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Abstract

The photocathode is one of the key components of particle accelerator facilities
that provides electrons for experiments in many disciplines such as biomedicine,
security imaging, and condensed matter physics. The requirements for the electron-
emitting material, the so-called photocathode, are rather high because these ma-
terials should provide a high quantum efficiency, a low thermal emittance, a fast
response, and a long operational lifetime. At present, none of the state-of-the-art
photocathodes can fully meet all the desired requirements. Therefore, new mate-
rials that can be used as potential photocathodes are urgently needed for future
developments in accelerator research.

Semiconductor photocathodes such as cesium telluride are the preferred materials
in particle accelerators. These photocathodes provide high quantum efficiencies of
above 10%, making them highly attractive. The crystal growth of cesium telluride,
as a compound semiconductor photocathode, requires the deposition of cesium and
tellurium on a suitable substrate with an ideal chemical ratio, which seems elaborate
and difficult to handle.

In contrast, III-V semiconductors, such as gallium arsenide and gallium nitride
(GaN), represent another type of semiconductor photocathode. These commercially
available semiconductors are already grown on a substrate and only require a thin
film of cesium and optional oxygen to obtain a photocathode. An atomically clean
surface is necessary to achieve a negative electron affinity surface, which is the main
prerequisite for high quantum efficiency.

In this work, p-GaN grown on sapphire by metal-organic chemical vapor deposi-
tion was wet chemically cleaned and transferred into an ultra-high vacuum chamber,
where it underwent a subsequent thermal cleaning. The cleaned p-GaN samples
were activated with Cs to obtain p-GaN:Cs photocathodes and their performance
was monitored with respect to their quality, especially concerning their quantum
efficiency and storage lifetime.
The surface topography and morphology were examined ex-situ by atomic force mi-
croscopy and scanning electron microscopy in combination with energy dispersive
X-ray spectroscopy.

The presence of oxygen during the sample handling and the temperature applied
during the thermal cleaning significantly influenced the surface morphology and
affected the quantum efficiency and lifetime. Atomic force microscope measurements
confirmed the adsorption of oxygen when the freshly cleaned samples were exposed
to air. Consequently, it is crucial to protect the p-GaN sample from exposure to
air in the environment to avoid such oxidation. Thus, the cleaning process was
carried out under dry nitrogen in a glovebox, and the p-GaN samples were further
transported under a nitrogen atmosphere in a ultra-high vacuum chamber.

Treatments at different temperatures resulted in various quantum efficiency val-
ues and storage lifetimes. Moderate temperatures of 400–500 °C were found to be
more beneficial for the p-GaN surface quality, which was reflected by achieving
higher quantum efficiency values. After the thermal cleaning, the samples were ac-
tivated with a thin layer of cesium at an average pressure of 1 x 10−9 mbar. The
surface morphology was studied with scanning electron microscopy and energy dis-
persive X-ray spectroscopy after the samples were thermally cleaned and activated
with cesium. The results showed that the surface appeared inhomogeneous when
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the samples were cleaned at a high temperature above 600 °C. A thermal cleaning
from the backside through the substrate represented another possibility but did not
yield higher quantum efficiency values.

An in-situ analysis method facilitates following and understanding the changes
in the surface electronic states before, during, and after any treatment of p-GaN:Cs
photocathodes. For this purpose, an X-ray photoelectron spectrometer was applied
that was built into an ultra-high vacuum system to prepare and characterize photo-
cathodes. It allowed the in-situ monitoring of the photocathode surfaces beginning
immediately after their cleaning and throughout the activation and degradation
processes.

The realization of the adaption of an X-ray photoelectron spectroscopy chamber
to the preparation chamber presented a significant constructional challenge. Thus,
this work paid special attention to the technical aspects of in-situ sample transporta-
tion between these chambers without leaving the ultra-high vacuum environment.

The p-GaN surface was cleaned with different solutions and studied by X-ray
photoelectron spectroscopy and atomic force microscopy, revealing that cleaning
with a so-called "piranha" solution in combination with rinsing in ethanol works
best for the p-GaN surface. A cleaning step that solely uses ethanol is also possible
and represents a simple cleaning procedure that is manageable in all laboratories.
Afterward, the cleaned p-GaN samples underwent a subsequential thermal vacuum
cleaning at various temperatures to achieve an atomically clean surface. Each treat-
ment step was followed by X-ray photoelectron spectroscopy analysis without leaving
the ultra-high vacuum environment, revealing residual oxygen and carbon on the p-
GaN surface. A thermal treatment under vacuum did not entirely remove these
organic contaminations, although the thermal cleaning reduced their peak intensi-
ties. The remaining oxygen and carbon contaminants were assumed to be residuals
derived from the metal-organic chemical vapor deposition process.

The complete removal of carbon and oxygen contaminants was only achieved by
argon ion sputtering, which was accompanied by a strong depletion of the nitrogen
atoms on the p-GaN surface. The treatments caused a large number of defects on the
semiconductor surface, which was validated by ex-situ scanning electron microscopy,
energy dispersive X-ray spectroscopy, and in-situ X-ray photoelectron spectroscopy.
However, although a few atomic percentages of carbon and oxygen, representing
undesired impurities from the metal-organic chemical vapor deposition, remained
on the surface, p-GaN could still form a negative electron affinity surface when
exclusively activated with cesium.

After the cesium activation, a shift toward a higher binding energy was observed
in the X-ray photoelectron spectroscopy spectra of the related photoemission peaks.
This shift indicated that the cesium was successfully adsorbed to the p-GaN surface.
Before the cesium activation, adventitious carbon at a binding energy of approxi-
mately 284 eV was found, which was also present after the cesium activation but did
not shift in its binding energy. It was also shown that the presence of remaining car-
bon significantly influenced the photocathode’s quality. After the cesium deposition,
a new carbon species at a higher binding energy (approximately 286 eV) appeared
in the carbon 1s spectrum. This new species showed a higher binding energy than
adventitious carbon and was identified as a cesium carbide species. This cesium
carbide species grew over time, resulting in islands on the surface. The X-ray pho-
toelectron spectroscopy data facilitated the elucidation of the critical role of this
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cesium carbide species in photocathode degradation.
Residual photocurrents were measured after the samples were thermally cleaned

before the next cesium activation. The X-ray photoelectron spectroscopy mea-
surements revealed that the cesium was not entirely removed from the samples’
surfaces. However, the remaining cesium seemed beneficial for the re-activations
because higher quantum efficiency values were achieved than in the first activations.

Typically, the quantum efficiency of photocathodes decays exponentially. Con-
versely, an immense quantum efficiency loss was observed after the p-GaN:Cs pho-
tocathodes were studied by X-ray photoelectron spectroscopy. The origin of the
quantum efficiency loss derived from X-rays as an external influence and was not
caused by the sample’s transportation. Therefore, potential X-ray damages to the
p-GaN:Cs photocathodes were investigated. These experiments showed that the
adsorbed cesium and its adhesion to the p-GaN surface were strongly influenced by
X-ray irradiation. The cesium photoemission peaks shifted toward a lower binding
energy, while the relative cesium concentration did not. This shift indicated that
X-ray irradiation accelerated the external aging of the p-GaN photocathodes and
thus it was proposed to use lower X-ray beam power or cool the samples to prevent
X-ray damage to cesiated photocathodes.

Furthermore, the potential of applying p-GaN to other substrates such as silicon
and titanium nitride as possible photocathodes was studied. The quantum efficiency
values and storage lifetimes for p-GaN:Cs on silicon and titanium nitride were sig-
nificantly shorter than those achieved for p-GaN:Cs on sapphire, which is related to
the p-GaN crystal quality that is influenced by the substrate.

This work shows that an exclusive activation with cesium is feasible and that a
re-activation of the same sample is possible. Quantum efficiency values of 1–12 %
were achieved when the p-GaN, grown on sapphire, was activated. The capability
of an X-ray photoelectron spectroscopy analysis allowed the in-situ monitoring of
the photocathode surface and shed light on the surface compositions that changed
during the photocathodes’ degradation process.
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