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Abstract

Traffic light control (TLC) with transit signal priority (TSP) is an effective way to deal with

urban congestion and travel delay. The growing amount of available connected vehicle data

offers opportunities for signal control with transit priority, but the conventional control algo-

rithms fall short in fully exploiting those datasets. This paper proposes a novel approach for

dynamic TLC with TSP at an urban intersection. We propose a deep reinforcement learning

based framework JenaRL to deal with the complex real-world intersections. The optimi-

sation focuses on TSP while balancing the delay of all vehicles. A two-layer state space is

defined to capture the real-time traffic information, i.e. vehicle position, type and incom-

ing lane. The discrete action space includes the optimal phase and phase duration based

on the real-time traffic situation. An intersection in the inner city of Jena is constructed in

an open-source microscopic traffic simulator SUMO. A time-varying traffic demand of mo-

torised individual traffic (MIT), the current TLC controller of the city, as well as the original

timetables of the public transport (PT) are implemented in simulation to construct a realistic

traffic environment. The results of the simulation with the proposed framework indicate a

significant enhancement in the performance of traffic light controller by reducing the delay

of all vehicles, and especially minimising the loss time of PT.

Keywords: double deep Q-learning, traffic light control, transit signal priority, two-layer

state space, reward

1 Introduction

Travel delay and traffic congestion are common problems that disturb the economic and

sustainable development of our society. There is also an urgency to reduce CO2 emissions

and fuel consumption. At the supply side, traffic light control (TLC) is one effective measure
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to respond to the needs, which can minimise unnecessary stops, optimise the traffic flows,

and reduce the motorised delay. At the demand side, promoting public transport (PT) is a

strategic way to address urban traffic problems. From this viewpoint, it is indispensable to

make the PT as attractive as possible. One approach to achieve this goal is transit signal pri-

ority (TSP) combined with a particular ameliorating traffic light control strategy. The great

challenges are to minimise loss time for all road users, coordinated traffic flows and traffic

lights throughout the whole road network, and to find an optimal prioritisation strategy for

PT.

Today, many cities are still deploying traditional TLC or TSP strategies. Traditional TLC

strategies can be categorised into three types: pre-timed, actuated and adaptive control

[Koo08]. However, there are still shortcomings: 1) The traffic volume data is collected by the

section-based sensors such as loop sensors and cameras. 2) These adaptive control methods

are developed based on models and with assumptions about traffic dynamics. Traditional

TSP has two types: Passive priority and active priority [Lin15]. Both types are currently

facing two difficulties: Processing the conflict of multiple priority requests and reducing

delay to motorised individual traffic (MIT).

To overcome aforementioned disadvantages of traditional control strategies, researchers

have been utilising deep reinforcement learning (DRL) techniques. In the past decade, DRL

based TLC or TSP has gained huge attention from both academia and industry. The neural

network technology for function approximation has improved RL, enabling it to complete

more challenging and complicated tasks. For the DRL based TLC, Wei et al. [Wei18] pro-

posed a DRL model based on the Convolutional Neural Network (CNN) architecture and the

value-based approach. Van der Pol et al. [Pol16] integrated transfer planning and max-plus

coordination into the conventional Q-network. The CNN architecture and the value-based

approach are the foundations of the DRL model. Both approaches allow one to analyse visual

imagery while mapping each state-action pair to a state value and optimise the Q-values to

resolve inappropriate traffic phase sequence. Liang et al. [Lia18] divided the whole intersec-

tion into small grids to quantify the complex traffic pattern as states. A CNN was designed

to match the states and anticipated rewards. Guo et al. [Guo19] considered the spatial-

temporal characteristics of urban traffic in DRL model. For the DRL based TSP, Long et al.

[Lon21] proposed a DRL framework to solve the priority request conflict in connected vehi-

cle environment. The action is discrete and traffic signal phases can be skipped. However, to

the best of our knowledge, the existing researches do not represent the complex dynamics

of urban traffic, mainly because the existing approaches are usually either trained in a fixed

traffic demand or lack phase-skipping capabilities. Hence, the control strategies are trained

with a non-realistic traffic environment setting, which cannot be applied to complex and

realistic traffic demand, and traditional human driver environment.

In summary, some works simplify the real traffic environment. Secondly, the capability of

neural network to extract features from high-dimensional data is not well-addressed in pre-

vious works. The state matrix of most previous works is two-dimensional and cannot capture

all influencing factors of traffic. Finally, a significant research gap is that the limitation of ex-
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isting DRL-based control strategies is that they are applied on TLC only. Hence, the research

activities of signal control strategy for multi-modal transport have to be constructed.

In this paper, we redefine a DRL model inspired by [Has16] and propose a novel traffic

light phase controller utilising Double Deep Q-Learning (DDQL) model. A two-layer high-

dimensional state space is proposed to capture the influencing factors including the incoming

lanes. And a reward function to minimise the loss times of all vehicles are formed. Mean-

while, TSP is integrated in our DDQL model. To train and validate our model, we set up a

realistic traffic environment with varying traffic demand based on the road network of the

city of Jena in Germany, which includes the original PT timetables. The phase controlling

system presented can be readily superimposed to an existing local traffic light control, and

minimise implementation costs.

2 DDQL-based Model

Because Double Deep Q-Learning is not plagued by the overestimation bias and has good

performance on handling high-dimensional data, we redesign the neural network architec-

ture of DDQL according to the complex traffic environment. In DDQL, during training, there

are two Q-networks and three important elements S, A and R, where S is the state space,

A is the action space, and R is the reward function. The system architecture is shown in

Figure 1.

Figure 1: Double Deep Q-Learning Cycle. The agent receives the state space and reward,
and performs actions in the road traffic environment.
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2.1 Agent Design

The Neural Network Architecture of Double Deep Q-Learning

Our model is equipped with experience replay buffer and implemented with the python

framework TensorFlow. The architecture of main network is shown in Figure 2. The target

network has the same settings as the evaluation network and obtains update every 200 train-

ing steps. The replay buffer saves 10000 simulation steps and overwrites the memory from

the beginning if exceeding the buffer size.

Figure 2: Main Q-Network architecture.

State Space

We propose a two-layer state space which is derived as follows: Vehicles are considered to

be entering an intersection 500 m in front of the traffic light on one of the incoming lanes

k of the intersection. We partition each lane into segments of length l = 1 m. Hence, the

whole intersection is divided into small grids of equal size. We are now able to form a matrix

Pt ∈ R
500×k, which is called position layer. Each element of the matrix is in {0, 1}, where it

is non zero if there is a vehicle in the corresponding grid. In the same way, we construct a

matrix Tt, called type layer. It is of same size as Pt but with entries, representing the type

of vehicle, which is zero for MIT and one for PT. An example of the first layer of the state

matrix is shown in Figure 3.

If a transition phase or the minimum green time has to be executed, the agent due to

the legal constraints can only make a decision after it has been completed. It ensures that

all design constraints are fulfilled in every time step according to the received local legal

guideline.

Action Space

The action space contains all possible actions and corresponding duration for a given state.

In our case study, the agent decides in an interval of one second whether to keep the cur-
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Figure 3: First layer of the state space, where each line represents the position of a vehicle.

rent signal phase or to switch to one of the other phases which controls the current traffic

efficiently.

Reward Function

One of the great challenges in DRL is to setup a reward function that represents all the

desired properties that the agent can learn and act upon. Our reward function rt for the

selected action in the time step t is formulated as follow.

rt = −
∑

T

∑

vT

[
ηT

(
τvT

CT

)ρT
]

− ϑ
∑

l

ql. (1)

In the first term of Equation (1), T indicates the type of a vehicle, vT denotes the num-

ber of every vehicle type, the waiting time is τvT
, CT represents the conventional waiting

time according to the empirical experience, ηT and ρT are defined as specific computational

parameters. This term indicates the waiting time of every vehicle in front of the intersec-

tion. In the second term of Equation (1), l indicates the index of every incoming lane, ϑ is

a normalisation parameter, and ql denotes the queue length of every lane. The second term

denotes the total queue length of all lanes.

2.2 Simulation Setup

To implement a complex training environment and sufficient realistic network layout, we set

up a simulation based on a real intersection of the city of Jena in Germany in the microscopic
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software Simulation of Urban MObility (SUMO) (see Figure 4). The peculiarity of this inter-

section is the multi-modal traffic involved with trams in the extra track require prioritisation.

In addition, the nearby tram stops “Paradiesbahnhof” and “Paradiesbahnhof West” generate

a special challenge for the DDQL model to coordinate TLC and priority of public transit.

(a) OSM map of the intersection Knebelstr./Volksbad in Jena, Ger-
many.

(b) SUMO simulation of a intersection Knebelstr./Volksbad in Jena,
Germany.

Figure 4: Representation of the implemented intersection in real-world map and SUMO.

The varying traffic demand at an urban intersection is fitted by a sine function, with the

traffic demand on morning and evening being the high peaks and at midday and night being

the low peaks. We therefore simplify dynamic traffic demand function to Equation (2).

Demand = BaseF low ×

(
1 + sin2

(
t

AddFrequencyT

))
. (2)

In Equation (2) index T indicates the type of vehicle, BaseF low indicates the basic traffic

flow at an intersection and AddFrequencyT is the frequency of adding new vehicles in road

network.
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To simulate the traffic light control, we use the original signal phases and their transitions

which are relevant for the observed traffic and provided by the city administration of Jena.

Thus, we implemented seven different signal phases (see Figure 5) and accordingly 6 × 7

transitions. The main idea is that our phase controlling system could be superimposed to

an existing local traffic light control, without any reconfiguration and evaluating the whole

signalised intersection. Hence, we hard coded legal requirements, such as the minimum

green time, clearing times and maximum blocking time, firmly in the source code to form

the preset phase duration and technical evaluations keep valid, and the presented model is

dynamically selecting the phase duration and next phase.

(a) Phase 1 (b) Phase 2 (c) Phase 3

(d) Phase 4 (e) Phase 5 (f) Phase 6

(g) Phase 7

Figure 5: Traffic light phases.

3 Results and Discussion

Compared to previous researches based on simplified traffic scenarios, we present the perfor-

mance of our DDQL model in a more realistic and complex traffic environment and prelim-

inary results. The agent of our DDQL model is able to learn to control a complex signalised

intersection and reduce the waiting time of MIT as well as PT. The represented results are

achieved with the reward parameter shown in Table 1.

In Figure 6 we compare, as preliminary results, the developed DDQL model to the original

traffic control on two parallel running simulations of the same intersection with the same

characteristics and traffic flows. Different vehicles are generated randomly. In the first

subfigure, the total accumulated reward is depicted over an simulation of one hour. The
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Table 1: Reward parameters.

Car Bus Tram

η 0.001 0.01 0.03

ρ 2 2 2

C 60 10 5

ϑ 0.01 0.01 0.01

second subfigure shows the reward calculated by Equation (1) for each simulation step.

The third and fourth subfigures show the waiting time for the PT and MIT. And the fifth

subfigure illustrates the total amount of vehicles on all incoming lanes of the controlled

intersection. Preliminary results show that for MIT and PT the waiting time is reduced, and

the agent controlled intersection gains in total a higher system scores. The results we have

so far are promising and we hope to extend the model for the validation in a more complex

environment.

The proposed model adapts flexibly to the local traffic flows and could generate non-

cyclic switching patterns respectively phase-skipping. This behaviour is required particularly

in situations with low traffic volumes and demonstrates the advantage of our model over

other controls.

4 Conclusions

In this paper, we propose to solve the traffic light control problem using a deep reinforcement

learning model. The traffic information is collected from the road network, and the original

traffic light information is provided by the city administration of Jena. The state space

includes two layers of vehicle position and type, and each layer is two-dimension values that

consists the index of every incoming lane and the length of lane with partition in 500 grids

that each grid denotes 1 m. The actions are modeled as a Markov decision process, and the

reward function is the negative cumulative waiting time and total queue length of all lanes

with a normalisation parameter. To handle the complex traffic scenario in our problem, we

propose a Double Deep Q-Learning (DDQL) model with novel neural network architecture

and experience replay buffer. The proposed model can learn a good policy under varying

traffic demand, outperform the existing traffic light control system of the city of Jena in

waiting time, which is shown in an extensive simulation in SUMO and TensorFlow. In the

next step of our work we will optimise the phase control even further including other types

of road users such as pedestrians and cyclists.
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Figure 6: Comparison of the original traffic control of the city Jena (red dashed line) and
traffic control via DDQL (blue line).
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