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Abstract

The aim of the following research is to assess the applicability of calculated
quantum properties of molecular fragments as molecular descriptors in ma-
chine learning classification task. The research is based on bio-concentration
and QM9-extended databases. A number of compounds with results from
quantum-chemical calculations conducted with Psi4 quantum chemistry pack-
age was also added to the quantum properties database. Classification re-
sults are compared with a baseline of random guesses and predictions ob-
tained with the traditional RDKit generated molecular descriptors. Chosen
classification metrics show that results obtained with fragments quantum de-
scriptors fall between results from baseline and those provided by molecular
descriptors widely applied in cheminformatics. According to the results, the
implementation of principal component analysis, causes a drop in categoriza-
tion metrics.

Keywords: molecular descriptors, fragments quantum descriptors, machine
learning, cheminformatics, quantum computing

1. Introduction

Because some xenobiotics can be stored within organisms at higher con-
centrations than measured in the environment, increasing their concentra-
tion across the trophic chain and achieving harmful levels in fish, wildlife,
and humans, the bioconcentration factor (BCF) is essential in aquatic envi-
ronmental assessments [1, 2]. Accumulation can take place at each trophic
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oflevel, either through the skin or respiratory surfaces (such as lungs or gills),

[3, 4, 5, 6]. which is referred to as bioconcentration, or through the food
that an organism consumes, which is referred to as dietary bioaccumulation
[7]. This results in a rise in chemical concentration with increasing trophic
level, which exposes organisms at high trophic levels, such as humans, to
long-term repercussions that are difficult to predict, such as endocrine dis-
ruption [8]. Large regulatory efforts are being made to find and get rid of
the compounds that bioaccumulate the most. This is because pollution is
now seen as a threat to both the environment and human health, which has
made people more worried. BCF data are in high demand because they are
required by the European Commission’s (EC) regulation Registration, Eval-
uation, Authorization, and Restriction of Chemicals (REACH) [9], and they
may also be useful in the context of the Globally Harmonized System (GHS).
REACH is an initiative that aims to enhance the protection of human and
environmental health while simultaneously facilitating the free circulation of
chemicals via the early identification of chemical properties. The Globally
Harmonized System (GHS) standard is designed to offer a globally consistent
framework for the categorization and labelling of chemicals. The rule known
as the Classification, Labeling, and Packaging (CLP) regulation is responsi-
ble for putting the Globally Harmonized System into effect in Europe. This
regulation is a part of REACH. The current European Regulation on the
REACH [9] makes it essential, among other things, to estimate the rate of
bio-accumulation for chemicals that are manufactured or imported in quan-
tities that are greater than 10 tonnes per year. This regulation was passed
in 2007. Expensive and time-consuming bio-concentration measurements are
only needed for substances that are made or brought into the country in
quantities of more than 100 tonnes per year. BCF is the requested criterion
for bioaccumulation assessment in many regulatory frameworks [1], but its
determination is very expensive (more than 35,000 euros) and requires the
use of more than 100 animals for each standard study, which has led to a
general lack of data in the field. Because of this, the development of models
to anticipate BCF has been necessitated. In the context of regulation, the
primary goals are to choose and use parameters that are fundamental and
simple to compute (like log P), and to develop models that can assist in the
prediction of the BCF data that is the most accurate possible [10]. In Annex
XI of the REACH Act, the prerequisites for the appropriate selection and
application of quantitative structure-activity relationship (QSAR) models for
regulatory purposes are stated [11]. This sets the framework for the appli-
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evaluate the bioaccumulation potential of chemicals, as well as the creation
of predictive models. Over the course of several decades, a great number
of conceptual models for predicting BCF have been created [12, 13, 14, 15].
However, in more recent years, there have been publications of a few catego-
rization models. Regression models make up the vast bulk of these models.
A normal distribution of the data set is supposed to be the case for regression
models, and the vast majority of BCF data sets have a normal distribution.
This might be one possible cause.

QSAR makes use of statistical and mathematical techniques to quanti-
tatively connect a biological characteristic to molecular characteristics (such
as structural features or physicochemical qualities), which are numerically
stored inside so-called molecular descriptors. QSAR has become more sig-
nificant in international decision-making frameworks [16], and the European
REACH legislation [9] promotes its use for prioritising, data gap filling, and
the rationalisation of animal testing. The vast majority of BCF QSAR mod-
els are constructed using octanol/water partition coefficient (Kow) or other
descriptors that are quite comparable to them [17]. In practice, bioconcen-
tration happens predominantly as a thermodynamically driven partitioning
between water and the lipid phases of organisms, as shown by Kow [18]. How-
ever, other processes, such as metabolism and excretion, as well as specific
interactions with tissues other than lipids, can greatly contribute to the ap-
parent quantities that are present within organisms [19]. Chemicals that can
be transformed into hydrophilic molecules may be eliminated more quickly,
and as a result, their BCF values are lower than what is predicted by Kow

[20, 21]. However, substances that form specific connections with non-lipid
tissues can have a bigger BCF than one would anticipate. One example
of this is methylmercuric chloride, which has a low logKow but a very high
BCF (up to 1,000,000 in fish) as a result of its linkage with protein sulfhydryl
groups. Other examples of this type of compound include benzene, which has
a low logKow but a very high BCF [22]. In a similar way, Kow-based QSAR
models, which vary in how complex they are, can either underestimate or
overestimate the true BCF [23].

Many environmental contaminants, such as dichlorodiphenyl trichloroethane
(DDT), hexachlorobenzene (HCB), dieldrin (HEOD), and polychlorinated
biphenyls (PCBs), generated by industrial activities, pass through food chains,
posing a risk of exposure to the general population [24, 25]. Chemicals with
both a high lipophilicity and a high environmental persistency should be
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mulation, both of which should be assessed over lengthy durations of ex-
posure. The bioconcentration and bioaccumulation of chemical compounds
in aquatic and terrestrial organisms are significant criteria for ecotoxicolog-
ical evaluation and hazard assessment [26, 27, 28]. The few studies using
QSAR methods also focused on the development of models to determine the
BCF specifically for compounds containing a chlorine atom or atoms in their
structure. The models developed were based on different quantitative super-
structure/activity relationships (QSSAR) [27, 29]. These models have the
potential to be valuable in forecasting the bioaccumulation capacity of novel
compounds, a crucial aspect in evaluating their ecological implications. The
limited number of studies that have explored the inclusion of compounds
with chlorine atoms in their structure necessitates further research to en-
hance the precision and credibility of these models for a broader spectrum
of chemical structures. This research uses a QSAR technique to categorise
bioaccumulating compounds using a collection of novel molecular descriptors.
Two benchmarks are used to assess the new descriptors: a random guess and
a classification based on a well-known open source cheminformatics tool.

2. Materials and Methods

The research was conducted with the usage of Python [30], scikit-learn [31],
matplotlib [32], Seaborn [33], RDKit[34], XGBoost [35] and Light GBM [36].

2.1. Fragments quantum descriptors (FQDs)

The study involved the creation of a non-traditional set of descriptors
based on molecular substructures. Molecular descriptors focused on molecu-
lar fragments are widely applied in cheminformatics, some examples may be
found in [37, 38, 39]. The process of calculating novel descriptors involved
cross-referencing molecules from an experimental database with molecules
from a separate database containing quantum properties of small compounds,
in order to identify substructure matches. The process of matching substruc-
tures was carried out utilising the HasSubstructMatch method in RDKit.
Quantitative and qualitative descriptors were computed based on the quan-
tum properties of the detected substructures. Calculated quantum proper-
ties of whole molecules have been successfully applied as molecular descrip-
tors [40, 41, 42] but in this research descriptors are derived from molecular
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erties of identified sub-structures that are categorised based on the count of
atoms present in them. The values were subjected to averaging in order to
render the descriptors unaffected by the quantity of substructures detected.
Given that the descriptors are derived from substructures and the substruc-
tures database comprises molecules composed of a finite range of chemical
elements, it is advisable to limit the experimental database to molecules that
are also composed of the same elements.

FQDi
prop =

∑
j(i) propj ∗Nocc

n
,

prop− quantum property of substructure j

i− number of atoms in j-th substructure

j(i) − a substructure containing i number of atoms

n− number of detected substructures

Nocc − number of substructure occurences

(1)

Both qualitative and quantitative FQDs were computed. The greatest
value of Nocc in qualitative descriptors, which are a subclass of quantitative
descriptors, was 1. This formulation led to the calculation of descriptors that
only considered the existence of such a substructure. Qualitative descriptors
also included the frequency of occurrences in the parent molecule. The afore-
mentioned descriptors’ per-atom variations were also determined by dividing
the value of the descriptor by the number of atoms in the parent molecule.
352 quantum-based descriptors were created as a result, and these were used
in the study.

2.2. Quantum properties database

QM9 database [43] contains computed properties of over 134 000 molecules
made up of 9 atoms of C, O, N and F. Molecules included in the database
were picked from GDB17 chemical universe [44]. The computations were
conducted on B3LYP/6-31G(2df,p) level of theory. The source of the QM9
database was MoleculeNet [45] website. Recently, the database was extended
by Lim et. al. [46] with compounds containing Cl and S atoms chosen from
GDB17. Independently to QM9-extended database we also made an effort to
extend the QM9 database. To achieve this objective, a number of SMILES
were generated and quantum-chemistry calculations were conducted with
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cess is described in next section. Quantum properties included in the QM9,
QM9-extended databases and whether they were calculated with Psi4, are
listed in Table 1. The final substructures database was a combination of
QM9-extended and our own QM9 extension.

Table 1: Quantum properties in databases.

Property Unit Description A B C

A GHz Rotational constant A + x +
B GHz Rotational constant B + x +
C GHz Rotational constant C + x +
mu Debye Dipole moment + + +

alpha Bohr3 Isotropic polarizability + + +
homo Hartree Energy of HOMO + + +
lumo Hartree Energy of LUMO + + +
gap Hartree Gap, LUMO and HOMO difference + + +
r2 Bohr2 Electronic spatial extent + + x

zpve Hartree Zero point vibrational energy + + +
U0 Hartree Internal energy at 0 K + + +
U Hartree Internal energy at 298.15 K + + +
H Hartree Enthalpy at 298.15 K + + +
G Hartree Free energy at 298.15 K + + +
Cv cal/(mol K) Heat capacity at 298.15 K + + +
A - QM9; B - QM9-extended; C - calculated for this research with Psi4
+ - feature present in the database, x - feature missing in the database

2.3. Quantum chemistry calculations

In order to conduct the aforementioned calculations, a number of struc-
tures were generated from molecules appearing in the original QM9 database.
The whole process is visualised in Figure 1. The original database was queried
for molecules containing fluorine. Based on SMILES representation of the
chosen molecules, new structures were generated by simple replacement of F
to Cl. The resulting SMILES were employed to produce a set of input files
to conduct the calculations. Initial geometries were generated with RDKit
EmbedMolecule method which uses ETKDG method [48]. In compliance
with the original QM9 database, B3LYP method was used in these calcula-
tions. Although due to initial plan to make calculations for molecules with F
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sen. Dipole moments and polarizabilities of molecules were calculated using
CCSD method. In the case of failure, the calculations were firstly repeated
with enabled second order SCF. In the third step with enabled cartesian coor-
dinates and enabled back transformation. Then the density of the DFT grid
was expanded and the geometry convergence threshold tightened. The final
step involved loosing the geometry convergence threshold. Molecules that
still failed to yield results were dismissed. The resulting output files were
read with AaronTools [49] which applies post calculations RRHO correction.

Figure 1: Steps of the process of extending QM9-extended database with chlorinated
molecules. In case of failure of calculations in all five steps the molecules were dismissed.

Despite the initial plan to include the Br and I substructures in the re-
search, they were excepted because the calculations were time consuming
and their occurence in experimental database is limited.
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The experimental database mentioned in the previous section was the
bio-concentration database [50, 51] which contains 1007 compounds that were
derived from literature with their corresponding experimental logBCF values.
These values were converted to BCF class either as bio-accumulative or non-
bio-accumulative compounds with the threshold of logBCF of 3. The source
of the database is qsardb.org [52]. A subset of compounds that contained
only C, O, N, S, F and Cl atoms was chosen for further research. The original
database was reduced from 1007 to 868 compounds, and which composition
(as a distribution and elements allocation) is shown in Figure 2. Among
these compounds, 681 were classified as non-bio-accumulative and 187 as
bio-accumulative.

a)

b)

c)

Figure 2: Curated bio-concentration database molecules composition. a) - the overall
distribution of number of atoms in molecules in the database; b) - the number of molecules
according to the number of atoms they contain; c) - the number of molecules that contain
at least one atom of elements from C, O, N, F, Cl, S.

There are more molecules containing chlorine than fluorine.

Since the substructures database is not exhaustive in terms of all possible
atoms combinations, it is possible that there might be compounds where no
substructures would be found. Such case appeared with 12 compounds, thus
the dataset was further reduced to 856 compounds. The compounds that
lacked substructures are listed in the supplementary material.

2.5. Data processing

Due to the possibility that some fragment quantum descriptor values may
be missing, three types of handling strategies were evaluated using 5-fold
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ditional variables containing information on whether the value was missing,
and k-nearest neighbours imputation were the strategies evaluated. The bio-
concentration classes were encoded with the values 0 and 1, with 1 denoting
bioaccumulation. 330 molecules were sampled while maintaining the classes
ratio. This procedure generated an out-of-the-bag (OOB) dataset for testing
the final model. The remaining samples formed a training set. Since the
data is class-imbalanced, random oversampling was used to modify the class
distribution in the training set. The training set’s values were then subject to
standardisation. Two different approaches to data processing were also eval-
uated - either descriptors were introduced into machine learning algorithms
right after standardization or principal component analysis (PCA) was also
applied. The PCA was set to retain 95% of variance.

2.6. Model selection

The data was introduced into Logistic Regression, Random Forest, Gradi-
ent Boosting, k-nearest neighbours, Support Vector Classification, XGBoost
and LightGBM algorithms. Models were checked in five-fold cross validation
process. Oversampling, standardization and PCA were applied separately
for every training fold of the data in cross validation. The validation part
of the cross validation data fold underwent only standardization and PCA
with parameters previously set on the training part of the data fold, thus
the scoring metrics were evaluated with data with the original class ratio.
The testing metrics used to evaluate models were F-score and balanced ac-
curacy. Following good practices in machine learning studies [53, 54], in order
to check whether the predictions are better than simple guesses, a random
classifier was set as a baseline. One best performing algorithm was selected
based on the aforementioned scoring results.

2.7. Hyperparameters tuning and OOB test

The algorithm’s parameters were optimised in order to maximize model’s
F-score. Models with various parameter combinations were tested using 5-
fold cross validation along the procedure The range of tested parameters is
outlined in Supplementary Material. The selected algorithm with parame-
ters tuned was trained with the whole training dataset and finally tested with
OOB dataset. The training dataset underwent oversampling and preprocess-
ing before the final test. The training dataset’s preprocessing procedures were

9
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ferent seeds of pseudorandom generators of the machine learning algorithms.
The diagram depicting the whole process is shown in Figure 3.

Figure 3: Step by step visualization of the research.

In order to create a full picture of the potential of the novel molecular
descriptors, the research process was repeated with 2 other sets of molecular
descriptors:

• RDKit generated molecular descriptors (208), MACCS keys (166) and
Morgan Fingerprints (2048),

• combination of novel and abovementioned descriptors.

In both cases since MACCS keys and Morgan Fingerprints are binary data,
the PCA was applied only to FQDs and RDKit molecular descriptors.

3. Results and discussion

3.1. Fragments quantum descriptors

Due to the fact that two different variants of descriptors were calculated,
it was determined by comparing the variance coefficients whether or not
the information they contain differs. The findings indicated that there is

10
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conclusion that using both qualitative and quantitative descriptors would
not have an impact on the study’s findings. As a result, the research only
used qualitative FQDs.

3.2. Quantum-chemical calculations

In the case of our own QM9 extension, out of 2163 calculations, 99 failed
for various reasons. Since QM9-extended database was published during our
own calculations related to this article, there appeared to be an overlap of
290 molecules. In these cases, while combining the results of calculations
with QM9-extended database, properties from QM9-extended were consid-
ered as bearing priority and taken into the research. The resulting database
of quantum properties (QM9-extended-plus) contained 155468 compounds
with 11 calculated properties.

3.3. Handling of missing data

Leaving missing values limited the number of applicable machine learning
algorithms to XGBoost and LightGBM. Such approach to resolving missing
data problem was outperformed by other applied techniques. Figure 4 shows
the results of F-score and balanced accuracy of handling missing data by fill-
ing with zeros and KNN imputation. Although KNN imputation performed
better in certain instances, such as for KNN and SVC, other algorithms per-
formed better for replacing missing values with zeros, or both approaches
produced results that were similar.

3.4. Most accurate machine learning algorithm

The best performing algorithm was determined to be the Light Gradient
Boosting Machine (LGBM) based on the metrics values in cross validation
(Figure 5). All models outperformed the baseline. The top performing algo-
rithm for RDKit-generated molecular descriptors was XGBoost, but LGBM
performed best when FQDs and RDKit-generated descriptors were combined.
The most effective methods for PCA-based preprocessing were Random For-
est for both only FQDs and only RDKit descriptors and Gradient Boosting
for the combination of FQDs and RDKit descriptors. The cross validation
results are demonstrated in the Suppmementary Material.
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Figure 4: 5-fold cross validation scores of handling missing data strategies.

3.5. Out of bag test

The 330 molecules previously unused in the research that were separated
from reduced original dataset were used to test final models. Table 2 and 3
show achieved balanced accuracy, and F-score of baseline and 3 sets of pre-
dictors with 5 different seeds of pseudorandom generators of the machine
learning algorithms. Molecular descriptors generated by RDKit produce
greater results in terms of F-score and balanced accuracy. The usage of
FQDs and RDKit descriptors together produced predictions with improved
specificity and precision - please refer to Supplementary Material to inves-
tigate specificity, sensitivity, precision and accuracy obtained in OOB test.
The application of PCA caused a significant drop in the evaluated metrics.

3.6. Principal components analysis

While preserving 95% of variance, PCA reduced the number of machine
learning features to 18 components (Figure 6). The most contribution in first
principal component (PC) was attributed to quantum properties of 4 atoms
fragments detected in parent molecules. Fragments built up of 8 and 7 atoms
had biggest impact on second PC. Third component was composed mainly
of properties of 2 atoms fragments.

12
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Figure 5: 5-fold cross validation scores regarding FQDs molecular representation. Boxplots
and individual points are shown.

Table 2: OOB test results when PCA was part of preprocessing.

metric test no. Baseline
molecular representation

FQDs RDKit combined

F-score

I 0.444 0.594 0.735 0.682
II 0.444 0.586 0.711 0.672
III 0.444 0.594 0.725 0.652
IV 0.444 0.588 0.720 0.657
V 0.444 0.603 0.715 0.652

balanced accuracy

I 0.458 0.751 0.834 0.789
II 0.458 0.747 0.829 0.788
III 0.458 0.751 0.838 0.777
IV 0.458 0.746 0.836 0.779
V 0.458 0.759 0.842 0.777

Amongst first 7 PCs the most informative quantum properties were dipole
moment, zero point vibrational energy, free energy, internal energy and en-
thalpy at 298.15K, heat capacity, energy gap between LUMO and HOMO,
polarizability.

Since the application of principal component analysis caused a drop in the

13
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metric test no. Baseline
molecular representation

FQDs RDKit combined

F-score

I 0.444 0.620 0.759 0.729
II 0.444 0.620 0.759 0.729
III 0.444 0.620 0.759 0.729
IV 0.444 0.620 0.759 0.729
V 0.444 0.620 0.759 0.729

balanced accuracy

I 0.458 0.759 0.875 0.829
II 0.458 0.759 0.875 0.829
III 0.458 0.759 0.875 0.829
IV 0.458 0.759 0.875 0.829
V 0.458 0.759 0.875 0.829

scoring metrics, the effect was investigated by estimating mutual information
between bioaccumulation class and used descriptors.

The analysis proved that, in the dataset, bioaccumulation class is mostly
associated to FQDs resulting from fragments containing 7, 8 and 9 atoms.
Results from mutual information regarding quantum properties of fragments
are more consistent with PCA - the most informative properties are dipole
moment, internal energy at 0K, enthalpy and internal energy at 298.15K,
energy gap between LUMO and HOMO, zero point vibrational energy, heat
capacity, polarizability.

Mutual information between principal components and bioaccumulation
class was also estimated. The first two principal components were estimated
as most informative only in the case of RDKit generated descriptors, eg.
the mutual information score of PC4 from combined descriptors was 3 times
higher than PC1.

4. Conclusions

Quantum properties of molecular fragments allowed classification of bio-
accumulative compounds with better accuracy than the baseline. However,
molecular descriptors generated from quantum features of molecular frag-
ments are inferior to RDKit generated descriptors in classification of bio-
accumulative properties. Additionally, generation of the traditional molecu-
lar descriptors require less computational resources.

14
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Figure 6: Scree plot of principal components obtained from FQDs. First 6 components
account for 80% of variance. The red line is the cumulative sum of principal components’
explained variance.

The biggest disadvantage of FQDs is that the database in which molecular
fragments are searched for contains only fragments composed of a limited set
of chemical elements. For this reason if generated from molecules built of
other elements, FQDs could provide less information and fail to form a strong
relationship with chemical properties. In the research, quantum-chemical
calculations provided a further extension of QM9-extended database, thus
enriching the set of possible substructures that could be detected. It is also
a contribution to the publicly available quantum calculations databases.

In the research the application of principal component analysis caused
a decrease in the evaluated classification metrics. Which means that the
variance in the considered groups of molecular descriptors did not highly
correspond to the bioaccumulation classes.

Since the research focused on a narrow QSAR application, further re-
search towards applicability of fragments quantum descriptors should be con-
ducted. The problem of missing FQD’s values should also be addressed.

5. Data and Software Availability

The code in the form of Jupyter Notebooks is available in supplementary
material. The QM9-extended-plus dataset is available at Zenodo [55].
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ofHighlights

Fragments quantum descriptors in classication of bio-accumulative

compounds

Bartlomiej Fliszkiewicz, Marcin Sajdak

• New type of molecular descriptors are proposed.

• Large database of quantum properties has been further extended.

• More than 800 compounds are used to establish prediction models.

• A simple model with strong predictive power is established.

• The overall predictive accuracy is larger than 0.80.



Journal Pre-proof

Parent molecule
 Jo
ur

na
l P

re
-p

ro
of

QSAR

Fragments

Quantum
properties



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Declaratio if ioterettt
 

 The authors declare that they have no known competng fnancial interests or personal relatonships ☒
that could have appeared to infuence the work reported in this paper.
 

 The authors declare the following fnancial interests/personal relatonships which may be considered ☐
as potental competng interests:

 
 
 


