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Abstract
Determining the maximum size of a 𝑡-intersecting code
in [𝑚]𝑛 was a longstanding open problem of Frankl and
Füredi, solved independently by Ahlswede and Khacha-
trian and by Frankl and Tokushige. We extend their
result to the setting of forbidden intersections, by show-
ing that for any𝑚 > 2 and 𝑛 large compared with 𝑡 (but
not necessarily 𝑚) that the same bound holds for codes
with the weaker property of being (𝑡 − 1)-avoiding, that
is, having no two vectors that agree on exactly 𝑡 − 1

coordinates. Our proof proceeds via a junta approxi-
mation result of independent interest, which we prove
via a development of our recent theory of global hyper-
contractivity: we show that any (𝑡 − 1)-avoiding code is
approximately contained in a 𝑡-intersecting junta (a code
where membership is determined by a constant number
of coordinates). In particular, when 𝑡 = 1, this gives an
alternative proof of a recent result of Eberhard, Kahn,
Narayanan and Spirkl that symmetric intersecting codes
in [𝑚]𝑛 have size 𝑜(𝑚𝑛).

MSC 2020
05D05, 05D10, 06E30 (primary)

1 INTRODUCTION

Many intersection problems for finite sets (see the survey [13]) have natural generalisations to a
setting variously described as codes, vectors or integer sequences. For example, any intersecting
family of subsets of [𝑛] has size atmost 2𝑛−1, andmore generally, any intersecting code in [𝑚]𝑛 has
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2 KEEVASH et al.

size at most𝑚𝑛−1, where we say that a code  ⊂ [𝑚]𝑛 is intersecting if for any 𝑥, 𝑦 in  , there is
some 𝑖 with 𝑥𝑖 = 𝑦𝑖 . However, these settings are quite different, in that there are many maximum
intersecting families of sets, including very symmetric examples such as the family of all sets of
size > 𝑛∕2, whereas in [𝑚]𝑛 for 𝑚 > 2, the only example is obtained by fixing one coordinate to
have a fixed value. A more substantial difference was recently demonstrated by Eberhard, Kahn,
Narayanan and Spirkl [5], who showed that adding a symmetry assumption reduces themaximum
size to 𝑜(𝑚𝑛).
A longstanding open problem of Frankl and Füredi [9] posed the corresponding question for

codes  ⊂ [𝑚]𝑛 that are 𝑡-intersecting, in that any 𝑥, 𝑦 in  have agreement𝖺𝗀𝗋(𝑥, 𝑦) = |{𝑖 ∶ 𝑥𝑖 =
𝑦𝑖}| ⩾ 𝑡. From the perspective of coding theory, one may think of such  as an ‘anti-code’, in that
we are imposing an upper bound on theHamming distance between any two of its vectors. From a
combinatorial perspective, the natural analogy is with 𝑡-intersecting 𝑘-graphs (𝑘-uniform hyper-
graphs), for which the extremal question was also a longstanding open problem, posed by Erdős,
Ko and Rado [8] and finally resolved by the Complete Intersection Theorem of Ahlswede and
Khachatrian [1]. The analogous result for codes, resolving the problem of Frankl and Füredi, was
also obtained by Ahlswede and Khachatrian [2], and independently by Frankl and Tokushige
[12]. They showed that the maximum size of a 𝑡-intersecting code in [𝑚]𝑛 is achieved by one of
the following natural examples, which can be thought of as Hamming balls on a subset of the
coordinates, and which we will simply call ‘balls’ (following [28]): let

𝑡,𝑟[𝑚]𝑛 = {𝑥 ∈ [𝑚]𝑛 ∶ |{𝑗 ∈ [1, 𝑡 + 2𝑟] ∶ 𝑥𝑗 = 1}| ⩾ 𝑡 + 𝑟}.

We show for any 𝑚 > 2 and 𝑛 large compared with 𝑡 (but not necessarily 𝑚) that the same
conclusion holds under the weaker assumption that  is (𝑡 − 1)-avoiding, that is, no 𝑥, 𝑦 in 

have agreement 𝑡 − 1.

Theorem 1.1. For all 𝑡 ∈ ℕ, there is 𝑛0 ∈ ℕ such that if  ⊂ [𝑚]𝑛 is a (𝑡 − 1)-avoiding code with
𝑚 ⩾ 3 and 𝑛 ⩾ 𝑛0, then | | ⩽ max𝑟⩾0 |𝑡,𝑟[𝑚]𝑛| with equality only when  is isomorphic to a ball.

Theorem 1.1 can be viewed as an analogue for codes of the classical forbidden intersection
problem for set systems, which has a substantial literature, particularly stemming from the many
applications of the celebrated Frankl–Rödl theorem [11] (see also [10, 17]). Our proof (discussed
in the next subsection) proceeds via a junta approximation result of independent interest, show-
ing that any (𝑡 − 1)-avoiding code is approximately contained in a 𝑡-intersecting junta (a code
wheremembership is determined by a constant number of coordinates). In particular, when 𝑡 = 1,
this gives an alternative proof of the result of [5], as a family that essentially depends on few
coordinates is very far from being symmetric.

1.1 Overview of the proof

The proof of Theorem 1.1 has three steps, each of which has elements of independent interest.

(1) Junta approximation: any (𝑡 − 1)-avoiding code is approximately contained in a 𝑡-intersecting
junta.

(2) Anticode stability: a stability version of the Ahlswede–Khachatrian theorem on anticodes
determines the structure of the junta from (1) — it must be a certain ball  .
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(3) Bootstrapping: given that the code of maximum size is close to  , it must in fact be equal to
 .

The methods required to implement these three steps depend considerably on the size of 𝑚,
and we need a variety of ideas in Combinatorics and Analysis, some of which are new. The most
significant new idea in this paper is a random gluing operation, which may be thought of as a
natural, more versatile, analogue of the sharp threshold phenomenon from the biased hypercube,
as we explain below.
We remark that techniques that go into the proof of Theorem 1.1 and the various steps above

are quite flexible and are useful to study the structure of extremal families with respect to more
general classes of forbidden configurations. In particular, in Section 8, we establish junta approx-
imation results for a richer class of forbidden configurations (rather than just the configuration
consisting of two points that agree on 𝑡 − 1 coordinates). Such results are often strong enough
to get approximate versions of Theorem 1.1; however, nailing down the exact size of an extremal
family is a more challenging task that we leave for future research.

Random gluings
Often times, when working over the 𝑝-biased Boolean hypercube, that is, {0, 1}𝑛 along with the
measure 𝜇𝑝(𝑥) = 𝑝|{𝑖∈[𝑛] |𝑥𝑖=1}|(1 − 𝑝)|{𝑖∈[𝑛] |𝑥𝑖=0}|, one is interested in studying the structure of a
monotone family ⊆ {0, 1}𝑛 (i.e. a family such that if 𝑥 ∈  and 𝑥𝑖 ⩽ 𝑦𝑖 for all 𝑖, then 𝑦 ∈  ). One
particularly useful idea is to see howmuch the measure of the family changes when increasing 𝑝,
that is, study the behaviour of𝜇𝑝() = Pr𝑥∼𝜇𝑝 [𝑥 ∈ ] as a function of𝑝. It is easy to see that this is
an increasing function of 𝑝, and the main point of this idea is that the rate of increase tells us a lot
about the structure  has. In a nutshell, unless the family  has some local, junta-like, structure,
this increase must be sharp.† This idea plays significant role is various problems in analysis and
extremal combinatorics, but seems to be specific to the cube: one heavily relies on an ordering of
{0, 1}𝑛 which makes sense with respect to intersection problems, and such orderings do not exist
on many other domains, such as [𝑚]𝑛.
Our randomgluing operatormay be viewed as a natural extension of the above operator to [𝑚]𝑛,

which is also potentially more versatile andmay be relevant in other domains. Given a 𝑘 < 𝑚 and
a family  ⊆ [𝑚]𝑛, we think of shrinking the alphabet (in each coordinate independently) from
𝑚 to 𝑘, by identifying each symbol 𝜎 ∈ [𝑚] with a symbol from [𝑘], that is, given such identifica-
tions 𝜋𝑖 ∶ [𝑚] → [𝑘] for each 𝑖, one may consider the family 𝜋 = {(𝜋1(𝑥1), … , 𝜋𝑛(𝑥𝑛)) |𝑥 ∈  }.
It is clear that such operation is ‘friendly’ with respect to intersection problems (e.g. if  is 𝑡-
intersecting, then so is 𝜋). We show that this operation, when sampling 𝜋1, … , 𝜋𝑛 appropriately
and considering an appropriate product measure on [𝑘]𝑛, also enjoys the second effect of the
‘increasing𝑝’ idea fromabove. Namely, we show that unless has local structure (i.e. if is global
as perDefinition 5.2), one can find a gluing operation that increases themeasure of significantly.
The analysis of this gluing operation proceeds via noise stability and a new hypercontractive

inequality in general product spaces, which further extends our recent theory of global hypercon-
tractivity introduced in [16]. This part of the argument can also be viewed as a development of the
Junta Method (see [4, 16, 19].)

†When 𝑝 is bounded away from 0 and 1, this structure is simply a junta, but when 𝑝 = 𝑜(1) or 𝑝 = 1 − 𝑜(1), this structure
may be more complicated and is not fully understood (some partial results are known [14, 16, 22]). The notion of ‘local
structure’ in this case considered herein corresponds to having restrictions of the family  with significant measure.
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The following is a precise statement of our junta approximation theorem, which is a stability
theorem of independent interest, describing the approximate structure of any (𝑡 − 1)-avoiding
code with size that is within a constant factor of the maximum possible.

Theorem 1.2. For every 𝑡 ∈ ℕ and 𝜂 > 0, there are 𝑛0 and 𝐽 in ℕ such that if  ⊂ [𝑚]𝑛 is a (𝑡 −
1)-avoiding code with 𝑚 ⩾ 3 and 𝑛 ⩾ 𝑛0, then there is a 𝑡-intersecting 𝐽-junta  ⊂ [𝑚]𝑛 such that| ⧵  | ⩽ 𝜂| |.
As mentioned above, Theorem 1.2 implies the result of [5], as a junta is far from being sym-

metric. The assumption 𝑚 ⩾ 3 is necessary, as when 𝑚 = 2, we have symmetric examples as
mentioned above. When 𝑚 > 𝑚0(𝑡) is large, we will in fact obtain a more precise statement: 
will be a subcube of co-dimension 𝑡 and we will give effective estimates for the approximation
parameter 𝜂 (see Theorems 6.3 and 7.14).
Our first ingredient in the proof of Theorem 1.2 is a regularity lemma, showing that any code can

be approximately decomposed into a constant number of pieces, each of which is pseudorandom,
in a certain sense that depends on the size of 𝑚. When 𝑚 < 𝑚0(𝑡) is fixed and 𝑛 > 𝑛0(𝑡,𝑚) is
large, each piece is such that constant size restrictions cannot significantly affect the measure.
This is a strong pseudorandomness condition, fromwhich the proof can be completed fairly easily
using a result of Mossel on Markov chains hitting pseudorandom sets [24]. The idea is that if two
restrictions defining the regularity decomposition agree in fewer than 𝑡 coordinates, then we can
impose a further restriction to make them agree in exactly 𝑡 − 1 coordinates, with no significant
loss in measure by pseudorandomness. If our code is (𝑡 − 1)-avoiding these restrictions must be
cross intersecting, but Mossel’s result implies that this is impossible for pseudorandom codes of
non-negligible measure.
When𝑚 is large, one cannot obtain such a strong pseudorandomness condition in a regularity

lemma, so we settle for the weaker property of uncapturability. A family  ⊆ [𝑚]𝑛 is said to be
uncapturable if it is not approximately contained in a union of constantly many ‘dictatorships’,
that is, families of the form𝐷𝑖→𝑗 = {𝑥 ∈ [𝑚]𝑛 |𝑥𝑖 = 𝑗} for 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑚]. We stress here that
𝑚 is not thought of as constant, so one cannot fix 𝑖 and take 𝐷𝑖→𝑗 for all 𝑗 ∈ [𝑚]. Our regularity
lemma in this case shows that any given family  may be decomposed into pieces, such that each
piece is uncapturable. This weaker regularity lemma makes it significantly harder to establish
the 𝑡-intersection property as outlined above in the case that 𝑚 is fixed; the main issue is that
uncapturability may not be preserved by further restrictions.
Furthermore, if𝑚 is ‘huge’ (bywhichwewill mean exponential in 𝑛), then the cross-agreement

statement used for fixed 𝑚 is false. To see this, consider the codes  having all vectors with all
coordinates even, and  having all vectors with all coordinates odd. There is no non-zero agree-
ment between  and , yet they are both highly uncapturable, and have measure 2−𝑛 (which is
non-negligible when𝑚 is huge).
The above example naturally suggests a further case: we say that𝑚 is ‘moderate’ if it is large but

not huge. In this case, the high-level proof strategy is the same as for fixed𝑚, although the required
cross-agreement statement for uncapturable codes is difficult to prove, and this is where we need
the most significant new ideas of the paper (gluing and global hypercontractivity). On the other
hand, when𝑚 is huge, the above example shows that we need a different proof strategy. Here we
draw inspiration frommore combinatorial arguments of Keller and Lifshitz [19]whichwe adapt to
the setting of codes by thinking of  ⊂ [𝑚]𝑛 as an 𝑛-partite 𝑛-graph (𝑛-uniform hypergraph) with
parts of size𝑚. While the high-level strategy is similar to that in [19], the implementation is quite
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different; for example, the key to bootstrapping in this case turns out to be a subtle application of
Shearer’s entropy inequality.
Wewrite𝑛,𝑚,𝑡 for a largest family among {𝑡,𝑟[𝑚]𝑛 ∶ 𝑟 ⩾ 0}. From Theorem 1.2, we see that if a

(𝑡 − 1)-avoiding code ⊂ [𝑚]𝑛 is at least as large as𝑛,𝑚,𝑡, then it is close to a 𝑡-intersecting junta.
This raises the stability question for 𝑡-intersecting codes, which is the second ingredient in our
proof of Theorem 1.1: must this junta be close to an extremal family? When𝑚 is large compared
with 𝑡, it is not hard to show that such a junta must be close to a subcube of co-dimension 𝑡, that
is, the ball𝑡,0[𝑚]𝑛. For fixed𝑚, the picture is more complex, and the full range of balls can occur;
nevertheless, we are able to establish the required stability version of the Ahlswede–Khachatrian
anticode theorem.

Theorem 1.3. For every 𝑡 ∈ ℕ and 𝜀 > 0, there is 𝛿 > 0 such that if  ⊂ [𝑚]𝑛 is 𝑡-intersecting
with 𝑚 ⩾ 3 and | | ⩾ (1 − 𝛿)|𝑛,𝑚,𝑡|, then | ⧵ | ⩽ 𝜀|| for some family  which is isomorphic
to 𝑛,𝑚,𝑡 = 𝑡,𝑟[𝑚]𝑛, where 0 ⩽ 𝑟 ⩽ 𝑡, and 𝑟 = 0 if𝑚 > 𝑡 + 1.

The proof of Theorem 1.3 uses a local stability analysis of the compression operator of Ahlswede
and Khachatrian [2], and also the corresponding stability result for 𝑡-intersecting families in the
𝑝-biased hypercube obtained by Ellis, Keller and Lifshitz [6].

Notation
Throughout the paper, we write [𝑚] = {1, … ,𝑚}. For any 𝑥, 𝑦 ∈ [𝑚]𝑛, we write 𝖺𝗀𝗋(𝑥, 𝑦) = |{𝑖 ∈
[𝑛] ∶ 𝑥𝑖 = 𝑦𝑖}|. We often identify a code  ⊂ [𝑚]𝑛 with its characteristic function [𝑚]𝑛 ↦ {0, 1}.
Given 𝑥 ∈ [𝑚]𝑛 and 𝑅 ⊂ [𝑛], we define 𝑥𝑅 ∈ [𝑚]𝑅 by (𝑥𝑅)𝑖 = 𝑥𝑖 . Given disjoint 𝑅, 𝑅′ ⊂ [𝑛] and

𝑎 ∈ [𝑚]𝑅, 𝑎′ ∈ [𝑚]𝑅
′ , we sometimes denote their concatenation in [𝑚]𝑅∪𝑅

′ by (𝑥𝑅 = 𝑎, 𝑥𝑅′ = 𝑎′).
Given 𝛼 ∈ [𝑚]𝑅 for some 𝑅 ⊂ [𝑛], we write [𝛼] = {𝑥 ∈  ∶ 𝑥𝑅 = 𝛼} and (𝛼) = {𝑥 ∈

[𝑚][𝑛]⧵𝑅 ∶ (𝑥, 𝛼) ∈  }. We also often denote (𝛼) by 𝑅→𝛼.
For a coordinate 𝑖 ∈ [𝑛] and symbol 𝑎 ∈ [𝑚], wewrite𝐷𝑖→𝑎 for the subcube having all 𝑥 ∈ [𝑚]𝑛

for which 𝑥𝑖 = 𝑎; we will also refer to this as a ‘dictator’. More generally, for 𝑅 ⊂ [𝑛] and 𝑎 ∈ [𝑚]𝑅,
we write 𝐷𝑅→𝑎 = ∩𝑖∈𝑅𝐷𝑖→𝑎𝑖

= {𝑥 ∈ [𝑚]𝑛 ∶ 𝑥𝑅 = 𝑎}.
Given  ⊂ [𝑚]𝑛 and 𝐽 ⊂ [𝑛], we say that  is a 𝐽-junta if there is  ⊂ [𝑚]𝐽 such that  =

{𝑥 ∈ [𝑚]𝑛 ∶ 𝑥𝐽 ∈ }. When we do not wish to emphasise the set 𝐽 itself, we instead refer to such
families as |𝐽|-juntas.
We will deal with various product domains Ω = Ω1 × … × Ω𝑛, mostly (but not only) with Ω =

[𝑚]𝑛; we reserve 𝜇 to denote the uniform distribution over the domain under discussion (which
will be clear from context). For any probability measure 𝜈 on Ω and  ⊂ Ω, we write 𝜈() =∑

𝑥∈ 𝜈(𝑥); similarly for 𝑓 ∶ Ω → ℝ, we write 𝜈(𝑓) = 𝔼𝑥∼𝜈𝑓(𝑥) =
∑

𝑥∈ 𝜈(𝑥)𝑓(𝑥).
We write 𝑎 ≪ 𝑏 to mean that there is some 𝑎0(𝑏) > 0 such that the following statement holds

for 0 < 𝑎 < 𝑎0(𝑏).

Part I: Small alphabets

Here we will prove ourmain result Theorem 1.1 when the alphabet size𝑚 is small, that is, 𝑡 and𝑚
are fixed and 𝑛 > 𝑛0(𝑡,𝑚) is large. This part of the paper will consist of three sections. In the next
section, we prove Theorem 1.1 for fixed𝑚, assuming three key steps of the proof (those described
in the introduction). These steps are then proven as separate theorems in Sections 3 and 4.
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We start with the junta approximation, for which the two key ingredients are (i) a regularity
lemma, which approximately decomposes any code into pieces which are pseudorandom (in a
sense to be made precise below), and (ii) a theorem of Mossel [24] onMarkov chains hitting pseu-
dorandom sets which implies that we can find a pair of vectors with any fixed agreement between
any two pseudorandom families (of non-negligible measure).
In proving the stability version of the Ahlswede–Khachatrian anticode theorem, the first key

observation is that for codes that are compressed (in a sense to be defined below), there is a nat-
ural transformation of the problem to the 𝑝-biased hypercube, where the stability theorem has
already been proved by Ellis, Keller and Lifshitz [6]. This may at first not seem helpful for a gen-
eral stability result, as compression destroys structure, but in fact we can make a local stability
argument, that keeps control of the structure under gradual decompression, and thus deduce the
general stability result.
For the bootstrapping step, the main ingredient is a ‘cross disagreement’ theorem, where given

two families  and , we need to find 𝑥 ∈  and 𝑦 ∈  with 𝖺𝗀𝗋(𝑥, 𝑦) = 0. We need this result in
the unbalanced setting with 𝜇() = 1 − 𝛼 and 𝜇() = 𝛽, where 𝛼 and 𝛽 are small, but 𝛼 is large
compared with 𝛽. The idea for overcoming this obstacle is to transform the problem via com-
pressions to the setting of cross-intersecting families  ′ and ′ in the 𝑝-biased hypercube, where
𝑝 = 1∕𝑚 ⩽ 1∕3. We then move to the uniform (1∕2-biased) measure, where by an isoperimetric
lemma of Ellis, Keller and Lifshitz [7], the measure of the family corresponding to  becomes
much larger, so that a trivial bound implies that  ′ and ′ cannot be cross-intersecting.

2 PROOF SUMMARY

In this section, we prove Theorem 1.1 for fixed 𝑚 assuming the three theorems (junta approxi-
mation, anticode stability, bootstrapping) mentioned in the overview above, which we now state
formally. The first theorem (junta approximation) proves Theorem 1.2 when 𝐽 and 𝑛0 can depend
on 𝑚 and replaces the conclusion | ⧵  | ⩽ 𝜂| | by 𝜇( ⧵  ) ⩽ 𝜂, which is an equivalent form
when𝑚 is fixed; it will then remain to prove Theorem 1.2 for𝑚 > 𝑚0(𝑡, 𝜂) sufficiently large (which
we will do in Part II).

Theorem 2.1. For every 𝜂 > 0 and 𝑡,𝑚 ∈ ℕ with 𝑚 ⩾ 3, there are 𝐽 and 𝑛0 in ℕ such that if  ⊂

[𝑚]𝑛 is a (𝑡 − 1)-avoiding code with 𝑛 ⩾ 𝑛0, then there is a 𝑡-intersecting 𝐽-junta  ⊂ [𝑚]𝑛 such that
𝜇( ⧵  ) ⩽ 𝜂.

The second theorem (anticode stability) is equivalent to Theorem 1.3 for fixed 𝑚 and 𝑡, as we
can bound 𝜇(𝑛,𝑚,𝑡) below by a constant.

Theorem2.2. For every 𝑡 ∈ ℕ,𝑚 ⩾ 3 and 𝜀 > 0, there is 𝛿 > 0 such that if ⊂ [𝑚]𝑛 is 𝑡-intersecting
with 𝜇() ⩾ 𝜇(𝑛,𝑚,𝑡) − 𝛿, then 𝜇( ⧵ ) ⩽ 𝜀 for some  which is isomorphic to some 𝑛,𝑚,𝑡 =

𝑡,𝑟[𝑚]𝑛, where 0 ⩽ 𝑟 ⩽ 𝑡, and 𝑟 = 0 if𝑚 > 𝑡 + 1.

The third theorem (bootstrapping) is an unbalanced cross disagreement theorem: it considers
codes , ⊂ [𝑚]𝑛 where  is small and  is almost complete, and finds 𝑥 ∈  and 𝑦 ∈  with
𝖺𝗀𝗋(𝑥, 𝑦) = 0. We state it in a form that will also be useful later in the case that 𝑚 is moderately
large.
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Theorem 2.3. For every 𝑡 ∈ ℕ and 𝐶 > 0, there is 𝜀0 > 0 such that if 0 < 𝜀 < 𝜀0 and , ⊂ [𝑚]𝑛

with 𝜇() = 𝑚−𝑡𝜀 and 𝜇() > 1 − 𝐶𝜀, then 𝖺𝗀𝗋(𝑥, 𝑦) = 0 for some 𝑥 ∈  and 𝑦 ∈ .

Assuming these theorems, we now prove our main theorem for fixed 𝑚: the following is
obtained from Theorem 1.1 by allowing 𝑛0 to depend on𝑚.

Theorem 2.4. For all 𝑡 ∈ ℕ and𝑚 ⩾ 3, there is 𝑛0 ∈ ℕ such that if  ⊂ [𝑚]𝑛 is a (𝑡 − 1)-avoiding
code with 𝑛 ⩾ 𝑛0, then | | ⩽ |𝑛,𝑚,𝑡|, with equality only when  is isomorphic to a ball.

Proof. Let 0 < 𝑛−1
0
, 𝐽−1 ≪ 𝛿 ≪ 𝜀 ≪ 𝑡−1,𝑚−1. Suppose  ⊂ [𝑚]𝑛 is (𝑡 − 1)-avoiding with | | ⩾|𝑛,𝑚,𝑡|. By Theorem 2.1, there is a 𝑡-intersecting 𝐽-junta  ⊂ [𝑚]𝑛 such that 𝜇( ⧵  ) ⩽ 𝛿, and so

𝜇( ∩ ) ⩾ 𝜇() − 𝛿. We have 𝜇( ) ⩾ 𝜇() − 𝜇( ⧵  ) ⩾ 𝜇(𝑛,𝑚,𝑡) − 𝛿. By Theorem 2.2 applied
to  , there is a copy  of 𝜇(𝑛,𝑚,𝑡) with 𝜇( ⧵ ) ⩽ 𝜀. As | | ⩾ ||, we also have

𝜉 ∶= 𝜇( ⧵ ) ⩽ 𝜇( ⧵ ).

Combining, we get

0 ⩽ 𝜉 ⩽ 𝜇( ⧵ ) ⩽ 𝜇( ⧵  ) + 𝜇( ⧵ ) ⩽ 𝛿 + 𝜀.

Suppose for contradiction that 𝜉 > 0. Without loss of generality, for some 𝑟 ⩽ 𝑡, we can write

 = {𝑥 ∈ [𝑚]𝑛 ∶ |{𝑖 ∈ [𝑡 + 2𝑟] ∶ 𝑥𝑖 = 1}| ⩾ 𝑡 + 𝑟}.

By averaging, there is 𝛼 ∈ [𝑚][𝑡+2𝑟] with |{𝑖 ∶ 𝛼𝑖 = 1}| < 𝑡 + 𝑟 such that  ∶= [𝑡+2𝑟]→𝛼 has
𝜇() ⩾ 𝜇( ⧵ ) = 𝜉. We can fix 𝛽 ∈ [𝑚]𝑡+2𝑟 with |{𝑖 ∶ 𝛽𝑖 = 1}| ⩾ 𝑡 + 𝑟 such that 𝖺𝗀𝗋(𝛼, 𝛽) = 𝑡 −

1. We have 𝜇(( ⧵ )[𝑡+2𝑟]→𝛽) ⩽ 𝑚𝑡+2𝑟𝜇( ⧵ ) ⩽ 𝑚3𝑡𝜉, so  ∶= [𝑡+2𝑟]→𝛽 has 𝜇() ⩾ 1 − 𝑚3𝑡𝜉.
By Theorem 2.3, with 𝐶 = 𝑚2𝑡 and 𝑚𝑡𝜉 in place of 𝜀, we find 𝑥 ∈  and 𝑦 ∈  with

𝖺𝗀𝗋(𝑥, 𝑦) = 0. However, this gives (𝛼, 𝑦) and (𝛽, 𝑥) in  with 𝖺𝗀𝗋((𝛼, 𝑦), (𝛽, 𝑥)) = 𝑡 − 1, which is
a contradiction. □

3 JUNTA APPROXIMATION

In this section, we prove the junta approximation theorem for fixed 𝑚, that is, Theorem 2.1. Our
first ingredient is a regularity lemma, showing that any code can be approximately decomposed
into a constant number of pieces, each of which is pseudorandom, in the sense that restrictions of
constant size do not significantly affect the measure. This regularity lemma is similar in spirit to
that in [6, Theorem 1.7]; we refer the reader to Section 1.2 of their paper for discussion how such
results are related to the large literature on regularity lemmas in Combinatorics.
The second ingredient is a result of Mossel [24] on Markov chains hitting pseudorandom sets,

which implies that any two pseudorandom codes  , ⊂ [𝑚]𝑛 of non-negligible measure cannot
be cross intersecting, that is, we can find a ‘disagreement’ (𝑥, 𝑦) ∈  ×  with 𝖺𝗀𝗋(𝑥, 𝑦) = 0. If
 is (𝑡 − 1)-avoiding, this will imply 𝖺𝗀𝗋(𝛼, 𝛽) ⩾ 𝑡 for any pieces 𝑇→𝛼, 𝑇→𝛽 of the regularity
decomposition of  that are pseudorandom and of non-negligible measure. Indeed, if we had
𝖺𝗀𝗋(𝛼, 𝛽) = 𝑡 − 1 − 𝑠 with 𝑠 ⩾ 0, then we could arbitrarily fix a further restriction 𝑆 → 𝛾 with
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|𝑆| = 𝑠 to obtain pseudorandom families (𝑇,𝑆)→(𝛼,𝛾), (𝑇,𝑆)→(𝛽,𝛾) that are cross intersecting,
which is impossible. Here we are implicitly using the (important) fact that pseudorandomness is
preserved by constant size restrictions.

3.1 The pseudorandom code regularity lemma

In this subsection, we prove a regularity lemma which approximately decomposes any code into
pieces that are pseudorandom in the sense of the following definition.

Definition 3.1. We say  ⊂ [𝑚]𝑛 is (𝑟, 𝜀)-pseudorandom if for any 𝑅 ⊂ [𝑛] with |𝑅| ⩽ 𝑟 and 𝑎 ∈

[𝑚]𝑅, we have |𝜇(𝑅→𝑎) − 𝜇()| ⩽ 𝜀.

Lemma 3.2. For any 𝑟,𝑚 ∈ ℕ and 𝜀, 𝛿 > 0, there is 𝐷 ∈ ℕ such that for any  ⊂ [𝑚]𝑛 with 𝑛 ⩾ 𝐷,
there is 𝑇 ⊂ [𝑛] with |𝑇| ⩽ 𝐷 such that Pr𝐚∈[𝑚]𝑇 [𝑇→𝐚 is not (𝑟, 𝜀)-pseudorandom] ⩽ 𝛿.

Proof. We construct 𝑇 iteratively. Starting with 𝑇 = ∅, we consider at each step the set 𝐴 of
𝑎 ∈ [𝑚]𝑇 for which𝑇→𝑎 is not (𝑟, 𝜀)-pseudorandom. For any 𝑎 ∈ 𝐴, we fix 𝑏(𝑎) ∈ [𝑚]𝑅𝑎 for some
𝑅𝑎 ⊂ [𝑛] with |𝑅𝑎| ⩽ 𝑟 such that |𝜇((𝑇,𝑅𝑎)→(𝑎,𝑏(𝑎))) − 𝜇(𝑇→𝛼)| > 𝜀. If 𝜇(𝐴) ⩽ 𝛿 we are done;
otherwise, we replace 𝑇 by 𝑇𝗇𝖾𝗐 = 𝑇 ∪ 𝑅 where 𝑅 =

⋃
𝑎∈𝐴 𝑅𝑎 and iterate.

We will argue that this process stops with |𝑇| bounded by some function depending on𝑚, 𝑟, 𝛿
and 𝜀, but not on 𝑛. To do so, we apply a standard ‘energy increment’ argument to themean-square
density

𝐸(𝑇) = 𝔼
𝐚∈[𝑚]𝑇

[
𝜇(𝑇→𝐚)

2
]
.

Clearly, 𝐸(𝑇) ⩽ 1 for any 𝑇 ⊂ [𝑛], and 𝐸(𝑇1) ⩽ 𝐸(𝑇2) whenever 𝑇1 ⊂ 𝑇2 by Cauchy–Schwarz.
We will show that 𝐸(𝑇) increases significantly at each step of the process. Indeed, comparing

𝐸(𝑇𝗇𝖾𝗐) and 𝐸(𝑇) term by term, we have

𝐸(𝑇𝗇𝖾𝗐) − 𝐸(𝑇) = 𝔼
𝐚∈[𝑚]𝑇

[
𝔼

𝐛∈[𝑚]𝑅

[
𝜇((𝑇,𝑅)→(𝐚,𝐛))

]2
− 𝜇(𝑇→𝐚)

2

]
= 𝔼

𝐚∈[𝑚]𝑇
[Var𝑍𝐚],

wherewe consider𝑍𝑎(𝐛) = 𝜇((𝑇,𝑅)→(𝑎,𝐛)) as a randomvariable determined by the random choice
of 𝐛 ∈ [𝑚]𝑅. We have Var𝑍𝑎 ⩾ 0 for all 𝑎, and for any 𝑎 ∈ 𝐴, we have Var𝑍𝑎 ⩾ 𝑚−|𝑅𝑎|𝜀2 ⩾ 𝑚−𝑟𝜀2

in light of the restriction 𝑅𝑎 → 𝑏(𝑎). Therefore, 𝐸(𝑇𝗇𝖾𝗐) ⩾ 𝐸(𝑇) + 𝜇(𝐴)𝑚−𝑟𝜀2 ⩾ 𝐸(𝑇) + 𝛿𝑚−𝑟𝜀2.
In other words, as long as the process does not terminate, the energy function increases by at

least 𝛿𝑚−𝑟𝜀2. As the energy is always at most 1, the process terminates after at most𝑚𝑟∕𝛿𝜀2 steps.
Each restriction adds at most 𝑟 new variables to 𝑇, so in each step, |𝑇𝗇𝖾𝗐| ⩽ 2|𝑇| ⋅ 𝑟, and so, the
final size of 𝑇 is bounded by some function of𝑚, 𝑟, 𝛿 and 𝜀. □

3.2 Markov chains hitting pseudorandom sets

In this subsection, we discuss a special case of a result of Mossel [24] needed for the proof of our
junta approximation theorem for small alphabets, which can be formulated in terms of Markov
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chains hitting pseudorandom sets. We start by summarising some properties of Markov chains
(see [21] for an introduction).Wewill consider finiteMarkov chains, that is, a sequence of random
variables (𝑋𝑖)𝑖⩾0 taking values in a state space 𝑆 (some finite set) described by a transition matrix
𝑇 with rows and columns indexed by 𝑆, where for any event 𝐸 determined by (𝑋0, … , 𝑋𝑖) with
𝑋𝑖 = 𝑥, we haveℙ(𝑋𝑖+1 = 𝑦 ∣ 𝑋𝑖 = 𝑥) = 𝑇𝑥𝑦 .We also view𝑇 as an averaging operator on functions
𝑓 ∶ 𝑆 → ℝ, corresponding to matrix multiplication when we view 𝑓 as a vector in ℝ𝑆: we have
(𝑇𝑓)(𝑥) = 𝔼[𝑓(𝑋1) ∣ 𝑋0 = 𝑥] =

∑
𝑦 𝑇𝑥𝑦𝑓(𝑦) = (𝑇𝑓)𝑥.

We will suppose that 𝑇 is irreducible (for any 𝑥, 𝑦 ∈ 𝑆, there is some 𝑘 ∈ ℕ with 𝑇𝑘
𝑥𝑦 > 0), so

there is a unique stationary distribution (a probability distribution 𝜈 on 𝑆 such that 𝜈𝑇 = 𝜈). The
stationary chain is obtained by letting 𝑋0 have distibution 𝜈, and then each 𝑋𝑖 has distribution 𝜈.
In the stationary chain, we have ℙ(𝑋0 = 𝑎,𝑋1 = 𝑏) = 𝑃𝑎𝑏 ∶= 𝜈𝑎𝑇𝑎𝑏. We say that 𝑇 is reversible if
𝑃 is symmetric, that is, 𝑃𝑎𝑏 = 𝑃𝑏𝑎 for all 𝑎, 𝑏 ∈ 𝑆 (the name corresponds to the observation that
the distribution of the stationary chain is invariant under time reversal).
When 𝑇 is reversible, it defines a self-adjoint operator on 𝐿2(𝑆, 𝜈), that is, functions 𝑓 ∶ 𝑆 → ℝ

with the inner product ⟨𝑓, g⟩ = ∑
𝑥 𝜈𝑥𝑓(𝑥)g(𝑥), so 𝐿2(𝑆, 𝜈) has an orthonormal basis 𝐵 of eigen-

functions of 𝑇. We can write any 𝑓 ∈ 𝐿2(𝑆, 𝜈) in the form 𝑓 =
∑

𝑏∈𝐵 𝑐𝑏𝑏, and then 𝔼𝑓2 = ⟨𝑓, 𝑓⟩ =∑
𝑏∈𝐵 𝑐

2
𝑏
. The largest eigenvalue is 1, and the corresponding eigenspace consists of constant func-

tions on 𝑆. If 𝑇𝑓 = 𝜆𝑓 with 𝜆 ≠ 1, then 𝔼𝑓 ∶= 𝔼𝑥∼𝜈𝑓(𝑥) =
∑

𝑥 𝜈𝑥𝑓(𝑥) = ⟨𝑓, 1⟩ = 0. The absolute
spectral gap 𝜆∗ is the minimum value of 1 − |𝜆| over all eigenvalues 𝜆 ≠ 1; equivalently,

(1 − 𝜆∗)
2 = sup{𝔼(𝑇𝑓)2 ∶ 𝔼𝑓 = 0, 𝔼𝑓2 = 1}.

Now we describe a special case of [24, Theorem 4.4], and for that, we require a basic setup.
Let 𝑇 be a reversible, irreducible Markov chain acting on 𝑆 = [𝑚], and consider its tensor power
𝑇⊗𝑛 acting on Ω = [𝑚]𝑛 independently in each coordinate, that is, with transition matrix 𝑇⊗𝑛

𝑥𝑦 =∏𝑛
𝑖=1 𝑇𝑥𝑖𝑦𝑖 . In essence, [24, Theorem 4.4] asserts that if 𝑇 has a constant spectral gap, and we

have pseudorandomcodes , ⊂ [𝑚]𝑛 of noticeablemeasure, then sampling consecutive random
states 𝑥, 𝑦 of the stationary chain for 𝑇⊗𝑛, we have that 𝑥 ∈  , 𝑦 ∈  with significant probability.

Theorem 3.3. Let 𝑇 be a reversible Markov chain on [𝑚] with absolute spectral gap 𝜆∗ > 0.
Let 𝜈 denote the stationary measure of 𝑇⊗𝑛 and 𝑥 and 𝑦 be consecutive random states of the
stationary chain. Then for any 𝜇 > 0, there are 𝜀, 𝑐 > 0 and 𝑟 ∈ ℕ such that if  , ⊂ [𝑚]𝑛 are
(𝑟, 𝜀)-pseudorandom with 𝜈(), 𝜈() > 𝜇, then ℙ(𝑥 ∈  , 𝑦 ∈ ) > 𝑐.

For convenience of the reader, we outline below the (standard) derivation of Theorem 3.3 from
existing results in the literature.

Deriving Theorem 3.3 from [24, Theorem 4.4]
Let𝐵 = {𝑏1, … , 𝑏𝑚} be an orthonormal basis for 𝐿2(𝑆, 𝜈) consisting of eigenvectors of𝑇. We take 𝑏1
to be the trivial eigenvector, that is, 𝑏1(𝑠) = 1 for all 𝑠 ∈ 𝑆, which has eigenvalue 1. We remark that
by the spectral gap of 𝑇, it follows that the eigenvalue of each 𝑏𝑗 for 𝑗 ≠ 1 is at most 1 − 𝜆∗. Wewill
view each 𝑏𝑖 as a random variable on (𝑆, 𝜈), and in this language, we have that 𝔼𝑏𝑖𝑏𝑗 = 1𝑖=𝑗 . Using
the basis 𝐵, we may find a basis for 𝐿2(𝑆𝑛, 𝜈⊗𝑛) by tensorizing. Namely, for each 𝑖 ∈ [𝑛], we take
an independent copy of 𝐵, say 𝑏𝑖 = (𝑏𝑖

𝑗
∶ 𝑗 ∈ [𝑚]), and then our basis is 𝒃 = (𝒃𝑗1,…,𝑗𝑛 )𝑗1,…,𝑗𝑛∈[𝑚],

where 𝒃𝑗1,…,𝑗𝑛 =
∏𝑛

𝑖=1 𝑏
𝑖
𝑗𝑖
. We can thus represent any function on Ω as a multi-linear polynomial

𝑃(𝒃) =
∑

𝛼 𝑐𝛼𝑏
𝛼 where 𝛼 ranges over [𝑚]𝑛 and 𝑏𝛼 ∶=

∏
𝑖 𝑏

𝑖
𝛼𝑖
.
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This above view allows us to extend the definition of 𝑃 to ℝ𝑚𝑛. A technical point to note, how-
ever, is that even if our original function 𝑃 was bounded on [𝑚]𝑛 (in our case, it is even Boolean
valued), the extension to ℝ𝑚𝑛 may not be bounded. For this reason, one first applies a small noise
on the function 𝑃, that is, considers 𝑄(𝑥) = 𝑇1−𝜂𝑃(𝑥) = 𝔼𝑥′∼1−𝜂𝑥

[𝑃(𝑥′)] where for each 𝑖 ∈ [𝑛]

independently, 𝑥′
𝑖
= 𝑥𝑖 with probability 1 − 𝜂 and otherwise 𝑥′

𝑖
is resampled according to 𝜈 (𝜂 > 0

is to be thought of as a small constant, much smaller than the spectral gap 𝜆∗ of 𝑇), and then
truncates it. Namely, consider the multi-linear extension of 𝑄, 𝑄(𝑏) as defined above, and let
𝑃̃(𝑏) = 𝑄(𝑏) if 0 ⩽ 𝑄(𝑏) ⩽ 1, 𝑃̃(𝑏) = 1 if 𝑄(𝑏) > 1, and otherwise 𝑃̃(𝑏) = 0.
Let 𝑥 and 𝑦 be sampled as consecutive random states of the stationary chain for 𝑇⊗𝑛, and let

𝑓(𝒃(𝑥)) = 1𝑥∈ , g(𝒃(𝑦)) = 1𝑦∈. Our goal is thus to prove a lower bound on 𝔼𝑥,𝑦[𝑓(𝒃(𝑥))g(𝒃(𝑦))].
The invariance principles of [23–25] allow one to establish non-trivial lower bounds on this quan-
tity by considering its ‘analogue inGaussian space’, provided that𝑓, g are sufficiently random-like.
To be more precise, let us first consider 𝒃𝑗1,…,𝑗𝑛 (𝑥) and 𝒃𝑗′1,…,𝑗′𝑛 (𝑦) where 𝑥 and 𝑦 are sampled

as consecutive random states of the stationary chain for 𝑇⊗𝑛. Thus, 𝔼𝑏𝑖
𝑗𝑖
(𝑥)𝑏𝑖

′

𝑗′
𝑖′

(𝑦) is zero unless

𝑖 = 𝑖′ and 𝑗𝑖 = 𝑗′
𝑖′
, and then, it is equal to the eigenvalue 𝜆𝑗𝑖 such that 𝑇𝑏𝑗𝑖 = 𝜆𝑗𝑖𝑏𝑗𝑖 . We now

wish to define the Gaussian analog of 𝒃𝑗1,…,𝑗𝑛 (𝑥) and 𝒃𝑗1,…,𝑗𝑛 (𝑦). Let 𝑍 = {𝑧1, … , 𝑧𝑚, 𝑧
′
1
, … , 𝑧′𝑚} be

Gaussian variables with the same covariance matrix. Namely, we take 𝑧1 = 𝑧′
1
= 1, and 𝑧2, … , 𝑧𝑚

and 𝑧′
2
, … , 𝑧′𝑚 are jointedly distributed standard Gaussian random variables such that 𝑧2, … , 𝑧𝑚

are independent, 𝑧′
2
, … , 𝑧′𝑚 are independent and 𝔼[𝑧𝑗𝑧

′
𝑗′
] = 𝔼[𝑏𝑗(𝑥)𝑏𝑗′ (𝑦)] = 𝜆𝑗1𝑗=𝑗′ . We take 𝑛

independent copies of 𝑍, 𝑍𝑖 = {𝑧𝑖1, … , 𝑧𝑖𝑚, 𝑧
𝑖′
1, … , 𝑧𝑖

′
𝑚}, and then define 𝒛𝑗1,…,𝑗𝑛 =

∏𝑛
𝑖=1 𝒛

𝑖
𝑗𝑖
and

𝒛′
𝑗1,…,𝑗𝑛

=
∏𝑛

𝑖=1 𝒛
𝑖′
𝑗𝑖
. The random variables 𝒛𝑗1,…,𝑗𝑛 , 𝒛

′
𝑗1,…,𝑗𝑛

are to be thought of as the Gaussian
analogs of 𝒃𝑗1,…,𝑗𝑛 (𝑥) and 𝒃𝑗1,…,𝑗𝑛 (𝑦).
Building on [25], Mossel [23] showed that for 𝑓, g ∶ [𝑚]𝑛 → [0, 1] with ‘small enough influ-

ences’,† one has 𝔼[𝑓(𝒃(𝑥)) ⋅ g(𝒃(𝑦))] is very close 𝔼[𝑓(𝒛)g̃(𝒛′)]. The arguments in [24] establish
the same statement with the more relaxed condition that 𝑓 and g are (𝑟, 𝜀)-pseudorandom (the
term ‘resilient’ is used therein). More precisely, Mossel showed that for all 𝛿 > 0, there are 𝑟 ∈ ℕ

and 𝜀 > 0 (also depending on𝑚 and the spectral gap 𝜆∗, which are thought of as constants), such
that |𝔼[𝑓(𝒃(𝑥)) ⋅ g(𝒃(𝑦))] − 𝔼[𝑓(𝒛)g̃(𝒛′)]| ⩽ 𝛿.
For 𝑓, the fact that 𝑓 has averages at least 𝜇 implies, by the invariance principle (i.e. the above

with g = 1), that 𝑓 has average at least 𝜇∕2; similarly, the average of g̃ is at least 𝜇∕2. Thus,
𝔼[𝑓(𝒛)g̃(𝒛′)] > 𝑐(𝜆∗, 𝜇) > 0 by reverse hypercontractivity (see [15, TheoremA.78], e.g.), and as this
is close to 𝔼[𝑓(𝒃(𝑥)) ⋅ g(𝒃(𝑦))], we get that 𝔼[𝑓(𝒃(𝑥)) ⋅ g(𝒃(𝑦))] ⩾ 𝑐∕2, establishing Theorem 3.3.
The following result is an immediate consequence of Theorem 3.3, applied with the Markov

chain 𝑇 on [𝑚] which at each step moves to a uniformly random state different from the current
state (note that 𝜆∗ > 0 when𝑚 ⩾ 3, but this fails for𝑚 = 2).

Theorem 3.4. For every 𝑚 ⩾ 3 and 𝜇 > 0, there are 𝜀, 𝑐 > 0 and 𝑟 ∈ ℕ such that if  , ⊂

[𝑚]𝑛 are (𝑟, 𝜀)-pseudorandom with 𝜇(), 𝜇() > 𝜇 and (𝑥, 𝑦) is a uniformly random pair in
[𝑚]𝑛 × [𝑚]𝑛 with 𝖺𝗀𝗋(𝑥, 𝑦) = 0, then ℙ(𝑥 ∈  , 𝑦 ∈ ) > 𝑐; in particular, 𝖺𝗀𝗋(𝑥, 𝑦) = 0 for some
(𝑥, 𝑦) ∈  × .

†We omit the definition of ‘influences’ for now, as we do not need it here, but it will reappear later in a more general
context when we discuss our theory of global hypercontractivity.



FORBIDDEN INTERSECTIONS FOR CODES 11

3.3 Approximation by junta

We conclude this section by proving Theorem 2.1.

Proof of Theorem 2.1. Let 𝑡,𝑚 ∈ ℕ with 𝑚 ⩾ 3 and 𝜂 > 0, fix 0 ≪ 𝑛−1
0

≪ 𝐷−1 ≪ 𝑟−1, 𝜀 ≪

𝜂, 𝑡−1,𝑚−1 and suppose ⊂ [𝑚]𝑛 is (𝑡 − 1)-avoiding. By Lemma 3.2, we find𝑇 ⊂ [𝑛]with |𝑇| ⩽ 𝐷

such that

Pr
𝐚∈[𝑚]𝑇

[𝑇→𝐚 is not (𝑟, 𝜀)-pseudorandom] ⩽ 𝜂∕2.

Wewill show that the required conclusions of the theoremhold for the junta = {𝑥 ∈ [𝑚]𝑛 |𝑥𝑇 ∈

𝐽}, where

𝐽 =
{
𝛼 ∈ [𝑚]𝑇

|||𝑇→𝛼 is (𝑟, 𝜀∕2)-pseudorandom and 𝜇(𝑇→𝛼) ⩾ 𝜂∕2
}
,

that is, that  is 𝑡-intersecting (equivalently, 𝐽 is 𝑡-intersecting) and  is approximately contained
in  .
To see that 𝐽 is 𝑡-intersecting, suppose for contradiction, we have 𝛼1, 𝛼2 ∈ 𝐽 with 𝖺𝗀𝗋(𝛼1, 𝛼2) =

𝑡 − 1 − 𝑠 with 𝑠 ⩾ 0. Fix 𝑆 ⊂ [𝑛] ⧵ 𝑇 of size 𝑠 and 𝑥 ∈ [𝑚]𝑆 arbitrarily, and consider the families

𝑖 =
{
𝑤 ∈ [𝑚][𝑛]⧵(𝑇∪𝑆)

|||(𝛼𝑖, 𝑥, 𝑤) ∈ 

}
for 𝑖 = 1, 2. By definition of 𝐽, both 𝜇(𝑖) ⩾ 𝜇(𝛼𝑖

) − 𝜀∕2 ⩾ 𝜂∕3 and 𝑖 is (𝑟 − 𝑡, 𝜀)-pseudorandom.
By Theorem 3.4, we find (𝑤1, 𝑤2) ∈ 1 × 2 with 𝖺𝗀𝗋(𝑤1, 𝑤2) = 0. However, this gives (𝛼𝑖, 𝑥, 𝑤𝑖)

for 𝑖 = 1, 2 in  with agreement 𝑡 − 1, which is a contradiction.
It remains to bound 𝜇( ⧵  ) =

∑
𝛼∉𝐽 𝑚

−|𝑇|𝜇(𝑇→𝛼). We partition [𝑚]𝑇 ⧵ 𝐽 into (𝐵1, 𝐵2)

where 𝐵1 contains those 𝛼 ∈ [𝑚]𝑇 ⧵ 𝐽 with 𝜇(𝑇→𝛼) < 𝜂∕2, and 𝐵2 = [𝑚]𝑇 ⧵ (𝐵1 ∪ 𝐽). Clearly,
the contribution to the sum from 𝛼 ∈ 𝐵1 is at most 𝜂∕2. For 𝛼 ∈ 𝐵2, we note that 𝑇→𝛼 is not
(𝑟, 𝜀∕2)-pseudorandom by definition of 𝐽, so

∑
𝛼∈𝐵2

𝑚−|𝑇|𝜇(𝑇→𝛼) ⩽ 𝜇(𝐵2) < 𝜂∕2 by choice of 𝑇.
Thus, 𝜇( ⧵  ) < 𝜂. □

4 COMPRESSION, STABILITY AND BOOTSTRAPPING

In this section, we prove the anticode stability theorem for fixed𝑚, that is, Theorem 2.2, and the
bootstrapping result Theorem 2.3. Both rely on a compression procedure, introduced byAhlswede
and Khachatrian [2], which modifies any code in such a way to use some symbol (say 1) ‘as much
as possible’, while maintaining its size and not reducing its minimum intersection size.
In the first subsection, we will formally define compression and prove some of its well-known

properties. In the second subsection, we prove the stability result for compressed codes, by
reducing it to the corresponding stability result for 𝑡-intersecting families in the biased hyper-
cube obtained by Ellis, Keller and Lifshitz [6]. We deduce Theorem 2.2 in the third subsection,
via a decompression argument, in which we reverse the compressions while keeping control
of structure via a local stability argument. In the final subsection, we prove Theorem 2.3, by
using compressions to reformulate the problem in terms of cross-intersecting families in the
biased hypercube.
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4.1 Compression

For any 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑚], we define the compression operator 𝑇𝑖,𝑗 ∶ [𝑚]𝑛 → [𝑚]𝑛 that replaces
𝑗 by 1 in coordinate 𝑖 if possible, that is, for 𝑥 ∈ [𝑚]𝑛, we let 𝑇𝑖,𝑗(𝑥) = 𝑦 ∈ [𝑚]𝑛 where 𝑦𝑟 = 𝑥𝑟
for all 𝑟 ≠ 𝑖, and 𝑦𝑖 = 𝑥𝑖 if 𝑥𝑖 ≠ 𝑗 or 𝑦𝑖 = 1 if 𝑥𝑖 = 𝑗. We also define a compression operator, also
denoted as 𝑇𝑖,𝑗 , on codes, that replaces any vector 𝑥 by 𝑇𝑖,𝑗(𝑥) unless the latter is already present,
that is,

𝑇𝑖,𝑗() =
{
𝑥 |𝑇𝑖,𝑗(𝑥) ∈ 

}
∪
{
𝑇𝑖,𝑗(𝑥)

|||𝑥 ∈ 

}
.

We also define 𝑇𝑖 = 𝑇𝑖,2◦𝑇𝑖,3◦… ◦𝑇𝑖,𝑚 for any 𝑖 ∈ 𝑛, and 𝑇 = 𝑇1◦𝑇2◦… ◦𝑇𝑛. One can think of 𝑇 as
trying to set asmany coordinates as possible equal to 1.We call ⊂ [𝑚]𝑛 compressed if 𝑇() =  .
We need the following well-known facts about these compression operators.

Fact 4.1. Let  , ⊂ [𝑚]𝑛, 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑚].

(1) We have 𝜇(𝑇()) = 𝜇(𝑇𝑖,𝑗()) = 𝜇().
(2) The family 𝑇() is compressed.
(3) If  , are cross 𝑡-intersecting, then so are 𝑇𝑖,𝑗() and 𝑇𝑖,𝑗(), and so are 𝑇() and 𝑇().

Furthermore, any 𝑥 ∈ 𝑇(), 𝑦 ∈ 𝑇() have at least 𝑡 common coordinates equal to 1.

Proof. We begin with the first item. Assume without loss of generality that 𝑖 = 1. To see that
𝜇(𝑇𝑖,𝑗()) = 𝜇(), we consider any 𝑥 ∈ [𝑚]𝑛−1, note that vectors (𝑎, 𝑥) with 𝑎 ∈ [𝑚] ⧵ {1, 𝑗} are
unaffected by 𝑇𝑖,𝑗 , and that 𝑇𝑖,𝑗() and  contain the same number of elements of {(1, 𝑥), (𝑗, 𝑥)}.
By iterating, we deduce 𝜇(𝑇()) = 𝜇().
Now we address the second item. Say that  is 𝑖-compressed for some 𝑖 if whenever 𝑥 ∈ 𝑇𝑖

has 𝑥𝑖 = 𝑗 ≠ 1, we have 𝑇𝑖,𝑗𝑥 ∈  . We first claim that 𝑇𝑖 is 𝑖-compressed for each 𝑖. Indeed, as
𝑇𝑖 = 𝑇𝑖,2◦…𝑇𝑖,𝑗◦… ◦𝑇𝑖,𝑚 , it follows that either 𝑇𝑖,𝑗𝑥 ∈  and then we are done, or else there
is 𝑗′ < 𝑗 such that  contains the point 𝑦 that only differs from 𝑥 in coordinate 𝑖 and has 𝑦𝑖 = 𝑗′.
In that case, 𝑇𝑖,𝑗′𝑦 = 𝑇𝑖,𝑗𝑥 would be in 𝑇𝑖 , so again the claim holds.
Next, we argue that if is 𝑖-compressed, then 𝑇𝑖′ is still 𝑖-compressed. To see this, we consider

any 𝑥 ∈ 𝑇𝑖◦𝑇𝑖′ with 𝑥𝑖 = 𝑗 ≠ 1 and show that 𝑇𝑖,𝑗𝑥 ∈ 𝑇𝑖′ . We note that 𝑥 ∈ 𝑇𝑖′ and consider
two cases.

(a) If 𝑥𝑖′ = 𝑗′ ≠ 1, then 𝑥 must be in  and as  is 𝑖-compressed, we get that 𝑇𝑖,𝑗𝑥 ∈  ; also, as
𝑥 ∈ 𝑇𝑖′ , we get that 𝑇𝑖′,𝑗′𝑥 ∈  , and as  is 𝑖-compressed, it follows that 𝑇𝑖,𝑗◦𝑇𝑖′,𝑗′𝑥 ∈  .
Letting 𝑦 = 𝑇𝑖,𝑗𝑥, we see that 𝑦 and 𝑇𝑖′,𝑗′𝑦 = 𝑇𝑖,𝑗◦𝑇𝑖′,𝑗′𝑥 are both in  , and so 𝑦 ∈ 𝑇𝑖′ .

(b) If 𝑥𝑖′ = 1, then there is 𝑗′ ⩾ 1 such that for the point 𝑦 that is the same as 𝑥 on all coordi-
nates except for 𝑦𝑖 = 𝑗′, we have 𝑦 ∈  . As  is 𝑖-compressed, we get that 𝑇𝑖,𝑗𝑦 ∈  , and so
𝑇𝑖′,𝑗′◦𝑇𝑖,𝑗𝑦 ∈ 𝑇𝑖′ . Noting that 𝑇𝑖′,𝑗′◦𝑇𝑖,𝑗𝑦 = 𝑇𝑖,𝑗𝑥, we conclude that 𝑇𝑖,𝑗𝑥 ∈ 𝑇𝑖′ .

It follows that the family 𝑇 is 𝑖-compressed for all 𝑖 ∈ [𝑛]. To conclude, we claim that 𝑇𝑖◦𝑇() =
𝑇(), which readily implies the second item. Indeed, if 𝑥 ∈ 𝑇𝑖◦𝑇(), then letting 𝑗 = 𝑥𝑖 , if 𝑗 ≠
1, then 𝑥 ∈ 𝑇(). If 𝑗 = 1, then there is 𝑗′ ⩾ 1 such that 𝑇() contains the point 𝑦 that is the
same as𝑥 except for 𝑦𝑖 = 𝑗′. As𝑇() is 𝑖-compressed,𝑥 = 𝑇𝑖,𝑗′𝑦 ∈ 𝑇(). Overall,𝑇𝑖◦𝑇() ⊆ 𝑇().
Combining with the first item, it follows that the two families are equal.
We now move on to the third item, and suppose for contradiction that  , are cross 𝑡-

intersecting but 𝑇1,𝑗() and 𝑇1,𝑗() are not. Then there are (𝑎, 𝑥) ∈ 𝑇𝑖,𝑗() and (𝑏, 𝑦) ∈ 𝑇𝑖,𝑗()
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with 𝖺𝗀𝗋((𝑎, 𝑥), (𝑏, 𝑦)) < 𝑡. As  , are cross 𝑡-intersecting, we cannot have both (𝑎, 𝑥) ∈  and
(𝑏, 𝑦) ∈ , so without loss of generality, (𝑎, 𝑥) = (1, 𝑥) was obtained from (𝑗, 𝑥) ∈  . We must
have (𝑏, 𝑦) ∈ , as otherwise (𝑏, 𝑦) = (1, 𝑦) was obtained from (𝑗, 𝑦) ∈ , but then (𝑗, 𝑥) ∈  and
(𝑗, 𝑦) ∈  with 𝖺𝗀𝗋((𝑗, 𝑥), (𝑗, 𝑦)) = 𝖺𝗀𝗋((1, 𝑥), (1, 𝑦)) < 𝑡, contradiction. As (𝑗, 𝑥) ∈  and (𝑏, 𝑦) ∈
, we have 𝖺𝗀𝗋((𝑗, 𝑥), (𝑏, 𝑦)) ⩾ 𝑡, so 𝑏 = 𝑗. As (𝑏, 𝑦) ∈ 𝑇𝑖,𝑗(), we must have (1, 𝑦) ∈ . But now
𝖺𝗀𝗋((𝑗, 𝑥), (1, 𝑦)) < 𝑡 gives a contradiction. Thus, 𝑇1,𝑗() and 𝑇1,𝑗() are cross 𝑡-intersecting. By
iterating, so are 𝑇() and 𝑇().
Finally, suppose for contradiction that 𝑥 ∈ 𝑇(), 𝑦 ∈ 𝑇() have fewer than 𝑡 common coordi-

nates equal to 1. Let 𝑥′ be obtained from 𝑥 by setting 𝑥′
𝑖
= 1 if 𝑥𝑖 = 𝑦𝑖 ≠ 1 or 𝑥′

𝑖
= 𝑥𝑖 otherwise.

Then 𝑥′ ∈ 𝑇() but 𝑥′ and 𝑦 only agree on coordinates 𝑖 with 𝑥𝑖 = 𝑦𝑖 = 1, which contradicts 𝑇()
and 𝑇() being cross 𝑡-intersecting. □

Next, we will define a transformation from compressed codes in [𝑚]𝑛 to monotone† families in
the cube {0, 1}𝑛 that preserves minimum (cross) intersection size, and does not decrease the mea-
sure when we adopt the 𝑝-biased measure on the cube with 𝑝 = 1∕𝑚 (as we will do throughout
this section).

Definition 4.2. We define ℎ∶ [𝑚] → {0, 1} by ℎ(1) = 1 and ℎ(𝑎) = 0 for all 𝑎 ≠ 1, and
ℎ⊗𝑛 ∶ [𝑚]𝑛 → {0, 1}𝑛 by ℎ⊗𝑛(𝑥) = (ℎ(𝑥1), … , ℎ(𝑥𝑛)). For any  ⊂ [𝑚]𝑛, we let ̃ = ℎ⊗𝑛() ⊂

{0, 1}𝑛.

Fact 4.3. Suppose  , ⊂ [𝑚]𝑛 are compressed.

(1) The family ̃ is monotone and 𝜇𝑝(̃) ⩾ 𝜇().
(2) If  is 𝑡-intersecting, then so is ̃ .
(3) If  , are cross 𝑡-intersecting, then so are ̃ , ̃.

Proof. The intersection statements are immediate from the final part of Fact 4.1. Formonotonicity,
consider any 𝑥 ∈ ̃ and 𝑦 ⩾ 𝑥. Fix 𝑥 ∈  with ℎ⊗𝑛(𝑥) = 𝑥, that is, 𝑥𝑖 = 1 if and only if 𝑥𝑖 = 1.
Define 𝑦 ∈ [𝑚]𝑛 by 𝑦𝑖 = 1 if 𝑦𝑖 = 1 ≠ 𝑥𝑖 or 𝑦𝑖 = 𝑥𝑖 otherwise. Then 𝑦 ∈  , as  is compressed,
and ℎ⊗𝑛(𝑦) = 𝑦, so 𝑦 ∈ ̃ .
To show 𝜇𝑝(̃) ⩾ 𝜇(), we consider intermediate product spaces {0, 1}𝑟 × [𝑚]𝑛−𝑟 with themea-

sure 𝜈𝑟 = 𝜇𝑟𝑝 × 𝜇, and intermediate families 𝑟 = (ℎ⊗𝑟 ⊗ 𝐼⊗𝑛−𝑟)(𝑇()) for any 𝑟 ⩾ 0. It suffices to
show 𝜈𝑟+1(𝑟+1) ⩾ 𝜈𝑟(𝑟) for any 𝑟 ⩾ 0. We can write

𝜈𝑟+1(𝑟+1) − 𝜈𝑟(𝑟) =
∑

𝑥∈{0,1}𝑟,𝑦∈[𝑚]𝑛−𝑟−1

𝜇𝑝(𝑥)𝑚
−(𝑛−𝑟−1)(𝜇𝑝(𝐵𝑥,𝑦,𝑟) − |𝐴𝑥,𝑦,𝑟|∕𝑚),

where for 0 ⩽ 𝑟 ⩽ 𝑛 and 𝑥 ∈ {0, 1}𝑟, 𝑦 ∈ [𝑚]𝑛−𝑟−1, we define

𝐴𝑥,𝑦,𝑟 =
{
𝑎 ∈ [𝑚] ||(𝑥, 𝑎, 𝑦) ∈ 𝑟

}
, 𝐵𝑥,𝑦,𝑟 =

{
𝑎 ∈ {0, 1} |(𝑥, 𝑎, 𝑦) ∈ 𝑟+1

}
.

Thus, it suffices to show 𝜇𝑝(𝐵𝑥,𝑦,𝑟) ⩾
|𝐴𝑥,𝑦,𝑟|

𝑚
for all 𝑥, 𝑦. To see this, suppose first that |𝐴𝑥,𝑦,𝑟| =

1. As  is compressed, we have 𝐴𝑥,𝑦,𝑟 = {1}, so 𝐵𝑥,𝑦,𝑟 = ℎ(𝐴𝑥,𝑦,𝑟) = {1} and 𝜇𝑝(𝐵𝑥,𝑦,𝑟) = 𝑝 =

†We call ⊂ {0, 1}𝑛 monotone if 𝑦 ∈  whenever 𝑥 ∈  and 𝑥 ⩽ 𝑦 coordinatewise.
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|𝐴𝑥,𝑦,𝑟|∕𝑚. Otherwise, if |𝐴𝑥,𝑦,𝑟| ⩾ 2, we have 𝐵𝑥,𝑦,𝑟 = ℎ(𝐴𝑥,𝑦,𝑟) = {0, 1}, so 𝜇𝑝(𝐵𝑥,𝑦,𝑟) = 1 ⩾|𝐴𝑥,𝑦,𝑟|∕𝑚. □

4.2 Stability when compressed

In this subsection, we prove Theorem 2.2 for compressed families, using the corresponding stabil-
ity result for 𝑡-intersecting families in the biased hypercube obtained by Ellis, Keller and Lifshitz
[6], which we start by stating. Given 𝑛, 𝑝, 𝑡, let 𝑛,𝑝,𝑡 denote a family 𝑡,𝑟{0, 1}

𝑛 ⊂ {0, 1}𝑛 with the
largest 𝑝-biased measure, where 𝑟 = 0, 1, … , 𝑡 − 1 and

𝑡,𝑟{0, 1}
𝑛 = {𝑥 ∈ {0, 1}𝑛 ∶ |{𝑖 ∈ [𝑡 + 2𝑟] ∶ 𝑥𝑖 = 1}| ⩾ 𝑡 + 𝑟}.

The following is implied by [6, Theorem 1.10]. †

Theorem 4.4. For every 𝑡 ∈ ℕ, 𝜁 > 0 and 𝜀 > 0, there is 𝛿 > 0 such that if  ⊂ {0, 1}𝑛 is 𝑡-
intersecting, 𝜁 ⩽ 𝑝 ⩽

1

2
− 𝜁 and 𝜇𝑝() ⩾ (1 − 𝛿)𝜇(𝑛,𝑝,𝑡), then 𝜇𝑝( ⧵ ) ⩽ 𝜀𝜇() for some copy 

of 𝑛,𝑝,𝑡 = 𝑡,𝑟{0, 1}
𝑛, where 0 ⩽ 𝑟 ⩽ 𝑡 if 𝑝 ⩽ 1∕3, and 𝑟 = 0 if 𝑝 ⩽

1

𝑡+1
− 𝜁.

Using Theorem 4.4, we can prove aweaker version of Theorem 2.2, with the additional assump-
tion that  is compressed. This version will be used in the next subsection to prove Theorem 2.2
as stated.

Claim 4.5. For every 𝑡 ∈ ℕ,𝑚 ⩾ 3 and 𝜀 > 0, there is 𝛿 > 0 such that if ⊂ [𝑚]𝑛 is compressed and
𝑡-intersecting with 𝜇() ⩾ (1 − 𝛿)𝜇(𝑛,𝑚,𝑡), then 𝜇( ⧵ ) ⩽ 𝜀𝜇() for some copy  of 𝑛,𝑚,𝑡 =

𝑡,𝑟[𝑚]𝑛, where 0 ⩽ 𝑟 ⩽ 𝑡, and 𝑟 = 0 if𝑚 > 𝑡 + 1.

Proof. Suppose  ⊂ [𝑚]𝑛 is compressed and 𝑡-intersecting with 𝜇() ⩾ (1 − 𝛿)𝜇(𝑛,𝑚,𝑡), where
𝛿 ≪ 𝑚−1, 𝑡−1, 𝜀. We consider ̃ ⊂ {0, 1}𝑛 given by Definition 4.2. By Fact 4.3, ̃ is 𝑡-intersecting,
and 𝜇𝑝(̃) ⩾ 𝜇() ⩾ (1 − 𝛿)𝜇(𝑛,𝑚,𝑡) = (1 − 𝛿)𝜇𝑝(𝑛,𝑝,𝑡), where 𝑝 = 1∕𝑚. By Theorem 4.4, we
have 𝜇𝑝( ⧵ ̃) ⩽ 𝜀𝜇(̃) for some copy ̃ of 𝑛,𝑝,𝑡 = 𝑡,𝑟{0, 1}

𝑛, where 0 ⩽ 𝑟 ⩽ 𝑡 (as 𝑝 = 1∕𝑚 ⩽

1∕3) and 𝑟 = 0 if𝑚 > 𝑡 + 1 (taking 𝜁 < 1

𝑡+1
− 1

𝑡+2
).

We show that the conclusion of the claim holds for  = {𝑥 ∶ ℎ⊗𝑛(𝑥) ∈ ̃}, where ℎ∶ [𝑚]𝑛 →

{0, 1}𝑛 is as in Definition 4.2. To see this, first note that  is a copy of 𝑛,𝑚,𝑡. Furthermore, if
𝑥 ∈  ⧵  , then ℎ(𝑥) ∈ ̃ ⧵ ̃ , and if 𝑥 is uniformly random in [𝑚]𝑛, then ℎ⊗𝑛(𝑥) is distributed
as 𝜇𝑝, so

Pr
𝑥∈[𝑚]𝑛

[𝑥 ∈  ⧵ ] ⩽ Pr
𝑥∈[𝑚]𝑛

[
ℎ⊗𝑛(𝑥) ∈ ̃ ⧵ ̃

]
= 𝜇𝑝(̃ ⧵ ̃) ⩽ 𝜀𝜇𝑝(̃) = 𝜀𝜇(). □

4.3 Decompression and local stability

In this subsection, we prove Theorem 2.2 in general, deducing it from the compressed case proved
in the previous subsection, and for that, we use decompression and local stability arguments. We

†We state it in aweaker formwherewe do not specify the exact dependency between parameters, as we do not require this.
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start with a proof sketch, where for simplicity, we assume that 𝑚 > 𝑡 + 1, so that the extremal
examples are cubes of co-dimension 𝑡.
Suppose  ⊂ [𝑚]𝑛 is 𝑡-intersecting with size close to the maximum possible. Let  = 𝑇() be

the compressed form of  . By the previous subsection,  is close to a subcube, say  = {𝑥 |𝑥1 =
⋯ = 𝑥𝑡 = 1}.
We now decompress: we consider how the family changes as we undo the compression opera-

tors one by one. First, we note that undoing 𝑇𝑛, 𝑇𝑛−1, … , 𝑇𝑡+1 does not change the distance from
 , so 𝑡 = 𝑇1◦… ◦𝑇𝑡() has the same distance to  as .
Themain point of the argument is to analyse the effect of undoing𝑇𝑖 for 𝑖 = 1, … , 𝑡. For 𝑗 ∈ [𝑚],

we let 𝛼𝑗 be the fraction of 𝑡−1 with prefix (1𝑡−1, 𝑗). If there is some 𝑗⋆ with 𝛼𝑗⋆ close to 1, then
𝑡−1 is close to a subcube, and we can continue decompressing. Otherwise, we can partition most
of 𝑡−1 into two non-negligible parts such that the value of 𝑗 in the prefix (1𝑡−1, 𝑗) always differs
between the two parts. However, as  is 𝑡-intersecting, this implies that the two parts must be
cross-intersecting on the coordinates [𝑛] ⧵ [𝑡]; this will give a contradiction by the following form
of Hoffman’s bound (which we will prove later in a more general form, see Lemma 5.9).

Lemma 4.6. Suppose 1,2 ⊂ [𝑚]𝑛 are cross-intersecting with 𝜇(𝑖) = 𝛼𝑖 for 𝑖 = 1, 2. Then 𝛼1𝛼2 ⩽
(1 − 𝛼1)(1 − 𝛼2)∕(𝑚 − 1)2.

We start with a lemma that applies Lemma 4.6 to implement the idea discussed in the previous
paragraph. Recall that the largest intersecting codes in [𝑚]𝑛 are the ‘dictators’𝐷𝑖→𝑗 = {𝑥 ∶ 𝑥𝑖 = 𝑗}.
We show that if, ⊂ [𝑚]𝑛 have nearlymaximum size, are cross-intersecting and𝑇𝑖(), 𝑇𝑖() ⊂

𝐷𝑖→1, then there is some dictator 𝐷𝑖→𝑗 that essentially contains  and . Recall that 𝑝 = 1∕𝑚

throughout.

Lemma 4.7. Let 0 < 𝜀 ⩽ 1∕15 and 𝑚 ⩾ 3. Suppose , ⊂ [𝑚]𝑛 are cross-intersecting
with 𝜇(), 𝜇() ⩾ (1 − 𝜀)𝑝 and 𝑇𝑖(), 𝑇𝑖() ⊂ 𝐷𝑖→1. Then there is 𝑗 ∈ [𝑚] such that
𝜇( ∩ 𝐷𝑖→𝑗), 𝜇( ∩ 𝐷𝑖→𝑗) ⩾ (1 − 3𝜀)𝑝.

Proof. Without loss of generality, we can assume 𝑖 = 1. As 𝑇1() ⊂ 𝐷1→1, we can write 𝑇1() as
the disjoint union over 𝑗 ∈ [𝑚] of𝑗 ∶= {(1, 𝑧) ∶ 𝑧 ∈ 1→𝑗}; in particular,1, … ,𝑚 are disjoint.
Similarly, we may define 1, … ,𝑚 and have that 1, … ,𝑚 are disjoint. For each 𝑗 ∈ [𝑚], let
𝛼𝑗 = 𝜇(1→𝑗) and 𝛽𝑗 = 𝜇(1→𝑗). Then

∑
𝑗 𝛼𝑗 = 𝑝−1𝜇() ⩾ 1 − 𝜀 and

∑
𝑗 𝛽𝑗 = 𝑝−1𝜇() ⩾ 1 − 𝜀.

We need to show that for some 𝑗 ∈ [𝑚], we have 𝛼𝑗, 𝛽𝑗 ⩾ 1 − 3𝜀.
To see this, supposewithout loss of generality that𝛼 = 𝛼1 is largest among {𝛼𝑗}𝑗∈[𝑚] ∪ {𝛽𝑗}𝑗∈[𝑚].

Let≠1 ∶=
⋃

𝑗∈[2,𝑚]𝑗 and 𝛽≠1 = 𝜇(≠1). Then 𝛽≠1 =
∑

𝑗≠1 𝛽𝑗 ⩾ 1 − 𝜀 − 𝛽1 ⩾ 1 − 𝛼1 − 𝜀. As1

and ≠1 are cross-intersecting, by Lemma 4.6, we have

𝛼1(1 − 𝛼1 − 𝜀) ⩽ 𝛼1𝛽≠1 ⩽ (1 − 𝛼1)(𝛽1 + 𝜀)∕(𝑚 − 1)2 ⩽ (1 − 𝛼1)(𝛼1 + 𝜀)∕(𝑚 − 1)2.

Rearranging gives ((𝑚 − 1)2 − 1)𝛼1(1 − 𝛼1) ⩽ ((𝑚 − 1)2𝛼1 + (1 − 𝛼1))𝜀 ⩽ (𝑚 − 1)2𝜀. Thus,
𝛼1(1 − 𝛼1) ⩽ 4𝜀∕3, so either 𝛼1 ⩽ 3𝜀 or 𝛼1 ⩾ 1 − 3𝜀. We will show that the second bound holds.
Suppose otherwise. Then 𝛼𝑗 ⩽ 3𝜀 for all 𝑗 ∈ [𝑚]. We can partition [𝑚] as 𝑄1 ∪ 𝑄2 so that for

𝑘 = 1, 2, we have
∑

𝑗∈𝑄𝑘
𝛼𝑗 ⩾ (1 − 𝜀 − 3𝜀)∕2 ⩾ 1∕2 − 2𝜀. Without loss of generality,

∑
𝑗∈𝑄1

𝛽𝑗 ⩾

1∕2 − 𝜀. Then ∪𝑗∈𝑄1
𝑗 and ∪𝑗∈𝑄2

𝑗 cross-intersect and both have densities at least 1∕2 − 2𝜀 in
[𝑚]𝑛−1, which contradicts Lemma 4.6, as 𝜀 ⩽ 1∕15. Thus, 𝛼1 ⩾ 1 − 3𝜀, as required. Now we apply
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Lemma4.6 again to1 and≠1, which gives (1 − 3𝜀)𝛽≠1 ⩽ 𝛼1𝛽≠1 ⩽ (1 − 𝛼1)(1 − 𝛽≠1)∕(𝑚 − 1)2 ⩽
3𝜀

4
, so 𝛽≠1 ⩽ 2𝜀. As 𝛽1 ⩾ (1 − 𝜀) − 𝛽≠1, this gives 𝛽1 ⩾ 1 − 3𝜀, completing the proof. □

We conclude this subsection with the proof of the stability theorem.

Proof of Theorem 2.2. Let 0 < 𝛿 ≪ 𝜀′ ≪ 𝜀, 𝑡−1,𝑚−1. Suppose  ⊂ [𝑚]𝑛 is 𝑡-intersecting with
𝜇() ⩾ (1 − 𝛿)𝜇(𝑛,𝑚,𝑡). We can assume without loss of generality that for each 𝑖 ∈ [𝑛], the most
popular value of 𝑥𝑖 for 𝑥 ∈  is 1 (otherwise we simply relabel the alphabet in that coordinate).
We set 0 = 𝐹 and for each 𝑖 ∈ [𝑛], let 𝑖 = 𝑇𝑖(𝑖−1). By Fact 4.1, 𝑛 = 𝑇(0) is 𝑡-intersecting,
compressed, and 𝜇(𝑛) ⩾ (1 − 𝛿)𝜇(𝑛,𝑚,𝑡). By Claim 4.5, 𝜇( ⧵ ) ⩽ 𝜀′𝜇() for some copy  of
𝑛,𝑚,𝑡 = 𝑡,𝑟[𝑚]𝑛, where 0 ⩽ 𝑟 ⩽ 𝑡, and 𝑟 = 0 if𝑚 > 𝑡 + 1. We write 𝐽 for the set of coordinates on
which it depends, so |𝐽| = 𝑡 + 2𝑟.
We define 𝜀𝑖 for all 𝑖 ∈ [𝑛] by 𝜇(𝑖 ∩ ) = (1 − 𝜀𝑖)𝜇(). We note that 𝜇() = 𝜇(𝑛) ⩽ (1 +

𝜀′)𝜇() and 𝜇(𝑛 ∩ ) ⩾ (1 − 𝜀′ − 𝛿)𝜇() ⩾ (1 − 2𝜀′)𝜇(), so 𝜀𝑛 ⩽ 2𝜀′. We will show inductively
that 𝜀𝑖 is suitably small for 𝑖 = 𝑛, 𝑛 − 1,… , 0. To prove the theorem, it suffices to show 𝜀0 < 𝜀∕2, as
𝜇( ⧵ ) ⩽ 𝜇() − 𝜇( ∩ ) ⩽ (1 + 𝜀′)𝜇() − (1 − 𝜀0)𝜇() ⩽ (𝜀′ + 𝜀0)𝜇().
Note that if 𝑖 ∉ 𝐽, then  is 𝑖-insensitive, meaning that for all 𝑥 ∈ [𝑚]𝑛, membership of 𝑥 in 

does not depend on 𝑥𝑖 . For such 𝑖, we have |𝑇𝑖() ∩ | = | ∩ | for any  ⊂ [𝑚]𝑛, so 𝜇(𝑖−1 ∩

) = 𝜇(𝑖 ∩ ), that is, 𝜀𝑖 = 𝜀𝑖−1. For 𝑖 ∈ 𝐽, we will show that 𝜀𝑖−1 ⩽ 3(𝑡 + 1)3𝑡𝜀𝑖 . This will imply
𝜀0 < (3(𝑡 + 1)3𝑡)|𝐽|𝜀′ < 𝜀∕2 as 𝜀′ ≪ 𝜀, and so will suffice to complete the proof of the theorem.
Set 𝐽𝑖 ∶= 𝐽 ⧵ {𝑖}. Given 𝑦 ∈ [𝑚]𝐽𝑖 and ⊂ [𝑚]𝑛, we use the abbreviation

(𝑦) ∶= 𝐽𝑖→𝑦 =
{
𝑧 ∈ [𝑚][𝑛]⧵𝐽𝑖

|||(𝑦, 𝑧) ∈ 

}
⊂ [𝑚][𝑛]⧵𝐽𝑖 .

We require the following claim, showing that if two 𝐽𝑖-restrictions 𝑖(𝑦1) and 𝑖(𝑦2) are close to
the same 𝑖-dictator, where 𝑦1, 𝑦2 have agreement at most 𝑡 − 1, then this is also true of 𝑖−1(𝑦1)

and 𝑖−1(𝑦2).

Claim 4.8. Suppose 𝑦1, 𝑦2 ∈ [𝑚]𝐽𝑖 with 𝖺𝗀𝗋(𝑦1, 𝑦2) ⩽ 𝑡 − 1 and 𝜇(𝑖(𝑦𝑘) ∩ 𝐷𝑖→1) ⩾ (1 − 𝜉)𝑝 for
both 𝑘 = 1, 2, where 0 ⩽ 𝜉 ⩽ 1∕6. Then there is 𝑗 ∈ [𝑚] such that both 𝜇(𝑖−1(𝑦𝑘) ∩ 𝐷𝑖→𝑗) ⩾

(1 − 3𝜉)𝑝. Moreover, for any 𝑗′ ≠ 𝑗, both 𝜇(𝑖−1(𝑦𝑘) ∩ 𝐷𝑖→𝑗′) < (1 − 3𝜉)𝑝.

Proof. Note that 𝑖−1(𝑦1) and 𝑖−1(𝑦2) are cross-intersecting, as 𝑖−1 is 𝑡-intersecting and
𝖺𝗀𝗋(𝑦1, 𝑦2) ⩽ 𝑡 − 1. Let𝑘 = {𝑥 ∈ 𝑖−1(𝑦𝑘) ∶ 𝑇𝑖(𝑥) ∈ 𝑖(𝑦𝑘) ∩ 𝐷𝑖→1} for 𝑘 = 1, 2. Then1,2 are
cross-intersecting and both 𝜇(𝑘) > (1 − 𝜉)𝑝, so the existence of 𝑗 follows from Lemma 4.7.
For the ‘moreover’ part, note that if 𝑗′ ≠ 𝑗, then (𝑖−1)𝐽→(𝑦1,𝑗

′) and (𝑖−1)𝐽→(𝑦2,𝑗)
are cross-

intersecting, and applying Lemma 4.6 gives us that 𝜇((𝑖−1)𝐽→(𝑦1,𝑗
′)) < 1 − 3𝜉. The same

argument works interchanging the roles of 𝑦1 and 𝑦2, and we get that 𝜇(𝑖−1(𝑦𝑘) ∩ 𝐷𝑖→𝑗′) <

(1 − 3𝜉)𝑝. □

Using Claim 4.8, we now bound 𝜀𝑖−1. We start with the case 𝑟 = 0. Let 𝟏 ∈ [𝑚]𝐽𝑖 be the all-
1 vector. We have 𝜇(𝑖(𝟏) ∩ 𝐷𝑖→1) = 𝑝1−𝑡𝜇(𝑖 ∩ ) = (1 − 𝜀𝑖)𝑝, so by Claim 4.8 with 𝑦1 = 𝑦2 =

𝟏, there is 𝑗 ∈ [𝑚] such that 𝜇(𝑖−1(𝟏) ∩ 𝐷𝑖→𝑗) ⩾ (1 − 3𝜀𝑖)𝑝. The most popular value in 𝑖−1 of
coordinate 𝑖 is 1 (since this is the case in  ), so 𝑗 = 1. We deduce 𝜇(𝑖−1 ∩ ) = 𝑝𝑡−1𝜇(𝑖−1(𝟏) ∩

𝐷𝑖→1) ⩾ (1 − 3𝜀𝑖)𝑝
𝑡, so 𝜀𝑖−1 ⩽ 3𝜀𝑖 .
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It remains to consider 𝑟 ⩾ 1.We have𝑚 ⩽ 𝑡 + 1 byClaim 4.5. For a vector 𝑦 ∈ [𝑚]𝑛 and 𝑗 ∈ [𝑚],
let 𝑦[𝑗] be the set of coordinates of 𝑖 equal to 𝑗. We partition  as  = 0 ∪ 1, where

0 ∶=
{
𝑥 ∈ [𝑚]𝑛 ∶ 𝑥|𝐽𝑖 ∈ 0

}
, 0 ∶= {𝑦 ∈ [𝑚]𝐽𝑖 ∶ ||𝑦[1]|| > 𝑡 + 𝑟 − 1},

1 =
{
𝑥 ∈ [𝑚]𝑛 ∶ 𝑥|𝐽𝑖 ∈ 1

}
∩ 𝐷𝑖→1, 1 ∶= {𝑦 ∈ [𝑚]𝐽𝑖 ∶ ||𝑦[1]|| = 𝑡 + 𝑟 − 1}.

As 0 is 𝑖-insensitive, 𝜇(𝑖−1 ∩ 0) = 𝜇(𝑖 ∩ 0). Now we wish to show that 𝜇(𝑖−1 ∩ 1) is large,
that is, that 𝜇(𝑖−1(𝑦) ∩ 𝐷𝑖→1) is close to 1 for each 𝑦 ∈ 1. Firstly we show this for 𝑖 .

Claim 4.9. 𝜇(𝑖(𝑦) ∩ 𝐷𝑖→1) ⩾ (1 − (𝑡 + 1)3𝑡𝜀𝑖)𝑝 for each 𝑦 ∈ 1.

Proof. To see this, we note that

𝜀𝑖𝜇() = 𝜇( ⧵ 𝑖) ⩾ 𝜇(1 ⧵ 𝑖) =
∑
𝑦∈1

𝑝|𝐽𝑖|(𝑝 − 𝜇(𝑖(𝑦) ∩ 𝐷𝑖→1)).

Each summand on the right-hand side is non-negative, and |𝐽| = 𝑡 + 2𝑟 ⩽ 3𝑡, so for each 𝑦 ∈ 1,
we have 𝑝 − 𝜇(𝑖(𝑦) ∩ 𝐷𝑖→1)) ⩽ 𝑝(𝑡 + 1)3𝑡𝜀𝑖 , so the claim holds. □

Next, we prove the corresponding claim for 𝑖−1, although at first just with 𝐷𝑖→𝑗 for some 𝑗 ∈
[𝑚]; the theorem will follow once we show that 𝑗 = 1. We say that 𝑦 ∈ 1 is 𝑗-good if 𝜇(𝑖−1(𝑦) ∩

𝐷𝑖→𝑗) ⩾ (1 − 3(𝑡 + 1)3𝑡𝜀𝑖)𝑝.

Claim 4.10. There is some 𝑗 ∈ [𝑚] such that every 𝑦 ∈ 1 is 𝑗-good.

Proof. Note that for any 𝑦, 𝑦′ ∈ 1 with 𝖺𝗀𝗋(𝑦, 𝑦′) = 𝑡 − 1, by Claims 4.8 and 4.9, there is some 𝑗 ∈
[𝑚] such that both 𝑦 and 𝑦′ are 𝑗-good. The claim then follows from the observation that the graph
𝐺 whose edges consist of such pairs {𝑦, 𝑦′} is connected. (We can get between any two elements of
1 by a sequence of steps where in each step, we change some coordinate from 1 to another value
and some coordinate from another value to 1, and each such step can be implemented by a path
of length two in 𝐺.) □

It remains to show that 𝑗 = 1. We consider  = 0 ∪ 1, where 0 = {𝑦 ∈ [𝑚]𝑛 |𝑦𝐽𝑖 ∈ 0} = 0

and 1 = {𝑦 ∈ [𝑚]𝑛 |𝑦𝐽𝑖 ∈ 1, 𝑦𝑖 = 𝑗}. Recalling that 𝜇(𝑖−1 ∩ 0) = 𝜇(𝑖 ∩ 0), by the previous
claim, we deduce 𝜇(𝑖−1 ∩  ) ⩾ (1 − 3(𝑡 + 1)3𝑡𝜀𝑖)𝜇( ), so

𝜇(𝑖−1 ⧵  ) ⩽ 𝜇(𝑖−1) − 𝜇(𝑖−1 ∩  ) ⩽ 3(𝑡 + 1)3𝑡𝜀𝑖 + 𝜀′ ⩽ 4(𝑡 + 1)3𝑡𝜀𝑖,

where in the second inequality, we used 𝜇(𝑖−1) = 𝜇() ⩽ (1 + 𝜀′)𝜇() = (1 + 𝜀′)𝜇( ). Hence,
for 𝓁 ≠ 𝑗, the fraction of 𝑥 ∈ 𝑖−1 such that 𝑥𝑖 = 𝓁 is at most 4(𝑡 + 1)3𝑡𝜀𝑖 + 𝑞(𝓁), where 𝑞(𝓁) is the
fraction of 𝑥 ∈  that have 𝑥𝑖 = 𝓁; by symmetry, this value is the same for all 𝓁 ≠ 𝑗, andwe denote
it by 𝑞. The fraction of𝑥 ∈ 𝑖−1 such that𝑥𝑖 = 𝑗 is, for the same reasons, at least 𝑞(𝑗) − 4(𝑡 + 1)3𝑡𝜀𝑖 .
But 𝑞(𝑗) ⩾ 𝑞 + 𝜇(1) ⩾ 𝑞 + (𝑡 + 1)−3𝑡, so 𝑞(𝑗) − 4(𝑡 + 1)3𝑡𝜀𝑖 ⩾ 𝑞 + 4(𝑡 + 1)3𝑡𝜀𝑖 (we can ensure 𝜀𝑖 <
1∕8). Thus, 𝑗 is the most popular value of coordinate 𝑖 in 𝑖−1, so 𝑗 = 1, as required. □
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4.4 Bootstrapping

We conclude this part by proving Theorem 2.3, which completes the proof of Theorem 2.4. We
will use compressions to reduce to the cube, so we start with some remarks in this setting.
We consider {0, 1}𝑛 equipped with the uniform measure 𝜇. Suppose, ⊂ {0, 1}𝑛. We say that

, are cross-intersecting if for any 𝑥 ∈ , 𝑦 ∈ , there is 𝑖 ∈ [𝑛] such that 𝑥𝑖 = 𝑦𝑖 = 1. We say
that, are cross-agreeing if for any 𝑥 ∈ , 𝑦 ∈ , there is 𝑖 ∈ [𝑛] such that 𝑥𝑖 = 𝑦𝑖 . Clearly, if
, are cross-intersecting, then they are cross-agreeing. We have the following easy fact, which
is immediate from the observation that if, are cross-agreeing and 𝑥 + 𝑦 = 𝟏 (the all-1 vector),
then we cannot have 𝑥 ∈  and 𝑦 ∈ .

Fact 4.11. If, ⊂ {0, 1}𝑛 are cross-agreeing, then 𝜇() + 𝜇() ⩽ 1.

We also require the following isoperimetric lemma of Ellis, Keller and Lifshitz [7].

Lemma 4.12. Suppose 0 ⩽ 𝑝 ⩽ 𝑞 ⩽ 1, 𝛼 ⩾ 0 and  ⊂ {0, 1}𝑛 is monotone. If 𝜇𝑝() ⩾ 𝑝𝛼 , then
𝜇𝑞() ⩾ 𝑞𝛼 .

Proof of Theorem 2.3. Let , ⊂ [𝑚]𝑛 with 𝜇() = 𝑚−𝑡𝜀 and 𝜇() > 1 − 𝐶𝜀, where 0 ≪ 𝜀 ≪

𝑡−1, 𝐶−1. Suppose for contradiction that and are cross-agreeing. Let′ = 𝑇() and′ = 𝑇(),
where 𝑇 is the compression operator and the operator  → ̃ is from Definition 4.2. By Facts 4.1
and 4.3, ′ and ′ are monotone and cross-intersecting with 𝜇𝑝(

′) ⩾ 𝜇() and 𝜇𝑝(′) ⩾ 𝜇(),
where 𝑝 = 1∕𝑚.
Now we consider ′ and ′ under the uniform measure 𝜇 = 𝜇1∕2. By monotonicity,

we have 𝜇(′) ⩾ 𝜇𝑝(
′) > 1 − 𝐶𝜀. By Lemma 4.12, 𝜇(′) ⩾ 𝜇𝑝(

′)log𝑝(1∕2), so log2 𝜇(
′) ⩾

log2(𝑚
−𝑡𝜀)∕ log2(𝑚), giving 𝜇(′) ⩾ 2−𝑡𝜀0.7, as 𝑚 ⩾ 3 and 1∕ log2(3) < 0.7. However, 1 − 𝐶𝜀 +

2−𝑡𝜀0.7 > 1 as 𝜀 ≪ 𝑡−1, 𝐶−1, which contradicts Fact 4.11. □

Part II: Moderate alphabets

In this part, we prove our main result Theorem 1.1 when the alphabet size 𝑚 is moderate, that
is, 𝑚0(𝑡) ⩽ 𝑚 ⩽ 2𝑛∕𝑁(𝑡). Here the largest 𝑡-intersecting codes are subcubes of codimension 𝑡. As
mentioned in the introduction, we cannot achieve such a strong pseudorandomness condition
in our regularity lemma as in the case of fixed 𝑚, so we settle for a weaker notion of ‘uncap-
turability’. We present the proof in the second section of the part, where to implement a version
of the cross-agreement strategy, we introduce a gluing argument that exploits expansion under
another pseudorandomness condition, namely globalness. The tools for this are developed in the
first section, in which we study our two pseudorandomness conditions (uncapturability and glob-
alness) and establish the small-set expansion for global functions via a refined version of our global
hypercontractivity inequality from [16].

5 TOOLS

This section concerns various properties of the pseudorandomness notions of uncapturability
and globalness, particularly a regularity lemma for uncapturability and a small set expansion
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property for global functions, which is analogous to Theorem 3.3. The latter will be established
via a corresponding statement for the noise operator, which will be proved by a refined form of
our global hypercontractivity inequality. Along the way, we record various facts needed here and
later concerning Markov chains and the Efron–Stein theory of orthogonal decompositions.

5.1 Uncapturability and globalness

This subsection contains the definitions and basic properties of the two key pseudorandomness
conditions used in this part. We start with uncapturability, which is the condition that will appear
in the regularity lemma in the next subsection. Recall that for  ⊂ [𝑚]𝑛 and 𝛼 ∈ [𝑚]𝑅 for some
𝑅 ⊂ [𝑛], we write [𝛼] = {𝑥 ∈  ∶ 𝑥𝑅 = 𝛼} and 𝑅→𝛼 = (𝛼) = {𝑥 ∈ [𝑚][𝑛]⧵𝑅 ∶ (𝑥, 𝛼) ∈  }. We
also write 𝐷𝑅→𝛼 = {𝑥 ∈ [𝑚]𝑛 ∶ 𝑥𝑅 = 𝛼}, which is a subcube of co-dimension |𝑅|, which we refer
to as a ‘dictator’ if |𝑅| = 1. For a collection of subcubes , we denote by

⋃
 the union of these

subcubes, that is,
⋃

𝐷∈ 𝐷.

Definition 5.1. We say  ⊂ [𝑚]𝑛 is (𝑟, 𝜀)-capturable if there is a set of at most 𝑟 dictators with
𝜇( ⧵

⋃
) ⩽ 𝜀. Otherwise, we say that  is (𝑟, 𝜀)-uncapturable.

Now we define the stronger (see Claim 5.4) condition of globalness.

Definition 5.2. We say 𝑓 ∶ [𝑚]𝑛 → ℝ is (𝑟, 𝜀)-global if for any 𝑅 ⊂ [𝑛]with |𝑅| ⩽ 𝑟 and 𝑎 ∈ [𝑚]𝑅,
we have ‖𝑓𝑅→𝑎‖22 ⩽ 𝜀. We say  ⊂ [𝑚]𝑛 is (𝑟, 𝜀)-global if its characteristic function is (𝑟, 𝜀)-global.

Most of this sectionwill be devoted to the proof of the following small set expansion property for
global functions, which is analogous to Theorem 3.3.We remark thatwewill later use Theorem 5.3
to prove that random gluings significantly increase the measure of global families.

Theorem 5.3. For any 𝜆 > 0, there is 𝑐 > 0 such that the following holds for Markov chains 𝑇𝑖 on
Ω𝑖 with 𝜆∗(𝑇𝑖) ⩾ 𝜆 for all 𝑖 ∈ [𝑛] and consecutive random states 𝑥, 𝑦 of the stationary chain for the
product chain 𝑇 on Ω. If  ⊂ Ω is (log(1∕𝜇), 𝜇1−𝑐)-global with 𝜇 ∈ (0, 1∕16), then ℙ(𝑥 ∈  , 𝑦 ∈

) ⩽ 𝜇1+𝑐 .

We begin by giving two simple relations between uncapturability and globalness that will be
useful for us. The first property asserts that globalness implies very strong uncapturability.

Claim 5.4. If 𝛾 ∈ (0, 1) and ∅ ≠  ⊂ [𝑚]𝑛 is (1, 𝜇()∕𝛾)-global, then  is (𝛾𝑚∕4, 𝜇()∕2)-
uncapturable.

Proof. Suppose that  is a set of dictators with 𝜇( ⧵
⋃

) ⩽ 𝜇()∕2. We need to show || >
𝛾𝑚∕4. By assumption 𝜇(𝑖→𝑎) ⩽ 𝜇()∕𝛾 for each 𝐷𝑖→𝑎 ∈ , so by a union bound

𝜇()∕2 ⩽ 𝜇( ∩
⋃

) ⩽
∑

𝐷𝑖→𝑎∈

𝜇( ∩ 𝐷𝑖→𝑎) =
∑

𝐷𝑖→𝑎∈

𝑚−1 ⋅ 𝜇(𝑖→𝑎) ⩽ ||𝑚−1 𝜇(𝐺)

𝛾
.

Thus, || ⩾ 𝛾𝑚∕2 > 𝛾𝑚∕4, as required. □
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The second property shows that any family  with significant measure can be made global by
taking small restrictions.

Lemma 5.5. Let 0 < 𝛾 < 1 and 𝑟,𝑚, 𝑛 ∈ ℕ. For any  ⊂ [𝑚]𝑛, there is 𝑅 ⊂ [𝑛] and 𝛼 ∈ [𝑚]𝑅 with|𝑅| ⩽ 𝑟 log𝛾−1(𝜇()
−1) such that ′ = 𝑅→𝛼 is (𝑟, 𝜇(′)∕𝛾)-global with 𝜇(′) ⩾ 𝜇().

Proof. Startingwith0 = , for each 𝑖 ⩾ 0, if𝑖 is not (𝑟, 𝜇(𝑖)∕𝛾)-global, we let𝑖+1 = (𝑖)𝑅𝑖→𝛼𝑖
for

some 𝑅𝑖 ⊂ [𝑛] with |𝑅𝑖| ⩽ 𝑟 and 𝛼𝑖 ∈ [𝑚]𝑅𝑖 such that 𝜇(𝑖+1) ⩾ 𝜇(𝑖)∕𝛾; such a restriction exists
by definition. As all measures are bounded by 1, there can be at most log𝛾−1(𝜇()−1) iterations, at
which point we terminate with ′ = 𝑅→𝛼 with the stated properties. □

5.2 The uncapturable code regularity lemma

In this subsection, we prove the following regularity lemma which approximately decomposes
any code into pieces corresponding to uncapturable restrictions.

Lemma 5.6. Let 𝑟, 𝑘,𝑚 ∈ ℕ and 𝜀 ⩾ 1∕𝑚. For any  ⊂ [𝑚]𝑛, there is a collection  of at most
𝑟𝑘 subcubes of co-dimension at most 𝑘 such that 𝑅→𝛼 is (𝑟, 𝜀𝜇(𝐷)−1𝑚−𝑘)-uncapturable for each
𝐷 = 𝐷𝑅→𝛼 ∈  and 𝜇( ⧵

⋃
) ⩽ 3𝑟𝑘+1𝜀𝑚−𝑘 .

Proof. We may assume that  is (𝑟, 𝜀𝑚−𝑘)-capturable; otherwise, the lemma holds with  =

{[𝑚𝑛]}. We apply the following iterative process for 𝑠 = 1,… , 𝑘.

∙ We let ′
𝑠−1

be the set of 𝐷 = 𝐷𝑅→𝛼 ∈ 𝑠−1 such that 𝑅→𝛼 is (𝑟, 𝜀𝜇(𝐷)−1𝑚−𝑘)-capturable,
where for 𝑠 = 1, we let′

0
= 0 = {𝐷∅→∅} = {[𝑚]𝑛}.

∙ For each 𝐷 = 𝐷𝑅→𝛼 ∈ ′
𝑠−1

, by definition of capturability, we can fix a set [𝐷] of at most 𝑟
dictators such that 𝜇(𝑅→𝛼 ⧵

⋃
[𝐷]) ⩽ 𝜀𝜇(𝐷)−1𝑚−𝑘.

∙ We define𝑠 = {𝐷(𝑅,𝑖)→(𝛼,𝑎) ∶ 𝐷 = 𝐷𝑅→𝛼 ∈ ′
𝑠−1

, 𝐷𝑖→𝑎 ∈ [𝐷]}.

At the end of the process, we let ′
𝑘
⊂ 𝑘 be the set of 𝐷 = 𝐷𝑅→𝛼 ∈ 𝑘 such that 𝑅→𝛼 is

(𝑟, 𝜀)-capturable. We will show that = (1 ⧵
′
1
) ∪ … ∪ (𝑘 ⧵

′
𝑘
) satisfies the requirements of

the lemma.
Clearly, for all𝐷 ∈ , we have that  ∩ 𝐷 is (𝑟, 𝜀𝜇(𝐷)−1𝑚−𝑘)-uncapturable, and || ⩽ 𝑟𝑘 as we

explore at most many subcubes during the above process. We will bound 𝜇( ⧵
⋃

) by 𝜇( ⧵⋃
( ∪′

𝑘
)) + 𝜇( ∩

⋃
′
𝑘
).

For the first term in the bound, we write  ⧵
⋃
( ∪′

𝑘
) = ∪𝑘−1

𝑠=0
𝑠, where each

𝑠 =
⋃

{𝑅→𝛼 ⧵
⋃

[𝐷] ∶ 𝐷 = 𝐷𝑅→𝛼 ∈ ′
𝑠}.

By definition, 𝜇(𝑠) ⩽
∑

𝐷∈′
𝑠
𝜇(𝐷) ⋅ 𝜀𝜇(𝐷)−1𝑚−𝑘 = |′

𝑠|𝜀𝑚−𝑘, so

𝜇( ⧵
⋃

( ∪′
𝑘
)) ⩽ 𝜀𝑚−𝑘

𝑘−1∑
𝑠=0

|′
𝑠| ⩽ 𝑟𝑘𝜀𝑚−𝑘.
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For the second term in the bound, we note that if 𝐷𝑅→𝛼 ∈ ′
𝑘
, then 𝑅→𝛼 is (𝑟, 𝜀)-capturable, so

has measure is at most 𝑟 1

𝑚
+ 𝜀 ⩽ (𝑟 + 1)𝜀. Thus,

𝜇( ∩
⋃

′
𝑘
) ⩽

∑
𝐷∈′

𝑘

𝜇(𝐷)(𝑟 + 1)𝜀 ⩽ 𝑟𝑘𝑚−𝑘(𝑟 + 1)𝜀.

We deduce 𝜇( ⧵
⋃

) ⩽ 𝜇( ⧵
⋃
( ∪′

𝑘
)) + 𝜇( ∩

⋃
′
𝑘
) ⩽ 3𝑟𝑘+1𝜀𝑚−𝑘. □

5.3 Markov chains and orthogonal decompositions

This subsection contains some further theory of Markov chains, Efron–Stein orthogonal decom-
positions and a general form of the Hoffman bound for cross-intersecting families in any product
space. The results are somewhat standard, butwe include details for the convenience of the reader.
Let 𝑇 be a Markov chain on 𝑆 with stationary distribution 𝜈. The absolute spectral gap 𝜆∗ =

𝜆∗(𝑇) is

(1 − 𝜆∗)
2 = sup{𝔼(𝑇𝑓)2 ∶ 𝔼𝑓 = 0, 𝔼𝑓2 = 1}.

Here expectations are with respect to 𝜈. If 𝑇 is reversible, we can also view 𝜆∗ as the minimum
value of 1 − |𝜆| over all eigenvalues 𝜆 ≠ 1. We start with a general lower bound for 𝜆∗.

Lemma 5.7. Let 𝑇 be a Markov chain on 𝑆 with stationary distribution 𝜈 such that 𝑇𝑎𝑏 ⩾ 𝛼𝜈(𝑏) for
every 𝑎, 𝑏 ∈ 𝑆. Then 𝜆∗(𝑇) ⩾ 𝛼.

Proof. By assumption, 𝑆𝑎𝑏 ∶= 𝑇𝑎𝑏 − 𝛼𝜈(𝑏) ⩾ 0, with
∑

𝑏 𝑆𝑎𝑏 = 1 − 𝛼 and
∑

𝑎 𝜈(𝑎)𝑆𝑎𝑏 = (1 −

𝛼)𝜈(𝑏).
If 𝔼𝑓 = 0 and 𝔼𝑓2 = 1, then by Cauchy–Schwarz

𝔼(𝑇𝑓)2 =
∑
𝑎

𝜈(𝑎)(𝑇𝑓)(𝑎)2 =
∑
𝑎

𝜈(𝑎)(
∑
𝑏

𝑇𝑎𝑏𝑓(𝑏))
2 =

∑
𝑎

𝜈(𝑎)

(∑
𝑏

𝑆𝑎𝑏𝑓(𝑏)

)2

⩽
∑
𝑎

𝜈(𝑎)

(∑
𝑏

𝑆𝑎𝑏

)(∑
𝑏

𝑆𝑎𝑏𝑓(𝑏)
2

)
= (1 − 𝛼)

∑
𝑎

𝜈(𝑎)
∑
𝑏

𝑆𝑎𝑏𝑓(𝑏)
2

= (1 − 𝛼)
∑
𝑏

𝑓(𝑏)2
∑
𝑎

𝜈(𝑎)𝑆𝑎𝑏 = (1 − 𝛼)2
∑
𝑏

𝜈(𝑏)𝑓(𝑏)2 = (1 − 𝛼)2.
□

Now we consider Markov chains 𝑇𝑖 acting onΩ𝑖 for 𝑖 ∈ [𝑛] and their tensor product 𝑇 = 𝑇1 ⊗

⋯⊗ 𝑇𝑛 acting on Ω = Ω1 ⊗⋯⊗Ω𝑛, with transition matrix 𝑇𝑥𝑦 =
∏𝑛

𝑖=1(𝑇𝑖)𝑥𝑖𝑦𝑖 . The stationary
distribution of 𝑇 is 𝜈 = 𝜈1 ⊗⋯⊗ 𝜈𝑛, where each 𝜈𝑖 is stationary for 𝑇𝑖 . We will often have Ω =

[𝑚]𝑛 and 𝜈 uniform, but we will also require the general setting.
We use the Efron–Stein orthogonal decomposition (see, e.g. [27, Section 8.3]): for any 𝑓 ∈

𝐿2(Ω, 𝜈), we can write 𝑓 =
∑

𝑆⊂[𝑛] 𝑓
=𝑆 , where each 𝑓=𝑆 is characterised by the properties that it

only depends on coordinates in 𝑆 and that it is orthogonal to any function which depends only on
some set of coordinates not containing 𝑆; in particular, 𝑓=𝑆 and 𝑓=𝑆

′ are orthogonal for 𝑆 ≠ 𝑆′.
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We have similar Plancherel / Parseval relations as for Fourier decompositions, namely ⟨𝑓, g⟩ =∑
𝑆 𝔼[𝑓

=𝑆g=𝑆], so 𝔼[𝑓2] =
∑

𝑆 𝔼[(𝑓
=𝑆)2]. Explicitly, we let 𝑓⊂𝐽(𝑥) = 𝔼𝑦∼𝜈[𝑓(𝑦) ∣ 𝑦𝐽 = 𝑥𝐽], and

then, we have 𝑓=𝑆 =
∑

𝐽⊂𝑆(−1)
|𝑆⧵𝐽|𝑓⊂𝐽 (the inclusion–exclusion formula for 𝑓⊂𝐽 = ∑

𝑆⊂𝐽 𝑓
=𝑆).

We note the following identity which is immediate from this construction.

Fact 5.8. For 𝑆 ⊂ 𝑇 ⊂ [𝑛], 𝑥 ∈ Ω𝑆 and 𝑓 ∈ 𝐿2(Ω, 𝜈), we have (𝑓=𝑇)𝑆→𝑥 = (𝑓𝑆→𝑥)
=𝑇⧵𝑆 .

We require the following general form of the well-known Hoffman bound (the uniform case
was used in Part I, see Lemma 4.6). We include the proof for completeness.

Lemma 5.9. Let 𝜈 =
∏𝑛

𝑖=1 𝜈𝑖 be a product probability measure on [𝑚]𝑛 such that 𝜈𝑖(𝑥) ⩽ 𝜆 ⩽ 1∕2

for all 𝑖 ∈ [𝑛], 𝑥 ∈ [𝑚]. Suppose 1,2 ⊂ [𝑚]𝑛 are cross-intersecting with 𝜈(𝑖) = 𝛼𝑖 for 𝑖 = 1, 2.
Then

𝛼1𝛼2 ⩽

(
𝜆

1 − 𝜆

)2

(1 − 𝛼1)(1 − 𝛼2).

The proof of Lemma 5.9 requires the following estimate.

Claim 5.10. Let 𝑈𝑖 be Markov chains on Ω𝑖 for 𝑖 ∈ [𝑛] and let 𝑈 be the product chain on Ω. For
any 𝑓 ∶ Ω → ℝ and 𝑆 ⊂ [𝑛], we have ‖𝑈𝑓=𝑆‖2 ⩽ ‖𝑓=𝑆‖2 ∏𝑖∈𝑆(1 − 𝜆∗(𝑈𝑖)).

Proof. Since𝑓=𝑆 does not depend on variables outside 𝑆, wemay assumewithout loss of generality
that 𝑆 = [𝑛]. We introduce interpolating operators 𝑈⩽𝑗 =

⨂𝑗
𝑖=1

𝑈𝑖 ⊗
⨂𝑛

𝑖=𝑗+1 𝐼𝑖 , where 𝐼𝑖 is the
identity, and g𝑗 = 𝑈⩽𝑗𝑓

=𝑆 for 0 ⩽ 𝑗 ⩽ 𝑛. It suffices to show ‖g𝑗‖2 ⩽ (1 − 𝜆∗(𝑈𝑗))‖g𝑗−1‖2 for 𝑗 ∈
[𝑛].
We calculate ‖g𝑗‖22 = 𝔼(𝑈𝑗g𝑗−1)2 by conditioning on 𝑧 ∈ Ω[𝑛]⧵{𝑗}, that is,

𝔼(𝑈𝑗g𝑗−1)
2 = 𝔼

𝐳∼𝜈[𝑛]⧵{𝑗}

[
𝔼(𝑈𝑗ℎ𝐳)

2
]
,

where ℎ𝑧 ∶= (g𝑗−1)[𝑛]⧵{𝑗}→𝑧 ∈ 𝐿2(Ω𝑗, 𝜈𝑗). Note that for each 𝑧,

𝔼
𝑥∼𝜈𝑗

[ℎ𝑧(𝑥)] = 𝔼
𝑥∼𝜈𝑗

[
(𝑈⩽𝑗−1𝑓

=𝑆)(𝑧, 𝑥)
]
= 𝑈⩽𝑗−1

(
𝔼

𝑥∼𝜈𝑗

[
𝑓=𝑆(𝑧, 𝑥)

])
= 𝑈⩽𝑗−10 = 0,

so 𝔼(𝑈𝑗ℎ𝑧)
2 ⩽ (1 − 𝜆∗(𝑈𝑗))

2𝔼ℎ2𝑧. As 𝔼𝐳𝔼ℎ
2
𝐳 = 𝔼g2

𝑗−1
, we get ‖g𝑗‖2 ⩽ (1 − 𝜆∗(𝑈𝑗))‖g𝑗−1‖2, as

required. □

Proof of Lemma 5.9. For each 𝑖 ∈ [𝑛], we consider the Markov chain 𝑈𝑖 on [𝑚] with transition
probabilities (𝑈𝑖)𝑥𝑥 = 0 and (𝑈𝑖)𝑥𝑦 = 𝜈𝑖(𝑦)∕(1 − 𝜈𝑖(𝑥)) for 𝑦 ≠ 𝑥. We claim that

1 − 𝜆∗(𝑈𝑖) ⩽
𝜆

1 − 𝜆
. (1)
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This holds as for any 𝑓 ∈ 𝐿2([𝑚], 𝜈𝑖) with 𝔼𝑓 = 0 and 𝔼𝑓2 = 1, we have

‖‖𝑈𝑖𝑓‖‖22 = ∑
𝑥

𝜈𝑖(𝑥)

(∑
𝑦≠𝑥

𝜈𝑖(𝑦)

1 − 𝜈𝑖(𝑥)
𝑓(𝑦)

)2

=
∑
𝑥

𝜈𝑖(𝑥)

(1 − 𝜈𝑖(𝑥))
2

(∑
𝑦≠𝑥

𝜈𝑖(𝑦)𝑓(𝑦)

)2

=
∑
𝑥

𝜈𝑖(𝑥)

(1 − 𝜈𝑖(𝑥))
2
(𝜈𝑖(𝑥)𝑓(𝑥))

2 ⩽

(
𝜆

1 − 𝜆

)2 ∑
𝑥

𝜈𝑖(𝑥)𝑓(𝑥)
2 =

(
𝜆

1 − 𝜆

)2

.

Next we note that if 𝐱 ∼ 𝜈 and 𝐲 ∼ 𝑈𝐱, then ℙ(𝐱 ∈ 1, 𝐲 ∈ 2) = 0, as 𝖺𝗀𝗋(𝐱, 𝐲) = 0 by defini-
tion of 𝑈, but 1,2 are cross-intersecting by assumption. We can also write this probability as⟨g1, 𝑈g2⟩, where g1, g2 ∶ [𝑚]𝑛 → {0, 1} are the indicator functions of 1,2. By orthogonality and
Cauchy–Schwarz,

0 =
∑
𝑆⊂[𝑛]

⟨g=𝑆1 , 𝑈g=𝑆2 ⟩ = 𝛼1𝛼2 +
∑
𝑆≠∅

⟨g=𝑆1 , 𝑈g=𝑆2 ⟩ ⩾ 𝛼1𝛼2 −
∑
𝑆≠∅

‖‖‖g=𝑆1
‖‖‖2‖‖‖𝑈g=𝑆2

‖‖‖2.
By Claim 5.10 and (1), we have ‖𝑈g=𝑆

2
‖ ⩽ ( 𝜆

1−𝜆
)|𝑆|‖g=𝑆

2
‖, so

𝛼1𝛼2 ⩽
∑
𝑆≠∅

(
𝜆

1 − 𝜆

)|𝑆|‖‖‖g=𝑆1
‖‖‖2‖‖‖g=𝑆2

‖‖‖2 ⩽ 𝜆

1 − 𝜆

∑
𝑆≠∅

‖‖‖g=𝑆1
‖‖‖2‖‖‖g=𝑆2

‖‖‖2.
By Cauchy–Schwarz and Parseval(∑

𝑆≠∅

‖‖‖g=𝑆1
‖‖‖2‖‖‖g=𝑆2

‖‖‖2
)2

⩽
∑
𝑆≠∅

‖‖‖g=𝑆1
‖‖‖22 ∑

𝑆≠∅

‖‖‖g=𝑆2
‖‖‖22 = Var(g1)Var(g2) = 𝛼1(1 − 𝛼1)𝛼2(1 − 𝛼2).

We deduce (𝛼1𝛼2)2 ⩽ ( 𝜆

1−𝜆
)2𝛼1𝛼2(1 − 𝛼1)(1 − 𝛼2), as required. □

5.4 Small set expansion via noise stability

The goal for the remainder of this section is to prove Theorem 5.3 concerning global small set
expansion. We start by reducing it to the case of a particular Markov chain, namely that given by
the noise operator, which we will now define. Let 𝜈 =

∏𝑛
𝑖=1 𝜈𝑖 be a product probability measure

on Ω =
∏𝑛

𝑖=1 Ω𝑖 . Fix 𝜌 ∈ [0, 1]. We let T𝑖 be the Markov chain on Ω𝑖 with transition probabilities
(𝑇𝑖)𝑥𝑦 = 𝜌1𝑦=𝑥 + (1 − 𝜌)𝜈𝑖(𝑦), that is, fromany state𝑥, we stay at𝑥with probability 𝜌 or otherwise
move to a random state according to 𝜈𝑖 . We let T be the product chain on Ω. We also write T =

T𝜌. We call T𝜌 the noise operator when we think of it as an operator on 𝐿2(Ω, 𝜈) via (T𝜌𝑓)(𝑥) =
𝔼𝐲∼T𝜌𝑥[𝑓(𝐲)].
Recall that in Theorem 5.3, we want to bound ℙ(𝑥 ∈  , 𝑦 ∈ ) for some  ⊂ Ω, when 𝑥 and 𝑦

are consecutive states of the stationary chain for some product chain 𝑈 on Ω. The analytic form
is to bound ⟨𝑓,𝑈𝑓⟩ where 𝑓 is the characteristic function of  . We will soon see that this can be
bounded by an analogous expression in terms of the noise operator, that is, 𝖲𝗍𝖺𝖻𝜌(𝑓) ∶= ⟨𝑓, T𝜌𝑓⟩,
which is called the noise stability of 𝑓. For future reference, we note the following estimate,
showing that a bound on the noise stability for any given 𝜌 > 0 implies one for all 𝜌 < 1.
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Lemma 5.11. 𝖲𝗍𝖺𝖻𝜌(𝑓) ⩽ ‖𝑓‖2(1−1∕𝑡)
2

𝖲𝗍𝖺𝖻𝜌𝑡 (𝑓)
1∕𝑡 whenever 𝑡 = 2𝑑 with 𝑑 ∈ ℕ.

Proof. By Cauchy–Schwarz, we have

𝖲𝗍𝖺𝖻𝜌(𝑓) = ⟨𝑓, 𝑇𝜌𝑓⟩ ⩽ ‖𝑓‖2‖‖‖𝑇𝜌𝑓‖‖‖2 = ‖𝑓‖2√𝖲𝗍𝖺𝖻𝜌2(𝑓).

The lemma follows by iterating this estimate. □

We also need the following well-known formulae for the noise operator and stability.

Fact 5.12. T𝜌𝑓(𝑥) =
∑

𝑆⊂[𝑛]

𝜌|𝑆|𝑓=𝑆(𝑥) and 𝖲𝗍𝖺𝖻𝜌(𝑓) = ∑
𝑆⊂[𝑛]

𝜌|𝑆|‖𝑓=𝑆‖2
2
.

The following lemma reduces showing small set expansion of a general chain 𝑈 to that of the
noise operator, provided that we have a uniform lower bound on the absolute spectral gap in each
coordinate.

Lemma 5.13. Let𝑈 =
∏𝑛

𝑖=1 𝑈𝑖 be a product chain onΩ =
∏𝑛

𝑖=1 Ω𝑖 with each 𝜆∗(𝑈𝑖) ⩾ 𝜆. Then for
all 𝑓 ∶ Ω → ℝ, we have ⟨𝑓,𝑈𝑓⟩ ⩽ 𝖲𝗍𝖺𝖻1−𝜆(𝑓).

Proof. We use the orthogonal decomposition 𝑓 =
∑

𝑆⊂[𝑛] 𝑓
=𝑆 . We note that ⟨𝑓=𝑆,𝑈𝑓=𝑇⟩ can only

be non-zero if 𝑆 = 𝑇, as 𝑈𝑓=𝑇 only depends on coordinates in 𝑇. Thus,

⟨𝑓,𝑈𝑓⟩ = ∑
𝑆⊂[𝑛]

⟨𝑓=𝑆,𝑈𝑓=𝑆⟩ ⩽ ∑
𝑆⊂[𝑛]

‖‖‖𝑓=𝑆‖‖‖2‖‖‖𝑈𝑓=𝑆
‖‖‖2.

Applying Claim 5.10 and Fact 5.12 completes the proof. □

By Lemma 5.13, to prove Theorem 5.3, it remains to prove the following corresponding global
small set expansion theorem for the noise operator.

Theorem 5.14. For every 𝜌 < 1, there is 𝑐 > 0 such that if 𝑓 ∶ Ω → {0, 1} is (log(1∕𝜇), 𝜇1−𝑐)-global
with 𝜇 ∈ (0, 1∕16), then 𝖲𝗍𝖺𝖻𝜌(𝑓) ⩽ 𝜇1+𝑐.

A key ingredient in the proof is the following lemma proved in the next subsection via global
hypercontractivity. Firstly we introduce some notation. Given an orthogonal decomposition 𝑓 =∑

𝑆⊂[𝑛] 𝑓
=𝑆 and 𝑟 ⩾ 0, we write 𝑓⩽𝑟 =

∑|𝑆|⩽𝑟 𝑓=𝑆 and 𝑓>𝑟 = 𝑓 − 𝑓⩽𝑟. We say that 𝑓 has degree (at
most) 𝑟 if 𝑓 = 𝑓⩽𝑟.

Lemma 5.15. For any 𝜌 ⩽ 1∕80, if 𝑓∶ Ω → ℝ is (𝑟, 𝛽)-global of degree 𝑟, then

‖‖‖T𝜌𝑓‖‖‖4 ⩽ 𝛽1∕4‖𝑓‖1∕2
2

.

Proof of Theorem 5.14. We start by showing that there exist 𝜌′, 𝑐′ > 0 such that the statement
of the theorem holds with (𝜌′, 𝑐′) in place of (𝜌, 𝑐). We take 𝜌′ = 2−200 and 𝑐′ = 1∕100. Firstly
we note that by globalness (applied with no restriction), we have 𝜇(𝑓) = 𝔼[𝑓2] ⩽ 𝜇0.99. Let 𝑑 =
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⌊𝑐′ log(1∕𝜇)⌋. We have
𝖲𝗍𝖺𝖻𝜌(𝑓) =

∑
𝑆⊂[𝑛]

𝜌|𝑆|‖‖‖𝑓=𝑆‖‖‖22 ⩽ ∑
|𝑆|⩽𝑑 𝜌

|𝑆|‖‖‖𝑓=𝑆‖‖‖22 + 𝜌𝑑+1
‖‖‖𝑓>𝑑‖‖‖22 = ⟨𝑓, 𝑇𝜌𝑓⩽𝑑⟩ + 𝜌𝑑+1

‖‖‖𝑓>𝑑‖‖‖22.
Clearly, 𝜌𝑑+1‖𝑓>𝑑‖2

2
⩽ 2−2 log(1∕𝜇) = 𝜇2. By Holder’s inequality,

⟨𝑓, 𝑇𝜌𝑓⩽𝑑⟩ ⩽ ‖𝑓‖4∕3‖‖‖𝑇𝜌𝑓⩽𝑑‖‖‖4 ⩽ 𝜇0.99‖𝑓‖1∕2
2

⩽ (𝜇0.99)5∕4,

using Lemma 5.15 and ‖𝑓‖4∕3 = 𝜇(𝑓)3∕4 (as 𝑓 is Boolean), so 𝖲𝗍𝖺𝖻𝜌(𝑓) ⩽ (𝜇0.99)5∕4 + 𝜇2 ⩽ 𝜇1.01.
Now we will deduce the full version of Theorem 5.14, that is, for any 𝜌 < 1, there is 𝑐 > 0

such that the statement holds. We let 𝑑 = ⌈log(𝜌∕𝜌′)⌉, 𝑡 = 2𝑑 and 𝑐 = 𝑐′∕4𝑡. By Lemma 5.11, we
have 𝖲𝗍𝖺𝖻𝜌(𝑓) ⩽ ‖𝑓‖2(1−1∕𝑡)

2
𝖲𝗍𝖺𝖻𝜌𝑡 (𝑓)

1∕𝑡. We have 𝖲𝗍𝖺𝖻𝜌𝑡 (𝑓) ⩽ 𝖲𝗍𝖺𝖻𝜌′(𝑓) by monotonicity of 𝜌 ↦

𝖲𝗍𝖺𝖻𝜌(𝑓) and 𝜌𝑡 ⩽ 𝜌′. By globalness 𝜇(𝑓) = 𝔼[𝑓2] ⩽ 𝜇1−𝑐, so 𝖲𝗍𝖺𝖻𝜌(𝑓) ⩽ 𝜇(1−𝑐)(1−1∕𝑡)+(1+𝑐
′)∕𝑡 =

𝜇1−𝑐+(𝑐
′+𝑐)∕𝑡 ⩽ 𝜇1+𝑐. □

5.5 Noise stability via global hypercontractivity

As mentioned in the previous subsection, in this subsection, we will prove the noise stability esti-
mate Lemma 5.15. We start with some definitions required to state our global hypercontractivity
inequality. As before, we consider a product measure 𝜈 =

∏𝑛
𝑖=1 𝜈𝑖 on Ω =

∏𝑛
𝑖=1 Ω𝑖 . For 𝑆 ⊂ [𝑛],

we let 𝜈𝑆 denote the product measure
∏

𝑖∈𝑆 𝜈𝑖 on Ω𝑆 =
∏

𝑖∈𝑆 Ω𝑖 .
Given 𝑓 ∈ 𝐿2(Ω, 𝜈)with orthogonal decomposition 𝑓 =

∑
𝑆⊂[𝑛] 𝑓

=𝑆 and 𝑇 ⊂ [𝑛], the Laplacian
of 𝑓 according to 𝑇 is the function L𝑇𝑓∶ [𝑚]𝑛 → ℝ defined by

(L𝑇𝑓)(𝑥) =
∑
𝑆⊇𝑇

𝑓=𝑆(𝑥).

If 𝑇 is a singleton {𝑖}, we denote the Laplacian by L𝑖 . We also require the following alternative,
more combinatorial, definition of the Laplacian. We let 𝐿∅ be the identity operator. For 𝑖 ∈ [𝑛], it
is easily noted that

(L𝑖𝑓)(𝑥) = 𝑓(𝑥) − 𝔼
𝐚𝑖∼𝜈𝑖

[
𝑓(𝑥1, … , 𝑥𝑖−1, 𝐚𝑖, 𝑥𝑖+1, … , 𝑥𝑛)

]
.

Then, for 𝑇 = {𝑖1, … , 𝑖𝑑} with 𝑑 ⩾ 2, one can show that 𝐿𝑇 may be defined alternatively by com-
position, that is, L𝑇𝑓 = L𝑖𝑑 (L𝑖𝑑−1(… (L𝑖1𝑓)…)). It is not hard to check that this definition does not
depend on the order in which the Laplacians are taken and is equivalent to the definition via
orthogonal decompositions.
In the next subsection, we will prove the following refined version of the global hypercontrac-

tive inequality on product spaces from [16]. For simplicity, we only consider the version required
for our purposes, where we bound the 4-norm after applying noise by a function of the 2-norms
of the Laplacians.
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Theorem 5.16. Let (Ω, 𝜈) be a finite product space. Then for every 𝑓∶ Ω → ℝ and 𝜌 ⩽ 1∕160, we
have

‖‖‖T𝜌𝑓‖‖‖44 ⩽ ∑
𝑆⊂[𝑛]

𝔼
𝐲∼𝜈𝑆

[‖‖‖(L𝑆𝑓)𝑆→𝐲
‖‖‖42

]
.

Along with Theorem 5.16, the proof of Lemma 5.15 also requires the following consequence of
globalness for norms of Laplacians.

Claim 5.17. Let 𝑓∶ Ω → ℝ be (𝑟, 𝜀)-global, 𝑇 ⊂ [𝑛] with |𝑇| ⩽ 𝑟 and 𝑦 ∈ [𝑚]𝑇 . Then‖(L𝑇𝑓)𝑇→𝑦‖2 ⩽ 2|𝑇|√𝜀.

The proof requires the following alternative formula for Laplacians.

Claim 5.18. For any 𝑓∶ Ω → ℝ, 𝑇 ⊂ [𝑛], we have (L𝑇𝑓)(𝑧) =∑
𝑆⊂𝑇(−1)

|𝑆|𝔼𝐚∼𝜈𝑆 [𝑓(𝑥𝑆 = 𝐚, 𝑥
𝑆
= 𝑧

𝑆
)].

Proof. We argue by induction on |𝑇|. The claim is immediate from the definition for |𝑇| = 0, 1.
Let |𝑇| = 𝑑 + 1 ⩾ 2, and write 𝑇 = 𝑇′ ∪ {𝑖} with |𝑇′| = 𝑑. Then by definition and the induction
hypothesis,

(L𝑇𝑓)(𝑧) = L𝑖(L𝑇′𝑓)(𝑧) = L𝑖
∑
𝑆⊂𝑇′

(−1)|𝑆| 𝔼
𝐚∼𝜈𝑆

[
𝑓(𝑥𝑆 = 𝐚, 𝑥

𝑆
= 𝑧

𝑆
)
]
.

By linearity and the definition of L𝑖 , we deduce

(L𝑇𝑓)(𝑧) =
∑
𝑆⊂𝑇′

(−1)|𝑆| 𝔼
𝐚∼𝜈𝑆

[
𝑓(𝑥𝑆 = 𝐚, 𝑥

𝑆
= 𝑧

𝑆
) − 𝔼

𝐛∼𝜈𝑖

[
𝑓(𝑥𝑆 = 𝐚, 𝑥𝑖 = 𝐛, 𝑥

𝑆∪{𝑖}
= 𝑧

𝑆∪{𝑖}
)
]]
.

The claim follows as (𝐚, 𝐛) is distributed according to 𝜈𝑆∪{𝑖}. □

Proof of Claim 5.17. By Claim 5.18 and globalness, we have

(L𝑇𝑓)𝑇→𝑦(𝑧) =
∑
𝑆⊂𝑇

(−1)|𝑆| 𝔼
𝐚∼𝜈𝑆

[
𝑓(𝑥𝑆 = 𝐚, 𝑥𝑇⧵𝑆 = 𝑦𝑇⧵𝑆, 𝑥𝑇 = 𝑧𝑇)

]
=

∑
𝑆⊂𝑇

(−1)|𝑆| 𝔼
𝐚∼𝜈𝑆

[
𝑓𝑇→(𝐚,𝑦𝑇⧵𝑆)

(𝑧𝑇)
]
,

and taking norm over 𝑧 and using the triangle inequality yields

‖‖‖(L𝑇𝑓)𝑇→𝑦
‖‖‖2 ⩽ ∑

𝑆⊂𝑇

𝔼
𝐚∼𝜈𝑆

[‖‖‖𝑓𝑇→(𝐚,𝑦𝑇⧵𝑆)
‖‖‖2] ⩽ 2|𝑇|√𝜀. □

We conclude this subsection with our estimate for noise stability of global functions.
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Proof of Lemma 5.15. Suppose 𝑓∶ Ω → ℝ is (𝑟, 𝛽)-global of degree 𝑟. Let 𝜌 = 1∕80. By
Theorem 5.16,

‖‖‖T𝜌∕2𝑓‖‖‖44 ⩽ ∑
𝑆⊂[𝑛]

𝔼
𝐲∼𝜈𝑆

[‖‖‖(L𝑆T1∕2𝑓)𝑆→𝐲
‖‖‖42

]
.

By assumption on 𝑓, we only need to consider |𝑆| ⩽ 𝑟, and for such 𝑆 by Claim 5.17, we have‖(L𝑆𝑓)𝑆→𝑦‖2 ⩽ 2|𝑆|√𝛽 for all 𝑦 ∈ Ω𝑆 . As ‖(L𝑆T1∕2𝑓)𝑆→𝑦‖22 ⩽ 4−|𝑆|‖(L𝑆𝑓)𝑆→𝑦‖22, we deduce
‖‖‖T𝜌∕2𝑓‖‖‖44 ⩽ 𝛽

∑
𝑆⊂[𝑛]

𝔼
𝐲∼𝜈𝑆

[‖‖‖(L𝑆T1∕2𝑓)𝑆→𝐲
‖‖‖22

]
.

We estimate each summand using Parseval as

𝔼
𝐲∼𝜈𝑆

[‖‖‖(L𝑆T1∕2𝑓)𝑆→𝐲
‖‖‖22

]
=

∑
𝑇⊇𝑆

4−|𝑇|‖‖‖𝑓=𝑇‖‖‖22 ⩽ ∑
𝑇⊇𝑆

2−|𝑇|‖‖‖𝑓=𝑇‖‖‖22,
so 𝛽−1

‖‖‖T𝜌∕2𝑓‖‖‖44 ⩽ ∑
𝑆⊂[𝑛]

∑
𝑇⊇𝑆

2−|𝑇|‖‖‖𝑓=𝑇‖‖‖22 = ∑
𝑇⊂[𝑛]

‖‖‖𝑓=𝑇‖‖‖22 = ‖𝑓‖22.
□

5.6 Global hypercontractivity

We conclude this section by proving Theorem 5.16, via our global hypercontractivity inequal-
ity from [16]. We start by stating this inequality, for which we require some notation. Let
𝐙1, … , 𝐙𝑛 be independent random variables, each with mean 0, variance 1 and 𝔼[|𝐙𝑖|4] ⩽
𝜎−2
𝑖
. For 𝑆 ⊂ [𝑛], we let 𝐙𝑆 =

∏
𝑖∈𝑆 𝐙𝑖 and 𝜎𝑆 =

∏
𝑖∈𝑆 𝜎𝑖 . We consider multi-linear functions

g(𝐙1, … , 𝐙𝑛) =
∑

𝑆⊂[𝑛] 𝑎𝑆𝐙𝑆 with all 𝑎𝑆 ∈ ℝ. For 𝑆 ⊂ [𝑛], the discrete derivative of g at 𝑆 is
𝜕𝑆g(𝐙) =

1

𝜎𝑆

∑
𝑇⊇𝑆 𝑎𝑇𝐙𝑇⧵𝑆 .

Theorem 5.19 Theorem 7.1, [16]. In the above set up, for 𝜌 ∈ [0, 1∕16], we have ‖T𝜌g‖44 ⩽∑
𝑆⊂[𝑛] 𝜎

2
𝑆
‖𝜕𝑆g‖42.

We will reduce Theorem 5.16 to Theorem 5.19 as follows. Suppose that (Ω, 𝜈) is a prod-
uct space with Ω = [𝑚]𝑛 and 𝑓 ∈ 𝐿2(Ω, 𝜈). We will simulate 𝑓 via a function g ∶ {0, 1}𝑛𝑚 → ℝ

which takes 𝑛𝑚 biased random bits {𝐳𝑖,𝑗}𝑖∈[𝑛],𝑗∈[𝑚]
, where the bias of 𝐳𝑖,𝑗 is 𝑝𝑖,𝑗 = 𝜈𝑖(𝑗)∕4. Let

𝜎𝑖,𝑗 =
√
𝑝𝑖,𝑗(1 − 𝑝𝑖,𝑗) and 𝜒𝑖,𝑗(𝑧𝑖,𝑗) = (𝑧𝑖,𝑗 − 𝑝)∕𝜎𝑖,𝑗 . We note that 𝜒𝑖,𝑗 satisfy the conditions in the

above setup, that is, 𝔼𝜒𝑖,𝑗 = 0, 𝔼𝜒2
𝑖,𝑗

= 1, 𝔼𝜒4
𝑖,𝑗

⩽ 𝜎−2
𝑖,𝑗
. For any 𝑆 ⊂ [𝑛] and 𝑥 ∈ Ω𝑆, we define the

corresponding character 𝜒𝑆,𝑥 ∶ {0, 1}𝑛𝑚 → ℝ for 𝑧 = (𝑧𝑖,𝑗 ∶ 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚]) by setting 𝜒𝑆,𝑥(𝑧) =∏
𝑖∈𝑆 𝜒𝑖,𝑥𝑖

(𝑧𝑖,𝑥𝑖 ); we also write 𝜎𝑆,𝑥 =
∏

𝑖∈𝑆 𝜎𝑖,𝑥𝑖 . We then define g ∶ {0, 1}𝑛𝑚 → ℝ by setting

g(𝑧) =
∑
𝑆⊂[𝑛]

∑
𝑥∈Ω𝑆

𝜎𝑆,𝑥
|||𝑓=𝑆(𝑥)|||𝜒𝑆,𝑥(𝑧).

Claim 5.20. ‖T𝜌𝑓‖44 ⩽ ‖T4𝜌g‖44.
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Proof. Let  be the set of (𝑆1, 𝑆2, 𝑆3, 𝑆4)where each 𝑆𝛼 ⊂ [𝑛] and |{𝛼 ∶ 𝑖 ∈ 𝑆𝛼}| ≠ 1 for all 𝑖 ∈ [𝑛].
Expanding the definition of the left-hand side, we can write

‖‖‖T𝜌𝑓‖‖‖44 = 𝔼
𝐱∼𝜈

⎡⎢⎢⎣
∑

(𝑆1,𝑆2,𝑆3,𝑆4)∈

𝜌|𝑆1|+⋯+|𝑆4|𝑓=𝑆1(𝐱)⋯𝑓=𝑆4(𝐱)
⎤⎥⎥⎦.

Also, if 𝑆 = (𝑆1, … , 𝑆4) ∈  and 𝑥 ∈ Ω⋃
𝑆 , then 𝔼[

∏4
𝛼=1 𝜎𝑆𝛼,𝑥𝑆𝛼

𝜒𝑆𝛼,𝑥𝑆𝛼
] ⩾

∏
𝑖∈

⋃
𝑆(𝑝𝑖,𝑥𝑖 ∕4) =

16−|⋃ 𝑆|𝜈⋃ 𝑆(𝑥), using 𝔼[(𝜎𝑖,𝑗𝜒𝑖,𝑗)
𝑞] ⩾ 𝑝𝑖,𝑗∕4when 𝑞 ∈ {2, 3, 4}, so expanding the right-hand side

‖‖‖T4𝜌g‖‖‖44 ⩾ ∑
𝑆=(𝑆1,𝑆2,𝑆3,𝑆4)∈

∑
𝑥∈Ω𝑆

(4𝜌)|𝑆1|+⋯+|𝑆4||||𝑓=𝑆1(𝑥)|||⋯ |||𝑓=𝑆4(𝑥)|||16−|⋃ 𝑆|𝜈⋃ 𝑆(𝑥).

As |⋃ 𝑆| ⩽ (|𝑆1| +⋯ + |𝑆4|)∕2, the claim follows. □

To bound ‖T4𝜌g‖44, we apply (4𝜌)-biased hypercontractivity (Theorem 5.19), which is valid if
4𝜌 ⩽ 1∕16. As 𝜎2

𝑆,𝑥
⩽ 𝜈𝑆(𝑥), we get ‖T4𝜌g‖44 ⩽ ∑

𝑆⊂[𝑛],𝑥∈Ω𝑆
𝜈𝑆(𝑥)‖𝜕(𝑆,𝑥)g‖42. For any 𝑆 ⊂ [𝑛] and

𝑥 ∈ Ω𝑆 , we have‖‖‖𝜕(𝑆,𝑥)g‖‖‖22 = 1

𝜎2
𝑆,𝑥

∑
𝑇⊇𝑆

∑
𝑦∈Ω𝑇⧵𝑆

𝜎2
(𝑇,𝑥◦𝑦)𝑓

=𝑇(𝑥, 𝑦)2 ⩽
∑
𝑇⊇𝑆

𝔼
𝐲∼𝜈𝑇⧵𝑆

[
𝑓=𝑇(𝑥, 𝐲)2

]
,

as 𝜎−2
𝑆,𝑥

𝜎2
(𝑇,𝑥◦𝑦)

= 𝜎2
𝑇⧵𝑆,𝑦

⩽ 𝜈𝑇⧵𝑆(𝑦). By Fact 5.8 and Parseval ,we get ‖𝜕(𝑆,𝑥)g‖22 ⩽ ‖(L𝑆𝑓)𝑆→𝑥‖22, so
‖‖‖T𝜌𝑓‖‖‖44 ⩽ ‖‖‖T4𝜌g‖‖‖44 ⩽ ∑

𝑆⊂[𝑛],𝑥∈Ω𝑆

𝜈𝑆(𝑥)
‖‖(L𝑆𝑓)𝑆→𝑥

‖‖42 = ∑
𝑆⊂[𝑛]

𝔼
𝐱∼𝜈𝑆

[‖‖(L𝑆𝑓)𝑆→𝐱
‖‖42].

This proves Theorem 5.16.

6 MODERATE ALPHABETS

This section contains the proof of our main result Theorem 1.1 in the case of moderate alphabets,
that is, 𝑚 > 𝑚0(𝑡) is large, but not huge (exponential in 𝑛). As discussed previously, the strategy
is inspired by that for small 𝑚, but we must settle for a regularity lemma (Lemma 5.6) that only
provides parts which are uncapturable, so the proof of the junta approximation theorem becomes
considerably harder.
As in the case of small𝑚, we want to show that the restrictions defining the regularity decom-

position forma 𝑡-intersecting family, soweneed to find cross-agreements of any fixed size between
two pieces of the decomposition. Again we can reduce to finding cross disagreements by taking
restrictions, but this reduction is not immediate as with the stronger pseudorandomness condi-
tion in the first part, as uncapturability is not preserved by arbitrary restrictions. We therefore
start in the first subsection by proving a ‘fairness proposition’, showing that random restrictions
are unlikely to significantly reduce the measure of a code if it is non-negligible (for which the
threshold is such that this is only useful when𝑚 is not huge). In the second subsection, we then
complete the proof of the main theorem for moderate 𝑚 assuming the junta approximation the-
orem, and of the junta approximation theorem assuming the existence of fixed cross-agreements
between non-negligible uncapturable codes.
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The idea for finding cross disagreements is to apply the global small set expansion theorem from
the previous section to show that for any code of small measure, we can substantially increase its
measure by a combination of taking restrictions and applying a gluing operation, in which we
pass to a smaller alphabet by randomly identifying symbols in each coordinate. Here we note that
any cross disagreement after gluing must come from a cross disagreement before gluing (this is
why we will reduce to disagreements, as we do not have any corresponding statement for finding
cross-agreements of some fixed non-zero size). By applying Hoffman’s bound to the glued codes
rather than the original codes, we thus obtain a much stronger bound on the original measures.
We develop the theory of gluings in the third subsection, which we use for measure boosting in

the fourth subsection. We then prove the existence of fixed cross-agreements in the final subsec-
tion. The concept of globalness is fundamental throughout, as it is needed for measure boosting,
and also to maintain some pseudorandomness condition throughout the repeated restrictions
needed for measure boosting. Indeed, as uncapturability is not preserved by arbitrary restrictions,
we need a careful combination of taking restrictions and upgrading uncapturability to globalness.
Wemust also take care to remove extraneous agreements that may be introduced by these restric-
tions, which is possible as globalness implies uncapturability, and the definition of uncapturability
is designed for this argument.

6.1 The fairness proposition

Here we prove the following ‘fairness proposition’, analogous to that proved for hypergraphs by
Keller and Lifshitz [19]. The proofs are quite similar, butwe include the details for the convenience
of the reader.

Proposition 6.1. For any 𝛿 > 0 and 𝑠 ∈ ℕ, there is 𝐶 > 0 such that for any  ⊂ [𝑚]𝑛 with 𝜇() ⩾
𝑒−𝑛∕𝐶 , for uniformly random 𝐒 ∈

([𝑛]
𝑠

)
and 𝐱 ∈ [𝑚]𝐒, we have ℙ[𝜇(𝐒→𝐱) ⩾ (1 − 𝛿)𝜇()] ⩾ 1 − 𝛿.

Proof. Firstly we consider 𝑠 = 1. For each 𝑖 ∈ [𝑛], let 𝑉𝑖 = {𝑎 ∈ [𝑚] |𝜇(𝑥𝑖→𝑎) < (1 − 𝛿)𝜇()}.
We suppose for contradiction that the probability of the complementary event is too large, that

is, that

Pr
𝐢∈[𝑛],𝐚∈[𝑚]

[𝐚 ∈ 𝑉𝐢] =
1

𝑛𝑚

𝑛∑
𝑖=1

||𝑉𝑖
|| > 𝛿.

Let 𝐼 = {𝑖 ∈ [𝑛] ||𝑉𝑖| ⩾ 𝛿

2
𝑚}. We note that 1

𝑛𝑚

∑
𝑖∈𝐼 |𝑉𝑖| ⩾ 𝛿∕2. We consider uniformly random

𝐱 ∈ [𝑚]𝑛 and let 𝑍 = 𝑍(𝐱) = |{𝑖 ∈ 𝐼 ∶ 𝐱𝑖 ∈ 𝑉𝑖}|. Then 𝑍(𝐱) = ∑
𝑖∈𝐼 1𝐱𝑖∈𝑉𝑖

is a sum of independent
indicator variables with mean

𝔼𝑍 =
∑
𝑖∈𝐼

|𝑉𝑖|∕𝑚 ⩾ 𝛿𝑛∕2.

Let  ′ be the set of 𝑥 ∈  such that |{𝑖 ∈ 𝐼 ∶ 𝑥𝑖 ∈ 𝑉𝑖}| ⩾ (1 − 𝛿∕2)𝔼𝑍. By the Chernoff bound,
𝜇( ′) ⩾ 𝜇() − 𝑒Ω𝛿(𝑛) ⩾ (1 − 𝛿∕2)𝜇(), provided 𝐶 = 𝐶(𝛿, 𝑠) is sufficiently large.
Now we estimate 𝐸 ∶= 𝔼[𝑍(𝐱)1𝐱∈ ] in two ways. By definition of 𝑉𝑖 , we have

𝐸 = 𝑚−𝑛
∑
𝑥∈

∑
𝑖∈𝐼

1𝑥𝑖∈𝑉𝑖
= 𝑚−𝑛

∑
𝑖∈𝐼

∑
𝑎∈𝑉𝑖

|𝑥𝑖→𝑎| ⩽ 𝑚−1
∑
𝑖∈𝐼

|𝑉𝑖|(1 − 𝛿)𝜇() = (1 − 𝛿)𝜇()𝔼𝑍.



30 KEEVASH et al.

On the other hand, by definition of  ′, we have

𝐸 ⩾ 𝑚−𝑛
∑
𝑥∈ ′

(1 − 𝛿∕2)𝔼𝑍 = (1 − 𝛿∕2)𝜇( ′)𝔼𝑍 ⩾ (1 − 𝛿∕2)2𝜇()𝔼𝑍.

These bounds are contradictory, so the proof for 𝑠 = 1 is complete.
For 𝑠 ⩾ 2, we proceed by induction. We suppose that the statement holds for any 𝛿′ > 0 and

𝑠′ < 𝑠with𝐶 = 𝐶(𝛿′, 𝑠′).We let 𝛿′ = 𝛿∕2 and 𝑠′ = 𝑠 − 1 and consider uniformly random 𝐒′ ∈
([𝑛]
𝑠′

)
and 𝐱′ ∈ [𝑚]𝐒

′ . By the induction hypothesis, which can be applied if we choose𝐶(𝛿, 𝑠) > 𝐶(𝛿′, 𝑠′),
we have ℙ[𝐸1(𝐒′, 𝐱′)] ⩾ 1 − 𝛿′, where 𝐸1(𝐒′, 𝐱′) is the event that 𝜇(𝐒′→𝐱′) ⩾ (1 − 𝛿′)𝜇().
For each 𝑆′, 𝑥′ such that 𝐸1(𝑆′, 𝑥′) holds, we consider 𝑺 = 𝑆′ ∪ {𝒊} and 𝐱 = (𝑥′, 𝐚) ∈ [𝑚]𝐒 for

uniformly random 𝐢 ∈ [𝑛] ⧵ 𝑆′ and 𝐚 ∈ [𝑚]. We have 𝜇(𝑆′→𝑥′) ⩾ (1 − 𝛿′)𝜇() > 𝑒−(𝑛−𝑠+1)∕𝐶(𝛿
′,1)

for large 𝐶(𝛿, 𝑠). Applying the base case to 𝑆′→𝑥′ , we have ℙ[𝐸2(𝐒, 𝐱)] ⩾ 1 − 𝛿′, where 𝐸2(𝐒, 𝐱)
is the event that 𝜇(𝐒→𝐱) ⩾ (1 − 𝛿′)𝜇(𝑆′→𝑥′). With probability at least (1 − 𝛿′)2 ⩾ 1 − 𝛿 both 𝐸1
and 𝐸2 hold, and we then have 𝜇(𝑆→𝑥) ⩾ (1 − 𝛿′)2𝜇() ⩾ (1 − 𝛿)𝜇(), as required. □

6.2 Proof summary

In this subsection, we complete the proof of themain theorem formoderate𝑚 assuming the junta
approximation theorem, and of the junta approximation theorem assuming the existence of fixed
cross-agreements between non-negligible uncapturable codes. As 𝑚 is large, the largest ball is a
subcube of co-dimension 𝑡, so we can restate our main result for moderate𝑚 as follows.

Theorem 6.2. For any 𝑡 ∈ ℕ, there are𝑚0,𝑁 ∈ ℕ such that if𝑚 ⩾ 𝑚0, 𝑛 ⩾ 𝑁 log𝑚 and  ⊂ [𝑚]𝑛

is (𝑡 − 1)-avoiding, then | | ⩽ 𝑚𝑛−𝑡 , with equality only when  is a subcube of co-dimension 𝑡.

We will prove Theorem 6.2 assuming the following junta approximation theorem.

Theorem 6.3. For every 𝑡, 𝑘 ∈ ℕ, there exist 𝐶,𝑚0,𝑁 ∈ ℕ such that if  ⊂ [𝑚]𝑛 is (𝑡 − 1)-avoiding
with 𝑚 ⩾ 𝑚0 and 𝑛 ⩾ 𝑁 log𝑚, then there is a 𝑡-intersecting collection  of at most 𝐶 subcubes of
co-dimension at most 𝑘 such that 𝜇( ⧵

⋃
) ⩽ 𝐶𝑚−𝑘 .

Proof of Theorem 6.2. Suppose  ⊂ [𝑚]𝑛 is (𝑡 − 1)-avoiding with 𝜇() ⩾ 𝑚−𝑡. By Theorem 6.3,
there is a 𝑡-intersecting collection  of 𝑂𝑡(1) subcubes of co-dimension at most 𝑡 + 1 such
that 𝜇( ⧵

⋃
) ⩽ 𝑂𝑡(1)𝑚

−(𝑡+1). As  is 𝑡-intersecting, its subcubes all have co-dimension at
least 𝑡. Let ′ consist of the subcubes in  that have co-dimension 𝑡. Then 𝜇(

⋃
 ⧵

⋃
′) ⩽

𝑂𝑡(1)𝑚
−(𝑡+1). As𝑂𝑡(1)𝑚

−(𝑡+1) < 𝑚−𝑡 ⩽ 𝜇() for large𝑚, we must have′ ≠ ∅. Thus,′ consists
of exactly one subcube of co-dimension 𝑡, say  = {𝑥 ∈ [𝑚]𝑛 |𝑥1 = 1,… , 𝑥𝑡 = 1}.
Write𝜇([𝑡]→1) = 1 − 𝜀, where 0 ⩽ 𝜀 = 𝑚𝑡𝜇( ⧵ ) ⩽ 𝑚𝑡𝜇( ⧵ ) ⩽ 𝑂𝑡(𝑚

−1). Suppose for con-
tradiction 𝜀 > 0. We claim that 𝜀 > 𝑒−2𝑡𝑛∕𝑁 . To see this, fix any 𝑎 ∈  ⧵  (using 𝜀 > 0). Write |{𝑖 ∈
[𝑡] ∶ 𝑎𝑖 = 1}| = 𝑡 − 1 − 𝑠 with 𝑠 ⩾ 0, fix any 𝑆 ⊂ [𝑛] ⧵ [𝑡] with |𝑆| = 𝑠, and let 𝑅 = [𝑛] ⧵ ([𝑡] ∪ 𝑆).
For 𝑏 = 𝑎𝑆 and 𝑐 ∈ [𝑚]𝑅 with 𝖺𝗀𝗋(𝑐, 𝑎𝑅) = 0, we have (1𝑡, 𝑏, 𝑐) ∉  (since (1𝑡, 𝑏, 𝑐) and 𝑎 agree
on 𝑡 − 1 coordinates), giving | ⧵  | ⩾ (𝑚 − 1)𝑛−𝑡−𝑠, so 𝜀 ⩾ 𝑚−𝑠(1 − 1∕𝑚)𝑛−𝑡−𝑠 > 𝑒−𝑡𝑛∕𝑁−2𝑛∕𝑚 ⩾

𝑒−2𝑡𝑛∕𝑁 , as claimed.
As 𝜇( ⧵ ) ⩾ 𝑚−𝑡𝜀, by averaging, we can fix 1𝑡 ≠ 𝑥 ∈ [𝑚]𝑡 with 𝜇([𝑡]→𝑥) ⩾ 𝑚−𝑡𝜀. Write |{𝑖 ∈

[𝑡] ∶ 𝑎𝑖 = 1}| = 𝑡 − 1 − 𝑠 with 𝑠 ⩾ 0. Consider uniformly random 𝐒 ∈
([𝑛]⧵[𝑡]

𝑠

)
and 𝐲 ∈ [𝑚]𝐒. Let
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 = [𝑡]→1,𝐒→𝐲 and  = [𝑡]→𝑥,𝐒→𝐲 . By Markov’s inequality, ℙ[𝜇() ⩾ 1 − 2𝜀] ⩾ 1∕2. By Propo-
sition 6.1, ℙ[𝜇() ⩾ 0.9𝑚−𝑡𝜀] ⩾ 0.9. Thus, we can fix (𝑆, 𝑥) so that 𝜇() ⩾ 1 − 2𝜀 and 𝜇() ⩾

0.9𝑚−𝑡𝜀. However,  and  are cross intersecting, so this contradicts Theorem 2.3. Thus, 𝜀 = 0,
as required. □

We conclude this subsection by proving Theorem 6.3 assuming the following result on cross-
agreements between uncapturable codes, the proof of which will be the goal of the remainder of
this section.

Theorem 6.4. For any 𝑠, 𝑘 ∈ ℕ, there are 𝑟,𝑚0,𝑁 ∈ ℕ such that if𝑚 ⩾ 𝑚0, 𝑛 ⩾ 𝑁 log𝑚 and𝑗 ⊂

[𝑚][𝑛]⧵𝑅𝑗 are (𝑟,𝑚−𝑘)-uncapturable with |𝑅𝑗| ⩽ 𝑘 for 𝑗 = 1, 2 then there are 𝑥𝑗 ∈ 𝑗 for 𝑗 = 1, 2

with |{𝑖 ∈ [𝑛] ⧵ (𝑅1 ∪ 𝑅2) ∶ 𝑥
1
𝑖
= 𝑥2

𝑖
}| = 𝑠.

Proof of Theorem 6.3. Suppose 𝑟,𝑚,𝑁 ≫ 𝑡, 𝑘 and let  ⊂ [𝑚]𝑛 with 𝑛 ⩾ 𝑁 log𝑚 be (𝑡 − 1)-
avoiding. By Lemma 5.6 with 𝜀 = 1, there is a collection of at most 𝑟𝑘 subcubes of co-dimension
at most 𝑘 such that 𝑅→𝛼 is (𝑟,𝑚−𝑘)-uncapturable for each 𝐷 = 𝐷𝑅→𝛼 ∈  and 𝜇( ⧵

⋃
) ⩽

3𝑟𝑘+1𝑚−𝑘. Suppose for a contradiction that  is not 𝑡-intersecting. Then there are 𝐷𝑅𝑗→𝛼𝑗 ∈ 

for 𝑗 = 1, 2 (not necessarily different) that agree on 𝑡 − 1 − 𝑠 coordinates for some 𝑠 ⩾ 0. Let1 =

𝑅1→𝛼1 ⧵
⋃

𝑖∈𝑅2⧵𝑅1 𝐷𝑖→𝛼2
𝑖
⊂ [𝑚][𝑛]⧵𝑅

1 and define 2 similarly. Then 1, 2 are (𝑟 − 𝑘,𝑚−𝑘)-
uncapturable, so by Theorem6.4, there are𝑥𝑗 ∈ 𝑗 with |{𝑖 ∈ [𝑛] ⧵ (𝑅1 ∪ 𝑅2) ∶ 𝑥1

𝑖
= 𝑥2

𝑖
}| = 𝑠. But

then 𝖺𝗀𝗋((𝛼1, 𝑥1), (𝛼2, 𝑥2)) = 𝑡 − 1, which is a contradiction. □

6.3 Gluings and expansion

In this subsection, we introduce our gluing operation and establish a small set expansion property
for global codes under random gluings.

Definition 6.5. Let 𝑘 < 𝑚 ∈ ℕ and 𝑏 ⩾ 1. A 𝑏-balanced gluing from [𝑚] to [𝑘] is a function
𝜋∶ [𝑚] → [𝑘] such that |𝜋−1(𝑖)| ⩽ 𝑏𝑚∕𝑘 for all 𝑖 ∈ [𝑘]. We let Π𝑚,𝑘,𝑏 denote the set of all such
gluings. If 𝑏 = 1 (which is only possible when 𝑘 ∣ 𝑚), we may omit it from our notation.
A 𝑏-balanced gluing of [𝑚]𝑛 to [𝑘]𝑛 is a mapping 𝜋∶ [𝑚]𝑛 → [𝑘]𝑛 of the form 𝜋(𝑥1, … , 𝑥𝑛) =

(𝜋1(𝑥1), … , 𝜋𝑛(𝑥𝑛)) with 𝜋1, … , 𝜋𝑛 ∈ Π𝑚,𝑘,𝑏. We let Π
⊗𝑛
𝑚,𝑘,𝑏

denote the set of all such gluings; we
may omit the superscript if 𝑛 is clear from context. For  ⊂ [𝑚]𝑛 and 𝜋 ∈ Π⊗𝑛

𝑚,𝑘,𝑏
, we write 𝜋 =

𝜋() ⊂ [𝑘]𝑛.

Example 6.6. Consider the gluing 𝜋∶ [3]𝑛 → [2]𝑛 where for each 𝑖 ∈ [𝑛], we have 𝜋𝑖(1) =

𝜋𝑖(2) = 1 and 𝜋𝑖(3) = 2. Let  = {𝑥 ∈ [3]𝑛 ||{𝑖 |𝑥𝑖 = 1 ∨ 𝑥𝑖 = 2}| ⩾ 2

3
𝑛}. Then  has constant

measure in [3]𝑛, but 𝜋 has exponentially small measure in [2]𝑛.

This example indicates that we should make a careful choice of measure in [𝑘]𝑛 for gluing to
be useful.

Definition 6.7. Given a measure 𝜈 on [𝑚] and 𝜋 ∶ [𝑚] → [𝑘], we define a measure 𝜈𝜋 on [𝑘]

by 𝜈𝜋(𝑥) =
∑

𝑦∈𝜋−1(𝑥) 𝜈(𝑦). Given a product measure 𝜈 =
∏𝑛

𝑖=1 𝜈𝑖 on [𝑚]𝑛 and 𝜋 = (𝜋1, … , 𝜋𝑛)
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with each 𝜋𝑖 ∶ [𝑚] → [𝑘], we define a product measure 𝜈𝜋 =
∏𝑛

𝑖=1 𝜈
𝜋
𝑖
on [𝑘]𝑛 by (𝜈𝜋)𝑖 = (𝜈𝑖)

𝜋𝑖 =∑
𝑦∈𝜋−1

𝑖
(𝑥) 𝜈(𝑦) for each 𝑖. We say that 𝜈 is 𝑏-balanced if 𝜈𝑖(𝑥) ⩽ 𝑏∕𝑚 for all 𝑖 ∈ [𝑛] and 𝑥 ∈ [𝑚].

Claim 6.8. With notation as in Definition 6.7, for any  ⊂ [𝑚]𝑛, we have 𝜈𝜋(𝜋) ⩾ 𝜈().

Proof. For any 𝑦 ∈ [𝑘]𝑛, we have

𝜈𝜋(𝑦) =

𝑛∏
𝑖=1

𝜈𝜋𝑖 (𝑦𝑖) =

𝑛∏
𝑖=1

∑
𝑥𝑖∈𝜋

−1
𝑖
(𝑦𝑖)

𝜈𝑖(𝑥𝑖) =
∑

𝑥∈𝜋−1(𝑦)

𝑛∏
𝑖=1

𝜈𝑖(𝑥𝑖) =
∑

𝑥∈𝜋−1(𝑦)

𝜈(𝑥), so

𝜈𝜋(𝜋) =
∑

𝑦∈[𝑘]𝑛

𝜈𝜋(𝑦)1𝑦∈𝜋 =
∑

𝑦∈[𝑘]𝑛

∑
𝑥∈𝜋−1(𝑦)

𝜈(𝑥)1𝑦∈𝜋 ⩾
∑

𝑦∈[𝑘]𝑛

∑
𝑥∈𝜋−1(𝑦)

𝜈(𝑥)1𝑥∈ = 𝜈().

□

Now we establish global small set expansion for random balanced gluings.

Lemma 6.9. With notation as in Definitions 6.5 and 6.7, there is 𝑐 > 0 such that the following holds.
Let 𝑠, 𝑘,𝑚 ∈ ℕ be such that 𝑘 = 𝑚∕𝑠 and 𝑠 ⩾ 4, let 𝜈 be an 𝑠-balanced productmeasure on [𝑚]𝑛, and
suppose  ⊂ [𝑚]𝑛 is (log(1∕𝜇), 𝜇1−𝑐)-global with 𝜇 ∈ (0, 1∕16). Then 𝔼𝝅∈Π⊗𝑛

𝑚,𝑘
[𝜈𝝅(𝝅)] ⩾ 𝜈()1−𝑐.

Proof. The plan for the proof is to show𝔼𝝅[𝜈
𝝅(𝝅)] ⩾ 𝜈()2∕⟨𝑓, 𝑇𝑓⟩, where𝑓 is the characteristic

function of  and 𝑇 =
∏𝑛

𝑖=1 𝑇𝑖 is some product Markov chain on [𝑚]𝑛 with each 𝜆∗(𝑇𝑖) ⩾ 1∕6. By
Theorem 5.3, this will suffice to establish the lemma.
To construct 𝑇, we first consider for each 𝜋 the operator 𝑇↑

𝜋 ∶ 𝐿2([𝑚]𝑛, 𝜈) → 𝐿2([𝑘]𝑛, 𝜈𝜋)

defined by 𝑇↑
𝜋𝑓(𝑦) = 𝔼𝐱∼𝜈[𝑓(𝐱) |𝜋(𝐱) = 𝑦] for any 𝑦 ∈ [𝑘]𝑛. Note that 𝜈() = 𝜈(𝑓) = 𝜈𝜋(𝑇↑

𝜋𝑓),
as if 𝑦 ∼ 𝜈𝜋 and 𝑥 ∼ 𝜈 ∣ 𝜋(𝑥) = 𝑦, then 𝑥 ∼ 𝜈. Writing 𝑓𝜋 for the characteristic function of 𝜋, by
Cauchy–Schwarz, we can bound 𝜈()2 = 𝔼𝝅[𝜈

𝝅(𝑇↑
𝝅𝑓)]

2 as

𝔼
𝝅

[
𝜈𝝅(𝑇↑

𝝅𝑓)
]2

= 𝔼
𝝅

[⟨𝑇↑
𝝅𝑓, 𝑓

𝝅⟩𝜈𝝅 ]2 ⩽ 𝔼
𝝅

[‖‖‖𝑇↑
𝝅𝑓

‖‖‖2,𝜈𝝅‖‖𝑓𝝅‖‖2,𝜈𝝅 ]2 ⩽ 𝔼
𝝅

[‖‖‖𝑇↑
𝝅𝑓

‖‖‖22,𝜈𝝅
]
𝔼
𝝅

[‖‖𝑓𝝅‖‖22,𝜈𝝅 ].
We note that 𝔼𝝅[‖𝑓𝝅‖22,𝜈𝝅 ] = 𝔼𝝅[𝜈

𝝅(𝝅)] is the expression that we wish to bound. We write

𝔼
𝝅

[‖‖‖𝑇↑
𝝅𝑓

‖‖‖22,𝜈𝝅
]
= 𝔼

𝝅
𝐲∼𝜈𝝅
𝐱,𝐱′∼𝜈

[
𝑓(𝐱)𝑓(𝐱′) ||𝝅(𝐱) = 𝝅(𝐱′) = 𝒚

]
= ⟨𝑓, 𝑇𝑓⟩,

where𝑇 is the reversibleMarkov chain on [𝑚]𝑛 characterised by the property that two consecutive
states 𝐱, 𝐱′ of its stationary chain are distributed as independent samples from 𝜈 conditioned on
𝝅(𝐱) = 𝝅(𝐱′) = 𝒚, where 𝜋 ∼ Π⊗𝑛

𝑚,𝑘
and 𝑦 ∼ 𝜈𝝅 . We note that each of 𝐱, 𝐱′ then has marginal dis-

tribution 𝜈, which is therefore the stationary distribution. As coordinates are independent, we can
write𝑇 =

∏𝑛
𝑖=1 𝑇𝑖 as a product chain. To complete the proof, it remains to show each 𝜆∗(𝑇𝑖) ⩾ 1∕6.

By Lemma 5.7, it suffices to prove the following claim.

Claim 6.10. For any 𝑖 ∈ [𝑛] and 𝑎, 𝑏 ∈ [𝑚], we have 𝑝𝑖(𝑎, 𝑏) ∶= ℙ(𝐱𝑖 = 𝑎, 𝐱′
𝑖
= 𝑏) ⩾ 1

6
𝜈𝑖(𝑎)𝜈𝑖(𝑏).
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To see this, we expand out the definition to write

𝑝𝑖(𝑎, 𝑏) = 𝔼
𝝅

[ ∑
𝑗∈[𝑘]

𝜈𝝅𝑖 (𝑗)1𝝅(𝑎)=𝝅(𝑏)=𝑗
𝜈𝑖(𝑎)

𝜈𝝅
𝑖
(𝑗)

𝜈𝑖(𝑏)

𝜈𝝅
𝑖
(𝑗)

]
= 𝜈𝑖(𝑎)𝜈𝑖(𝑏)

∑
𝑗∈[𝑘]

𝔼
𝝅

[
1𝝅(𝑎)=𝝅(𝑏)=𝑗

1

𝜈𝝅
𝑖
(𝑗)

]
.

Each ℙ(𝝅(𝑎) = 𝝅(𝑏) = 𝑗) = 1

𝑘

𝑠−1

𝑚−1
⩾

1

2𝑘2
, so by Jensen’s inequality

𝑝𝑖(𝑎, 𝑏) ⩾
𝜈𝑖(𝑎)𝜈𝑖(𝑏)

2𝑘2

∑
𝑗∈[𝑘]

𝔼
𝝅

[
1

𝜈𝝅
𝑖
(𝑗)

|||||𝝅(𝑎)=𝑗,𝝅(𝑏)=𝑗

]
⩾
𝜈𝑖(𝑎)𝜈𝑖(𝑏)

2𝑘2

∑
𝑗∈[𝑘]

1

𝔼𝝅

[
𝜈𝝅
𝑖
(𝑗)

|||𝝅(𝑎) = 𝝅(𝑏) = 𝑗
] .

As 𝝅−1(𝑗) consists of 𝑎, 𝑏 and 𝑠 − 2 uniformly random elements from [𝑚] ⧵ {𝑎, 𝑏}, we have

𝔼
𝝅

[
𝜈𝝅𝑖 (𝑗)

|||𝝅(𝑎) = 𝝅(𝑏) = 𝑗
]
= 𝜈𝑖(𝑎) + 𝜈𝑖(𝑏) +

𝑠 − 2

𝑚 − 2

∑
𝑥≠𝑎,𝑏

𝜈𝑖(𝑥) ⩽ 𝜈𝑖(𝑎) + 𝜈𝑖(𝑏) +
𝑠

𝑚
⩽

3

𝑘
,

as each 𝜈𝑖(𝑦) ⩽ 𝑠∕𝑚 = 1∕𝑘. Thus, 𝑝𝑖(𝑎, 𝑏) ⩾
1

2𝑘2
𝜈𝑖(𝑎)𝜈𝑖(𝑏)

∑
𝑗∈[𝑘]

𝑘

3
= 1

6
𝜈𝑖(𝑎)𝜈𝑖(𝑏). This completes

the proof of the claim, and so of the lemma. □

6.4 Boosting measure

In this subsection, we apply the small set expansion properties of random gluings established in
the previous subsection to prove the following result, which shows that the measure of any small
code can be substantially increased via restrictions and gluings.

Lemma6.11. For every 𝜀 > 0, there is𝐶 > 0 such that for any𝑏-balanced productmeasure 𝜈 on [𝑚]𝑛

with 4 ⩽ 𝑏 ∈ ℕ and𝑚 > 𝑏3𝐶 , if  ⊂ [𝑚]𝑛 with 𝜈() = 𝜇 < 16−1∕𝜀, then there are 𝜋 ∈ Π𝑚,𝑚′,𝑏 with
𝑚′ > 𝑚∕𝑏2𝐶+1 and 𝛼 ∈ [𝑚′]𝑅, where 𝑅 ⊂ [𝑛] with |𝑅| < 𝐶 log(𝜇−1), such that 𝜈𝜋((𝜋)𝑅→𝛼) ⩾ 𝜇𝜀 .

Proof. We start by applying an arbitrary 𝑏-balanced gluing 𝜋0 ∈ Π⊗𝑛
𝑚,𝑚0,𝑏

, where𝑚0 is the largest
power of 𝑏 that is at most𝑚. Clearly, 𝜈0 ∶= 𝜈𝜋0 is 𝑏2-balanced. We let 0 = 𝜋0 ⊂ [𝑚0]

𝑆0 , where
𝑆0 = [𝑛]. By Claim 6.8, we have 𝜇0 ∶= 𝜈0(0) ⩾ 𝜇.
Now we apply the following iterative procedure for 𝑖 ⩾ 0. Given 𝑖 ⊂ [𝑚𝑖]

𝑆𝑖 , where 𝑆0 = [𝑛],
with 𝜈𝑖(𝑖) = 𝜇𝑖 ⩾ 𝜇 and 𝜈𝑖 is a 𝑏2-balanced product measure,

(1) if 𝜇𝑖 ⩾ 𝜇𝜀 we stop, otherwise,
(2) if 𝑖 is not (log(1∕𝜇𝑖), 𝜇1−𝑐𝑖

)-global according to 𝜈𝑖 , where 𝑐 > 0 is as in Lemma 6.9, then by
definition, we can choose𝑖+1 = (𝑖)𝑅𝑖→𝛼𝑖

⊂ [𝑚𝑖+1]
𝑆𝑖+1 with 𝜇𝑖+1 = 𝜈𝑖+1(𝑖+1) ⩾ 𝜇1−𝑐

𝑖
, where

𝑚𝑖+1 = 𝑚𝑖 , 𝜈𝑖+1 = 𝜈𝑖 and 𝑆𝑖+1 = 𝑆𝑖 ⧵ 𝑅𝑖 for some 𝑅𝑖 with |𝑅𝑖| ⩽ log(1∕𝜇𝑖) and 𝛼𝑖 ∈ [𝑚𝑖]
𝑅𝑖 ,

(3) otherwise, as 𝜇𝑖 < 𝜇𝜀 ⩽ 1∕16, by Lemma 6.9, we can choose 𝑖+1 = (𝑖)
𝜋𝑖 ⊂ [𝑚𝑖+1]

𝑆𝑖+1 with
𝑚𝑖+1 = 𝑚𝑖∕𝑏

2, 𝑆𝑖+1 = 𝑆𝑖 , 𝜋 ∈ Π𝑚𝑖,𝑚𝑖+1
and 𝜇𝑖+1 = 𝜈𝑖+1(𝑖+1) ⩾ 𝜇1−𝑐

𝑖
, where 𝜈𝑖+1 = 𝜈

𝜋𝑖
𝑖
.

If 𝐶 > 𝐶0(𝜀, 𝑐) is large, then this process terminates in at most 𝐶 steps, with some 𝑟 ⊂ [𝑚𝑟]
𝑆𝑟 ,

where 𝑚𝑟 ⩾ 𝑚∕(𝑏2𝐶+1) and 𝑆𝑟 = [𝑛] ⧵ 𝑅, where 𝑅 is the union of all sets 𝑅𝑖 in the process, so|𝑅| ⩽ 𝐶 log(1∕𝜇). For 𝑖 ⩾ 0, we let 𝜋𝑖→𝑟 ∈ Π𝑚𝑖,𝑚𝑟
be obtained by composing all 𝜋𝑗 with 𝑖 < 𝑗 ⩽ 𝑟.

We define 𝛼 ∈ [𝑚𝑟]
𝑅 by 𝛼𝑥 = 𝜋𝑖→𝑟((𝛼𝑖)𝑥) for 𝑥 ∈ 𝑅𝑖 . We let 𝜋 = 𝜋0→𝑟 and note that 𝜈𝜋 = 𝜈𝑟 and

𝑟 ⊂ (𝜋)𝑅→𝛼, so 𝜈𝜋((𝜋)𝑅→𝛼) ⩾ 𝜈𝑟(𝑟) ⩾ 𝜇𝜀. □
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6.5 Uncapturable codes agree

In this subsection, we prove our cross-agreement result for uncapturable codes, Theorem 6.4. As
demonstrated in Subsection 6.2, this will complete the proof of our main theorem for moderate
alphabets. We start with an outline of the proof. We are given two uncapturable codes 1 and
2 and need to find a cross-agreement of some fixed size 𝑠. Moreover, the coordinate sets may be
slightly different: we have𝑗 ⊂ [𝑚][𝑛]⧵𝑅𝑗 with |𝑅𝑗| ⩽ 𝑘 for 𝑗 = 1, 2.
Step 1: Globalness.Wewould like to restrict to a common coordinate set, but we cannot do so

immediately, as uncapturability is not closed under restrictions. We therefore start by upgrading
to globalness, while avoiding unwanted agreements. We find a global code′

1
obtained from1

by a small restriction. We obtain ′
2
from 2 by removing any agreements with this restriction,

using uncapturability to see that′
2
is not negligible, and find a global code2 obtained from′

2
by a small restriction. Thenwe obtain a global code1 from′

1
by removing any agreements with

this restriction.
Step 2: Fairness. By the fairness proposition, we find a common restriction of size 𝑠 by which

we obtain non-negligible global codes 1,2 from 1,2. It remains to show that 1,2 cannot
be cross-agreeing.
Step 3: Expansion. We apply measure boosting to find a gluing and restriction so that 2

becomes some ′
2
with dramatically larger measure. We obtain ′

1
from 1 by removing any extra

agreements created by the gluing and restriction, and then ′′
1
with non-negligible measure by

applying the gluing that was found for 2. We now find a gluing and restrictions for ′′
1
to get

from it a family ′′′
1
with dramatically larger measure than ′′

1
. We then remove these restrictions

as well as apply this gluing on ′
2
to get ′′′

2
whose measure not much smaller than that of ′

2
.

By averaging, we can apply further restrictions without reducing measures to obtain 1,2 on a
common set of coordinates.
Step 4: Hoffman bound. The measures of 1,2 are so large that they cannot be cross-

agreeing, so we find a cross disagreement, which corresponds to an agreement of size 𝑠 in the
original codes.
We proceed to the formal proof of Theorem 6.4.

Proof of Theorem 6.4. We are given (𝑟,𝑚−𝑘)-uncapturable 𝑗 ⊂ [𝑚][𝑛]⧵𝑅𝑗 with |𝑅𝑗| ⩽ 𝑘 for 𝑗 =
1, 2, and we need to find 𝑥𝑗 ∈ 𝑗 with |{𝑖 ∈ [𝑛] ⧵ (𝑅1 ∪ 𝑅2) ∶ 𝑥

1
𝑖
= 𝑥2

𝑖
}| = 𝑠, where 𝑛 ⩾ 𝑁 log𝑚

and 𝑟,𝑚,𝑁 ≫ 𝑠, 𝑘.
Step 1: Globalness. By uncapturability 𝜇(1) ⩾ 𝑚−𝑘, so by Lemma 5.5 with 𝛾 = 𝑚−1∕10 and

𝑟∕100𝑘 in place of 𝑟, we obtain ′
1
= (1)𝑅′

1
→𝛼′

1
that is (𝑟∕100𝑘, 𝜇(′

1
)∕𝛾)-global with 𝜇(′

1
) ⩾

𝜇(1), where |𝑅′
1
| ⩽ log1∕𝛾(1∕𝜇(1))𝑟∕100𝑘 ⩽ 𝑟∕10. We note that ′

2
∶= 2 ⧵

⋃
𝑖∈𝑅′

1
𝐷𝑖→𝛼′

1
(𝑖) is

(0.9𝑟,𝑚−𝑘)-uncapturable, so 𝜇(′
2
) ⩾ 𝑚−𝑘. From Lemma 5.5, we obtain 2 = (′

2
)𝑅′

2
→𝛼′

2
that

is (𝑟∕100𝑘, 𝜇(2)∕𝛾)-global with 𝜇(2) ⩾ 𝜇(′
2
), where |𝑅′

2
| ⩽ 𝑟∕10. In particular, 2 ≠ ∅, so

𝑅′
2
→ 𝛼′

2
has no agreement with 𝑅′

1
→ 𝛼′

1
. We let 1 = ′

1
⧵
⋃

𝑖∈𝑅′
2
𝐷𝑖→𝛼′

2
(𝑖). By Claim 5.4, ′

1
is

(𝛾𝑚∕4, 𝜇(′
1
)∕2)-uncapturable, so 𝜇(1) ⩾

1

2
𝜇(′

1
), which implies that1 is (𝑟∕100𝑘, 2𝜇(1)∕𝛾)-

global.
Step 2: Fairness.As 𝑛 ⩾ 𝑁 log𝑚 and𝑁 is large, we have 𝜇(1), 𝜇(2) ⩾

1

2
𝑚−𝑘 ⩾ 𝑒−𝑛∕𝐶 , where

𝐶 = 𝐶(𝑠, 0.1) is as in Proposition 6.1. Consider uniformly random 𝐒 ⊂ [𝑛] ⧵ (𝑅1 ∪ 𝑅′
1
∪ 𝑅2 ∪ 𝑅′

2
) of

size 𝑠 and 𝐳 ∈ [𝑚]𝐒. For large 𝑛, the distribution of 𝐒 has total variation distance 𝑜(1) from the uni-
form distribution on

([𝑛]⧵(𝑅1∪𝑅′1)
𝑠

)
. Thus, by Proposition 6.1, we have ℙ[𝜇((1)𝐒→𝐳) ⩾ 0.9𝜇(1)] ⩾
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0.9 − 𝑜(1), and similarly for 2. Thus, we can fix 𝑆 and 𝑧 so that both 𝑗 = (𝑗)𝑆→𝑧 have 𝜇(𝑗) ⩾
1

2
𝜇(𝑗), so are (𝑟∕100𝑘, 4𝜇(𝑗)∕𝛾)-global.
Step 3: Expansion. By Lemma 6.11 applied to 2 with 𝜀 = 1∕3𝑘 and 𝑏 = 4, there are

𝜋2 ∈ Π𝑚,𝑚2,4
with 𝑚2 = Ω𝑘(𝑚), 𝛼′′

2
∈ [𝑚2]

𝑅′′
2 , where 𝑅′′

2
⊂ [𝑛] ⧵ (𝑅2 ∪ 𝑅′

2
∪ 𝑆) with |𝑅′′

2
| <

𝑂𝑘(log𝑚) ≪ 𝑛, such that ′
2
∶= (

𝜋2
2
)𝑅′′

2
→𝛼′′

2
has 𝜇𝜋2(′

2
) ⩾ 1∕

√
𝑚. Let

′
1 = 1 ⧵

⋃
{𝐷𝑖→𝑎 ∶ 𝑖 ∈ 𝑅′′2 , (𝜋2)𝑖(𝑎) = (𝛼′′2 )𝑖}.

By Claim 5.4, 1 is (𝛾𝑚∕16, 𝜇(1)∕2)-uncapturable, so 𝜇(′
1
) ⩾ 1

2
𝜇(1). Let ′′

1
= (′

1
)𝜋2 . By

Claim 6.8, we have 𝜇𝜋2(′′
1
) ⩾ 𝜇(′

1
) ⩾ 1

8
𝑚−𝑘.

By Lemma 6.11 applied to ′′
1
under the 4-balancedmeasure 𝜇𝜋2 with 𝜀 = 1∕3𝑘 and 𝑏 = 4, there

are 𝜋1 ∈ Π𝑚2,𝑚1,4
with 𝑚1 = Ω𝑘(𝑚), 𝛼′′

1
∈ [𝑚1]

𝑅′′
1 , where 𝑅′′

1
⊂ [𝑛] ⧵ (𝑅1 ∪ 𝑅′

1
∪ 𝑆) with |𝑅′′

1
| <

𝑂𝑘(log𝑚) ≪ 𝑛, such that ′′′
1

∶= ((′′
1
)𝜋1)𝑅′′

1
→𝛼′′

1
has 𝜇𝜋1◦𝜋2(′′′

1
) ⩾ 1∕

√
𝑚. Let

′′
2 = ′

2 ⧵
⋃

{𝐷𝑖→𝑎 ∶ 𝑖 ∈ 𝑅′′1 , (𝜋1)𝑖(𝑎) = (𝛼′′1 )𝑖}.

Then 𝜇𝜋2(′′
2
) ⩾ 𝜇(′

2
) − 𝑂𝑘(𝑚

−1 log𝑚) ⩾ 1∕2
√
𝑚. Let ′′′

2
= (′′

2
)𝜋1 . By Claim 6.8, we have

𝜇𝜋1◦𝜋2(′′′
2
) ⩾ 𝜇(′′

2
) ⩾ 1∕2

√
𝑚.

Step 4: Hoffman bound. By averaging, we can choose restrictions 𝑗 ⊂ [𝑚1]
[𝑛]⧵𝑅 of ′′′

𝑗

for 𝑗 = 1, 2 where 𝑅 = 𝑅1 ∪ 𝑅′
1
∪ 𝑅′′

1
∪ 𝑅2 ∪ 𝑅′

2
∪ 𝑅′′

2
∪ 𝑆 such that both 𝜈(𝑗) ⩾ 𝜈(′′′

𝑗
) ⩾ 1∕2

√
𝑚,

where 𝜈 = 𝜇𝜋1◦𝜋2 is 16-balanced. By construction, the elements of 𝑗 for 𝑗 = 1, 2 are of the
form 𝜋1𝜋2(𝑥

𝑗

[𝑛]⧵𝑅
)where 𝑥𝑗 ∈ 𝑗 with |{𝑖 ∈ 𝑅 ⧵ (𝑅1 ∪ 𝑅2) ∶ 𝑥

1
𝑖
= 𝑥2

𝑖
}| = 𝑠. By Lemma 5.9 applied

with 𝜆 = 𝑂𝑘(1∕𝑚), we can find a cross disagreement, which corresponds to 𝑥𝑗 ∈ 𝑗 with |{𝑖 ∈
[𝑛] ⧵ (𝑅1 ∪ 𝑅2) ∶ 𝑥

1
𝑖
= 𝑥2

𝑖
}| = 𝑠. □

Part III: Huge alphabets

This part contains the proof of our main result Theorem 1.1 in the case of huge alphabets, that is,
when 𝑛 ⩽ 𝑁(𝑡) log𝑚, with 𝑁(𝑡) as in Theorem 6.2. As previously discussed, there are examples
showing that a proof strategy based on cross agreements between uncapturable codes cannotwork
in this setting, so instead we adopt a combinatorial perspective.

7 FORBIDDEN AGREEMENT CONFIGURATIONS

The proofs in this section exploit combinatorial arguments that obtain expansion inmeasure from
a ‘shadow’ operation, which is analogous (but quite different in various details) to an argument in
the hypergraph setting due to Keller and Lifshitz [19]. This operation requires us to consider more
general agreement configurations (which are anyway of interest) even if we only want to find
pairwise agreements as in our main result. We introduce these configurations and their interpre-
tation in terms of expanded hypergraphs in the first subsection, and prove an extremal result for
configurations. In the second subsection, we define our shadow operation and establish two key
properties, namely that a code with a given forbidden configuration (a) has an average shadow
with much larger measure and (b) there is some shadow with much stronger uncapturability.
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We extend these properties in the third subsection to iterated shadows when there is some for-
bidden configuration with a ‘kernel’, that is, some common intersection of all restrictions in the
configuration. We apply this theory to prove the junta approximation theorem in the fourth sub-
section. Then in the final subsection, we complete our proof via a bootstrapping argument based
on Shearer’s entropy inequality.

7.1 Hypergraphs

When 𝑚 is huge, it is natural to view a code  ⊂ [𝑚]𝑛 as an 𝑛-graph (𝑛-uniform hypergraph)
which is 𝑛-partite (each edge has one vertex in each part) with parts 𝑉1,… , 𝑉𝑛, where each 𝑉𝑖 =

{(𝑖, 𝑎) |𝑎 ∈ [𝑚]}, identifying any 𝑥 ∈ [𝑚]𝑛 with {(𝑖, 𝑎) ∶ 𝑥𝑖 = 𝑎}. This setting is most convenient
for introducing general agreement configurations in the following definition, as these are a natural
partite variation on the well-studied topic of expanded hypergraphs (see the survey [26]).

Definition 7.1. An 𝓁-configuration is a pair (,) where  is a multi-𝓁-graph and  =

(𝑈1, … ,𝑈𝓁) is a partition of 𝑉() such that each edge has one vertex in each part. We identify
any  with its multiset of edges {𝑒1, … , 𝑒ℎ}, so its size ℎ = || is its number of edges. We often
omit  from our notation. The density of  (with respect to ) is 𝜇() = ||∏𝑖∈𝓁 |𝑈𝑖|−1. The
kernel of is 𝐾() =

⋂ℎ
𝑖=1 𝑒𝑖 .

The 𝑛-expansion+(𝑛) of is the 𝑛-configuration obtained by adding disjoint sets 𝑆𝑗 of 𝑛 − 𝓁
new vertices to each 𝑒𝑗 , forming new parts𝑈𝓁+1, … ,𝑈𝑛 so that each 𝑆𝑗 has one vertex in each new
part. We say that 1, … ,ℎ ⊂ [𝑚]𝑛 cross contain  if they do so for +(𝑛) when viewed as 𝑛-
graphs, that is, there are 𝑥𝑗 ∈ 𝑗 for 𝑗 ∈ [ℎ] and an injectionΦ ∶ [𝓁] → [𝑛], so that for any 𝑗, 𝑗′ ∈
[ℎ] and 𝑖 ∈ [𝑛], we have 𝑥𝑗

𝑖
= 𝑥

𝑗′

𝑖
exactly when 𝑖 = Φ(𝑘) for some 𝑘 ∈ [𝓁] and 𝑒𝑗 ∩ 𝑒𝑗′ ∩ 𝑈𝑘 ≠ ∅.

We say that𝑥1, … , 𝑥ℎ realise in1, … ,ℎ. If𝑖 =  for all 𝑖, we say that contains; otherwise,
we say that  is-free.

Example 7.2. A code  ⊂ [𝑚]𝑛 is (𝑡 − 1)-avoiding if when viewed as an 𝑛-partite 𝑛-graph, it
does not contain two edges 𝑒, 𝑒′ with |𝑒 ∩ 𝑒′| = 𝑡 − 1; equivalently,  is -free where  is the
multi-(𝑡 − 1)-graph with two identical edges.

The main result of this subsection is the following extremal result for cross containment at
constant densities (this suffices for our purposes, so we do not investigate the optimal bound).

Lemma 7.3. For any 𝓁, ℎ ∈ ℕ, there is 𝐶 > 0 so that if  is an 𝓁-configuration of size ℎ and
1, … ,ℎ ⊂ [𝑚]𝑛 with each 𝜇(𝑖) > 𝜀, where 𝑛 > 𝐶 log(𝜀−1) and 𝑚 > 2ℎ𝑛∕𝜀, then 1, … ,ℎ cross
contain.

The proof will reduce to the case when is a matching, as in the following claim.

Claim 7.4. If 1, … ,ℎ ⊂ [𝑚]𝑛 with 𝑚 > ℎ𝑛∕𝜀 and each 𝜇(𝑖) > 𝜀 then 1, … ,ℎ cross contain
a matching.

Proof. We choose disjoint edges 𝑒𝑖 ∈ 𝑖 for 𝑖 ⩾ 1 according to a greedy algorithm. Each choice
reduces the density of any 𝑖 by at most 𝑛∕𝑚 < 𝜀∕ℎ, so the algorithm can be completed. □
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Proof of Lemma 7.3. Write = {𝑒1, … , 𝑒ℎ} and let (𝑈1, … ,𝑈𝓁) be the fixed partition of. We iden-
tify each 𝑖 with an 𝑛-partite 𝑛-graph with parts 𝑉𝑖 = {(𝑖, 𝑎) ∶ 𝑎 ∈ [𝑚]}. We consider uniformly
random injectionsΦ ∶ [𝓁] → [𝑛] and 𝜙𝑗 ∶ 𝑈𝑗 → 𝑉Φ(𝑗) for each 𝑗 ∈ [𝓁]. Each edge 𝑒𝑖 then defines
a restriction 𝑖 = (𝑖)Φ([𝓁])→𝛼𝑖 , where 𝛼𝑖Φ(𝑗) = 𝜙𝑗(𝑒𝑖 ∩ 𝑈𝑗) for 𝑗 ∈ [𝓁].
We let 𝐶 = 𝐶(𝓁, 1∕2ℎ) be as in Proposition 6.1, which is then applicable as 𝜇(𝑖) ⩾ 𝜀 ⩾ 𝑒−𝑛∕𝐶 ,

giving ℙ[𝜇(𝑖) ⩾ (1 − 1∕2ℎ)𝜇(𝑖)] ⩾ 1 − 1∕2ℎ. By a union bound, we can fix Φ and 𝜙1, … , 𝜙𝑗 so
that all 𝜇(𝑖) > 𝜀∕2. Then 1, … ,ℎ cross contain a matching, so 1, … ,ℎ cross contain. □

7.2 Shadows

In this subsection, we define our shadow (projection) operation and establish its two key
properties mentioned above (boosting measure and strengthening uncapturability).

Definition 7.5. For  ⊂ [𝑚]𝑛 and 𝑖 ∈ [𝑛], the 𝑖-shadow of  is 𝜕𝑖() =
⋃

𝑎∈[𝑚] 𝜕𝑖→𝑎(), where
𝜕𝑖→𝑎() = 𝑖→𝑎 ⊂ [𝑚]𝑛−1. For 𝐼 ⊂ [𝑛], we let 𝜕𝐼 be the composition (in any order) of (𝜕𝑖 ∶ 𝑖 ∈ 𝐼).

The next lemma, analogous to a lemma for hypergraphs in [20], shows that shadows have sig-
nificantly larger measure on average if we forbid a configuration with the following ‘flatness’
property.

Definition 7.6. The centre of a configuration is the set of vertices contained in more than
one edge.
We say that a configuration is flat if each part has at most one vertex in the centre.

Lemma 7.7. Suppose that is a flat 𝓁-configuration of size ℎ and ⊂ [𝑚]𝑛 is-free, with 𝑛 ⩾ ℎ𝓁.
Then | | ⩽ ℎ

∑𝑛
𝑖=1 |𝜕𝑖()|.

Proof. Let  ′ be obtained from  by the following iterative deletion procedure starting from  ′ =

 : if there is any 𝑖 ∈ [𝑛] and 𝑦 ∈ 𝜕𝑖(
′) such that at most ℎ choices of 𝑥 ∈  ′ with 𝑥[𝑛]⧵𝑖 = 𝑦,

then we delete all such 𝑥. Any 𝑦 ∈ 𝜕𝑖() is considered at most once in this procedure before it is
removed from the shadow. Thus, the number of deleted sets is at most ℎ

∑𝑛
𝑖=1 |𝜕𝑖()|, so it suffices

to show  ′ = ∅.
Suppose for contradiction  ′ ≠ ∅. We will show that  contains . We write  = {𝑒1, … , 𝑒ℎ},

denote the parts of  by 𝑈1,… ,𝑈𝓁 and fix 𝑢𝑗 ∈ 𝑈𝑗 for each 𝑗 ∈ [𝓁] so that each vertex of 𝑈𝑗

other than 𝑢𝑗 is contained in at most one edge. Fix any 𝑥 ∈  ′. We will construct 𝑥1, … , 𝑥ℎ ∈  ′

realising according to injections 𝜙𝑗 ∶ 𝑈𝑗 → [𝑚] so that 𝑥𝑖
𝑗
= 𝜙𝑗(𝑒𝑖 ∩ 𝑈𝑗) and 𝑥𝑗 = 𝜙𝑗(𝑢𝑗) for all

𝑖 ∈ [ℎ] and 𝑗 ∈ [𝓁]. As is flat, this can be achieved greedily. Indeed, to construct 𝑥𝑖 , we can start
from 𝑥𝑖 = 𝑥 and one by one for each 𝑗 such that 𝑒𝑖 ∩ 𝑈𝑗 ≠ {𝑢𝑗} replace 𝑥𝑖𝑗 by some new value not
yet used in coordinate 𝑗, which is possible as there are at least ℎ + 1 choices for 𝑥𝑖

𝑗
for any given

𝑥𝑖
[𝑛]⧵{𝑗}

. However,  is-free, so we have the required contradiction. □

Weconclude this subsection by showing under the same conditions as the previous lemma, that
if a code is uncapturable, then it has some shadow which is significantly more uncapturable. The
key point is that the uncaptured measure is increased by a factorΩ(𝑚∕𝑛), albeit at the expense of
only considering restrictions that are 𝑛 times smaller.
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Lemma 7.8. Suppose that is a flat𝓁-configuration of size ℎ and ⊂ [𝑚]𝑛 is-free, with 𝑛 ⩾ ℎ𝓁.
If  is (𝑟, 𝜀)-uncapturable, then 𝜕𝑖() is (𝑟∕𝑛, 𝜀𝑚∕𝑛ℎ)-uncapturable for some 𝑖 ∈ [𝑛].

Proof. We suppose that each 𝜕𝑖() is (𝑟∕𝑛, 𝛿)-capturable and show that 𝛿 ⩾ 𝜀𝑚∕𝑛ℎ. By def-
inition, for each 𝑖 ∈ [𝑛], there is a collection 𝑖 of at most 𝑟∕𝑛 dictators in [𝑚][𝑛]⧵{𝑖} such
that 𝜇(𝜕𝑖() ⧵

⋃
𝑖) ⩽ 𝛿. We let  =

⋃𝑛
𝑖=1𝑖 where now we consider each dictator in [𝑚]𝑛.

Then 𝜇( ⧵
⋃

) ⩾ 𝜀 by uncapturability. Applying Lemma 7.7 to  ⧵
⋃

, noting that each
𝜕𝑖( ⧵

⋃
) ⊂ 𝜕𝑖() ⧵

⋃
𝑖 , we have

| ⧵
⋃

| ⩽ 𝑠

𝑛∑
𝑖=1

|𝜕𝑖() ⧵⋃
𝑖| ⩽ ℎ𝑛 ⋅ 𝛿𝑚𝑛−1,

so 𝜀 ⩽ 𝜇( ⧵
⋃

) ⩽ 𝛿ℎ𝑛∕𝑚, that is, 𝛿 ⩾ 𝜀𝑚∕𝑛ℎ. □

7.3 Kernels and iterated shadows

In this subsection, we consider configurations with a non-trivial kernel (intersection of all edges),
for which we show that they remain free of some configuration under iterated shadows (as many
as the size of the kernel), so the results of the previous subsection on single shadows become
correspondingly stronger in this setting. Firstly we introduce some convenient notation.

Definition 7.9. Given an 𝓁-configuration, we write ⊕ [𝑡] for the (𝓁 + 𝑡)-configuration with
𝑡 additional parts of size 1 where each edge of is extended to also include the 𝑡 new vertices.
Given an 𝓁-configuration  on 𝑣 vertices, we let 𝖿 𝗅𝖺𝗍() be the 𝑣-configuration obtained by

taking a copy of with one vertex in each part and adding to each edge 𝑒 disjoint sets 𝑆𝑒 of 𝑣 − 𝓁
new vertices.

As the notation suggests, 𝖿 𝗅𝖺𝗍() is flat, as each of the original vertices gets its own part, and
each new vertex is in exactly one edge. To illustrate the construction, consider the 2-configuration
 that is a 4-cycle on [4] with parts {1, 2} and {3, 4} and edges {1, 3}, {1, 4}, {2, 3} and {2, 4}. Every
vertex of is in two edges, so in the centre, and so is not flat. To construct 𝖿 𝗅𝖺𝗍(), which is a 4-
configuration,we add twonewvertices to each edge {𝑖, 𝑗} ∈ , whichwe call𝑥𝑘

𝑖𝑗
for𝑘 ∈ [4] ⧵ {𝑖, 𝑗},

and form parts 𝑈𝑘 for 𝑘 ∈ [4] where each 𝑈𝑘 consists of 𝑘 and the two vertices of the form 𝑥𝑘
𝑖𝑗
.

Remark 7.10.

(1) Any (flat) configuration with a kernel of size 𝑡 may be expressed as  ⊕ [𝑡] for some (flat)
configuration with no kernel.

(2) If is flat and contained in′, then is contained in 𝖿 𝗅𝖺𝗍(′).

Lemma 7.11. For any (flat) configuration, there exists a (flat) configuration′ such that for all
𝑡 ∈ ℕ, there exist𝑚0, 𝑛0 ∈ ℕ such that if  ⊂ [𝑚]𝑛 with 𝑛 ⩾ 𝑛0,𝑚 ⩾ 𝑚0 is ⊕ [𝑡]-free, then 𝜕𝑖()
is′ ⊕ [𝑡 − 1]-free for all 𝑖 ∈ [𝑛].

Proof. Consider any 𝓁-configuration of size ℎ. We let 𝐶 = 𝐶(𝓁 + 𝑡, ℎ) be as in Lemma 7.3, 𝜀 =
1∕2ℎ, 𝑛1 = 2𝐶 log(𝜀−1),𝑚1 = 3ℎ𝑛∕𝜀, and then prove the statement for′ = [𝑚1]

𝑛1 , the complete
𝑛1-partite 𝑛1-graph with parts of size 𝑚1. We note that if  was flat initially, then one can take
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𝖿 𝗅𝖺𝗍(′) instead of ′ to preserve flatness, and the correctness follows from the analysis below
and by Remark 7.10.
We show the contrapositive statement, that is, that if 𝜕𝑖∗() contains′ ⊕ [𝑡 − 1] for some 𝑖∗ ∈

[𝑛], then contains ⊕ [𝑡]. The version for flat configurationswill then follow byRemark 7.10.2.
By relabelling, we can assume that we have𝑋 = {𝑥(𝑦) ∶ 𝑦 ∈ [𝑚1]

𝑛1} ⊂  where each 𝑥(𝑦)[𝑛1] =
𝑦, there is some 𝑇 ∈

([𝑛]⧵[𝑛1]
𝑡−1

)
such that 𝑥(𝑦)𝑖 = 1 for all 𝑖 ∈ 𝑇, and 𝑥(𝑦)𝑖 ≠ 𝑥(𝑦′)𝑖 whenever 𝑦 ≠ 𝑦′

and 𝑖 ∉ [𝑛] ⧵ (𝑇 ∪ [𝑛1] ∪ {𝑖∗}).We𝑚-colour [𝑚1]
𝑛1 as 1, … ,𝑚, where each 𝑗 = {𝑦 ∶ 𝑥(𝑦)𝑖∗ = 𝑗}.

Note that if some 𝜇(𝑗) ⩾ 𝜀, then applying Lemma 7.3 with 1 = ⋯ = ℎ = 𝑗 , we find a copy
of in 𝑗 . The corresponding 𝑥(𝑦) ∈  for each 𝑦 in this copy agrees outside [𝑛1] in coordinates
𝑇 ∪ {𝑖∗} and no others, so we obtain a copy of ⊕ [𝑡] in  .
Thus, we may assume that each 𝜇(𝑗) < 𝜀. By repeated merging, we can form ‘meta-colours’

′
1
, … ,′

𝑚′ , each of which is a union of some of the 𝑗 ’s, such that each 𝜇(′
𝑗
) ∈ (𝜀, 2𝜀), so 𝑚′ ⩾

1∕2𝜀 = ℎ. By Lemma 7.3, ′
1
, … ,′

ℎ
cross contain ⊕ [1]. The corresponding 𝑥(𝑦) ∈  for each 𝑦

in this copy agree outside [𝑛1] in coordinates𝑇 and no others, so againwe obtain a copy of ⊕ [𝑡]

in  . □

The following corollary is immediate by iterating Lemma 7.11.

Corollary 7.12. For any (flat) configuration and 𝑡 ∈ ℕ, there exist𝑚0, 𝑛0 ∈ ℕ and a (flat) con-
figuration ′ such that if  ⊂ [𝑚]𝑛 with 𝑛 ⩾ 𝑛0, 𝑚 ⩾ 𝑚0 is  ⊕ [𝑡]-free, then 𝜕𝐼() is ′-free for
all 𝐼 ∈

([𝑛]
𝑡

)
.

We also have the following corollary giving improved estimates on measures and uncaptura-
bility of iterated shadows.

Corollary 7.13. For any flat configuration and 𝑡 ∈ ℕ, there exist𝑚0, 𝑛0 ∈ ℕ and𝐶 > 0 such that
for any ⊕ [𝑡 − 1]-free  ⊂ [𝑚]𝑛 with 𝑛 ⩾ 𝑛0,𝑚 ⩾ 𝑚0,

(1) | | ⩽ 𝐶
∑

𝐼∈
([𝑛]

𝑡

) |𝜕𝐼()|,
(2) if  is (𝑟, 𝜀)-uncapturable, then 𝜕𝐼() is (𝑟∕𝑛𝑡, (𝑚∕𝑛)𝑡𝜀∕𝐶)-uncapturable for some 𝐼 ∈

([𝑛]
𝑡

)
.

Proof. We argue by induction on 𝑡. The base case 𝑡 = 1 is given by Lemmas 7.7 and 7.8. Now
suppose 𝑡 ⩾ 2. By Lemma 7.11, there is a configuration ′ depending only on  such that each
𝜕𝑖() is  ⊕ [𝑡 − 2]-free. The induction hypothesis of (1) gives 𝐶′ = 𝐶(′, 𝑡 − 1) such that each|𝜕𝑖()| ⩽ 𝐶′ ∑{|𝜕𝐼∪{𝑖}()| ∶ 𝐼 ∈ ( [𝑛]

𝑡−1

)
}, which proves (1). For (2), if  is (𝑟, 𝜀)-uncapturable, then

by Lemma 7.8, the family 𝜕𝑖() is (𝑟∕𝑛, 𝜀𝑚∕𝑛||)-uncapturable for some 𝑖 ∈ [𝑛]. By the induction
hypothesis of (2), 𝜕𝐼∪{𝑖}() is (𝑟∕𝑛𝑡, (𝑚∕𝑛)𝑡𝜀∕𝐶)-uncapturable for some 𝐼 ∈

([𝑛]⧵{𝑖}
𝑡−1

)
, which proves

(2). □

7.4 Junta approximation

In this subsection, we prove Theorem 1.2 in the case that𝑚 is huge (at least exponential in 𝑛).

Theorem 7.14. For any 𝑡, 𝑁 ∈ ℕ, there are 𝐾, 𝑛0 ∈ ℕ such that if  ⊂ [𝑚]𝑛 is (𝑡 − 1)-avoiding
with 𝑛 ⩾ 𝑛0 and 𝑚 ⩾ 2𝑛∕𝑁 , then there exists a subcube 𝐷 of co-dimension 𝑡 such that 𝜇( ⧵ 𝐷) ⩽

2−𝑛∕𝐾𝑚−𝑡 .
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Proof. We apply Lemma 5.6 with 𝑟 = 𝑛𝑡, 𝑘 = 𝑡 and 𝜀 = 2−2𝑛∕𝐾 ⩾ 1∕𝑚, where𝐾, 𝑛0 ≫ 𝑡,𝑁, obtain-
ing a collection  of at most 𝑟𝑘 = 𝑛𝑡

2 subcubes of co-dimension at most 𝑡 such that 𝑅→𝛼 is
(𝑟, 𝜀𝜇(𝐷)−1𝑚−𝑡)-uncapturable for each 𝐷 = 𝐷𝑅→𝛼 ∈  and 𝜇( ⧵

⋃
) ⩽ 𝑛2𝑡

2
𝜀𝑚−𝑡. We let 𝑑

be the set of subcubes in  of co-dimension 𝑑. To prove the theorem, it suffices to show that (a)
𝑑 = ∅ for 𝑑 < 𝑡 and (b) |𝑡| ⩽ 1.
To see (a), suppose for a contradiction that 𝐷𝑅→𝛼 ∈ 𝑡−1−𝑠 with 𝑠 ⩾ 0. As  is (𝑡 − 1)-avoiding,

𝑅→𝛼 is 𝑠-avoiding, that is, is  ⊕ [𝑠]-free, where  is the flat 0-configuration consisting of two
copies of the empty set. By Corollary 7.12, there is some flat configuration′ such that 𝜕𝐼(𝑅→𝛼) is
′-free for any 𝐼 ∈

([𝑛]⧵𝑅
𝑠

)
. By Corollary 7.13, as 𝑅→𝛼 is (𝑛𝑡, 𝜀𝑚−𝑠−1)-uncapturable, there is some

𝐼 ∈
([𝑛]⧵𝑅

𝑠

)
such that  ∶= 𝜕𝐼(𝑅→𝛼) is (𝑛𝑡−𝑠, 𝜀∕𝑂𝑡(𝑚𝑛𝑠))-uncapturable.

To obtain the required contradiction, wewill show that  contains′. Write |′| = ℎ′ = 𝑂𝑡(1).
Let be the set of all dictators𝐷𝑖→𝑎 such that𝜇(𝑖→𝑎) > 𝜀2∕𝑛2.We claim that | | < ℎ′. To see this,
suppose on the contrary that  contains𝐷𝑖1→𝑎1 , … , 𝐷𝑖ℎ′→𝑎ℎ′ . Let 𝐼

′ = {𝑖1, … , 𝑖ℎ
′
}. By averaging, we

can fix 𝑥𝑗 ∈ [𝑚]𝐼
′ for 𝑗 ∈ [ℎ′] such that 𝑥𝑗

𝑖𝑗
= 𝑎𝑗 , 𝑥𝑗

𝑖𝑗
′ ≠ 𝑎𝑗

′ for all 𝑗′ ≠ 𝑗, so that 𝑗 = 𝐼′→𝑥𝑗 has
𝜇(𝑗) > 𝜀2∕2𝑛2. However, then ′ is cross contained in 1, … ,ℎ′ by Lemma 7.3, applied with
𝜀2∕2𝑛2 in place of 𝜀 (using 𝑛 > 𝐶 log(2𝑛2∕𝜀2) and 𝑚 > 2ℎ𝑛 ⋅ 2𝑛2∕𝜀2 for large 𝐾). Thus, | | < ℎ′,
as claimed.
By uncapturability of , writing ′ =  ⧵

⋃
 , we have 𝜇(′) ⩾ 𝜀∕𝑂𝑡(𝑚𝑛𝑠) > 𝜀2∕𝑚. By

Lemma 7.7, we can fix 𝑖∗ ∈ [𝑛] ⧵ (𝑅 ∪ 𝐼) with |′|∕ℎ′𝑛 ⩽ |𝜕𝑖∗(′)|. We fix any partition ( ′
𝑎 ∶ 𝑎 ∈

[𝑚]) of 𝜕𝑖∗(′) such that each ′
𝑎 ⊂ 𝜕𝑖∗→𝑎(

′). Then
∑

𝑎 𝜇(
′
𝑎) = 𝜇(𝜕𝑖∗

′) ⩾ 𝜇(′)𝑚∕ℎ′𝑛 > 𝜀2∕ℎ′𝑛.
Also, by definition of  , each 𝜇( ′

𝑎) < 𝜀2∕𝑛2. By repeated merging, we can form a partition
 of [𝑚] such that each 𝑆 ∈  has

∑
𝑎∈𝑆 𝜇(

′
𝑎) ∈ (𝜀2∕𝑛2, 2𝜀2∕𝑛2). Then || ⩾ ℎ′, so we can

choose 𝑆1, … , 𝑆ℎ′ in  and apply Lemma 7.3 to see that 1, … ,ℎ′ cross contain ′, where each
𝑖 =

⋃
𝑎∈𝑆𝑖

 ′
𝑎. This completes the proof of (a).

To see (b), suppose for contradiction that we have distinct subcubes 𝐷𝑅𝑗→𝛼𝑗
for 𝑗 = 1, 2 of co-

dimension 𝑡. Suppose that they agree on 𝑡 − 1 − 𝑠 coordinates, for some 𝑠 ⩾ 0. Consider 1 =
𝑅1→𝛼1

⧵ 𝑅2→𝛼2
and 2 = 𝑅2→𝛼2

⧵ 𝑅1→𝛼1
. By uncapturability, both 𝜇(𝑗) ⩾ 𝜀 > 𝑒−𝑛∕𝐶 , where

𝐶 = 𝐶(𝑠, 0.1) is as in Proposition 6.1, as 𝐾 is large. Consider uniformly random 𝐒 ∼
([𝑛]⧵(𝑅1∪𝑅2)

𝑠

)
and 𝐱 ∈ [𝑚]𝐒.
By Proposition 6.1, both ℙ[𝜇((𝑗)𝐒→𝐱) ⩾ 0.9𝜇(𝑗)] ⩾ 0.9 − 𝑜(1), as 𝐒 is total variation distance

𝑜(1) from uniform on
([𝑛]⧵𝑅𝑗

𝑠

)
. Thus, we can fix 𝑆, 𝑥 so that both ′

𝑗
= (𝑗)𝑆→𝑥 have 𝜇(′

𝑗
) >

0.9𝜀. By averaging, we can fix some ′′
1
= (′

1
)𝑅2⧵𝑅1→𝑎1 with 𝜇(′′

1
) ⩾ 𝜇(′

1
) > 0.9𝜀, and similarly

some ′′
2
. Then ′′

1
, ′′

2
are defined by restrictions of  to 𝑅1 ∪ 𝑅2 ∪ 𝑆 with agreement exactly

𝑡 − 1, so must be cross intersecting. However, 𝑚 ⩾ 2𝑛∕𝑁 ≫ 𝜀−1 for large 𝐾, so this contradicts
Lemma 4.6. □

7.5 Bootstrapping

We conclude this part with the bootstrapping step that completes the proof of our main theorem
for huge alphabets, which we restate as follows.

Theorem 7.15. For any 𝑡, 𝑁 ∈ ℕ, there is 𝑛0 ∈ ℕ such that if 𝑛 ⩾ 𝑛0, 𝑚 ⩾ 2𝑛∕𝑁 and  ⊂ [𝑚]𝑛 is
(𝑡 − 1)-avoiding, then | | ⩽ 𝑚𝑛−𝑡 , with equality only when  is a subcube of co-dimension 𝑡.
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We require Shearer’s entropy lemma [3], as applied to the projection operators Π𝑆 = 𝜕[𝑛]⧵𝑆 on
[𝑚]𝑛.

Lemma 7.16. For  ⊂ [𝑚]𝑛 and 𝑘 ∈ [𝑛], we have | |(𝑛−1𝑘−1) ⩽
∏|𝑆|=𝑘 |Π𝑆()|.

Proof of Theorem 7.15. Suppose  ⊂ [𝑚]𝑛 is (𝑡 − 1)-avoiding with | | ⩾ 𝑚𝑛−𝑡. By Theorem 7.14,
there is a subcube 𝐷 of co-dimension 𝑡 such that  ∶=  ⧵ 𝐷 has 𝜀 ∶= 𝜇()𝑚𝑡 ⩽ 2−𝑛∕𝐾 , for some
𝐾 = 𝐾(𝑁, 𝑡). We may assume 𝐷 = {𝑥 ∈ [𝑚]𝑛 |𝑥1 = ⋯ = 𝑥𝑡 = 1}. Suppose for contradiction that
𝜀 > 0. For each 𝑇 ⊊ [𝑡], let 𝑇 be the set of all 𝑥[𝑛]⧵[𝑡] where 𝑥 ∈  with 𝑇 = {𝑖 ∈ [𝑡] ∶ 𝑥𝑖 = 1}. We
have 𝜀 = 𝜇()𝑚𝑡 ⩽

∑
𝑇 𝑚

𝑡−|𝑇|𝜇(𝑇), so for a contradiction, it suffices to show that each 𝜇(𝑇) <

𝑚|𝑇|−𝑡𝜀∕𝑛.
As  is (𝑡 − 1)-avoiding, each 𝑇 is (𝑡 − 1 − |𝑇|)-avoiding. In particular, if |𝑇| = 𝑡 − 1, then 𝑇

is intersecting, so by Lemma 4.6, we have the required bound 𝜇(𝑇) < 2𝜀∕𝑚2 < 𝑚−1𝜀∕𝑛.
Now fix any 𝑇 ⊂ [𝑡]where |𝑇| = 𝑡 − 1 − 𝑑 with 𝑑 ⩾ 1. As 𝑇 is 𝑑-avoiding, it is free of a config-

uration with kernel size 𝑑, so by Corollary 7.13, we have |𝑇| ⩽ 𝑂𝑡(1)
∑

𝐼∈
( [𝑛]

𝑑+1

) |𝜕𝐼(𝑇)|. Fix any
𝐼 ∈

( [𝑛]

𝑑+1

)
. To complete the proof, it suffices to establish the following claim, as this will imply

𝜇(𝑇) < 𝑂𝑡(1)(𝑛∕𝑚)𝑑+1𝜀2 < 𝑚|𝑇|−𝑡𝜀∕𝑛.
Claim 7.17. 𝜇(𝜕𝐼𝑇) < 𝜀2.

We will prove this claim using Shearer’s inequality with 𝑘 = 𝑑, so we now analyse the pro-
jections Π𝑆𝜕𝐼𝑇 = Π𝑆𝑇 for 𝑆 ∈

([𝑛]⧵𝐼
𝑑

)
. For such 𝑆 with 𝑆 ∩ [𝑡] ≠ ∅, we use the trivial bound|Π𝑆𝑇| ⩽ 𝑚𝑑. Now fix 𝑆 with 𝑆 ∩ [𝑡] = ∅. We will show that 𝜇(Π𝑆𝑇) < 2𝜀.

To see this, we first show for any 𝑥 ∈ Π𝑆𝑇 that  ′
𝑥 ∶= [𝑡]→𝟏,𝑆→𝑥 has 𝜇( ′

𝑥) ⩽ 𝑛∕𝑚. Sup-
pose not, and fix 𝑦 ∈  with 𝜋𝑆(𝑦) = 𝑥 and 𝑇 = {𝑖 ∈ [𝑡] ∶ 𝑦𝑖 = 1}. By a union bound 𝜇( ′

𝑥 ⧵⋃
𝑖∈[𝑛]⧵([𝑡]∪𝑆) 𝐷𝑖→𝑦𝑖

) > 0, so we can choose 𝑧 ∈  ′
𝑥 that disagrees with 𝑦 on [𝑛] ⧵ ([𝑡] ∪ 𝑆). How-

ever, extending 𝑧 with 𝑥 ∈ [𝑚]𝑆 and 𝟏 ∈ [𝑚]𝑡 gives 𝑧+ ∈  with 𝖺𝗀𝗋(𝑧+, 𝑦) = 𝑡 − 1, which is
impossible, so indeed 𝜇( ′

𝑥) ⩽ 𝑛∕𝑚.
As | | ⩾ |𝐷[𝑡]→𝟏|, this implies || ⩾ |𝐷[𝑡]→𝟏 ⧵  | ⩾ |Π𝑆𝑇| ⋅ (1 − 𝑛∕𝑚)𝑚𝑛−𝑡−𝑑, so 𝜀 =

𝜇()𝑚𝑡 ⩾ (1 − 𝑛∕𝑚)𝜇(Π𝑆𝑇), giving 𝜇(Π𝑆𝑇) < 2𝜀. Finally, writing 𝑛′ = |[𝑛] ⧵ 𝐼| = 𝑛 − (𝑑 + 1),
Lemma 7.16 gives

||𝜕𝐼𝑇||(𝑛′−1𝑑−1 ) ⩽
∏
𝑆

||Π𝑆𝜕𝐼𝑇)|| ⩽ (𝑚𝑑)(
𝑛′

𝑑 )−(
𝑛′−𝑡
𝑑 )(2𝜀𝑚𝑑)(

𝑛′−𝑡
𝑑 ) = (2𝜀)(

𝑛′−𝑡
𝑑 )(𝑚𝑑)(

𝑛′

𝑑 ),

so |𝜕𝐼𝑇| ⩽ (2𝜀)𝑛
′∕2𝑑(𝑚𝑑)𝑛

′∕𝑑 < 𝜀2𝑚𝑛′ . This completes the proof of the claim, and so of the
theorem. □

Part IV: Generalisations and open problems

8 CONFIGURATIONS

In this section, we briefly consider generalisations to excluded configurations (as in the previous
section). Our aim is not a systematic study, but just to illustrate the further potential applications
of our methods. We start with a general junta approximation result for small alphabets.
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Theorem 8.1. For every 𝜂 > 0, configuration and𝑚 ∈ ℕwith𝑚 > ||, there are 𝐽, 𝑛0 ∈ ℕ such
that if  ⊂ [𝑚]𝑛 is -free with 𝑛 ⩾ 𝑛0, then there is an -free 𝐽-junta  ⊂ [𝑚]𝑛 such that 𝜇( ⧵

 ) ⩽ 𝜂.

The proof requires the following generalisation of Theorem 3.4.

Theorem 8.2. For every ℎ,𝑚 ∈ ℕ with 𝑚 > ℎ and 𝜇 > 0, there are 𝜀, 𝑐 > 0 and 𝑟 ∈ ℕ such that
if 1, … ,ℎ ⊂ [𝑚]𝑛 are (𝑟, 𝜀)-pseudorandom with each 𝜇(𝑗) > 𝜇 and (𝑥1, … , 𝑥ℎ) ∈ ([𝑚]𝑛)ℎ is
uniformly random subject to 𝖺𝗀𝗋(𝑥𝑗, 𝑥𝑗′ ) = 0 whenever 𝑗 ≠ 𝑗′ then ℙ(𝑥1 ∈ 1, … , 𝑥ℎ ∈ ℎ) > 𝑐.

The proof of Theorem 8.2 is the same as that of Theorem 3.4, except that the absolute spectral
gap condition must be replaced by a more general condition on ‘correlated spaces’, which spe-
cialises to our situation as follows. Given 𝑓, g ∶ [𝑚]ℎ → ℝwith 𝔼𝑓 = 𝔼g = 0 and 𝔼𝑓2 = 𝔼g2 = 1,
such that 𝑓 depends only on the first coordinate and g does not depend on the first coordi-
nate, and 𝐚 ∈ [𝑚]ℎ with distinct coordinates chosen uniformly at random, we need to show that
𝔼𝑓(𝐚)g(𝐚) < 1. By considering the equality conditions for Cauchy–Schwarz, it is not hard to see
that this holds when𝑚 > ℎ.

Proof of Theorem 8.1. The proof is the same as that of Theorem 2.1, except that instead of show-
ing that  is 𝑡-intersecting, we need to show that  is -free. To see this, we suppose for a
contradiction that  contains  and show that  contains . We suppose  = {𝑒1, … , 𝑒ℎ} is an
𝓁-configuration with parts (𝑈1, … ,𝑈𝓁) realised by 𝑥1, … , 𝑥ℎ ∈  . By relabelling, we can assume
that  is realised on coordinate set [𝓁], that is, for any 𝑗, 𝑗′ ∈ [ℎ] and 𝑖 ∈ [𝑛], we have 𝑥𝑗

𝑖
= 𝑥

𝑗′

𝑖
exactly when 𝑖 ∈ [𝓁] and 𝑒𝑗 ∩ 𝑒𝑗′ ∩ 𝑈𝑖 ≠ ∅. For 𝑗 ∈ [ℎ], we let 𝑗 = 

𝐽∪[𝓁]→𝑥
𝑗

𝐽∪[𝓁]
. Then each 𝑗

is (𝑟 − 𝓁, 𝜀)-pseudorandom with density at least 𝜂∕3, so by Theorem 8.2, we find 𝑤𝑗 ∈ 𝑗 for
𝑗 ∈ [ℎ] with 𝖺𝗀𝗋(𝑤𝑗, 𝑤𝑗′) = 0 whenever 𝑗 ≠ 𝑗′. However, ((𝑥𝑗

𝐽∪[𝓁]
, 𝑤𝑗) ∶ 𝑗 ∈ [ℎ]) realise  in  ,

contradiction. □

Next we will turn to large alphabets, for which we require the following generalised Hoffman
bound.

Lemma 8.3. Let 𝑚 > ℎ𝑏 and suppose that 𝜈 is a 𝑏-balanced product measure on [𝑚]𝑛

and 1, … ,ℎ ⊂ [𝑚]𝑛 with
∏ℎ

𝑗=1 𝜈(𝑗) > 2ℎ𝑏∕(𝑚 − ℎ𝑏) > 0. Then 1, … ,ℎ cross contain an
ℎ-matching.

Proof. We show the following statement by induction on ℎ: if (𝑥1, … , 𝑥ℎ) ∈ ([𝑚]𝑛)ℎ is dis-
tributed as 𝜈ℎ conditioned on 𝖺𝗀𝗋(𝑥𝑗, 𝑥𝑗

′
) = 0 whenever 𝑗 ≠ 𝑗′, then ℙ(𝑥1 ∈ 1, … , 𝑥ℎ ∈ ℎ) ⩾

𝜈(1) … 𝜈(ℎ) − 2ℎ𝑏∕(𝑚 − ℎ𝑏). The case ℎ = 1 is trivial.
For the induction step, as in the proof of Lemma 5.9, we consider the product Markov chain 𝑇

on [𝑚]𝑛 where each 𝑇𝑖 is the Markov chain on [𝑚] with transition probabilities (𝑇𝑖)𝑥𝑥 = 0 and
(𝑇𝑖)𝑥𝑦 = 𝜈𝑖(𝑦)∕(1 − 𝜈𝑖(𝑥)) for 𝑦 ≠ 𝑥. We also consider 𝑦1, … , 𝑦ℎ−1, 𝑥ℎ, where 𝑥ℎ is chosen accord-
ing to 𝜈 and each 𝑦𝑗 is chosen independently according to 𝜈 conditioned on 𝖺𝗀𝗋(𝑦𝑗, 𝑥ℎ) = 0. We
write 𝑓𝑗 for the characteristic functions of 𝑗 for 𝑗 ∈ [ℎ]. We have

𝔼[𝑓1(𝑦
1)…𝑓ℎ−1(𝑦

ℎ−1)𝑓ℎ(𝑥
ℎ)] = 𝔼𝑥[𝑇𝑓1(𝑥)…𝑇𝑓ℎ−1(𝑥)𝑓ℎ(𝑥)] = 𝔼𝑓1 …𝔼𝑓ℎ +

∑
∅≠𝑆⊂[ℎ−1]

𝔼g𝑆,
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where g𝑆(𝑥) =
∏

𝑖∈𝑆(𝑇𝑓𝑖 − 𝔼𝑓𝑖)(𝑥)
∏

𝑖∈[ℎ−1]⧵𝑆 𝑓𝑖(𝑥). For each such 𝑆, we fix some 𝑠 ∈ 𝑆 andwrite
g𝑆(𝑥) = (𝑇𝑓𝑠 − 𝔼𝑓𝑠)(𝑥)ℎ𝑆(𝑥). As 𝑇𝑓𝑠 − 𝔼𝑓𝑠 = 𝑇(𝑓𝑠 − 𝔼𝑓𝑠) and 𝔼(𝑓𝑠 − 𝔼𝑓𝑠) = 0, as in the proof of
Lemma 5.9, we have the spectral bound

‖𝑇𝑓𝑠 − 𝔼𝑓𝑠‖2 ⩽ 𝑏∕𝑚

1 − 𝑏∕𝑚
=

𝑏

𝑚 − 𝑏
.

Then |𝔼g𝑆(𝑥)| ⩽ 𝑏∕(𝑚 − 𝑏) byCauchy–Schwarz, so𝔼[𝑓1(𝑦1)…𝑓ℎ−1(𝑦
ℎ−1)𝑓ℎ(𝑥

ℎ)] ⩾ 𝔼𝑓1 …𝔼𝑓ℎ −

2ℎ−1𝑏∕(𝑚 − 𝑏).
Now we write ℙ(𝑥1 ∈ 1, … , 𝑥ℎ ∈ ℎ) = 𝔼

∏ℎ
𝑗=1 𝑓𝑗(𝑥

𝑗) = 𝔼𝑥𝑓ℎ(𝑥)𝔼[
∏ℎ−1

𝑗=1 𝑓𝑗(𝑥
𝑗) ∣ 𝑥ℎ = 𝑥].

For each 𝑥, we apply the induction hypothesis to 𝑓1, … , 𝑓ℎ−1 on {𝑥 ∈ [𝑚]𝑛 ∶ 𝖺𝗀𝗋(𝑥, 𝑥ℎ) = 0},
which is isomorphic to [𝑚 − 1]𝑛, according to the product measure 𝜈[𝑥ℎ] with each 𝜈[𝑥ℎ]𝑖(𝑎) =

𝜈𝑖(𝑎)∕(1 − 𝜈𝑖(𝑥
ℎ
𝑖
)) ⩽

𝑏∕𝑚

1−𝑏∕𝑚
= 𝑏

𝑚−𝑏
, so 𝜈[𝑥ℎ] is 𝑏′-balanced, where 𝑏′ = 𝑏(𝑚 − 1)∕(𝑚 − 𝑏).

As 𝑏′∕(𝑚 − 1 − (ℎ − 1)𝑏′) = 𝑏∕(𝑚 − ℎ𝑏), by induction hypothesis 𝔼[
∏ℎ−1

𝑗=1 𝑓𝑗(𝑥
𝑗) ∣ 𝑥ℎ = 𝑥] ⩾

𝔼[
∏ℎ−1

𝑗=1 𝑓𝑗(𝑦
𝑗) ∣ 𝑥ℎ = 𝑥] − 2ℎ−1𝑏∕(𝑚 − ℎ𝑏), so 𝔼

∏ℎ
𝑗=1 𝑓𝑗(𝑥

𝑗) ⩾ 𝔼𝑥𝑓ℎ(𝑥)[𝔼[
∏ℎ−1

𝑗=1 𝑓𝑗(𝑦
𝑗) ∣ 𝑥ℎ =

𝑥] − 2ℎ−1𝑏∕(𝑚 − ℎ𝑏)] ⩾ 𝔼𝑓1 …𝔼𝑓ℎ − 2ℎ𝑏∕(𝑚 − ℎ𝑏). □

For moderate alphabets, we have the following generalised form of our earlier lemma on fixed
agreements between uncapturable families: we show that uncapturable families cross contain any
configuration.

Theorem 8.4. For any configuration  of size ℎ and 𝑠, 𝑘 ∈ ℕ, there are 𝑟,𝑚0,𝑁 ∈ ℕ such that if
𝑚 ⩾ 𝑚0, 𝑛 ⩾ 𝑁 log𝑚 and𝑗 ⊂ [𝑚][𝑛]⧵𝑅𝑗 are (𝑟,𝑚−𝑘)-uncapturable with |𝑅𝑗| ⩽ 𝑘 for 𝑗 ∈ [ℎ], then
there is a realisation 𝑦1, … , 𝑦ℎ of with 𝑦𝑗 = 𝑥

𝑗

[𝑛]⧵𝑇
for some 𝑥𝑗 ∈ 𝑗 for 𝑗 ∈ [ℎ], where 𝑇 =

⋃
𝑗 𝑅𝑗 .

Proof. We follow the proof of Theorem 6.4.
Step 1: Globalness. We define 𝑡

𝑗
for 𝑗 ∈ [ℎ], 0 ⩽ 𝑡 ⩽ ℎ as follows. Initially, all 0

𝑗
= 𝑗 . At

step 𝑡 ∈ [ℎ], we apply Lemma 5.5 to 𝑡−1
𝑡 , which will have 𝜇(𝑡−1

𝑡 ) ⩾ 𝑚−𝑘, with 𝛾 = 𝑚−1∕10

and 𝑟∕100𝑘ℎ in place of 𝑟 we obtain 𝑡
𝑡 = (𝑡−1

𝑡 )𝑅′𝑡→𝛼′𝑡
that is (𝑟∕100𝑘ℎ, 𝜇(𝑡−1

𝑡 )∕𝛾)-global with
𝜇(𝑡

𝑡) ⩾ 𝜇(𝑡−1
𝑡 ), where |𝑅′

1
| ⩽ (𝑟∕100𝑘ℎ) log1∕𝛾(1∕𝜇(

𝑡−1
𝑡 )) ⩽ 𝑟∕10ℎ. For each 𝑗 ∈ [ℎ] ⧵ {𝑡}, we

let 𝑡
𝑗
= 𝑡−1

𝑗
⧵
⋃

𝑖∈𝑅′𝑡
𝐷𝑖→𝛼′𝑡(𝑖)

. Then uncapturability implies the above assumption 𝜇(𝑡−1
𝑡 ) ⩾

𝑚−𝑘. By Claim 5.4, each𝑡
𝑡 is (𝛾𝑚∕4, 𝜇(𝑡

𝑡)∕2)-uncapturable, so 𝜇(
ℎ
𝑡 ) ⩾

1

2
𝜇(𝑡

𝑡), which implies
thatℎ

𝑡 is (𝑟∕100𝑘ℎ, 2𝜇(
ℎ
𝑡 )∕𝛾)-global.

Step 2: Fairness. As 𝑛 ⩾ 𝑁 log𝑚 and 𝑁 is large, each 𝜇(ℎ
𝑗
) ⩾ 1

2
𝑚−𝑘 ⩾ 𝑒−𝑛∕𝐶 , where 𝐶 =

𝐶(𝑠, 1∕2ℎ) is as in Proposition 6.1. Consider uniformly random 𝐋 ∈
([𝑛]⧵⋃𝑗(𝑅𝑗∪𝑅

′
𝑗
)

𝓁

)
and let

𝐳1, … , 𝐳𝓁 ∈ [𝑚]𝐋 be a uniformly random copy of . By Proposition 6.1, each ℙ[𝜇((ℎ
𝑗
)𝐋→𝐳𝑗

) ⩾
1

2
𝜇(ℎ

𝑗
)] ⩾ 1 − 1∕2ℎ − 𝑜(1). Thus, we can fix 𝐿 and 𝑧1, … , 𝑧𝓁 so that all 𝑗 = (ℎ

𝑗
)𝐿→𝑧𝑗

have
𝜇(𝑗) ⩾

1

2
𝜇(ℎ

𝑗
), so are (𝑟∕100𝑘ℎ, 4𝜇(𝑗)∕𝛾)-global.

Step 3: Expansion. We define 𝑡
𝑗
⊂ [𝑚𝑡]

𝑛 for 𝑗 ∈ [ℎ], 0 ⩽ 𝑡 ⩽ ℎ as follows. Initially, all 0
𝑗
=

𝑗 and 𝑚0 = 𝑚. At step 𝑡 ∈ [ℎ], we apply Lemma 6.11 with 𝜀 = 1∕4𝑘ℎ and 𝑏 = 𝑏𝑡 = 42
𝑡 , to

𝑡−1
𝑡 , which will have 𝜇𝜋𝑡−1(𝑡−1

𝑡 ) ⩾ 1

8
𝑚−𝑘, obtaining 𝜋𝑡 ∈ Π𝑚𝑡−1,𝑚𝑡,𝑏𝑡

with𝑚𝑡 = Ω𝑘(𝑚𝑡−1), 𝛼′′𝑡 ∈

[𝑚𝑡]
𝑅′′𝑡 , where 𝑅′′𝑡 ⊂ [𝑛] ⧵ (𝑅𝑡 ∪ 𝑅′𝑡 ∪ 𝐿)with |𝑅′′𝑡 | < 𝑂𝑘(log𝑚) ≪ 𝑛, such that 𝑡

𝑡 ∶= (𝑡−1
𝑡 )

𝜋𝑡
𝑅′′𝑡 →𝛼′′𝑡

has 𝜇𝜋𝑡 (𝑡
𝑡 ) ⩾ 2𝑚−1∕2ℎ. For each 𝑗 ∈ [ℎ] ⧵ {𝑡}, we let 𝑡

𝑗
= 𝜋𝑡(

𝑡−1
𝑗

) ⧵
⋃

𝑖∈𝑅′′𝑡
𝐷𝑖→𝛼′′𝑡

.
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For 𝑗 > 𝑡, we can write 𝑡
𝑗
= 𝜋◦𝑡(), where 𝜋◦𝑡 = 𝜋𝑡◦… ◦𝜋1 and  = 𝑗 ⧵

⋃
𝑡′⩽𝑡

⋃
{𝐷𝑖→𝑎 ∶ 𝑖 ∈

𝑅′′
𝑡′
, (𝜋◦𝑡′

𝑖
(𝑎) = (𝛼′′

𝑡′
)𝑖}. As 𝜇(𝑗) is (𝑟∕100𝑘ℎ, 4𝜇(𝑗)∕𝛾)-global, it is (𝛾𝑚∕8, 𝜇(𝑗)∕2)-uncapturable,

so 𝜇() ⩾ 𝜇(𝑗)∕2 ⩾
1

8
𝑚−𝑘. By Claim 6.8, this implies the above assumption 𝜇𝜋𝑡−1(𝑡−1

𝑡 ) ⩾ 1

8
𝑚−𝑘.

At the end of the process, each 𝜇𝜋◦ℎ (ℎ
𝑗
) ⩾ 𝜇𝜋◦ℎ (

𝑗
𝑗
) − 𝑂𝑘,ℎ(𝑚

−1 log𝑚) ⩾ 𝑚−1∕2ℎ.
Step 4: Generalised Hoffman bound. By averaging, we can choose restrictions 𝑗 ⊂ [𝑚1]

𝑅

of ℎ
𝑗
for 𝑗 ∈ [ℎ] where 𝑅 = 𝐿 ∪

⋃
𝑗(𝑅𝑗 ∪ 𝑅′

𝑗
∪ 𝑅′′

𝑗
) such that all 𝜈(𝑗) ⩾ 𝑚−1∕2ℎ, where 𝜈 = 𝜇𝜋◦ℎ

is 𝑏ℎ-balanced. By construction, the elements of 𝑗 are of the form 𝜋◦ℎ(𝑥
𝑗

[𝑛]⧵𝑅
) where 𝑥𝑗 ∈ 𝑗

form a copy of  on 𝐿 and have no other agreements in 𝑅 ⧵
⋃

𝑗(𝑅𝑗 ∪ 𝑅′
𝑗
∪ 𝑅′′

𝑗
). As

∏
𝑗 𝜈(𝑗) ⩾

𝑚−1∕2 > 2ℎ𝑏ℎ∕(𝑚ℎ − ℎ𝑏ℎ) > 0, by Lemma 8.3, we can find a cross matching in 1, … ,ℎ, which
corresponds to 𝑥𝑗 ∈ 𝑗 such that 𝑦𝑗 = 𝑥

𝑗

[𝑛]⧵𝑇
realise. □

We conclude this section with a junta approximation result for configurations over large alpha-
bets, where for simplicity, we restrict attention to flat configurations with no kernel. For this case,
we obtain a result that is analogous to our junta approximation result in terms of ‘crosscuts’ of
expanded hypergraphs in [16].
Firstly we give the appropriate definition of the crosscut for configurations. Let  be an 𝓁-

configuration of size ℎ. The crosscut 𝜎() is theminimumnumber 𝑠 such that there is a collection⋃
 of 𝑠 co-dimension 1 subcubes such that ⊆

⋃
, among all collection of 𝑠 co-dimension

1 and each edge 𝑒 ∈  is contained in exactly one subcube in. Note that 𝜎() > 1 if and only if
 has no kernel, that is, 𝐾() = ∅.

Theorem8.5. For every 𝜂 > 0 and flat configuration with no kernel, there is𝐶 such that if𝑚, 𝑛 >

𝐶 and  ⊂ [𝑚]𝑛 is-free, then there is a collection of fewer than 𝜎() subcubes of co-dimension
1 such that 𝜇( ⧵

⋃
) ⩽ 𝜂∕𝑚.

Proof. Let ⊂ [𝑚]𝑛 be-free, where = {𝑒1, … , 𝑒ℎ} is an 𝓁-configurationwith parts (𝑈1, … ,𝑈𝓁)

and 𝐾() = ∅.
Firstly we consider moderate alphabet sizes, that is, 𝑛 ⩾ 𝑁 log𝑚, with 𝑚,𝑁 ≫ ℎ,𝓁. We can

assume that  is (𝑟,𝑚−2)-capturable, with ℎ,𝓁 ≪ 𝑟 ≪ 𝑚; otherwise, we find by Theorem 8.4,
applied with all 𝑗 =  . Thus, we find a collection  of at most 𝑟 subcubes of co-dimension
1 such that 𝜇( ⧵

⋃
 ) ⩽ 𝑚−2. Let  be the set of 𝐷𝑖→𝑎 ∈  such that 𝜇(𝑖→𝑎) ⩾ 𝜂∕2𝑟. Then

𝜇(
⋃

 ⧵
⋃

) < 𝜂∕2𝑚, so it suffices to show || < 𝜎().
Suppose for a contradiction that || ⩾ 𝜎(). Then by definition, contains a copy of, with-

out loss of generality realised on coordinate set [𝓁] by injections𝜙𝑖 ∶ 𝑈𝑖 → 𝑉𝑖 = {(𝑖, 𝑎) ∶ 𝑎 ∈ [𝑚]},
such that for each 𝑗 ∈ [ℎ], there is 𝐷𝑖𝑗→𝑎𝑗 ∈  such that 𝜙𝑖𝑗′ (𝑒𝑗 ∩ 𝑈𝑖𝑗

′ ) = (𝑖𝑗′ , 𝑎
𝑗′ ) if and only if

𝑗 = 𝑗′.
Let𝐶 be the set of 𝑖 ∈ [𝓁] such that𝑈𝑖 contains a vertex in the centre of. For 𝑖 ∈ 𝐶, let 𝑐𝑖 be the

vertex of𝑈𝑖 in the centre of (which is unique by flatness). We may assume for any 𝑖 ∈ 𝐶 that
either contains𝐷𝑖→𝜙𝑖(𝑐𝑖)

or does not contain any𝐷𝑖→𝑎; indeed, if does not contain𝐷𝑖→𝜙𝑖(𝑐𝑖)
, then

each 𝐷𝑖→𝑎 is 𝐷𝑖𝑗→𝑎𝑗 for at most one 𝑗 ∈ [ℎ], so we can obtain an alternative realisation replacing
𝜙𝑖 by 𝜙′𝑖 ∶ 𝑈𝑖 → 𝑉𝑖′ for some new 𝑖′ ∈ [𝑚], where 𝜙′

𝑖
(𝑣) = (𝑖′, 𝑎) whenever 𝜙𝑖(𝑣) = (𝑖, 𝑎).

Let 𝐼 be the set of all 𝑖 ∈ [𝑛] such that contains some𝐷𝑖→𝑎.We claim that we can fix 𝑦𝑗 ∈ [𝑚]𝐼

for 𝑗 ∈ [ℎ] such that (a) 𝜇(𝐼→𝑦𝑗 ) ⩾ 𝜂∕3𝑟 for all 𝑗 ∈ [ℎ], (b) 𝑦𝑗
𝑖𝑗
= 𝑎𝑗 for all 𝑗 ∈ [ℎ] and (c) for all

𝑗 ∈ [ℎ], 𝑗′ ≠ 𝑗, if 𝑖𝑗′ = 𝑖𝑗 , then 𝑦𝑗
𝑖
≠ 𝑦

𝑗′

𝑖
for all 𝑖 ≠ 𝑖𝑗 , and otherwise 𝑦𝑗

𝑖
≠ 𝑦

𝑗′

𝑖
for all 𝑖 ∈ 𝐼 (in words,
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𝑦𝑗 and 𝑦𝑗′ may only agree on 𝑖𝑗 if the 𝑖’s corresponding to 𝑗, 𝑗′ coincide, and must disagree on any
other coordinate). To see this, we apply a greedy algorithm. To define 𝑦𝑗, we consider

𝑗 = 𝑖𝑗→𝑎𝑗 ⧵
⋃

𝑗′<𝑗,𝑖∈𝐼

(𝑖,𝑦
𝑗′

𝑖
)≠(𝑖𝑗 ,𝑎𝑗)

({
𝑥 ∈ [𝑚]𝑛 ||𝑥𝑖 = 𝑦

𝑗′

𝑖

})
𝑖𝑗→𝑎𝑗

,

which has 𝜇(𝑗) ⩾ 𝜇(𝑖𝑗→𝑎𝑗 ) −
ℎ|𝐼|
𝑚

⩾
𝜂

2𝑟
− ℎ𝓁

𝑚
>

𝜂

3𝑟
. By averaging, we can fix a restriction 𝐼→𝑦𝑗

of 𝑗 with at least this measure, so the claim holds.
It remains to show that 1, … ,ℎ cross contain the configuration′ obtained from by delet-

ing the parts corresponding to 𝐼. As in the proof of Lemma 7.3, by Proposition 6.1, we can reduce to
the case that′ is a matching, which holds by Lemma 8.3. Thus, the theorem holds for moderate
alphabet sizes,
Now we consider huge alphabets, that is, 𝑛 ⩾ 𝑛0 and 𝑚 ⩾ 2𝑛∕𝑁 , where 𝐾, 𝑛0 ≫ 𝑁. We let

 be the set of all dictators 𝐷𝑖→𝑎 such that 𝜇(𝑖→𝑎) > 𝜂2∕𝑛2. Similarly to the proof of (a) in
Theorem 7.14, we have || < 𝜎(). Let  ′ =  ⧵

⋃
. It suffices to show 𝜇( ′) < 𝜂∕𝑚.

Suppose 𝜇( ′) ⩾ 𝜂∕𝑚. Similarly to the proof of (a) in Theorem 7.14, we fix 𝑖∗ ∈ [𝑛] with| ′|∕ℎ𝑛 ⩽ |𝜕𝑖∗( ′)| and partition 𝜕𝑖∗(
′) into ( ′

𝑎 ∶ 𝑎 ∈ [𝑚]) so that
∑

𝑎 𝜇(
′
𝑎) = 𝜇(𝜕𝑖∗

′) ⩾

𝜇(′)𝑚∕ℎ𝑛 ⩾ 𝜂∕ℎ𝑛. By definition of  and repeated merging, we can form 1, … ,ℎ of the
form 𝑖 = ∪𝑎∈𝑆𝑖

′
𝑎 with each 𝜇(𝑖) ∈ (𝜂2∕𝑛2, 2𝜂2∕𝑛2). However, these cross contain  by

Lemma 7.3. □

9 CONCLUDING REMARKS

An open problem is to decide whether our main theorem holds for the binary alphabet 𝑚 = 2.
Here our junta approximation method cannot work, as the (conjectural) extremal examples are
not juntas: they are balls depending on all coordinates. Despite this, it is still plausible that a
result can be obtained by a stability method, by adapting the methods of [18] in proving stability
for Katona’s intersection theorem.
Another natural open problem is to obtain an infinitary version of our main theorem. Say 𝐴 ⊂

ℝ𝑛 is (𝑡 − 1)-avoiding if it contains no pair 𝑥, 𝑦 with |{𝑖 ∶ 𝑥𝑖 = 𝑦𝑖}| = 𝑡 − 1. What is the maximum
possible Hausdorff dimension of 𝐴? At first, one might think that the answer is 𝑛 − 𝑡, and that
this would follow from our theorems for large finite alphabets via a standard limiting argument
if one assumes that 𝐴 is closed. One must make some assumption on 𝐴 for any non-trivial result,
as there are pathological examples of𝐴 ⊂ ℝ𝑛 of Hausdorff dimension 𝑛 in which any distinct 𝑥, 𝑦
have𝑥𝑖 ≠ 𝑦𝑖 for all 𝑖 ∈ [𝑛]. However, evenwhen𝐴 is closed, there are some surprises. For example,
although it is not hard to see that a 1-avoiding set in [𝑚]3 has size𝑂(𝑚), there is a closed 1-avoiding
set𝐴 ⊂ ℝ3 with Hausdorff dimension 2: this can be achieved by𝐴 = {(𝑥, 𝑓(𝑥), 𝑓(𝑥)) ∶ 𝑥 ∈ [0, 1]}

for a suitably pathological continuous function 𝑓.
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