by 23.7% from 5.06MB per average reference page to 3.86MB
for both average pages delivered by SSE and WebSocket streaming was measured via the
Chrome DevTools. All individual size reductions are shown in Table 6.2.

The table shows that in one instance, the total file size could be reduced by 45%. However,
cloudflare.com increased by 20% after the CSS was in-lined. Comparing the results with the
data in Figure 6.2, the total improvement of the loading time is, therefore, larger than the

81

6 Evaluation

0 10 20 30 40 50 60 70 80 90 100 110 120 130

2 Mbps

4 Mbps

6 Mbps

8 Mbps

10 Mbps

time in ms

n
et
w
or
k
sp
ee
d

Reference
SSE

WebSockets

Figure 6.1: Time in ms until the first data of the document arrives, highlighting the con-
nection overhead of the stream-based approaches. The graph includes standard
error bars.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

2 Mbps

4 Mbps

6 Mbps

8 Mbps

10 Mbps

time in s

n
et
w
or
k
sp
ee
d

Reference
SSE

WebSockets

Figure 6.2: Time in s until the last data of the document arrives, highlighting the difference
in transfer time until the final ”body” data of the stream-optimized pages as well
as the original. The graph includes standard error bars.

difference page original streamed

-45% amazonaws.com 10.2 MB 5.6 MB

-43% netflix.com 3.7 MB 2.1 MB

-37% microsoft.com 3 MB 1.9 MB

0% wordpress.org 1.8 MB 1.8 MB

+20% cloudflare.com 6.6 MB 7.9 MB

Table 6.2: Differences in the amount of transferred data compared between the streamed
web page and the original, measured via Chrome DevTools

82

6.3 Automatic Performance Test

0 1 2 3 4 5 6 7 8 9

2 Mbps

4 Mbps

6 Mbps

8 Mbps

10 Mbps

time in s

n
et
w
or
k
sp
ee
d

Reference
SSE

WebSockets

Figure 6.3: Time in seconds until the First Contentful Paint between the different versions.
The 2-second mark highlights the acceptable access time, referencing Nah et al.
[Nah04]. The graph includes standard error bars.

relative size reduction. This could be due to a lack of external files and a reduction of total
requests.

First Contentful Paint

The expressiveness of the first and last packages is limited if the time it takes to show
the first section of the page is lower than the original. Therefore, the First Contentful
Paint (FCP) will also be measured. This marker is suitable to check for the 2-second mark,
determined as the tolerable waiting time by Nah et al. [Nah04]. Figure 6.3 shows this results.
Overall, the stream-based approaches are faster for all measured network speeds. The 2-
second mark could also be reached in almost all cases. It also shows that the time it takes
until the FCP increases exponentially with slower network speeds. However, this growth
was significantly slower for stream-based approaches, as hypothesized in subsection 7.2.1.
Furthermore, continuously adding data via streams is well-received by users in general, as
shown in paper [VS22b].

However, considering SSE at network speeds higher than 6 Mbps, the time until FCP
increases again require deeper investigation. WebSockets do not show the same behavior,
instead further improving loading times. For this, the render behavior of the Chromium
version used was examined in detail. It was thereby determined that at those speeds, the
DOM modifications are done at a frequency that prevented re-rendering. Figure 6.4, which
is a screenshot made from the Chrome DevTools, shows this behavior in more detail. The
area marked with ”A” describes the missing frames being rendered. The colored markers
to the right of marker ”B” are the individual tasks that result in the DOM modification.
Therefore, the time shown in Figure 6.3 is not only the FCP but also the last modification
made to render the full page. Therefore the total loading times via SSE are possibly faster
than the time until FCP of the reference and, therefore, is not an issue.

6.3.7 Comparing WebSocket and SSE

As determined in section 5.5.1, both WebSocket and SSE are theoretically sufficient for
streaming web pages. Both achieve similar results of total transfer time and initial overhead,
as shown in Figure 6.1 and Figure 6.2. Due to this similarity, additional factors can be
considered when comparing both. Mainly, the current maximum connection limit of SSE

83

6 Evaluation

Figure 6.4: Missing render while rapid DOM modification when loading ”amazonaws.com”
at 10 Mbps. Marker ”A” shows the lack of rendered frames. The yellow blocks
to the right of marker ”B” depict DOM inserts and animation frame requests.

82%

31% 22%

9%

28%
22%

9%

35%
44%

6% 11%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Text First Layout First Reference

pe
rc
en
ta
ge
s
of
an
sw
er
s Something else

(custom text)

The way the website
changes while loading

The display speed of
the complete page

How fast information
on the page can be
accessed

(a) Reasons why users preferred a specific
technique. Source: [VS22b]

27% 19% 11%

45%
34%

11%

18%
43%

78%

9% 3%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Layout First Text First and
and Reference Reference

Text First and
Layout First

pe
rc
en
ta
ge
s
of
an
sw
er
s Something else

(custom text)

The way the website
changes while loading

The display speed of
the complete page

How fast information
on the page can be
accessed

(b) Reasons why users disliked techniques.
Source: [VS22b]

Figure 6.5: Reasons why users prefer or dislike techniques

makes using WebSockets a more preferable approach. Additionally, SSE experienced render
issues to rapid DOM-modification described in section 6.3.6, which were not measurable for
WebSocket. In general, the usage of WebSocket is favorable.

6.3.8 Conversion Time

The time it took to automatically convert all code into a streaming-ready form was done by
adding the time it took for each step. This consisted of converting CSS into a streamable form
and splitting the HTML. All conversions of the five pages were done on a 2020 MacBook Pro
with a 2.3 GHz Intel i7. On average, pages took 17.5 s to render the CSS with Essential.
The HTML splitting took 40.8 ms. Longer conversion times for Essential are expected,
as shown in section 5.3.5 due to the reliance on a headless Chromium browser.

6.3.9 Validity of Results and Limitations

This test only included testing the automated parts of the streaming process due to a lack of
available code-bases and reliance on developer choice. Also, non-render-blocking resources
like images are traditionally transferred in this test. The correctness of the DOM after the
transmission was tested manually to ensure that an identical result is achieved.

84

6.4 Case Study Test

6.4 Case Study Test

As shown in Table 6.1, the case study test is the last and most comprehensive, spanning all
major components. This required gathering a code-base of a live, real-world web page. In this
case, the web page was ”solarenergie.de,” provided via the company ”Solarwatt.” For this
test, only the code-base was provided, without compensation, and was not bound to any form
of condition. The code was provided ”as-is” from the software service provider ”3m5”, which
develops said web page. This code-base was chosen as it was built with a different set of tools
than previous tests. For example, Waiter and AUTRATAC were evaluated on a ”React” code-
base to show it working with modern front-end frameworks. However, ”solarenergie.de” is
built using Neos, a CMS [22ad]. This is different, as the HTML is rendered before delivering
a page, and it lacks JavaScript-defined components, which are present in frameworks like
React [22ai]. Both of them are valid and represent modern ways of developing web pages.
For this test, the initial web page will be described as the reference. Then, a copy of this
page was modified so that all manual JavaScript improvements were made according to the
concept. Afterward, the following steps were identical to the ones of the test in section 6.3
(automated test). This version is called ”streaming” in the following section. Also, the same
test software was used. However, as described in subsection 6.3.7, WebSocket is preferable to
SSE for streaming web pages. Therefore, in this case, all stream-based tests were conducted
using WebSocket only.

6.4.1 Type of Measurements

Two groups of measurements were conducted: Code efficiency measurements and loading
speed tests. The first group of tests used the CSS and JavaScript code coverage provided
by puppeteer, a browser automation tool. These measurements, which provide code usage
information, were gathered over the initial rendering of the page without simulating input.
Special care was taken to check that the coverage ranges do not overlap when counting
the amount of code used. Furthermore, all HTML of the page was analyzed to find all
instances of render-blocking links to JavaScript and CSS. For JavaScript, this included all
in-file code snippets, as well as ”script”-elements with the ”src”-attribute and both ”async”-
and ”defer”-attribute not set. For CSS, this included ”style”-elements and ”link”-elements
with a valid ”href”-attribute set to a CSS file, with the ”media”-attribute not set or set to
”all.” Therefore, the individual code ranges could also be mapped to check if it belongs to
render-blocking code.

The second suite of loading speed tests consists of a mixture of data points. First, the
performance API is used to gather timestamps and measurements for loading time and
markers. These include ”RequestStart” and ”ResponseStart,” performance-API markers,
which will be used in multiple of the following tests as a baseline [22ag]. This allows for
reducing the impact of hosting-related performance impacts even further, as the time will
only be counted by the first Byte arriving at the client. Also, own performance markers
were gathered for the streamed version, as data from the performance API only measures
the initial minimal HTML page. To gather comparable data, timestamps of the first and
last sent packages were measured. Furthermore, it was determined by opening the web page
in an unmodified Chromium browser on a standard full-HD monitor which element is the
last transmitted package for the elements ”Above-the-Fold.” A timestamp is also gathered
after the client receives this package.

6.4.2 Test Setup

The test setup was identical to the automated test described in section 6.3. The web pages
were again hosted on one device, while another was used to fetch both versions. The server

85

6 Evaluation

device consisted of a 2021 MacBook Pro with 32GB RAM and an M1 Pro chip. The client was
a 2020 MacBook Pro with a 2.3 GHz Intel i7, which used Apple’s Network Link Conditioner
to slow down connection speed to either 2, 4, 6, 8, or 10 Mbps. Every page was loaded 100
times at each network speed and the averages were used. However, two modifications needed
to be made. Both the reference and streamed versions of the web page were downloaded by
the built-in Chrome download tool first and then hosted via an ”express”-server as well as
”caddy” as a proxy for HTTP/2 [22p; Ser22]. This is due to the limitation that the Neos
environment, which runs via ddev, is not intended to run twice on one machine, as needed
in this setup. These additional steps were taken to reduce hosting interference and ensure
the results are as valid as in the automated tests. However, this is only done to maximize
consistency and comparability of the test results and is explicitly not required in real-world
scenarios. Secondly, the CSS code coverage tests needed to be done on a separate version
of the page. The streamed version includes only non-render-blocking CSS. While puppeteer
can handle this form of anonymous code for JavaScript, the CSS coverage tool returns empty
results. Therefore, the results of the fully transmitted and streamed version of the page were
saved as a static HTML file and then used for CSS coverage tests. Due to the code being
identical, the CSS code coverage could therefore be measured accurately only in this way.

6.4.3 Extend of Tests and JavaScript Functionality of the Page

The test was performed on the start page of the website. However, due to the structure of
the code project and the CMS itself, all JavaScript code is loaded for all possible sub-pages
all the time as well. This is because the code is bundled in the original version, which does
not allow for separation based on the individual page’s needs. As a result, the initialization
function is universal. However, internally, separate functionalities like the menu, search,
image sliders, or video controls are all coded as modules in separate files. These were
taken as a basis for splitting, which only requires modifying the initialization function with
Waiter and AUTRATAC, as no cross-references between functions of different files could be
found. Furthermore, all JavaScript code is streamed as well in this test. While not strictly
required, delaying code can be done by in-lining the JavaScript code into the main HTML
file. As a result, the JavaScript is delayed and non-render-blocking, but remains in its initial
order. Therefore, all code keeps its full functionality. It was also checked manually that the
required functions were called correctly and that no errors were logged in the console of the
client’s browser.

6.4.4 Results of the Code Efficiency Tests

The usage of code until render will be discussed for JavaScript and CSS separately, but both
results are shown in Figure 6.6. In this case, efficiency means percentage of code used until
render. In total, the CSS of the reference page is used by 24.9%, which is significantly higher
than the average of 15.9% described in the analysis chapter 4. The CSS of the streamed
version had an efficiency of 66.9%, roughly 2.7 times that of the reference. However, the
efficiency number of the reference stays the same when considering only the render-blocking
CSS, as all CSS of the reference page is loaded in this way. In contrast, all CSS of the
streamed version is non-render-blocking, so there is no data for this measurement shown in
Figure 6.6.

Similarly to CSS, the reference page uses 55.7% of all JavaScript, again higher than the
average of 40.8% measurement in the analysis. Both cases show that the web page’s code
base was optimized above average before testing. However, the overall code usage is lower
for the streamed version in this case. After investigating this issue further, it seems to be a
result of code, which is, in turn, loaded by other JavaScript code. Frameworks like Google
Tag Manager load additional trackers to a page, which is usually not recorded, as puppeteer

86

6.4 Case Study Test

0 10 20 30 40 50 60 70 80 90 100

CSS in total

CSS render-blocking

JavaScript in total

JavaScript render-blocking

Usage in percent

M
ea
su
re
m
en
t

Reference
Streaming

Figure 6.6: Percentage of code usage used by both versions in total until render. The graph
includes standard error bars.

stops capturing the code coverage directly after the page is rendered. For the streamed
version, the page needed to be captured longer, as puppeteer recognized only the render of
the initial minimal HTML page. As a result, the additional code segments are also recorded,
decreasing code efficiency. However, the results show major differences when discussing only
the render-blocking JavaScript code. The JavaScript efficiency of the original (reference)
page increases from 55.7% to 63.9%. For streaming, only the initial, minimal HTML page
is render-blocking, which results in a 100% usage of the transmitted render-blocking code.

6.4.5 First Contentful Paint

In subsection 2.7.1 the importance of the FCP was described. Generally, it is a user-centric
measurement, showing the point in time when the first content is visible to the user. This
also shows progress, which is welcomed by users [Nah04; VS22b]. As shown in Figure 6.7,
the time until the FCP is significantly faster in all cases and is also below the 2-second mark,
determined as the tolerable waiting time until information retrieval according to Nah et al.
[Nah04]. The 2-second mark is therefore also highlighted by a dotted line in Figure 6.7.
Special care was taken to ensure that the measurement of the streamed version does not
trigger for the initial page but only for transferred content. This is why the ”First Paint
(FP)” property of the performance API is not compared, as it would show skewed results.
However, the data for the FCP highlights the true potential of the streaming method. As
visible in Figure 6.7, the time until FCP does not change significantly independent of the
network speed, as the first package will arrive at the same time independent of the length or
complexity of the web page. In this case, at 2 Mbps, the FCP was reached at 2.81 seconds
for the reference and only 0.47 seconds for the streamed version. This marks a decrease of
83.3%. Comparing this data to the automated test in Figure 6.3 shows that major loading
time improvements can be made with an optimized page and non-render-blocking JavaScript.

6.4.6 Data Above-the-Fold

The FCP only marks the point for initial data reaching the client. However, the time it
takes to transfer all data necessary for displaying the initial viewport can give a better
understanding of loading time speeds.

This measurement is created for the streaming variant by calculating the time between
the ”responseStart” and the completed transfer of the last package, which is required for
displaying the initial part Above-the-Fold in a Chromium browser opened on a full-HD
monitor. For the reference page, the FCP is used as a best-case scenario. The timing

87

6 Evaluation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

2 Mbps

4 Mbps

6 Mbps

8 Mbps

10 Mbps

Time in s

n
et
w
or
k
sp
ee
d

Reference
Streaming

Figure 6.7: Time until the ”FirstContentfulPaint”-performance marker. The dotted line rep-
resents the time for user-accepted loading time according to Nah et al. [Nah04].
The graph includes standard error bars.

difference is still similar, as shown in Figure 6.8. In all cases, the time to show the data
”Above-the-Fold” is significantly faster than the reference and similar to the time until FCP.
However, a more drastic increase in loading time is shown at 2 Mbps for the streaming
variant. Still, there is significant headroom left until the 2-second mark is reached.

6.4.7 First Package and Overhead

The measurements of the first package show the overhead of both versions. For reference,
this measurement included measuring the difference between ”RequestStart” and ”Respons-
eStart,” while for streaming, the difference between ”RequestStart” and the finished transfer
of the first streamed package was used. As shown in Figure 6.9, the time until the first pack-
age is significantly faster for the reference pages. However, this is to be expected. For the
streamed version, the ”ResponseStart” only measures the first Byte of the initial minimal
HTML file. This data shows major similarities to the same test shown in Figure 6.1. For
2 Mbps, the reference took 30.9 milliseconds until the first Byte, with 77.4 milliseconds for
the streamed version.

6.4.8 Last Package

To compare the total transfer time, the time until the last package was gathered. For the ref-
erence page, the difference between the ”ResponseStart” and ”DomContentLoaded”-events
were used. For the streamed web page, the time difference between the ”ResponseStart”
and the last streamed package was calculated. Furthermore, this included also all CSS and
JavaScript, as the streamed version had all said code in-lined. Therefore, such a comparison
shows the time a user has to expect until all render-critical components of the page are loaded
and functional. Figure 6.10 shows this data. In all cases, the streamed version was signif-
icantly faster to transfer all content. Furthermore, the total transfer time for all network
speeds falls below the 2-second mark. At 2 Mbps, the reference took 4.53 seconds to load all
code, while the streamed version took only 1.34 seconds. However, it has to be noted that
this measurement depends on the size and complexity of the web page. Comparing the data
to Figure 6.2 shows that the proportions between the streamed and non-streamed versions
stay the same, but the total loading time will differ significantly depending on the page.

88

6.4 Case Study Test

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

2 Mbps

4 Mbps

6 Mbps

8 Mbps

10 Mbps

Time in s

n
et
w
or
k
sp
ee
d

Reference
Streaming

Figure 6.8: Time until all data ”Above-the-Fold” is shown. For reference, the FCP marker
is used as a ”best case.” For the streamed version, the time for the last package
is measured, representing the last code necessary to display all HTML of the
viewport of a Chrome opened on a full-HD monitor. Both measurements are
calculated starting from the ”ResponseStart”-marker. This reduces network in-
terference, as it only measures from the first received Byte. Again, the 2-second
mark of tolerable waiting time is shown with a dotted line. The graph includes
standard error bars.

0 10 20 30 40 50 60 70 80

2 Mbps

4 Mbps

6 Mbps

8 Mbps

10 Mbps

Time in ms

n
et
w
or
k
sp
ee
d

Reference
Streaming

Figure 6.9: Time until the first transmitted package. Both measurements are calculated
starting from the ”RequestStart”-marker. This reduces network interference, as
it only measures from the first received Byte. In this case, the ”RequestStart”
was used as the ”ResponseStart” equals the first package for the reference. The
streaming variant uses the first streamed package. The graph includes standard
error bars.

89

6 Evaluation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

2 Mbps

4 Mbps

6 Mbps

8 Mbps

10 Mbps

Time in s

n
et
w
or
k
sp
ee
d

Reference
Streaming

Figure 6.10: Time until the last transmitted package of render-blocking content. Both mea-
surements are calculated starting from the ”ResponseStart”-marker. This re-
duces network interference, as it only measures from the first received Byte. The
streaming variant uses the last streamed package, and the ”DomContentLoa-
ded” marker is used for the reference. The graph includes standard error bars.
The dotted line represents the time for user-accepted loading time according to
Nah et al.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

2 Mbps

4 Mbps

6 Mbps

8 Mbps

10 Mbps

Time in s

n
et
w
or
k
sp
ee
d

Reference
Streaming

Figure 6.11: Time until the ”DomInteractive”-performance marker. The graph includes stan-
dard error bars.

6.4.9 Interactive DOM

As discussed in subsection 2.7.3, measurements of the DOM interactivity need to be set into
context when using the ”domInteractive” performance marker. However, in this case, it is
only used to measure the time it takes until the DOM has the potential to become interactive.
Figure 6.11 shows the times it takes for both versions to reach this marker. Therefore, the
focus will rely mainly on the streamed version and its relation to the reference page. It is
visible that the streamed version only takes a fraction of a second to become interactive.
However, as shown in Figure 6.10, it takes significantly longer to load all page data.

However, due to the HTML of the streamed web page being added continuously, this data
proves an important feature of streamed web pages: as soon as the HTML is added to the
page, it will be interactive. For example, if the first package contains a link to another web
page, it is clickable as soon as it is displayed. In contrast to the reference page, the streamed
version can therefore be interacted with even if the main DOM is not fully loaded.

90

6.5 User Satisfaction Tests

6.5 User Satisfaction Tests

The following test will evaluate user satisfaction of a stream-based modified loading behav-
ior. Due to DOM-Content being loaded continuously, a different visual experience will be
noticeable by users at slow network speeds, loading the page primarily top-to-bottom. A
web-based questionnaire was created for this test, with texts in German and English. This
allowed for testing a large, unsupervised group of people. The test was adapted from the
paper done by Moshagen and Thielsch, which also features a web-based study comparing
page properties [MT13]. The results are also published in a paper [VS22b].

In this case, users were shown a video of different loading behaviors of different web
pages. The selection of web pages is also explained in more detail in the paper [VS22b],
which results in selecting one correctly render-able page from multiple web categories. They
are amazon.com from ”E-commerce And Shopping,” netflix.com from ”TV Movies and
Streaming,” qq.com from ”News and Media” as well as medium.com from ”Social Networks
And Online Communities” [VS22b]. The capture was made at 64 KB/s network speed,
limited by the Network Link Conditioner [22ae]. The video ensures that all participants see
the exact same version and timing of the page. One shown version was the reference, and
one showed the streamed page via WebSocket (called content first). The last version was a
test that prioritized written content in the parsing order called text-first. This version was
also streamed via WebSocket. After watching the video, the participants were asked to mark
their favorite loading type on a Likert scale with five steps, ranging from ”very bad” to ”very
good.” Next, the reasons for their selection were also collected. The users could select one
of the pre-defined answers or insert their own text, allowing maximum flexibility.

6.5.1 Results of the User Evaluation

The web-based survey was accessible from November 10th to November 23rd, 2020 [VS22b].
Overall, 138 individual answers were given. The user group is expected to consist mainly of
computer science faculty members, as the survey invitation was published via a newsletter.
Therefore, the participants might possess domain knowledge. However, no information on
the displayed versions was given.

In general, 85.29% of the participants preferred the streaming version as described in
section 5.5 (layout first). 8.09% preferred the streamed version, which prioritizes text content
(text first), and 6.62% preferred the original loading behavior.

Mainly, users liked the layout first version, as ”they liked the way the web page changes
visually while loading” (selected by 35% of users) [VS22b]. The results are shown in more
detail in Figure 6.5. The speed of information access was also important, with 31% of
participants selecting this answer and the speed of displaying the information (selected by
28% of users). The most important reason for disliking the page is also the way the web page
changes while loading, as shown in Figure 6.5 [VS22b]. So, in general, this is the most critical
factor. Reducing visual change could potentially increase user satisfaction even further.

6.6 Summary of the Evaluation Results

In this chapter, the previously designed concept was tested. This evaluation consists of
three tests. The first described test consisted of an automatic performance test, converting
and evaluating five popular web pages according to the Tranco list. This test allowed for
gathering data regarding the possible best-case performance of real web pages while simul-
taneously comparing WebSockets and SSE as streaming methods and gathering data about
conversion times. The tests showed that significant performance increases could be made
with a streamed web page version, surpassing the average file size decrease of 23.7% made by

91

6 Evaluation

processing CSS and splitting the HTML. It also showed that WebSockets are the preferred
streaming method due to faster connection times and fewer limitations than SSE, like the
maximum possible simultaneous connections. Furthermore, the average processing time of
Essential was determined to be 17.5 seconds, and the average HTML splitting time was
40.8 milliseconds. However, this test lacked JavaScript optimization, and no access to the
original code-bases are available.
Next, a case study was performed using the code-base of ”solarenergie.de.” This test

was similar to the automatic tests. However, in this case, the JavaScript of the page was
adapted as well. Comparing these results showed that the CSS efficiency could be improved
similarly to what the Essential code efficiency tests described in subsection 5.3.5 predicted.
Furthermore, the efficiency of the JavaScript code, which is transferred via the initial minimal
HTML file from the streamed version, is used by 100% until render. Next, the data for First
Contentful Paint showed that even at 2 Mbps, the FCP was reached by the reference in 2.81
seconds, while the streamed version only took 0.47 seconds. This improvement is also visible
for the transfer of all data necessary ”Above-the-Fold.” In this case, the streamed version
needed 0.7 seconds instead of 2.81 seconds for the FCP of the reference. These improvements
were made, even when the data showed that the time to first Byte is 60.6% slower for the
streamed version at 2 Mbps due to the overhead of the initial connection. Still, all render-
blocking data was shown to be transferred significantly faster with the streamed version,
only taking 1.3 seconds instead of 4.5 seconds of the reference. It was also shown that during
this process, the page is interactive and can be interacted with by the user while it is still
loading.
Lastly, the user acceptance of the streaming behavior was tested. For this, different web

pages from different web categories were downloaded and converted. Then, the original
and streamable pages were recorded at 64 KB/s and shown side-by-side. The following test
consisted of an anonymous online questionnaire, where users were shown the video and asked
about their most and least favorite loading version. The test was filled out completely by
138 individuals, which preferred the streamed version by 85.29%. For both user groups who
liked or disliked the streamed version, the most important aspect of their choice was the
change of the page while it was loading. This showed that the total layout shift is not well
received but welcomed at slow network speed as it indicates progress.

92

7 Conclusion

93

7.1 Answers of the Research Questions

In this chapter, the research questions will be answered, and the work will be summarized. In
it, the contributions of the dissertation are highlighted, followed by a discussion and future
work.

7.1 Answers of the Research Questions

At the beginning of this thesis, four research questions were brought forward, which will now
be answered in detail.

7.1.1 RQ1: Are streamed web pages with a reordered loading schedule faster
than the traditionally loaded counterparts?

In short, the case study test in section 6.4 showed that streamed web pages load significantly
faster, especially at slow network speeds. The streamed version reduced the time until FCP
by up to 83.3% at 2 Mbps and was able to transfer the whole page (until the completed trans-
fer of the last render-blocking package) by up to 70.4% less time at 2 Mbps. Furthermore,
the results described in subsection 6.4.9 also showed that the streamed page is interactive
while it is loading, allowing for even faster access to, e.g., links. This data is backed up by
the automated test described in section 6.3, showing similar results for FCP and time to last
package. However, in both tests, an initial stream connection overhead is visible due to the
backward-compatible approach taken, as described in Figure 5.23. However, this overhead
is negligible compared to the overall loading times. Therefore, streamed web pages with a
reordered loading schedule present a significantly faster loading time, both compared to the
time until the FCP and the transfer of all render-blocking elements.

7.1.2 RQ2: Are current (streaming-) protocols sufficient for delivering such
web pages or are new protocols needed?

Current viable options for streaming data were discussed in section 5.5.1 and tested in sub-
section 6.3.7. The discussion concluded that both WebSocket and SSE are viable methods
of transfer. However, when testing both options, it was concluded that it would be preferred
due to faster connection times, fewer restrictions regarding the maximum number of simul-
taneous open connections, and fewer render-related issues. Furthermore, WebSockets are
supported by the vast majority of browsers [22aw]. As a result, WebSocket can be declared
fully sufficient for streaming web pages. Therefore, this research question can be answered
with ”yes.”

7.1.3 RQ3: To which extent can the new method be used for existing web
pages?

As shown as part of the related work in chapter 3, various options exist for optimizing web
pages, like Marko or Qwik, which require re-writing the entire code-base to conform to the
restrictions of the given framework. In contrast, all techniques developed in this thesis are
framework-independent. Essential, the CSS optimization framework, is in itself universal,
as it is based on Critical, which does not require any form of preliminary adaptation of
the web page itself. Secondly, Waiter and AUTRATAC are both specifically developed to
provide a flexible and easy tool for delaying JavaScript, independent of the framework. As
proof, it was integrated into a React code-base described in subsection 5.4.5 and into a Neos
code-base as part of the final evaluation (section 6.4). Lastly, the HTML splitting can be
done universally as well, processing different types of HTML as part of the automatic tests
(shown in section 6.3) and Neos-based HTML in section 6.4. The streaming itself is fully
independent of the initial web page, only requiring a set of sendable chunks. Therefore, it

95

7 Conclusion

was shown that, yes, the technique developed in this thesis can be integrated into various
existing technologies and is not bound to one specific style of creating a web page.

7.1.4 RQ4: How much of this process can be automated in order to reduce
development effort?

In order to ease development efforts, the goal was to automate this technique as much as pos-
sible. This goal was achieved, as the only exception is the manual preparation of JavaScript
code. This was discussed in detail in section 5.4, showing that no automatic JavaScript op-
timization is currently feasible due to limited accuracy. Therefore, the AUTRATAC framework
was created, which is able to help developers integrate Waiter easier. AUTRATAC consists
of a Babel plugin that can convert asynchronous JavaScript code into code that already
integrates all calls to Waiter. The developer needs to simply mark functions as ”async” and
ensure all necessary calls are awaited. Special care was also taken to make the call syntax
of Waiter as easy as possible. All other frameworks, like Essential or the HTML code
splitting, can be done fully automatically. Therefore, the answer to this research question
is: All steps except the preparation of JavaScript code can be automated. However, this
assumes that there are no syntactical errors in the HTML and CSS code of the page.

7.1.5 RQ5: To which extent is the new loading behavior accepted by users?

Modifying the loading behavior of web pages represents the fundamental idea of this work.
However, it also changes how users perceive and consume web content, which radically differs
from the traditional all-or-nothing method from a render-blocking file-based page structure.
Therefore, a user study was conducted in section 6.5, which tested different loading types.
The first loading method is a streamed version that prioritizes text over everything else,
including HTML structure. This version is called ”text first.” The second version is the
exact loading behavior produced by the techniques of this work, called ”layout first.” The
third version was a control version (”reference”) with the traditional render-blocking and
file-based loading behavior. The results showed that only 6.62% of the 138 participants
preferred the ”reference” version. The ”text first” loading method was preferred by 8.09%.
However, the technique developed in this work was by far the most-liked loading behavior,
with 85.29% of participants selecting it as their preferred loading type. As a result, any
form of streamed web page represents an improvement over the status quo. However, the
significant preference for the ”layout first” version developed as part of this work shows that
such modification is also ready for real-world applications.

7.2 Discussion

Streaming web pages is a fundamental change in how web pages load. Therefore, some
implications will be discussed next.

7.2.1 Reasons for Streaming a Web Page

A full streaming approach has one unmatched advantage over other approaches: the initial
loading time of web pages does not depend on the total size of the web page. While traditional
page loading is based on the size and loading type of render-blocking resources, splitting the
page and converging the times until FCP to each other. This means that if a user only
needs the menu or login button commonly placed at the top of a web page, the page can be
left without loading it fully. Both allow for a more user-centered navigation approach while
simultaneously providing flexibility for larger and more complex web pages.

96

7.2 Discussion

7.2.2 Advertisements

A study created by OnAudience estimated that in 2017, ad-blockers were responsible for
a $42 billion in global revenue loss, which is an estimated increase of $14 billion from $28
billion in 2016 [17]. Therefore, advertisements are a huge economic factor on the internet.
It is, therefore, in the best interest of providers to block the render of a web page until the
advertisement is shown. While streaming web pages allow for faster navigation without said
render-blocking property, it also makes it harder to block, as individual requests are missing,
which could be blocked by said extensions. Therefore, the impact of streaming web pages is
unclear but also outside the scope of this work.

7.2.3 Caching and CDNs

Streaming web pages will break traditional file-based caching approaches. However, they
exist as a result of how web pages are built. This is taken as an advantage, as cache-busting
via IDs is a common way of forcing an update to a web page. Similarly, if a 100% streamed
approach is targeted, new approaches might be possible to tell the server beforehand which
code sections already exist by using a hash or an ID. This could prevent streaming the
individual code elements but also enable the re-use of individual code blocks across multiple
pages. Secondly, fewer caches might be needed by optimizing the stream if the loading speed
is the sole goal. As described by Tenni Theurer, former Senior Director at Yahoo, 40-60%
of users visit their web page with an empty cache [07]. This highlights the importance of
focusing on the ”empty cache experience,” as Theurer called it [07]. In this case, the main
page might not require caching render-blocking resources. The other improvement made
by caches is the decrease in server load, which is also one of the goals of CDNs. This is
explained in more detail in subsection 7.2.4. Additionally, by adapting the way CDNs load,
it is also possible to serve the stream directly via CDNs. This has two advantages. First, the
initially sent file is as small as possible, making it harder to overload the server. Secondly,
the stream can easily be pointed to another server, allowing new load distribution methods.
One example would be to include a list of servers ordered by priority, allowing the client
to autonomously use a backup if the first server is unreachable. As the streams do not
need two-way communication, the transfer of data more closely represents the provision of
classically streamed media, which is also already offered by companies like Akamai [22z].
It is, therefore, plausible that such adaptations can be made. Lastly, companies offering
streams like WebSockets via CDNs already exist [22ax]. These show that the concept is
directly usable with CDNs in mind, as the required technology already exists.

7.2.4 Streaming Other Media

According to the HTTP Archive page weight report, resources like images and video represent
a significantly larger portion compared to HTML, CSS, and JavaScript [22s]. As these are
non-render-blocking, they might also be loaded without using a stream, allowing them to
be served by a traditional CDN. This is the reason why they are not focused in this work.
However, streaming other elements like images and video is already possible. Especially
web videos are already streamed, with existing standards and APIs [22x]. For images, CDN
providers like Cloudflare already showed that by taking advantage of HTTP/2 multiplexing,
images could also be progressively streamed [Gal20]. Combining both or using additional
streams for video and images is, therefore, already possible.

7.2.5 Implications of Streaming Web Pages

The backward-compatible approach in this work only represents the first step towards fully
streamed pages by providing the necessary groundwork. More precisely, it keeps in mind

97

7 Conclusion

that in the future, browsers might include the capability of streaming web pages directly,
eliminating the need for the initial HTML file. This eliminates the current overhead and
speeds up web page loading even further. For this, a standard has to be created to ensure
browser and server compatibility. The underlying protocol, HTTP/2 and HTTP/3, already
provide sufficient options for streaming content. Eliminating the last step of re-assembling
entire files before rendering would therefore be a sufficient change. This could be done by
inlining all render-blocking code and adding a tag like <render/> to the page, which can
tell the browser to display the previously transmitted section. With this single change, it is
possible to eliminate a large portion of the splitting scripts described in this concept, as the
choice can be made by the developer. However, it would also allow for using it incorrectly
by still linking render-blocking external files, possibly diminishing improvements made by
slitting code. Finding the best option to standardize and integrate such a stream-based
solution into existing web technology is, therefore, part of future work and outside the scope
of this thesis.

7.3 Summary

At the beginning of this thesis, a large-scale analysis was performed, spanning all down-
loadable pages of the top 10.000 web pages according to the Tranco-list [Poc+18]. This
analysis aimed to gather data about the render-blocking properties of web page resources,
including HTML, JavaScript, and CSS. It further gathered data about code coverage, giving
insight into how much of the render-blocking code is actually used. Therefore, the structural
optimization potential could be determined. Less render-blocking code will, in turn, lead
to faster loading times due to requiring less data to display the page. The analysis showed
that there is significant optimization potential left. On average, modern web pages are built
with a combined 86.7% of JavaScript and CSS, the rest being HTML. Both JavaScript and
CSS are loaded mostly render-blocking, with 91.8% of JavaScript and 89.47% of CSS loaded
in this way. Furthermore, only 40.8% of JavaScript and 15.9% of CSS is used until ren-
der. This shows that, on average, web pages have significant room for improvement. The
concept, which is then developed based on the results of this analysis, aims to load web
pages in a new way by streaming all render-blocking content. The related work showed
that multiple sub-techniques are required first, which were conceptualized next. First, an
optimization and splitting tool for CSS is proposed, called Essential. This is followed by
an optimization framework concept for JavaScript, consisting of Waiter and AUTRATAC.
Lastly, a backward-compatible approach was developed, which allows for splitting HTML
and streaming all content to a client. The evaluation showed that the streamed web page
loads significantly faster when comparing FCP, content ”Above-the-Fold,” and total transfer
time of all render-blocking resources of the document. For example, the case study test
determined that the streamed page could reduce the time until FCP by 83.3% at 2 Mbps
and the time until the last render-blocking data is transferred by up to 70.4% at 2 Mbps.
Furthermore, existing streaming methods were also compared, determining that WebSockets
meets the requirements to stream web page content sufficiently. Lastly, an anonymous online
user questionnaire showed that 85% of users preferred this new style of loading pages.

7.4 Future Work

This thesis showed that the concept of streaming web pages is viable and that it also can
be created in a backward-compatible way. However, even in this concept, it has to be
acknowledged that this can be improved further in the future. As part of the concept, an
initial file is transferred every time a new stream-based page is requested. This introduces
an overhead. However, it is nearly negligible. Still, this is required, as modern browsers do

98

7.4 Future Work

not support such stream-based delivery. In the future, when this form of stream-based pages
becomes more popular, the base method can be integrated into browsers directly without
removing its current backward-compatible functionality. One possible method would be for
browsers to request the main page and the streamed page via a standardized port directly.
By removing the overhead completely, even faster pages are possible. Furthermore, this
work focused on streaming only render-critical content by highlighting the fact that all other
content does not affect loading times. However, as shown by Cloudflare, other media, like
pictures, can be progressively loaded as well [Gal20]. Therefore, future work could also focus
on non-render-blocking elements to provide a fully streamed experience beyond the initial
page load.

99

8 Appendix

101

8.1 CSS Processing Example

8.1 CSS Processing Example

This example shows how CSS is processed via Essential and prepared for streaming.

1 <!doctype html>

2 <html>

3 <head>

4 <style>

5 p {

6 color: blue;

7 }

8 h1 {

9 color: red;

10 }

11 /* comment */

12 p {

13 color: blue;

14 }

15 a {

16 color: green;

17 }

18 </style>

19 </head>

20 <body>

21 <h1>Headline</h1>

22 <p>Text</p>

23 </body>

24 </html>

Figure 8.1: Original HTML Code

Page 1

http://localhost

116px

Figure 8.2: Step 1: Get the full page
height by opening the page in
a browser

1 <!doctype html>

2 <html>

3 <head>

4 </head>

5 <body>

6 <h1>Headline</h1>

7 <p>Text</p>

8 </body>

9 </html>

1 p {

2 color: blue;

3 }

4 h1 {

5 color: red;

6 }

7 /* comment */

8 p {

9 color: blue;

10 }

11 a {

12 color: green;

13 }

Figure 8.3: Step 2: Extracting CSS

1 <!doctype html>

2 <html>

3 <head>

4 </head>

5 <body>

6 <h1>Headline</h1>

7 <p>Text</p>

8 </body>

9 </html>

1 p {

2 color: blue;

3 }

4 h1 {

5 color: red;

6 }

7 /* comment */

8 p {

9 color: blue;

10 }

11 a {

12 color: green;

13 }

Figure 8.4: Step 3: Extracting all selec-
tors: ”p”,”h1”, ”p” and ”a”

103

8 Appendix

Page 1

http://localhost

h1

p

<116px <116px

1 <!doctype html>

2 <html>

3 <head>

4 </head>

5 <body>

6 <h1>Headline</h1>

7 <p>Text</p>

8 </body>

9 </html>

1 p {

2 color: blue;

3 }

4 h1 {

5 color: red;

6 }

7 /* comment */

8 p {

9 color: blue;

10 }

11 a {

12 color: green;

13 }

Figure 8.5: Step 4: Match selectors with
the HTML and test if they are
visible on the page (inside the
top 116px) (matches are high-
lighted)

1 <!doctype html>

2 <html>

3 <head>

4 </head>

5 <body>

6 <h1>Headline</h1>

7 <p>Text</p>

8 </body>

9 </html>

Critical CSS:

1 p {

2 color: blue;

3 }

4 h1 {

5 color: red;

6 }

7 p {

8 color: blue;

9 }

Uncritical CSS:

1 a {

2 color: green;

3 }

Figure 8.6: Step 5: Sort into ”critical”
(top) and ”uncritical” (bot-
tom). Note: the comment
got removed, as it is not a
valid selector. This example
is also partially published at:
[VS23a]

104

8.1 CSS Processing Example

1 <!doctype html>

2 <html>

3 <head>

4 </head>

5 <body>

6 <h1>Headline</h1>

7 <p>Text</p>

8 </body>

9 </html>

Critical CSS:1 p {

2 color: blue;

3 }

4 h1 {

5 color: red;

6 }

Uncritical CSS:

1 a {

2 color: green;

3 }

Figure 8.7: Step 6: Remove code dupli-
cates (second ”p”-class)

1 <!doctype html>

2 <html>

3 <head>

4 </head>

5 <body>

6 <h1>Headline</h1>

7 <p>Text</p>

8 </body>

9 </html>

Critical CSS:1 ID: 0 p {

2 color: blue;

3 }

4 ID: 1 h1 {

5 color: red;

6 }

Uncritical CSS:

1 a {

2 color: green;

3 }

Figure 8.8: Step 7: Giving every critical
selector a unique ID

1 <!doctype html>

2 <html>

3 <head>

4 </head>

5 <body>

6 <h1

Match: 1 >Headline</h1>↪→

7 <p Match: 0 >Text</p>

8 </body>

9 </html>

Critical CSS:1 ID: 0 p {

2 color: blue;

3 }

4 ID: 1 h1 {

5 color: red;

6 }

Uncritical CSS:

1 a {

2 color: green;

3 }

Figure 8.9: Step 8: Matching of critical
CSS classes and HTML object
locations

1 <!doctype html>

2 <html>

3 <head>

4 </head>

5 <body>

6 <style>h1 {color: red;}</style>

7 <h1>Headline</h1>

8 <style>p {color: blue;}</style>

9 <p>Text</p>

10 <style>a {color:

green;}</style>↪→

11 </body>

12 </html>

Figure 8.10: Optional step 9: Exem-
plary inlining of CSS into
HTML so that the HTML
can be split and streamed
with all CSS included at the
correct location. All CSS
is loaded before it is used
(highlighted). The uncritical
CSS is loaded at the end.

105

8 Appendix

8.2 JavaScript Preparation Example

This example shows how JavaScript is prepared for streaming by the developer using Waiter and
AUTRATAC. The following setup is given:

1 [...]

2 <button onclick="toggleMenu(this)">

3 Open Menu

4 </button>

5 <div id="menu" class="hidden">

6 Homepage

7 Shop

8 </div>

9 [...]

Figure 8.11: HTML code used

1 .hidden{

2 display:none;

3 }

Figure 8.12: CSS code used

1 // toggles the Menu, gets called

2 function toggleMenu(button){

3 const menu = document.getElementById("menu");

4 toggleVisibility(menu) //important

5 toggleMenuText(button) //not important

6 }

7 //toggles the visibility of an element

8 function toggleVisibility(element){

9 element.classList.toggle("hidden");

10 }

11 //toggles the menu button text

12 function toggleMenuText(button){

13 button.innerText = button.innerText=="Close Menu"?"Open Menu":"Close Menu";

14 }

Figure 8.13: Original JavaScript code used in this example

1 // toggles the Menu, gets called

2 async function toggleMenu(button){

3 const menu = await document.getElementById("menu");

4 await toggleVisibility(menu) //important

5 await toggleMenuText(button) //not important

6 }

7 //toggles the visibility of an element

8 async function toggleVisibility(element){

9 await element.classList.toggle("hidden");

10 }

11 //toggles the button text

12 function toggleMenuText(button){ ← not marked async as it does not contain other function calls

13 button.innerText = button.innerText=="Close Menu"?"Open Menu":"Close Menu";

14 }

Figure 8.14: Step 1: Manually marking all relevant functions as asynchronous by adding
”async” and ”await” (highlighted)

106

8.2 JavaScript Preparation Example

1 async function toggleMenu(button) {

2 const menu = await w (async () => document.getElementById("menu"));

3 await w (async () => toggleVisibility(menu));

4 await w (async () => toggleMenuText(button));

5 }

6

7 async function toggleVisibility(element) {

8 await w (async () => element.classList.toggle("hidden"));

9 }

10

11 function toggleMenuText(button) {

12 button.innerText = button.innerText=="Close Menu"?"Open Menu":"Close Menu";

13 }

Figure 8.15: Step 2: Manually use AUTRATAC to insert Waiter-calls (highlighted). This also
removes comments due to the ”--no-comments”-option of Babel being used.

main.js

1 async function toggleMenu(button) {

2 const menu = await __w(async () => document.getElementById("menu"));

3 await __w(async () => toggleVisibility(menu));

4 await __w(async () => toggleMenuText(button));

5 }

menu visibility.js

1 async function toggleVisibility(element) {

2 await __w(async () => element.classList.toggle("hidden"));

3 }

menu text.js

1 function toggleMenuText(button) {

2 button.innerText = button.innerText=="Close Menu"?"Open Menu":"Close Menu";

3 }

index.html

1 [...]

2 <script src="main.js"></script> ← critical, captures user input

3 <button onclick="toggleMenu(this)">Open Menu</button>

4 <div id="menu" class="hidden">

5 Homepage

6 Shop

7 </div>

8 <script src="menu_visibility.js" defer ></script> ← less critical

9 [...]

10 <script src="menu_text.js" defer ></script> ← not critical

11 [...]

Figure 8.16: Step 4, option 1: Splitting code into separate chunks (files) and linking them in
the HTML. The less critical code is deferred (highlighted). Note: the JavaScript
itself will not be streamed. Therefore, it can also be used without streaming
the page and improve render times due to less render-blocking code.

107

8 Appendix

1 [...]

2 <script>

3 async function toggleMenu(button) {

4 const menu = await __w(async () => document.getElementById("menu"));

5 await __w(async () => toggleVisibility(menu));

6 await __w(async () => toggleMenuText(button));

7 }

8 </script>

9 <button onclick="toggleMenu(this)">Open Menu</button>

10 <div id="menu" class="hidden">

11 Homepage

12 Shop

13 </div>

14 <script>

15 async function toggleVisibility(element) {

16 await __w(async () => element.classList.toggle("hidden"));

17 }

18 </script>

19 [...]

20 <script>

21 function toggleMenuText(button) {

22 button.innerText = button.innerText=="Close Menu"?"Open Menu":"Close Menu";

23 }

24 </script> ← loaded at the end, before the end of the body

25 </body>

26 [...]

Figure 8.17: Step 4, option 2: In-lining all JavaScript code into the main HTML. The code
would be render-blocking in this state, but by splitting the HTML with the in-
lined JavaScript, the streamed variant would load the scripts in order, making
them non-render-blocking. Therefore, the less important JavaScript is loaded
directly at the end of the body. The script part before the menu is important, as
it captures the user’s input (clicking the ”Open Menu”-button). This procedure
of in-lining all JavaScript is, therefore, used in the final case study (section 6.4).

108

8.3 HTML Splitting Example

8.3 HTML Splitting Example

This example shows how different aspects of an HTML-based page are split by the technique
developed in this work.

1 <html lang="en">

2 <head>

3 <title>Document</title>

4 </head>

5 <body class="main">

6 <noscript>This page requires JavaScript</noscript>

7 <!-- comment -->

8 <style>

9 h1 {

10 color: red;

11 }

12 </style>

13 <h1>Title</h1>

14 <script>

15 window.focus();

16 </script>

17 </body>

18 </html>

Figure 8.18: Original HTML of the splitting example, containing inline style and inline
scripts, as well as a non-splittable element (”noscript”, see section 5.5.1).

1 < html lang="en" >

2 < head >

3 < title > Document < /title >

4 < /head >

5 < body class="main" >

6 <noscript>This page requires JavaScript</noscript>

7 <!-- comment -->

8 < style >

9 h1 {

10 color: red;

11 }

12 < /style >

13 < h1 > Title < /h1 >

14 < script >

15 window.focus();

16 < /script >

17 < /body >

18 < /html >

The colors represent: Start-tag , End-tag , Text , Unsplittable , JavaScript and Attribute .

Figure 8.19: Step 1: Parse and categorize every element of the page required for streaming.
Note that the comment was detected but does not represent a relevant element.
The individual package types are explained in section 5.5.1.

109

8 Appendix

HTML-tag attributes

1 lang="en"

HEAD-elements:

1 <title> Document </title>

BODY-tag attributes

1 class="main"

BODY-elements:

1 <noscript>This page requires JavaScript</noscript> <style> h1 { color: red; }

</style> <h1> Title </h1> window.focus();↪→

The colors represent: Start-tag , End-tag , Text , Unsplittable , JavaScript and Attribute .

Figure 8.20: Step 2: Remove comments, HTML, HEAD, and BODY tags, as they are al-
ready available in the initial minimal HTML file. Furthermore, SCRIPT-tags
are removed, as scripts require element creation on the client (explained in sec-
tion 5.5.1). The individual elements are also sorted into groups.

(1) HTML-tag attributes

1 lang="en"

(2) BODY-tag attributes

1 class="main"

(3) BODY-elements:

1 <noscript>This page requires JavaScript</noscript> <style> h1 { color: red; }

</style> <h1> Title </h1> window.focus();↪→

(4) HEAD-elements:

1 <title> Document </title>

The colors represent: Start-tag , End-tag , Text , Unsplittable , JavaScript and Attribute .

Figure 8.21: Step 3: Re-order all element groups so that they prioritize loading performance.
In this case, both HTML- and BODY attributes need to be sent first to guar-
antee the correct layout and functionality (as an identical DOM needs to be
generated). Then, the content of the BODY is sent before the HEAD to priori-
tize content delivery speed. As shown in both the CSS splitting and JavaScript
preparation examples (section 8.1 and section 8.2), the HEAD does not need to
contain any code relevant to rendering the page (as it can be in-lined) and will
therefore be delayed.

110

8.4 Streaming HTML Example

8.4 Streaming HTML Example

The example described in section 8.1 showed that all CSS can (and should) be in-lined
for stream-based page delivery. The same was shown in section 8.1 for JavaScript. In
section 8.3, the example used both in-lined CSS and JavaScript in the HTML splitting
example. Therefore, all render-critical resources can be processed and split. In this example,
the output of the example shown in section 8.3 is used as input to show how every chunk will
be sent. Here, the example will mainly show how the HTML is modified by the individual
chunks.

Initial, minimal HTML

1 <!DOCTYPE html>

2 <html>

3 <head>

4 </head>

5 <body>

6 <script> ← initial setup script, includes code to insert received chunks

7 [...]

8 </script>

9 </body>

10 </html>

(1) HTML-tag attributes

1 lang="en"

(2) BODY-tag attributes

1 class="main"

(3) BODY-elements:

1 <noscript>This page requires JavaScript</noscript> <style> h1 { color: red; }

</style> <h1> Title </h1> window.focus();↪→

(4) HEAD-elements:

1 <title> Document </title>

The colors represent: Start-tag , End-tag , Text , Unsplittable , JavaScript and Attribute .

Figure 8.22: The initial, minimal HTML page (top), with the individual groups to send at
the bottom.

111

8 Appendix

HTML-DOM on the client

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 </head>

5 <body class="main">

6 <script> [...] </script>

7 </body>

8 </html>

(1) HTML-tag attributes

1 lang="en"

(2) BODY-tag attributes

1 class="main"

(3) BODY-elements:

1 <noscript>This page requires JavaScript</noscript> <style> h1 { color: red; }

</style> <h1> Title </h1> window.focus();↪→

(4) HEAD-elements:

1 <title> Document </title>

The colors represent: Start-tag , End-tag , Text , Unsplittable , JavaScript and Attribute .

Figure 8.23: Step 1: After the initial minimal HTML file is transferred to the client and the
stream connection is made, the attributes for both the HTML- and the BODY
tag are transferred and set via setAttribute().

112

8.4 Streaming HTML Example

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 </head>

5 <body class="main">

6 <script> [...] </script>

7 <noscript>This page requires JavaScript</noscript>▼

8 </body>

9 </html>

(3) BODY-elements:

1 <noscript>This page requires JavaScript</noscript> <style> h1 { color: red; }

</style> <h1> Title </h1> window.focus();↪→

(4) HEAD-elements:

1 <title> Document </title>

The colors represent: Start-tag , End-tag , Text , Unsplittable , JavaScript and Attribute .

Figure 8.24: Step 2: The first HTML-chunk of unsplittable HTML is transferred (high-
lighted). The red triangle shows the insertion cursor, where the code is inserted
into the page.

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 </head>

5 <body class="main">

6 <script> [...] </script>

7 <noscript>This page requires JavaScript</noscript>

8 <style>▼</style> ← automatically generated by the browser

9 </body>

10 </html>

(3) BODY-elements:

1 <style> h1 { color: red; } </style> <h1> Title </h1> window.focus();

(4) HEAD-elements:

1 <title> Document </title>

The colors represent: Start-tag , End-tag , Text , Unsplittable , JavaScript and Attribute .

Figure 8.25: Step 3: Inserting the first regular HTML start tag. Note that the end tag
(”</style>”) is auto-generated by the browser, and the cursor is placed inside.

113

8 Appendix

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 </head>

5 <body class="main">

6 <script> [...] </script>

7 <noscript>This page requires JavaScript</noscript>

8 <style>h1 { color: red; }▼</style>

9 </body>

10 </html>

(3) BODY-elements:

1 h1 { color: red; } </style> <h1> Title </h1> window.focus();

(4) HEAD-elements:

1 <title> Document </title>

The colors represent: Start-tag , End-tag , Text , Unsplittable , JavaScript and Attribute .

Figure 8.26: Step 4: Inserting the content of the first element.

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 </head>

5 <body class="main">

6 <script> [...] </script>

7 <noscript>This page requires JavaScript</noscript>

8 <style>h1 { color: red; }</style>▼

9 </body>

10 </html>

(3) BODY-elements:

1 </style> <h1> Title </h1> window.focus();

(4) HEAD-elements:

1 <title> Document </title>

The colors represent: Start-tag , End-tag , Text , Unsplittable , JavaScript and Attribute .

Figure 8.27: Step 5: Closing the element. This means that the insertion cursor is moved to
the right after the end tag.

114

8.4 Streaming HTML Example

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 </head>

5 <body class="main">

6 <script> [...] </script>

7 <noscript>This page requires JavaScript</noscript>

8 <style>h1 { color: red; }</style>

9 <h1>Title</h1>▼

10 </body>

11 </html>

(3) BODY-elements:

1 <h1> Title </h1> window.focus();

(4) HEAD-elements:

1 <title> Document </title>

The colors represent: Start-tag , End-tag , Text , Unsplittable , JavaScript and Attribute .

Figure 8.28: Step 6: Inserting the headline in the same way.

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4

5 </head>

6 <body class="main">

7 <script> [...] </script>

8 <noscript>This page requires JavaScript</noscript>

9 <style>h1 { color: red; }</style>

10 <h1>Title</h1>

11 <script type="text/javascript">window.focus();</script>▼

12 </body>

13 </html>

(3) BODY-elements:

1 window.focus();

(4) HEAD-elements:

1 <title> Document </title>

The colors represent: Start-tag , End-tag , Text , Unsplittable , JavaScript and Attribute .

Figure 8.29: Step 7: Inserting a script by creating an element via docu-
ment.createElement(”script”), setting the type and content, and appending it
to the BODY. JavaScript appended in the HEAD can be moved to the body
beforehand or left as-is when used with Waiter.

115

8 Appendix

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 <title>Document</title>▼

5 </head>

6 <body class="main">

7 <script> [...] </script>

8 <noscript>This page requires JavaScript</noscript>

9 <style>h1 { color: red; }</style>

10 <h1>Title</h1>

11 <script type="text/javascript">window.focus();</script>

12 </body>

13 </html>

(4) HEAD-elements:

1 <title> Document </title>

The colors represent: Start-tag , End-tag , Text , Unsplittable , JavaScript and Attribute .

Figure 8.30: Step 8: After all content of the BODY is transferred, the HEAD elements follow.
For this, the insertion cursor is moved to the HEAD. There, the <title>-element
is inserted in the same way as described before.

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 <title>Document</title>

5 </head>

6 <body class="main">

7 <script> [...] </script>

8 <noscript>This page requires JavaScript</noscript>

9 <style>h1 { color: red; }</style>

10 <h1>Title</h1>

11 <script type="text/javascript">window.focus();</script>

12 </body>

13 </html>

Figure 8.31: The final HTML after all code is inserted.

116

List of Figures

117

List of Figures

2.1 Different loading methods of JavaScript are compared and displayed on the
time axis. It is shown that async and defer can improve loading speeds. . . . 11

2.2 Comparison of data transmission via TCP with HTTP/1 and HTTP/2. Image
Source: [Pol19] . 12

2.3 Exemplary compatibility table of WebSockets
Source: caniuse.com/websockets [DS13] . 15

3.1 Overview of the related work chapter, classifying the approaches into multiple
categories. 22

4.1 Structure of the analysis software. Source: [VS22a] 39

4.2 The average percentage of JavaScript locations in number of files/blocks and
characters on desktop (d) and mobile (m). Source: [VS22a] 40

4.3 The average percentage of CSS and JavaScript used until networkidle0 on
desktop (d) and mobile (m). Source: [VS22a] 41

4.4 The average percentage of CSS locations in the number of files and blocks and
characters on desktop (d) and mobile (m). Source: [VS22a] 42

4.5 Average percentage of render-blocking and non-render-blocking CSS per most
popular framework on desktop (d) and mobile (m). Source: [VS22a] 43

4.6 Summary of the measured proportions (on desktop) of code (HTML, JavaScript,
and CSS) in the middle, with the percentages of render-blocking and non-
render-blocking code above, and the code usage until render below. [VS22a] . 45

5.1 Multiplexing comparison of HTTP/1.1 and HTTP/2. Image source: [22t] . . 49

5.2 Stages of streaming web pages, starting with splitting individual files into
chunks, optimizing and filtering them (for example, including removing com-
ments), and ordering them based on the given priority. 51

5.3 The layers of required software tools to stream web pages. The missing con-
cepts are marked with grey, showing the required techniques necessary for a
complete solution . 52

5.4 Workflow of Essential(right), including a detailed view of the CSS processing
(left). Source: [VS23b] . 53

5.5 Two versions of the same web page, showing the traditional use of CSS on
the left and the CSS placed by a location-aware optimizer on the right. The
pages both result in an identical web page visually. However, the CSS on the
page on the right can be loaded in chunks via streams more efficiently. The
reason is that not all CSS needs to be loaded before showing the first section
of HTML. Furthermore, all duplicated CSS is also removed. 54

5.6 Simplified CSS splitting approach via Essential, showing how the original
CSS is processed, ordered, and split. The render-critical CSS is prioritized,
with the non-render-critical CSS being delayed. Duplicate CSS is also re-
moved. The location-aware splitting feature is shown in more detail in Fig-
ure 5.5, as this example is only implying the targeted HTML of the link
element (”a”). 55

5.7 Measured average CSS code efficiency (CSS used until render). The graph
includes standard error bars. Source: [VS23b] 57

5.8 Measured average code size of all transferred (render-critical) CSS in charac-
ters. The graph includes standard error bars. Source: [VS23b] 57

5.9 Visual similarity between fully processed versions, based on a pixel-by-pixel
comparison. Note: The x-axis starts at 95% to highlight differences. The
graph includes standard error bars. Source: [VS23b] 58

119

List of Figures

5.10 Visual similarity between versions, based on a pixel-by-pixel comparison. Both
Critical and Essential were loaded without the ”uncritical” CSS. The
graph includes standard error bars. Source: [VS23b] 58

5.11 Screenshots of wordpress.org modified using Critical (A) as well as Essential (B),
without including the CSS marked ”uncritical.” The dotted line symbolizes
the ”Above-The-Fold” mark when considering a 1920x1080 monitor. Source:
[VS23b] . 59

5.12 Conversion times of different versions. ”Only Critical” describes a website’s
conversion with Criticalin a non-modified state. Essential is separated
into the Essential-exclusive and Critical parts. The graph includes stan-
dard error bars. Source: [VS23b] . 60

5.13 Average time until different versions take until the FCP at 10 Mbps. The x-
axis begins at 1000 ms to highlight differences. The graph includes standard
error bars. Source: [VS23b] . 60

5.14 Average time until different versions load the ”DomContentLoaded”-event end
at 10 Mbps. The x-axis begins at 2000 ms to highlight differences. The graph
includes standard error bars. Source: [VS23b] 61

5.15 Comparison of the loading times of the default loading behavior, async and
async with Waiter. The yellow triangle marks the first possible render time.
Source: [VS23c] . 63

5.16 The average time calling recursive functions (synchronous, async, and with
Promises) using different call depths called 100 times each on Chrome, Firefox,
and Safari. The depth of the recursion is shown on the x-axis. The test was
performed on a 2020 MacBook Pro with a 2.3 GHz Quad-Core Intel i7 and
32GB 3733 MHz RAM. Source: [VS23c] . 66

5.17 Simplified JavaScript processing step by using AUTRATAC and Waiter, by
modifying and splitting the code. The dotted lines represent interchangeabil-
ity due to the use of Waiter. 68

5.18 Average conversion times with AUTRATAC of 100 tests each for an increasing
number of functions to convert . 69

5.19 Comparison of the average loading time until the First Contentful Paint of a
website optimized with and without Waiter when loaded at different network
speeds. The graph includes standard error bars. Source: [VS23c] 70

5.20 Comparison of the average loading time until all linked external JavaScript
functions are called and executed, showing a web page optimized with and
without Waiter loaded at different network speeds. The graph includes stan-
dard error bars. Source: [VS23c] . 71

5.21 Simplified diagram of streaming web pages, highlighting the steps of a client
loading a page after the chunks are generated. Modified from: [VS23a] 73

5.22 Simplified process of splitting and processing HTML. It shows how HTML is
separated into multiple types of chunks: start- and end-tags, as well as text.
Comments get removed. To ensure simplicity, HTML code chunk reordering
is not shown in this specific example. To optimize the loading speed, it would
move entire sections, like sending body-content before head-content. 74

5.23 Concept diagram showing the streaming of web pages, including the transfer
of the minimal initial page and a separate interface for streaming chunks.
Source: [VS23a] . 75

6.1 Time in ms until the first data of the document arrives, highlighting the
connection overhead of the stream-based approaches. The graph includes
standard error bars. 82

120

List of Figures

6.2 Time in s until the last data of the document arrives, highlighting the dif-
ference in transfer time until the final ”body” data of the stream-optimized
pages as well as the original. The graph includes standard error bars. 82

6.3 Time in seconds until the First Contentful Paint between the different versions.
The 2-second mark highlights the acceptable access time, referencing Nah et
al. [Nah04]. The graph includes standard error bars. 83

6.4 Missing render while rapid DOMmodification when loading ”amazonaws.com”
at 10 Mbps. Marker ”A” shows the lack of rendered frames. The yellow blocks
to the right of marker ”B” depict DOM inserts and animation frame requests. 84

6.5 Reasons why users prefer or dislike techniques 84

6.6 Percentage of code usage used by both versions in total until render. The
graph includes standard error bars. 87

6.7 Time until the ”FirstContentfulPaint”-performance marker. The dotted line
represents the time for user-accepted loading time according to Nah et al.
[Nah04]. The graph includes standard error bars. 88

6.8 Time until all data ”Above-the-Fold” is shown. For reference, the FCP marker
is used as a ”best case.” For the streamed version, the time for the last package
is measured, representing the last code necessary to display all HTML of the
viewport of a Chrome opened on a full-HD monitor. Both measurements are
calculated starting from the ”ResponseStart”-marker. This reduces network
interference, as it only measures from the first received Byte. Again, the 2-
second mark of tolerable waiting time is shown with a dotted line. The graph
includes standard error bars. 89

6.9 Time until the first transmitted package. Both measurements are calculated
starting from the ”RequestStart”-marker. This reduces network interference,
as it only measures from the first received Byte. In this case, the ”Request-
Start” was used as the ”ResponseStart” equals the first package for the ref-
erence. The streaming variant uses the first streamed package. The graph
includes standard error bars. 89

6.10 Time until the last transmitted package of render-blocking content. Both
measurements are calculated starting from the ”ResponseStart”-marker. This
reduces network interference, as it only measures from the first received Byte.
The streaming variant uses the last streamed package, and the ”DomCon-
tentLoaded” marker is used for the reference. The graph includes standard
error bars. The dotted line represents the time for user-accepted loading time
according to Nah et al. 90

6.11 Time until the ”DomInteractive”-performance marker. The graph includes
standard error bars. 90

8.1 Original HTML Code . 103

8.2 Step 1: Get the full page height by opening the page in a browser 103

8.3 Step 2: Extracting CSS . 103

8.4 Step 3: Extracting all selectors: ”p”,”h1”, ”p” and ”a” 103

8.5 Step 4: Match selectors with the HTML and test if they are visible on the
page (inside the top 116px) (matches are highlighted) 104

8.6 Step 5: Sort into ”critical” (top) and ”uncritical” (bottom). Note: the com-
ment got removed, as it is not a valid selector. This example is also partially
published at: [VS23a] . 104

8.7 Step 6: Remove code duplicates (second ”p”-class) 105

8.8 Step 7: Giving every critical selector a unique ID 105

8.9 Step 8: Matching of critical CSS classes and HTML object locations 105

121

List of Figures

8.10 Optional step 9: Exemplary inlining of CSS into HTML so that the HTML
can be split and streamed with all CSS included at the correct location. All
CSS is loaded before it is used (highlighted). The uncritical CSS is loaded at
the end. 105

8.11 HTML code used . 106

8.12 CSS code used . 106

8.13 Original JavaScript code used in this example 106

8.14 Step 1: Manually marking all relevant functions as asynchronous by adding
”async” and ”await” (highlighted) . 106

8.15 Step 2: Manually use AUTRATAC to insert Waiter-calls (highlighted). This
also removes comments due to the ”--no-comments”-option of Babel being
used. 107

8.16 Step 4, option 1: Splitting code into separate chunks (files) and linking them
in the HTML. The less critical code is deferred (highlighted). Note: the
JavaScript itself will not be streamed. Therefore, it can also be used without
streaming the page and improve render times due to less render-blocking code. 107

8.17 Step 4, option 2: In-lining all JavaScript code into the main HTML. The
code would be render-blocking in this state, but by splitting the HTML with
the in-lined JavaScript, the streamed variant would load the scripts in order,
making them non-render-blocking. Therefore, the less important JavaScript
is loaded directly at the end of the body. The script part before the menu is
important, as it captures the user’s input (clicking the ”Open Menu”-button).
This procedure of in-lining all JavaScript is, therefore, used in the final case
study (section 6.4). 108

8.18 Original HTML of the splitting example, containing inline style and inline
scripts, as well as a non-splittable element (”noscript”, see section 5.5.1). . . 109

8.19 Step 1: Parse and categorize every element of the page required for streaming.
Note that the comment was detected but does not represent a relevant element.
The individual package types are explained in section 5.5.1. 109

8.20 Step 2: Remove comments, HTML, HEAD, and BODY tags, as they are
already available in the initial minimal HTML file. Furthermore, SCRIPT-
tags are removed, as scripts require element creation on the client (explained
in section 5.5.1). The individual elements are also sorted into groups. 110

8.21 Step 3: Re-order all element groups so that they prioritize loading perfor-
mance. In this case, both HTML- and BODY attributes need to be sent
first to guarantee the correct layout and functionality (as an identical DOM
needs to be generated). Then, the content of the BODY is sent before the
HEAD to prioritize content delivery speed. As shown in both the CSS split-
ting and JavaScript preparation examples (section 8.1 and section 8.2), the
HEAD does not need to contain any code relevant to rendering the page (as
it can be in-lined) and will therefore be delayed. 110

8.22 The initial, minimal HTML page (top), with the individual groups to send at
the bottom. 111

8.23 Step 1: After the initial minimal HTML file is transferred to the client and
the stream connection is made, the attributes for both the HTML- and the
BODY tag are transferred and set via setAttribute(). 112

8.24 Step 2: The first HTML-chunk of unsplittable HTML is transferred (high-
lighted). The red triangle shows the insertion cursor, where the code is in-
serted into the page. 113

8.25 Step 3: Inserting the first regular HTML start tag. Note that the end tag
(”</style>”) is auto-generated by the browser, and the cursor is placed inside.113

122

List of Figures

8.26 Step 4: Inserting the content of the first element. 114
8.27 Step 5: Closing the element. This means that the insertion cursor is moved

to the right after the end tag. 114
8.28 Step 6: Inserting the headline in the same way. 115
8.29 Step 7: Inserting a script by creating an element via document.createElement(”script”),

setting the type and content, and appending it to the BODY. JavaScript ap-
pended in the HEAD can be moved to the body beforehand or left as-is when
used with Waiter. 115

8.30 Step 8: After all content of the BODY is transferred, the HEAD elements
follow. For this, the insertion cursor is moved to the HEAD. There, the
<title>-element is inserted in the same way as described before. 116

8.31 The final HTML after all code is inserted. 116

123

List of Tables

125

List of Tables

3.1 Overview over related work for CSS optimizations, comparing their usefulness
for the concept of this work. Sources to the individual techniques are linked
in the respective sections. 24

3.2 Overview over related work for JavaScript optimizations, comparing their use-
fulness for the concept of this work. 27

3.3 Overview over related work for splitting and streaming HTML, comparing
their usefulness for the concept of this work. 32

4.1 Overview over the measurements as they are described in subsection 4.4.1,
showing the groups to which every test belongs 38

4.2 Comparing values in percent of the most popular JavaScript-frameworks. d
= desktop, m = mobile. Source: [VS22a] . 41

4.3 Average values of the page optimization framework Google PageSpeed for
desktop and mobile in comparison to the average of all analyzed pages (ref-
erence) with p = PageSpeed, r = reference average, JS = JavaScript, idle =
networkidle0, iaoc = in amount of characters. Source: [VS22a] 44

6.1 Overview over tests of the individual components. The check-mark represents
that the individual components (HTML, JavaScript, CSS and Streaming) were
tested in the section described on the left-most column. 79

6.2 Differences in the amount of transferred data compared between the streamed
web page and the original, measured via Chrome DevTools 82

127

Bibliography

129

[07] Yahoo! User Interface Blog. [Online; accessed 17. Nov. 2022]. Jan. 2007. url:
https://web.archive.org/web/20070713072219/http://yuiblog.com/

blog/2007/01/04/performance-research-part-2.

[15] domInteractive: is it? really? | High Performance Web Sites. [Online; accessed
18. Dec. 2022]. Aug. 2015. url: https://www.stevesouders.com/blog/2015/
08/07/dominteractive-is-it-really.

[16] H74: Ensuring that opening and closing tags are used according to specification
| Techniques for WCAG 2.0. [Online; accessed 17. Nov. 2022]. Oct. 2016. url:
https://www.w3.org/TR/WCAG20-TECHS/H74.html.

[17] Ad blocking in the Internet. [Online; accessed 17. Nov. 2022]. Jan. 2017. url:
https://www.onaudience.com/files/adblock_report.pdf.

[18] The gzip home page. [Online; accessed 19. Oct. 2022]. Aug. 2018. url: https:
//www.gzip.org.

[19a] Introduction to HTTP/2. [Online; accessed 22. Nov. 2022]. Sept. 2019. url:
https://web.dev/performance-http2/#request-and-response-multiplexing.

[19b] Introduction to HTTP/2. [Online; accessed 9. Nov. 2022]. Sept. 2019. url:
https://web.dev/performance-http2.

[20] Eliminate render-blocking resources. [Online; accessed 18. Nov. 2022]. Oct. 2020.
url: https://web.dev/render-blocking-resources.

[21] First Contentful Paint (FCP). [Online; accessed 25. Feb. 2022]. Jan. 2021. url:
https://web.dev/fcp.

[22a] @babel/plugin-transform-react-jsx-compat · Babel. [Online; accessed 10. Nov. 2022].
Nov. 2022. url: https://babeljs.io/docs/en/babel-plugin-transform-
react-jsx-compat.

[22b] 249132 - Remove support for multipart/x-mixed-replace main resources - chromium.
[Online; accessed 10. Sep. 2022]. Sept. 2022. url: https://bugs.chromium.
org/p/chromium/issues/detail?id=249132.

[22c] 275955 - Limit of 6 concurrent EventSource connections is too low - chromium.
[Online; accessed 10. Sep. 2022]. Sept. 2022. url: https://bugs.chromium.
org/p/chromium/issues/detail?id=275955.

[22d] 906896 - Increase number of permitted EventSource connections. [Online; ac-
cessed 10. Sep. 2022]. Sept. 2022. url: https://bugzilla.mozilla.org/show_
bug.cgi?id=906896.

[22e] Advanced Compilation | Closure Compiler | Google Developers. [Online; accessed
9. Nov. 2022]. Mar. 2022. url: https://developers.google.com/closure/
compiler/docs/api-tutorial3.

[22f] An image format for the Web - WebP - Google Developers. [Online; accessed 19.
Oct. 2022]. Aug. 2022. url: https://developers.google.com/speed/webp.

[22g] Angular. [Online; accessed 9. Nov. 2022]. Mar. 2022. url: https://angular.io.

[22h] Browser Market Share Worldwide | Statcounter Global Stats. [Online; accessed
17. Nov. 2022]. Nov. 2022. url: https://gs.statcounter.com/browser-
market-share.

[22i] Critical rendering path - Web Performance | MDN. [Online; accessed 25. Feb.
2022]. Feb. 2022. url: https://developer.mozilla.org/en-US/docs/Web/
Performance/Critical_rendering_path.

131

https://web.archive.org/web/20070713072219/http://yuiblog.com/blog/2007/01/04/performance-research-part-2
https://web.archive.org/web/20070713072219/http://yuiblog.com/blog/2007/01/04/performance-research-part-2
https://www.stevesouders.com/blog/2015/08/07/dominteractive-is-it-really
https://www.stevesouders.com/blog/2015/08/07/dominteractive-is-it-really
https://www.w3.org/TR/WCAG20-TECHS/H74.html
https://www.onaudience.com/files/adblock_report.pdf
https://www.gzip.org
https://www.gzip.org
https://web.dev/performance-http2/#request-and-response-multiplexing
https://web.dev/performance-http2
https://web.dev/render-blocking-resources
https://web.dev/fcp
https://babeljs.io/docs/en/babel-plugin-transform-react-jsx-compat
https://babeljs.io/docs/en/babel-plugin-transform-react-jsx-compat
https://bugs.chromium.org/p/chromium/issues/detail?id=249132
https://bugs.chromium.org/p/chromium/issues/detail?id=249132
https://bugs.chromium.org/p/chromium/issues/detail?id=275955
https://bugs.chromium.org/p/chromium/issues/detail?id=275955
https://bugzilla.mozilla.org/show_bug.cgi?id=906896
https://bugzilla.mozilla.org/show_bug.cgi?id=906896
https://developers.google.com/closure/compiler/docs/api-tutorial3
https://developers.google.com/closure/compiler/docs/api-tutorial3
https://developers.google.com/speed/webp
https://angular.io
https://gs.statcounter.com/browser-market-share
https://gs.statcounter.com/browser-market-share
https://developer.mozilla.org/en-US/docs/Web/Performance/Critical_rendering_path
https://developer.mozilla.org/en-US/docs/Web/Performance/Critical_rendering_path

Bibliography

[22j] css. [Online; accessed 6. Nov. 2022]. Nov. 2022. url: https://www.npmjs.com/
package/css.

[22k] css-mediaquery. [Online; accessed 22. Dec. 2022]. Dec. 2022. url: https://www.
npmjs.com/package/css-mediaquery.

[22l] Cumulative Layout Shift (CLS). [Online; accessed 25. Feb. 2022]. Feb. 2022. url:
https://web.dev/cls.

[22m] Debugging HTML - Learn web development | MDN. [Online; accessed 17. Nov.
2022]. Sept. 2022. url: https://developer.mozilla.org/en- US/docs/
Learn/HTML/Introduction_to_HTML/Debugging_HTML#Different_browsers_

interpret_invalid_HTML_differently.

[22n] Documentation - More on Functions. [Online; accessed 10. Nov. 2022]. Nov. 2022.
url: https://www.typescriptlang.org/docs/handbook/2/functions.html.

[22o] eval() - JavaScript | MDN. [Online; accessed 3. Oct. 2022]. Oct. 2022. url:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/

Global_Objects/eval.

[22p] Express - Node.js web application framework. [Online; accessed 15. Nov. 2022].
Sept. 2022. url: http://expressjs.com.

[22q] Framework reimagined for the edge! - Qwik. [Online; accessed 26. Oct. 2022].
Oct. 2022. url: https://qwik.builder.io.

[22r] HTML Standard. [Online; accessed 17. Nov. 2022]. Nov. 2022. url: https :
//html.spec.whatwg.org/multipage/syntax.html#an- introduction-

to-error-handling-and-strange-cases-in-the-parser.

[22s] HTTP Archive: Page Weight. [Online; accessed 30. Nov. 2022]. Nov. 2022. url:
https://httparchive.org/reports/page-weight.

[22t] HTTP/1 vs HTTP/2 What is the xn–Difference-8i3g. [Online; accessed 4. Nov.
2022]. Nov. 2022. url: https://www.wallarm.com/what/what-is-http-2-
and-how-is-it-different-from-http-1.

[22u] Introduction - Partytown. [Online; accessed 26. Oct. 2022]. Oct. 2022. url:
https://partytown.builder.io.

[22v] Largest Contentful Paint (LCP). [Online; accessed 18. Oct. 2022]. Aug. 2022.
url: https://web.dev/lcp.

[22w] Learn to style HTML using CSS - Learn web development | MDN. [Online; ac-
cessed 25. Feb. 2022]. Feb. 2022. url: https://developer.mozilla.org/en-
US/docs/Learn/CSS.

[22x] Live streaming web audio and video - Developer guides | MDN. [Online; accessed
30. Nov. 2022]. Oct. 2022. url: https://developer.mozilla.org/en-US/
docs/Web/Guide/Audio_and_video_delivery/Live_streaming_web_audio_

and_video.

[22y] Marko. [Online; accessed 9. Nov. 2022]. Sept. 2022. url: https://markojs.com.

[22z] Media Delivery Solutions - Content Delivery Network Solutions | Akamai. [On-
line; accessed 30. Nov. 2022]. Nov. 2022. url: https://www.akamai.com/
solutions/content-delivery-network/media-delivery.

[22aa] Mobile-first Indexing Best Practices | Google Search Central | Google Develop-
ers. [Online; accessed 31. Oct. 2022]. Sept. 2022. url: https://developers.
google.com/search/mobile-sites/mobile-first-indexing.

132

https://www.npmjs.com/package/css
https://www.npmjs.com/package/css
https://www.npmjs.com/package/css-mediaquery
https://www.npmjs.com/package/css-mediaquery
https://web.dev/cls
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML/Debugging_HTML#Different_browsers_interpret_invalid_HTML_differently
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML/Debugging_HTML#Different_browsers_interpret_invalid_HTML_differently
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML/Debugging_HTML#Different_browsers_interpret_invalid_HTML_differently
https://www.typescriptlang.org/docs/handbook/2/functions.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
http://expressjs.com
https://qwik.builder.io
https://html.spec.whatwg.org/multipage/syntax.html#an-introduction-to-error-handling-and-strange-cases-in-the-parser
https://html.spec.whatwg.org/multipage/syntax.html#an-introduction-to-error-handling-and-strange-cases-in-the-parser
https://html.spec.whatwg.org/multipage/syntax.html#an-introduction-to-error-handling-and-strange-cases-in-the-parser
https://httparchive.org/reports/page-weight
https://www.wallarm.com/what/what-is-http-2-and-how-is-it-different-from-http-1
https://www.wallarm.com/what/what-is-http-2-and-how-is-it-different-from-http-1
https://partytown.builder.io
https://web.dev/lcp
https://developer.mozilla.org/en-US/docs/Learn/CSS
https://developer.mozilla.org/en-US/docs/Learn/CSS
https://developer.mozilla.org/en-US/docs/Web/Guide/Audio_and_video_delivery/Live_streaming_web_audio_and_video
https://developer.mozilla.org/en-US/docs/Web/Guide/Audio_and_video_delivery/Live_streaming_web_audio_and_video
https://developer.mozilla.org/en-US/docs/Web/Guide/Audio_and_video_delivery/Live_streaming_web_audio_and_video
https://markojs.com
https://www.akamai.com/solutions/content-delivery-network/media-delivery
https://www.akamai.com/solutions/content-delivery-network/media-delivery
https://developers.google.com/search/mobile-sites/mobile-first-indexing
https://developers.google.com/search/mobile-sites/mobile-first-indexing

[22ab] Most used web frameworks among developers 2022 | Statista. [Online; accessed
5. Sep. 2022]. Sept. 2022. url: https://www.statista.com/statistics/
1124699/worldwide-developer-survey-most-used-frameworks-web.

[22ac] Mutation Observer | Can I use... [Online; accessed 10. Nov. 2022]. Nov. 2022.
url: https://caniuse.com/mutationobserver.

[22ad] Neos CMS - das Open Source Content Application Framework. [Online; accessed
18. Dec. 2022]. Dec. 2022. url: https://www.neos.io/de.

[22ae] Network Link Conditioner. [Online; accessed 18. Dec. 2022]. Dec. 2022. url:
https://developer.apple.com/download/more/?q=Additional%20Tools.

[22af] PageSpeed Insights. [Online; accessed 25. Feb. 2022]. Feb. 2022. url: https:
//pagespeed.web.dev.

[22ag] Performance - Web APIs | MDN. [Online; accessed 15. Nov. 2022]. Nov. 2022.
url: https://developer.mozilla.org/en-US/docs/Web/API/Performance.

[22ah] puppeteer. [Online; accessed 6. Nov. 2022]. Nov. 2022. url: https://www.npmjs.
com/package/puppeteer.

[22ai] React – A JavaScript library for building user interfaces. [Online; accessed 9.
Nov. 2022]. Nov. 2022. url: https://reactjs.org.

[22aj] Remove unused code. [Online; accessed 7. Dec. 2022]. Dec. 2022. url: https:
//web.dev/remove-unused-code.

[22ak] RFC 6455 - The WebSocket Protocol. [Online; accessed 17. Nov. 2022]. Nov.
2022. url: https://datatracker.ietf.org/doc/html/rfc6455.

[22al] RFC9113. [Online; accessed 25. Oct. 2022]. Aug. 2022. url: https://httpwg.
org/specs/rfc9113.html#StreamsLayer.

[22am] RFC9114. [Online; accessed 25. Oct. 2022]. Aug. 2022. url: https://httpwg.
org/specs/rfc9114.html#stream-mapping.

[22an] Server-sent events - Can I use... Support tables for HTML5, CSS3, etc. [Online;
accessed 18. Oct. 2022]. Oct. 2022. url: https://caniuse.com/eventsource.

[22ao] Server-Side Rendering (SSR) | Vue.js. [Online; accessed 10. Nov. 2022]. Nov.
2022. url: https://vuejs.org/guide/scaling- up/ssr.html#client-
hydration.

[22ap] Subsetting - Fonts Knowledge - Google Fonts. [Online; accessed 19. Oct. 2022].
Oct. 2022. url: https://fonts.google.com/knowledge/glossary/subsetting.

[22aq] The 2 main performance debts of HTTP/1. [Online; accessed 22. Nov. 2022]. Oct.
2022. url: https://www.erwinhofman.com/blog/two-main-performance-
debts-of-http1/#bundling-javascript.

[22ar] The 2 main performance debts of HTTP/1. [Online; accessed 4. Nov. 2022]. Nov.
2022. url: https://www.erwinhofman.com/blog/two-main-performance-
debts-of-http1.

[22as] The Ultimate Guide to Optimizing JavaScript for Quick Page Loads. [Online;
accessed 9. Nov. 2022]. Nov. 2022. url: https://www.builder.io/blog/the-
ultimate-guide-to-optimizing-javascript-for-quick-page-loads.

[22at] Tree shaking - MDN Web Docs Glossary: Definitions of Web-related terms |
MDN. [Online; accessed 22. Dec. 2022]. Sept. 2022. url: https://developer.
mozilla.org/en-US/docs/Glossary/Tree_shaking.

[22au] Troubleshooting HTTP Streams | Marko. [Online; accessed 9. Nov. 2022]. Sept.
2022. url: https://markojs.com/docs/troubleshooting-streaming.

133

https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web
https://caniuse.com/mutationobserver
https://www.neos.io/de
https://developer.apple.com/download/more/?q=Additional%20Tools
https://pagespeed.web.dev
https://pagespeed.web.dev
https://developer.mozilla.org/en-US/docs/Web/API/Performance
https://www.npmjs.com/package/puppeteer
https://www.npmjs.com/package/puppeteer
https://reactjs.org
https://web.dev/remove-unused-code
https://web.dev/remove-unused-code
https://datatracker.ietf.org/doc/html/rfc6455
https://httpwg.org/specs/rfc9113.html#StreamsLayer
https://httpwg.org/specs/rfc9113.html#StreamsLayer
https://httpwg.org/specs/rfc9114.html#stream-mapping
https://httpwg.org/specs/rfc9114.html#stream-mapping
https://caniuse.com/eventsource
https://vuejs.org/guide/scaling-up/ssr.html#client-hydration
https://vuejs.org/guide/scaling-up/ssr.html#client-hydration
https://fonts.google.com/knowledge/glossary/subsetting
https://www.erwinhofman.com/blog/two-main-performance-debts-of-http1/#bundling-javascript
https://www.erwinhofman.com/blog/two-main-performance-debts-of-http1/#bundling-javascript
https://www.erwinhofman.com/blog/two-main-performance-debts-of-http1
https://www.erwinhofman.com/blog/two-main-performance-debts-of-http1
https://www.builder.io/blog/the-ultimate-guide-to-optimizing-javascript-for-quick-page-loads
https://www.builder.io/blog/the-ultimate-guide-to-optimizing-javascript-for-quick-page-loads
https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking
https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking
https://markojs.com/docs/troubleshooting-streaming

Bibliography

[22av] Vue.js - The Progressive JavaScript Framework | Vue.js. [Online; accessed 9.
Nov. 2022]. Nov. 2022. url: https://vuejs.org.

[22aw] WebSocket API | Can I use... Support tables for HTML5, CSS3, etc. [Online;
accessed 17. Nov. 2022]. Nov. 2022. url: https://caniuse.com/mdn-api_
websocket.

[22ax] Websocket CDN | Content Delivery Network to Improve Communication. [On-
line; accessed 30. Nov. 2022]. Sept. 2022. url: https://www.belugacdn.com/
websocket-cdn.

[23a] Critical CSS. [Online; accessed 21. Jan. 2023]. Jan. 2023. url: https://www.
npmjs.com/package/critical-css.

[23b] penthouse. [Online; accessed 21. Jan. 2023]. Jan. 2023. url: https://www.
npmjs.com/package/penthouse.

[23c] Tailwind CSS - Rapidly build modern websites without ever leaving your HTML.
[Online; accessed 6. Jan. 2023]. Jan. 2023. url: https://tailwindcss.com.

[97] Analysis of HTTP Performance Problems. [Online; accessed 22. Nov. 2022]. Feb.
1997. url: https://www.w3.org/Protocols/HTTP/1.0/HTTPPerformance.
html.

[add22] addyosmani. critical. [Online; accessed 20. Oct. 2022]. Oct. 2022. url: https:
//github.com/addyosmani/critical.

[Air13] AirbnbEng. Isomorphic JavaScript: The Future of Web Apps. 2013. url: https:
//medium.com/airbnb-engineering/isomorphic-javascript-the-future-

of-web-apps-10882b7a2ebc (visited on 01/28/2021).

[API15] W3C: The WebSocket API. Web sockets. 2015. url: https://www.w3.org/TR/
websockets/ (visited on 10/24/2015).

[bab22] babeljs.io. Babel - The compiler for next generation JavaScript. [Online; accessed
10. Jan. 2022]. Jan. 2022. url: https://babeljs.io.

[Bov15] Andreas Bovens. Opera Browsers, Modes and Engines. 2015. url: https://dev.
opera.com/articles/browsers-modes-engines/ (visited on 02/08/2021).

[BPT15a] M. Belshe, R. Peon, and M. Thomson. Hypertext Transfer Protocol Version 2
(HTTP/2). [Online; accessed 9. Nov. 2022]. May 2015. doi: 10.17487/RFC7540.

[BPT15b] Mike Belshe, R Peon, and ME Thomson. “RFC 7540: Hypertext Transfer Pro-
tocol Version 2 (HTTP/2)”. In: Hypertext transfer protocol version 2 (2015),
p. 46.

[CH20] Xavier Chamberland-Thibeault and Sylvain Hallé. “Structural Profiling of Web
Sites in the Wild”. In: International Conference on Web Engineering. Springer.
2020, pp. 27–34.

[Cha+20] Moumena Chaqfeh et al. “JSCleaner: De-Cluttering Mobile Webpages Through
JavaScript Cleanup”. In: Proceedings of The Web Conference 2020. 2020, pp. 763–
773.

[Cha+21] Moumena Chaqfeh et al. “To Block or Not to Block: Accelerating Mobile Web
Pages On-The-Fly Through JavaScript Classification”. In: arXiv preprint arXiv:
2106.13764 (2021).

[Clo20] CloudMosa. Puffin OS - Next-generation technology to bridge the digital divide.
2020. url: https://www.puffin.com/os/ (visited on 01/28/2021).

[dev22] developer.mozilla.org. title - HTML: HyperText Markup Language MDN. [On-
line; accessed 31. Jan. 2022]. Jan. 2022. url: https://developer.mozilla.
org/en-US/docs/Web/HTML/Element/title.

134

https://vuejs.org
https://caniuse.com/mdn-api_websocket
https://caniuse.com/mdn-api_websocket
https://www.belugacdn.com/websocket-cdn
https://www.belugacdn.com/websocket-cdn
https://www.npmjs.com/package/critical-css
https://www.npmjs.com/package/critical-css
https://www.npmjs.com/package/penthouse
https://www.npmjs.com/package/penthouse
https://tailwindcss.com
https://www.w3.org/Protocols/HTTP/1.0/HTTPPerformance.html
https://www.w3.org/Protocols/HTTP/1.0/HTTPPerformance.html
https://github.com/addyosmani/critical
https://github.com/addyosmani/critical
https://medium.com/airbnb-engineering/isomorphic-javascript-the-future-of-web-apps-10882b7a2ebc
https://medium.com/airbnb-engineering/isomorphic-javascript-the-future-of-web-apps-10882b7a2ebc
https://medium.com/airbnb-engineering/isomorphic-javascript-the-future-of-web-apps-10882b7a2ebc
https://www.w3.org/TR/websockets/
https://www.w3.org/TR/websockets/
https://babeljs.io
https://dev.opera.com/articles/browsers-modes-engines/
https://dev.opera.com/articles/browsers-modes-engines/
https://doi.org/10.17487/RFC7540
https://www.puffin.com/os/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/title
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/title

[Dha18] Vijay Dharap. “Webpack Bundle Analysis — A necessary step for all React,
Angular, Vue application developers!” In: Medium (June 2018). url: https:
//medium.com/hackernoon/webpack-bundle-analysis-a-necessary-step-

for-all-react-angular-vue-application-developers-fe6564fa62ca.

[DS13] Alexis Deveria and L Schoors. Can I use web sockets. 2013. url: http : / /
caniuse.com/websockets (visited on 06/04/2013).

[Edu22] Nate Cavanaugh Eduardo Lundgren. AlloyUI. [Online; accessed 9. Nov. 2022].
Jan. 2022. url: https://alloyui.com.

[Fie99] Roy Fielding. “Hypertext transfer protocol-HTTP/1.1. IETF RFC 2616”. In:
http://www. ietf. org/rfc/rfc2616. txt (1999).

[Gal20] Andrew Galloni. “HTTP/2 progressive image streaming”. In: Cloudflare Blog
(Aug. 2020). url: https://blog.cloudflare.com/parallel-streaming-of-
progressive-images.

[Goo17] Google. Find Out How You Stack Up to New Industry Benchmarks for Mo-
bile Page Speed. [Online; accessed 21. Jan. 2023]. Feb. 2017. url: https://
think.storage.googleapis.com/docs/mobile-page-speed-new-industry-

benchmarks.pdf.

[Goo20a] Google. Closure Compiler - Google Developers. [Online; accessed 15. Jan. 2022].
Aug. 2020. url: https://developers.google.com/closure/compiler.

[Goo20b] Google. Closure Compiler Compilation Levels | Google Developers. [Online; ac-
cessed 15. Jan. 2022]. Aug. 2020. url: https://developers.google.com/
closure/compiler/docs/compilation_levels.

[Gri22] Ilya Grigorik. Measuring the Critical Rendering Path. [Online; accessed 8. Aug.
2022]. Aug. 2022. url: https : / / web . dev / critical - rendering - path -

measure-crp.

[GS20] Utkarsh Goel and Moritz Steiner. “System to Identify and Elide Superfluous
JavaScript Code for Faster Webpage Loads”. In: arXiv preprint arXiv:2003.07396
(2020).

[Hak16] Malek Hakim. “Speed index and critical path rendering performance for isomor-
phic single page applications”. In: The 16th Winona Computer Science Under-
graduate Research Symposium. 2016, p. 41.

[Hil20] Raymond Hill. uBlock Origin. 2020. url: https://github.com/gorhill/
uBlock/ (visited on 2020).

[Hot21] Hotwired. Turbo. 2021. url: https://github.com/hotwired/turbo (visited on
01/28/2021).

[HTT21a] HTTP Archive. HTTP Archive. [Online; accessed 5. Oct. 2021]. July 2021. url:
https://httparchive.org/reports/state-of-the-web.

[HTT21b] HTTP Archive. HTTP Archive. [Online; accessed 5. Oct. 2021]. July 2021. url:
https://httparchive.org/reports/loading-speed.

[Isk+20] Taufan Fadhilah Iskandar et al. “Comparison between client-side and server-
side rendering in the web development”. In: IOP Conference Series: Materials
Science and Engineering. Vol. 801. 1. IOP Publishing. 2020, p. 012136.

[Jan+22] Kalle Janssen et al. “On the Impact of the Critical CSS Technique on the Per-
formance and Energy Consumption of Mobile Browsers”. In: Proceedings of the
International Conference on Evaluation and Assessment on Software Engineer-
ing (EASE). 2022.

135

https://medium.com/hackernoon/webpack-bundle-analysis-a-necessary-step-for-all-react-angular-vue-application-developers-fe6564fa62ca
https://medium.com/hackernoon/webpack-bundle-analysis-a-necessary-step-for-all-react-angular-vue-application-developers-fe6564fa62ca
https://medium.com/hackernoon/webpack-bundle-analysis-a-necessary-step-for-all-react-angular-vue-application-developers-fe6564fa62ca
http://caniuse.com/websockets
http://caniuse.com/websockets
https://alloyui.com
https://blog.cloudflare.com/parallel-streaming-of-progressive-images
https://blog.cloudflare.com/parallel-streaming-of-progressive-images
https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf
https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf
https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf
https://developers.google.com/closure/compiler
https://developers.google.com/closure/compiler/docs/compilation_levels
https://developers.google.com/closure/compiler/docs/compilation_levels
https://web.dev/critical-rendering-path-measure-crp
https://web.dev/critical-rendering-path-measure-crp
https://github.com/gorhill/uBlock/
https://github.com/gorhill/uBlock/
https://github.com/hotwired/turbo
https://httparchive.org/reports/state-of-the-web
https://httparchive.org/reports/loading-speed

Bibliography

[JS20] Nuxt JS. Nuxt JS - The Intuitive VUE Framework. 2020. url: https://nuxtjs.
org/ (visited on 09/10/2020).

[JZ16] Gorjan Jovanovski and Vadim Zaytsev. “Critical CSS Rules—Decreasing time
to first render by inlining CSS rules for over-the-fold elements”. In: Postproceed-
ings of 2016 Seminar on Advanced Techniques and Tools for Software Evolution
(SATToSE). 2016, pp. 353–356.

[Kap19] Sahil Kapoor. “Puffin OS Is The Mobile Operating System That Can Crush
Android Go”. In: iGyaan Network (July 2019). url: https://www.igyaan.in/
191408/puffin-os-features-crowdfunding.

[Kir16] David Kirkpatrick. Google: 53 Percent of mobile users abandon sites that take
over 3 seconds to load. 2016. url: https://www.marketingdive.com/news/
google-53-of-mobile-users-abandon-sites-that-take-over-3-seconds-

to-load/426070/ (visited on 09/12/2016).

[KL00] R Khare and S Lawrence. RFC 2817: Upgrading to TLS within HTTP/1.1, 2000.
2000.

[KL07] Ron Kohavi and Roger Longbotham. “Online experiments: Lessons learned”. In:
Computer 40.9 (2007), pp. 103–105.

[KL10] Nikhil Kothari and Bertrand Le Roy. Initial server-side content rendering for
client-script web pages. US Patent 7,814,410. Oct. 2010.

[Kup+21] Tofunmi Kupoluyi et al. “Muzeel: A Dynamic JavaScript Analyzer for Dead
Code Elimination in Today’s Web”. In: arXiv preprint arXiv:2106.08948 (2021).

[Laj19] Peep Laja. 11 Low-Hanging Fruits for Increasing Website Speed (and Conversi-
ons). 2019. url: https://conversionxl.com/blog/11-low-hanging-fruits-
for-increasing-website-speed-and-conversions/ (visited on 08/07/2019).

[Lin06] Greg Linden.Marissa Mayer at Web 2.0. 2006. url: http://glinden.blogspot.
com/2006/11/marissa-mayer-at-web-20.html (visited on 11/06/2006).

[Maz17] Davood Mazinanian. “Eliminating code duplication in cascading style sheets”.
PhD thesis. Concordia University, 2017.

[McK19] Brian McKelvey. WebSocket Client and Server Implementation for Node. 2019.
url: https://www.npmjs.com/package/websocket (visited on 12/06/2019).

[Mee21] Patrick Meenan. WebPageTest - Website Performance and Optimization Test.
[Online; accessed 5. Oct. 2021]. Oct. 2021. url: https://webpagetest.org.

[MF11] Alexey Melnikov and Ian Fette. The WebSocket Protocol. RFC 6455. Dec. 2011.
doi: 10.17487/RFC6455. url: https://www.rfc-editor.org/info/rfc6455.

[Mic10] James Mickens. “Silo: Exploiting JavaScript and DOM Storage for Faster Page
Loads.” In: WebApps. 2010.

[Mod22] Modernizr. Modernizr. [Online; accessed 10. Sep. 2022]. Sept. 2022. url: https:
//github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills.

[MT13] Morten Moshagen and Meinald Thielsch. “A short version of the visual aesthetics
of websites inventory”. In: Behaviour & Information Technology 32.12 (2013),
pp. 1305–1311.

[Müh19] Adrian Mühlroth. Ist dieses neue Betriebssystem besser als Android? 2019. url:
https://www.techbook.de/mobile/puffin-os (visited on 2019).

[Müh20] Adrian Mühlroth. “Ist dieses neue Betriebssystem besser als Android?” In: TECH-
BOOK (Jan. 2020). url: https://www.techbook.de/news/puffin-os.

136

https://nuxtjs.org/
https://nuxtjs.org/
https://www.igyaan.in/191408/puffin-os-features-crowdfunding
https://www.igyaan.in/191408/puffin-os-features-crowdfunding
https://www.marketingdive.com/news/google-53-of-mobile-users-abandon-sites-that-take-over-3-seconds-to-load/426070/
https://www.marketingdive.com/news/google-53-of-mobile-users-abandon-sites-that-take-over-3-seconds-to-load/426070/
https://www.marketingdive.com/news/google-53-of-mobile-users-abandon-sites-that-take-over-3-seconds-to-load/426070/
https://conversionxl.com/blog/11-low-hanging-fruits-for-increasing-website-speed-and-conversions/
https://conversionxl.com/blog/11-low-hanging-fruits-for-increasing-website-speed-and-conversions/
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
https://www.npmjs.com/package/websocket
https://webpagetest.org
https://doi.org/10.17487/RFC6455
https://www.rfc-editor.org/info/rfc6455
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills
https://www.techbook.de/mobile/puffin-os
https://www.techbook.de/news/puffin-os

[Nah04] Fiona Fui-Hoon Nah. “A study on tolerable waiting time: how long are web users
willing to wait?” In: Behaviour & Information Technology 23.3 (2004), pp. 153–
163.

[Nat+17] Harini Natarajan et al. “Improving a website’s first meaningful paint by opti-
mizing render blocking resources-An experimental case study”. In: (2017).

[Net+16] Ravi Netravali et al. “Polaris: Faster page loads using fine-grained dependency
tracking”. In: 13th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 16). 2016.

[Obb+18] Niels Groot Obbink et al. “An extensible approach for taming the challenges of
JavaScript dead code elimination”. In: 2018 IEEE 25th International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER). IEEE. 2018,
pp. 291–401.

[Ope21] Opera. Opera Mini. 2021. url: https://www.opera.com/de/mobile/mini
(visited on 01/28/2021).

[Opt08] Vebsite Optimization. The Psychology of Web Performance. 2008. url: http://
www.websiteoptimization.com/speed/tweak/psychology-web-performance/

(visited on 05/30/2008).

[OS20] Puffin OS. Puffin OS - Next-generation technology to bridge the digital divide.
2020. url: https://www.puffin.com/os/ (visited on 07/06/2020).

[Osm21] Addy Osmani. critical. 2021. url: https://www.npmjs.com/package/critical
(visited on 01/29/2021).

[Pag20] Google PageSpeed. PageSpeed Documentation. 2020. url: modpagespeed.com/
doc/ (visited on 09/20/2020).

[PD17] Guy Podjarny and Christopher R Dumoulin. Progressive consolidation of web
page resources. US Patent 9,785,621. Oct. 2017.

[Poc+18] Victor Le Pochat et al. “Tranco: A research-oriented top sites ranking hardened
against manipulation”. In: arXiv preprint arXiv:1806.01156 (2018).

[Pol19] Barry Pollard. HTTP/2 in Action. Manning, 2019. url: https://freecontent.
manning.com/mental-model-graphic-how-is-http-1-1-different-from-

http-2/ (visited on 08/06/2020).

[QL20] Gao Qiong and Wenmin Li. “An Optimization Method of Javascript Redun-
dant Code Elimination based On Hybrid Analysis Technique”. In: 2020 17th
International Computer Conference on Wavelet Active Media Technology and
Information Processing (ICCWAMTIP). IEEE. 2020, pp. 300–305.

[Rea21] React. React - A JavaScript library for building user interfaces. 2021. url:
https://reactjs.org (visited on 01/28/2021).

[Res00] Eric Rescorla. “HTTP Over TLS (RFC 2818)”. In: Internet Engineering Task
Force (2000).

[RN17] Rashmi Rashmi and Harini Natarajan. Master Thesis. 2017.

[Rua+17] Vaspol Ruamviboonsuk et al. “Vroom: Accelerating the mobile web with server-
aided dependency resolution”. In: Proceedings of the Conference of the ACM
Special Interest Group on Data Communication. 2017, pp. 390–403.

[Sch07] Scott Schiller. Progressive loading. US Patent App. 11/364,992. Aug. 2007.

[sec21] section.io. Comparison between the HTTP/3 and HTTP/2 Protocols. [Online;
accessed 22. Nov. 2021]. 2021. url: https://www.section.io/engineering-
education/http3-vs-http2.

137

https://www.opera.com/de/mobile/mini
http://www.websiteoptimization.com/speed/tweak/psychology-web-performance/
http://www.websiteoptimization.com/speed/tweak/psychology-web-performance/
https://www.puffin.com/os/
https://www.npmjs.com/package/critical
modpagespeed.com/doc/
modpagespeed.com/doc/
https://freecontent.manning.com/mental-model-graphic-how-is-http-1-1-different-from-http-2/
https://freecontent.manning.com/mental-model-graphic-how-is-http-1-1-different-from-http-2/
https://freecontent.manning.com/mental-model-graphic-how-is-http-1-1-different-from-http-2/
https://reactjs.org
https://www.section.io/engineering-education/http3-vs-http2
https://www.section.io/engineering-education/http3-vs-http2

Bibliography

[Ser22] Caddy Web Server. Caddy 2 - The Ultimate Server with Automatic HTTPS.
[Online; accessed 19. Nov. 2022]. Nov. 2022. url: https://caddyserver.com.

[SG+16] Naveen Kumar SG et al. “A Hybrid Web Rendering Framework on Cloud”.
In: 2016 IEEE International Conference on Web Services (ICWS). IEEE. 2016,
pp. 602–608.

[SHB17] Stanislav Shalunov, Gregory Hazel, and Micha Benoliel. System and method for
improving webpage loading speeds. US Patent App. 14/758,961. Jan. 2017.

[Shi11] Anand Lal Shimpi. Amazon’s Silk Browser Acceleration Tested: Less Bandwidth
Consumed, But Slower Performance. 2011. url: https://www.anandtech.com/
show/5139/amazons-silk-browser-tested-less-bandwidth-consumed-

but-slower-performance (visited on 07/06/2020).

[SI06] Scott Schiller and Yahoo Inc. Progressive loading. [Online; accessed 26. Oct.
2022]. Feb. 2006. url: https://patents.google.com/patent/US20070186182A1/
en.

[Sin+16] Harvinder P Singh et al. Progressive page loading. US Patent 9,235,559. Dec.
2016.

[Sop22] Szymon Soppa. “Async vs Defer - Which Script Attribute is More Efficient When
Loading JavaScript?” In: Curiosum (Feb. 2022). url: https://curiosum.com/
blog/seo-speed-script-tags-async-vs-defer.

[Sta21] Statista. Most used web frameworks among developers 2021 | Statista. [On-
line; accessed 15. Oct. 2021]. Oct. 2021. url: https://www.statista.com/
statistics/1124699/worldwide-developer-survey-most-used-frameworks-

web.

[Ver21] Next.js by Vercel. The React Framework for Production. 2021. url: https:
//nextjs.org/ (visited on 01/28/2021).

[Vog18] Lucas Vogel. Bachelorarbeit: Entwicklung und Evaluation eines Frameworks für
Adaptive Web Anwendungen. TU Dresden, 2018.

[VS22a] Lucas Vogel and Thomas Springer. “An In-Depth Analysis of Web Page Struc-
ture and Efficiency with Focus on Optimization Potential for Initial Page Load”.
In: International Conference on Web Engineering. Springer. 2022, pp. 101–116.

[VS22b] Lucas Vogel and Thomas Springer. “User Acceptance of Modified Web Page
Loading Based on Progressive Streaming”. In: International Conference on Web
Engineering. Springer. 2022, pp. 391–405.

[VS23a] Lucas Vogel and Thomas Springer. “How Streaming Can Improve the World
(Wide Web)”. In: Companion Proceedings of the ACM Web Conference 2023.
2023, pp. 140–143.

[VS23b] Lucas Vogel and Thomas Springer. “Speed Up the Web with Universal CSS
Rendering”. In: International Conference on Web Engineering. Springer. 2023,
pp. 191–205.

[VS23c] Lucas Vogel and Thomas Springer. “Waiter and AUTRATAC: Don’t Throw It
Away, Just Delay!” In: International Conference on Web Engineering. Springer.
2023, pp. 278–292.

[Vse22] Vsevolod Strukchinsky, Vladimir Starkov and contributors. BEM — Block El-
ement Modifier. [Online; accessed 9. Nov. 2022]. Sept. 2022. url: https://
getbem.com.

[W3C19] W3C. W3C Standards. 2019. url: https://www.w3.org/standards/ (visited
on 2019).

138

https://caddyserver.com
https://www.anandtech.com/show/5139/amazons-silk-browser-tested-less-bandwidth-consumed-but-slower-performance
https://www.anandtech.com/show/5139/amazons-silk-browser-tested-less-bandwidth-consumed-but-slower-performance
https://www.anandtech.com/show/5139/amazons-silk-browser-tested-less-bandwidth-consumed-but-slower-performance
https://patents.google.com/patent/US20070186182A1/en
https://patents.google.com/patent/US20070186182A1/en
https://curiosum.com/blog/seo-speed-script-tags-async-vs-defer
https://curiosum.com/blog/seo-speed-script-tags-async-vs-defer
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web
https://nextjs.org/
https://nextjs.org/
https://getbem.com
https://getbem.com
https://www.w3.org/standards/

[W3C20] W3C. World Wide Web Consortium (W3C). 2020. url: https://www.w3.org/
(visited on 01/01/2020).

[w3o19] w3.org. W3C HTML. [Online; accessed 31. Jan. 2022]. Nov. 2019. url: https:
//www.w3.org/html.

[w3t22] w3techs.com. Usage Statistics of JavaScript as Client-side Programming Lan-
guage on Websites, February 2022. [Online; accessed 1. Feb. 2022]. Feb. 2022.
url: https://w3techs.com/technologies/details/cp-javascript.

[Wap21] Wappalyzer. Find out what websites are built with - Wappalyzer. [Online; ac-
cessed 14. Oct. 2021]. Oct. 2021. url: https://www.wappalyzer.com.

[web21] webpack. webpack. 2021. url: https://webpack.js.org/ (visited on 01/28/2021).

[wha22] whatwg.org. HTML Standard - body ok. [Online; accessed 31. Jan. 2022]. Jan.
2022. url: https://html.spec.whatwg.org/multipage/links.html#body-
ok.

139

https://www.w3.org/
https://www.w3.org/html
https://www.w3.org/html
https://w3techs.com/technologies/details/cp-javascript
https://www.wappalyzer.com
https://webpack.js.org/
https://html.spec.whatwg.org/multipage/links.html#body-ok
https://html.spec.whatwg.org/multipage/links.html#body-ok

	Title page
	Contents
	Introduction
	Motivation
	Problem Discussion
	Problem Areas
	Goal of the Thesis
	Research Questions
	Conflict of Interest
	Structure of the Thesis

	Fundamentals
	Render Pipeline and Render-Blocking
	HTML, CSS, and JavaScript
	HTML
	JavaScript
	CSS

	HTTP
	Browser Web APIs
	Existing Streaming Techniques
	Server Push
	Server-Sent Events
	WebSockets
	Protocol Structure
	Compatibility of Functions

	Server Techniques
	Server-side Optimizations and SSR
	Middleware/Proxy
	External Proxy
	Client-side Proxy

	Performance Marker
	First Contentful Paint
	Largest Contentful Paint
	DOM Interactive

	Initial Page Load
	DOM Content Loaded

	Existing Optimizations
	CSS Rendering
	JavaScript Code Splitting and Dead Code Elimination
	Google Pagespeed

	Related Work
	Research Method
	Related Work for CSS Optimization
	Frameworks
	CSS Rendering in React
	“Critical” Package for Node.JS

	Tailwind CSS
	Critical-Based Research Paper
	"Critical CSS Rules — Decreasing time to first render by inlining CSS rules for over-the-fold elements"
	"On the Impact of the Critical CSS Technique on the Performance and Energy Consumption of Mobile browsers"

	General CSS Optimizations
	"Eliminating Code Duplication in Cascading Style Sheets"

	Summary of Related Work for CSS Optimizations

	Related Work for JavaScript Optimization
	Bundling and Code Removal
	"Silo: Exploiting JavaScript and DOM Storage for Faster Page Loads"
	Dead Code Elimination

	Frameworks
	Partytown
	Qwik

	Other Approaches
	"Speed index and critical path rendering performance for isomorphic single page applications"
	Closure Compiler

	Summary of Related Work for JavaScript Optimization

	Related Work for Streaming HTML
	Commercial Apps and Software
	Opera Mini
	Puffin OS

	Streaming Frameworks
	Turbo by Hotwire

	Marko
	Progressive Loading Techniques
	"Progressive loading"
	"Progressive page loading"

	Server-Side Pre-rendering
	"Initial server-side content rendering for client-script web pages"
	"Comparison between client-side and server-side rendering in the webdevelopment"
	"A Hybrid Web Rendering Framework on Cloud"

	Prefetching and Dependency Tracking
	"System and method for improving webpage loading speeds"
	"Polaris: Faster Page Loads Using Fine-grained Dependency Tracking"
	"VROOM: Accelerating the Mobile Web with Server-Aided Dependency Resolution"

	General Approaches and Bundling
	"Progressive consolidation of web page resources"
	"Improving a website's first meaningful paint by optimizing render-blocking resources - An experimental case study"

	Summary of Related Work for Streaming HTML
	Summary

	Analysis
	Necessity of Analysis
	Related Analysis Approaches, Methods and Limitations
	"Structural Profiling of Web Sites in the Wild"
	Wappalyzer
	HTTP Archive
	Summary

	Overview Over All Structural Aspects Which Directly Impact Render Time
	Type of Measurements
	Measurement Summary

	Crawling Limitations
	Test Setup
	Technical Implementation
	Results
	Desktop vs. Mobile
	Frameworks

	Optimization Potential
	Summary and Effects on the Concept

	Concept
	Concept Idea
	Summary and Next Steps
	Concept for CSS Streaming and Rendering
	Summary of Related CSS Optimization Techniques
	Concept
	Server-Side CSS Processing
	Preparing CSS for Streaming

	Preparation Results of Essential
	Algorithm Summary
	Implementation
	Evaluation
	Test Setup
	Code Efficiency
	Code Size Change
	Visual Similarity
	Conversion Times
	Loading Times

	Limitations
	Conclusion

	Concept for Javascript Splitting or Delaying
	Summary of Related Work
	Concept
	Waiter
	Call Syntax
	Detecting Resource Availability
	Implementation of Waiter

	AUTRATAC
	Implementing AUTRATAC

	Preparing for Streaming
	Evaluating Waiter and AUTRATAC
	AUTRATAC: Conversion Speed
	AUTRATAC Code Correctness
	Loading Speed
	Challenges and Limits
	Usability for Streaming
	Conclusion

	Concept for Streaming Html-Based Web Pages
	Summary of Related Work
	Concept
	Splitting HTML Into Chunks
	HTML Package Types
	Delivery of the Pages
	Current Streaming Options

	Conclusion

	Evaluation
	Test Overview
	Test Metrics
	Code Coverage and Efficiency
	Loading Time Measurements
	User Satisfaction

	Automatic Performance Test
	Test Pages and Preparation
	Preparation Steps
	Loading Times
	Initial Page Size
	Results of First and Last Package
	Data Reduction
	First Contentful Paint

	Comparing WebSocket and SSE
	Conversion Time
	Validity of Results and Limitations

	Case Study Test
	Type of Measurements
	Test Setup
	Extend of Tests and JavaScript Functionality of the Page
	Results of the Code Efficiency Tests
	First Contentful Paint
	Data Above-the-Fold
	First Package and Overhead
	Last Package
	Interactive DOM

	User Satisfaction Tests
	Results of the User Evaluation

	Summary of the Evaluation Results

	Conclusion
	Answers of the Research Questions
	RQ1: Are streamed web pages with a reordered loading schedule faster than the traditionally loaded counterparts?
	RQ2: Are current (streaming-) protocols sufficient for delivering such web pages or are new protocols needed?
	RQ3: To which extent can the new method be used for existing web pages?
	RQ4: How much of this process can be automated in order to reduce development effort?
	RQ5: To which extent is the new loading behavior accepted by users?

	Discussion
	Reasons for Streaming a Web Page
	Advertisements
	Caching and CDNs
	Streaming Other Media
	Implications of Streaming Web Pages

	Summary
	Future Work

	Appendix
	CSS Processing Example
	JavaScript Preparation Example
	HTML Splitting Example
	Streaming HTML Example

	Bibliography

