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Abstract

This research entailed calibration and validation of the SAGE Software

Cost/Schedule Estimating System, Version 1.7 as a means to improve estimating

accuracy for DoD software-intensive systems, and thereby introduce stability into

software system development. SAGE calibration consisted of using historical data from

completed projects at the Space and Missile Systems Center (SMC) and the Electronic

Systems Center (ESC) to derive average performance factors (i.e., calibration factors) for

pre-defined categories of projects. A project was categorized for calibration by either its

primary application or by the contractor that developed it. The intent was to determine

the more appropriate categorization for calibration. SAGE validation consisted of using

the derived calibration factors to predict completed efforts, not used in deriving the

factors. Statistical resampling employing Monte Carlo simulation was used to calibrate

and validate the model on each possible combination of a category's projects. Three

statistical measures were employed to measure model performance in default and

calibrated estimating modes. SAGE generally did not meet pre-established criteria for

estimating accuracy, although the model demonstrated some improvement with

calibration. Calibration of projects categorized by contractor resulted in better calibrated

model performance than calibration of projects categorized by application. This

categorization is suggested for future consideration.
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CALIBRATION AND VALIDATION OF THE SAGE SOFTWARE

COST/SCHEDULE ESTIMATING SYSTEM TO UNITED STATES AIR FORCE

DATABASES

I. Introduction

Overview

Computer software has achieved a pervasive influence in many, if not all, facets

of Department of Defense (DoD) operations. One Air Force general officer recently

commented that, "The only thing you can do with an F-22 that does not require software

is to take a picture of it" (Department of the Air Force, 1996: 2-6). The rate at which

software has gained this influence has been phenomenal. To put it in perspective,

consider the case of the F-4 Phantom, a Vietnam War vintage jet that used no software in

its weapon systems (Department of the Air Force, 1996: 2-5). A portion of this DoD

software revolution was inevitable considering the rapid advances in computer processing

power in recent decades; however, it is also fair to characterize the DoD as a proactive

participant in seeking opportunities to tap software's power. The federal budget provides

evidence to this as the DoD committed almost 17% of its FY95 $252 billion budget to

software, an increase of 31% in just three years (Department of the Air Force, 1996: 2-

15). Managing this software explosion, like managing any rapid-growth enterprise, poses

a formidable challenge to DoD managers.

Mosemann suggests that the biggest concern for the DoD with respect to software

is a collective inability to predict its costs and schedule (Department of the Air Force,



1996: i). The literature on software cost estimates is replete with stories of cost estimates

that are orders of magnitude different from actual costs. Humphrey punctuates this with

his claim that, "Regardless of the methods used, software estimates will be inaccurate"

(Humphrey, 1990: 92). In quantitative terms, the current state of the DoD is that

software cost estimates are accurate within 25% of actuals only about half of the time

(Ferens, 1996: 31).

The consequence of unpredictable software effort is the instability of the

acquisition program for which the software is being developed. In the DoD, the cost

estimate becomes the basis for the budget. When actual effort significantly exceeds that

estimated, problems can arise because resources are inadequate to perform. One text

describes a vicious cycle in which comers are cut to keep costs down and this ultimately

leads to an attempt by the developing organization to deliver less for the same price

(Department of the Air Force, 1996: 1-21 - 1-22). Perhaps this cycle lends insight into

Gibbs' claim that almost three quarters of all large software-intensive systems either do

not function as intended or are not used at all (Gibbs, 1994: 87). Because of this

instability, considerable effort has been dedicated to improving software cost estimation.

This research examines efforts to improve software estimating accuracy within the DoD

and specifically examines calibration of the SAGE Cost/Schedule Estimating System for

use in the United States Air Force.

General Issue

The DoD primarily relies on parametric models to estimate software costs. Some

of the more common models currently in use include REVIC, SEER-SEM,

CHECKPOINT, SLIM and PRICE-S. The DoD prefers parametric models because these

models are relatively easy to use and require fewer people to perform an estimate than
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other common estimating methods; however, parametric models have historically been

inaccurate (Ferens, 1996: 29-31).

Parametric models generate estimates on the assumption that software cost or

effort is a mathematical function of any number of inputs into the development process.

Typical inputs that many models consider are software size (e.g., lines of programming

code) and the capabilities of the people and organization who are performing the effort.

The estimator enters available project information into the model and the model

calculates an estimate based on these inputs. The estimator can then update the estimate

when more project information is available. This process is less demanding than one that

requires the estimator to formulate cost estimating relationships and build an estimate

entirely from scratch. Despite this ease, estimating accuracy remains an elusive goal.

Many experts suggest calibration as a means to improve the accuracy of

parametric model equations. Calibration involves adjusting the model's effort equations

for a particular environment. The default model equations are derived in part or in whole

from a historical database of programs. These equations are therefore dependent upon

and reflect the database from which they were derived. For example, a model formulated

from a history of military programs in theory generates estimates that are reflective of the

military environment. Yet, even within the military, there is a wide variety of demands

placed on software systems. For example, the requirements placed on an embedded

software system for space are much more stringent than those placed on a stand-alone

management information system. The difference in effort required to develop two such

disparate systems may be considerable. Although a model may be marketed for DoD

cost estimating purposes and may capture macro-level differences in system complexity,

the model is typically not fine tuned for specific DoD environments. Calibration of the

model's equations is therefore suggested as the means to adjust the model to improve its

estimating accuracy for a particular environment.
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Specific Issue

This thesis details the calibration of the SAGE Cost/Schedule Estimating System.

SAGE is a relatively new estimating model that is developed and marketed by Dr.

Randall Jensen through his company, Software Engineering, Incorporated. This thesis

continues a body of research started in 1995 at the Air Force Institute of Technology

(AFIT) to calibrate common cost estimating models to improve model estimating

accuracy for the Air Force. This AFIT research stream includes seven previous and three

concurrent calibration efforts that will be summarized in Chapter II, Literature Review.

For this effort, SAGE is calibrated to historical data provided from both the Electronic

Systems Center (ESC) and the Space and Missile Systems Center (SMC) of the Air Force

Material Command.

The decision to calibrate to two databases is a departure from recent AFIT

research that used data only from SMC. The SMC database is used in response to their

requirement to achieve a calibrated cost estimating ability for SAGE. In fact, separate

calibration factors are derived for a variety of program categories at SMC such as space,

avionics, and command and control. The ESC database is employed because it includes

unique information that enables calibration to be performed on a contractor-by-contractor

basis. This is important because Dr. Jensen's belief, as reflected in SAGE, is that the

variation in development effort, for a given program size and complexity, is driven

largely by management factors unique to a company. By deriving calibration factors for

a specific company, insight is gained into how efficiently the company develops software.

This is in contrast to the method employed for the SMC data in which performance is

calibrated at an aggregated industry level of performance. By calibrating the model to

both databases, an assessment can be made as to the more effective method.

4



Research Contribution

This effort represents the first time that the SAGE Cost/Schedule Estimating

System has been calibrated to either the ESC or SMC database. Apart from model

choice, this research is unique from previous AFIT efforts in that calibration is

accomplished against data stratified primarily by contractor.' This research also

introduces the use of simulation to perform calibration and validation such that all subsets

of project data are considered for calibration and validation, versus the standing practice

of considering just one subset of the data. This results in much more robust findings.

Research Objectives

The research objectives are as follows:

1. To critically examine previous efforts to calibrate software cost models

for the DoD and, where possible, to improve upon the general methods

used.

2. To establish a specific methodology for SAGE model calibration.

3. To measure the improvement, if any, from calibrated SAGE estimates

as compared to uncalibrated SAGE estimates.

4. To determine whether the model meets the criteria of an effective

estimating model.

5. To examine whether calibrating the model to a specific contractor's

capabilities is more appropriate than calibrating the model to a general

class of programs.

6. To propose future research efforts in this area.

Concurrently, Shrum, 1997 is performing a calibration of the CHECKPOINT model that considers

calibration primarily by contractor.
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Scope of Research

This research is limited to calibration of the SAGE Cost/Schedule Estimating

Model, Version 1.7 to improve its ability to estimate for development effort only.

Calibration of the model for schedule estimation is not explicitly performed; however,

improvements in schedule estimating may be implicitly coupled with improved estimates

for effort. No data points other than those provided from the ESC and SMC databases are

used for either calibration or validation. As such, use of the calibration results for

programs external to these specific domains is cautioned.

Thesis Overview

This chapter provides the motivation for the need to calibrate software cost

estimating models to improve their accuracy. Model estimates have historically been

inaccurate, and inaccurate estimates translate into unstable programs. The consequence

of this instability is a vicious cycle of overruns and reduced capability. By improving

estimating accuracy through calibration of a model's equations, estimators can introduce

stability to the programs and thereby increase the chance of program success. This

success is vital to the DoD, in view of the heavy emphasis that the DoD places on

software-intensive systems.

Chapter II, Literature Review, provides a summary of related calibration efforts

and offers an analysis of what the literature suggests as ways to improve estimation and

the calibration process. In addition, a thorough analysis of the underlying principles and

mathematical equations of the SAGE Cost/Schedule Estimating model is offered.

Chapter III, Methodology, details the steps in calibrating and validating SAGE.

Focus is given to describing the databases that are used for calibration, identifying the

SAGE parameters that will be calibrated, and explaining the measures used to assess the

model's accuracy for both a calibration and a validation data set.

6



Chapter IV, Findings, describes the results of the calibration and validation efforts

in terms of the statistical measures proposed in Chapter III.

Chapter V, Conclusions and Recommendations, reviews the findings of Chapter

IV and analyzes the degree to which the stated research objectives have been achieved.

Future directions for related research are offered.

7



II. Literature Review

Overview

This chapter examines the nature of software cost estimation in order to describe

the context in which the SAGE model is used. Specifically, the chapter reviews the

estimating methodologies that are generally available and which of those are typically

employed by Department of Defense (DoD) cost analysts. A review of efforts taken to

improve these estimating methods is also offered. The chapter then focuses on the

background, philosophy, and behavior of the SAGE model. The intent is to establish a

foundation for understanding the model, and on which a calibration and validation

methodology will be established.

Software Cost Estimating Methodologies

Several cost estimating methodologies are available to the estimator. The SAGE

model, for example, employs a parametric or algorithmic method since it forecasts

development effort as a mathematical function of inputs such as the size of the program

and the capabilities of the developing team. Boehm identifies the algorithmic method as

one of seven available estimating techniques (Boehm, 1981: 329-330). These techniques

are summarized in Table 1 on the following page.

The issue for the estimator then becomes to decide which of these methodologies

to employ. Boehm says the Parkinson and price-to-win methods do not produce sound

cost estimates and are unacceptable (Boehm, 1981: 334). Of the other methods, Boehm

says that none of the alternatives is better than the others from all aspects and the

strengths and weaknesses of these techniques are complementary (Boehm, 1981: 334).

The choice of methods thus hinges on the situational and environmental factors in which

the estimator is working.

8



Table 1. Cost Estimating Methodologies

Method Description
1. Algorithmic Models Provide one or more algorithms that produce a software cost

estimate as a function of a number of variables which are
considered to be the major cost drivers

2. Expert Judgment Involves consulting one or more experts, perhaps with aid of
an expert-consensus mechanism such as the Delphi technique.

3. Analogy Involves reasoning by analogy with one or more completed
projects to relate their actual costs to an estimate of the cost of
a similar new project.

4. Parkinson The principle that work expands to fill the available volume is
invoked to equate the cost estimate to the available resources.

5. Price to Win The estimate is equated to the price believed necessary to win
the job.

6. Top-Down An overall cost estimate for the project is derived from global
properties of the software product. The total cost is then split
up among the various components.

7. Bottom-up Each component of the software job is separately estimated,
and the results aggregated to produce an estimate for the
overall job.

(Boehm, 1981: 329-330)

Several factors must be taken into account. One factor is the point of the program

at which the estimate is accomplished. For example, Wellman points out that the

bottoms-up approach cannot be done "until there is a well-defined design and the nature

and size of the components are known" (Wellman, 1992: 31). A second factor is the

required stability of the estimate. With respect to stability, Ferens critiques the

algorithmic models because "they are often unstable, in that small changes in certain

sensitive input parameters can result in substantial changes in cost or schedule" (Ferens,

1996: 29). Those who desire stable estimates may instead consider a bottoms-up

approach (Boehm 1981: 342). A third factor is the type or nature of the program being

estimated. Stutzke says that, "No single estimating method is suited for every type of

project" (Stutzke, 1996: 20). For example, if software is being developed for a brand

new application, then it would be inappropriate to use the analogy method since no

comparable program history exists.
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It is incumbent on the estimator to evaluate the particular situation and

environment and then decide which method(s) to use. The estimator should also look at

estimation as a dynamic process. Stutzke recommends a "regular review of progress,

assumptions, and product requirements during a project to detect changes and violations

of the assumptions underlying the estimate" (Stutzke, 1996: 20-21). For example, the

estimator may make an initial estimate using a parametric model and then, as more

information becomes available, use a bottoms-up methodology to generate a more stable,

accurate estimate.

Considering these factors, the DoD's tendency to rely on algorithmic software

cost estimating methods can be examined. Ferens indicates that this reliance is driven by

several elements. He says DoD analysts typically do not have an ongoing, in-depth

knowledge of the projects they are estimating, but they must frequently perform thorough

estimates in a very short period of time. In addition, DoD analysts must usually

accomplish their estimates early in the project (Ferens, 1996: 29). Each of these factors

play into the strengths of algorithmic models because these models allow the estimator to

generate relatively quick estimates on a rather limited amount of information. This is not

to imply that software algorithmic models are the only estimation tools employed by

DoD cost analysts; however, the DoD's heavy use of these models warrants insight into

how they might be better employed for DoD estimating.

Algorithmic Estimating Models

General Description. There are approximately 50 commercial software

estimating models available in the United States and another 25 marketed abroad (Jones,

1996: 19). The variety of estimating approaches represented by each of these models

lends credence to Jones' claim that software cost estimating is a very difficult intellectual

10



problem. Despite this complexity, Jones claims these models generate estimates on three

following fundamental equations (Jones, 1996: 20-21):

Staff = Size of deliverable/assignment scope (1)

Effort = Size of deliverable/productivity rate (2)

Schedule = Effort/staff (3)

From a macro perspective, these equations make logical, simple sense. For

example, in Equation 1, the program staff is computed by dividing the size of deliverable

by the amount or scope of work particular persons will add to the effort. Equation 3, the

program schedule is derived by simply dividing total effort by the staff available to

perform the effort. At a micro level, however, these models can diverge considerably. It

is instructive to demonstrate this divergence by dissecting Equation 2 for effort. Through

this dissection, additional insight is gained into the estimating philosophy of algorithmic

estimating models.

Dissecting the Fundamental Effort Equation. Equation (2), Jones'

fundamental equation for effort, can be dissected by examining each of its elements and

reviewing the differences in how various algorithmic models consider these elements. A

main distinction in models arises in the scope of the effort being computed. For example,

the COCOMO model estimates the effort it takes to develop a program from preliminary

design through component test, whereas the PRICE-S model's range is more expansive as

it estimates the effort required from initial system requirements to system test (Ferens,

1997: 3-7, 4-2). A key element for the model user is to understand what the estimate is

providing and to clearly explain this underlying basis to those who will use the estimate

for decision-making.
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There are also considerable differences in methods used to measure the size of

deliverable. The two primary measures of size are source lines of code (SLOC) and

function points. Most SLOC measurements capture the size of a program by counting all

executable instructions and data declarations but exclude comments, blanks, and

continuation lines (Department of the Air Force, 1996: 8-34). The strength of using

SLOC is that it is a common measure in practice and in estimating models. Over time,

relatively standardized definitions of SLOC have emerged. On the other hand, some

criticize SLOC as a measurement because of the "lack of international standards that

clearly defined what was meant by a 'line of code' in any common language...," (Jones,

1991: 8). The challenge of using SLOC is compounded by the difficulty of quantifying

it early in the program based on initial requirements. The estimator is thereby challenged

to update estimates as more information is available. "Only through this constant re-

evaluation can the predictive model provide a cost that approximates actuals"

(Department of the Air Force, 1996: 8-34).

On the other hand, a function point, as defined by Capers Jones, "is an abstract but

workable surrogate for the goods that are produced by software projects" (Jones, 1991:

46). Specifically, function points are the weighted sums of the following five factors that

relate to user requirements: inputs, outputs, logic files, inquiries, and interfaces (Jones,

1991: 46). Function points are primarily used to measure the size of management

information systems and feature points, which are similar to function points, are used for

system software (Jones, 1991: 9). The strengths of using either function points or feature

points is that they are specification-based, language independent, and user-oriented. The

drawback is that, like SLOC, they are difficult to estimate and that accounting for

function points can be subjective and inconsistent between estimators (Department of Air

Force, 1996: 8-33 - 8-36).
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Finally, measuring the productivity rate is probably the most subjective element

of the effort equation. In general, the models agree that productivity is a function of

factors such as the development team's collective software development experience,

education, work environment and use of modem practices and development tools.

Differences arise, however, in which of these factors are relatively more important, and

specifically how these factors are measured. Again, it is incumbent on the estimator to

understand the basis of the model's operating parameters and learn how these parameters

compute in the overall estimate.

In fact, a common theme in the above discussion is the vital role that the estimator

plays in understanding and using the model. The estimator must be pro-active in

understanding the model's basic equations and assumptions. The estimator's next step is

to fine-tune the model as needed for the environment in which he or she is working. This

leads to the following discussion on efforts taken to improve software cost estimating

through a process of model calibration and validation.

Efforts to Improve Use of Software Algorithmic Cost Estimating Models

General Philosophy. Efforts to improve algorithmic software models have

centered on a process of calibration and validation. As discussed in Chapter I, calibration

is the adjustment of a model's basic estimating equations so that the model provides

better estimates for a particular environment. Two general methods have been advanced

to do this. Both involve the use of historical data from the environment in question. The

first method is to compute an average or composite value for one of the independent

variables in the model's estimating equation and then use that value as a constant in

estimating future similar efforts. Typically, a factor that measures historical productivity

is calibrated. The second method assumes that the model's estimating equations are
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known and then a process can be undertaken to adjust the equation's coefficient or

exponential weights (Van Genuchten and Koolen, 1991: 41).

Consider, as an example of the first method of calibration, the theoretical

calibration of Equation 2, Jones' fundamental equation for effort.

Effort = Size of deliverable/productivity rate (2)

Calibration for this equation would occur by deriving a composite or average productivity

rate that has occurred over time within a given development environment. In practice,

this would be done by plugging in the known, historical values for program effort and

size and then solving the equation for the productivity factor. For instance, a program

that took fifty months of effort and contained 50 thousand SLOC would yield a computed

productivity factor of 1,000. This process is repeated for each program in which

historical information is known. The productivity factors for each of these historical

programs are then averaged, which results in a composite calibration factor. This factor

is then plugged in as a constant value to the model equation as the model is used to

forecast other efforts within that environment.

The second method, that of adjusting the model's coefficient or exponential

weights, must be applied more cautiously. In some cases, it is not applicable because the

model's estimating equations may not even be known. If the model's equations are

known, then a sufficient amount of data still must be available to generate a stable

calibration. Van Genuchten and Koolen point out, "For example, if we wish to calibrate

the COCOMO model with approximately 75 weights attributed to 15 variables, then a lot

of data are necessary to adopt the weights in an accountable manner" (Van Genuchten

and Koolen, 1991: 41). Boehm suggests that at least historical data from at least 10

projects should be available before simultaneously calibrating the coefficient and

exponent of a COCOMO equation; if less than 10 are available, Boehm recommends

calibration of the coefficient term only (Boehm, 1981: 529). Also, note that calibration
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by adjusting the model's coefficient or exponential weights is essentially equivalent to

creating a new estimating model.

Regardless of the method employed, the calibrated model should, in theory, yield

better estimates than an uncalibrated model, at least for the set of programs used to

perform the calibration. This is essentially because the calibration was geared to

improving estimation for that specific data. The true test of calibration effectiveness is,

therefore, validation, in which the calibration factor is used to estimate programs that

were not included in the calibration data set. Statistical measures can then be used to

compare the model's improvement in estimating accuracy for these programs when the

model is run with the calibrated factor and when it is not. The effectiveness of calibration

can then be assessed.

AFIT Calibration and Validation Efforts. A series of studies was begun in 1995

at AFIT under the guidance of Professor Daniel Ferens and Dr. David Christensen to

calibrate and validate algorithmic models used by the Air Force, specifically at the Space

and Missile Systems Center at Los Angeles Air Force Base. The models that have been

calibrated include REVIC, SEER-SEM, SLIM, PRICE-S, SASET, CHECKPOINT and

SOFTCOST. Two major thrusts of these AFIT studies have been to: 1) evaluate the

ability of the given model to estimate and 2) measure the improvement in estimating

accuracy resulting from calibration.

The statistical measurements employed to make these evaluations are those

recommended by Conte, Dunsmore, and Shen in their book, Software Engineering

Metrics and Models. These three measurements are briefly described in Table 2 below

and are also discussed in detail in Chapter III, Methodology.
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Table 2. Conte, Dunsmore, and Shen's Criteria

Measurement Description Effective Criteria
Mean Magnitude of The average percentage of the absolute MMRE < 0.25
Relative Error (MMRE) difference between the actual effort

expended and the predicted effort
Prediction level within The percentage of the estimates the Pred(.25) >0.75
25% of actual model generates that accurately predict

effort within 25%
Relative Root Mean Represents the mean value of error RRMS < 0.25
Square Error (RRMS) minimized by the model

(Conte et al., 1986: 172 - 176)

Results from the AFIT theses are provided in Table 32. The results have been

mixed, but show evidence supporting calibration. Calibration of CHECKPOINT by

Mertes in 1996, for example, resulted in a model that generates estimates meeting the

criteria for estimating accuracy. Interestingly, CHECKPOINT is the only model that uses

function points as a primary measure of size. Specifically, Mertes calibrated using

function point data in three categories, as indicated in the table. Each category

demonstrated remarkable improvement with calibration. Other AFIT calibration efforts

have resulted in moderate improvement, but none considered so groundbreaking.

2 This table appears in Bernheisel, 1997 and Shrum, 1997 as it reflects the collaborative effort of these

researchers.
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Table 3. Summary Results from the AFIT Calibration Studies
!Cali- Vali-

Author (Year) Cost Model Application Type baio dai- Default Accuracy Validated Accuracybration dation

Pred Pred
MMRERRMS0.) MMRE RRMS0

________________________________________________ ;_ (0.25) (0.25)
Galonsky (95) PRICE-S Mil Ground X X not reported 0.52 not reported 0.48

Unmanned Space X X not reported 0.36 not reported 0,50
!,Missile X not reported 0.75 not reported 0.75

!Mil Mobile X not reported 0.38 not reported 0.38
Kressin (95) SLIM Mil Ground - MIS X 0.962 i n/r 0.00 0.157 In/r 0.83

iMil Ground - All X n/r I n/r n/r 2.166 n/r 0.08
Command & Control X X 0.621 n/r 0.00 0.666 n/r 0.00

Rathmann (95) SEER-SEM Avionics X X 0.923 1.472 0.25 0.243 0.240 1 1.00

!Command & Control X X 0.531 1.031 0.31 0.311 1 0.296 029

Signal Processing F X 1.440 1.082 0.06 2.092 1.610 I 0.43
Mil Mobile X 2.802 1 3.711 0.11 0.462 1 0.342 , 0.25

Vegas(95) SASET Mil Ground X X 10.04 n/r . 0.00 5.820 n/r 0.38
Unmanned Space X X 5.54 . n/r 0.23 0.940 , n/r 0.00
:Avionics X X 1.760 n/r 0.00 0.220 n/r 1.00
Military Mobile X X 5.610 n/r 0.25 3.570 n/r 0.00

Wcber (95) REVIC Mil Ground X X 1.21 1.13 0.00 0.86 , 0.68 0.50
'Unmanned Space , X X 0.44 0.62 . 0.50 0.32 0.34 0.50

Mertes (96) CHECKPOINT MIS - COBOL X 0.542 0.101 0.67 0.018 0.010 1.00
Function Pt Mil Mobile - Ada X 1.384 0.412 0.25 0.192 0.057 0.75
Function Pt Avionics X 0.817 0.685 0.50 0.158 0.111 0.75

SLOC Command & Control X 0.193 0.145 0.50 0.165 0.156 0.50

SLOC Signal Processing . X 0.090 0.081 1.00 0.090 0.081 1.00
SLOC Unmanned Space X 0.048 0.050 1.00 0.040 0.055 1.00
SLOC Ground (supp. space) 'X 0.050 0.058 1.00 0.050 0.058 1.00
SLOC !COBOL Projects I X 0.050 0.051 1.00 0.049 0.051 1.00

Southwell (96) SOFTCOST Mi Ground X X 1.895 3.433 0.00 0.519 0.870 . 0.83
Signal Processing X X 0.430 0.612 0.11 0.282 0.634 0.44
Unmanned Space X X 0.557 1.048 0.20 0.480 0.923 0.20
Ground (supp. space) X X 2.734 3.125 0.13 1.802 1.966 0.20
iMilitary Mobile X 1 X 0.635 0.514 0.20 0.420 0.395 0.40
Avionics X X 0.713 0.758 0.20 0.846 0.568 0.20

Note that some results may be misleading. For example, in Rathmann's SEER-

SEM calibration, validation of the avionics category shows that the model meets the three

proposed accuracy criteria; however, only one data point was used for validation and that

essentially resulted in a 'hit or miss' validation. Before examining these studies in more

detail, other efforts in the field are briefly summarized.

Other Calibration Efforts. Numerous other efforts have been taken to calibrate

or evaluate the software cost models. These efforts are briefly described below.

In a 1994 thesis for the Naval Postgraduate School, Daryl Shadle tests the theory

of Abdel-Hamid that it is inappropriate to use raw historical data to calibrate models
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because these raw values disregard project inefficiencies such as initial size

underestimation. Shadle uses Abdel Hamid's method of simulation to:

...test a proposed strategy which capitalizes on the organization's learning
experiences by neutralizing the cost excess caused by the initial undersizing, and
that derives a posterior set of normalized effort and schedule estimation
benchmarks. (Shadle, 1994: v)

Shadle concludes that this process leads to better cost estimates (Shadle, 1994: v).

A series of calibrations was performed by Management Consulting and Research

(MCR), Inc. in 1991. The MCR studies focused on calibrating PRICE-S, SEER-SEM,

and SASET. SEER-SEM is the only one of the three models for which calibrated

estimating accuracy is provided. In this case, SEER-SEM was accurate within six

percent for effort for a portion of the data. For PRICE-S, calibrated productivity factor

values are identified. For SASET, revised cost estimating relationships are provided

(Apgar et al., 1991).

A 1991 AFIT thesis by Gerald Ourada examined the calibration of REVIC,

SASET, SEER-SEM, and COSTMODL. Ourada found that SASET and SEER-SEM

were uncalibratable with the available data. Ourada also found that accuracy of all the

models was significantly low and that none performed as expected. REVIC, for example,

was accurate within 25% only 29% of the time for the validation data set (Ourada, 1991).

In 1989, the IIT Research Institute (IITRI) conducted a study of six software cost

models on behalf of the Ada Joint Program Office. The main objective was to examine

whether cost estimation of programs using the Ada language could be successfully done

with cost models that were non-Ada specific. The study found Softcost-Ada (an Ada-

specific model) and SASET (a non Ada-specific model) to be accurate within 30% for 4

of 8 projects. They concluded that non-specific models can be tailored for use in

specialty domains (IITRI, 1989: vii-x).
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In 1987, Chris Kemerer examined the performance of SLIM, COCOMO,

Function Points and ESTIMACS in estimating 15 large completed business data

processing projects. In this effort, Kemerer validated Albrecht's Function Point model

with the available data. He also found that the models not developed to estimate within

business data-processing environments did not perform well thereby showing significant

need for calibration. Finally, he found that none of the models sufficiently captured the

underlying factors affecting productivity (Kemerer, 1987).

In 1981, Robert Thibodeau performed a study for Rome Air Development Center

to study the estimating accuracy of nine software cost estimating models. Thibodeau

found that calibrated versions of PRICE-S and SLIM were accurate within 30% for

estimating effort (Thibodeau, 1981: C- 11 - C-13). In general, Thibodeau concludes that

"calibration of model parameters may be as important as model structure in explaining

estimating accuracy" (Thibodeau, 1981: 6-6).

Lessons Learned from Efforts to Improve Software Cost Models

Although the above studies have shown that the software cost models are not

always accurate, there seems to be a generally consistent pattern of at least some

improvement in accuracy resulting from calibration. Two questions emerge from this

collection of efforts. First, is model calibration really a worthwhile endeavor? Secondly,

considering the mixed results in estimating accuracy, are the various cost models useful

tools? The available literature indicates that the answer to both these questions is yes.

Value of Calibration. There is an overwhelming consensus in the body of

literature with respect to the value of calibration. The following passages are offered:

...it is not the accuracy of the models that is being called into question but that
they have been used outside their original environment, probably without
sufficient attention to calibration and tuning. (Wellman, 1992: 33)
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Before a model can actually be used, it must be adapted to the environment of its
use; it must be calibrated. This tests the fit of a model in an organization and
enables the model to be adapted to the characteristics of that organization. (Van
Genuchten and Koolen, 1991: 41)

One conclusion is that models developed in different environments do not work
very well uncalibrated, as might be expected. (Kemerer, 1987: 427)

When estimating a software to be developed one should use a tool calibrated on a
set of projects belonging approximately to the same software domain of the
software to be developed. (Andolfi et al., 1996: 644)

A more credible approach is to calibrate your selected models with actual data
from developments similar to yours.. .Only after calibration can the models
produce truly credible estimates. (Department of the Air Force, 1996: 10-39)

While there is consensus at a conceptual level of calibration, there are some

differences in the execution. Some lessons learned can be culled from the research to

date and applied to this calibration of the SAGE model. For instance, one of the strengths

of the AFIT calibration and validation research since 1995 has been in the general

consistency of approach employed. In each effort, an attempt is made to validate the

calibration. As discussed previously, validation is the true test of calibration

effectiveness. The AFIT studies have also been generally consistent in applying the

criteria used to measure accuracy identified in Table 2, except for a small portion of

measures that were not reported. This effort to calibrate SAGE will emphasize the

consistent use and reporting of these measures.

On the other hand, this SAGE calibration will diverge from the previous AFIT

studies in a significant respect. The intent of diverging is to improve the calibration and

measurement process. The change involves the manner in which data within a category

are split for calibration and validation. The standing practice is to divide the data and use

half for calibrating the model and the other half for validating it. The problem is that no

matter how random this process is, the calibration results are biased by the split.
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Consider, for example, calibration of a category that contains just four data points. It is

possible to draw six different sets of two from these four points for calibration. If the

points are labeled 1,2,3, and 4, then the possible sets of two would include 1-2, 1-3, 1-4,

2-3, 2-4, and 3-4. The standing AFIT calibration practice is to report on calibration and

validation resulting from just one of these six draws of two. For example, points 1 and 2

would be used for calibration and points 3 and 4 would be used for validation. Using

computer processing power, however, model calibration and validation resulting from

each of the six draws can be simulated. The answers that result from this process are

more robust because the whole range of possible outcomes is reported, not just a fraction.

This method will be explained in Chapter III.

A separate issue with respect to calibration execution is whether the person who is

calibrating the model has enough insight or training with the model to effectively

calibrate it. In a portion of the studies above, a thorough analysis of the model is offered

as a precursor to calibration, whereas in others it is not. For example, in the AFIT

calibration of SEER-SEM, the only description of the model is a paragraph directly

quoted from the user's manual. This is not to imply that a lack of a thorough analysis

indicates that the author was unfamiliar with the model; however, for the purpose of this

research, a deliberate effort is made to explore the basic estimating equations for SAGE

before attempting to calibrate it.

A final issue addressed in Shadle's thesis is that it may be inappropriate to use

raw historical data to calibrate models. Shadle's results with using Abdel Hamid's

computer simulation to normalize raw historical data reveals some promise. Kemerer, on

the other hand has criticized Abdel-Hamid's theory:

...they [Abdel-Hamid and Madnick] draw the unsupported conclusion that the
accuracy of software cost estimation models cannot be judged by their
performance on historical (completed) projects. Clearly, ex post estimates cannot
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influence the project. Therefore, it seems reasonable to evaluate them by this
method. (Kemerer, 1987: 428)

Clearly, there appears room for discussion and further research in this area. For the

purposes of this effort, normalization of historical data through the use of simulation will

not be employed.

Calibration of the models appears in fact to be a valuable exercise, given that cost

models are to be used. The question then becomes whether the models should be used at

all if they do not provide consistently accurate results even when calibrated.

On the Use of Cost Models. The opening section of this chapter introduces

Boehm's summary of software cost estimating techniques and his explanation that

algorithmic models are one method of several available. Boehm also discusses the

complementary nature of the methods and this theme is echoed by others. The following

is a recommendation of Van Genuchten and Koolen based on their experience in this

field:

Our first recommendation is: estimate a proposed project by alternative methods.
The methods described in this paper are the expert method, the analogy method,
and the use of models. If alternative methods are used, the weak points of one
method can be compensated by the strong points of another. If the estimates
generated by alternative methods agree, the estimate is accepted. If not, the
reasons for the difference must be determined, followed by another series of
estimates. (Van Genuchten and Koolen, 1991: 44)

If, in practice, it is expected that these various methods are to be used together,

then it may be unfair to isolate these models in research and characterize them as being

inaccurate. A compounding challenge in the AFIT research stream in this area is that

each researcher is one step removed from the data collection effort. The data in each case

have been provided by SMC. While SMC has taken efforts to provide accurate data, as

will be discussed in Chapter III, the researcher must, in most cases, accept the data at face

value. The researcher is not able to either augment or temper the data with information
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that someone more involved in the particular program might be able to do. It is assumed

that an ability to have more insight into the data would result in better model

performance. It is practical to suggest, therefore, that the criteria proposed by Conte,

Dunsmore, and Shen may be too rigid to use in judging the accuracy of these models

when these models are being evaluated in such a remote and isolated posture.

In light of the discussion and the research, it seems reasonable to suggest that the

models are valid tools to use. The models' power is enhanced when properly calibrated

and when used in the proper context with other available estimating methods. Having

established this basis, it is now appropriate to examine the SAGE model in more detail.

SAGE Model Description

SAGE Model Evolution. Dr. Jensen, through his company Software

Engineering, Inc., first introduced SAGE in 1995. The model's roots, however, date to

the 1970's, when Jensen worked with the Hughes Aircraft Company. While there, he

developed the Jensen macro-level software development estimation model. According to

Suzanne Lucas, in a Hughes Aircraft Company report, Jensen's estimating equations

were derived over time "based on the work of P.V. Norden, who developed a life cycle

cost model for IBM about 1970, and L.H. Putnam who refined Norden's model for the

U.S. Army in 1976" (Lucas, 1991: 1-2). Jensen also incorporated the work of Doty, and

calibrated the proposed estimating equations to data from software programs at Hughes

and to information provided in Dr. Barry Boehm's book, Software Engineering

Economics (Lucas, 1991: 2). The resulting equations formed the basis of the Jensen

System 1, 2, and 3 models of 1980, which in turn were a precursor to the SEER-SEM

model, introduced in 1989. Jensen worked with Galorath Associates in developing and

marketing SEER-SEM until the mid-1990's when he decided to work independently to

produce SAGE (Jensen, 1997c).
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SAGE Model Theory. Jensen lists people, processes, and tools as the three most

important elements of software development. He claims that over the past twenty five

years, the emphasis in improving software productivity has centered on process and tools,

the two technological elements. On the other hand, little, if any, attention has been given

to improve productivity through the people element. Jensen says that there can be a

substantial difference in the time and effort required to develop a program between a

team of people that is properly motivated and well-managed and a team of people that is

not. The SAGE model captures the significance of this facet through its unique treatment

of personnel and management factors (Jensen, 1996a: 11-13).

Jensen theorizes that effective management of software development teams is the

missing link in explaining the disappointing improvement in software productivity since

1960. His review indicates that productivity has increased at less than one source line per

person month per year during this period. He says, "This growth is disappointing when

the languages, systems, and development environments of 1995 are compared to those

available in 1960" (Jensen, 1996a: 1). Jensen agrees with DeMarco and Lister's

assessment that any technological innovation that claims 100% improvement in software

productivity is 'hot air' (Jensen, 1996b: 90). In light of the limited returns that advanced

technological methods have generated, Jensen views effective management as the

untapped source in resolving chronic software problems.

The importance of effective management has not gone unnoticed in the field. For

example, Dr. Barry Boehm says, "Poor management can increase software costs more

rapidly than any other factor" (Boehm, 1981: 486). Humphrey suggests that the unique

aspects of software engineering dictates that more management discipline be required, not

less (Humphrey, 1990: 30). Humphrey also says that the tendency of managers to view

software development as a black art causes them not to use their management instincts to

solve software problems (Humphrey, 1990: 30). Despite this seeming consensus on the
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important role of software management, Jensen says the traditional software cost

estimating models have not adequately captured this pivotal, explanatory element

(Jensen, 1996a: 12).

The cost analyst who uses SAGE to build a software cost estimate accounts for

management through the model's input parameters. For example, the estimator assigns a

very high capability rating for programmers and analysts that come from an organization

that is highly motivated and organized. An organization falls into this category if it:

1. effectively uses development teams.

2. has a physical environment that supports the team concept.

3. promotes management styles compatible with team approaches.

(Jensen, 1996a: 3)

Traditional models similarly allow the estimator to input ratings for programmers and

analysts but define ratings based on "individual ability and experience since cooperation

and communication, necessary elements in team formation, are limited" (Jensen, 1996a:

12).

Jensen's focus on the organizational aspect of software development is the genesis

of his concept that it is most appropriate to calibrate a cost model to historical

organizational performance (Jensen, 1997c). In that vein, calibration of SAGE to data

provided by the Electronic Systems Center is proposed for this effort because that data

identifies the developing contractor. SAGE is also calibrated to data provided from the

Space and Missile Systems Center; however, this database does not identify the

developing contractor. In this case, it becomes necessary to treat the categories for which

the software is being developed (e.g., space, avionics) as a collective industry and

calibrate within those categories.

An argument can be made that calibrating SAGE to past organizational

performance implicitly rewards poor past performance because SAGE generates higher
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estimates for poorer performers. The assumption in this argument is that cost estimates

are performed in isolation. It ignores the fact that other market competitive forces are in

operation which in theory forces poorer performing companies to either improve or go

out of the business.

SAGE Estimating Equations. Lucas identifies the following as Dr. Jensen's

equations for estimating software development effort and schedule (Lucas, 1991: 2):

Ed =0.4* S'2 *D °4 * - "2 (4)

td = S°4 * D *te (5)

where:

Ed = development effort (person-years)
td = development time (years)
S = effective system size (source lines of code)
D = system complexity or difficulty
C te = effective technology rating

Dr. Jensen confirms that these equations are used in the SAGE model (Jensen,

1997b). In SAGE, development effort in Equation 4 and development time in Equation 5

refer to the activities and time involved in developing a system from after requirements

have been established to before integration activities start. Note that SAGE separately

computes estimates for requirements and integration in computing a total effort; however,

calibration of equations involving development effort are the focus of this research.

Equations (4) and (5) can now be analyzed by examining the behavior of the respective

dependent variables, namely development effort and time, with respect to changes in each

of the independent variables, namely size, complexity, and effective technology.
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Behavior of the SAGE Equation for Development Effort. The behavior of

Equation 4 for SAGE effort is summarized in Table 4 and explained in the text that

follows.

Table 4. Behavior of the SAGE Equation (4) for Development Effort

causes
An increase in development effort (Ed) to at a(n)

effective system size (S) increase increasing rate.

system complexity decrease decreasing rate.

effective technology rating (C te) decrease increasing rate.

Recall that Equation 4 reads as follows:

Ed = 0.4 *S 2 * D04 * Cte2  (4)

Development effort increases at an increasing rate with respect to size or source

lines of code. For example, a doubling of the lines of code causes effort to increase by a

factor of 2.3, all other equation values held constant. Jensen and Tonies use the

thermodynamic concept of entropy to explain this behavior. They say that in nature,

energy is dissipated or wasted by "such things as friction and resistance, heat loss,

turbulence, random motion and disorder" (Jensen and Tonies, 1979: 49). They equate

this to the human realm in which energy is wasted by "uncooperativeness, incoherence,

confusion, undirected or misdirected action" (Jensen and Tonies, 1979: 50). They say

that as a software program becomes larger and more people are added, the potential for

these factors that cause entropy increase substantially (Jensen and Tonies, 1979: 50-53).

This phenomenon is shown in SAGE by the exponential value of 1.2 for the independent

variable of size and is referred to as the entropy exponent. Many of the parametric cost

estimating models capture entropy in a similar fashion. Intermediate COCOMO, for

example, uses values of either 1.05, 1.12, or 1.20 depending on the development mode of

the program (Boehm, 1981: 117).
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Development effort decreases at a decreasing rate as system complexity increases.

This behavior does not appear to match the specified equation and seems counterintuitive.

A lower complexity value (or D-value) in SAGE, however, means that the program is

actually more complex. In SAGE, complexity values can range from 4 to 32. The

characteristics associated with various complexity values are provided in Table 5.

Table 5. Characteristics of Various SAGE Complexity Ratings

Complexity (D) Characteristics
Rating Value

4 Development primarily using microcode for application. Signal
processing systems with extremely complex interfaces and control
logic

8 New Systems with significant interface and interaction requirements
with larger system structure. Operating systems and real-time
processing with significant logical code

15 New standalone systems developed on firm operating systems,
Minimal interface problems with underlying operating system or
other system parts

28 Extremely simple software containing primarily straightline code,
simple I/O, and using only internal arrays for data storage.

(Jensen, 1996b: 167)

A program with a complexity value of 8 actually requires 1.3 times more effort

than a more complex program with a complexity rating of 4. The rationale for SAGE's

model behavior is that more complex programs require more structured design practices.

In reaction, managers tend to put more accomplished designers on complex programs and

tend less to add people later who will take a long time to effectively contribute to the

program's development. The tradeoff is that the program will take a longer time to

complete.

Finally, development effort decreases at an increasing rate as the effective

technology rating (Cte) increases. In SAGE, higher scores for this constant typically

indicate that the organization has better management in place or that the organization is
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developing a system that has less constraints placed on it. The details of this constant

will be explained later in this chapter. Notice that the exponent for Cte (i.e., -1.2) is the

same as the exponent for size, except for that it is negative. Recall that the SAGE

exponent for size captures the phenomenon of entropy and the fact that as size grows,

more disorder occurs. Therefore, the negative exponent for Cte can be seen as capturing

those factors and elements in development that help contain this disorder.

Behavior of the SAGE Equation for Development Schedule. The behavior

of Equation 5 for SAGE effort is summarized in Table 6 below and explained in the text

that follows.

Table 6. Behavior of the SAGE Equation (5) for Development Schedule

causes
An increase in development schedule (td) to at a(n)

effective system size (S) increase decreasing rate.

system complexity increase decreasing rate.

effective technology rating (C,,) decrease decreasing rate.

Recall that Equation 5 reads as follows:
td S * 2 * C -0 4  (5)

It is relevant to examine the behavior of Equation 5 for schedule in the context of

a system of equations that interacts the behavior of Equation 4 for effort. For example, as

effective system size increases, the development schedule increases, but at a decreasing

rate. Recall that for Equation 4, development effort increases at an increasing rate with

respect to system size growth. The interaction of the equations, therefore, is that while

both effort and schedule increase as size grows, an increasing rate change in effort is

'countered' by a decreasing rate change in schedule. As in Equation (4), the benefits of

having an increased effective technology rating help handle the challenges brought about

by increased size, as reflected by the exponents that match for size and effective
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technology except in sign. Finally, schedule increases at a decreasing rate as complexity

increases. Recall from Equation 4 that in SAGE, more complex programs actually

require less effort. The trade-off here is that it takes longer to develop more complex

programs. A final note with respect to effort and schedule is that Jensen uses a Rayleigh

distribution curve to represent the manner in which effort is allocated over the available

schedule.

SAGE Effective and Basic Technology Ratings. The effective technology

rating was discussed above in general terms; however, a closer examination provides

valuable insight. Lucas notes that Jensen's technology rating:

...reflects the developer's software implementation capabilities in the proposed
development environment, including personnel capabilities and experience,
development support environment, product development requirements,
development environment complexity, and target environment. (Lucas, 1991: 2)

The effective technology rating (Cte) is actually a composite score resulting from 31

inputs that the analyst enters into the model. Seven of these inputs factor into a basic

technology rating (Ctb) that typically reflect elements that are unique to the

organizational environment such as programmer and analyst capabilities. The other 24

factors typically pertain more to the constraints imposed by the system. The effective

technology rating is computed from the basic technology rating by the following equation

(Apgar et al., 1991: 111-2). (Note: Apgar et al. identified this equation in their discussion

of SEER-SEM. This researcher has found upon using SAGE, that the same equation

holds.)

24

Cte =Ctb /]7fi (6)

where:
C te = effective technology rating

Ctb = basic technology rating, computed from 7 input factors
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fi = SAGE input factors, other than those used to compute Ctb

The input factors can assume a range of values around a nominal score of one for each

input. In fact, SAGE allows the user to enter a worst case, best case, and most likely

value for each input. SAGE in turn produces a range of estimates based on the range of

inputs provided.) Table 7 reflects a range of possible scores for the basic technology

rating. The first row reflects the highest score, that is when all of the input values are at

their highest ratings. This score reflects an organization that has an optimal management

approach, employing the best people. The second row reflects the nominal rating, that is

when all input values are entered at the nominal score of one. The third row reflects the

lowest possible score. The author obtained these values by merely entering the range of

values into SAGE for those inputs used to compute Ctb. The final row labeled

"Aerospace High" reflects what Dr. Jensen's research has found to be the highest value

obtained for a software development environment in the aerospace industry (Jensen,

1996a: 8).

Table 7. Range of SAGE Basic Technology Rating Values

Rating Basic Technology Rating Value
Highest 29,487

Nominal 5,707
Lowest 1,847

Aerospace High 8,635

Calibration Methods for the SAGE Model. Considering the effort and

schedule equations presented above, SAGE model calibration can occur in one of two

ways. First, it is possible to simultaneously calibrate Equations 4 and 5 for both effort

and schedule. This requires that actual effort, actual schedule, and effective size for each

available historical program be entered into the two equations. Calibration would then

involve simultaneously solving Equations 4 and 5 for system complexity (D) and the
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effective technology rating (Cte). This is the method in which the SAGE "point

calibrate" function works. The second method is to calibrate only Equation 4 for

development effort. This involves entering actual effort, actual size, and complexity into

Equation 4 and then solving the equation for the technology rating.

As will be detailed in Chapter III, the second method, calibration of the effort

equation only, will be employed in this thesis. The first method is impractical because of

the relatively small number of available data points. Boehm, as discussed earlier,

recommends that at least ten points be available for a stable simultaneous calibration.

Based on previous AFIT calibration efforts, it is uncommon to obtain more than ten data

points once an initial stratification of the data is accomplished. Furthermore, only a

portion of these data points actually contain information about schedule. Rathmann, in

his calibration of SEER-SEM, indicates that he did not calibrate according to schedule

because in most of the projects, schedule was not known (Rathmann, 1995: 24).

Summary

This chapter has examined the nature of software cost estimation and describes

algorithmic models as one method of several available to estimators. In response to the

first research objective proposed in Chapter I, a critical review of efforts taken to improve

the estimating accuracy of these models is offered. The review reveals that model

calibration is considered a viable means to improve estimating accuracy. A new

technique of using simulation to assist in model calibration and validation is presented for

further expansion in the following chapter on methodology. Finally, an analysis of the

SAGE model and its basic estimating equations are presented as a foundation for

establishing the SAGE calibration methodology.
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III. Methodology

Introduction

This chapter establishes the method for calibrating and validating the SAGE

model to data provided from the Electronics Systems Center (ESC) and the Space and

Missile Systems Center (SMC). Initially, all of the steps are introduced and then each

step is explained in detail. Through this, insight is gained into: 1) the data's nature; 2)

the exact procedures for calibrating and validating the model; and 3) the measures used to

evaluate the model's predictive ability.

Overview of Steps

The steps involved in calibration and validation of this model are summarized in

Figure 1 below.

1. Collect the data.

2. Stratify data into pre-defined categories.

3. Refine the data by eliminating inappropriate projects and normalizing the data as
appropriate. After refinement, determine whether sufficient data remains within category
to continue calibration and validation.

4. Enter data points into the SAGE model. Run model (uncalibrated mode) to generate
estimates for each project in a category.

5. Calibrate model for each project in the category according to specified procedures.

6. Use a computer simulation model to perform all possible combinations of calibration
and validation for the given category of data.

7. Use statistical metrics to establish calibrated model accuracy and to measure
improvements resulting from calibration.

Figure 1. Overview of Steps in SAGE Model Calibration
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Data Collection (Step 1)

Data for this effort are provided from two sources: the Space and Missile Systems

Center (SMC) and the Electronic Systems Center (ESC).

SMO Database. The SMC database is a PC-based compendium of 2,638

historical records of software programs that contain a composite of 50 million source

lines of code. Each historical record is characterized by up to 276 parameters which

match the input structures of many cost models. Records from both development and

maintenance programs are included. SMC considers the database proprietary, and

prospective users must seek permission from SMC/FMC (Stukes and Patterson, 1996).

The database dates to 1983 when SMC started to collect historical records of

software programs. In 1988, SMC decided to expand their data collection efforts by

joining forces with the Space Systems Cost Analysis Group (SSCAG). SSCAG is a

cooperative effort between industry and government that meets several times each year to

discuss current space-related topics. The SSCAG has a software subgroup that oversees

the management of database and provides a non-proprietary version of the database to

any SSCAG member organization that contributes data to the collection effort (SSCAG,

1995: E-1). Sources of data include SMC, the European Space Agency, NASA, and

major aerospace companies. MCR Federal, Inc., administers the database and indicates

that the database has been used for program cost estimates, model calibration, and

additional research efforts (Stukes and Patterson, 1996).

The SMC database has both strengths and limits. Its strengths include its volume

of data, data dictionary, standardized format for each historical record, and user-friendly

query system. Since each contributor is anonymous, there is likely less chance that

contributors will distort the data to portray themselves in a more positive light. The

database managers also re-contact the sources to verify the inputs (Stukes and Patterson,

1996). On the other hand, the anonymity of the sources poses a limit in that calibration
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cannot be performed for each contractor's historical performance. Also, although each

record contains up to 276 parameters, a portion of these parameters are not filled in for

some programs, leaving gaps in the data. In some records, for example, the effort that it

took to develop the program is not provided. This effectively eliminates the possibility of

using that record for either effort equation calibration or validation.

ESC Database3 . The current version of the USAF Electronic Systems Center

(ESC) database is a collection of 52 completed software development projects from 32

defense contractors and dates back to 1974. These software projects were developed as

either stand-alone efforts or to be integrated with military systems procured by ESC at

Hanscom Air Force Base. Typical ESC systems involve high-technology

communications and signal processing functions such as those provided by the Airborne

Warning and Control System. The data have been collected through a collaborative effort

between the developing contractors, ESC and the MITRE Corporation, a government

support contractor located near Hanscom. ESC recently updated the database and plans

to use it to validate several parametric estimating models including REVIC, PRICE-S,

SEER-SEM, and COCOMO 2.0. ESC is also using the database to derive its own

software cost estimating relationships (Wells, 1997).

Detailed information for each of these projects is provided at the computer

software configuration item (CSCI) level. A CSCI can be considered a mini-project in

that each CSCI is developed to perform a distinct end-use function (Ferens, 1997). In all,

the 52 project database consists of information for 312 CSCIs. The size of these CSCIs

ranges from 411 Executable Deliverable Source Instructions (EDSI) to 448,523 EDSI.

The data are provided in a Microsoft© Excel spreadsheet. For each CSCI, over 60

columns of information are provided and include information such as the contractor,

3 This section was co-authored by Shrum, who is also performing a model calibration using the ESC
database.
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project effort, CSCI size, schedule, system constraints, and developing contractor

capabilities. Since the ESC database was originally constructed for use with SEER-SEM,

the information and ratings provided for each CSCI correlate closely with the

terminology of SEER-SEM inputs. Since the development contractor is identified for

each CSCI, the ESC database is proprietary in nature (Wells, 1997).

Several potential limitations of the data have been identified. These limitations

were discussed in a May 1997 telephone interview with Ms. Peggy Wells, the ESC

SWDB manager, who provided information regarding ESC's endeavors to remove, or at

least reduce these limitations from the database. First, many people, who may have

interpreted the exact meaning of each data category in significantly different ways,

actually collected the data. Therefore, the data represent a certain degree of subjectivity

injected by this collection process. This subjectivity has been mitigated to an extent by a

normalization process in which one person has actually entered the date in order to

enforce a standardized and consistent assignment of ratings and measures for each CSCI

(Wells, 1997). Another limitation was identified by Ourada in his 1991 thesis, in which

he indicated that some of the information for each project was incomplete (Ourada, 1991:

4.1). This is still true in the current version of the SWDB. Information regarding

software application type for each CSCI, for example, is presented for only a small

number of projects. ESC is currently updating the SWDB to provide complete

information for this data category.

A serious concern cited by Ourada was that several of the data points represent

projects that were never completed but were estimated for completion. Therefore, these

projects do not represent actual size or effort (Ourada, 1991: 4.1). However, according to

Peggy Wells, action has been taken to remove projects that were never completed from

the database (Wells, 1997).
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Data Stratification (Step 2)

For this effort, information from the two databases is handled separately. This

essentially enables two distinct calibration and validation efforts to be performed, one for

the ESC database and one for the SMC database. The fundamental difference in

calibration methodology for these two sources of information can be explained in how the

data are stratified. For the SMC database, the data are stratified primarily by program

category or operating environment. For the ESC database, the data are stratified

primarily by the developing contractor.

SMG Database Stratification. In previous AFIT calibration efforts, the SMC

data have consistently been stratified by the environment in which the software operated.

These environments include: Military Mobile, Military-Specification Avionics, Military

Ground and Application - Command and Control, Military Ground and Application -

Signal Processing, Unmanned Space, Ground in Support of Space, and Missile (Mertes,

1996: 29). In order to maintain consistency, the data for this effort will be stratified

along the same lines.

Since the SMC database is an automated retrieval system, it is relatively easy to

search for the records along the above-identified lines. This is performed by the

following steps:

1. Start the SMC database.

2. Go to menu item 'File' and select 'Query'. The main query menu screen will

appear.

3. Enter Query Title (e.g., 'Military Mobile').

4. Stratify the data by using the query process. There are five primary criteria

along which the data can be stratified. These are:
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a. Software level - Double-click "Software Level" in the main query

screen and select "CSCI" to indicate that information resulting from the query must be

provided at the CSCI level only.

b. Operating environment - Double-click "Operating Environment" in the

main query screen and select the environment along which the primary stratification is to

be accomplished. For example, select "Military Mobile".

c. Applications - Double-click "Applications" in the main query screen

and use the "Select All" option to indicate that query must return information on all

applications within the selected operating environment. Note for certain operating

environments, there are enough projects such that calibration can be focused on one

application within that environment. For example, in the "Military Ground" operating

environment, there are enough projects grouped for the applications of "Command and

Control" and "Signal Processing" to perform a separate calibration for each.

d. Software Functions - Double-click "Software Functions" in the main

query screen and use the "Select All" option to indicate that query must return

information on projects of all functions, subject to the other query constraints.

e. Programming Language - Double-click "Programming Language" in

the main query screen and use the "Select All" option to indicate that query must return

information on projects of all languages, subject to the other query constraints.

5. Limit the query to return information on projects that identify the project's size

and effort. This is accomplished in the main query screen by unmarking the box labeled

"Empty" to the right of the fields for "Effective Size Range", "Total Size Range", and

"Effort Range". The query can be further refined by identifying the ranges of values for

these three fields.

6. Double-click "Run" at the bottom of the main query screen. The database will

then return all records that match the specified criteria.
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ESC Database Stratification. The primary stratification of the ESC database

for this effort is by contractor or organization. This is in response to Dr. Jensen's

philosophy that calibration is most effectively performed against an organization's

historical performance. Since the ESC database is provided on a Microsoft® Excel

spreadsheet, stratification is performed by accomplishing a primary sort of the data by

contractor.

Data Refinement (Step 3)

Data Elimination. After the initial stratification, it is necessary to eliminate

unreasonable or inappropriate data points. For this step, the criteria identified by Apgar

et al. in the MCR 1991 calibration report of SEER-SEM are used as a basis. The use of

these criteria were deemed appropriate by Jensen for this effort (Jensen, 1997a). The

criteria are to eliminate data where:

1. Actual Effort= 0.

2. Actual Size = 0.

3. Data provided at a project level other than the computer software configuration

item (CSCI) level.

4. CSCI size is larger than 150,000 lines of code.

5. CSCI size is smaller than 1,500 lines of code. (Apgar et al., 1991: 11-11)

The following elimination criteria are also used:

6. Projects are developed in a country other than the United States. Development

practices in other countries may differ and thus lead to anomalies in the historical data.

7. For the ESC database, contractors whose work was limited to one project are

eliminated. The desire is to assess contractor performance over a cross-section of efforts.

Data Normalization. Data normalization is required in some cases to match the

format of the provided data to the format assumed in the model. Recall that the SAGE
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equation for development effort includes the development activities after the

requirements have been defined and before integration activities occur. SAGE also

assumes that the basis for a person-month of effort is 152 hours. For each project, the

SMC database identifies a figure for "normalized effort" which essentially includes both

these same activities and the same 152-hour basis. The SMC figures for effort can

therefore be used without further normalization. Similarly, the SMC figures for

"effective size" are used as a direct input into SAGE, since there is insufficient

information in the database to compute effective size as defined by Jensen in the SAGE

model.

On the other hand, the effort identified in the ESC database requires some

normalization. The ESC database provides information for total effort, with and without

integration. When it is provided, the information for total effort without integration is

used as a direct input to SAGE for development effort. In some cases, however, total

effort with integration is the only information provided. It becomes necessary to discount

integration from this total effort by using the figures that Kressin says are used in the

SMC database to normalize effort (Kressin, 1995: 41).' To discount integration, total

effort is reduced by 7.2 percent. With respect to software size, the ESC database provides

information on "equivalent delivered source instructions" which is used directly as the

figure for effective size for SAGE.

Calibration and Validation Determination. After the initial refinement of the

data, if less than four projects within a category remain, then that category is eliminated

from further consideration. If the category contains four or more projects, the category is

retained for calibration and validation. For the retained categories, all but two of the

projects are used for calibration; the two projects that are held out are used to validate the

4 The author confirmed the use of these normalization percentages upon examination of the data provided
in the SMC database.
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calibration. This is a departure from the standing AFIT research practice in which

categories with less than eight projects are eliminated and the projects with more than

eight are split in half for calibration and validation. The standing practice is motivated by

the desire to achieve a degree of stability in the calibration and validation process.

Computer simulation as used in this effort, however, induces stability and also

enables greater flexibility. The simulation allows calibration and validation to be

performed on each possible combination of data points that can be pulled from a category

of projects. For example, if a category has ten projects, then there are 45 combinations in

which the ten projects can be split into subsets of eight for calibration and two for

validation. Simulation makes it possible to consider all 45 combinations, instead of the

traditional method of using just one combination. The robust nature of this process

makes it possible to consider calibrating with less than eight projects and also to use a

greater proportion of the data to derive a calibration factor.

Enter Data into Model and Generate Estimates (Step 4)

This step involves entering the data for each project into the SAGE model.

Before data can be entered, however, it is necessary to create a starting point of input

values in the model that is common for all projects. In SAGE, templates can be used to

provide such a point. SAGE contains pre-defined templates that contain values for

characteristics of an organization that might be considered "common", "traditional" or

"modem". The template for modem organizations, for example, assigns higher starting

capability ratings for programmers than the template for the traditional organizations

does. These starting values are then either adjusted as detailed project information is

made available or remain "as is" in the absence of this information. The pre-defined

templates are not used in this effort since the ESC and SMC databases provide little, if

any, insight into the developing organization's overall approach. A "nominal" template
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is therefore created and used for all projects. The nominal template assumes that the

value for each model input is assigned a rating of 1.00, except for those values identified

in Table 8 that follows. Each assessment of a nominal rating was made by comparing the

definitions for a nominal rating provided in the SMC SWDB User's Manual data

dictionary to the numerical rating system of inputs employed in the SAGE model.

Table 8. SAGE Nominal Template Values (Other than One)

Model Input (Abbreviation) Nominal Rating
System Complexity (D) 15
Development System Experience (DEXP) 1.04
Development Methods Experience (PEXP) 0.93
Target System Experience (TEXP) 1.02
Development System Volatility (DVOL) 1.07
Quality Assurance Level (QUAL) 1.03
Specification Level (SPEC) 1.12
Test Level (TEST) 1.05

The nominal template is thus formed by entering all nominal ratings into the

model and then saving these values as a product template using the template feature in the

SAGE model main menu. Use the SAGE menu sequence of steps, "Template"

"Product", and "Add" to save the nominal template. Note that the basic and effective

technology ratings associated with this nominal template are 5707.3 and 4463.6,

respectively.

Once the nominal template is formed, the SAGE model is ready to accept project

inputs from the database. First, the nominal template is opened by using the menu

sequence of steps, "Template", "Product", and "Open". Next, the user enters all available

information about a project into the model through the various SAGE input screens. If no

information is available for a model input, then the input remains at its nominal value.

Care must be taken to enter the correct input values from the database into SAGE. Both

the ESC and SMC databases use word identifiers to define an input, whereas SAGE uses

a number identifier. For example, the SMC database uses the rating of 'very high' under
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the category "Display Requirements" to indicate that a software system has a requirement

for an interactive display with a light pen, mouse, and touch screen (SMC SWDB User's

Manual, 1993: B- 13). SAGE, on the other hand, uses the numerical rating of 1.11 for the

same definition of display requirements. Appendix A provides a matrix that correlates

SMC SWDB and SAGE input values and Appendix B provides the same for the ESC

database. The matrices were derived by comparing the ratings used in the model with

those used in the databases. After all information for a project is entered, the information

for a project is saved as a task using the "Task" and "Save As" menu sequence in SAGE.

The above step is repeated for each project in which information is known. For

ease in later use, it is recommended that a subdirectory be established to keep together

project files for a like operating environment, application area, or contractor.

Calibrate SAGE Model for Each Project (Step 5)

In this step, a calibrated Ctb value is derived for each project that was entered into

SAGE in the preceding step. As discussed in Chapter II, this research involves

calibration of the SAGE model equation for development effort only. A simultaneous

calibration of both the effort and schedule equations was considered, but determined

inappropriate because of the lack of data points after the initial stratification by category

was made.

Specifically, the calibration will focus on Equation 4 that was introduced in

Chapter II. Recall:

Ed = 0.4 * S'-2 * D 4 *te (4)

Also recall from Chapter II that calibration can be done in one of two ways. The first is

to modify the equation weights. For example, the current exponent for size (1.2) can be

mathematically computed to be some other number that better reflects the history of cost

growth with respect to size for a given project category. The second method, which is
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used in this thesis, is to compute an average value for one of the independent variables

and then use that value as a constant for future estimation. In Equation 4, the variable

that will be calibrated is actually a factor within the effective technology rating (Cte)

equation, namely the basic technology rating (Ctb). First, recall Equation 6 for Cte:
Ctb

C e- 24 (6)

Hf,
i=1

The effective technology rating (Cte) captures the impact on the program resulting from:

1) system characteristics, other than that already accounted for by size (S) and complexity

(D), and 2) developing organization characteristics and environment, such as its

experience and management approach. The basic technology rating (Ctb) specifically

accounts for seven key organizational factors, identified in the following table.

Table 9. Inputs to the Basic Technology Rating (Ctb)

Factor SAGE Model
Abbreviation

Analyst Capability ACAP
Application Experience AEXP
Programmer Capability PCAP
Modem Practices Use MODP
Automated Tool Support TOOL
Terminal Response Time RESP
Hardcopy turnaround time TURN

By calibrating the basic technology rating, average performance and capabilities for

either an organization (in the ESC calibration) or for a class of projects (in the SMC

calibration) is derived. Note that the equation used to compute Ctb is proprietary, which

makes isolating SAGE calibration to a subset of the seven inputs impossible. The

mechanics of using the SAGE model and equations to perform this calibration are now

explained.

The crux of the calibration is to find the basic technology rating (Ctb) that equates

estimated effort with actual effort for a given project. This is accomplished through
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algebra and is made easier with the aid of a computer spreadsheet. (Note: Although the

SAGE model has a "Point Calibrate" function in its tools menu, it is not used since it

employs the previously described method of simultaneously calibrating effort and

schedule. Insufficient data are available to perform a stable simultaneous calibration).

The calibration steps are listed below:

1. Equation 4, as previously stated, identifies effort in person-years whereas the

SAGE model estimates are in person-months. For calibration, it is necessary to rewrite

Equation 4 in terms of person-months:

Ed = 4.722 * S'-2 * D 4 *te (4a)

where Ed is the development effort in person-months and all other variables are as

previously stated. Note that the author computed the 4.722 coefficient by comparing

several inputs to and outputs from the SAGE model. Dr Jensen has confirmed that the

coefficient is correct (Jensen, 1997b).

2. Next, Equation 4a is solved for Cte by the following process:

a. Take the natural logs of both sides of the equation.

ln(Ed) = ln(4.722) + 1.2 * ln(S) + 0.4 * ln(D) + -1.2 * ln(Cte)

b. Isolate the term that contains Cte.

1.2 * ln(Cte )= ln(4.722) - ln(Ed) + 1.2 * ln(S) + 0.4 * ln(D)

c. Divide through by 1.2.
1 1 1,

ln(C) - * ln(4.722) - -In(Ed)+ In(S) + -* ln(D)
1.2 1.2n(E 3

d. Take the exponents of both sides of the equation.

1 -1 1

Ce = 4.7221.2 * E. 2 *S*D 3  (7)

3. Since the proposed method is to calibrate Ctb, next substitute Equation 6 into

Equation 7 and solve for C,b
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a. 24 tb -4.72212 * E612 *S*D 3

H-If,

24 1 -1 1

b. Ctb =Hf, * 4.722 1.2 * E*d.2 S*D 3 (8)
i=1

4. For a project, the calibration factor is the basic technology rating (Ctb) that

results from inserting known, historical values into the right hand-side of Equation 8. A

spreadsheet can be used to automate this process for a collection of programs. The

portion of a spreadsheet used in this effort is provided in Figure 2 and is used for further

explanation.

Col.1 Co2 Col. 3 Col. 4 Col. 5 Col. 6 Col. Co . Col. 9
SCte Ctb Ctt/Cte Model

Actual Calibrated
Size (S) irpx (D) (SAGE (SAGE (fi product EstinateC

Estimate) Estirrate) multiplier) of Effort
PijctT 1 12.00 2035.40 4575.1q 2.25 2000.00

Figure 2. Sample Spreadsheet for SAGE Calibration

In Figure 2, entries for spreadsheet columns 2 through 5 are those values taken

from SAGE after all project information has been entered into the model. Column 6
24

represents the value for 171 f that results from dividing the value in column 5 by the

value in column 4. Column 7 is the estimate of development effort generated by SAGE.

Column 8 is the actual historical development effort required for this project. The

calibrated basic technology rating in column 9 is computed by inserting the values from

columns 2 (size), 3 (complexity), 6 (product multiplier), and 8 (actual effort) into

equation 8. Note that in this example, the calibrated basic technology value (3329.59) is

lower than the model's original estimate (4575.10) to reflect the longer time than

estimated that it took to develop this project.
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This step identifies the derivation of the calibration factor for a single project. A

spreadsheet, similar to the one in Figure 2, is built for each group of projects by entering

the values generated by the preceding steps for each project of a calibration category into

the spreadsheet. The output of this step is a spreadsheet for each grouping of projects.

Each project has a unique calibration factor associated with it. At this point, a final

refinement of the data is made. Those projects that have an exceptionally high or low

calibration Ctb rating are eliminated as anomalies. The general guidelines used to make

this assessment are provided in Table 7, Range of SAGE Basic Technology Rating

Values. Generally, projects that are outside of the range from the lowest possible Ctb

score (1,847) to the recorded high for the aerospace industry (8,635) are eliminated. For

example, a project in the avionics operating environment is eliminated since its

calibration value of 58,000 is almost seven times higher than the aerospace high. This

particular project contained over 37,000 lines of code and was forecast to consume as

much as 500 person-months of effort, but the recorded actual effort was just 39 person-

months. Ideally, instead of eliminating the project, it is preferable to either validate or

correct the historical information provided by the source; however, such an effort is not

possible within the scope of this effort. Next, calibration and validation of the group of

projects using simulation is described.

Use Computer Simulation to Calibrate and Validate Model (Step 6)

In this step, simulation using the Microsoft® Excel and Crystal Ball® software

programs is employed to calibrate and validate the model. As discussed in Step 3, the

idea of using these two tools is to facilitate calibration and validation on every possible

combination of projects that can be pulled from a category. A description of simulation

using Crystal Ball® is offered as a precursor to explaining the details of this step.
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Computer Simulation using Crystal Ball®. Crystal Ball® is a program that is

used to enhance the Microsoft® Excel spreadsheet program. "Through a technique

known as Monte Carlo simulation, Crystal Ball® forecasts the entire range of results for a

given situation" (Crystal Ball® Manual: 1). The basic idea is that the computer

generates a range of outputs for an event by sampling many times from a range of values

for inputs to that situation. For example, if a person wants to forecast automobile fuel

costs for the next year, the person might define a range of possible fuel prices (e.g., $1.00

to $1.25/gallon) and also forecast gallons to be consumed (e.g., 500 to 600 gallons). In a

Monte Carlo simulation step, Crystal Ball® pulls a value from each of these two input

ranges and using a programmed spreadsheet equation, multiplies them to forecast a total

cost. A range of total costs is generated by repeating this simulation step over and over.

The operator specifies the number of simulation steps to be executed. Depending on the

host computer's processing power, it is possible to perform thousands of steps within

minutes.

According to one text, this process of Monte Carlo simulation or "resampling" is

said to date back to World War II when a group of physicists at the Rand Corporation

used random-number simulations to study complex processes (University of Maryland,

1997: preface). The text explains that the resampling approach provides an unbiased

sample of all possible arrangements and which on average provides an answer that is

perfectly sound (University of Maryland, 1997: 2-3 - 2-4). In contrast, the conventional

approach would be to determine, with the use of statistics, the precise probability of event

occurrences. The authors claim that the resampling method is easier because it does not

require the "enormous difficulty of leaming how to obtain the right formula" when trying

to determine the exact probability of an event (University of Maryland, 1997: 2-3). As

an example, the text offers the challenge of statistically determining the probability of

drawing five or more spades in a deal of 13 cards and says simulation is a reasonable and
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easier alternative to assessing this probability (University of Maryland, 1997: 2-3).

Considering the relative ease and accuracy of simulation, its application to calibration and

validation is now explained.

Simulation applied to SAGE Calibration and Validation. Simulation, as

applied to this research effort, involves sampling from the projects in each category

generated by Step 6. In a simulation step, Crystal Ball® and Excel are programmed to

take a sample of two projects from a category and mark them as validation data points.

By default, the projects that are not selected for validation are used for calibration. For

the calibration set, the calibrated basic technology values that were computed for

individual projects in Step 6, are averaged to achieve the composite calibration factor for

that category. Figure 3, which represents a portion of the spreadsheet for a category of

four fictitious projects, is used for illustration.

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 Column 8

Cte (SAGE Ctb (SAGE Model Calibratd
SizeEstimate) Estimate) Ctb/Cte Estimate of Actual Effort Ctb

Effort

Project 1 100000 12.00 2035.40 4575.10 2.25 1365.90 5000.00 1,551.5
Project 2 80000 10.00 2360.70 5941.80 2.62 813.18 6000.00 1,307.9
Project 3 95000 8.00 2111.00 5447.60 2.68 1045.31 5000.00 1,478.32
Project 4 50000 9.00 1646.70 5536.80 3.36 683.36 5000.00 1,054.37

Total Prj 4.00

Use for Calibrate=0; Calibration
Validation? Validate = I Ctb

Distro 1 1478.32 Val Pt #1 Project I TRUE 1 1181.17

Distro 2 1551.58 Val Pt#2 Project 2 FALSE 0 1181.17

Cal Value 1181.17 Cal Value Project 3 TRUE 1 1181.17

Avg Ctb Project 4 FALSE 0 1181.17

# for Val! 2 Sum 2

Figure 3. Sample Spreadsheet for Simulation

In the spreadsheet, notice that after project information has been entered, two

input ranges or distributions are defined using the Crystal Ball® program. Specifically,

"Distro 1 and "Distro 2" are discrete distributions defined using the Crystal Ball®

custom distribution feature. These distributions each have four defined points; these
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points are the four calibrated Ctb scores from Column 8. The distributions are

established such that each of the four points has an equally likely chance of being

selected during a simulation step. If the point is selected during a simulation run, then it

is marked as a validation point. The calibration value, "Cal Value" in the figure, is

simply the average of the basic technology values from the projects that were not selected

for validation. The spreadsheet is programmed such that if the same point is selected

from each distribution during a simulation run, then it is considered invalid, because two

distinct points are required for validation. In the above figure, projects 1 and 3 were

selected for validation and the composite calibration factor represents the average of

calibration scores from projects 2 and 4. This composite calibration factor is then fed into

the spreadsheet to compute calibrated estimates for both the set of the projects that was

selected for calibration and the set selected for validation.

If this simulation step is repeated enough, it is reasonable to expect each possible

pairing of two projects in a category will be selected for validation. In fact, the rule of

thumb will be to conduct 100 simulated trials for each possible pairing of data to assure

that all possibilities are properly considered. This is reflected in the following table.

Table 10. Simulation Trials Required for Calibration and Validation

# of projects in Projects used for Possible Simulation
category calibration/validation Combinations* Trials

4 2/2 6 600
5 3/2 10 1,000
6 4/2 15 1,500
7 5/2 21 2,100
8 6/2 28 2,800
9 7/2 36 3,600
10 8/2 45 4,500
11 9/2 55 5,500
12 10/2 66 6,600
13 11/2 78 7,800
14 12/2 91 9,100

Greater than 14 - _ 10,000
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(*'Possible combinations' refers to the number of ways that two projects can be selected

from the total number of projects and set aside for validation.)

In fact, the simulation process as applied to this effort may be considered

somewhat excessive considering the small number of projects that are expected within

each category and therefore the relatively small number of ways that the data can be split

for calibration and validation. An argument can be made that algorithms be programmed

such that each unique combination is considered once and only once, bypassing the need

for a random simulation process; however, the effort to write such a program is

considered more than trivial and thus outside of the scope of this research effort. The

critical element, regardless of whether simulation or a more precise programmed method

is used, is that all possible divisions of data for calibration and validation are considered,

not just a small fraction as has previously been the case.

The objective of each simulation step is to enable the comparison of actual

development effort, default (i.e., non-calibrated) model estimates of effort, and calibrated

model estimates of effort. For each simulation step, a set of comparative metrics must be

generated since the projects in the calibration and validation sets change with each

sampling. The statistics used to make these comparisons were identified briefly in

Chapter II and are explained in detail in the following section.

Measure Model Accuracy and Improvements from Calibration (Step 7)

The final step is to measure model accuracy and to evaluate improvements

resulting from calibration. This step is actually accomplished as part of the simulation

program described in the preceding step, but is discussed separately since it represents the

final major phase of the calibration. The three measures of accuracy that have been

proposed by Conte, Dunsmore, and Shen and used consistently in the AFIT calibration

efforts since 1995, are continued for this effort. The criteria of mean magnitude of
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relative error, relative root mean square, and prediction accuracy intervals were

introduced in Chapter II, Table 2 and explained here.

Mean Magnitude of Relative Error. The mean magnitude of relative error

(MMRE) actually represents the average estimating error for a group of individual

projects. The estimating error for an individual project is called the magnitude of relative

error (MRE) and simply involves evaluating the difference between the estimate and the

actual value according to the following formula.

E-E
MRE = (9)

where:

E = actual effort expended.

E = predicted effort.

The concept of taking the absolute value of the difference comes into play when

computing the MMRE. If absolute value is not considered for individual projects, then it

is possible that, when computing a group average error, that overestimates and

underestimates tend to cancel each other out, giving the impression of accuracy when in

fact there may not be. For example, the average error of a 50% overestimate and a 50%

underestimate would be zero if absolute value is not figured in. That said, the equation

for MMRE is:

I n

MMRE = n MREi (10)n =

where:

MRE i = the magnitude of relative error for one project in the group

n = the total number of projects within the group
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Conte, Dunsmore, and Shen consider a MMRE value of less then 25% as

acceptable for effort production models (Conte, Dunsmore, and Shen: 172).

Relative Root Mean Square Error. The relative root mean square error

(RRMS) measures the mean value of error minimized by the model. The RRMS is

computed in a three-step process. The first step is to find the mean squared error (MSE)

for the group. This involves squaring the raw error for each project and then summing

and averaging these squared errors for all of the projects. Since the MSE represents an

average squared error, the next step is to take the square root of the MSE to arrive at the

root mean square error (RMS). Since this error is in raw terms, the final step is to

normalize it so the error can be compared in relative terms to other groups of errors. The

result of the normalization is the RRMS. The equations for these three steps are as

follows:

inMSE = I . (Ei. - Ei)' (11)
n i=

RMS = MSE" 2  (12)

RRMS= R S (13)1 n
-JEi
n il

where:

Ei - actual effort expended for ith project.
A

E i predicted effort for ith project.

Conte, Dunsmore, and Shen consider a RRMS value of less then 25% as

acceptable for effort production models (Conte, Dunsmore, and Shen: 173-175).

53



Prediction at Level/. This measure indicates what percentage of the set of

projects meets a target interval for accuracy. For example, if the target interval is 25%,

then this measure indicates what percentage of the group's projects have been correctly

predicted within a 25% range. The formula for this measure is:

k
Pred() =- (14)

n

where:

I the desired accuracy interval

k = subset of projects within group that are accurate to desired accuracy interval

n = the total number of projects in group

Conte, Dunsmore, and Shen consider an adequate model to be accurate within

25%, 75% of the time (Conte, Dunsmore, and Shen: 173).

The Excel and Crystal Ball® programs track these statistics for each simulation

step. Four sections have been partitioned on the spreadsheet to accomplish this. Two of

these sections measure default and calibrated model accuracy for the selected calibration

projects and the other two sections measure model accuracy for the selected validation

projects. The following table provides structure for these comparisons.

Table 11. Calibration and Validation Measurement Comparisons

Area For projects selected for For projects selected for
calibration: validation:

Compare actuals to default Compare actuals to default
Default Model Accuracy estimate estimate
Calibrated Model Compare actuals to Compare actuals to
Accuracy calibrated estimate calibrated estimate

For each quadrant in Table 11, the three accuracy metrics that were just described

are generated, such that a total of twelve accuracy metrics are reported. These statistics
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represent a large portion of the simulation's output and are identified in Crystal Ball® as

forecast cells. Since hundreds of simulation runs are made, a range of scores for each

forecast cell emerges. Figure 4 that follows shows the range of MMRE scores generated

from a simulated run for two projects selected for validation.

Forecast: Calibrated MMRE (Val. Data)
368 Trials Frequency Chart

.196 72

.147------------------ -- ----. --------- 54

.098 --.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- -- ------- 36

. 9 -, -__ --- ---- 18
10

1 Man = 0.20

.000 _ _ _ _ _ _,, 0

0.00 0.09 0.18 0.26 0.35

Figure 4. Sample Chart from Simulation Run of Calibration

In this example, the range of MMRE scores represents the calibrated model's

accuracy for two validation projects. Note that six lines have emerged and represent the

measurements resulting from the six ways that two projects can be sampled from a

category of four. Also note that each MMRE score peaks at a different frequency value.

In theory, each score should have an equal chance of occurring; however, in simulation,

minor random differences can occur. The prior method would result in selection of only

one point on this range and depending on the point taken, the model might be construed

as being either very accurate (i.e., MIMRE value of less than 0.09) or relatively inaccurate

(i.e., MMRE value of 0.35). Now, through simulation, a complete range of possible

solutions clearly emerges which subsequently enables a better assessment of model

accuracy.
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A final issue that must be addressed regards deciding which composite calibration

factor to recommend to the users of this model. The two viable options are to either use:

1) the mean composite calibration factor that results from the simulation, or 2) the

composite calibration factor that results in the lowest estimating error for any two

projects selected for validation. The author recommends the first option since it reflects

the blending of all possible calibration values in the category as opposed to the one value

that happens to minimize error for that set. In other words, the mean score appears to be

a more stable reflection of the calibration and validation process.

Limitations

The following items are considered limitations of the methodology provided in

this chapter:

1) Calibration of only the SAGE equation for effort is performed. This

process, therefore, does not consider the interplay of effort and schedule. For example,

consider the case of Project A that required considerably more effort than Project B

within a stratified category. It is possible that the extra effort required for Project A was

not driven by the relative lack of effectiveness of Project A's development team, but

rather because more effort was added in a desire to complete development sooner. It is

noted, however, that both a lack of data and a lack of insight into the dynamics of each

project does not allow a stable calibration of both the effort and schedule equations.

2) Since calibration does not follow the method espoused by Dr. Jensen in

the SAGE Model's "Point Calibrate" feature, it becomes necessary to perform the

calibration using a separate spreadsheet program. In addition, the composite value for the

basic technology rating (Ctb) that results from this calibration process cannot be input

directly into the SAGE Model. It is possible, however, to directly enter the effective

technology rating (Cte) using the SAGE "QuickQuote" feature. The SAGE model
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estimator who wants to use the results of this calibration feature must, therefore, either 1)

manually compute the effective technology rating by inserting the calibrated Ctb value

into Equation 6, or 2) alter the inputs in SAGE that are used to compute Ctb, until the

estimator arrives at a Ctb score that is reasonably close to the calibration value that results

from this effort.

3) The author's experience with the SAGE model has been limited to an

academic environment only, with no benefits of knowledge gained by using the model to

perform a "real" estimate. A concerted effort has been made, however, to compensate for

this limitation by conveying the underlying precepts of the SAGE estimating equations in

Chapter II.

4) The potential limitations with respect to the data in both the ESC and

SMC databases have already been discussed. The challenge of using this data is

compounded, because the researcher was not involved in the collection process and is not

privy to any unusual or mitigating circumstances associated with each project, other than

those aspects that may be identified in the respective databases.

5) Some of the inaccuracies in cost model estimates are attributable to the

uncertainty associated with initial size estimates. As shown, size is a major facet in

predicting effort, and it is not necessarily easy to predict size early in a program. In

calibration, the uncertainty factor associated with size is essentially eliminated by using

actual (i.e., certain) size values. In theory, this elimination of uncertainty could make the

model appear more accurate than perhaps it truly is.

Summary

This chapter establishes the methodology for calibration and validation of the

SAGE model equation for development effort in response to the second research

objective proposed in Chapter I. Computer simulation using Microsoft® Excel and a
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supplementary program, Crystal Ball®, are introduced as a means to enable a

comprehensive simulation and calibration process. The three criteria used to measure

model accuracy are then explained. The context in which these measures are used to

demonstrate calibrated model accuracy and improvements resulting from calibration is

described. Finally, limitations of this approach are discussed.
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IV. Findings

Overview

This chapter provides the results of the calibration and validation of the SAGE

software cost estimating model. The results are summarized in this section and detailed

in the sections that follow.

From the SMC database, 70 projects from seven separate categories were used for

model calibration and validation. The SMC categories were: Mil-Spec Avionics,

Military Ground - Command and Control, Military Ground - Signal Processing, Ground

in Support of Space, Military Mobile, Missile, and Unmanned Space. Of the seven

categories, SAGE returned the best results for the Military Ground - Command and

Control category in which the uncalibrated model met two (MMRE, RRMS) of the three

proposed criteria for estimating accuracy. Other results were mixed. Only one category

demonstrated across-the-board improvement from calibration while two categories

actually became worse with calibration. Of the two categories that got worse, however,

one already had a high degree of default estimating accuracy and the other had projects in

which no detailed information was available and nominal values had to be assumed for all

model inputs.

Table 12 that follows provides the weighted average accuracy for the SMC

database calibration and validation. The weighted average was computed by: 1)

multiplying the number of projects within a category by the mean score for each of the

three accuracy measures used; 2) summing the products of step 1 for each measure, from

all categories; 3) dividing these sums from step 2 by 70, the total number of SMC

projects evaluated.
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Table 12. Weighted Average Results for Calibration and Validation of SMC Data

For data used to calibrate the model
Measurement Default Cali. Change from Target

Model* Model* Calibration
MMRE 0.40 0.35 12.5% better MMRE<0.25
RRMS 0.59 0.56 5.1% better RRMS<0.25
Pred Interval (25%) 0.37 0.41 j 10.8% better Pred (25%)>0.75

For data used to validate the model
MMRE 0.40 0.43 7.5% worse MMRE<0.25
RRMS 0.48 0.51 6.3% worse RRMS<0.25
Pred Interval (25%) 0.37 0.32 13.5% worse Pred (25%)>0.75

Summary Information
Number Projects Used 70

* Represents weighted means of the means generated during simulation of each category

From the ESC database, 40 projects were used for model calibration and

validation. The projects represent the work of three contractors, referred to herein as

Contractor A, Contractor J, and Contractor R. Of the three contractors, SAGE returned

the best results for Contractor R, for which the calibrated model met two of the three

criteria for estimating accuracy. Furthermore, the results for Contractor A and Contractor

R demonstrated across-the board improvement resulting from calibration. On the other

hand, calibration of Contractor J's projects caused the model's estimating accuracy to

worsen. Table 13 that follows provides the weighted average accuracy for the ESC

database calibration and validation. The weighted average was computed in the same

manner described above for the SMC database results, except that 40 total projects are

considered, instead of 70.
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Table 13. Weighted Average Results for Calibration and Validation of ESC Data

For data used to calibrate the model
Measurement Default Cali. Change from Target

Model* Model* Calibration
MMRE 0.38 0.37 2.6% better MMRE<0.25
RRMS 0.68 0.53 22.1% better RRMS<0.25
Pred Interval (25%) 0.27 0.22 18.5% worse Pred (25%)>0.75

For data used to validate the model
MMRE 0.41 0.41 No Change MMRE<0.25
RRMS 0.50 0.45 10.0% better RRMS<0.25
Pred Interval (25%) 0.26 0.27 3.8% better Pred (25%)>0.75

Summary Information
Number Projects Used 1 40

* Represents weighted means of the means generated during simulation of each category

The remainder of this chapter details the results for each calibration and validation

category for the SMC and ESC databases. The results are presented in tabular format and

augmented by written analysis. After the results from each category are presented, a

collective analysis of the results is offered.
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Mil-Spec Avionics (SMC)

A total of nine projects was used for the calibration and validation of the Mil-Spec

Avionics category. The projects used are identified in Table 14 and the results are

provided in Table 15. Three projects (SMC Record Numbers 67, 2615, and 2618) were

eliminated because the calibrated Ctb scores for those three projects fell outside of the

observed range of reasonable values identified in Table 75

The Mil-Spec Avionics Category responded well to calibration, although the

calibrated model did not meet the accuracy criteria identified by Conte, Dunsmore, and

Shen. Calibration and validation results tend to become more erratic and calibrated

model accuracy generally becomes worse as the range of calibrated Ctb values grows. In

this category, the calibration values for individual projects ranged from 3482.41 to

9663.10. Recall that the calibration value for the entire category is computed by taking

the average of the individual calibration values of the projects selected for calibration.

Each time a simulation step is performed, a different subset of projects is selected for

calibration, such that a range of calibration values for the entire category is generated.

For the group, Appendix D indicates that the categorical calibration values ranged from

6018.44 (10% level) to 7154.01 (90% level), with a mean score of 6545.32. Note that

only Project 2617 has an individual calibrated value (i.e., 6513.43) that falls within this

range. The calibrated model will tend, therefore, to be very accurate for Project 2617.

The calibrated model becomes increasingly inaccurate, however, for projects with

individual calibration values significantly outside this range. For example, the calibrated

model will return poorer results for Projects 302 and 346. A tighter range of calibration

values must exist for the calibrated model to return more accurate results.

The decision to eliminate a project based on its calibrated Ctb score is subjective. The range of values in
Table 7 provides a guideline for elimination. In some instances, projects with calibration scores outside
this range remain if the value is generally consistent with the other calibration values in the category.
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Table 14. Mil-Spec Avionics Projects Used for Calibration and Validation
= Default

Cte (SAGE Ctb (SAGE I Act Calibrated
SMC Record # Size (S) Cmpix (D) Esm ) a Ctb/Cte Model Effort Ctb

SEste

Project 10 43207 8.00 2720. 10' 6073.50 Z23 299.591 370.00 5,093.80
Project 11 32878 15.00 2637.90 6073.50 2.301 287.96 198.00 8,298.52
Project 12 22027 21.00 3072.70 5707.30 1.86 169.64 112.00 8,066.6
Project 13 58153 8.00, 2720.10 6073.50 2.23 427.90 752.00 3,796.47
Project 14 22148 8.00 1170.00 6658.60 5.69 369.78 464.00 5,511.06
Project 302 45353 8.00 1234.90 5317.70 4.31, 819.09 400.00 9,663-10

Project 346 40000 8.00 2330.101 6176.00 2.65 328.84 654.001 3,482.41

Project 2512 33158 8.00 1920.70 6727.60 3.50 331.07 245.00 8,646.07

Project 2617 18000 12-00 6566.90 8633.60 1.31 42.79 60.00 6,513.43

Total Projects 9

Table 15. Mil-Spec Avionics, Model Accuracy Results

For data used to calibrate the model
Measurement Default Cali. Change from Target

Model* Model* Calibration
MMRE 0.44 0.34 22.7% better MMRE<0.25
RRMS 0.59 0.52 11.9% better RRMS<0.25
Pred Interval (25%) 0.22 0.35 - 59.1% better Pred (25%)>0.75

For data used to validate the model
MMRE 0.45 0.39 13.3% better MMRE<0.25
RRMS 0.54 0.52 3.7% better RRMS<0.25
Pred Interval (25%) 0.21 0.24 14.3% better Pred (25%)>0.75

Summary Information
Number Projects Used 9
Mean Ctb Value 6545.32

* Represents mean value resulting from the simulation run
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Military Ground - Command and Control (SMC)

A total often projects was used for the calibration and the validation of the

Military Ground - Command and Control category. The projects used are identified in

Table 16 and the results are provided in Table 17. One project (SMC record number

2517) was eliminated because its calibrated Ctb value fell outside of the observed range

of reasonable values identified in Table 7.

The default model met Conte, Dunsmore, and Shen's standards for estimating

accuracy for the MMRE and RRMS criteria, each with a score of 0.23. In addition, the

model was accurate within 25%, 70% of the time, just short of the target 75%. The

calibrated model was actually less accurate than the default model, due in large part to the

wide band of calibration values, which ranged from 2673.19 to 8042.78. The calibrated

model performed worse for projects in which the default model was already reasonably

accurate. For example, consider that the model's default estimate of 92.95 manmonths of

effort for Project 150 was within 8% of the actual effort of 100 manmonths. The model's

default estimate was based on a Ctb value of 5707.30. The calibrated model, however,

dictates the use of 5912.02 as a calibration value. For Project 150, this higher calibration

Ctb value computes to a lower estimate, 89.10 manmonths. While still reasonable, the

calibrated model is less accurate than the default model.

The event described above is more likely to occur as the range of calibration

values widens, essentially because the category's mean calibration value resulting from

the simulation bridges the category's extreme high and low individual project calibration

values, but its use fails to help estimate either extreme particularly well. In this category,

the use of the calibrated Ctb value (i.e., 5912.02) would result in less accurate estimates

than the default model for seven of the ten projects, which helps provides some insight as

to why this category fails to improve from calibration.
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Table 16. Command and Control Projects Used for Calibration and Validation

Column I Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 Column 8

SMC Record # Size (S) Cmplx (D) Cte (SAGE Ctb (SAGE Ctb/Cte Estimate of AEstimate) Estimate) Effort Effort Ct

Project 7 45057 12.00 5776.80 6675.50 1.16 150.07 120.00 8,042.78
Project 9 128200 1200 6017.10 6675.50 1.11 501.19 517.00 6,504.91
Project 50 144000 12.00 4574.30 6154.40 1.351 800.651 684.00, 7,017.3
Project 120 25842 15.00: 4463.601 5707.30 1.28' 114.741 95.00, 6,679.91
Project 124 23881 15.00 4463.60" 5707.30 1.28 104.38 139.00' 4,495.26
Project 145 18560 15.00 4463.60 5707.30 1.281 77.13' 101.00: 4,558.87
Project 150 21681 15.00 4463.60 5707.30 1.28 92.95 100.00 5,369.8
Project 152 69772 15.00 4463.60 5707.30 1.28 377.88 286.00' 7,198.75
Project 155 8398 15.00 4463.60 5707.30 1.28 29.781 74.00 2,673.19
Project 2510 43437 12.00 5679.90 7490.80 1.32 146.56 172.00 6,555.

ITotal Projects 10

Table 17. Military Ground - Command and Control, Model Accuracy Results

For data used to calibrate the model
Measurement Default Cali. Change from Target

Model* Model* Calibration
MMRE 0.23 0.25 8.7% worse MMRE<0.25
RRMS 0.23 0.28 21.7% worse RRMS<0.25
Pred Interval (25%) 0.70 0.59 15.7% worse Pred (25%)>0.75

For data used to validate the model
MMRE 0.23 0.29 26.1% worse MMRE<0.25
RRMS 0.23 0.30 30.4% worse RRMS<0.25
Pred Interval (25%) 0.70 0.45 35.7% worse Pred (25%)>0.75

Summary information
Number Projects Used l10

Mean Ctb Value 5912.02
* Represents mean value resulting from the simulation run
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Military Ground - Signal Processing (SMC)

A total of 16 projects was used for the calibration and the validation of the

Military Ground - Signal Processing category. The projects used are identified in Table

18 and the results are provided in Table 19. Three projects (SMC record numbers 54,

127, and 140) were eliminated because their calibrated values fell outside the observed

range of reasonable values identified in Table 7.

The model does not meet Conte, Dunsmore, and Shen's criteria for estimating

accuracy, and it failed to respond to calibration for this category. Refer to the discussion

in the preceding section on how a wide range of calibrated Ctb values can cause the

calibrated model to perform worse than the default model. In this category, the range of

individual project Ctb values (2048.99 to 7826.52) is considerable. A significant

contributor to this range is the fact that none of these projects had detailed project

information, other than project size and effort. The calibrated Ctb value for a project thus

essentially "absorbs" the wide variations in project effort that may have otherwise been

explained by project information had it been available. For example, compare Projects

142 and 144. These projects have comparable size (28,782 and 29,802 lines of code

respectively) but Project 142 required twice as many manmonths of effort than Project

144 required. While it is conceivable that some of the difference in effort required can be

explained by the organizational factors that the Ctb value captures, it is doubtful that all

of it can be. In the absence of any other project information, however, the calibrated Ctb

values are used to explain all variation in the effort. This tends to induce the wide range

of calibrated values, that then leads to the model's unresponsiveness to calibration.
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Table 18. Signal Processing Projects Used for Calibration and Validation

Cte (SAGE Ctb (SAGE Mdel Actual CalibratedSMC Record # Size Cmplx (D) Estimate) Estimate) Ctb/Cte Estimate of Effort C tdEEEffort

Project 126 47965 15.00 4463.60 5707.30 1.28i 241.02 165.00 7,826.52
Project 130 71851 15.00 4463.60 5707.30 1.28 391.43 738.00i 3,364.60
Project 131 29147 15.00 4463.60 5707.30 1.28 132.57i 192.00 4,191.70
Project 132 46595 15.00 4463.60 5707.30 1.28 232.78, 278.00 4,922.47
Project 133 123710 15.00 4463.60 5707.30 1.28 751.32! 645.00 6,481.16
Project 134 44527 15.00 4463.60 5707.30 1.28 220.441 228.00 5,549.13i

Project 135 23787 15.00 4463.60 5707.30 1.28 103.88 264.00, 2,623.52
Project 136 12121 15.00 4463.60 5707.30 1.28 46.26 154.00 2,094.85
Project 137 60233 15.00 4463.60 5707.30 1.28 316.77 274.00 6,440.55
Project 138 14389 15.00 4463.60 5707.30 1.28 56.83 190.00 2,087.45
Project 142 28782 15.00 4463.60 5707.30 1.28 130.58 348.00 2,521.66
Project 143 23703 15.00 4463.60 5707.30 1.28 103.44 86.00 6,656.85
Project 144 29802 15.00 4463.60 5707.30 1.28 136.16 145.001 5,415.68
Project 147 31720 15.00 4463.60 5707.30 1.28 146.74 192.00 4,561.73
Project 153 11534 15.00 4463.60 5707.30 1.28 43.58 149.00 2,048.99
Project 154 8965 15.00 4463.60 5707.30 1.28 32.21 109.00 2,066.53
Total Prj 16

Table 19. Signal Processing, Model Accuracy Results

For data used to calibrate the model
Measurement Default Cali. Change from Target

Model* Model* Calibration
MMRE 0.39 0.46 17.9% worse MMRE<0.25
RRMS 0.49 0.56 14.3% worse RRMS<0.25
Pred Interval (25%) 0.44 0.22 50.0% worse Pred (25%)>0.75

For data used to validate the model
MMRE 0.39 0.50 28.2% worse MMRE<0.25
RRMS 0.43 0.54 25.6% worse RRMS<0.25
Pred Interval (25%) 0.44 0.20 54.5% worse Pred (25%)>0.75

Summary information
Number Projects Used 16
Mean Ctb Value 4301.68

* Represents mean value resulting from the simulation run
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Ground In Support of Space (SMC)

A total of 14 projects was used for the calibration and the validation of the

Ground in Support of Space category. The projects used are identified in Table 20 and

the results are provided in Table 21. Eleven projects (SMC record numbers 80, 88, 91,

92, 98, 99, 105, 107, 329, 331, and 332) were eliminated because their calibrated values

fell outside the observed range of reasonable values identified in Table 7.

The model demonstrated slight improvement from calibration, but fails to meet

Conte, Dunsmore, and Shen's criteria for estimating accuracy. Nonetheless, the

calibrated MMRE measure of 0.32 indicates that the model is reasonably accurate for this

category. The RRMS value (0.44) is driven higher in this case because this measure

gives higher weighting to projects of larger effort. For example, consider the estimating

error of two hypothetical projects. One is estimated at 10 manmonths and actually

consumes 20 manmonths of effort. The second is estimated at 100 manmonths and

consumes 200 manmonths of effort. The MMRE for these two projects is 0.50. The

RRMS, on the other hand, is 0.65 because the gross error of the second project is given

more weight in the RRMS calculation. In this category, the relative large raw estimating

error of projects 75, 90, and 117 drives the RRMS higher relative to the MMRE.

It was recognized that Projects 74-79 and 81-83 in this group represented the

Command/Control application of this category. Out of researcher curiosity, a separate

calibration and validation effort was performed on this subset of projects and the results

are provided in Appendix C. As expected, the model was considerably more accurate and

more responsive to calibration, since the range of calibration values for these projects was

considerably tighter than that represented by the category's other projects.
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Table 20. Ground in Support of Space Projects Used for Calibration and Validation

te (SAGE cdb(SAGE od IActu cGaibrate
SMC Record # Size Cpx (D) Ete E tiAE CtWCte Estinte of Effcrt± C t

Estinute Estinut) Efor_: Effort

Project 74 11700 12.00 2303.70 5158.50 2.24 89.68 80.00 5,673.80
Project 75 116800 8.00 1785.80 5158.50 2.89 1637.171 91200 8,399.87
Project 76 14000 15.00 2166.60 5158.50 2.381 130.91! 115.00 5,746.81
Project 77 56200 8.00 1785.80 5158.50 2.89 680.53 523.00 6,424.07
Project 78 48300 15.00 2303.70 5158.50 2.24: 537.51: 478.00 5,688.40

Project 79 50300 15.00 2303.70 5158.56 2.24' 564.33: 43200, 6,445.12

Project 81 22900 15.00 2303.70 5158.50! 2.24 219.51 164.00 6,577.06
Project 82 16300 15.00 2303.70 5158.50 2.24 145.97 140.00, 5,341.30

Project 83 6800 21.00 2303.70 5158.50, 2.24, 58.49 57.00 5,270.9

Project 90 95000 15.00 4463.60 5707.30 1.28 547.28 1055.00 3,302.8
Project 97 80000 15.00 4463.60 5707.30 1.28 445.30 530.00 4,936.37
Project 106 16300 15.00 4463.60 5707.30 1.28 66.00 206.00 2,210.61
Project 115 13000 15.00 4463.60 5707.30 1.28 50.31 109.00 2,996.6

Project 117 66843 15.00 4463.60 5707.30 1.28 358.93 65200' 3,470.5
Total Projects 14

Table 21. Ground in Support of Space, Model Accuracy Results

For data used to calibrate the model
Measurement Default Cali. Change from Target

Model* Model* Calibration
MMRE 0.32 0.29 9.4% better MMRE<0.25
RRMS 0.61 0.61 No change RRMS<0.25
Pred Interval (25%) 0.43 0.46 7% better Pred (25%)>0.75

For data used to validate the model
MMRE 0.32 0.32 No change MMRE<0.25
RRMS 0.44 0.44 No change RRMS<0.25
Pred Interval (25%) 0.43 0.43 No change Pred (25%)>0.75

Summary information
Number Projects Used 14
Mean Ctb Value 5176.07

* Represents mean value resulting from the simulation run
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Military Mobile (SMC)

A total of 10 projects was used for the calibration and validation of the Military

Mobile category. The projects used are identified in Table 22 and the results are provided

in Table 23. Four projects (SMC record numbers 348, 349, 2456, and 2515) were

eliminated because their calibrated values fell outside the observed range of reasonable

values identified in Table 7.

The calibration of this category met with mixed success, and did not meet Conte,

Dunsmore, and Shen's criteria for estimating accuracy. The model responded better to

the data used for calibration than it did to the data used for validation. As seen in Table

23, all three of the accuracy metrics improved for the calibration data but only one of the

three metrics improved for the validation data. Since the validation set only includes two

projects for each simulation run, it can be more susceptible to erratic results. In this

category, seven of the ten projects have calibration values between 2900 and 5600, a

reasonably moderate range. On the other hand, projects 303, 347, and 2508 have

calibration values of 7409.66, 6931.28, and 8000.43 respectively. When any of these

three projects are selected for validation, they tend to drive a larger error because projects

with much lower calibration values have been used to predict them. If any of these

projects are used to calibrate, however, the impact of the magnitude of their large

individual calibration values is lessened because these values are averaged with projects

that have lower values.

Finally, as discussed in the previous section, the RRMS is driven higher relative

to the MMRE when there are several projects of disproportionate effort that also have

relatively large estimating error. In this category, six of the ten projects contained actual

effort of 250 months or less. Projects 2502, 2503, 2507, and 2508, however, each have

over 600 months of effort, which thus drives the RRMS higher relative to the MMRE.
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Table 22. Military Mobile Projects Used for Calibration and Validation

Cte (SAGE Ctb (SAGE a CalibrtedSMC Record # Size (S) Cmplx (D) ECtblCte Estimate ofCRcr# e( Estlm (D)e) Effort Ctb

Project 34 17134 15.001 4463.60' 5707.30, 1.28 70.08' 83.00 4,956.49
Project 303 300D0 400, 1446.80 5882.80 4.07. 312.61' 237.00 7,409.66
Project 347 2311: 8.00 611.70; 5328.90 8.711 53.47 39.00 6,931.28
Project 2500 1958 12.00 2768.60 4971.301 1.801 8.42 14.00 3,253.98
Project 2502 26239 15.00 1397.70! 5317.70 3.80: 470.76 633.00 4,154.86
Project 2503 32464 15.00f 1349.90 5317.70 3.94' 633.70i  783.00: 4,458.19
Project 2505 7448 15.00 1581.90! 5317.70 3.36 89.541 180.001 2,971.62
Project 2506 6317! 15.00 1581.90 5317.70 3.36 73.48, 152.00 2,901.72
Project 2507 26814 15.00 1046.40 5317.70 5.08 683.85 647.00 5,568.90
Project 2508 58789' 15.00 731.00 4680.90 6.40' 2697.841 1418.001 8,000.43
Total P 10

Table 23. Military Mobile, Model Accuracy Results

For data used to calibrate the model
Measurement Default Cali. Change from Target

Model* Model* Calibration
MMRE 0.37 0.36 2.7% better MMRE<0.25
RRMS 0.89 0.71 20.2% better RRMS<0.25
Pred Interval (25%) 0.30 0.38 26.7% better Pred (25%)>0.75

For data used to validate the model
MMRE 0.37 0.41 10.8% worse MMRE<0.25
RRMS 0.47 0.52 10.6% worse RRMS<0.25
Pred Interval (25%) 0.29 0.36 24.1% better Pred (25%)>0.75

Summary information
Number Projects Used 10
Mean Ctb Value 5060.08

* Represents mean value resulting from the simulation run
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Missile (SMC)

A total of 4 projects was used for the calibration and validation of the Missile

category. The projects used are identified in Table 24 and the results are provided in

Table 25. The calibration values of two of the four projects (SMC record numbers 15,

and 36) fell outside the observed range of reasonable values identified in Table 7;

however, these projects were not eliminated because they were not outliers in relation to

the category as a whole.

This category responded well to calibration but it did not meet the criteria

identified by Conte, Dunsmore, and Shen for estimating accuracy. In this case, the

calibration values are more homogenous with one exception. Project 16 has a calibration

value of 4088.22, which is quite larger than the other three projects. In a simulation step,

if Project 16 is used for calibration, its large value is averaged with one of the other three

smaller values. The resulting composite calibration value (i.e., the average of the

calibration values of the two projects selected for calibration) serves as a reasonable

estimator for the two projects held out for validation. If, however, Project 16 is selected

for validation, then two projects with substantially lower calibration values are used to

estimate it, and the accuracy therefore gets worse. This explains why in this category, the

average accuracy of the model for the projects used for validation is markedly worse than

for the projects used to calibrate.

Note also that the mean categorical calibration value of 2366.29 is the second

lowest score from any of the calibration categories. This is indicative of a rather low

development proficiency for this environment. This likely suggests that either the

development of missile software is burdened with unique challenges that the model does

not capture or that the developing organizations are not proficient in developing these

systems. It is difficult, however, to draw conclusions on a basis of only four projects.
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Table 24. Missile Projects Used for Calibration and Validation

Ct. (SAG CtU (SAGE FAodeI
SMCRecord# Size(S) Cnp'x (D) Ejja) E CU Cte i s te of At ib' ; B~~Efort iet Cb

Project 15 8885 1200 2450.80 5707.30 233 59.84 2M.00 1,667.35
Project 16 9025 1200. 2450.80. 5707.30 233 60.98 91.00 4,088.22

Project 27 18933 8.00 1095.20 6121.00 5.59 331.61 1384.00 1,860.96
Project36 1358 8.00, 19890 6176.00 3.11 109.92 480.00 1,806.12
Total Proects 4

Table 25. Missile, Model Accuracy Results

For data used to calibrate the model
Measurement Default Cali. Change from Target

Model* Model* Calibration
MMRE 0.66 0.26 60.6% better MMRE<0.25
RRMS 0.88 0.30 65.9% better RRMS<0.25
Pred Interval (25%) 0.00 0.49 Undefined Pred (25%)>0.75

For data used to validate the model
MMRE 0.66 0.67 1.5% worse MMRE<0.25
RRMS 0.89 0.44 51% better RRMS<0.25
Pred Interval (25%) 0.00 0.24 Undefined Pred (25%)>0.75

Summary information
Number Projects Used =
Mean Ctb Value 12366.29

* Represents mean value resulting from the simulation run
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Unmanned Space (SMC)

A total of 7 projects was used for the calibration and validation of the Unmanned

Space category. The projects used are identified in Table 26 and the results are provided

in Table 27. The calibration values of four of the seven projects (SMC record numbers

2622, 2623, 2624, and 2625) fell outside the observed range of reasonable values

identified in Table 7; however, these projects were not eliminated because they were not

considered outliers in relation to the category as a whole. In addition, three of the

projects (SMC record numbers 2623-2625) had identical values for each input and output.

The calibration values for these three projects were altered by one-hundredth of a point so

that the computer simulation could distinguish between the three projects

This category responded reasonably well to calibration but did not meet the

criteria identified by Conte, Dunsmore, and Shen for estimating accuracy. Better

accuracy results were expected considering the reasonably tight range of calibration

values for the projects; however, Project 3 caused results to be erratic because of its larger

calibration value, relative to the other projects. In fact, Project 3 is similar to the case of

Project 16 discussed in detail in the preceding Missile category section. Also note that in

Appendix D, the 50% confidence values for the validated MMRE and RRMS in this

category are each at 0.30 which is close to the target of 0.25, and lower than the mean

values of 0.59 and 0.88 respectively. The mean results are driven higher, primarily by the

influence of Project 3. Finally, note that the mean calibration value of 2320.91 is the

lowest score from any of the calibration categories. This is not too surprising considering

the overwhelming complexity associated with developing software for this environment.
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Table 26. Unmanned Space Projects Used for Calibration and Validation
, Model

Cte (SAGE Ctb (SAGE mate I Actual CalibratedSMC Record # Size (S) Cmplx (D) CtbCte Estimate of fot CtbEstimate) Estimate) EffotoCt

Project 3 80000 15.00 4463.60 5707.30 1.28 445.30 583.00, 4559.46
Project 305 12810 15.00 4262.70 6121.00 1.441 52.24! 143.00 2,644.69

Project 306 9334 21.00 5469.50 6372.40 1.17 30.31 94.00 2,481.20

Project 2622 19810 15.00 2602.10 4896.00 1.88 159.38 558.00; 1,723.23
Project 2623 16759 15.00 4463.60 5707.30 1.28 68.24 305.001 1,638.87
Project 2624 16759 15.00 4463.60 5707,30' 1.28 68.241 305.00 1,638.88
Project 2625 16759 15.00 4463.60 5707.30 1.28 68.24 305.00 1,638.89
Total Prj 71

Table 27. Unmanned Space, Model Accuracy Results

For data used to calibrate the model
Measurement Default Calibrated Change from Target

Model* Model* Calibration
MMRE 0.66 0.43 34.8% better MMRE<0.25
RRMS 0.69 0.88 27.5% worse RRMS<0.25
Pred Interval (25%) 0.14 0.52 271.4% better Pred (25%)>0.75

For data used to validate the model
MMRE 0.66 0.59 10.6% better MMRE<0.25
RRMS 0.69 0.88 27.5% worse RRMS<0.25
Pred Interval (25%) 0.14 0.30 114.3% better Pred (25%)>0.75

Summary information
Number Projects Used 7
Mean Ctb Value 2013.59

* Represents mean value resulting from the simulation run
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Contractor A (ESC)

A total of 17 projects was used for the calibration and validation of Contractor A

in the ESC database. The projects used are identified in Table 28 and the results are

provided in Table 29. Seven projects (ESC Record Numbers 1.2, 2.1, 32.11, 32.12, 33.1.

33.10, and 33.13 were eliminated because their calibrated values fell outside the observed

range of reasonable values identified in Table 7.

The calibrated model performed well in this category, and in fact demonstrated

across the board improvement in accuracy. The calibrated model, however, did not meet

the accuracy criteria identified by Conte, Dunsmore, and Shen. The calibrated model

improved because the mean calibration value of 3901.00 serves as a better estimator than

the default model for 15 of the 17 projects. The only projects in which the default model

is more accurate are ESC record numbers 2.2 and 33.4. Nonetheless, the model fails to

meet the accuracy criteria, mainly because of the relatively wide range of calibration

values present.

The wide range of calibration values is demonstrated by the following analysis.

Appendix D indicates that the categorical calibration value ranges from 3707.72 (10%

level) to 4077.94 (90% level); however, only three projects in this category have

individual calibration values that fall within this range (ESC record numbers 1.3, 32.2,

and 32.4). As discussed previously, the model will be very accurate for these three

projects and increasingly less accurate for projects that have values at the high and low

extremes of this range.
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Table 28. ESC Contractor A Projects Used for Calibration and Validation

Model i
Cte (SAGE Ctb (SAGE Actual CalibratedESC Record # Size (S) Cmplx (D)E E te) Ctb/Cte Estimate of Eft Cb
Estimate) Effort Effort Ct

Project 1.1 39207 12.00 2493.70 3572.00 1.43 348.03 210.00 5,441.85

Project 1.3 10973 8.00' 3704.40 6413.70 1.73 39.93' 73.00 3,879.26

Project 2.2 7653 8.00 4277.20 6413.70, 1.50 21.81 22.50 6,248.33
Project 32.1 9815 15.00 3531.80 3936.60 1.11 47.56 77.49 2,620.93
Project 32.2 11563 15.00 3768.00 4724.00 1.25 53.57 70.06 3,777.11
Project 32.3 8501 12.00 3968.80 6383.00 1.61' 31.83 82.59 2,883.27
Project 32.4 11104 4.00 5868.00 9587.50 1.63i 17.67 51.32 3,943.90
Project 32.5 8741 21.00 2096.70 3696.20 1.76 88.52 58.46 5,222.57
Project 32.10 7709 15.00 5305.50 5707.30 1.08 21.84 66.35 2,260.96
Project 33.4 7076 12.00 5187.20 7656.10 1.48 18.52 18.10 7,805.05
Project 33.5 11333 8.00 5898.80 7138.80 1.21 23.75 83.98 2,491.79
Project 33.8 6556 12.00 5364.50 5909.90 1.10 16.23 55.68 2,115.63
Project 33.11 27676 8.00 4485.20 5212.60 1.16 96.33 150.34 3,597.15
Project 33.14 11239 8.00 3135.00 5212.60 1.66 50.21 102.08 2,885.55
Project 45.1 8127 15.00 4471.50 6014.80 1.35 28.57 110.90 1,942.69
Project 45.2 9961 12.00 5959.20 10166.60 1.71 23.63 58.93 4,748.12
Project 45.3 17018 12.00 4471.50 6014.80 1.35 63.44 91.87 4,417.63
Total Projects 17

Table 29. ESC Contractor A, Model Accuracy Results

For data used to calibrate the model
Measurement Default Cali. Change from Target

Model* Model* Calibration
MMRE 0.43 0.36 16.3% better MMRE<0.25
RRMS 0.71 0.49 3 1.0% better RRMS<0.25
Pred Interval (25%) 0.18 0.25 38.9% better I Pred (25%)>0.75

For data used to validate the model
MMRE 0.48 0.41 14.6% better MMRE<0.25
RRMS 0.57 0.40 29.8% better RRMS<0.25
Pred Interval (25%) 0.17 0.31 82.4% better Pred (25%)>0.75

Summary information
Number Projects Used = 7
Mean Ctb Value 13901.00.

* Represents mean value resulting from the simulation run
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Contractor J (ESC)

A total of 17 projects was used for the calibration and validation of Contractor J in

the ESC database. The projects used are identified in Table 30 and the results are

provided in Table 31. Seven projects (ESC Record Numbers 13.1, 13.4, 13.7, 14.1, 14.5,

15.1,15.2,. 34.3, and 34.6 were eliminated because their calibrated values fell outside the

observed range of reasonable values identified in Table 7.

This category did not respond well to calibration, and it failed to meet the criteria

of Conte, Dunsmore, and Shen for estimating accuracy. The default model is more

accurate than the calibrated model (i.e., assuming the use of the mean Ctb calibration

value of 5384.6) for 9 of the 17 projects, which provides insight as to why the calibration

showed a decline in estimating accuracy from the default model. As discussed in the

previous sections, the calibrated model's accuracy becomes worse as the range of

calibration values gets larger. For this category, the individual calibration values ranged

from 2173.52 (Project 13.2) to 8113.68 (Project 14.2). The composite calibration values,

as indicated in Appendix D, ranged from 5060.72 (10% level) to 5719.17 (90% level).

Only one project has an individual calibration value that falls within the composite value

range.
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Table 30. ESC Contractor J Projects Used for Calibration and Validation

Cte (SAGE; Ctb (SAGE Model Actual CalibratedSMC Record # Size (S) Cmplx (D) Ctb/Cte Estimate of EEstiate) Effort Cti Effort

Project 13.2 6060 12.00 2913.801 5001.00 1.72: 30.72 83.50' 2,173.52
Project 13.3 79300 12.00 1210.20 4499.60 3.72 1929.74 1154.40 6,904.39
Project 13.5 57750 15.00 2796.40 6658.60 2.381 527.84 421.00 8,039.63
Project 13.6 21750 12.00 4014.60; 5859.20 1.46 96.91 325.60 2,134.27
Project 14.2 63350 12.00 2656.90 5995.50 2.26 573.65 399.00 8,113.68
Project 14.3 9078 12.00 2652.10 5995.501 2.26 55.861 107.00i 3,487.96
Project 14.4 13313 15.00 2447.60 4690.20 1.92! 106.46 122.00 4,186.93
Project 15.3 5400 12.00 2910.60 6274.70 2.16 26.79 54.60, 3,466.11
Project 15.4 8778 15.00 2350.90 6274.70 2.67 67.79 77.80 5,594.23
Project 34.2 72345 8.00 2006.20 4499.60 2.24 801.31: 1352.00 2,909.80
Project 34.4 23000 15.00 3999.00 7178.90 1.80 113.841 108.00 7,500.96
Project 34.7 31795 12.00 3246.00 6658.60 2.05 197.25 157.00 8,053.33
Project 38.2 49600 15.00 3308.60 6658.60 2.01 359.39 343.00 6,922.73
Project 38.3 18885 12.00 2791.10 5434.60 1.95 126.53 160.00 4,469.32
Project 38.4 52925 12.00 2088.30 4730.40 2.27 617.22 400.00 6,790.18
Total Projects 15

Table 31. ESC Contractor J, Model Accuracy Results

For data used to calibrate the model
Measurement Default Cali. Change from Target

Model* Model* Calibration
MMRE 0.36 0.44 22.2% worse MMRE<0.25
RRMS 0.75 0.68 9.3% better RRMS<0.25
Pred Interval (25%) 0.33 0.03 90.9% worse Pred (25%)>0.75

For data used to validate the model
MMRE 0.37 0.47 27.0% worse MMRE<0.25
RRMS 0.47 0.57 21.3% worse RRMS<0.25
Pred Interval (25%) 0.33 0.14 57.6% worse Pred (25%)>0.75

Summary information
Number Projects Used 17
Mean Ctb Value 5384.6

* Represents mean value resulting from the simulation run
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Contractor R (ESC)

A total of 6 projects was used for the calibration and validation of Contractor R in

the ESC database. The projects used are identified in Table 32 and the results are

provided in Table 33. Three projects (ESC record numbers 25.4, 26.4, and 26.5) were

eliminated because their calibrated values fell outside the observed range of reasonable

values identified in Table 7.

This category responded well to calibration. In addition, the calibrated model met

two of the three criteria identified by Conte, Dunsmore, and Shen for estimating

accuracy. The calibrated MMRE for the validation data set was 0.21 and the RRMS was

0.23, each indicating better results than the target objective of 0.25. The mean prediction

interval was a reasonable 0.54, but below the target value of 0.75. This is a good

example of a category that demonstrates some range in calibration values (3910.50 to

7046.86) but has a relatively tight core of calibration values for most of the projects. The

mean calibration value of 5650.44 for the category serves as a good predictor, especially

for projects 25.2, 26.2., 26.3 which have individual values that are tightly packed around

it. It seems reasonable to suggest that the management of Contractor R explore the

projects that have the extreme calibration values (projects 26.1 and 25.5) to examine what

one team did well and that the other did poorly, if the calibration values indeed reflect the

true project team performance.
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Table 32. ESC Contractor R Projects Used for Calibration and Validation
Cte (SAGE Ctb (SAG Model

ESC Record # Size (S) Cmplx (D), Estnte) E tE CtbfCb Estrrt of Acta Caibrted

Project 25.1 21300 9.00, 2153.20 6911.90 3.21 177.901 16.801 6,636.38
Project 25.2 33400 9.00 3333.20 8102.30 2.43 180.67 279.60, 5,630.73
Project 25.5 22000 9.00 2524.00 8102.30 3.21 152.84 180.70 7,046.8E
Project 26.1 18124 15.00 4166.20 8729.30 2.10 81.43: 213.44. 3,910.5
Poject 26.2 27440 15.00 4451.60 6749.40 1.52 123.71 165.20 5,303.&
Project 26.3 37183 15.00 5757.40 8729.30 1.52 130.83 237.601 5,3091
Total Projects 6

Table 33. ESC Contractor R, Model Accuracy Results

For data used to calibrate the model
Measurement Default Cali. Change from Target

Model* Model* Calibration

MMRE 0.31 0.17 45.2% better MMRE<0.25
RRMS 0.39 0.19 51.3% better RRMS<0.25
Pred Interval (25%) 0.34 0.67 97.1% better Pred (25%)>0.75

For data used to validate the model
MMRE 0.32 0.21 34.4% better MMRE<0.25
RRMS 0.36 0.23 36.1% better RRMS<0.25
Pred Interval (25%) 0.32 0.54 68.8% better Pred (25%)>0.75

Summary information
Number Projects Used 6

Mean Ctb Value q 5650.44
* Represents mean value resulting from the simulation run
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Other Results from Model Calibration and Validation

Appendix D provides additional results from the Monte Carlo simulation trials

that were used in the calibration and validation the SAGE model. For each calibration

category, the 10%, 30%, 50%, 70%, and 90% confidence levels and the mean score are

provided for: 1) the composite or categorical Ctb calibration value; and 2) the Conte,

Dunsmore, and Shen criteria used to measure the calibrated model accuracy for the

validation data points. The 10% confidence level, for example, can be considered as

meaning that 10% of the simulation runs returned the value indicated in the appendix or

less. Consider, for illustration, the Mil-Spec Avionics category. In this category, 10% of

the simulation runs returned a MMRE value of 0.21 or better for the validation data

points.

This information augments the results provided previously in this chapter in

which only mean levels were reported. Note also that the determination in previous

sections of whether the SAGE model met Conte, Dunsmore, and Shen's criteria was

based on the mean value of the results. Appendix D provides the additional detail to

make this assessment at several confidence levels.

Summary

Three of the six research objectives proposed in Chapter I are addressed through

the results provided in this chapter. These objectives were: 1) to measure the

improvement, if any, from calibrated SAGE estimates as compared to uncalibrated

estimates; 2) to determine whether the model meets the criteria of an effective estimating

model and; 3) to examine whether calibrating the model to a specific contractor's

capabilities is more appropriate than calibrating the model to a class of programs.

The first two of these objectives have already been discussed in some detail. The

effects of calibration were mixed. In only three of the ten selected categories did
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calibration improve model estimating accuracy as measured by the Conte, Dunsmore, and

Shen criteria. Two of the ten categories became worse. The model also did not meet the

proposed criteria of an effective model; however, as will be discussed further in Chapter

5, it is conceivable that the proposed criteria are excessively high for the research

environment in which the SAGE model has been used and calibrated.

With respect to the third objective, there is evidence that suggests it is more

appropriate to calibrate a model on an organizational basis. The SAGE model was more

responsive to calibration that involved the three contractors from the ESC database than it

was to calibration that involved the seven program categories from the SMC database.

The primary reason why calibration by contractor was more successful centered on the

tighter range of calibration values for the individual projects of a given contractor.

Notionally, a tight range lends some confidence that the projects come from a comparable

environment. In the SMC categories in which a large range of calibration values is

present, there is doubt as to whether the wide disparity exists because of true differences

in the development environmental factors that the Ctb value measures. For example,

consider the calibration values of Projects 302 and 346 in the Mil-Spec Avionics

category. Project 346 has a below average rating of 3482.41 while Project 302 has an

above average rating of 9663.10. It may be the case that the organization that developed

Project 302 had a much better development environment in place. It is also likely though

that the difference in effort for Projects 302 and 346 is attributable in part to non-

environmental factors that neither the data nor the model captures, but which is

nonetheless "explained" by the wide-disparity in calibration values.

The above discussion is not to imply that the objective of a calibration is to

tighten the gap in calibration values as much as possible. Statistically, a very tight band

of values would lead to extremely good calibration results because the average calibration

value for the range would serve as a reasonable estimate for all the values that are so
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tightly packed around it. In reality, however, software development teams do

demonstrate varying levels of performance and it is expected that these differences

manifest themselves in some range of calibration values. In fact, software development

managers can gain considerable insight by identifying those projects at the extremes and

capitalizing on one project team's successes and avoiding another's failures. The crux of

the problem, therefore, is to identify categories in which a reasonable range of calibration

values exists, such that valid comparisons between software development teams can be

made. The results of this research provides some indication that calibration by contractor

provides a better foundation for reasonable comparisons.
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V. Conclusions and Recommendations

Overview

The results of this research are consistent with the majority of results from

previous efforts at the Air Force Institute of Technology to calibrate software cost

estimating models. Despite moderate success in some categories, the calibrated SAGE

Cost/Schedule Estimating model does not meet the criteria proposed by Conte,

Dunsmore, and Shen for estimating accuracy. This does not deny, however, that the

SAGE model can be extremely useful in estimating software development effort or that

calibration is a productive activity. This chapter briefly reviews the findings of Chapter

IV, and then proposes an analogy to put these findings in context. The analogy illustrates

why the environment in which this model has been calibrated is not ideal and how this

subsequently contributes to estimating error and calibration ineffectiveness. This chapter

also examines how the SAGE model, regardless of its accuracy in this particular effort,

nonetheless provides a foundation for understanding both the software development

process and the impact that any number of inputs to the process have on the output.

Finally, this chapter proposes areas for future related research.

Review of Findings

Table 34 and Table 35 that follow summarize both the default and calibrated

model performance for the SMC and ESC projects used in validation. As discussed in

Chapter IV, the model did not meet all proposed criteria for estimating accuracy in any of

the calibration categories; however, the model performed reasonably well in two

categories: Military Ground - Command and Control and ESC Contractor R. In addition,

the fact that the greater proportion of the ESC database categories used benefited from

calibration lends some credence to the process of calibration by contractor.
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Table 34. Model Performace for SMC Validation Projects

Avionics (9 Projects)
Default Calibrated Criteria Met?

MMRE 0.45 0.39 No/No
RRMS 0.54 0.52 No/No

Pred (25%) 0.21 0.24 No/No
Mil Ground - Command & Control (10 Projects)

MMRE 0.23 0.29 Yes/No
RRMS 0.23 0.30 Yes/No

Pred (25%) 0.70 0.45 No/No
Mil Ground - Signal Processing (16 Projects)

MMRE 0.39 0.50 No/No
RRMS 0.43 0.54 No/No

Pred (25%) 0.44 0.20 No/No
Unmanned Space (7 Projects)

MMRE 0.66 0.59 No/No
RRMS 0.69 0.88 No/No

Pred (25%) 0.14 0.30 No/No
Ground In Support Of Space (14 Projects)

MMRE 0.32 0.32 No/No
RRMS 0.44 0.44 No/No

Pred (25%) 0.43 0.43 No/No
Military Mobile (10 Projects)

MMRE 0.37 0.41 No/No
RRMS 0.47 0.52 No/No

Pred (25%) 0.29 0.36 No/No
Missile (4 Projects)

MMRE 0.66 0.67 No/No
RRMS 0.89 0.44 No/No

Pred (25%) 0.00 0.24 No/No

Table 35. Model Performance for ESC Validation Projects

Default I Calibrated Criteria Met?
Contractor A (17 Projects)

MMRE 0.48 0.41 No/No
RRMS 0.57 0.40 No/No

Pred (25%) 0.17 0.31 No/No
Contractor J (17 Projects)

MMRE 0.37 0.47 No/No
RRMS 0.47 0.57 No/No

Pred (25%) 0.33 0.14 No/No
Contractor R (6 Projects)

MMRE 0.32 0.21 No/Yes
RRMS 0.36 0.23 [ No/Yes

Pred (25%) 0.32 0.54 No/No
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A theme that was discussed at some length in Chapter IV indicated that a wide

range in calibration values within a category contributed to poor calibrated model

performance. At issue is whether the wide range truly represents large differences in

project team performance or whether the range is the result of other factors, such as

incomparable project environments. The intent of stratifying the data into these

categories was to gain a degree of comparability. Considering the wide range in values,

however, there remains doubt whether this objective was met.

In some instances, additional steps can be taken to increase confidence that the

projects come from homogenous environments. If sufficient data exist, further

stratification of the categories can be accomplished. For example, in the SMC category,

Ground in Support of Space, it was noticed that a subset of nine projects involved the

Command/Control function. As reported in Appendix C, the calibrated model for this

subset of nine projects performed extremely well, meeting each of the criteria for

estimating accuracy. Nevertheless, even if several projects from comparable

environments can be grouped satisfactorily, model calibration still poses a formidable

challenge. Essentially, the challenge is presented by the environment in which the

calibration is being performed. This challenge is now explored through the use of

analogy.

Model Calibration Analogy

Overview. An analogy is proposed here to examine an ideal environment for

model calibration, and then compare this ideal to the environment for this effort. The

point of this analogy is to illustrate both the motivation that underlies the need to

calibrate models and the sensitivity of calibration to a given environment. The analogy

considers the theoretical case of a model that has been developed to predict academic

performance of undergraduate students.
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Theoretical Case of Calibration. The dean of the postgraduate school for a

major university has identified the need to better predict the performance of students

entering the university's advanced programs in government, engineering, and business.

A colleague recommends a model that has been used with great success in the

university's undergraduate programs. The model was developed by the university's

research department and validated with data from 10 years of student records. The

colleague explains that the model considers such factors as the student's prior academic

grade point average (GPA), standardized test scores, academic major complexity, study

habits, social habits, family history, motivational influences, and a host of other factors.

The model accurately predicts student performance, as measured by the student's

undergraduate GPA, within 25%. The dean is familiar with the model and finds that it

captures many of the elements that he has found to be important contributors to student

success during his 20 years in academia.

The dean also realizes that undergraduate and graduate academic programs are of

different natures. At the surface, this difference manifests itself in the fact that graduates

from postgraduate programs, on average, have higher GPAs than those from

undergraduate programs. The dean understands that if he wants to use the model

effectively for his advanced degree programs then he must calibrate it to his environment.

The dean, calling upon his vast experience, develops a calibration methodology. He

dismisses a method that involves a linear multiplier that functionally equates an

undergraduate's GPA to a graduate's GPA because he believes the conversion is more

complex. His belief is that graduate students, on average, are more intelligent and are

more motivated than undergraduates and this translates into higher grades. As such, his

methodology involves calibrating the model's inputs that account for these factors.

The dean's effort to calibrate the model is enhanced by his ability to access the

registrar's records and student profiles available in the student's application package.
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The dean is also quite familiar with each program's various disciplines and faculty. For

example, he knows that the nuclear engineering option is considerably more challenging

than the other engineering specialty options and that he must establish separate

calibration factors for predicting nuclear engineering student performance. After some

fine-tuning, the dean develops calibration factors for each segregated discipline that yield

accuracy results comparable to the 25% error experienced by the model when used to

estimate performance of undergraduate students.

Analogy Explored. The preceding example is rather simple but is illustrative in

several respects. First, it provides an understandable motive of why someone would want

to calibrate a model at all. The undergraduate model captures many of the same factors

of student success that are also present in the graduate school environment but it does so

to varying extents and with a different quantification of student performance. Calibration

allows the dean to re-cast these factors to provide more reasonable outputs (i.e., student

performance) for his environment. This is the same intent of the AFIT research to

calibrate software cost models. Second, the environment in which the dean calibrated the

model is ideal when compared to the environment in which SAGE was calibrated here.

Specifically, differences can be seen in: 1) the dean's experience with the environment in

general; 2) the dean's experience with the specific university environment that he is

calibrating; and 3) the completeness and consistency of the data used to calibrate the

model. Each difference is examined below.

First, although the dean is only somewhat familiar with the model itself, his

experience in academia gives him significant insight into the interaction of student

characteristics and student performance. He has an intuitive sense of the relative

importance of these factors and this helps him understand the model's behavior, outputs,

sensitivities, strengths, and weaknesses. On the other hand, this researcher has limited

experience in software development and cost estimation. In light of this inexperience, a
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detailed analysis of the behavior of SAGE's findamental schedule and effort estimating

equations was considered and presented in Chapter II; however, it is provided from

purely an academic perspective. The researcher's use of the model is not enhanced by

any significant experience in the field. The impact that inexperience might play on

calibration results is intangible but it is assumed that practical experience can only

augment model use and calibration in a positive way.

Second, the dean has exclusive insight into the environment that he is calibrating.

For example, he is able to isolate nuclear engineering from the other engineering

disciplines because these students exhibit a different pattern of performance. He is also

more apt to identify and account for data anomalies, such as a subset of students whose

performance was hindered by an ineffective faculty member or by some other extenuating

circumstances. This calibration of SAGE, as well as other AFIT calibration efforts, have

been performed essentially one step removed from the environment from which the data

are taken. Except for some broad guidelines that are used to create calibration categories

and to eliminate inappropriate data points, the data from SMC and ESC, in essence, must

be accepted at face value. The potential exists that anomalies that may have been

identified by a first-hand observer are not picked up and these anomalies subsequently

induce erratic calibration results.

Finally, the dean benefits from having complete data on which to perform the

calibration. In this SAGE effort, incomplete information for some data points forces the

calibration factor to explain differences in output that may have been attributable to other

factors, for which information is not available. The dean, on the other hand, can draw

upon records of hundreds of students and eliminate incomplete records. The option of

eliminating incomplete records is not possible for this effort, considering the small base

of data to start. As discussed in Chapter IV, wide variation in calibration factors, as
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caused by incomplete data records, can cause the calibrated model to return worse results

than the default model.

Analogy Conclusion. The point of this analogy is not to dismiss the results of

this particular effort, but rather to illustrate the fundamental need for calibration and to

highlight the sensitivity of model calibration to the environment in which it is performed.

Even if calibration were performed in a more ideal environment, any model will still have

an estimating error that the model user must decide is acceptable for his or her estimating

purposes. The estimator must be cognizant of the model's limits when using the model's

output to make programmatic decisions.

Regardless of the results of this or any of the other calibration efforts, a less

obvious benefit of model calibration is that it forces the user, who might otherwise treat

the estimating model as a black box, to consider the underlying model behavior, to be

aware of cost drivers, and thus better understand the structure of the software

development process. This facet is now explored.

Other Benefits of Software Cost Model Use

Until this point, it has been presumed that the sole purpose of calibrating the

SAGE model has been to obtain more accurate estimates of effort. The readers of this

and related AFIT efforts might tend to dismiss many of the models solely on the basis of

less than stellar results. The preceding analogy was offered to place this effort in a

context that can help explain extenuating factors that burden the model's normal

estimating error. A more subtle benefit of model use that only tangentially pertains to

estimating accuracy for a given environment, is that cost models provide a structure for

understanding key elements of the software development process.

The SAGE model, or any other of the available cost estimating models for that

matter, can be considered a box in which the model developer has captured years of
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experience in the field. The inputs that the model considers are those that the developer

considers as essential explanatory variables for software development effort and schedule.

The fact that, collectively, the models consider many of the same elements suggests that

these factors must be given due consideration when performing an estimate. On the other

hand, each model generally offers a unique perspective of software development. In

SAGE, Dr. Jensen emphasizes effective management of development teams. SAGE

model ratings are unique in that many are not defined in terms of individual

characteristics, but whether the individuals work in an organization that has an effective

management approach. By gaining experience with this and other models, the estimator

can establish a strong framework for understanding the critical explanatory factors and

gain an appreciation of the various approaches that have been proposed to better develop

software. Through this "awakening", estimating accuracy should improve. This serves

the estimator well, not only when using the algorithmic models, but also when using any

of the other estimating techniques presented in Chapter II. For example, the estimator

who decides to conduct a bottoms-up estimate might use knowledge gained from the

model as a guide for the more detailed cost analysis of that particular project.

Calibration can further this level of understanding. Calibration lends insight into

how the relationship of inputs to outputs changes as the model is used outside of its

originally intended environment. This forces the estimator to consider the unique aspects

of his or her own environment and how these particular aspects relate to development

effort and schedule. In essence, calibration is a dynamic process through which not only

is the model fine-tuned to an environment, but the estimator becomes better attuned as

well. Although the various models are typically not marketed on the basis that they

improve the user's understanding of software development, this certainly is an intrinsic

value of the models that cannot be casually ignored.
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Recommendations for Future Research

The focus of AFIT research to date has been on evaluating and improving the

accuracy of the software estimating models in a research environment. The basis of two

of the recommendations that follow is to study how these models are actually used in the

field and to gauge their accuracy in more of a realistic setting. The third recommendation

is to consider the further application of resampling methods proposed in this effort to

generate more robust calibration results. The final suggestion is to reconsider at least a

portion of the previous SMC calibrations and perform them by stratifying the projects

primarily by contractor.

The first suggestion involves studying how the software cost estimating

methodologies are employed in the field. In Chapter II, the various methodologies are

presented and described. It is recommended by some authorities that these methods (e.g.,

analogy, parametric, bottoms-up) be used together to some degree to improve the

estimate. There appears, however, to be no significant research that addresses how these

various methods are actually employed by estimators. The proposed research would

examine field practices to determine if better estimates result when two or more of the

methodologies are used in combination.

The second recommendation is to measure software cost model accuracy when the

model has been calibrated by an estimator who is experienced in the environment that is

being calibrated, who has more complete data sets, and who has more insight into the

data used to calibrate. It has been proposed in this and the previous chapter that

environment inexperience as well as incomplete and perhaps anomalous data add to the

model's normal estimating error.

The third and fourth recommendations may be considered in tandem. This effort

proposed resampling using Monte Carlo simulation as the means to generate more robust

calibration results; however, the potential exists to further capitalize on this concept.
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Specifically, the optimal split of data to use for calibration and validation can be

explored. In this effort, two projects were held out for validation; however, a different

mix might be more suitable. In addition, effective ways to present the data that results

from a simulation run can be explored. This improved use of resampling can be coupled

with the re-examination of previous AFIT efforts to calibrate software cost models using

data from SMC. The first step would be to persuade the maintainers of the SMC SWDB

to add a database field that indicates the developing contractor. The next step would be

to re-accomplish calibration for at least a portion of these models with a primary

stratification by contractor. The objective would be to see if this method is more suitable

than that previously employed.

Summary

This chapter has examined the use and calibration of software cost models from a

philosophical perspective. The challenges of calibration are examined through the use of

an analogy that helps portray the sensitivity of calibration to the environment in which it

is performed. Other benefits of model use and calibration are explored, specifically with

respect to the foundation models can provide for understanding software development

processes and perspectives. Finally, in response to the sixth and final research objective

proposed in Chapter I, future efforts in this research area are proposed.
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Appendix A: SMC SWDB and SAGE Input Value Correlation Matrix

Very Low Low Nom. High Very High Extra High

SMC Database Title (Column Number)
SAGE Rating I I I I I

Inherent Difficulty of Application (4.23.1)
Complexity (D) 1 281 211 15[ 121 81 4

Personnel Capability (4.8.2)
ACAP 1.461 1.191 11 0.861 71

Personnel Experience (4.8.1)
AEXP (D>13) 1.291 1.13 1 0.91 0.82
AEXP (10<D<13) 1.29 1.13 1 0.91 0.82
AEXP (D<10) 1.291 1.13 1 0.91 0.82

Host Virtual System (4.8.4)
DEXP Code [ I 11 21 31 I

Development System Experience (4.8.7)
DEXP-1 1.11 1.04 1 1 11 1
DEXP-2 1.16 1.1 1.04 1 1 1
DEXP-3 1.21 1.16 1.08 1.03 1 1

Team Programming Language Experience (4.8.5)

LEXP 0.5 1.15 1.02 1 1 1 1
LEXP 1.0 1.2 1.07 1 1 1 1
LEXP 2.0 1.28 1.17 1.06 1 1 1
LEXP 3.0 1.37, 1.26 1.13, 1.05 1 1
LEXP 5.0 1.531 1.41 1.21 1.091 1.041 1

Personnel Capability (4.8.2)
PCAP 1 1.421 1.171 11 0.86 0.7

Development Methods Experience (4.8.6)
PEXP 1 1.291 1.111 0.931 0.851 0.831 0.83

Target Virtual System (4.8.3)
TEXP Code 1 21 31 1

Target System Experience (4.8.8)
TEXP-1 1.06 1.02 1 1
TEXP-2 1.09 1.06 1.02 1
TEXP-3 1.11 1.09 1.05 1.02

Modern Practices Experience (4.23.13)
MODP 1 1.211 1.11 11 0.911 0.831

Automated Tool Support (4.23.14)
TOOL 1 1.241 1.11 11 0.91. 0.831

Resource/Support Location (4.23.10)
RLOC 1 1.121 1.231 1.35

Reuse Impact (N/A)
RIMP 1
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Very Low Low I Nom. High Very High I Extra High

Reusability Requirements (4.3.6)
RUSE 1 11 11 1 1

Development System Volatility (4.23.4)
DVOL L J 11 1.071 1.131 1.191 1.25

Resource Dedication (4.23.9)
RDED 1 1.251 1.111 1[

Terminal Responses (4.23.3)
RESP 1 0.961 11 1.051 11 1.14

Turnaround Time (4.3.2)
TURN .0.87 0931 11 1.071 1.151 1.15

Multiple Site Development (4.23.8)
MULT 11 107 113 1.2

Display Requirements (4.3.5)
DISP 1 11 1.051 1.111 1.16

Rehosting Requirements (4.3.4)
HOST 1 1[ 1.24 163

Memory Constraints (4.3.8)
MEMC 1 1.041 1.151 1.4

Quality Assurance Level (4.23.6)
QUAL 1 1.021 1.031 1.061 1.09

Requirements Volatility (4.3.3)
RVOL 0.931 1[ 1.151 1.291 1.46

Real Time (4.3.10)
RTIM 1 [ 1_ 1.041 1.091 1.27

Security Level (4.3.7)
SECR I I 11 1.41 2.11 3.82

Specification Level (4.23.5)
SPEC 11 1.121 1.211 1.26 1.2

Test Level (4.23.7)
TEST 11 1.021 1.051 1.111 1.271

Timing Constraints (4.3.9)
TIMc 11 1.1J 1.261
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Appendix B: ESC Database and SAGE Input Value Correlation Matrix

very Low Low I Nom. I High I Very High Extra High
ESC Database Title (Abbreviation)

SAGE Rating I I I I
Complexity (CPLX)

Complexity (D) 1 281 211 151 121 81 4
Analyst Capability (ANAL CAP)

ACAP 1 1.461 1.191 11 0.861 0.711
Analyst Experience (ANAL EXP)

AEXP (D> 13) 1.29 1.13 1 0.91 0.82
AEXP (10<D<13) 1.29 1.13 1 0.911 0.821
AEXP (D<10) 1.29 1.13 1 0.911 0.821

Host Virtual System (HOST CPLX)
DEXP Code I 11 21 31

Development System Experience (HOST EXP)
DEXP-1 1.11 1.04 1 11 1 1
DEXP-2 1.16 1.1 1.04 1 1 1
DEXP-3 1.21 1.16 1.08 1.03 1 1

Team Programming Language Experience (LANG EXP)
LEXP 0.5 1.15 1.02 1 1 1 1
LEXP 1.0 1.2 1.07 1 1 1 1
LEXP 2.0 1.28 1.17 1.06 1 1 1
LEXP 3.0 1.37 1.26 1.13 1.05 1 1
LEXP 5.0 1 1.531 1.41 1.21 1.091 1.041 1

Programmer Capability (PROG CAPB)
PCAP 1 1.421 1.171 11 0.861 0.71

Development Methods Experience (MODP EXP)
PEXP 1 1.291 1.111 0.931 0.851 0.831 0.83

Target Virtual System (TRGT CPLX)
TEXP Code 11 21 31 1

Target System Experience (TRGT SEXP)
TEXP-1 1.06 1.02 1 1 1
TEXP-2 1.09 1.06 1.02 1 1
TEXP-3 1.11 1.09 1.05 1.02 1

Modern Practices Experience (MODP EXP)
MODP 1 1.211 1.1 1[ 0.911 0.83J

Automated Tool Support (TOOL USE)
TOOL 1 1.241 1.11 11 0.911 0.831

Practices.Volatility (MODP VOL)
PVOL 1

Resource/Support Location (RES LOC)
RLOC 11 1.121 1.231 1.35
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_Very Low Low I Nom. I High Very High I Extra High
Reuse Impact (N/A)

RIMP 1 11
Reusability Requirements (N/A)

RUSE 1 I i1 lJ 1f 1

Development System Volatility (HOST VOL)
DVOL [11 1.071 1.131 1.191 1.25

Resource Dedication (RES DED)
RDED M 1.251 1111 11 1 1

Terminal Responses (TERM RESP)
RESP 1 0.961 11 1.051 1.11 1.14

Turnaround Time (TURN TIME)
TURN 1 0.871 0.931 11 1.07 1.1.15

Multiple Classifications (N/A)
MCS I I11 I 1

Multiple Organizations (NA)
MORG 1 11 1 1

Multiple Site Development (NIA)
MULT I I I 1

Display Requirements (SPEC DISP)
DISP 1 11 1.051 1.11 1.16

Rehosting Requirements (REHOST)
HOST 1 1 11 1.241 1.63

Memory Constraints (MEM CONST)
MEMC 1 11 1.041 1.15 1.4

Quality Assurance Level (QA LEVL)
QUAL 11 1.021 1.031 1.061 1.09[

Requirements Volatility (N/A)
RVOL 1[ 1 J

Real Time (Real Time)
RTIM [ 1 11 1.041 1.091 1.27

Security Level (SEC REQ)
SECR 1 1 1l 1.41 2.1[ 3.82

Specification Level (SPEC LVL)
SPEC [ 11 1.121 1.211 1.261 1.28

Test Level (TST LVL)
TEST [11_ 1.021 1.051 1.111 1.271

Timing Constraints (TIME CONST)
TIMC III11 1.11 1.261 1.561
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Appendix C: Ground in Support of Space - Command/Control Calibration

Ground in Support of Space - Comm/Control Projects Used for Calibration

SN Ceor M(SAGEI ft(SAGE 1 1 aibae
# ~ce z r( Esfirrate) Esfirr W-) ClCle:Etnaef culBo t lbh

Priect 74 11700 12.0D 23D3.70 5158.50 224 89.68 80.00 5,673.8
Proect75 116900 8.00 1785.80 5158.50 289 1637.17 912X) a399.8
Priect76 14000 15OD 216.60 5158.50 238 130.91 115.X 5,746.8
Project 77 562 80D 1785.80 515850 289 680.53 523.00 6,424.0
roect 78 48300 15(X) 2303.70 5158.50 224 537.51 47800D 5,688.4
Priect 79 5030D 15.O 2303.70 5158.50 224 564.33 43.00D 6,445.1
Prect 81 2290X 1500 2303.70 515850 224 219.51 164.X 6,577.0
Project 82 16300 15(00 2303.70 5158.50 224 145.97 140.00 5,341.3
Prject 83 6800 21.00 2303.70 5158.50 224 58.49 57.00 5,270.9
Tta Prj 9

Ground in Support of Space - Command/Control, Model Accuracy Results

For data used to calibrate the model
Measurement Default Cali. Change from Target

Model* Model* Calibration

MMRE 0.24 0.13 45.8% better MMRE<0.25
RRMS 0.72 0.37 48.6% better RRMS<0.25
Pred Interval (25%) 0.56 0.89 58.9% better Pred (25%)>0.75

For data used to validate the model
MMRE 0.25 0.16 36.0% better MMRE<0.25
RRMS 0.39 0.21 46.2% better RRMS<0.25
Pred Interval (25%) 0.55 0.89 61.8% better Pred (25%)>0.75

Summary information
Number Projects Used 19
Mean Ctb Value 16172.58
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Appendix D: Other Simulation Results for SMC and ESC Calibration

Confidence Level
Mit-Spec Avionics 10% 30% 50% Mean 70% 90% Target

Composite Ctb Value 6018.44 6330.66 6525.60 6545.32 6744.06 7154.01 _

MMRE* 0.21 0.30 0.40 0.39 0.45 0.57 MMRE < 0.25
RRMS* 0.27 0.42 0.53 0.52 0.57 0.80 RRMS <0.25

Pred Interval (25%)* 0.00 0.00 0.00 0.24 0.50 0.50 Pred > 0.75
#of Projects 9

Simulation Trials 3600

Mil Grd - Comm & Control 10% 30% 50% Mean 70% 90% Target
Composite Ctb Value 5568.59 5732.62 5902.71 5912.02 6005.70 6239.79

MMRE* 0.17 0.22 0.26 0.29 0.36 0.46 MMRE < 0.25
RRMS* 0.14 0.23 0.28 0.30 0.36 0.46 RRMS < 0.25

Pred Interval (25%)* 0.00 _0.50 0.50 0.45 0.50 1.00 Pred > 0.75
# of Projects . . . 10

Simulation Trials 7200

Mil Grd - Signal Processing 10% 30% 50% Mean 70% 90% Target
Composite Ctb Value 4058.79 4209.43 4306.06 4301.68 4404.87 4581.60

MMRE* 0.27 0.39 0.48 0.50 0.60 0.79 MMRE < 0.25
RRMS* 0.30 0.38 0.53 0.54 0.63 0.85 RRMS < 0.25

Pred Interval (25%)* 0.00 0.00 0.00 0.20 0.50 0.50 Pred > 0.75
# of Projects 16

Simulation Trials 10,000

Ground in Support of Space 10% 30% 50% Mean 70% 90% Target
Composite Ctb Value 4929.02 5065.14 5156.16 5176.07 5292.31 5383.34 N/A

MMRE* 0.09 0.22 0.27 0.32 0.38 0.58 MMRE < 0.25
RRMS* 0.11 0.31 0.40 0.44 0.52 0.88 RRMS < 0.25

Pred Interval (25%)* 0.00 0.00 _ 0.50 . 0.43 0.50 1.00 Pred > 0.75
# of Projects 14---------.

Simulation Trials 9,100

Military Mobile 10% 30% 50% Mean 70% 90% Target
Composite Ctb Value 4703.57 4902.21 5052.73 5060.08 5258.32 5435.08 N/A

MMRE* 0.16 0.31 0.40 0.41 0.50 0.62 MMRE < 0.25
RRMS* 0.16 0.27 0.37 0.52 0.69 0.99 RRMS < 0.25

Pred Interval (25%)* 0.00 0.00 0.50 0.36 0.50 1.00 Pred > 0.75
#of Projects 10

Simulation Trials 4,500
*These are the results for the calibrated model accuracy for the validation data points.
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Missiles 10% 30% 50% ' Mean 70% i 90% Target
Composite Ctb Value 1737.74 1764.16 2877.79 2366.29 2948.17' 2974.59 N/A

MMRE* 0.42 0.46 0.48 0.67 0.89 0.94 MMRE < 0.25
RRMS* 0.19 0.39 0.46 0.44 0.52 0.60 RRMS < 0.25

Pred Interval (25%)* 0.00 0.00 0.00 0.24 0.50 0.50 Pred > 0.75
# of Projects 4

Simulation Trials 600

Unmanned Space 10% 30% 50% Mean 70% 90% Target
Composite Ctb Value 1680.73 1912.09 2080.55 2013.59 2264.84 2281.71 N/A

MMRE* 0.24 0.29 0.30 0.59 0.42 1.17 MMRE<0.25
RRMS* 0.28 0.29 0.30 0.88 0.46 2.11 RRMS < 0.25

Pred Interval (25%)* 0.00 0.00 0.50 0.30 0.50 0.50 Pred > 0.75
# of Projects 7

Simulation Trials 2,100

ESC Contractor A 10% 30% 50% Mean 70% 90% Target
Composite Ctb Value 3707.72 3836.11 3919.88 3901.00 3986.76 4077.94 N/A

MMRE* 0.16 0.28 0.37 0.41 0.47 0.79 MMRE < 0.25
RRMS* 0.18 0.31 0.39 0.40 0.49 0.61 RRMS < 0.25

Pred Interval (25%)* 0.00 0.00 0.5 0.31 0.50 0.50 Pred > 0.75
# of Projects 17

Simulation Trials 10,000

ESC Contractor J 10% 30% 50% Mean 70% 90% Target
Composite Ctb Value 5060.72 5265.11 5410.48 5384.60 5511.60 5719.17 N/A

MMRE* 0.28 0.40 0.48 0.47 0.57 0.64 MMRE < 0.25
RRMS* 0.36 0.46 0.56 0.57 0.69 0.79 RRMS < 0.25

Pred Interval (25%)* 0.00 0.00 0.00 0.14 0.50 0.50 Pred > 0.75
# of Projects 17

Simulation Trials 10,000 _

ESC Contractor R 10% 30% 50% Mean 70% 90% Target
Composite Ctb Value 5289.98 5392.60 5720.04 5650.44 5806.12 6154.46 N/A

MMRE* 0.05 0.15 0.20 0.21 0.28 0.33 MMRE < 0.25
RRMS* 0.06 0.17 0.24 0.23 0.31 0.35 RRMS < 0.25

Pred Interval (25%)* 0.00 0.50 0.50 0.54 0.50 1.00 Pred > 0.75
# of Projects 6

Simulation Trials 1,500
*These are the results for the calibrated model accuracy for the validation data points.
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