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Abstract

It is believed that neuromorphic hardware will accelerate neuroscience research and

enable the next generation edge AI. On the other hand, brain-inspired algorithms are

supposed to work efficiently on neuromorphic hardware. But both processes don’t

happen automatically. To efficiently bring together hardware and algorithm, optimiza-

tions are necessary based on the understanding of both sides. In this work, software

frameworks and optimizations for efficient implementation of neural network-based al-

gorithms on SpiNNaker 2 are proposed, resulting in optimized power consumption,

memory footprint and computation time. In particular, first, a software framework

including power management strategies is proposed to apply dynamic voltage and fre-

quency scaling (DVFS) to the simulation of spiking neural networks, which is also the

first-ever software framework running a neural network on SpiNNaker 2. The result

shows the power consumption is reduced by 60.7% in the synfire chain benchmark.

Second, numerical optimizations and data structure optimizations lead to an efficient

implementation of reward-based synaptic sampling, which is one of the most complex

plasticity algorithms ever implemented on neuromorphic hardware. The results show

a reduction of computation time by a factor of 2 and energy consumption by 62%.

Third, software optimizations are proposed which effectively exploit the efficiency of

the multiply-accumulate array and the flexibility of the ARM core, which results in,

when compared with Loihi, 3 times faster inference speed and 5 times lower energy

consumption in a keyword spotting benchmark, and faster inference speed and lower

energy consumption for adaptive control benchmark in high dimensional cases. The

results of this work demonstrate the potential of SpiNNaker 2, explore its range of ap-

plications and also provide feedback for the design of the next generation neuromorphic

hardware.
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Kurzfassung

Neuromorphe Hardware trägt die Hoffnung, Neurowissenschaft voranzutreiben und die

nächste Generation von Edge KI zu ermöglichen. Zudem wird erwartet, dass sich vom

Gehirn inspirierte Algorithmen effizient auf neuromorpher Hardware umsetzen lassen.

Aber das Zusammenspiel geschieht nicht automatisch. Um Hardware und Algorithmus

effizient zusammenzubringen, sind Optimierungen notwendig, die auf dem Verständnis

beider Seiten basieren. In dieser Arbeit werden Software-Frameworks und Optimierun-

gen für die effiziente Implementierung von Algorithmen auf Basis von neuronalen Net-

zen auf dem neuromorphen System SpiNNaker 2 vorgeschlagen, die Leistungsaufnahme,

Speicherbedarf und Rechenzeit optimieren. Insbesondere wird erstens ein Software-

Framework inklusive Power Management Strategien vorgeschlagen für die Anwendung

von Dynamic Voltage and Frequency Scaling für die Simulation von gepulsten neu-

ronalen Netzen. Dies stellt das erste Software-Framework dar, womit ein neuronales

Netzwerk auf SpiNNaker 2 realisiert wurde. Das Ergebnis zeigt eine Reduzierung

der Leistungsaufnahme um 60.7%. Zweitens führen numerische- und Datenstruktur-

Optimierungen zu einer effizienten Implementierung von Reward-basiertem Synaptic

Sampling: einer der kompliziertesten Plastizitäts-Algorithmen, der jeweils auf neuro-

morpher Hardware implementiert wurde. Die Ergebnisse zeigen eine Reduktion der

Rechenzeit um den Faktor 2 und des Energieverbrauchs um 62%. Drittens werden

Software-Optimierungen vorgeschlagen, die die Effizienz vom Multiply-Accumulate Ar-

ray und die Flexibilität vom ARM core von SpiNNaker 2 effektiv ausnutzen können,

was im Vergleich zu Intels neuromorphen Chip Loihi zu 3-mal schnellerer Inferen-

zgeschwindigkeit und 5-mal niedrigerem Energieverbrauch in der Keyword-Spotting

Benchmark führt. Ergebnisse dieser Arbeit zeigen das Potenzial von SpiNNaker 2, ex-

plorieren dessen Umfang von Anwendungen und stellen Feedback für den Entwurf von

der nächsten Generation neuromorpher Hardware zur Verfügung.
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Introduction

1.1 Motivation and Background

The last decade has witnessed substantial progress in artificial intelligence (AI) [3]. Just

like the steam engine, electricity and the internet, AI promises to drastically increase

productivity and revolutionize the way we live and work. Numerous AI applications in

areas like automobiles, robotics, healthcare and agriculture keep pushing the boundaries

of tasks that machines can achieve [4].

If we take a closer look at the history of AI, we would notice its long and intertwined

relation with neuroscience. While AI aims to build intelligent machines, neuroscience

is concerned with the study of the brain. Although AI is not bound to the constraints

of neuroscience, neuroscientific findings often inspire progress in AI. Notable examples

include the concept of neural networks and temporal difference learning. Moreover,

the brain is the only example we have that can demonstrate cognitive capabilities [5].

On the other hand, the progress of AI also provides inspiration for neuroscience. For

example, methodologies in machine learning research can be applied for neuroscience

[6], which is the case for meta-learning [7].

While scaling up models in AI and neuroscience requires more and more computa-

tional power, Moore’s law is slowing down, so that improvements of hardware perfor-

mance rely more and more on hardware-algorithm codesign. Both AI and neuroscience

rely on microelectronics to provide the computational substrate. To efficiently execute

AI algorithms, machine learning hardware often includes multiply-accumulate (MAC)

arrays to facilitate the MAC operations frequently used in deep neural networks (DNN)
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1. INTRODUCTION

[8].

While the state-of-the-art AI algorithms can perform on the human level in specific

areas like the game of Go, the execution of such algorithms requires combining more

than one thousand GPUs and consumes power on the kilowatt (kW) level [9]. On

the other hand, the human brain with about 1010 neurons and 1014 synapses [10]

consumes only about 20 W of power [11]. As a product of millions of years of evolution,

the human brain is arguably optimized for the generation of survival strategies and

constrained on energy consumption, which makes it not only an excellent example of

cognitive computing for the field of AI but also an excellent example of ultra-low power

information processing system for the field of microelectronics.

The suffix ’-morphic’ means having a specific shape or form [12]. The field of neu-

romorphic engineering or neuromorphic computing started with Carver Mead, who

was the first to attempt to build silicon chips to emulate the structure and function

of the nervous system. As shown in Figure 1.1, in a biological neuron, the voltage

across the neuron membrane is found to influence the ion flow through the ion channels

of the membrane, which creates current flow. The voltage thus controls the height

of the energy barrier for charge carriers. Similarly, in a complementary metal-oxide-

semiconductor (CMOS) transistor, the gate voltage also controls the energy barrier

for charge carriers traveling from the source to drain. Noticing the similar exponential

current-voltage dependence in both cases, Carver Mead started building analog circuits

which could emulate the behavior of neurons based on this physical property [13]. Af-

ter three decades of evolution, neuromorphic engineering is still concerned with taking

certain aspects from the brain and building them into silicon. Since the start of this

area in the late 1980s with only analog VLSI, neuromorphic computing has evolved

to also include mixed-signal [14, 15] and digital [16, 17, 18] hardware. Nevertheless,

neuromorphic hardware normally makes use of highly parallel Very Large-Scale Inte-

gration (VLSI) circuits to emulate or simulate neural dynamics and use address-event

representation (AER) [19] for spike communication, analogous to the parallel nature of

neurons and the spike communication that occurs in the brain.

As neuroscience and AI continue to interact and merge, various AI-inspired neuro-

science models and neuroscience-inspired AI algorithms put new requirements on the

computational substrate. An increasing number of neuromorphic hardware platforms
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Figure 1.1: Upper left: the ion channels in the neuron membrane control the ions flow-

ing into the neuron, which effectively forms an energy barrier for the ions. This energy

barrier is found to depend on various factors including the difference of electrical po-

tential between the extracellular and interior fluid of the neuron cell. Upper right: in

a metal–oxide–semiconductor field-effect transistor (MOSFET) (in this case an N-type

MOSFET), the gate voltage controls the energy barrier between the source and drain, thus

controlling the charge carriers (in this case the electrons) flowing from source to drain. This

similarity was first discovered by Carver Mead, who started to build circuits to mimic the

biological neural network, which then developed into the field of neuromorphic engineering.
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Figure 1.2: Relation between neuromorphic engineering, neuroscience, artificial intelli-

gence and microelectronics. Neuromorphic engineering is an interdisciplinary research area

at the intersection between neuroscience, AI and microelectronics.

are starting to support DNNs [2, 20], so that neuromorphic hardware becomes the com-

putational engine for neuroscience, AI and even the mixture of both worlds. This puts

neuromorphic computing at the intersection of the multidisciplinary research between

neuroscience, AI and microelectronics (Figure 1.2). This dynamically evolving mul-

tidisciplinary research is paving the way towards artificial general intelligence (AGI)

which will have a huge impact on society.

1.2 SpiNNaker 2 and Contribution of This Work

Among the many initiatives and organizations aiming for progress in neuroscience and

AI, the Human Brain Project (HBP) [21] started by the European Union (EU) brings

together experts from neuroscience, computer science, electrical engineering, etc. to

better understand the brain, develop better treatment for brain diseases and build

better brain-inspired computers.

The SpiNNaker 2 project started within the framework of HBP is a joint collab-

oration of the group of Prof. Christian Mayr at Technische Universität Dresden and

the group of Prof. Steve Furber at the University of Manchester. It builds upon

the first generation SpiNNaker system (SpiNNaker 1) [16], with the goal of building a

supercomputer for large-scale brain simulation and machine learning [22].

In this work, following main contributions are presented:
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• a software framework including power management strategies to apply dynamic

voltage and frequency scaling (DVFS) to the simulation of spiking neural net-

works, which is also the first-ever software framework running a neural network

on SpiNNaker 2. The result is demonstrated with the synfire chain benchmark

and reduces the power consumption by 60.7%.

• numerical optimizations and data structure optimizations for efficient implemen-

tation of reward-based synaptic sampling, which is one of the most complex plas-

ticity algorithms ever implemented on neuromorphic hardware. The result shows

a reduction of computation time by a factor of 2 and energy consumption by 62%.

• software optimizations which effectively exploit the efficiency of the multiply-

accumulate array and the flexibility of the ARM core, resulting in 3 times faster

inference speed and 5 times lower energy consumption in the keyword spotting

benchmark, and faster inference speed and lower energy consumption for adaptive

control benchmark with higher dimensions in comparison to Loihi, the neuromor-

phic chip developed by Intel.

More generally, from the hardware point of view, the contribution of this work in-

cludes the first demonstration of the benefits of the new hardware features of SpiNNaker

2 in various neural network-based algorithms and benchmarks, especially in terms of

energy efficiency and computation time. From the application point of view, this work

explores the range of applications that SpiNNaker 2 is suitable for, including SNNs,

DNNs and hybrid networks like the neural engineering framework (NEF).

The thesis is organized as follows: Chapter 2 introduces the fundamental aspects

including the SpiNNaker 2 hardware, neurons and neural networks which form the

basis of this thesis. Chapter 3 discusses in details the benefits of power management

when applied to SNN simulation. Chapter 4 demonstrates the benefits of the numerical

accelerators when simulating the reward-based synaptic sampling algorithm. Chapter 5

highlights the benefits of the MAC array in the keyword spotting and adaptive control

benchmarks and shows the comparison with Loihi running the same benchmarks.

While from the hardware perspective, each chapter is focused on a certain feature

of the chip which can improve the efficiency, from the application perspective, chapter

3 involves the typical SNN simulation with the Leaky-Integrate-and-Fire (LIF) neuron
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model and current based synapses commonly used in SNN simulation. Chapter 4 goes

one step further to the more complicated reward-based synaptic sampling model which

can be used to explain the stochastic behavior of synapses in recent neurophysiological

experiments. Finally, chapter 5 goes beyond SNNs and involves DNNs and hybrid

networks like NEF.

1.3 Publications

Much of the work presented in this thesis is based on these previous publications:

1. S. Höppner, Y. Yan, B. Vogginger, A. Dixius, J. Partzsch, F. Neumärker, S.

Hartmann, S. Schiefer, S. Scholze, G. Ellguth, L. Cederstroem, M. Eberlein, C.

Mayr, S. Temple, L. Plana, J. Garside, S. Davison, D. R. Lester, and S. Furber.

”Dynamic voltage and frequency scaling for neuromorphic many-core systems.”,

In 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pages

1–4, 2017.

2. S. Höppner, B. Vogginger, Y. Yan, A. Dixius, S. Scholze, J. Partzsch, F. Neumärker,

S. Hartmann, S. Schiefer, G. Ellguth, L. Cederstroem, L. A. Plana, J. Garside, S.

Furber, and C. Mayr. ”Dynamic Power Management for Neuromorphic Many-

Core Systems.”, IEEE Transactions on Circuits and Systems I: Regular Papers,

66(8):2973–2986, 2019

3. Y. Yan, D. Kappel, F. Neumärker, J. Partzsch, B. Vogginger, S. Höppner, S.

Furber, W. Maass, R. Legenstein, and C. Mayr. ”Efficient Reward-Based Struc-

tural Plasticity on a SpiNNaker 2 Prototype.”, IEEE Transactions on Biomedical

Circuits and Systems, 13(3):579–591, 2019.

4. Y. Yan, T. Stewart, X. Choo, B. Vogginger, J. Partzsch, S. Höppner, F. Kelber,

C. Eliasmith, S. Furber, and C. Mayr. ”Comparing Loihi with a SpiNNaker

2 Prototype on Low-Latency Keyword Spotting and Adaptive Robotic Control.”,

Neuromorphic Computing and Engineering, 2021

In the first two publications my contribution was the implementation and simula-

tion of SNNs on the first and second SpiNNaker 2 prototypes developed by Sebastian

Höppner and other coauthors, demonstrating the benefit of DVFS.
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In the third publication, my contribution was the implementation and simulation

of the synaptic sampling algorithm developed by David Kappel, Wolfgang Maass and

Robert Legenstein on the first SpiNNaker 2 prototype, demonstrating the benefit of

random number generator and exponential function accelerator.

In the fourth publication my contribution was the implementation and simulation

of the keyword spotting and adaptive control algorithms developed by Terrence Stew-

art, Xuan Choo, and Chris Eliasmith on the second SpiNNaker 2 prototype, and the

comparison with the performance of the same algorithms on Loihi, where Terrence

Stewart and Xuan Choo contributed to the measurements on Loihi. The results of this

publication highlight the benefit of the MAC array.
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2

Fundamentals

In this chapter, fundamentals regarding the SpiNNaker 2 system, neuron, synapse and

neural network are introduced, providing the basis and background for the following

chapters of this work.

2.1 The SpiNNaker 2 System

 Large Scale SpiNNaker 2 Machine SpiNNaker 2 Board SpiNNaker 2 Chip

Figure 2.1: Rendering of the final SpiNNaker 2 system consisting of 16 racks. Each

rack contains 90 SpiNNaker 2 boards. Each board contains 48 SpiNNaker 2 chips. Each

SpiNNaker 2 chip contains 152 cores (Processing Elements). The final SpiNNaker 2 system

has 16 racks, 1440 SpiNNaker 2 boards, 69,120 SpiNNaker 2 chips and 10,506,240 cores.

The SpiNNaker 2 system is designed as a supercomputer to simulate large-scale

neural networks in real-time. The final machine, which is currently under development,

consists of 16 racks. Each rack contains 90 SpiNNaker 2 boards. Each board contains 48

SpiNNaker 2 chips. Each SpiNNaker 2 chip contains 152 cores (Processing Elements).

The final SpiNNaker 2 system has 16 racks, 1440 SpiNNaker 2 boards, 69,120 SpiNNaker

2 chips and 10,506,240 cores.(Figure 2.1).
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2. FUNDAMENTALS

As illustrated in Figure 2.2, the final SpiNNaker 2 chip contains 38 Quad Processing

Elements (QPEs), one SpiNNaker Router, IO and periphery 1 [2]. Each QPE contains

4 Processing Elements (PEs). The QPEs are interconnected through the Network-on-

Chip (NoC) routers (not shown in the figure). The final SpiNNaker 2 chip is fabricated

with the GLOBALFOUNDRIES 22FDX technology [23].

IO and Periphery

SpiNNaker 2 Chip
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PEPE

PE

SpiNN
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Q
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SRAM
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Instr.
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Data

MAC
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AHB 

C
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Figure 2.2: Simplified schematic of SpiNNaker 2 chip and SpiNNaker 2 Processing El-

ement. The final SpiNNaker 2 chip contains 38 QPEs where each QPE contains 4 PEs,

a SpiNNaker Router and IO and periphery. The PE contains an ARM Cortex M4F core,

SRAM, power management module, numerical accelerators like the exponential function

accelerator and random number generator, and MAC array.

SpiNNaker 2 consists of a large number of cores interconnected through a dedi-

cated communication fabric. Within each PE, while the ARM core forms the main

computational resource of the PE, the additional accelerators can greatly increase the

computational and power efficiency for certain applications. To reduce the possibility

of contention for static random access memory (SRAM), the SRAM is divided into four

addressable banks.

The various computation and memory units of the PE are interconnected through

1At the time of writing this thesis, the final SpiNNaker 2 chip is still in development. The results

presented in this work are obtained from the first and second SpiNNaker 2 prototype chips, whereas

the basic working principles described in this work are the same as the final SpiNNaker 2 chip. In this

thesis, when results from both the first and the second prototype chips are available, the results from

the second prototype chip are presented since they should be more similar to the final SpiNNaker 2

chip.
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2.2 Neuron and Synapse

the communication units including the AHB bus, DMA and crossbar. As shown in

Figure 2.2, the ARM core is the master of three AHB buses, two for access to the

memory, one for access to the accelerators and DMA. In addition to the AHB buses for

data and instruction for the ARM core of the same PE, the crossbar is also connected

to neighboring PEs within the same QPE, which allows low latency memory sharing

between PEs in the same QPE. The crossbar is also connected to the DMA for high-

speed communication with other PEs or the DRAM, and for the MAC array to read

and write data independently of the ARM core.

The numerical accelerators are each connected as an individual slave to an AHB

multiplexer. Each accelerator has a specific range in the memory map of the PE that

it uses for reading and writing.

When compared to SpiNNaker 1, except for the more advanced technology node of

22 nm, which allows for more ARM cores on a chip, SpiNNaker 2 comes with many im-

provements regarding the PE architecture. In this work, three important new features

of the PE architecture available in SpiNNaker 2 are demonstrated, including

• power management with the Dynamic Voltage and Frequency Scaling (DVFS) [24,

25] for increased energy efficiency in spiking neural network (SNN) simulations,

• numerical accelerators including the random number generator [26] and exponen-

tial accelerator [27, 28] for frequently used functions in neural models [29],

• MAC array [2] for the matrix operations commonly used in DNNs [30].

2.2 Neuron and Synapse

The neuron is the basic processing element in the brain. Neurons are connected to

each other through synapses. As illustrated in Figure 2.3, a neuron is composed of

three parts, the dendrite which receives inputs from other neurons, the soma which is

believed to be the main computational part, and the axon which sends out the output

to other neurons.

Neurons communicate with each other with action potentials or spikes, which is a

voltage pulse generated in the soma that travels along the axon and finally arrives at

other neurons through synapses. The most common type of synapse is the chemical

synapse. From the perspective of the synapse, the neuron where the spike originates

11
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Figure 2.3: Schematic drawing of a pyramidal neuron with dendrites, soma, axon and

synapse.
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2.2 Neuron and Synapse

from is the presynaptic neuron, and the neuron receiving the spike is the postsynaptic

neuron. Between the presynaptic neuron and the postsynaptic neuron is the synaptic

cleft.

The neuron, like other cells, has a membrane which is a bilayer of lipids that sep-

arates the internal environment of the cell from the external environment of the cell.

Two types of proteins are embedded in the neuron membrane, which are the gates

that different ions can travel through. The first type of gate is the ion pump, which

transports ions across the membrane actively. The result is that there are more sodium

ions (Na+) outside the neuron and more potassium ions (K+) inside the neuron. The

second type of gate is the ion channel, where ions travel through the membrane de-

pending on the voltage across the membrane. When there is no inputs received by the

dendrites and the membrane is ”at rest”, the ion pumps and ion channels act together

to maintain the balance of the ion concentration in the neuron. This ion concentration

leads to the membrane potential called resting potential [31].
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Figure 2.4: Schematic drawing of a spike.

To study the behavior of ion channels, Hodgkin and Huxley performed a series of

experiments and published the Hodgkin-Huxley model in 1952 [32], which led to the

Nobel Prize for Hodgkin and Huxley in 1963. The model accurately describes the

behavior of ions channels depending on voltage and time. One important property of

the Hodgkin-Huxley model is that it explains the internal dynamics leading to spike

generation (Figure 2.4). At first, the membrane potential is at the resting potential,
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2. FUNDAMENTALS

where the ions flowing into and out of the cell are at equilibrium. When the input

spikes received from the dendrites cause an increase of the membrane potential, the

conductance of sodium ion channels increases which allows more sodium ions to flow

into the cell to further increase the membrane potential, which leads to the action

potential. Then the conductance of sodium channels decreases, and the conductance

of potassium channels increases, which leads to potassium ions flowing out of the cell,

resulting in the decrease of membrane potential. In fact, there are so many potassium

ions flowing out of the cell, that the membrane potential decreases below the resting

potential, and then slowly recovers back to the resting potential. Immediately after

the spike, the neuron can’t spike again, which is also determined by the dynamics

explained by the Hodgkin-Huxley model. This period is called the refractory period.

In this period, the ion pumps transport ions on both sides of the membrane so that the

membrane potential recovers to the resting potential.

The classical Hodgkin-Huxley model is based on the assumption of ”point neuron”,

where the spacial property or the morphology of the neuron membrane is not considered.

But in fact, the morphology does have an impact on neural dynamics. To account for

the morphology of the membrane, the membrane is discretized into patches and each

patch is described by an electrical circuit (Figure 2.5), where the resistance in the

direction parallel to the membrane is represented by resistors and the in the direction

across the membrane, it is represented by a capacitor and a resistor. This method is

called cable theory and it is the basis for the compartmental models where a single

neuron is divided into hundreds of compartments and each compartment is represented

by some cable equations. When a spike travels down the axon, the propagation speed

of the spike can be derived from the cable theory. It turns out that the propagation

speed of an unmyelinated axon, i.e. an axon that is not covered by a myelin sheath,

is rather slow, which is around 0.25m/s. On the other hand, for myelinated axons,

the propagation speed can reach 70 - 80 m/s because the myelin sheath changes the

electrical properties of the axon. With the myelin sheath, spikes can travel for long

distances very fast [31].

When a spike travels down the axon and arrives at the synapse, it causes the

release of neurotransmitters into the synaptic cleft. The neurotransmitters diffuse to

the other side of the cleft and bind to the receptors, which causes the opening of certain

ion channels. The change in ion concentration leads to the excitatory or inhibitory
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Figure 2.5: Illustration of cable theory.

postsynaptic currents (EPSC or IPSC) . The EPSC makes the neuron more likely to

spike and the IPSC makes the neuron less likely to spike.

While biophysics provides the foundation for understanding the neuronal dynamics,

in simulations of neural networks where thousands of neurons are involved, detailed

biophysical models lead to very long simulation times. Just like in circuit design, where

the transistors have complicated internal behaviors, the complicated transistor models

based on the understanding of how charge carriers move depending on various physical

conditions are normally not used in circuit simulation. Instead, simplified models are

necessary, which are still capable of describing the major electrical properties but at a

much lower computational complexity.

In neural network simulations, instead of the Hodgkin-Huxley model or the com-

partmental model, normally the Leaky Integrate-and-Fire (LIF) neuron model or its

variations are used, where the shape of the spike, the morphology of the neuron etc.

are ignored. The LIF model describes the membrane as a leaky integrator, where the

EPSC or IPSC integrate on a capacitor and at the same time ”leaks” through a resistor:

τm
du

dt
= −[u(t)− urest] +RI(t) (2.1)

where τm is the membrane time constant, u is the membrane potential, urest is the

resting potential, R is the membrane resistance and I is the external current, i.e. EPSC

or IPSC. For the LIF model, when the membrane potential u reaches a threshold voltage

uth from below, a spike is generated, and the membrane potential is reset to the reset
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potential ureset and enters the refractory period, during which no integration of EPSC

or IPSC is possible.

Also, to simplify the simulation of synapses, very often the current based synapse

model is used:

dI

dt
= − I

τsyn
+ δ(t− tj)w (2.2)

where I is the synaptic current, τsyn is the synaptic time constant and δ(t−tj) accounts

for the increase of synaptic current at the spike time tj .

Input

Output

ReLU

Input current

Spike rate

LIF

Figure 2.6: Similar input-output relation of ReLU and LIF.

In deep neural networks (DNN) in machine learning, there is also the notion of

neuron, which could be viewed as a further simplification of the LIF neuron in neuro-

science. For example, the output of Rectified Linear Unit (ReLU) is the same as the

input if the input is larger than zero, otherwise the output is zero, which is similar to

the relation of input current and output spike rate in the LIF neuron (Figure 2.6).

The LIF neuron model and the current-based synapse model are used in chapter 3.

For chapter 4, more advanced models are used, which are described in that chapter. In

chapter 5, for the keyword spotting benchmark, the ReLU model is used, and for the

adaptive control benchmark, the LIF neuron model is used.
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2.3 Neural Network

2.3 Neural Network

The human brain mainly consists of three parts: cerebrum, cerebellum (small brain)

and brain stem. While the cerebellum and brain stem are believed to be responsible for

lower-level tasks, the cerebrum is considered to be responsible for higher-level tasks,

such as the processing of sensory information, language and cognition. The outer

surface of the cerebrum is the cerebral cortex which is composed of grey matter. The

neocortex takes up the largest part of the cerebral cortex and has six layers in the

vertical direction. As the name already indicates, the neocortex is the newest part of

the brain from an evolutionary point of view. A higher proportion of the neocortex in

the brain is often associated with higher cognitive capabilities. In the human brain,

90% of the cerebral cortex is neocortex [33].

In the neocortex, there are different areas responsible for different tasks, like the

processing of visual, auditory or somatosensory stimuli or planning and control of move-

ments. Within each area, there is a hierarchy of interconnected regions. For example,

neurons in the primary visual cortex respond to simple stimuli like line segments of

certain orientations [34], whereas neurons in the inferior temporal cortex respond to

more abstract concepts like human faces [35].

L1

L2/3

L4

L5/6

Figure 2.7: The hypothesized columnar structure of the neocortex with six layers in the

vertical direction and similar columnar arrangement in the horizontal direction

The limited area where a neuron is sensitive to stimuli is called the neuron’s re-
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ceptive field. The term is not only used for neurons in the visual cortex but also used

for neurons in other cortices like the auditory cortex and somatosensory cortex. In the

auditory cortex, a receptive field of a neuron is the neuron’s preferred tone frequency,

and in the somatosensory cortex, the receptive field of a neuron is the position of the

body where the neuron can respond to touch. By stimulating different receptive fields

and measuring the response of the neurons, it has been found that neurons with close

horizontal positions have different but similar receptive fields, whereas neurons in the

different vertical layers have the same receptive fields. This observation gives rise to the

hypothesis of the cortical column, where each column extends in the direction vertical

to the cortex and consists of the six layers of neurons with the same receptive field, and

the cortex is considered to be composed of these cortical columns with similar structure

(Figure 2.7) [31].

E

E

E

I

Figure 2.8: A winner-take-all network with three excitatory populations and one in-

hibitory population.

It is believed that there is a general circuit structure that is repeated in the cortical

columns and forms the basis for cortical information processing. The winner-take-all

(WTA) network is believed to be one basic building block [36]. In a WTA network,

there are several excitatory neuron populations competing through an inhibitory neu-

ron population (Figure 2.8). The excitatory populations are recurrently connected to
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2.3 Neural Network

themselves, and they are also connected to other excitatory populations and the in-

hibitory population. At the same time, the inhibitory population is connected to the

excitatory populations through inhibitory synapses. When the activity of one excita-

tory population is higher than the other excitatory populations, i.e. this population

produces more spikes than the others, then it sends more spikes to the inhibitory popu-

lation which raises the membrane potential of the inhibitory neurons, which then sends

out spikes to all excitatory populations to suppress their activities. But because of

the recurrent connections of the excitatory population, the activity of the excitatory

population with higher firing rates can be self sustained.

In [36] it was proposed that the neurons in layer 2/3 form a WTA network which

explores possible interpretations of input information, the output of the network is

sent to another WTA network formed by the neurons in layer 5 which exploit the

interpretations of the previous WTA network.

While the behavior of single neurons has been studied extensively, how neural net-

works give rise to cognition is still an open question. While the behavior of single

neurons can be studied by electrical measurements and the behavior of larger brain

areas can be studied with electroencephalography (EEG) or functional magnetic res-

onance imaging (fMRI), the study of the neural networks on the mesoscopic level is

still partially constrained by the number of neurons that can be measured simultane-

ously. With the progress of neural recording technologies, more data will be available

to improve the understanding of the working principles of the brain.
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Efficient Spiking Neural Network

Simulation using Dynamic

Voltage and Frequency Scaling

3.1 Introduction

IO and Periphery
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fMRI of human brain

Figure 3.1: Left: Functional magnetic resonance imaging (fMRI) of a human brain un-

dertaking a working memory task. The red color indicates the change in activity level in

certain regions during the time when the task is performed [1]. Right: The SpiNNaker 2

chip with DVFS enabling each PE to adjust its Performance Level (PL) individually ac-

cording to its work load. The red color indicates increased PL of certain PEs at a certain

time point.
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When an area of the brain becomes active, the neurons in that area consume more

energy, which causes increased oxygen consumption. Based on blood-oxygen-level-

dependent (BOLD) contrast, functional magnetic resonance imaging (fMRI) reveals

the change of the activation level in certain areas in the brain when performing a

certain task [37].

Similarly, in silicon chips, there is also the situation where certain parts of a chip

consume more power while other parts consume less. When a multi-core neuromorphic

chip simulates an SNN and each PE of the chip simulates a part of the SNN, in order

to guarantee real-time operation, each PE should have enough computational power

for its peak workload. The computational power is typically represented by the clock

frequency. Increasing the clock frequency means also increasing the supply voltage and

thus the power consumption. If the chip has only one supply voltage, then this should

be tailored for the peak workload of all PEs throughout the time, although normally

only a fraction of the PEs are at the peak workload.

In this case, it would be desirable to be able to dynamically adjust the supply

voltage and computational power for each PE according to its current workload, just

like in the brain where more energy is delivered to the areas with higher activity levels

(Figure 3.1).

In the semiconductor industry, the Dynamic Voltage and Frequency Scaling (DVFS)

technology has been applied to switch the supply voltage and clock frequency of a circuit

dynamically during run time, in order to increase power efficiency, e.g. for power critical

applications like smart card devices [38]. However, such technology usually requires

a central node to predict the workload of each PE. In SNN simulation, due to the

distributed nature of the SNN, a centralized control node is not possible.

SpiNNaker 2 comes with a per-core DVFS technology, where each PE decides on its

own Performance Level (PL) , i.e. voltage and frequency setting [24, 25]. This allows

each PE to dynamically adjust its PL according to its own workload at each simulation

time step, which drastically increases power efficiency in SNN simulation compared to

an approach without DVFS.

In this chapter, the benefit of DVFS is demonstrated in an SNN simulation example

1 [2]. First, section 3.2 provides more details on the hardware aspect of DVFS. Then,

1The results in this chapter are obtained from the second SpiNNaker 2 prototype chip.
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3.2 Power Management Hardware

section 3.3 describes the SNN model. Third, section 3.4 details the software imple-

mentation of the model on the SpiNNaker 2 prototype. Fourth, section 3.5 describes

aspects related to power management strategies. The measurement results are then

presented in section 3.6. Finally, section 3.7 summarizes this chapter.

3.2 Power Management Hardware

SpiNNaker 2 Processing Element

ARM Cortex
M4F
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RNG
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Supply 
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Figure 3.2: Power management in the SpiNNaker 2 PE architecture.

The prototype chip considered in this chapter is the second SpiNNaker 2 prototype

[2] which contains 8 PEs and is fabricated with the GLOBALFOUNDRIES 22FDX

technology [23], the same as the final SpiNNaker 2 chip. As shown in Figure 3.2,

for each SpiNNaker 2 PE, 3 off-chip generated supply voltages are available. One is

for the SRAM memory part (0.8 V), two are for the logic and computation part (0.5

V and 0.6 V). The power management module developed in [24, 25] allows the logic

and computation part of the PE to switch between the two supply voltages during

program run time. The Performance Level (PL) is a voltage and frequency pair. For

the measurements in this chapter, three PLs are defined: PL1 (0.5 V, 100 MHz), PL2

(0.5 V, 200 MHz) and PL3 (0.6 V 400 MHz). The 400 MHz of PL3 is chosen for peak

computation load. For this frequency, 0.6 V is necessary. The 200 MHz of PL2 is for

moderate computation load. And 100 MHz of PL1 is for low computation load. For

200 MHz, 0.5 V is necessary. Since there are only two supply voltages available, for
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100 MHz, also 0.5 V is used. From the software point of view, since it is desirable to

spread the time point of spike generation across the available 1 ms time step, in order

to reduce the pressure on the communication fabric, for low computation load, 100

MHz is used.

The PL is switched by the power management module upon receiving the command

from the ARM core. In order to avoid rush current when switching between the supply

voltages, a pre-charge scheme is used [39]. Nevertheless, the switching time is fast

enough to be considered negligible from the software and application perspective.

3.3 Spiking Neural Network Model

In this section, first, the simple locally connected network for the parameter extraction

for the energy per neuron update and energy per synaptic operation is described in

section 3.3.1. Then, in section 3.3.2, the synfire chain network model is introduced for

the demonstration of the benefit of DVFS when the workload of individual PEs changes

over time. The neuron and synapse models used in this chapter are the same as the

LIF neuron model and current-based synapse model introduced in chapter 2.

3.3.1 Locally Connected Network

The locally connected network was first used in [40] for the power measurement of

SpiNNaker 1. The same network is used in the measurement of SpiNNaker 2.

neuron
population

recurrent
connection

Figure 3.3: The locally connected network for the measurement of the energy per neuron

update and energy per synaptic operation.

As shown in Figure 3.3, the network consists of several neuron populations. In each

population, each neuron is connected to each other neuron in the same population.
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3.3 Spiking Neural Network Model

Thus a population with 100 neurons would have 100 x 100 = 104 synaptic connections.

If each neuron spikes once per 10 ms, then a population generates (1 s / 10 ms) x 100

x 100 = 106 synaptic operations per second.

In this network, the neurons spike not depending on the postsynaptic current. In-

stead, the postsynaptic current is ignored and the spiking behavior is directly controlled

by the software. In this way, the number of spikes can be controlled for the purpose of

power measurement for the hardware.

3.3.2 Synfire Chain Network

Synfire chain [41, 42] is a network with many layers where the neurons in the previous

layer are connected to some neurons in the next layer through excitatory connections,

i.e. a spike generated by the presynaptic neuron increases the membrane potential of the

postsynaptic neuron, and brings the postsynaptic neuron in the direction of the gener-

ation of an action potential, thus ’exciting’ the postsynaptic neuron [31]. The structure

and dynamics of synfire chain have been studied in computational neuroscience as a cor-

tical network model that can sustain synchronous spiking activity, which is considered

important for cortical processing.

E EEE

I I I I

time

number
of

spikes a

Figure 3.4: Network structure of synfire chain. ’E’ stands for excitatory and ’I’ stands for

inhibitory. A pulse packet is usually used to kick-off the network activity in a simulation.

To kick-off the activity of the network, usually a pulse packet is sent to the first layer

of the network. A pulse packet is a number of spikes sent within a time frame, where

the number of spikes at each time step follows the normal distribution. The parameters
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that characterize the pulse packet is the number of spikes (a) which describes the size

of the pulse packet and the standard deviation of the normal distribution (σ) which

describes the temporal dispersion, i.e. to what extend are the spikes synchronous.

The response of the neuron layer to the pulse packet is another pulse packet. It has

been shown that for some parameter sets, the standard deviation of the pulse packet

decreases as it travels through the layers, i.e. the spiking activity of the neurons in a

layer becomes more synchronous, exhibiting attractor behavior. This happens when

the size of the pulse packet is large and the standard deviation is small. On the other

hand, when the size of the pulse packet is small and the standard deviation is large,

the pulse packet might die out [43].

The synfire chain network architecture considered in this work contains lateral in-

hibition, i.e. in each layer, there are also some inhibitory neurons sending spikes to

the excitatory neurons in the same layer (Figure 3.4), which was proposed in [44] to

account for the observation that cortical neurons receive balanced excitatory and in-

hibitory inputs with inhibition lagging excitation by a few milliseconds. The inhibitory

neurons have been proved to increase the stability of the network dynamics, since it

prevents the network from falling into synchronous firing due to random background

noise. The inhibition also increases the selectivity of the network, so that only pulse

packets with higher synchrony, i.e. smaller σ will pass through the synfire chain, which

essentially gives the synfire chain a high pass characteristic [44].

3.4 Software Flow

In this section, first, the basic software flow is introduced in section 3.4.1. Based on

this, the extended software flow which accounts for the DVFS feature is introduced in

section 3.4.2.

3.4.1 Basic Software Flow

The SpiNNaker 2 chip contains many PEs and in each PE the ARM core runs inde-

pendently. The software running on the ARM core is written in C code. Each PE

simulates a number of neurons and synapses. When a neuron spikes, the spike is sent

to the SpiNNaker router. The spike packet contains a neuron ID to identify its origin.

Depending on the neuron ID, the SpiNNaker router finds the destination PE of the

26



3.4 Software Flow

spike packet based on a predefined routing table. Then the SpiNNaker router performs

multicast routing to send the spike to its destination(s).

Typically the simulation runs in real-time and each time step is 1 ms. A timer that

is available on each PE is used to trigger a timer interrupt every millisecond. When

the timer interrupt comes, the simulation advances to the next time step. The ARM

cores are started at the same time so that in subsequent time steps the timer interrupt

comes synchronously.

Synapse
Update

Neuron
Update Sleep

Synapse
Update

Neuron
Update Sleep

Synapse
Update

Neuron
Update Sleep

Synapse
Update

Neuron
Update Sleep

Timer
Interrupt

Timer
Interrupt

Time

PE 3

PE 2

PE 0

PE 1

Figure 3.5: Illustration of SpiNNaker 1 software flow. The software runs on the ARM

cores independently. In each time step, there are two processing steps: synapse update

and neuron update. After these two steps are finished, the ARM core goes to sleep. Note

that the processing is interrupted by incoming spike events which need to be processed

immediately (shown in grey).

The original SpiNNaker 1 software flow [45] can be illustrated with Figure 3.5.

Inside each time step, there are two processing steps: synapse update and neuron

update. During the processing, spikes from other PEs interrupt the normal processing

flow. After the neuron processing step is done, the ARM core goes into sleep mode,
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which also reserves the time buffer until the next timer interrupt.
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Figure 3.6: The basic software flow running on SpiNNaker 2. In each time step, there are

three processing steps: spike processing, synapse update and neuron update. The difference

to the SpiNNaker 1 software flow is that the spike processing is not done immediately after

receiving the spike. Instead, the spikes are buffered and processed in the next time step,

which is the basis for DVFS software flow.

The original SpiNNaker 1 software flow is not suitable for DVFS, because the dy-

namic adjustment of PLs requires the knowledge of the work load in the future. When

the number of spikes to be processed is not known, the application of DVFS is not pos-

sible. To overcome this, the basic software flow on SpiNNaker 2 has been adjusted so

that spikes are not processed immediately when they are received, but they are buffered

and processed in the next time step. In this way, the number of spikes to be processed

in the next time step is known, which enables the application of DVFS (Figure 3.6).

Thus, the basic software flow running on SpiNNaker 2 has three processing steps:

spike processing, synapse update and neuron update. The three processing steps are

described in the following:
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3.4 Software Flow

First, in the spike processing step, the spikes which have arrived in the last time step

are processed. The neuron ID in the spike packet is used to find the postsynaptic neuron

of this source neuron. This information is stored in a table called the master population

table. It contains the address and length of a memory block for the information of the

synapses between each postsynaptic neuron and the source neuron. This information

is then retrieved to the ARM core.

Second, the synapse update step accounts for the effects the previous spikes have

on neurons in this time step, because the spikes might have an effect on the neuron

membrane potential at a later time point due to synaptic delay. In this step, the

synapse information, i.e. synaptic weight, synapse type (excitatory or inhibitory) ,etc.,

is integrated into the appropriate slot in the buffer which accounts for the synaptic

delay.

The third step is neuron update, which updates the neuron membrane potential.

When the membrane potential reaches the threshold voltage, a spike is emitted. The

spike packet is then sent to the destination PE through the SpiNNaker router. When

the spike arrives at its destination PE, it will be stored in a buffer and processed in the

next time step. After spiking the neuron goes into a refractory period.

3.4.2 DVFS Software Flow

In the spiking neural network simulation, the number of neurons and synapses simulated

in a PE is defined, so the computational load for the neuron update and synapse update

remains constant, whereas the computational load for spike processing varies from time

step to time step depending on the number of spikes arriving at a PE in each time step.

This cannot be predetermined before the start of the simulation and depends on the

network dynamics.

To guarantee real-time operation, i.e. the time the hardware takes to simulate an

amount of time is equal to the amount of time simulated, the number of clock cycles

available within a time step defines the computation power available: when the PE

runs at 100 MHz, in a time step of 1 ms, 100 000 clock cycles are available, when the

PE runs at 200 MHz, 200 000 clock cycles are available, and when the PE runs at

400 MHz, 400 000 clock cycles are available. Thus, in the context of DVFS, switching

between the PLs means switching between the computation power, which allows the

PE to have more computation power by switching to a higher PL when more spikes
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Figure 3.7: DVFS software flow. In this example, PE 0 sends spikes to PE 1 and PE 1

sends spikes to PE 0. At the beginning of each time step, the PEs run at the lowest PL.

For PE 0, in the first time step, in the first processing step ’Set PL’, the ARM core decides

to set PL 3 for this time step, because of the high fill level of the spike buffer. After the

neuron update step is finished, the PL is switched back to PL 1. In this time step, during

the neuron update step of PE 1, relatively few spikes are sent to PE 0, so that the fill level

of the spike buffer of PE 0 stays at a low level. In the next time step, due to this low fill

level, PE 0 decides to stay at PL 1 for this time step.
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need to be processed and to save power by switching to a lower PL when fewer spikes

need to be processed.

The basic software flow described previously has been adapted to work with the

DVFS feature in SpiNNaker 2 (Figure 3.7). At the beginning of the time step, the

lowest PL, PL 1 is applied. In the ’Set PL’ step, the ARM core evaluates the fill level

of the spike buffer, i.e. how many spikes have arrived at this PE in the last time step.

The spike buffer is a predefined area in the SRAM. When a spike comes, it can be

stored into the spike buffer without interrupting the software running on the ARM

core. Depending on the fill level of the spike buffer, the PL of this time step is decided

and configured accordingly. After the spike processing, synapse update and neuron

update steps are finished, the PL is reset to the lowest level and the ARM core goes to

sleep.

3.5 Power Management Strategies

In this section, first, detailed analysis of the computational cost and PL selection strat-

egy is described in section 3.5.1. Then an energy model is provided in section 3.5.2.

Finally, the differential power measurement strategy is described in section 3.5.3.

3.5.1 Performance Level Selection

For the decision of which PL to choose, a strategy needs to be developed. On the one

hand, the PL needs to be as low as possible to save energy. On the other hand, the PL

needs to be high enough so that the PE has enough computation power to finish the

computation within the time step in order to guarantee real time operation.

Specifically, two workload thresholds, cth,1 and cth,2 need to be defined. When the

workload exceeds cth,1, the PL needs to be switched from PL 1 to PL 2. When the

workload exceeds cth,2, the PL needs to be switched from PL 2 to PL 3:

PL(k) =


PL1, if c < cth,1

PL2, if cth,1 ≤ c < cth,2

PL3, if cth,2 ≤ c
(3.1)
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where c is the computational cost measured in clock cycles. As described previously,

the computational cost can be divided into two parts, one part is the fixed computa-

tional cost, which includes neuron update and synapse processing, the other part is the

variable computational cost, which includes spike processing.

The fixed computational cost is constant because after the network topology is

defined, during simulation run time, the computational cost does not change, since it

only depends on the number of neurons a PE simulates:

cfixed = nneuron · cneuron + cother, (3.2)

where nneuron is the number of neurons simulated on a PE and cneuron is the fixed com-

putational cost per neuron, which includes the synapse update and neuron update cost.

cother accounts for some other operations for maintaining the simulation environment.

The variable computational cost depends on the number of spikes that arrive at

a PE in each time step. When a spike arrives at a PE, there is an overhead that is

related to finding the postsynaptic neurons and fetching the synapse information. Then

each postsynaptic connection needs to be processed so that the computational cost is

different for each spike depending on the number of postsynaptic connections. The

variable computational cost for a certain time step can be formulated as:

cvar(t) =

nspikes(t)∑
i=1

g(i) · csyn + nspikes(t) · cspike, (3.3)

where nspikes(t) is the number of spikes that arrive at the time step t, g(i) is the number

of postsynaptic connections related to the ith spike, csyn is the computational cost for

each postsynaptic connection, and cspike is the fixed overhead associated with finding

the postsynaptic neurons and fetching the synapse information.

Finally, the total computational cost c of a time step is the sum of the fixed com-

putational cost cfixed and variable computational cost cvar(t):

c = cfixed + cvar(t). (3.4)

Based on equations 3.2, 3.3 and 3.4, the PL selection strategy can be derived. Since

the fixed computational cost cfixed is known in advance, the PL switching depends
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only on the variable computational cost cvar(t). In cvar(t), there are two variables: the

number of spikes nspikes(t) and the number of postsynaptic connections of each spike

g(i).

To compute the exact computational cost, it would require iterating through all the

spikes that have arrived at the PE in the last time step and finding out the number

of postsynaptic connections g(i) for each spike. This is theoretically possible and leads

to the most accurate estimation of the computational cost. However, this approach

would result in considerable overhead, which again depends on the number of incoming

spikes. The overhead is not negligible and reduces the benefit brought by DVFS.

Therefore, approximation strategies are necessary. For example, instead of calcu-

lating the total computational cost c, the PE can count the computational cost of each

incoming spike until cth,2 is reached, then the computational cost is enough to switch to

PL 3. For the decision for PL 1 and PL 2 all spikes need to be iterated, but assuming

counting all spikes in the case of PL 1 and PL 2 will be less effort than for PL 3, the

overhead could be accepted. A more simple approach is to only consider the number

of incoming spikes. Since the postsynaptic connections of each PE are known before

the simulation start, the thresholds depending on the number of incoming spikes can

be calculated based on the worst-case computational cost, i.e. assuming the first spike

arriving at the PE has the most postsynaptic connections, the second spike has the

second most connections, etc. This simple approach reduces the overhead for the PL

decision but increases the chance that the PL setting is over-conservative, e.g. PL 3 is

chosen when PL 2 would be enough.

3.5.2 Energy Model

Based on the previous analysis of the computational components, an energy model can

be derived. The energy consumption per time step consists of 3 parts: baseline energy,

neuron processing energy and spike processing energy.

The baseline power is the power consumed by the PE when no neuron processing

and synapse processing is involved. Mainly it consists of the leakage power and the

dynamic power for the processing of the timer interrupt itself. The baseline power of

PL i is denoted as PBL,i. The baseline energy of a time step is the product of baseline

power and time. Since in one time step, two PLs might exist, i.e. the PL chosen for
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the neural simulation of this time step and the PL 1 used before and after the neural

simulation, the baseline energy of a time step EBL consists of two parts:

EBL = PBL,i · tneural + PBL,1 · (tms − tneural), (3.5)

where PBL,i is the baseline power for the PL i chosen for the neural simulation, tneural

is the time for the neural simulation of the time step, i.e. the time for spike processing,

synapse update and neuron update, PBL,1 is the baseline power for PL 1, tms is the

time of a time step, i.e. 1 ms, and tms − tneural is the time within the time step when

the PE is not doing neural processing, i.e. the ’Set PL’ phase and sleep phase.

The neuron processing energy corresponds to the energy consumed for the fixed

computational cost cfixed in the previous section. Similar to equation 3.2, the neuron

processing energy at PL i is modeled as

Eneuron,i = Eneuron,0,i + eneuron,i · nneuron, (3.6)

where Eneuron,0,i is an offset energy at PL i, eneuron,i is the energy per additional neuron

at PL i and nneuron is the number of neurons.

The spike processing energy corresponds to the energy consumed for the variable

computational cost cvar(t) in the previous section. Similar to equation 3.3, the spike

processing energy at PL i is modeled as

Espike,i = Esyn,0,i + esyn,i · nsyn, (3.7)

where Esyn,0,i is an offset energy at PL i, esyn,i is the energy per additional synaptic

event at PL i and nsyn is the number of synaptic events. Note that for the sake of

simplicity, only the first term in the r.h.s. of equation 3.3 is considered.

Finally, the total energy of a time step is

Eall = EBL + Eneuron,i + Espike,i, (3.8)
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3.5.3 Power Measurement Strategy

To measure the energy components in the previous section when the chip is running a

neural simulation, a differential measurement approach is adopted:

• First, the total power P0 is measured with the neural simulation running on the

chip.

• Then spike sending is deactivated and the power P1 is measured. Since no spike

is sent, no spike is received and processed. The difference Pspike = P0 − P1 is the

spike processing power.

• Then all neural processing is deactivated and upon timer interrupt only empty

interrupt handlers are called. The power at this stage is measured as P2. Pneuron =

P1 − P2 is the neuron processing power.

• Then the ARM cores are deactivated and the power is measured as P3. PBL =

P2 − P3 is the baseline power.

When DVFS is enabled, the PL is determined by the network activity. Thus,

after measuring P0 with the complete software autonomously switching PLs during

simulation, the percentage of simulation time at the 3 PLs are recorded and then

applied to the simulations when measuring P1 and P2.

3.6 Measurement Results on Test Chip

Based on the power management feature described in section 3.2, the software flow

described in section 3.4 and power management strategies described in section 3.5 are

applied in neural simulation. In this part, first the parameter extraction results based

on the locally connected network (section 3.3.1) are shown in section 3.6.1, then the

benefit of DVFS is shown in detail with the synfire chain model (section 3.3.2) in section

3.6.2. The results presented in this section are based on the measurement done on the

second SpiNNaker 2 prototype chip [2].
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3.6.1 Locally Connected Network

Based on the differential power measurement strategy described in section 3.5.3, the

parameters in the energy model described in section 3.5.2 is extracted. For the param-

eter extraction, the locally connected network described in section 3.3.1 is used. Here

no PL selection strategy (section 3.5.1) is applied since for the parameter extraction

the PE only needs to run the neural simulation at a predefined PL.

For baseline power PBL extraction the simulation without spike processing, neuron

processing and synapse processing has been executed at different PLs.

The neuron processing power has been determined by running the neuron processing

and synapse processing for different numbers of neurons per PE in the locally connected

network for different PLs. The measurement results are then subtracted by the baseline

power to obtain the additional power for neuron processing and synapse processing. The

results are shown in Figure 3.8. Based on the results, linear regression is done and the

slope of the line is found, which characterizes the additional energy per neuron.
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Figure 3.8: Energy per timestep for different number of neurons per PE
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Similarly, the spike processing power has been measured by running the spike pro-

cessing with a varying number of synaptic events. Here, the locally-connected network

with 80 neurons per PE is used. The number of synaptic events per time step per PE

is varied by varying the number of neurons that are sending out spikes in each time

step. The result of the spike processing energy measurement is shown in Figure 3.9.

The additional energy per synaptic event is found with linear regression.
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Figure 3.9: Energy per timestep for different number of synaptic events per PE

Finally, the results of the power model parameter extraction are summarized in

Table 3.1.

Table 3.1: Measured parameters of energy model

PL1 PL2 PL3

(0.5 V 100 MHz) (0.5 V 200 MHz) (0.6 V 400 MHz)

PBL [mW] 22.38 29.72 66.44

eneuron [nJ] 1.51 1.50 1.89

esyn [nJ] 0.20 0.20 0.26
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With these extracted parameters, the energy consumption of a PE can be predicted

by inserting these parameters to the energy model described in section 3.5.2. Note that

comparing the equations 3.6 and 3.7, the Eneuron,0,i and Esyn,0,i are missing in Table

3.1, because they were found to be 0.

3.6.2 Synfire Chain

Finally, the DVFS hardware feature (section 3.2), DVFS software flow (section 3.4) and

power management strategy (section 3.5) described in this section are demonstrated in

the synfire chain simulation based on the model described in section 3.3.2.

Specifically, in the synfire chain network model implemented in this work, there are

four layers, each consisting of an excitatory and inhibitory population. Each layer is

simulated on a PE. the fourth layer is connected back to the first layer to form a loop.

In each layer, the excitatory population has 200 neurons, and the inhibitory population

has 50 neurons. A normally distributed current is fed into each neuron to simulate the

random background noise.

The connection from the inhibitory population to the excitatory population in the

same layer has a synaptic delay of 8 ms, and the connection from the excitatory popu-

lation to both populations in the next layer has a synaptic delay of 10 ms. Each neuron

in one layer is connected to 60 excitatory neurons in the previous layer. Within a layer,

each excitatory neuron is connected to 25 inhibitory neurons in the same layer.

As described in section 3.3.2, to kick start the network activity, a pulse packet

is used at the start of the simulation. For the selection of PL, the simplified worst-

case strategy described in section 3.5.1 is adopted, i.e. PL switching is based on the

number of incoming spikes, assuming the incoming spikes have most of the postsynaptic

connections. The two thresholds lth,1 and lth,2 for PL switching are summarized in Table

3.2, along with other parameters of the network model.

The simulation is done with these settings and the spike trains, the chosen PL for

each time step and the number of incoming spikes are shown in Figure 3.10. After

PE 3 sends the stimulus pulse packet to PE 0, the number of incoming spikes in PE

0 rises, which causes PE 0 to raise its PL from PL 1 over PL 2 to PL 3 in order to

guarantee real-time operation. After a delay of a few milliseconds (i.e. synaptic delay),

the neurons in PE 0 start to fire, sending spikes to PE 1. While the spikes from PE

0 are relatively asynchronous, the spike packet becomes more and more synchronous
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Table 3.2: Synfire Chain Network Parameters

parameter value note

nexc 200 number of excitatory neurons in a layer

ninh 50 number of inhibitory neurons in a layer

tdelay,i 8 ms synaptic delay from the inh. to exc. in the same layer

tdelay,e 10 ms synaptic delay from the exc. to all neurons in the next layer

npre exc 60 number of presynaptic excitatory neurons from the previous layer

npre inh 25 number of presynaptic inhibitory neurons from the same layer

lth,1 17 DVFS switching threshold for PL 1 and PL 2

lth,2 59 DVFS switching threshold for PL 2 and PL 3

over time. At the end of the simulation at around 90 ms, the spike packet from PE 3

becomes a very synchronous pulse packet where most of the spikes occur in the same

time step.

The synfire chain simulation shows the variability of the network activity in spik-

ing neural network simulations. In hardware without DVFS, PL 3 needs to be used

throughout the simulation in order to guarantee enough computational power for real-

time operation, which increases power consumption. Whereas in SpiNNaker 2, because

of DVFS, the PLs can be switched up and down dynamically to adjust for the net-

work activity and save power consumption. In order to quantify this benefit, power

measurement has been carried out.

Following the same incremental power measurement method (section 3.5.3), the

baseline power, neuron processing power and spike processing power can be measured.

To demonstrate the benefit of DVFS, the power measurement is done for two cases:

• DVFS enabled. DVFS software actively switching PLs based on the power man-

agement strategies.

• DVFS disabled. To guarantee real-time operation PL 3 is always used.

The results of the power measurement are compared and shown in Table 3.3.

The comparison of the power consumption for the synfire chain simulation with

and without DVFS shows most of the benefit of DVFS in saving baseline power, with

a power reduction of 63.4%. The neuron processing power is reduced by 27.3% and the

spike processing power is reduced by 18.7%. The total power reduction is 60.7%.
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Figure 3.10: Simulation of synfire chain. The X-axis shows time in milliseconds. In the

label of the Y-axis, c0 denotes PE 0, c1 denotes PE 1 and so on. For each PE, two panels

are shown, one for the spike train (blue), and one for the number of received spikes (green)

and the PL chosen (red). At the start of the simulation, a stimulus pulse packet is used

to kick start the network activity. These spikes are sent from PE 3 (top panel) to PE 0

(bottom panel), as can be seen from the rise of the number of incoming spikes in PE 0. The

rise of the incoming spikes causes PE 0 to raise its PL from PL 1 over PL 2 to PL3. After

a short delay, the neurons in PE 0 start to fire, sending spikes to PE 1, and so on. The

spike pulse packet from one layer to the next layer becomes more and more synchronous

over time.
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Table 3.3: Power Measurement Results for Synfire Chain Simulation (mW)

only PL 3 DVFS reduction

baseline power 66.4 24.3 63.4%

neuron processing power 3.3 2.6 21.2 %

spike processing power 1.6 1.3 18.7%

total power 71.3 28.2 60.4%

The comparison of the power model and the measurement for total power, baseline

power, neuron processing power and spike processing power for the synfire chain simu-

lation is shown in Figure 3.11. The power model shows an overall good prediction for

the actual power consumption.
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Figure 3.11: DVFS model vs. measurement

Furthermore, the number of simulation time steps for each PL in the simulation

is summarized in Figure 3.12. In 88.3% of all the time steps, PL 1 is used, because

the network activity is low for most of the time. In 8.3% of the time steps, PL 2 is

used. Only in 3.3% of the time steps, PL 3 is used. The DVFS feature allows the PE

to run at PL 1 for most of the time while being able to switch to the higher PLs to

guarantee real-time operation when the network activity is higher. To better illustrate

when all the workload is processed, the time step of 1 ms is further divided into 10

sub-time steps. With the increase of the workload, the finishing time within the time

step increases. If the workload would require more than 0.9 ms of a time step, the PL

is increased to provide more computational power.
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Figure 3.12: Histogram of simulation cycles (1 ms) processed at different PLs versus time

3.7 Conclusion

In this chapter, the benefit of DVFS for spiking neural network simulation is demon-

strated. The DVFS technology which is commonly used in the semiconductor industry

for dynamic power management is proved to be beneficial for the spiking neural network

simulation with SpiNNaker 2 by allowing each PE to dynamically switch its supply volt-

age and clock frequency according to its own workload, which is implied by the number

of incoming spikes.

To effectively exploit the potential of DVFS, the software flow of SpiNNaker 1 has

been extended and power management strategies have been developed. The synfire

chain network is used to demonstrate the benefit of DVFS, which shows 60.7% overall

power reduction compared to the approach without DVFS. At the same time, this is

also the first-ever software framework running a neural network model on SpiNNaker 2.
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4

Reward-Based Synaptic Sampling

Enables Learning in Edge Devices

4.1 Introduction

dendritic spine clock signal

timediameter

probability

Figure 4.1: Left: as observed in biophysiological experiments, the size of a synapse

changes randomly over time, causing random synaptic weight fluctuations. This random-

ness is believed to be involved in the stochastic computation employed by biology. The

different darkness of the lines indicates the probability of the size of a synapse. Right: the

rising and falling edges of a clock signal in a digital circuit. The clock signal is generated

by the clock-generator. The deviation of the generated clock period from the ideal clock

period is the jitter, which could change randomly over time. The different darkness of the

lines indicates the probability of the rising and falling edges.

A large number of spiking neural network simulations are based on relatively simple

neuron and synapse models like the ones used in the synfire chain network introduced in
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the previous chapter. Because of this, neuromorphic hardware platforms that support

this kind of neuron and synapse models are sufficient to simulate a variety of SNN

models efficiently. However, recent advances in neuroscience indicate that neurons and

synapses have much more complicated behavior than could be captured by these simple

models, which put new requirements on the next generation neuromorphic hardware.

Observations in experimental neuroscience indicate that the synapses in biological

neural networks change stochastically over time: the size and the efficacy of existing

synapses fluctuate on the time scale of hours to days [46, 47] (Figure 4.1, left). In

addition, new synapses emerge and existing synapses decline and disappear, i.e. the

network is constantly rewiring itself. These random fluctuations are found to be caused

by noise [48].

In machine learning, training a DNN with noise by adding the noise to gradient

descent has been proved to help the network escape from local optima and thus increase

robustness [49]. Similarly, computational neuroscientists propose that the brain exploits

the noise which inherently exists for the exploration of parameter space, instead of

suppressing it [50, 51].

One synapse model which takes noise into account is the synaptic sampling model

[52, 53], where the rewiring and fluctuation of synaptic weight are affected by random

noise. Although each synapse undergoes dynamic random fluctuations, the synaptic

weights across the network can be proved to approach a stationary distribution. In

addition, this stationary distribution can be shaped by reward and can be constrained

to enforce sparsity. The synaptic sampling model well explains a number of observations

in neuroscience [52, 54] and can be adapted to work with backpropagation in machine

learning for memory-constrained training [55].

While the brain exploits the noise inherent in the neural substrate for parame-

ter space exploration, in computing systems engineered with a silicon substrate, each

building block is supposed to be reliable and deterministic whereas noisy behavior is

normally undesired. In fact, random number generation in hardware has been a scien-

tific problem. Over time, mathematicians have come up with algorithms to generate

random numbers with the operations that are available in digital circuits, like XOR

and shift [56, 57].

In addition, the brain also makes heavy use of the exponential function which is

common in the physical world. Many models proposed in computational neuroscience
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to capture the behavior of neurons and synapses include the exponential function, for

example, various neuron models like the Hodgkin-Huxley model [32] and adaptive ex-

ponential integrate-and-fire model [58], and synaptic plasticity rules like Spike-Timing

Dependent Plasticity (STDP) [59] and the synaptic sampling model [52, 53].

With the advances in computational neuroscience, more complicated computations

such as exponential function and random number generation are required, which are

often not supported in neuromorphic hardware or conventional CPUs and GPUs.

Neuromorphic hardware usually has very narrowly configurable plasticity functions

unsuitable for this kind of models [15, 60, 61, 62]. Thus, synaptic weights that expe-

rience complex plasticity functions are usually precomputed in software and then run

statically on mixed-signal [63, 64] or on digital neuromorphic hardware [65]. On the

other hand, standard digital compute hardware is in principle flexible enough, but the

functions required by the plasticity models are very expensive to compute on standard

hardware which significantly narrows down the gain in efficiency. Despite recent ef-

forts to simulate spiking neural networks on GPUs [66], there is no hardware support

available for random number generation, especially true random number generation,

and exponential function in GPUs. A common workaround on digital hardware is to

store a massive amount of random numbers and look-up tables for the exponential

function before the simulation starts [67]. This reduces computation time at the cost of

increasing the requirements for the already limited memory of embedded applications.

SpiNNaker 2 strives to break the trade-off between computation time and memory

by employing dedicated hardware components for these time- (and energy-) consuming

operations with hardware accelerators for random numbers [26] and exponential func-

tions [68], which allows for efficient implementation of complex learning algorithms.

This potentially offers a new compute substrate especially for efficient learning in edge

devices such as neural implants or Internet of Things (IoT) devices that are strictly

limited by the power budget, computation speed and memory capacity of the silicon

chip.

In this chapter, the benefit of the random number generator and exponential func-

tion accelerator is demonstrated with the reward-based synaptic sampling model. First,

section 4.2 introduces the random number generator and the exponential function ac-

celerator. Then, section 4.3 provides more details about the reward-based synaptic
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sampling model. Third, section 4.4 presents the software implementation and opti-

mizations. Fourth, section 4.5 presents the experimental results. Then, section 4.6

discusses scalability and comparison with other neuromorphic hardware. Finally, sec-

tion 4.7 summarizes this chapter.

4.2 Hardware Accelerators for RNG and EXP
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Figure 4.2: Hardware accelerators in the SpiNNaker 2 PE architecture.

The prototype chip (Figure 4.2) considered in this chapter is the first SpiNNaker 2

prototype [24, 25] which contains 4 PEs and is fabricated with the GLOBALFOUNDRIES

28 nm SLP CMOS technology. In addition, the prototype chip is connected with a dy-

namic random-access memory (DRAM) chip.

4.2.1 Random Number Generator

Two random number generators (RNG) were developed [26] for the SpiNNaker 2 proto-

type chip: the true random number generator (TRNG) and the pseudo random number

generator (PRNG). The PRNG is a hardware implementation of the KISS random num-

ber generator [56], where the PRNG always outputs the same deterministic sequence

of random numbers for the same initial seed. The output of the PRNG is a sequence of

32-bit integer values with uniform distribution. The hardware PRNG is implemented

in a way that every clock cycle a new output can be generated and read out. Accessing
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the random output from the ARM core takes 1 clock cycle, whereas simulating the

same random number generation algorithm in software takes 35 clock cycles.

Since the output sequence of a PRNG depends only on the seed, the reproducibility

is particularly suitable for debugging purposes. However, PRNG is only an approxi-

mation of true randomness and can not provide all the effects of randomness. In order

to increase the quality of the randomness, the PRNG has the option to take outputs

from the TRNG as its seed.

The TRNG makes use of the jitter that inherently exists in the clock-generators

as the noise source (Figure 4.1, right) [26]. In this way, the noise source comes with

minimum overhead regarding power consumption and chip area, since it is a byproduct

of the normal operation of the clock-generators.

4.2.2 Exponential Function Accelerator

The exponential function accelerator developed in [27] calculates an exponential func-

tion with the signed fixed-point s16.15 data type. In the implementation, the operand

is divided into three parts:

y = exp(x) = exp(n)︸ ︷︷ ︸
fint(n)

· exp(p)︸ ︷︷ ︸
ffrac(p)

· exp(q)︸ ︷︷ ︸
fpoly(q)

with x = n+ p+ q, (4.1)

where n is the integer part, p and q are the upper and lower fractional parts, respectively.

fint(n) and ffrac(p) are calculated with two separate look-up tables (LUTs), and fpoly(q)

is a polynomial. The split into two separate LUTs considerably reduces the memory size

and thus the silicon area compared to one combined LUT, by taking advantage of the

properties of the exponential function. The split of the evaluation of the fractional part

into a LUT and a polynomial reduces the computational complexity of the polynomial

with minimum memory overhead. The look-up and the polynomial calculation are

parallelized, resulting in a latency of four clock cycles for each exponential function.

Writing the operand to the accelerator and reading the result from it via the AHB

bus adds additional two clock cycles, resulting in 6 clock cycles in total. In pipelined

operation the processor writes one operand in one clock cycle and reads the result of a

previous exponential function in another clock cycle, resulting in two clock cycles per

exponential function [27].

47



4. REWARD-BASED SYNAPTIC SAMPLING ENABLES LEARNING
IN EDGE DEVICES

4.3 Reward-based Synaptic Sampling

The reward-based synaptic sampling model was introduced in [52, 53, 54]. The model

describes the synaptic plasticity as a guided random walk, where the synaptic weight

randomly changes while being guided by a reward signal.

In particular, for all the potential synaptic connections between neurons in a net-

work, only a fraction of the connection is realized. The synapses change their weights

continuously. When a synaptic weight goes below a predefined value, the connection

is considered disconnected. On the other hand, for the potential connections where no

connections exist, new connections could randomly emerge. In this way, the synaptic

connections and weights in a network keep constantly changing, but over time, the

synaptic weights across the network approximate a target distribution. Furthermore,

the shape of the target distribution can be influenced by a reward signal.

In section 4.3.1 the neuron model considered in this algorithm is introduced, which

differs from the standard LIF neuron. In section 4.3.2 the synapse model is introduced.

Then in section 4.3.3, the reward-based synaptic sampling is introduced. Finally, in

section 4.3.4, the random reallocation of synapse memory is introduced, which is de-

veloped to reduce the memory footprint of the algorithm on hardware.

4.3.1 Neuron Model

The neuron model considered in this chapter is a stochastic variant of the spike response

model [31]. The membrane potential of neuron k at time t is given by

uk(t) =
∑
i∈synk

yprei(t)wi(t) + ϑk(t), (4.2)

where wi(t) is the synaptic strength of synapse i at time t, synk denotes the set of

all synapses projecting to neuron k, prei denotes the index of the presynaptic neuron

of synapse i, ϑk(t) denotes the bias of neuron k, and yprei(t) denotes the trace of the

postsynaptic potentials (PSPs) in the synapse i caused by neuron prei at time t, defined

as the convolution of the spike train of neuron prei zprei(t) and the PSP kernel ε(t)

given by

ε(t) = Θ(t)
τr

τm − τr

(
e−

t
τm − e−

t
τr

)
(4.3)
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with time constants τm and τr, and the Heaviside step function Θ(t). Note that yprei(t)

only describes the unweighted trace. The effect of a presynaptic spike from the neuron

prei on the postsynaptic neuron over time is then described by yprei(t)wi(t). The shape

of ε(t) with the values of τm and τr in Table 4.1 is shown in figure 4.3.
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Figure 4.3: Illustration of the shape of ε(t) in equation 4.3.

The bias potential ϑk(t) in equation 4.2 evolves with time:

τϑ
dϑk(t)

dt
= ν0 − zk(t), (4.4)

where τϑ is a time constant and ν0 is the target firing rate of the neuron.

In a normal LIF neuron model, a spike is generated when the membrane potential

crosses a threshold. In this model, spikes are generated stochastically. The instan-

taneous rate of neuron k at time t has an exponential dependence on the membrane

potential: fk(t) = exp(uk). Spikes are then generated from a Poisson process with

rate fk(t). Similar to LIF neuron, there is a refractory period of tref.

4.3.2 Synapse Model

The synaptic strength wi in equation 4.2 depends exponentially on the synapse param-

eter θi:

49



4. REWARD-BASED SYNAPTIC SAMPLING ENABLES LEARNING
IN EDGE DEVICES

wi = exp(θi − θ0) (4.5)

where θ0 is a positive offset parameter. When θi is smaller than 0, the connection

is considered disconnected. In this model the plasticity only applies to excitatory

connections where wi is larger than 0.

The idea of synaptic sampling is that the dynamic development of synaptic weights

approaches and samples from a target distribution p∗(θ) over synaptic parameters,

where θ is the vector of all synaptic parameters θi. It has been proved in [54] that

the target distribution can be approached if the synaptic plasticity is defined by the

stochastic drift-diffusion process

dθi(t) = β
∂

∂θi
log p∗(θ)

∣∣∣∣
t

dt +
√

2βT dWi(t) (4.6)

where β is the learning rate and dWi models the Wiener process, controlled by the

temperature parameter T . The target distribution is also scaled by the temperature

parameter, such that the final stationary distribution of the synaptic parameters is

proportional to p∗(θ)
1
T .

The idea of reward-based synaptic sampling is that the target distribution p∗(θ)

with an initial state or prior of pS(θ) is shaped by the expected discounted reward V(θ)

such that

p∗(θ) ∝ pS(θ) × V(θ) (4.7)

where ∝ means ”proportional to”. Under the assumption of a Gaussian prior with

mean µ and variance σ2, the log distribution of the prior with respect to parameter θi

is given by

∂

∂θi
log pS (θ) =

1

σ2
(µ− θi(t)) (4.8)

which essentially drives the synaptic parameter θi back to the mean µ.

4.3.3 Reward-based Synaptic Sampling

The last part of the model is about the ”reward”, or how the gradient of the value

function ∂
∂θi

logV(θ) is estimated by the instantaneous reward r(t) and the network

dynamics described by the eligibility trace ei(t).
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The value function V(θ) is calculated as the expected discounted reward

V(θ) =

〈∫ ∞
0

e−
τ
τe r(τ) dτ

〉
(4.9)

where τe is a time constant and 〈 · 〉 averages over all possible network activities.

To estimate the gradient of the value function ∂
∂θi

logV(θ), first, the eligibility trace

of a synapse i is considered to capture the neuronal activities:

dei(t)

dt
= − 1

τe
ei(t) + wi(t) yprei(t) (zposti(t)− fposti(t)) , (4.10)

where τe is a time constant, prei is the index of the presynaptic neuron and posti the

index of the postsynaptic neuron for synapse i.

The gradient of the value function is estimated by the variable gi(t) with

dgi(t)

dt
= − 1

τg
gi(t) +

(
r(t)

r̂(t)
+ α

)
ei(t) , (4.11)

where τg is a time constant, α is a constant and r̂(t) is a low-pass filtered version of

r(t). The variable gi(t) acts as an online estimator for ∂
∂θi

logV(θ) [54] and essentially

describes how the synaptic parameter θi is driven by the gradient of the value function,

which is described as a temporally averaged interaction between the instantaneous

reward r(t) and the neuronal activities described by the eligibility trace ei(t).

Finally, the update rule for the synaptic parameter θi is given by

dθi(t) = β

(
1

σ2
(µ− θi(t)) + gi(t)

)
dt +

√
2βT dWi(t) . (4.12)

with parameter values summarized in Table 4.1.

To better illustrate the dynamics of the synaptic parameters, the change of the

synaptic parameters over time is visualized for a simple network where a single neuron

receives spikes from two input neurons (input 1 and input 2), and the reward signal

shapes the target distribution so that synapse 1 should be connected and synapse 2

should be disconnected, as shown in figure 4.4. At first, both synapses are disconnected,

i.e. θ is smaller than 0 (figure 4.4a). The synaptic parameters explore the parameter

space randomly with the feedback of the reward signal. After exploring the area with

a low reward for a while, the network finds the gradient which leads to a higher reward

(figure 4.4b). After reaching the area with a higher reward, the network continues to
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Table 4.1: Parameters of the neuron and synapse model Eqs. (4.2)-(4.12).

symbol value description

τr 2 ms time constant of EPSP kernel (rising edge)

τm 20 ms time constant of EPSP kernel (falling edge)

τe 1 s time constant of eligibility trace

τϑ = τg 50 s time constants for equations (4.4) and (4.11)

ν0 5 Hz desired output rate

tref 5 ms refractory time

T 0.1 temperature

α 0.02 offset to reward signals

β 10−5 learning rate

µ 0 mean of prior

σ 2 std of prior

explore the parameter space, and even tried to reconnect synapse 2 for a short time

(figure 4.4c). But the lower reward drives the network to disconnect synapse 2 and

continue exploration in other directions (figure 4.4d).

4.3.4 Random Reallocation of Synapse Memory

The rewiring scheme in the original synaptic sampling model requires that a discon-

nected synapse (i.e. when θi ≤ 0) continues to be simulated until the connection

reappears. This would require all possible synapses to be simulated although only the

connected synapses contribute to the network activity, which is a waste of computing

resources.

An alternative solution is to randomly connect another synapse whenever one

synapse disappears so that the total number of connected synapses remains the same,

and only the connected synapses are simulated. Theoretical considerations have proved

that this solution also leads to a stationary distribution of the synaptic parameters

equivalent to the original approach [55]. In this work, when a synapse disappears, the

resource is randomly reallocated to another postsynaptic neuron of the same presynap-

tic neuron due to the memory structure of the simulation software on SpiNNaker 2, so

that the fanout of each neuron stays constant.
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(a) (b)

(c) (d)

Figure 4.4: Dynamics of synaptic parameters of a simple network with 2 inputs and a

single neuron (upper left). The strength of the synaptic connection is illustrated with the

width of the red line. When the synapse is disconnected, it is shown as a dashed line. The

two horizontal axes are the synaptic parameters for synapse 1 and synapse 2. The vertical

axis is the reward. The synaptic parameters explore the parameter space stochastically

guided by the reward signal.
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4.4 Software Implementation and Optimizations

In order to bridge the gap between state-of-the-art biologically plausible neural mod-

els and efficient execution of the model in hardware, the software implementation of

this model is optimized regarding computation time, memory, power consumption and

scalability. This is explained in more detail in the following.

4.4.1 Reducing computation time with hardware generated uniform

random numbers

The synaptic sampling model draws one random number for each synapse in each sim-

ulation time step (1 ms). Since thousands of synapses are simulated in each core 1,

random number generation could dominate the computation time. As described in

section 4.3, the Wiener process requires Gaussian random numbers to be generated.

But as described in section 4.2.1, only uniform random numbers can be generated by

the accelerator. As shown in Table 4.2, the generation of a pseudo Gaussian random

number with Box-Muller transform [69] in software requires 172 clock cycles. One op-

tion could be to convert the hardware-generated uniform random number into Gaussian

random number with Inverse CDF method [70] and look-up table, which reduces the

computation time to 21 clock cycles.

Since the simulation of the Wiener process is often needed in Physics, the com-

putational complexity was also a problem for the Physicians. Indeed, in the 1990s,

Physicians in the Jülich research center encountered the same problem and reduced the

computational complexity of the simulation by replacing the Gaussian random numbers

with uniform random numbers. They also proved theoretically and empirically that the

simulation results were not affected [71].

The generation of a uniform random number in software with Marsaglia RNG [56,

57] requires 42 clock cycles, whereas with hardware it takes only 5 clock cycles, including

fetching the integer random number from the accelerator and converting it to floating-

point type in the range of 0 to 1.

1A ”core” is equivalent to a ”PE”
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Table 4.2: Computation time for random number generation and exponential function

Computation time for random number generation

Random number type #clock cycles

Gaussian (software, Box-Muller Transform) 172

Gaussian (hardware, Inverse CDF, optimized) 21

Uniform (software, Marsaglia) 42

Uniform (Hardware) 5

Computation time for exponential function

Exponential function #clock cycles

Software (floating point, Newlib) 163

Software (fixed point, hardware emulation) 104

Hardware (fixed point, precision not enough) 6

Hardware (conversion from and to float) 15

4.4.2 Reducing computation time with exponential function acceler-

ator

In the synapse model, the parameter θ of each synapse accumulates small changes in

each time step. The exponential function accelerator, which calculates the exponential

function within 6 clock cycles (section 4.2.2), uses a fixed-point data type whose pre-

cision is not enough for this model because the change of θ would be rounded to zero.

Calculating a floating-point exponential function with software libraries like Newlib

takes 163 clock cycles. Since high precision is only necessary for storing the small

change of θ, but not necessary for calculating intermediate variables like w, θ can be

stored as floating-point in memory, and when calculating w with an exponential func-

tion, θ can be converted to fixed-point and calculated with the exponential function

accelerator. The result is then converted back to a floating-point. Simulations show

that the performance of the model is not affected. This reduces the computation time

to 15 cycles with 6 cycles required by the hardware accelerator and 9 additional cycles

for the conversion of data type. For the sake of comparison, emulation of exponential

accelerator in software takes 95 cycles instead of 6 [27]. Thus, with the conversion of

data type, this approach would take 104 cycles with software (Table 4.2).
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4.4.3 Reducing memory footprint with 16-bit floating point data type

In order to simulate more synapses with limited memory, which is the case when the

synapse parameters are stored in SRAM (see section 4.4.4), the single-precision floating

point with 32 bits can be converted into half-precision floating point with 16 bits. For

each synapse i, three parameters need to be stored in memory: eligibility trace ei,

estimated gradient gi and synaptic parameter θi. Simulations show that converting ei

and gi to half-precision does not affect the model performance.

4.4.4 Local Computation

By avoiding external DRAM access and instead storing all parameters and state vari-

ables of the model locally in SRAM, both energy and computation time can be saved.

Figure 4.5: The time and energy-consuming interaction between the SpiNNaker 2 pro-

totype chip and the DRAM chip, which could be saved by storing data locally in SRAM.

To read (write) data from (to) the off-chip DRAM, the core sends a read (write)

request which is first stored in a Direct Memory Access (DMA) queue in software, then

sent to the DMA unit, and at last sent to the DRAM. When the read (write) process

is complete, an interrupt is triggered and an interrupt handler is called, which, in case

of a read request, processes the data from DRAM. Then the next read/write request

in the queue is sent to DMA (Figure 4.5). Since the DRAM access is time-consuming,

the software can let DMA run in the background and continue with other tasks. When
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the read/write process is complete, the core stops with the current task, handles the

interrupt and then resumes the stopped task after the interrupt handler is complete.

Although this saves computation time compared to waiting for the read/write process

to complete, it still has the following drawbacks:

1. Retrieving all synapse parameters in each time step, which is necessary in this

model, could easily saturate DRAM bandwidth especially in the scaled-up case

with tens of cores per chip [72, 73].

2. The energy consumption of DRAM access can be two orders of magnitudes higher

than SRAM access [74].

3. This only works if the other tasks are independent of the data being fetched.

4. Managing the DMA queue and calling the interrupt handler still consumes com-

putation time, which becomes a problem when memory is frequently accessed.

The drawback when not using external DRAM is the limited memory space avail-

able in SRAM. This is not a problem for this model, since on the one hand the required

memory is reduced with 16-bit floating-point, and on the other hand due to the com-

plexity of the model, the number of synapses per core is limited by computation as is

shown in section 4.5.2.

4.4.5 Memory Model

The memory model (Figure 4.6) is based on the software for the first generation SpiN-

Naker system [45]. The spike packet contains the ID of the presynaptic neuron. The

master population table contains keys which are presynaptic neuron IDs. Each key

is 4 bytes long and is stored together with the 4 byte starting address of the synapse

parameters for the presynaptic neuron. These synapse parameters are stored in a con-

tiguous memory block called synapse row. Each row is composed of 4-byte words. For

each presynaptic neuron, the first word is the length of the plastic synapse region. In

the implementation, the plastic synapse region consists of 8-byte blocks with 2 bytes

for ei, 2 bytes for gi and 4 bytes for θi. After the plastic synapse region, there is one

word for the length of the fixed synapse region. The next word is the length of the

plastic control region which stores special parameters needed by the plasticity rules.
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Figure 4.6: Memory model with master population table, synapse rows and postsynaptic

neuron ID.

For synaptic sampling this region is used to store the parameters for the PSP kernel of

input spike, e.g. hr and hf (corresponding to the time constants τm and τf ). Since the

PSP kernel of the incoming spike is the same for all synapses of the same presynaptic

neuron, the parameters for the PSP kernel are shared in order to reduce memory foot-

print. After the word for the length of the plastic control region follow the parameters

for fixed synapses.

The synapse parameters should also include the index of the postsynaptic neuron.

One way to implement this is to add a 4-byte word for each postsynaptic neuron in

addition to the 8 bytes for ei, gi and θi, which is the case in the original SpiNNaker

software framework. Alternatively, since in this network all input neurons have the

same fanout, the indexes are stored in a 2-d array (Post-syn. Neuron ID in Figure 4.6),

where the column index stands for the presynaptic neuron ID and the entries represent

the postsynaptic neuron IDs. Each entry represents a synapse and occupies one byte,
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supporting maximum of 256 target neurons per core. Since multiple synapses are

allowed between a pair of neurons, the ID of a postsynaptic neuron can appear multiple

times in each column of the 2-d array. In general, depending on the application, one of

the two approaches can be chosen.

The master population table, synapse rows and postsynaptic neuron ID are arrays

generated by each core after the network configuration is specified. Each core generates

its own data in a distributed way instead of having a centralized host PC generating

data for all cores. This, combined with local computation (section 4.4.4), drastically

reduces the time for data generation and transmission of data from host PC to chip,

which could make up a significant amount of total simulation time especially in the

case of large systems [75, 76].

4.4.6 Program Flow and SpiNNaker Software Framework Integration

Figure 4.7: SpiNNaker software framework. Each simulation time step tn is triggered by

the timer tick interrupt. At the end of the time step, the spikes are sent to the SpiNNaker

router which then multicasts the spikes to other cores.

The software framework for the simulation of synaptic sampling (Figure 4.7) is

based on the SpiNNaker 1 software flow [45] and is similar to the DVFS software flow

introduced in chapter 3. Since the computation is dominated by the plasticity update

which is independent of the incoming events, DVFS is not necessary. Note that the
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’Send Spikes’ was part of the neuron update in chapter 3. In contrast, in Figure 4.7,

it is done after the plasticity update, so it is shown separately. More details about the

software flow are described in the following.

The timer tick signal of the ARM core is used to trigger each time step in real-time.

The length of a time step can be arbitrarily chosen. For this implementation, one time

step is one millisecond. The timer tick signal triggers an interrupt. Then the handler

of the interrupt is called and processes the incoming spikes from the last time step,

which are stored in a hardware buffer in SRAM. In this step, for each incoming spike,

first, the starting memory address of its corresponding synapse parameters is found

with binary search in the master population table, then the synaptic weights of the

activated synapses in the synapse row are added to the synaptic input buffers of the

target neurons.

For the network model implemented in this work (section 4.5.2), one of the cores,

the “master core”, then simulates the environment that computes the global reward

signal. All cores continue with the synapse update and neuron update, which integrate

the synaptic weight onto the membrane potential of the postsynaptic neuron. Next, the

synaptic plasticity update is performed, as now all required information is available,

i.e. incoming spikes, neuron states and global reward.

At last, the spikes of the neurons in each core are sent to the SpiNNaker router,

which then multicasts the spikes to the cores containing the corresponding postsy-

naptic neurons. The SpiNNaker router [77] allows for fast multicast of small packets,

which is key to efficient spike communication for many-core neuromorphic systems like

SpiNNaker. The distributed computation, synchronization with timer tick and com-

munication with the SpiNNaker router allows for scaling up the model implementation

onto large systems consisting of millions of cores.

4.5 Measurement Results on Test Chip

In the following, first, it is shown how the hardware accelerators and numerical op-

timizations reduce the computation time for one plasticity update of the synaptic

sampling model. Then, a network model that performs reward-based synaptic sam-

pling on the SpiNNaker 2 prototype is implemented, for which the power and energy

measurements are also provided.
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4.5.1 Computation Time of Plasticity Update

Table 4.3: Number of clock cycles for plasticity update

HW Accelerator only Software

Random number generation 5 42

Exponential function 15 104

Rest 90 90

Total 110 236

(RNG + EXP) / Total 18% 62%

As shown in section 4.4.1 the generation of a uniformly distributed random number

takes 5 clock cycles with hardware accelerator and 42 clock cycles with software. The

floating-point exponential function with exponential accelerator and conversion of data

type takes 15 clock cycles, whereas the same algorithm in software takes 104 clock cy-

cles. The rest of the plasticity update of a synapse takes 90 clock cycles. In total, the

plasticity update takes 110 clock cycles with hardware accelerators and the equivalent

implementation with only software takes 236 clock cycles (Table 4.3). For this applica-

tion, the hardware accelerators result in a speedup of 2 regarding the number of clock

cycles. Considering the increase of clock frequency from 200 MHz in SpiNNaker 1 to

500 MHz in the current prototype chip, in total a speedup factor of 5 is achieved. In the

plasticity update, the computation time for random number generation and exponential

function reduced from 62% to 18%.

4.5.2 Network Description

Figure 4.8 illustrates the network topology and the mapping to the prototype chip. The

network consists of 200 input neurons which are all-to-all connected to 20 neurons with

plastic synapses. Multiple synapses between each pair of neurons are allowed. In this

implementation, 3 synapses between each pair of neurons are initiated, resulting in 200

x 20 x 3 = 12000 plastic synapses. 2 spike patterns are encoded in the spike rate of the

input neurons and are sent to the hidden neurons (Figure 4.9). The 20 hidden neurons
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Figure 4.8: Illustration of the network topology (left) and its mapping to the prototype

chip (right).

are divided into two populations (A and B). The output spikes of the hidden neurons

are sent to the environment (Env), which evaluates the global reward. A high reward is

obtained if input pattern 1(2) is present and the mean firing rate of population A(B) is

higher than population B(A). The global reward is sent back to the network and shapes

the plastic synapses between the input neurons and the two populations. The goal is to

let the two populations ‘know’ which spike pattern they represent and signal this with

a high firing rate when their pattern is present. In addition to the feedforward input,

hidden neurons receive lateral inhibitory synapses that are initiated to fixed random

weights between each pair of hidden neurons.

The network is mapped to the prototype chip with each core simulating 5 neurons

from the two populations (see Figure 4.8). The first core (”master core”) also generates

the input spikes and evaluates the reward. The 200 input neurons lead to 200×5 = 1000

pairs of neurons in each core.

The profiling results in section 4.5.1 provide the computational aspect when as-

signing the number of synapses to simulate on each core. The ARM Cortex M4F core

used in this prototype chip is configured to run at 500 MHz, which means 500 000

clock cycles are available in each time step (1 ms). The computation for one time step

without plasticity update takes ca. 45 000 clock cycles for core 0 and 40 000 clock

cycles for the other cores. Since each plasticity update takes 110 cycles with hardware

accelerators and 236 cycles without hardware accelerators, the theoretical upper limit

for the number of synapses per core is ca. 4100 with hardware accelerators and ca.
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1900 without hardware accelerators.

In terms of memory, the prototype chip has 64 kB Data Tightly Coupled Memory

(DTCM) per core, for all initialized data, uninitialized data, heap and stack. By

checking the binary file size after compilation, the maximum number of synapses is

estimated as 4 700. Thus, this model is limited by computation rather than memory

(see Table 4.4).

Table 4.4: Maximum Number of Synapses per Core

Memory Constraint Real Time Constraint

With Accelerators 4 700 4 100

Without Accelerators 4 700 1 900

In the implementation, 3 000 plastic synapses per core are simulated, in order to

ensure the stability of the software. Since 3 000 plastic synapses can be simulated in

each core, each pair of neurons has 3 plastic synapses. Multiple synapses are allowed

between each pair of neurons, which is a phenomenon observed experimentally in bio-

logical neural networks. This phenomenon has been suggested to allow more complex

prior distributions [78][54]. Note that this is only the initial configuration. Due to

random reallocation of synapse memory, the postsynaptic neuron could change, so that

not every single pair of neurons has 3 plastic synapses.

4.5.3 Implementation Results

The usability of the network is demonstrated in a closed-loop reinforcement learning

task implemented with 4 cores. The generation of input spikes and evaluation of output

spikes are also implemented on the chip.

As shown in Figure 4.9, the 200 input neurons send two spike patterns in random

order. Each spike pattern lasts for 500 ms. Resting periods of 500 ms are inserted

between two pattern presentations, where the input neurons only send random spikes

with a low firing rate representing background noise. The numbers at the top of Fig-

ure 4.9 and shaded colored areas indicate which pattern is present. As discussed above,
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the 20 neurons are divided into 2 populations (A and B), each representing one of the

two patterns. Neuron 1 to neuron 10 belong to population A, neuron 11 to neuron 20

belong to population B. In the second row of Figure 4.9, blue and green curves represent

population firing rates of A and B, respectively. The firing rates were obtained with a

Gaussian filter (σ = 20 ms) applied to the raw spike trains. The goal of learning is to

let population A fire at a higher rate when pattern 1 is present and let population B

fire at a higher rate when pattern 2 is present.
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Figure 4.9: Network activity and reward throughout learning. Shaded areas indicate the

presented patterns. Spike trains (top) of the two populations and input spikes. 30 neurons

were randomly chosen from the 200 inputs.

Figure 4.10 shows the evolution of the mean reward with and without random re-

allocation of synapse memory (see section 4.3.4). The mean reward in each minute is

low-pass filtered with a Gaussian kernel with σ = 2 min. Averages over 5 independent

trial runs using the true random number generator are shown with solid lines, shaded

areas indicate standard deviations. The reward is normalized to the theoretically max-
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imum reachable reward. At learning onset, the two populations respond randomly to

input spike patterns and the reward is low. The synaptic weights explore the parameter

space with the random process guided by the global reward as described in section 4.3.

Over time, the network learns the desired input/output mapping, and the reward in-

creases. After ca. 10 minutes of training, the two populations learn to respond correctly

to the two spike patterns with the firing rate of one population higher than the other

when the corresponding spike pattern is present, and reward becomes high, which is

also shown in the third row of Figure 4.9.

The results show that the reward increases much faster with reallocation due to the

accelerated exploration of the parameter space. After the reward reaches a high value,

the network continues exploration and the reward might fluctuate while the network

searches for equally good network configurations.

Figure 4.10: Time-averaged reward throughout learning for networks with (red) and

without (green) random reallocation of synapse memory.
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4.5.4 Power and Energy Measurement Results

Table 4.5: Power and Energy Consumption

Local Computation No Yes Yes

Accelerator No No Yes

Power (mW) 285 225 225

Time (ms) 1.58 1.58 0.76

Energy (µJ) 450.3 355.5 171

Reduction of Energy 0% 21% 62%

The optimizations described in section 4.4 result in considerable reduction of power

and energy consumption. To show the benefit of the optimizations, power and energy

consumption is measured in three cases. First, the synapse rows are stored in the

external DRAM memory, and the exponential function and random number generation

are done only with the software running on ARM core. Second, the synapse rows are

stored in the local SRAM memory, and the exponential function and random number

generation are still only done with the software running on ARM core. At last, the

synapse rows are stored in the local SRAM memory, and the exponential function

and random number generation are done with the hardware accelerators. For this

measurement, the software is run without random reallocation of synapse memory.

As summarized in Table 4.5, the power and energy consumption is reduced by local

computation without external DRAM and reduction of computation time.

First, the memory footprint is optimized by employing a 16-bit floating-point data

type and the compact arrangement of the memory model described in sections 4.4.1 to

4.4.5. The random reallocation described in section 4.3.4 increases the effective number

of synapses which is otherwise only achievable with external memory like DRAM. The

reduction of memory footprint allows for local computation with SRAM, as described

in section 4.4.4. Switching off DRAM allows for a reduction of power consumption by

21%, from 285 mW to 225 mW.

In addition, as summarized in section 4.5.1, the computation time for each plasticity

update is reduced by 53.4%. Without the hardware accelerators, simulating the network
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with 3 000 plastic synapses per core for one time step (1 ms) takes 1.58 ms, losing the

real-time capability. With the hardware accelerators, the simulation of one time step

is finished within 0.76 ms. To measure the energy consumption, the length of the time

step is chosen to be the minimum required for each time step to finish, i.e. 1.58 ms for

without accelerators and 0.76 ms for with accelerators. The reduction of computation

time for plasticity update reduces the energy consumption for one time step by 51.9%,

from 355.5 µJ to171 µJ .

In total, the energy consumption for the simulation of the network for one time step

is reduced by 62%, from 450.3 µJ to 171 µJ, making the system attractive for mobile

and embedded applications.

4.6 Discussion

In this section, first the scalability of the implementation of the reward-based synap-

tic sampling model for larger networks on the final SpiNNaker 2 system is considered.

Then, the possibility to realize this network model on SpiNNaker 1 and other neuro-

morphic platforms with learning capabilities is discussed.

4.6.1 Scalability

Although the synaptic sampling model here is only implemented on the 4 cores that

are available on the SpiNNaker 2 prototype chip, the implementation is done with

scalability in mind. The scalability is mainly supported by

• the distributed computation concept of SpiNNaker, where each core computes a

part of the network

• the efficient multi-cast communication infrastructure

• the scalable software framework

Specifically for this model, the scalability is further guaranteed by the local compu-

tation, so that no data transfer between the cores and the DRAM is necessary, which

could potentially become a communication bottleneck for larger networks.

In addition, the higher-level software stack, which is not included in this work,

provides the necessary functionalities like partitioning and mapping a large network
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into smaller parts based on the computational resources of the hardware, and the

generation of routing tables for the SpiNNaker router. The higher-level software stack

is generically written and could be ported from SpiNNaker 1 to SpiNNaker 2 with

minimum effort.

4.6.2 Comparison with SpiNNaker 1

Reward-based learning and structural plasticity have been implemented on the SpiN-

Naker system before [72] [79]. The reward-based synaptic sampling model implemented

in this work is more complex because of the need for random number generation and

exponential function for each plastic synapse in each time step. In addition, due to the

lack of floating-point arithmetic, this synapse model would be very hard, if possible at

all, to be implemented in the first generation SpiNNaker system, since the change of

synaptic weight is very small in each time step and can not be captured by the precision

of fixed-point format.

4.6.3 Comparison with other neuromorphic platforms

The implementation of the reward-based synaptic sampling model on other neuromor-

phic platforms would also be almost impossible, due to the complexity of the model

and the available flexibility of other neuromorphic platforms.

Fist of all, for neuromorphic hardware with only static synapses, such as TrueNorth

[18], NeuroGrid [80], HiAER-IFAT [81], DYNAPs [82] and DeepSouth [83], this model

cannot be implemented directly. The workaround would be to simulate the model on

the hardware, collect the simulation data, do the synapse update on the host PC, and

update the synapses on the hardware.

Secondly, exact implementation of the synaptic sampling model seems infeasible

on neuromorphic hardwares with configurable (but not programmable) plasticity, like

ROLLS [84], ODIN [85] and TITAN [86] (see [87] and [88] for reviews). However, it

might be possible to realize simplified, approximate versions of synaptic sampling on

these neuromorphic platforms.

Finally, architectures that do support synaptic plasticity on the chip, such as

Loihi[17] and the BrainScales 2 system[14], have so far quite limited weight resolu-

tions (9-bit signed integer on Loihi and 12-bit on BrainScales 2). Since the 32-bit

fixed-point format was found to be insufficient for this model, it is questionable, even
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with stochastic rounding, whether synaptic sampling can be implemented with such

low weight resolution, and at what cost in performance. Also, in the case of Loihi,

the size of the microcode that is allowed for computing synaptic updates is quite lim-

ited (e.g. 16 32-bit words). Besides, hardware accelerators for complex functions like

the exponential function are not available on these two platforms, which makes the

implementation more challenging, especially in the case of Brainscales 2, because the

high data rate caused by accelerated operation requires fast execution of learning rules.

These restrictions put some doubt on whether complex learning mechanisms, as the

one considered here, can be implemented exactly.

4.7 Conclusion

In this chapter, a reward-based synaptic sampling model is implemented in the proto-

type chip of the second-generation SpiNNaker system. This real-time online learning

system is demonstrated in a closed-loop online reinforcement learning task.

While the model provides a theoretical framework that nicely explains biophysiolog-

ical findings, the computational complexity makes it one of the most complex synaptic

plasticity models ever implemented on neuromorphic hardware. The difficulties in the

implementation due to this complexity is solved by optimizations on the algorithm,

software and hardware level, including the random reallocation of synapse memory, lo-

cal computation, numerical optimizations and the use of the random number generator

and the exponential function accelerator, which together lead to optimized computation

time, memory and energy consumption.

In particular, in terms of computation time, the number of clock cycles is reduced

by a factor of 2 compared to a pure software implementation. In addition, the en-

ergy consumption is reduced by 62% compared to implementation without the use of

hardware accelerators and with external DRAM.
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Hybrid SNN DNN operation

5.1 Introduction

Algorithm:
Neural Network

Hardware: 
MAC Array
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MAC Unit

NeuronSynapse

Figure 5.1: Left: connections in a densely connected layer in a DNN, the computation of

which requires vector-matrix multiplication, where the vector contains the output values

of the neurons of the previous layer, and the matrix contains the weights that the output

values need to be multiplied with. Right: MAC array typically found in machine learning

accelerators for efficient execution of this kind of vector-matrix multiplications.

In chapter 3 and 4, DVFS, the exponential function accelerator and random number

generator of SpiNNaker 2 are demonstrated with the synfire chain network and the

reward-based synaptic sampling model. In this chapter, the benefit of the MAC array is

demonstrated. While in the previous chapters the applications in neuroscientific models
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are shown, in this chapter, the applications are mainly in the DNN and hybrid network

(e.g. neural engineering framework) domain, expanding the range of applications that

SpiNNaker 2 is suitable for.

With the substantial progress of artificial intelligence (AI) in recent years, neural

network-based algorithms are increasingly being deployed in embedded AI applications.

Smart speakers which continuously listen for keywords like ”Alexa” and robotic appli-

cations which employ neural network-based adaptive control algorithms are examples

from industry and research. To improve the efficiency regarding power consumption

and computation time, various hardware architectures have been proposed.

The neural networks employed in these AI applications are most commonly deep

neural networks (DNNs). A substantial amount of computation in DNNs is caused by

the multiply-accumulate (MAC) operations. For the efficient computation of DNNs,

many machine learning hardware architectures include a MAC unit to facilitate the

MAC operations in DNNs [89] (Figure 5.1).

At the same time, neuromorphic hardware supporting spiking neural networks

(SNNs) is increasingly gaining attention. And the application of SNNs and hybrid net-

works has been an active area of research. Two prominent examples of neuromorphic

hardware are Loihi from Intel and SpiNNaker 2 from TU Dresden and the University

of Manchester. While Loihi has dedicated circuits for synapses and neurons, which

increases the efficiency for the implemented models, and a programmable learning en-

gine for more flexibility for various learning rules, SpiNNaker 2 uses general-purpose

processors (ARM cores) connected with numerical accelerators. While the processor

increases the flexibility of the synapse and neuron models and learning rules, the ac-

celerators increase the efficiency for certain computations like exponential function and

random number generation which are often required in neuromorphic applications. Be-

sides the neuromorphic accelerators, SpiNNaker2 also contains MAC arrays for efficient

matrix operations and is thus able to merge SNN and DNN operations.

In this chapter, the implementation of the keyword spotting and adaptive control

benchmark tasks on the second SpiNNaker 2 prototype [2] is shown. While the keyword

spotting network demonstrates SpiNNaker 2’s suitability for the implementation of

DNN, the adaptive control benchmark is realized with the neural engineering framework

(NEF), which has vector-matrix multiply as input processing but can have spiking

neurons as the nonlinear activation. Because of this, the NEF can be considered as
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a hybrid network combining the perspectives from DNN and SNN. In addition, the

computation time and active energy consumption of the benchmark tasks are compared

with Loihi, and the results of the comparison highlight the benefit of the MAC array.

Specifically, for keyword spotting, because the original DNN version is implemented on

the SpiNNaker 2 prototype with the MAC array, and the SNN version is implemented on

Loihi because it only supports SNN, the SpiNNaker 2 prototype shows better efficiency

regarding computation time and energy consumption. For adaptive control, the spiking

neuron model is used as the activation function on both hardware platforms. Loihi

shows better efficiency when low dimensional vector-matrix multiplication is involved,

and the SpiNNaker 2 prototype shows better efficiency when high dimensional vector-

matrix multiplication is involved.

In section 5.2 first the MAC array is introduced. Section 5.3 describes the keyword

spotting benchmark, its mapping strategy onto hardware and the software implemen-

tation. Section 5.4 describes the adaptive control benchmark, its mapping strategy

onto hardware and the software implementation. Finally, the experimental results are

presented in section 5.5.

5.2 MAC Array
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Figure 5.2: MAC array in the SpiNNaker 2 PE architecture.

The prototype chip considered in this chapter is the second SpiNNaker 2 prototype
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[2], which is the same as in chapter 3. While in chapter 3 the main focus was the benefit

of DVFS, in this chapter, the main focus is the benefit of the MAC array.

The MAC array has communication channels to the ARM core and the SRAM

(Figure 5.2) and has 64 MAC units in a 4 x 16 layout. Figure 5.3 illustrates the MAC

array. The data of operand A and operand B are arrays of 8-bit integer values. In

each clock cycle, 16 values from the array of operand A and 4 values from the array

of operand B are fed into the MAC array. Every MAC unit in the same column is fed

with the same value from operand A, and every MAC unit in the same row is fed with

the same value from operand B. The software running on the ARM core is responsible

for arranging the data in the SRAM and notifying the MAC array of the address and

length of the data to be processed. After the data is processed, the results are written

back to predefined addresses in the memory. The result of each MAC unit is 29-bit.

MAC Array

a3b15

a2b15

a0b15

a1b15

a0b0 a0b1 a0b2

a1b0 a1b1 a1b2

a2b0 a2b1 a2b2

a3b0 a3b1 a3b2

x

+
Accumulator

(29b)

8b 8b

SRAM
Interface

NoC
Interface

Main
Control

Control
Regfile

AHB
Interface

128b/clk 128b/clk

32b/clk

op_a (weights)
op_b (infmap)

Figure 5.3: Schematic of the MAC array. Each square in the 4 x 16 block represents one

MAC unit. The squares around the block represent the data to be executed. In each clock

cycle, 4 values from operand B and 16 values from operand A are fed into the MAC array

simultaneously. (Figure from [2], reused with permission)

When computing a matrix multiplication, a general-purpose processor like the ARM

core needs to:

1. fetch the operand A and operand B into the registers

2. do the multiply-accumulate
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3. write the result back

4. check the condition of the loop

5. compute the addresses of the data in the next iteration

While the MAC array essentially does the same, it is more efficient due to the

Single Instruction Multiple Data (SIMD) operation. In particular, the efficiency is

made possible by:

1. 64 MAC operations can be done in one clock cycle in parallel.

2. 16 x 8 bits of data of operand A and 4 x 8 bits of data of operand B can be

fetched in one clock cycle in parallel

3. control logic and data transfer in parallel to MAC operations, hiding the overhead

of data transfer for the next iteration.

5.3 Keyword Spotting Model and Implementation

In this section, the keyword spotting model, its mapping strategy onto the hardware

and the software implementation are introduced.

5.3.1 Model Description

Keyword spotting is a speech processing problem which deals with identifying key-

words in utterances. A practical use case is the identification of wake words for virtual

assistants (e.g. ”Alexa”). Here, the keyword spotting network that is implemented

on the SpiNNaker 2 prototype is the same as in [90], which consists of 1 input layer

with 390 input values, 2 dense layers each with 256 neurons and 1 output layer with

29 output values (Figure 5.4). Also, the same as in [90], no training is involved and

only inference is considered. The 390-dimensional input to the network is the Mel-

frequency cepstral coefficient (MFCC) features of an audio waveform in each time step.

The 29-dimensional output of the network basically corresponds to the alphabetical

characters, with additional special characters for e.g. silence etc. One ’inference’ with

this network involves passing 10 time steps of the MFCC features into the network.

The outputs are then post-processed to form a result for the inference. The difference
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to the implementation on Loihi is that on the SpiNNaker 2 prototype, the network

is implemented with normal DNN with ReLU activations, whereas on Loihi, the SNN

version was implemented since Loihi only supports SNNs.

Figure 5.4: Keyword Spotting Network Architecture

5.3.2 Mapping Strategy and Software Implementation

The keyword spotting benchmark is implemented on the SpiNNaker 2 prototype with

the MAC array and ARM core responsible for different computational tasks. Since

the same benchmark has also been implemented on Loihi [90], this allows side-by-side

comparison between both neuromorphic hardware platforms.

The keyword spotting network consists of 2 computational steps: vector-matrix

multiplication and ReLU. The vector-matrix multiplication can be efficiently processed

with the MAC array. Because of the flexibility of the ARM core, arbitrary neuron

models can be implemented, and ReLU update is processed the ARM core.

Because of memory constraints (see Section 5.5.1) layer 1 is split into 2 PEs. The

weights in this network are the same as in [90]. The input to the network is a 390-

dimensional vector of 8-bit integers. The ReLU activations of each layer are also 8-bit

integers. The ReLU activations of layer 2 are directly sent back to the host PC, where

the vector-matrix multiplication for the output layer with 29 dimensions is performed,

the same as in [90]. Figure 5.5 shows the implementation of the keyword spotting

network on the SpiNNaker 2 prototype.
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Figure 5.5: Implementation of keyword spotting network on the SpiNNaker 2 prototype

5.4 Adaptive Control Model and Implementation

In this section, the adaptive control model, its mapping strategy onto the hardware

and the software implementation are introduced.

5.4.1 Model Description

The adaptive control model considered in this chapter is a combination of the adaptive

control algorithm proposed by Jean-Jacques Slotine [91] and the neural engineering

framework [92]. The details of the algorithm was described in [93] and used as a

benchmark in [94] and [95].

As shown in Figure 5.6, the input to the neural network is the system states of

the system that the control algorithm tries to control. The system states could be the

position and velocity of a robot arm, in the case that the system to be controlled is a

robot arm. But in general, the system to be controlled could also be more abstract.

The neural network is created within the software framework of NEF. The input weight

matrix is a dense connection and the neuron model can be LIF, ReLU or other models.

In this work, LIF is chosen for a direct comparison with Loihi. The output of the

neural network is a part of the control signal which is to be combined with the output

of a PD controller to build the final control signal for the system to be controlled. The

input signal to the PD controller is the desired system states and the actual system

states. The output of the PD controller also acts as a feedback error signal for the

neural network which takes part in the online weight update of the output weights.
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The weight update of the output weights of the neural network is

∆ωij = αaiEj (5.1)

where α is the learning rate, ai is the output activity of the ith neuron, and Ej is the

jth dimension of the error signal, which is the output from the PD controller. In the

case of a robot arm, the first dimension could be the position and the second dimension

could be the velocity.

Although this update rule takes a form that is reminiscent of back-propagation that

is commonly used in machine learning, it is actually derived from control theory. In

fact, it can be rigorously proved that this update rule drives the system to be controlled

towards equilibrium [91].

Figure 5.6: Adaptive Control Network Architecture

5.4.2 Mapping Strategy and Software Implementation

The adaptive control benchmark is implemented on the SpiNNaker 2 prototype with

the MAC array and ARM core responsible for different computational tasks. Since

the same benchmark has also been implemented on Loihi [95], this allows side-by-side

comparison between both neuromorphic hardware platforms.
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The implementation of adaptive control on the SpiNNaker 2 prototype is based

on [96] and [97]. There are mainly 4 computational steps: input processing, neuron

update, output processing and weight update. The input processing step is a vector-

matrix multiplication, which can be efficiently processed on the MAC array. The rest

of the steps are processed on the ARM core. In particular, in the output processing and

weight update steps, the flexibility of the ARM core enables event-based processing,

i.e. the computation is only done when there is a spike, which is not possible in SIMD

operations.

In input processing, the inputs to the network are multiplied with the input weight

matrix to produce the input current for each neuron in the hidden layer. The weights are

quantized to 8-bit integers with stochastic rounding. The vector-matrix multiplication

with only the ARM core and without the MAC array is also implemented and serves

as a reference.

The rest of the computation is implemented on the ARM core which allows event-

based processing.

In neuron update, the neuron dynamics is updated according to the input current.

The Leaky-Integrate-and-Fire (LIF) neuron model is used in the hidden layer to allow

for event-based processing of the spikes in the following steps.

In output processing, the outputs of the neurons are multiplied by the output

weight matrix. In the case of non-spiking neuron models like ReLU, this process is a

vector-matrix multiplication. In the case of spiking neuron models, a connection is only

activated when there is a spike, so this output processing step corresponds to adding

the weights associated with the neuron which has spiked to the output of the network.

In weight update, the output weight matrix is updated according to the neuron

activity and error signal. In order to do weight update in an event-based manner, the

low pass filter for the output activity has been removed, similar to [97]. Because of the

short time constant of the low pass filter in this application, this modification doesn’t

affect the performance. Since the learning rate is normally very small, floating-point

data type is chosen for the weights in the output weight matrix.

The adaptive control network is implemented on a single PE. The implementation is

done with scalability in mind. In the case that the size of a neuron population exceeds

the memory limit of a PE, it can be split into many PEs [96]. In addition, the PE also

simulates the PD controller. The overhead is negligible.
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The computational steps and the hardware component used for each step are sum-

marized in Figure 5.7. The PD controller is not shown since the computation is rela-

tively simple.

Figure 5.7: Main computational steps and hardware component for each step in adaptive

control

5.5 Measurement Results and Comparison with Loihi

In this section, the results of both benchmarks running on the SpiNNaker 2 prototype

chip are shown. In particular, results are shown regarding the memory footprint, com-

putation time and energy measurement when the PE is running with 0.5 V and 250

MHz. The results of computation time and energy measurement are compared with

Loihi. In addition, for adaptive control, the SpiNNaker 2 prototype chip is connected

to a robotic arm to demonstrate real-time control. Since the same models are im-

plemented on the SpiNNaker 2 prototype and on Loihi, the differences between both

hardware platforms in terms of classification accuracy in the case of keyword spotting

and mean squared error between actual and desired trajectories in the case of adaptive

control are negligibly small, so that this will not be further discussed in this section.

Since for both benchmarks, there is not much data movement between the PEs, the

throughput of the NoC is not a bottleneck.
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5.5.1 Keyword Spotting: Memory Footprint

For the keyword spotting benchmark, the required SRAM memory mainly consists of

2 parts: weight memory and neuron input memory.

The weight memory is the memory for storing the weights and biases, which are

quantized as 8-bit integers. The required memory in bytes is

Mw = (D + 1)N (5.2)

where D is the number of input dimensions, N is the number of neurons.

The neuron input memory is the memory for storing the results from the MAC

array after the vector-matrix multiplication is complete. Each input is a 32-bit integer.

The required memory in bytes is

Mi = 4N (5.3)

Since the ReLU unit doesn’t need to hold its output value between inferences, which

is the case for the LIF neuron model, there is no neuron memory needed.

The total memory for a neural network on a PE is

Mtotal = Mw +Mi (5.4)

Based on equations (5.2), (5.3), (5.4) for memory footprint, the first hidden layer of

the keyword spotting network would require ca. 100 KBytes of memory. For each PE,

in total 128 KBytes of SRAM memory is available, which is used for the program code

as well as the program data. In this work, it is assumed that each PE has 90 KBytes of

SRAM memory available for the data of the neural network. So the first hidden layer

is split into two PEs.

5.5.2 Keyword Spotting: Computation Time and Comparison with

Loihi

In the keyword spotting benchmark, the number of clock cycles for the vector-matrix

multiplication (Cmm) and the ReLU update (Crelu) are measured. After the measure-

ment, polynomial models can be fitted by minimizing the mean-squared error. Here

simple linear models have been adopted to capture the behavior of the system depend-

ing on the model parameters. It is found that these models are accurate enough for
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the parameter range considered here. Since the parameters are limited by the hard-

ware constraints such as SRAM memory anyways, adopting more complicated models

doesn’t seem to be necessary for the benchmarks. The number of clock cycles for the

vector-matrix multiplication with the MAC array is found to be

Cmm = 74.0 + 5.38N

+0.13ND + 24.0D (5.5)

where N is the number of neurons and D is the number of input dimensions. The

time for the vector-matrix multiplication is mostly reflected in 0.13ND. Before the

vector-matrix multiplication starts, the inputs to the network need to be prepared for

the MAC array. This pre-processing step is mostly reflected in 24.0D. After the vector-

matrix multiplication, a post-processing step is necessary for the resulting neuron input

current. The computation time depends on both D and N , and this is reflected in 24.0D

and 5.38N . For each of the computational steps, there is a constant overhead, which

is reflected in the constant 74.0.

The number of clock cycles for ReLU update with ARM core is found to be

Crelu = 17.70N + 117.5 (5.6)

The total number of clock cycles is

Ctotal = Cmm + Crelu (5.7)

Based on equations (5.5), (5.6), (5.7) for computation time, with the keyword spot-

ting network split into 3 PEs (Figure 5.5), the computation of one time step consumes

less than 21k clock cycles. With a safety margin of 4k clock cycles, one time step would

take less than 25k clock cycles. When the PE is running at 250 MHz, this means the

duration of one time step can be reduced to 0.1 ms. Since 10 time steps are com-

bined into 1 time window to form one inference, a time step duration of 0.1 ms would

correspond to 1000 inferences per second. In [90], 296 inferences per second has been

reported for Loihi (Table 5.1). One reason for the reduced speed of Loihi might be that

the inputs to the neural network are coming from an FPGA which could cause some

latency, while the SpiNNaker 2 prototype is using inputs generated by one of the PEs

of the same chip.
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5.5.3 Keyword Spotting: Energy Measurement and Comparison with

Loihi

Both QPEs are used for the measurement. In each QPE, 3 PEs are switched on

to simulate a keyword spotting network. The measured result is then divided by 2

to obtain the energy per network. The energy is measured incrementally, similar to

previous measurements on SpiNNaker 1 [40] and on the first SpiNNaker 2 prototype

[25]. When measuring the idle energy, the PLL is started and the software is running

on the ARM cores. In each time step, after the timer tick interrupt wakes up the ARM

core from the sleep mode, the ARM core only handles the interrupt itself, with no

neural processing involved, and then it goes back to sleep mode. The result presented

in this section is the active energy which is obtained by subtracting the idle energy

from the total energy. The resulting active energy per inference is 7.1 µJ.

The keyword spotting network is implemented as a normal DNN on the SpiNNaker

2 prototype. The MAC array is used for the computation of the connection matrix, and

the ARM core is used for the computation of ReLU activation function. Since Loihi only

supports SNN, the spiking version of the keyword spotting network is implemented on

Loihi. This could be the reason that the SpiNNaker 2 prototype consumes less energy

for each inference in the keyword spotting benchmark (Table 5.1). Note that in [90],

the reported energy per inference on Loihi was 270 µJ, including a 70 mW overhead

presumably caused by the x86 processor on Loihi. In this work the overhead has been

removed which results in 37 µJ per inference.

Table 5.1: Comparison of the SpiNNaker 2 prototype (SpiNN) and Loihi for the keyword

spotting task

Hardware inference/sec energy/inference (µJ)

SpiNN 1000 7.1

Loihi 296 37

5.5.4 Adaptive Control: Memory Footprint

For an adaptive control network simulated on a PE, the required SRAM memory mainly

consists of 4 parts: input weight matrix and bias memory, output weight matrix mem-

ory, neuron input current memory and neuron memory.
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The input weight matrix and bias memory is the memory for storing the input

weight matrix and bias, which are quantized as 8-bit integers. The required memory

in bytes is

Mib = (Din + 1)N (5.8)

where Din is the number of input dimensions, N is the number of neurons.

The output weight matrix memory is the memory for storing the output weight

matrix, which is 16-bit floating-point numbers. The required memory in bytes is

Mo = 2DoutN (5.9)

where Dout is the number of output dimensions.

The neuron input current memory is the memory for storing the results from the

MAC array after the input processing is complete. Each input current is a 32-bit

integer. The required memory in bytes is

Mic = 4N (5.10)

The neuron memory is the memory to hold the LIF neuron parameters like the

membrane potential and refractory time. Each of them has 32 bits. The required

memory in bytes is

Mn = 8N (5.11)

The total memory for a neural network on a PE is

Mtotal = Mib +Mo +Mic +Mn (5.12)

Since it is assumed that each PE has 90 KBytes of SRAM memory available for

the data of the neural network, the maximum number of output dimensions given the

number of input dimensions and number of neurons in a neural network can be derived

with equations (5.8), (5.9), (5.10), (5.11), (5.12). The result is shown Figure 5.8.

5.5.5 Adaptive Control: Computation Time and Comparison with

Loihi

For adaptive control, the number of clock cycles for input processing (Ci mlacc / Ci no mlacc),

neuron update (Cn), output processing (Co) and weight update (Cw) are measured. Af-

ter the measurement, polynomial models can be fitted by minimizing the mean-squared
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Figure 5.8: left: Maximum number of output dimensions for each input dimension and

number of neurons for a neural network simulated on a PE. right: Speedup of input

processing time with the MAC array. Numbers in the legend indicate the number of

neurons.

error. For input processing with MAC array, the number of clock cycles is

Ci mac = 131.21 + 5.07N

+0.13NDin + 35.79Din (5.13)

where N is the number of neurons, Din is the number of input dimensions. Equation

(5.13) is very similar to equation (5.5), because the main computation is in both cases

done by the MAC array. The difference is caused by the different data types. In

keyword spotting, the inputs are assumed to be 8-bit integers, but in adaptive control,

each input is assumed to be floating-point. This is necessary because in general, the

same implementation can be used as a building block for NEF implementation on

SpiNNaker 2 to construct large-scale cognitive models as mentioned in section 5.4.1, so

that the input data type needs to be the same as the output data type. Since the output

weights are floating-point, and their values change dynamically due to learning, an extra

range check is performed for each input value, and an extra data type conversion is

performed. This is reflected in 35.79Din and the constant 131.21.
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The number of clock cycles without MAC array is

Ci no mac = 102.52 + 22.54N

+7.07NDin + 25.54Din (5.14)

The main benefit of MAC array is reflected in the reduction of 7.07NDin in equation

(5.14) to 0.13NDin in equation (5.13), which is made possible by the SIMD operation

of the MAC array. The speedup is higher for higher dimensions. Figure 5.8 shows the

speedup of the computation time for input processing with the MAC array compared

to without the MAC array.

Unlike in keyword spotting, where the ReLU neuron model is used, in adaptive

control, the LIF neuron model is used, which is the same as in Loihi. The neuron

update time in terms of number of clock cycles is

Cn = 28.19N − 26.90NP + 509.18 (5.15)

where P is the firing probability. The minus sign in −26.9NP is because, during the

refractory period, the computation needed is reduced. Since this is event-based, it

depends on P .

The output processing time in terms of number of clock cycles is

Co = 5.8NDoutP + 19.31NP (5.16)

where Dout is the number of output dimensions.

The weight update time in terms of number of clock cycles is

Cw = 8.28NDoutP + 28.04NP (5.17)

The total time in terms of number of clock cycles is

Ctotal = Ci mac + Cn + Co + Cw (5.18)

Since output processing and weight update are event-based, the firing rate of 130 Hz

corresponding to a firing probability P of 0.13, which is used for comparing the SpiN-

Naker 2 prototype with Loihi, would reduce the computation time by 87% compared

to a non-event-based implementation.

Typically, the SpiNNaker system runs in real-time with 1 ms time step. When the

PE is running at 250 MHz, the available number of clock cycles for each time step is
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250 000, which is the computational constraint. According to equation (5.18), for the

range of the parameters shown in Figure 5.8, the computation can be done within 1 ms.

So the maximum implementable size of a network on a single PE in this benchmark is

constrained by memory rather than computation.

For the adaptive control benchmark task with different numbers of input dimen-

sions, output dimensions and neurons, the duration of a time step of SpiNNaker 2

prototype and Loihi is compared and shown in Figure 5.9, with the mean population

firing rate kept at around 130 Hz for both hardware platforms. Here the duration of a

time step for the SpiNNaker 2 prototype refers to the time for the PE to complete the

computation of a time step. From the comparison, it is clear that for small numbers of

input dimensions, Loihi is faster than the SpiNNaker 2 prototype, and for large numbers

of input dimensions, the SpiNNaker 2 prototype is faster than Loihi. The maximum

ratio of the duration of a time step between both hardware platforms is summarized in

Table 5.2.

Because of the MAC array, the computation time of the SpiNNaker 2 prototype

increases less rapidly with the number of input dimensions, so that the SpiNNaker 2

prototype could catch up with Loihi in terms of computation time for higher input

dimensions.

Table 5.2: Maximum ratio of duration of a time step between the SpiNNaker 2 prototype

(SpiNN) and Loihi for the adaptive control task

Input Dimensions 1 100

Output Dimensions 1 1

Number of Neurons 1024 512

Duration of a Time Step SpiNN : Loihi 1 : 0.37 0.49 : 1

5.5.6 Adaptive Control: Energy Measurement and Comparison with

Loihi

The energy consumption of the SpiNNaker 2 prototype and Loihi is measured with the

same parameters as in the computation time comparison. The result is shown in Figure

5.10. Similar to section 5.5.3, only the active energy is shown. For small numbers of

input dimensions, Loihi is more energy-efficient than the SpiNNaker 2 prototype, and
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Figure 5.11: Breakdown of energy consumption per core per time step of the SpiNNaker

2 prototype into 4 energy components: input processing, neuron update, output processing

and weight update.

for large numbers of input dimensions, the SpiNNaker 2 prototype is more energy-

efficient than Loihi. The maximum ratio of active energy consumption between both

hardware platforms is summarized in Table 5.3.

Table 5.3: Maximum ratio of active energy consumption between the SpiNNaker 2 pro-

totype (SpiNN) and Loihi for the adaptive control task

Input Dimensions 1 100

Output Dimensions 1 1

Number of Neurons 1024 512

Active Energy SpiNN : Loihi 1 : 0.81 0.36 : 1

Similar to the computation time comparison, the benefit of the MAC array is shown

especially for high input dimensions, when the MAC array is more extensively used.

This is made more clear in the energy breakdown in Figure 5.11. Here, it is clear how

the input processing energy increases with the input dimensions for the same number

of neurons and output dimensions, how the neuron update energy increases with the
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number of neurons for the same input dimensions and output dimensions, and how

the output processing and weight update energy increases with the number of output

dimensions for the same input dimensions and number of neurons.

5.5.7 Adaptive Control: Robotic Demo

The SpiNNaker 2 prototype running the adaptive control benchmark is connected to

a robotic arm built with Lego Mindstorms EV3 robot kit. The setup is based on [94].

The input to the neural network is the position and velocity of the motor and the

output of the neural network is the motor control signal to be combined with the PD

controller output, as described in section 5.4.1.

In this demo two situations are considered: the normal case and the simulated

aging case (Figure 5.12). In the case of simulated aging an extra weight is added to

the robotic arm to resemble the aging effect or unknown disturbance. For each case,

the performance of the adaptive controller is compared with a normal PID controller.

In the normal case, both controllers perform equally well, but in the simulated aging

case, the PID controller cannot adapt itself to the new situation, while the adaptive

controller can learn from the error feedback and adapt its parameters to improve the

performance (Figure 5.13). The difference between both controllers is made more clear

with the root mean squared error (RMSE) (Figure 5.14).

Simulated
aging

Figure 5.12: Robotic demo: in the normal case (left), there is no extra weight attached

to the robotic arm. In the simulated aging case (right), an extra weight is attached to

resemble the aging effect.
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Normal Simulated aging

Figure 5.13: Robotic demo: performance of the PID controller and the adaptive controller

in both cases. The y-axis is the normalized angle position of the motor. In the normal case,

both controllers perform well. But in the simulated aging case, the PID controller cannot

adapt to the new situation, while the adaptive controller can improve the performance by

adaptation.

5.6 Discussion

In this section, the suitability of other neuromorphic platforms for implementing the

benchmarks is considered. Since the comparison between the SpiNNaker 2 prototype

and Loihi has already been extensively discussed in previous sections, the summary of

this comparison is left to the Conclusion section.

5.6.1 Comparison with SpiNNaker 1

One could assume that the same benchmarks in this work could also be implemented on

SpiNNaker 1. However, since in SpiNNaker 1 there is no MAC array, the vector-matrix
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Figure 5.14: Robotic demo: root mean squared error (RMSE) of both controllers. In

each trial, the robotic arm attempts to reach either the upper or lower position. The error

is measured as the difference between the actual and the target position when the arm has

finished transitioning between the upper and lower positions. The mean RMSE and the

standard deviation are shown for 10 runs each with 120 trials. The extra weight is added

to the arm during the 60th trial. The curve is smoothed with a moving average with a

window size of 4.

multiplication would be much slower and therefore consume much more energy than the

SpiNNaker 2 prototype. Figure 5.8 indicates the speedup in terms of number of clock

cycles for the vector-matrix multiplication in the SpiNNaker 2 prototype compared to

what it would be in SpiNNaker 1. The differences in fabrication technology and supply

voltage etc. further increases the difference between the SpiNNaker 2 prototype and

SpiNNaker 1.

5.6.2 Comparison with other neuromorphic platforms

To ease the discussion, the neuromorphic platforms are grouped into 3 categories:

1. Neuromorphic platforms with static synapses, such as TrueNorth from IBM

[18], NeuroGrid [80], Braindrop [98], HiAER-IFAT [81], DYNAPs [82], Tianjic [20],

NeuroSoC [99] and DeepSouth [83],

2. Neuromorphic platforms with configurable (but not programmable) plasticity,

such as ROLLS [84], ODIN [85] and TITAN [86],
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3. Neuromorphic platforms with programmable plasticity, such as (except SpiN-

Naker 1/2 and Loihi) the BrainScales 1/2 system[14, 100].

All 3 groups of neuromorphic platforms should be able to implement the keyword

spotting benchmark. However, DNNs can not be directly implemented on these plat-

forms since they only support SNNs (except Tianjic, which also supports DNNs). So-

lutions similar to the SNN version implemented on Loihi would be an option.

For adaptive control, since learning is involved, the neuromorphic platforms in group

1 would not be able to support this benchmark. It would still be possible to have an

external host PC to reprogram the synaptic weights, but that would not be suitable

for embedded applications.

Although the learning rule in adaptive control is relatively simple, it involves mul-

tiplying an external error signal with the activity of the presynaptic neuron in ev-

ery time step, which is quite different from the learning rules normally supported in

the neuromorphic community, like Spike-Timing Dependent Plasticity (STDP) [59] or

Spike-Driven Synaptic Plasticity (SDSP) [101]. Therefore the neuromorphic platforms

in group 2 wouldn’t be able to implement the adaptive control benchmark.

The BrainScales 2 system in group 3 comes with programmable plasticity, but since

the neural network runs in accelerated time, it is unclear whether the neural activity of

each time step can be used for the weight update. Also, it is unclear how to interface

robotic applications which require real-time response with a neural network running in

accelerated time.

5.7 Conclusion

The PE of the SpiNNaker 2 prototype consists of a general-purpose processor plus

highly efficient accelerators, while Loihi employs dedicated circuits for neuron and

synapse models plus a flexible learning engine. In this chapter, these two platforms

are compared regarding their performance in the same applications, namely keyword

spotting and adaptive control. To fully exploit the efficiency of the MAC array and the

flexibility of the ARM core, the benchmarks are divided into sub-steps and the vector-

matrix multiply is computed with the MAC array and the rest is computed with ARM

core. Especially, for adaptive control, the event-based spike generation and learning

which is not possible with SIMD is computed with the ARM core.
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When comparing SpiNNaker 2 and Loihi, for keyword spotting, because of the MAC

array used for vector-matrix multiplication and ARM core used for ReLU activation,

the DNN version of keyword spotting network can be directly implemented on the

SpiNNaker 2 prototype, while on Loihi the SNN version is implemented for the same

task. The result of this is 3 times faster inference and 5 times higher energy efficiency

of the SpiNNaker 2 prototype.

For adaptive control, both the SpiNNaker 2 prototype and Loihi are efficient in

specific parameter regions. The SpiNNaker 2 prototype is more efficient than Loihi

both regarding the computation time and active energy, when the number of input

dimensions is high, because that is where the vector-matrix multiplication is more

complicated and the MAC array is more dominant. On the other hand, the SpiNNaker

2 prototype is less efficient than Loihi when the number of input dimensions is low,

because that is where the vector-matrix multiplication is less complicated and the ARM

core is more dominant.

Through the comparison of the SpiNNaker 2 prototype and Loihi in these two

benchmarks, more insight into the SpiNNaker 2 system can be gained and the benefit

of the MAC array in neuromorphic applications is highlighted. This insight is beneficial

for the design of future hybrid networks and also serves as feedback for the design of

the next generation SpiNNaker system.
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6

Summary and Outlook

6.1 Summary

In this work, the new hardware features in SpiNNaker 2 including DVFS, random num-

ber generator, exponential function accelerator and MAC array are demonstrated in

various benchmarks including synfire chain, reward-based synaptic sampling, keyword

spotting and adaptive control. The measurement results of the implementations of

these benchmarks show that the hardware features together with the software opti-

mizations lead to improved energy efficiency, computation time and memory footprint.

In particular:

• The DVFS feature is able to increase the energy efficiency for spiking neural net-

work simulation by allowing each PE to dynamically adjust its supply voltage and

clock frequency. To make DVFS work for event-based neuromorphic computing,

the software flow from SpiNNaker 1 has been adapted and power management

strategies have been developed. The benefit of DVFS is demonstrated in the

synfire chain network simulation, where a power reduction of 60.7% is achieved.

• Certain computations such as an exponential are very common in neuromorphic

or computational neuroscience benchmarks. The random number generator and

exponential function generator reduce the computation time for these operations

significantly when compared with a software solution on a CPU. These two fea-

tures are demonstrated with the implementation of a reward-based synaptic sam-

pling algorithm on the SpiNNaker 2 prototype, which is one of the most complex
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synaptic plasticity models ever implemented on neuromorphic hardware. The op-

timizations on the algorithm, software and hardware levels, including the random

reallocation of synapse memory, local computation enabled by data structure op-

timization, numerical optimizations and the use of the random number generator

and the exponential function accelerator, together lead to optimized computation

time, memory and energy consumption, where the number of clock cycles is re-

duced by a factor of 2 compared to pure software implementation, and the energy

consumption is reduced by 62%.

• The MAC array reduces the computation time and power consumption for vector-

matrix multiplications. To efficiently exploit the efficiency of the MAC array

and the flexibility of the ARM core, mapping strategies are developed and the

benefit is shown in the keyword spotting and adaptive control benchmarks. In

addition, the results are compared with Loihi. Due to the parallel processing of

vector-matrix multiplication of the MAC array and flexibility of the ARM core

which allows the implementation of ReLU activation and event-based process-

ing, the computation of keyword spotting on SpiNNaker 2 is 3 times faster than

Loihi and the energy consumption is 5 times lower. The benefit of the MAC

array is also shown in the adaptive control task. While for the network pa-

rameters where lower-dimensional vector-matrix multiplication is required, Loihi

shows better results regarding computation time and power consumption, for the

network parameters where higher-dimensional vector-matrix multiplication is re-

quired, SpiNNaker 2 shows better results regarding computation time and power

consumption.

6.2 Outlook

Neuromorphic computing has been an interdisciplinary research field from the begin-

ning. It started with the analogy between the exponential dependence of current and

voltage in the neuron membrane and the transistor in subthreshold operation, which

was discovered by Carver Mead [13]. At the same time, machine learning and neuro-

science have inspired each other for decades. From that sense, it is natural to envision

the future of AI as a combination of machine learning, neuroscience and microelec-

tronics, where machine learning targets the problem of building intelligent machines,
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neuroscientific findings provide inspirations and insights from the brain and microelec-

tronics provides the compute engine.

As SpiNNaker 2 has evolved to an efficient supercomputer for brain simulation and

machine learning, new questions arise such as how the combination of DNN and SNN

could help accelerate neuroscience research, and how the combination of DNN and SNN

could help with practical problems which are currently solved only with DNN.

Also, when compared to the design process of machine learning accelerators, where

the target neural network architecture type is known from the beginning, e.g. dense

layer and convolutional layer, the neuromorphic hardware architectures are still very

much ”general purpose”. As more experience and insights are gained from computa-

tional neuroscience and machine learning, the next questions that might need to be

studied in the longer term could be e.g. a spiking neural network or a DNN/SNN

hybrid network architecture that is particularly efficient for solving a certain kind of

task, similar to convolutional neural networks solving image tasks in machine learning,

and how this kind of architecture could influence the design of neuromorphic hardware

architecture.

Apparently, for these problems, we have barely scratched the surface. And hope-

fully, the road towards solving these problems would take neuromorphic computing to

the next stage.
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Rene Schüffny. Switched-capacitor realization of presynaptic short-

term-plasticity and stop-learning synapses in 28 nm CMOS. Frontiers

in neuroscience, 9:10, 2015. 2, 45

[16] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana. The SpiNNaker

Project. Proceedings of the IEEE, 102(5):652–665, May 2014. 2, 4

[17] M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. H. Choday,

G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. Lin, A. Lines, R. Liu,

D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan,

Y. Weng, A. Wild, Y. Yang, and H. Wang. Loihi: A Neuromorphic

Manycore Processor with On-Chip Learning. IEEE Micro, 38(1):82–99,

January 2018. 2, 68

[18] Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S.

Cassidy, Jun Sawada, Filipp Akopyan, Bryan L. Jackson, Nabil Imam,

Chen Guo, Yutaka Nakamura, Bernard Brezzo, Ivan Vo, Steven K.

Esser, Rathinakumar Appuswamy, Brian Taba, Arnon Amir, My-

ron D. Flickner, William P. Risk, Rajit Manohar, and Dharmendra S.

Modha. A million spiking-neuron integrated circuit with a scalable

communication network and interface. Science, 345(6197):668–673, 2014.

2, 68, 93

[19] Misha Mahowald. VLSI analogs of neuronal visual processing: a syn-

thesis of form and function. 1992. 2

103

http://science.sciencemag.org/content/345/6197/668
http://science.sciencemag.org/content/345/6197/668


REFERENCES

[20] Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang

Wu, Guanrui Wang, Zhe Zou, Zhenzhi Wu, Wei He, Feng Chen, Ning

Deng, Si Wu, Yu Wang, Yujie Wu, Zheyu Yang, Cheng Ma, Guoqi Li,

Wentao Han, Huanglong Li, Huaqiang Wu, Rong Zhao, Yuan Xie, and

Luping Shi. Towards artificial general intelligence with hybrid Tianjic

chip architecture. Nature, 572(7767):106–111, Aug 2019. 4, 93

[21] Katrin Amunts, Christoph Ebell, Jeff Muller, Martin Telefont,

Alois Knoll, and Thomas Lippert. The human brain project: cre-

ating a European research infrastructure to decode the human brain.

Neuron, 92(3):574–581, 2016. 4

[22] Christian Mayr, Sebastian Hoeppner, and Steve Furber. SpiNNaker

2: A 10 Million Core Processor System for Brain Simulation and Ma-

chine Learning. arXiv e-prints, page arXiv:1911.02385, November 2019. 4

[23] R. Carter, J. Mazurier, L. Pirro, J-U. Sachse, P. Baars, J. Faul,

C. Grass, G. Grasshoff, P. Javorka, T. Kammler, A. Preusse,

S. Nielsen, T. Heller, J. Schmidt, H. Niebojewski, P-Y. Chou,

E. Smith, E. Erben, C. Metze, C. Bao, Y. Andee, I. Aydin, S. Mor-

van, J. Bernard, E. Bourjot, T. Feudel, D. Harame, R. Nelluri,

H.-J. Thees, L. M-Meskamp, J. Kluth, R. Mulfinger, M. Rashed,

R. Taylor, C. Weintraub, J. Hoentschel, M. Vinet, J. Schaeffer,

and B. Rice. 22nm FDSOI technology for emerging mobile, Internet-

of-Things, and RF applications. In 2016 IEEE International Electron Devices

Meeting (IEDM), pages 2.2.1–2.2.4, 2016. 10, 23
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FPGA-Based Massively Parallel Neuromorphic Cortex Simulator.

Frontiers in Neuroscience, 12:213, 2018. 68, 93

[84] Ning Qiao, Hesham Mostafa, Federico Corradi, Marc Osswald, Fabio

Stefanini, Dora Sumislawska, and Giacomo Indiveri. A reconfigurable

on-line learning spiking neuromorphic processor comprising 256 neu-

rons and 128K synapses. Frontiers in Neuroscience, 9:141, 2015. 68, 93

[85] C. Frenkel, M. Lefebvre, J. Legat, and D. Bol. A 0.086-mm2

12.7-pJ/SOP 64k-Synapse 256-Neuron Online-Learning Digital Spik-

ing Neuromorphic Processor in 28-nm CMOS. IEEE Transactions on

Biomedical Circuits and Systems, 13(1):145–158, Feb 2019. 68, 93

112

https://www.frontiersin.org/article/10.3389/fnins.2018.00213
https://www.frontiersin.org/article/10.3389/fnins.2018.00213
https://www.frontiersin.org/article/10.3389/fnins.2015.00141
https://www.frontiersin.org/article/10.3389/fnins.2015.00141
https://www.frontiersin.org/article/10.3389/fnins.2015.00141


REFERENCES

[86] C. Mayr, J. Partzsch, M. Noack, S. Hänzsche, S. Scholze, S. Höppner,
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