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Abstract

The purpose of this thesis is to provide Air Combat Command a method for

determining the number of predator unmanned aerial vehicles (UAVs) required to cover a

pre-selected target set given a risk assessment of the individual targets and a risk averse

decision maker.

Extending previous research that employs reactive TABU search methods for

deterministic vehicle routing problems, this thesis incorporates wind effects that can

significantly alter the travel times for any given scenario. Additionally, it accounts for

possible attrition by introducing minimum risk and expected number of targets covered to

the objective function. The results of the TABU search and subsequent Monte-Carlo

simulation gives the number of predator's required to cover a target set, identifies

"robust" routes, and suggests routes that increase the expected number of targets covered

while reducing losses.

vi



I. Analysis Overview

L1. Purpose and Outline of Theses

The purpose of this thesis is to provide Air Combat Command (ACC) a method

for determining the number of predator unmanned aerial vehicles (UAVs) required to

cover a pre-selected target set given a risk assessment of the individual targets and risk

aversion of the decision maker. The proposed method incorporates winds, attrition, and

assumes tasked coverage is provided for the target set. Tasked coverage is the time a

UAV is directed to provide surveillance of a target. The proposed method also provides

insight into minimum route and minimum risk route structures.

The capability and history of the predator UAV are given in Appendix 1. The

notation is developed in section 1.2. The background for this research is given in Section

1.3 and Appendix 2. In Section 1.4 the motivation for this work is outlined. Section 1.5

explains the multiple homogenous vehicle traveling salesman problem time window

constrained (mTSPTW) with the predator UAV incorporating winds effects model.

Section 1.6 describes the mTSPTW incorporating the decision makers' risk aversion.

After developing the concept of maximum expected number of targets covered and

minimum risk routes, attrition and coverage is evaluated in Section 1.7. The model is

validated in Appendix 3. Finally, limitations and suggested changes are discussed in

Section 1.8. Appendix 4 discusses code modifications to the TABU search.
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L2. Notation

The following notation will help in describing the methods used for solving wind

influenced, minimum risk, and maximum coverage TABU heuristics.

Rr = total number of targets or nodes in a route r. (All routes together are a

tour)

ar = index first target in route r.

br = index last target in route r.

nfr = index of nth target in route r such that a- n r - br.

T = Number of routes.

r = route index r=1...T.

Ps(i)= Probability of survival at target or nodes i, i= 1.. .N.

b,
mr= 11 Ps(i)Vre1...T

i=a,

Pk(i)= 1- Ps(i)

MIN Ps = Min {mr I
T

MAX Pk = 1-MIN Ps

Ala or lb = Penalty describing decision makers risk aversion for minimum risk

routes.

2



X, or X2b = Penalty describing decision maker's risk aversion for maximum

expected targets covered routes.

PEN a = -;La*MIN Ps

PENlb = Alb*MAX Pk

PEN2a = -A2.*A(N)

PEN2b = 22b*(1/A(N))

dz = travel time vector (proportional to distance).

dx = x component of vector dz.

dy = y component of vector dz.

o = acute angle between wind vector and dz

w = wind vector

q = modeled wind component, O< =q< =1

A(T) = Average number targets covered.

Ar = Average number of targets covered for route r.



L3. Background

The vehicle routing problem with maximum coverage is an extension of the

classical general vehicle routing problem (GVRP). A general review from the literature

for the general vehicle routing problem includes Eilon et al. (1971) and Bodin (1983).

Within a traditional deterministic framework, the difficulty of solving these problems is

well documented by Lenstra (1981), Savelsbergh (1992), Desrochers et al. (1992) and

Dumas et al. (1995). This suggests the use of alternative heuristic methods that provide

good - though not necessarily optimal - solutions in a reasonable period of time (Glover

1989, 1990a, 1990b). This difficulty is further compounded by introducing expected

coverage due to the presence of probabilistic UAV loss rates at one or more targets.

Therefore, we selected the TABU search heuristic as a solution method robust enough to

allow for additional objective function components (Laporte 1992) (see Appendix 2).

The TABU search (Glover 1989, 1990a, 1990b) attempts to avoid becoming

stuck in local optima by exploiting memory and data structures to prevent returning to

previously examined solutions. Reactive TABU search incorporates the basic parameters

and memory structures of the basic TABU search. In addition, the heuristic automatically

adjusts search parameters based on the quality of the search. The reactive TABU search

developed by Carlton (1995) is the "engine" used in this thesis, with modifications to

incorporate winds and risk aversion for predator unmanned aerial vehicles (UAVs).



Figure 1 summarizes our overall approach with an emphasis on three areas.

First, two inputs distinguish this from previous TABU/VRP algorithms -- winds and

probability of survival. Second, the two significant outputs are the maximum coverage

and worst case route structure. Finally, a Monte-Carlo simulation evaluates the proposed

route structures to more accurately characterize the distribution of vehicle losses and

provided surveillance time of targets.

Target Set UAV's Required

Tasked Coverage Minimum route
structure UAV Losses

UAV's Available Modified TABU Worst ease Tasked

Winds code search "Engine" routing Simulation Coverage
Maximum expected Provided

Probability of Survival -No Coverage routing

Figure 1. Analysis Overview



L4. Motivation

The primary motivation of this thesis is to give decision makers and operators a

tool that provides timely insight and high quality analysis of possible predator UAV

operations without having to solve large, intractable integer programming problems. ACC

wants to know how many predator UAV to allocate to a target set; this is equivalent to

defining a set of routes since one UAV is assigned to each route. The TABU search was

selected to provide these routes; however, a simple minimum distance solver does not

account for the slow speed and vulnerability of the predator. Therefore, these variables

were included into the TABU heuristic. This provides answers at the tactical level to the

following questions.

1. How many predators should we send out today?

2. What are some suggested routes?

3. What routes are insensitive to wind changes?

Furthermore a Monte-Carlo post-optimization simulation answers the following:

1. What are the overall expected losses?

2. How much of the tasked coverage is expected to be accomplished?

In summary, this analysis provides a mechanism to the decision maker to operationally

model attrition and effect of winds.

6



L5. Multiple homogenous vehicle Traveling Salesman Problem time window

constrained including winds (mTSPTWIW)

Incorporating winds into the model requires vector addition of wind vector to the

flight time vector. (Figure 2)

Target Set P UAV's Required

Tasked Coverage Minimum route
U A l structure ........................... UAV Losses

UAV's Available Modified TABU Worst case ...............:Tasked
Winds code search "Engine" routing • Simulation Coverage

Maximum expect "" p '  SProvided

Probability of Survival Coverage routing .--

Figure 2. Winds in TABU heuristic

The model assumes winds are proportional to flight time. The longer the UAV is

aloft the greater the resulting wind vector. These wind vectors modify flight time

requirement to targets, and may be asymmetric. This is what we would expect since

tailwind components would shorten and headwind components would lengthen a flight.

Figure 3 graphically shows the use of vectors to model winds.

Modeling winds requires that we first compute the length of time dz for the no

wind vector by dz=(dz2+dy2)5 . Then, the appropriate wind vector to be modeled is

selected as proportional to dz' - or dz' +. Finally, the law of cosines computes vectors dz'-

and dz' +. For example letting w=.2*dz- and angle o = atan(dyldx) then dz'-=(dz2 +w -

2*dz*w*cos(o))5 (see Figure 3). The appropriate dz'- and dz'+ vectors are then

incorporated into the heuristic.

7



Wind vector w
Tailwind/

vector dz",'+

dz' -Headwind vector

dxdy

Figure 3. Wind influenced vectors

A data set QARI, shown in Table 1, was selected for modeling. The predator

UAVs are time constrained in that they must return within 24 hours, and generally are

tasked to provide 6 hours coverage per target. Additionally, there are no on-station time

windows. Seven predators are made available each using an endurance speed of 70 nm/hr.

8



Table 1. QARI data set

X Coordinate Y Coordinate Early time Late time Surveillance time Probability of
(min) (min) window window (min) survival

(min) (min)
Depot 199.714 31.714 0 1440 0 1.0

1 24.857 192.857 0 1440 360 0.9
2 68.571 224.571 0 1440 360 0.9
3 128.571 175.714 0 1440 360 0.9
4 134.571 150.857 0 1440 360 0.9
5 183.428 124.287 0 1440 360 0.9
6 207.428 97.714 0 1440 360 0.9
7 247.714 133.714 0 1440 360 0.8
8 247.714 84.857 0 1440 360 0.9
9 271.714 130.285 0 1440 360 0.9
10 289.714 114.000 0 1440 360 0.9
11 266.571 160.286 0 1440 360 0.9
12 262.285 145.714 0 1440 360 0.8
13 258.000 103.714 0 1440 360 0.9
14 305.142 126.000 0 1440 360 0.9
15 311.142 102.000 0 1440 360 0.9
16 294.000 69.428 0 1440 360 0.9
17 311.142 71.142 0 1440 360 0.9
18 311.143 62.571 0 1440 360 0.9

Figure 4 shows the no wind risk indifferent route structure where seven UAVs are

used. This solution of QARI is feasible since all tasked coverage is met. The total travel

time for all seven predator UAV's is 8543.4.

9



2

3 5 4
S11

6 15
16

17

-18

Figure 4. No wind QARI solution

The solution in Figure 4 is also the route structure for QARI with winds 14 nm/hr

from the south. However, flight time increases by 132 minutes to 8675.8. Incorporating a

14 nm/hr westerly wind does change the route structure from Figure 4 to Figure 5. The

solution is feasible and all tasked coverage is accomplished, with a total travel time of

8632.3 (an increase over the no-wind scenario by 88.9 minutes). Note that the routes in

bold are routes different from the routing without winds.

2

~ 3\', ",11

V 12
51 9 14

6 1

16
17

Figure 5.QARI 14 NM/HR WESTERLY WINDS
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In conclusion, seven predators are required for a feasible solution to the QARI

target set. The computed required predators are the minimum number of predators that

produce a feasible solution.

11



1.6. mTSPTW incorporating Risk Aversion

The slow speed, lack of radar warning receivers, and the fact that intelligence is

usually located with air defense sites, make the predator especially vulnerable. These

factors are inherent limitations of operations and predator construction. To provide the

decision maker more options, we introduce four separate penalty functions for

incorporating UAV loss rates in the objective function - two for worst case and two for

expected number of targets covered. This provides the decision maker with a choice of

different routes. The decision maker can then choose which tour best accomplishes his or

her goals. (Figure 6)

Target Set UAV's Required -D

Tasked Coverage Minimum route
1structure. .. ....................... UAV LossesUAV's Available Modified TABU Wost. ca................ OWorst case V

code search "Engine" Tasked
Winds routing Simulation Coverage................................ tPMaximum expected :Mim c Provided
Probability of Survival I Coverage routing ............. .

Figure 6. Risk into the TABU heuristic

1.6.1 Worst-Case Routing

In the worst case routing, first the lowest probability of survival or expected

coverage for a target set in all routes r is computed. For any route r the probability of

surviving the route is

b,
Hl Ps(i) = mVr c 1...T

i1=a,

12



The lowest probability of survival from among all routes is then

Min {mr I = MIN Ps
T

Thus, the highest probability of kill from among all routes is

1- MIN Ps = MAX Pk

Then, penalties are computed in the TABU objective function are PEN,, = 4 1a*MIN Ps

or PENlb = A1b*MAX Pk, where A,, or Alb is chosen to reflect the decision makers risk

aversion. Empirical observations suggest that PEN,, does a good job for problems less

than 20 targets, which may be due to the intensification properties of the heuristic.

Conversely, PENlb appears to work better on large problems. Thus, the algorithm

perturbs the routes by swapping targets around, searching for a tour with an overall

increase in Ps(i).

Applying this procedure to the target set QARI gives the route structure in Figure

7. This example is based on nodes 7 and 11 having a probability of survival of .8, while all

others have a probability of survival of .9. Figure 7 shows how risk aversion changes the

route structure from Figure 4. The high threat target sets are assigned to routes with two

targets as opposed to three (in bold). Intuitively this makes sense in that such re-routing

reduces the chances of UAVs being lost on these routes.

Table 2. QARI risk aversion

QARi data set Xla Number of UAV's Worst Ps(i) in tour Travel Time

No Risk Aversion 0 7 .648 8543.4

Risk Aversion 2500 7 .72 8743.7

13
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1

\N \ 5 9 14

6~ 15

/ 18

Figure 7. QARI risk aversion

L6.2 Maximum Number Expected Target Coverage Routing

This algorithm calculates a penalty function based on the expected number of

targets covered. Since expected coverage of any single target equals its probability of

survival, then for target nr in route r such that ar- nr _ br

nr

H Ps(i)
i =a,

computes the expected number of times target nr will be covered. (This is because the

random variable is one for each target.) For instance, assume the predator travels from

target 1 to 2 to 3; and, Ps(1)=.9, Ps(2)=.8, and Ps(3)=.7. Assuming independence, target

1 is covered 90%; target 2 is covered .9*.8=.72, or 72% of the time; and, target 3 is

.9*.8*.7=.504, or 50.4% of time. The expected coverage Ar for route r is then computed

by

14



Y liPs(i) =Ar

nr=ari =a,

Continuing with the previous example, if the routing through targets 1-3

constitutes the entire tour, then A(N) = .9+.72+.504 = 2.12. For multiple routes in a tour,

the expected coverage for the tour is computed by

T
XAr= A(T).
r=1

Then PEN2a = -2 ,a*A(T) or PEN2b = A2 b*(1/A(T)) is used as a penalty in the TABU

heuristic objective function. Again, empirical observations suggest that PEN2a appears to

work better for smaller problems while PEN2b works better on larger problems.

There are several tendencies we would expect the TABU search to possess given

the introduction PEN2a or PEN2b and disregarding time window constraints. First, as we

increase the risk penalty, we expect the TABU heuristic to "re-sequence" existing targets

on routes from greatest to lowest probability of survival. Second, when the penalty gets

sufficiently high alternative routes appear. Finally, in the extreme a single UAV should be

assigned to each target.

Changing the probability of survival for targets in the QARI data set to one that

more accurately reflects a realistic scenario gives the data listed in Table 3. When the

TABU heuristic is run with a penalty of 22a = 2500, the A(T) of the route jumps from

15.74908 to 16.12718. In this case the expected coverage is increased by reversing the

routes, and with no increase in distance traveled.

15



Table 3. QARI Ps(i)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
.99 .99 .95 .92 .80 .99 .80 .95 .99 .99 .99 .80 .99 .80 .70 .99 .99 .99

Applying a penalty of X,2a = 5000 changes the route structure and increase distance

flown (Figure 8). The expected nodes covered or A(N) is 16.07263.

2

.3
' 4:11

4

5~ 14

\ \\ 6  15
8 l 17

Figure 8. QARI Maximum number of Expected target coverage

17. Evaluation

A data set called NARI was developed (Table 3) to see how the heuristic handled

more complex problems. The data set for NARI is shown in Table 4. Once again, the

predator UAVs are time constrained in that they must return within 24 hours, and provide

6 hours coverage per target. In this model there are no on-station time windows.

Predator endurance speed of 70 nm/hr is assumed.

16



Table 4. NARI data set

X Coordinate Y Coordinate Early time Late time Surveillance Probability of
window window time survival

Depot 100.286 64.286 0 1440 0 1.0
1 7.714 381.429 0 1440 360 0.9
2 55.714 360.000 0 1440 360 0.8
3 81.429 351.429 0 1440 360 0.9
4 58.286 342.857 0 1440 360 0.6
5 65.143 325.714 0 1440 360 0.9
6 34.286 327.429 0 1440 360 0.8
7 70.286 296.571 0 1440 360 0.9
8 27.429 291.429 0 1440 360 0.8
9 93.429 297.429 0 1440 360 0.9
10 48.000 280.286 0 1440 360 0.8
11 76.286 269.143 0 1440 360 0.9
12 120.000 274.286 0 1440 360 0.8
13 160.286 291.429 0 1440 360 0.9
14 100.286 251.143 0 1440 360 0.8
15 114.000 216.000 0 1440 360 0.9
16 205.714 234.000 0 1440 360 0.8
17 104.571 219.429 0 1440 360 0.9
18 144.000 220.286 0 1440 360 0.8
19 126.857 203.143 0 1440 360 0.9
20 231.429 217.714 0 1440 360 0.8
21 292.286 191.143 0 1440 360 0.9
22 181.714 145.714 0 1440 360 0.8
23 200.571 140.571 0 1440 360 0.9
24 291.429 137.143 0 1440 360 0.6
25 214.286 121.714 0 1440 360 0.9
26 248.571 92.571 0 1440 360 0.6
27 274.286 82.286 0 1440 360 0.9
28 291.429 78.857 0 1440 360 0.8
29 332.571 82.286 0 1440 360 0.9
30 349.714 80.571 0 1440 360 0.8
31 377.143 84.000 0 1440 360 0.9
32 375.429 99.429 0 1440 360 0.8
33 385.714 111.429 0 1440 360 0.9
34 402.857 115.714 0 1440 360 0.8
35 404.571 106.286 0 1440 360 0.9
36 396.000 94.286 0 1440 360 0.8
37 432.000 92.571 0 1440 360 0.9
38 437.143 70.286 0 1440 360 0.8
39 447.429 43.714 0 1440 360 0.9
40 472.286 33.429 0 1440 360 0.8

Before addressing the NARI scenario, the number of iterations to adequately search

the solution space was explored. For the NARI data set a graph comparing solution results

17



to iterations is given in Figure 9. Given the diminishing returns of solution improvement

for an additional number of runs, two thousand iterations was determined to be adequate

for the minimum risk and maximum coverage models.

6026200 ......... .. .....................................................................................................

26000

25800

25600

25400-
Solution 25200

25000

24800

24600

24400

24200

24000
500 1000 1500 2000 3000 4000

Iterations

Figure 9. Solution versus iterations
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The no wind solution with 20 allowed UAV's has a travel time of 24,745.4, and is

shown in Figure 10. The solution for 14 nm/hr westerly wind is 25,799.5 and requires 20

predators, while the solution for 14 nm/hr southerly wind is 26,518.3 requiring 22

predators. The required predators for all scenarios are the minimum necessary to produce

a feasible solution.

2

.. 13

18 20
1 

1/

34
7 40

Figure 10. NARI no wind solution

The proposed solution for minimum risk coverage and maximum expected number

of targets is shown for NARI in Figure 11 and 12. The penalties 2Lb and ),u2b are set to

100,000 each for these solutions, thus being large enough to override minimum route

structure.
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Figure 11. NARI Minimum risk coverage
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One way to calculate expected coverage is to simply take A(T) and multiply it by

time of coverage. Using this technique, for the NARI problem the provided coverage is

30.446*360=10,960.56 minutes. Note that this is different than what is shown in Table 5

because this technique does not account for any partial coverage provided by a predator

before it is shot down. For instance, if a predator is downed two hours into providing

datalink coverage over a target, this time is not captured. To account for this, and to

model predator losses, a Monte-Carlo spreadsheet simulation was developed. Table 5

compares the simulation results of the three models based on 500 samples.

Table 5. NARI Comparisons

Objective 42b Number of Expected Standard Expected Standard Flight
UAV's Tasked Deviation of Predator Deviation of Time

Coverage Tasked Losses Losses
Coverage

Minimum 0 20 11,748.27 903.26 3.228 1.5194 24,745.40
Travel time

Minimum 100000 20 11,819.49 895.8 2.998 1.5371 24,838.30
Risk Route

Maximum 100000 20 12,119.53 812.56 2.214 1.3431 24,758.30
targets
covered

The "maximum expected targets covered" model produces the highest expected

tasked coverage with lowest expected losses. Note that the increased flight time of 12.9

minutes of the "maximum targets covered" criteria produces an increased expected tasked

coverage of 371.26 over the minimum travel time. Also, the variance of the empirical

distribution for "maximum targets covered" decreases from "minimum travel" time. The

empirical distribution for tasked coverage and vehicle attrition is graphically depicted in

Figures 13 and 14.
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L8. Areas offurther research and study

The algorithm, as it stands, only takes a snapshot of one day predator UAV

operations. However, a more realistic scenario involves a dynamic 30 day operation. In

such an environment the TABU heuristic could be run for every day; however, some

vehicles land after 9 hours and others fly up to 24 hours. It would be difficult to perform

maintenance if a vehicle has several concurrent long endurance flights. A packing

heuristic allows for maintenance and efficient multiple scheduling of the predator UAVs

Taillard et al. (1996). Another, less elegant, way to handle multiple sorties is to "trick"

the algorithm, by relaxing time window constraints for the depot; introducing maintenance

nodes located at the same coordinates as the depot; introducing time constraints that force

the vehicles to return to "maintenance" nodes; and, introducing a service time penalty to

preclude one vehicle servicing all "maintenance" nodes. Still another interesting question

is what combination of vehicles provide for maximum coverage and minimum loss within

available resources? Finally, what properties of the problem structure and X result in

different route structures.

In summary, the TABU search produces near optimal results in a fraction of the

time required by integer programming. This allows for quick analysis of minimum route

structures and insight into resources required to cover those route structures. Also, the

methodology provided gives a decision maker a set of alternate routes. From these routes

a decision maker can easily choose a plan that conforms to his or her risk aversion within

resources available.
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II. Appendix 1

II.1. General Issues

Unmanned Aerial Vehicles (UAV) are not new. In fact, the United States has

employed UAVs for reconnaissance purposes since the Korean War. Later, during the

Southeast Asia conflict DC-130's launched "special purpose aircraft".

The Persian Gulf war, and advances in technology, have caused the services and

Joint Staff to once again consider UAVs a viable weapon system. A 1994 study by

Defense Agency Reconnaissance Office (DARO) notes that the United States deployed

more than 85% of its available assets during the Gulf war, and concludes that "It is

obvious that future requirements will exceed our current capability to collect, process and

exploit information (Hewish 1995)". In response, DARO launched the Advanced

Concept Technology Demonstration (ACTD) Program. The initial ACTD program

started with the predator Tier II Medium Altitude Endurance (MAE) Vehicle. The 30

Month ACTD involves 10 general Atomic Air Vehicles, sensor payloads, and associated

ground based equipment.

Another lesson learned during the Persian Gulf war is that the Air Force needs a

diverse family of Unmanned Aerial Vehicles, and not one all-purpose model. Smaller,

target spotting, tactical UAVs would be easier to operate near the front lines under the

control of Corps or Division Commanders. Larger, longer endurance unmanned vehicles

like the predator could take off far from the battlefield yet patrol large areas for the Joint
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Task Force or Theater Chiefs. Therefore, UAVs are grouped into four operational

categories: maneuver range, tactical range, medium range, and endurance (Pearson 1995).

Along with the Persian Gulf war, the advances in technology has driven the

acquisition of UAVs. UAVs are being developed rapidly using available technology. The

international market for UAVs is one of the rapidly expanding aerospace sectors. One of

the key technological advances is the science of robotics. UAVs are much more

autonomous than the autopilot equipped RPV's of the past. UAVs can now be

programmed to fly to wait points, change altitude, and continue to their next target on

their own. Quoting Air Force Chief of Staff Gen. Fogleman "UAVs hold great promise to

perform many theater reconnaissance operations-from surveillance to targeting and

bomb damage assessment (SAF 1996)".

The Department of Defense intends to spend $200M per year for the foreseeable

future on UAV research and development (Grier 1996). The capabilities of UAV's

merge with the Pentagon's emerging "information dominance". These unmanned vehicles

can be lost with minimum political and military impact, as reflected in their relatively low

per unit cost. In the United States, where public opinion wants military operations to be

carried out with the least amount of casualties, UAVs offer this distinct advantage. Other

advantages include the following potential applications (Pearson 1995): near real time

targeting and precision strike support; near real time combat assessment; electronic order

of battle gathering (EOB); bomb damage assessment (BDA); intelligence preparation of

the battlefield; special operations; blockade and quarantine enforcement; sensitive
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reconnaissance operations (SRO); humanitarian aid; United Nation treaty monitoring;

counterdrugs; single integrated operations plan (SIOP); and, communications relay.

Air Combat Command is considering a force of up to 90 UAVs of various types.

Supporting this need, the predator contract was awarded in January 1994, and the first

aircraft was flying in July 1994 (Grier 1996). In July 1995, predators deployed to Europe

to support contingency operations in Bosnia. The deployment demonstrated over the

horizon (OTH) control of UAVs under combat conditions. For example, predators

watched suspected mass grave sites and documented any attempt to tamper with the

bodies.
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11.2. Predator UAV

The predator is a derivative of the successful Gnat 750. The Gnat was designed to

provide long range, long dwell, near-real-time imagery intelligence (IMINT). It will be the

operational workhorse for endurance vehicles until at least 1998. The UAV system

includes air vehicle (predator), ground control station (GCS), sensor payloads, data links,

ground support equipment and trained personnel. The GCS is a 30x8x8 ft triple axle

trailer, which includes an uninteruptable power supply (UPS) and environmental control

station (ECS). Stations in the GCS include mission planning, data exploitation station, air

vehicle operator station, and payload operator station.

A fully deployable MAE UAV system consists of four predators, a ground control

station, support equipment, a Trojan spirit II van, and 68 personnel. For deployment this

configuration will require four C-130's or two C-141's. This configuration of equipment

and personnel supports one continuos orbit for the predator. The Tier II MAE will follow

the main operating base (MOB), forward operating location (FOL) concept. This means

the tasked assets will be sent to the area they are needed and return after their commitment

is complete.
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Table 6. Predator Statistics

Maximum altitude 25,000 ft
Maximum endurance 40+ hours

True Air Speed 60-129 knots
Cruise Speed 70 knots

Radius 500 Nm
Sensors SAR, EO, IR
Thrust 85 Hp
Length 26.7 ft
Width 3.7 ft

Navigation System GPS, INS
Survivability Measures None

Payload 450 lbs

The predator air vehicle is intended to be operated from a prepared strip (including

grass and dirt runways). The predator is the UAV of choice when operational plans

require watching a small area for days or weeks. The reason UAVs are the top choice is

that overheads have windows of surveillance, while manned vehicles have endurance and

cost constraints. Predators also have the ability to look into valleys and behind hills,

which high altitude endurance (HAE) UAV's do not.

Sensors for the predator include electro-optical (EO)/(IR), which are two daylight

video cameras and an IR camera. The EO/IR sensors provide enhanced resolution at

lower altitudes (5000 ft). The synthetic aperture radar (SAR) has the ability to look

through clouds. The SAR operates in spot and strip map mode. The strip map mode has

a 30 cm resolution at an altitude of 12,500 ft and a slant range of 6.6 km. The width of

the swath is 3,300 ft, allowing 13,000 nm2 to be covered in a mission (Hewish 1995). The

SAR subsystem will function autonomously by executing a series of preplanned mission

commands loaded prior to operation. Sensors in development which could be carried by

the predator at a later date include signal intelligence (SIGINT), foliage penetrating
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radars, miniature spectrometers, and gas chromatography to provide chemical analysis.

Providing datalink for onboard sensors are a C-Band line of sight (LOS) and a UHF/Ku-

band over the horizon (OTH) satellite data link. Also, an identification friend or foe (IFF)

transponder is integrated into the onboard avionics package.

The predator is operable in mildly adverse weather, equivalent to instrumented

flight by light civil aircraft. Icing, heavy precipitation, or high surface winds may prevent

or affect launch operations.

The threat to the predator MAE at 15,000 feet include tactical surface to air

missiles (SAM) and combat aircraft. The threat to the predator at 5,000 ft is much

broader, including anti aircraft artillery (AAA) that could greatly increase the attrition of

the predator. Also, the datalink pathways are susceptible to intercept or jamming since

MAE employ LOS or UHF satellite communications (SATCOM) for command and

control uplink and data downlink. Furthermore, current rules of engagement (ROE) call

for the predator to operate outside known SAM engagement envelopes (Janes 1994).

Table 7. Tactical SAM's capabilities

Tactical SAM's Maximum effective range Maximum effective altitude
SA-4a 55,000m 27,000m
SA-4b 45,000m 24,000m
SA-6 24,000m 11,000m

SA-8a/b 12,000m 5,000m
SA-12a 15,000m 25,000m
SA-12b 100,OOOm 30,000m
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11.3. Specific Problem

Air Combat Command wants to know the minimum number of predator UAVs

required to meet a pre-specified expected coverage percent for a target set. The

capabilities and the projected employment of the predator require a model to provide

insight to the question above.

This research produces a heuristic model of the employment of the predator

(MAE) UAV against a target set. The target set selected was from a fictitious country

called QARI and NARI (threat density approximates that of a Middle Eastern country). The

data set and target country for this research question is notional. The actual data is

classified, so this thesis identifies a methodology and model for the user who deals with

classified data. The random nature of the predator's attrition is the principal reason for

modifying an existing TABU search algorithm developed by Carlton (1995).
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III. Appendix 2

The problem of determining the number of vehicles or to service customers has

been studied as a simulation, as a maximum covering problem (MCP), and vehicle routing

problem (VRP).

111.1. Simulations

Simulations can provide insight into complex interrelationships over time, and

therefore would be a tool of choice for predator operations. A previous simulation effort

of remotely piloted vehicle (RPV) employs the SimScript 11.5 language, and models the

BGM-34C RPV drone launched from DC-130 aircraft during the Vietnam war (Mass

1976). Unfortunately, this previous simulation of UAVs provides little assistance for the

development of this predator-based model due to the completely different profile used.

111.2. Maximum Covering Problem

A covering problem involves a set of items S and subsets of this set. For this

problem the set S would include all the areas observed of dimension t (targets). Let there

be n subsets of S such that Sc " Denote the corresponding minimum distance tour of

Sj as cj and let c=(cl,c2,...c.). This cost cj associated with subset Sj will be the minimum

feasible time required for the predator UAV to perform surveillance of targets in Sj. This

is a TSP problem in itself and is NP-hard (Lenstra 1981). Let At,. matrix consist of

column vectors aj, where each element is 1 if target t is a member of subset j, or otherwise

0. Thus, vector aj describes the set of targets a predator will cover. (A complete
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enumeration of aj results in Atxn becoming prohibitively large very quickly.) For example,

the vector a2=(10101)T indicates that S2 contains targets 1,3, and 5. The covering

problem is to select a minimum cost collection of subsets so that set S is included in the

union of collected subsets. The statement of the problem is:

Mmn C"X

Such that

Ax ->e

Where x is binary, and e is a unitary column vector of dimension t

While covering problems are one of the best studied problems in the field of

integer programming, maximum covering problems (MCP) are often too complex to be

solved in a reasonable amount of time. Since the MCP is NP-complete (Laporte 1992), the

existence of an efficient (polynomial time) algorithm is unlikely, and solution times will

increase exponentially with problem size. However, there are many heuristics which will

give an approximate solution. A heuristic works by cleverly selecting variables to include

in the cover set. The heuristic weights the candidate variables and selects the one that

covers the most with the least cost. The candidate variables are reduced, and the

heuristic iteratively develops a reasonable feasible solution. Gonsalvez et al. (1987)

describes ten different heuristic algorithms for set covering.
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111.3. General Vehicle Routing Problem

Vehicle routing problems is another way to look at the problem of number of

predators to cover a target set. The general vehicle routing problem (GVRP) determines

which routes allow a set of vehicles (predators) to service all customers (targets) at the

minimum cost. Due to the complexity of GVRP they remain among one of the most

difficult problems to solve. Despite a great deal of research only small problems, or

problems of special structure, can be solved to optimality (Bodin 1983). Methods to solve

the VRP include heuristics that give approximately optimal solutions.

The VRP consists of a vehicle fleet (UAVs) delivering products stored at central

facility to satisfy customer orders for some period of time, where the fleet has fixed

capabilities (speed, endurance etc.). Decisions are made to minimize the cost of operating

the vehicle fleet. The routing decision involves determining which of the demands will be

satisfied by each vehicle and what route each vehicle will follow in servicing demand.

The notation for the integer programming formulation of the VRP is:

NV=maximum number of available vehicles.

n=number of customers to which a delivery must be made.

K,=unit capacity of vehicle.

T,=maximum time allowed for any route of vehicle v.

di=unit demand at node i.
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p'i=time required for vehicle v to deliver or collect at node i.

ivj=travel time for vehicle v from node i to node J.

cij=cost of direct travel from customer i to j.

x%= 1, if vehicle v travels directly from customer i to customer j.
0, otherwise

The integer programming formulation of the problem of routing to minimize cost

subject to vehicle capacity constraints is given below (Bodin 1983).

MIN Cj v
i=1 =1 v=1

n NV

J X, 1 =1 j=2,....n (one vehicle per node entering)
i=1 v=1

n NV

Y,,X,i= l j=l,...n (one vehicle per node exiting)
i=2 v=1

Xii = 0 v=1 .... NV (prevents cycling)
i=1

n n

Y Xip- JXj= 0 v=1 .... NV:p=1 .... n (every vehicle entering node must exit)
i=1 j=1

n n1

I d x j) -Kv v1,...NV (vehicle capacity constraints)
i=1 j=1

n n V V n n

"I XV + ~tii x'" , < Tv v=1 .... NV (total route elapsed time)

Since the predator is not delivering or picking up anything, the capacity constraint

of goods delivered can be relaxed. This makes the problem a traveling salesman problem

(TSP). If UAVs are modified to deliver ordnance or supplies in the future, this constraint
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would be re-instated. A practical additional constraint to the GVRP is time window (TW)

constraints. These constraints are required whenever service or surveillance of an area

must be performed at certain time periods. Unfortunately, time windows give the GVRP

much different characteristics. For instance, it is a trivial problem to find a feasible

solution to the traveling salesman problem (TSP) since any ordering of customers is a

feasible solution. However, Savelsbergh (1992) shows that even finding a feasible

solution to the TSP with time windows is an NP-complete problem. Finally, there are

heuristic approaches to time window constrained problems.
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111.4. Heuristics

Tour construction algorithms build feasible routes starting with the depot and

adding customers until no customers are left to be serviced. As soon as a feasible tour is

found the algorithm is terminated. This procedure can be extended to the vehicle routing

problem time window constrained (VRPTW), where several sequential and parallel

procedures can construct feasible tours.

Also, there are several search algorithms applied to the VRP and VRPTW (Carlton

1995). Simulated annealing attempts to mimic the physical process that occurs when

materials cool. This adaptive search procedure uses randomization to achieve final

stability at a reasonable solution. The greedy randomized adaptive search procedure

(GRASP) attempts to combine the best ideas from deterministic and randomized searches.

GRASP searches the feasible region by randomly choosing among the best of neighboring

solutions. Genetic algorithms attempt to use the theory of genetics in order to produce a

good solution from a population of solutions. The genetic algorithm generates a

population of solutions, from where the best of these generates another population. The

final search algorithm discussed is the TABU method which attempts to avoid becoming

stuck in local optima by exploiting memory and data structures to prevent returning to a

previously examined solution.
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111.5. TABU Search

The TABU search is a robust strategy for solving combinatorial optimizations

like traveling salesman, graph coloring, job shop flow sequencing, integrated circuit design

and time tabling problems. The strength of the TABU search is that it tracks the history

of the search. The recency or frequency that certain moves have participated in past

solutions are called attributes. Frequency of attributes, and particularly attributes of

dominating solutions of local optima, give rise to strategies called intensification

strategies.

Effective searches do not frequently re-visit a solution. To prevent the TABU

search of revisiting swap moves tried recently, those moves are declared TABU. An

example will pull this terminology together.

Figure 15. Original node arrangement (objective function value 10)

I1  3 12 14 15
Figure 16. Swapping nodes 2 and 3 (objective function value = 16)

In this example assume, the "swap" that maximizes the objective function value the

most is reversing the positions of 2 and 3. Since the objective function value increases to

16, the move value is 16-10=6 (The move value of each swap represents the change in

objective by the swap.) The nodes 2 and 3 are now TABU and will not be switched back

unless either the aspiration criteria overrides the TABU status, or its TABU status expires.
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In most cases the aspiration criteria is when the objective function value exceeds the best

so far and the move is TABU. The actions of exploring neighborhood solutions are the

intensification property of the heuristic. The actions of the TABU length force the

heuristic into new areas (diversification).

There are N! permutations of possible arrangements of nodes. If we are

concerned with the three center nodes there is 3! permutations. Therefore, a systematic

method for "inserting" or swapping nodes is required (For the TABU heuristic nodes are

inserted forward and backward. In the example above, node 3 was inserted before node

2.)

TABU search methods operate by defining a neighborhood from which adjacent

solutions can be constructed that can be reached from the current solution. With this

assumption, the reactive TABU search incorporates the basic parameters and memory

structures of TABU search. Additionally, routines allowing the algorithm to

automatically adjust search parameters based on the quality of search are used. For

instance, the number of swap moves before the recurrence of a solution adjusts the TABU

length. If the solution is visited within the defined cycle length, the TABU length is

increased by the multiplicative factor; otherwise, the TABU length may be shortened.

Since the heuristic stops when the programmed number of iterations are

accomplished, there is no guarantee of optimality. However, the TABU search has the

"ability ...to obtain high quality solutions with modest computational effort, generally

dominating alternative methods tested (Glover 1989)."
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111.6. Conclusion

At first glance, using a formulation of the maximum covering problem or vehicle

routing problem appears the best way to solve the problem of UAVs to cover a target set.

However, the literature shows this problem belongs to the NP-complete class of models.

Furthermore, an integer programming formulation requires a variant of stochastic

programming, where the IP's would be sampled due to potential UAV losses.

Consequently, this formulation would not lead to quick set up and execution times;

therefore, this research is guided by the primary assumption that the best model where the

processes are portrayed with adequate resolution is a heuristic. Since the TABU search

heuristic best meets these requirements, it is used as the "engine" to develop a near-

optimal solution to the multiple homogenous vehicle traveling salesman problem with time

windows (mTSPTW).
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IV. Appendix 3

IV.1. Validation

The original code was validated by comparing optimum 25-customer solutions.

In two cases the TABU heuristic produces a solution greater than the optimum solution.

However, in all cases tested below the TABU solution provides high quality solutions

much faster than an integer programming solution.

Table 8. Revalidation of TABU heuristic

Problem TABU Vehicles Iterations Time to Optimum Vehicles Comp.
Number search Used in to best best Minimum Used for Time for

Minimum TABU solution Travel optimum optimum
travel time search time solution solution

cl01 2441.3 3 14 .26 2441.3 3 18.6
c102 2484.6 3 225 .27 2440.3 3 79.9
c103 2440.3 3 138 .30 2440.3 3 134.7
c104 2476.3 3 38 .33 2436.9 3 223.9
c105 2441.3 3 39 .10 2441.3 3 25.6
c106 2441.3 3 14 .34 2441.3 3 20.7
c107 2441.3 3 149 .26 2441.3 3 31.7
c108 2441.3 3 210 .30 2441.3 3 43.1
c109 2441.3 3 210 .30 2441.3 3 585.4

Incorporating winds into the TABU heuristic merely changes vectors input into the

heuristic. However, incorporating risk into the TABU heuristic does change how the

algorithm searches by introducing the risk penalty into the objective function. In order to

validate that this part of the code, the penalty was varied. Zero risk penalties give route

structures identical to minimum route structures. On the other hand, high risk penalties
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tend to assign one vehicle to serve every target. This is the expected result since it

minimizes the total risk for UAVs in the highest threat area.

The expected node coverage also changes the objective function in the TABU

heuristic. Maximizing expected node coverage route heuristic gives the minimum route

structure for low penalties. However, when advantageous the direction the predator

travels will reverse, i.e. the vehicle will move in directions from high probability of survival

to low probability of survival (assuming time window feasibility). High penalties for

maximizing expected node coverage result in the minimum route structure being

overridden, with both increased expected node coverage and additional predators.
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V. APPENDIX 4

V.1. Computer Code

Computer code adapted from Carlton (1995) code to model winds

/* This program converts an input file of (x,y) integer coordinates to a
distance matrix ti(i,j) for an n node TSPTW, where n = number of nodes
including the depot the program outputs the matrix of INTEGERS ti(i,j)
to a designated time (distance) file. This routine is tailored to input
and compute the data
for the Solomon set of problems. The data is scaled by a factor of 10
and
truncated. */

#include <math.h>
/*#define PRINT TIME 1 /*Uncomment to print time matrix.*/

#define FACTOR 10.0 /*Multiplies TWs and t(i,j) & s(i)'s to
increase

accuracy, yet use integer computations.*/

inputpbm(nc, nv, g, t, ti, ifp, ofp)
int nc; /* The number of customers incl the depot.*/
int nv; /* The number of vehicles.*/
int g; /* The penalty for add'l vehicle.*/
int **ti; /* The resulting time (distance) matrix. */
struct node *t; /* The node structure.*/
FILE *ifp; /*The pointer to the problem input file.*/
FILE *ofp; /*The pointer to the problem output file.*/

float *x, *y; /* The x, y coordinates of the customers
and

the depot.*/
float *ea, *la; /* The input vectors for the early and late TWs,

respectively.*/
float *s; /*Service time.*/
int *d; /*Demand of customer i.*/

int i, j; /* Index.*/

x = (float *)calloc(nc, sizeof(float));
y = (float *)calloc(nc, sizeof(float));
ea = (float *)calloc(nc, sizeof(float));
la = (float *)calloc(nc, sizeof(float));
d = (int *)calloc(nc, sizeof(int));
s = (float *)calloc(nc, sizeof(float));

/*Input Depot and Customer data from the input file.*/

for (i=0; i < nc; ++i)
t[i].id = i;
t[i].type = 1;

fscanf(ifp,"%f", &x[i]);
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fscanf(ifp,"%f", &y[i]) ;
fscanf(ifp,"%d", &d[i]) ;
fscanf (ifp, "%f", &ea [i]) ;
fscanf (ifp, "%f", &la [i]) ;
fscanf (ifp, "%f", &s [i]) ;
t[i].e = (int) FACTOR*ea[i];
t[i].l = (int) FACTOR*la[i];
t[i].qty = d[i];
)/*end for*/

/*for (i=0; i < nc; ++i)

fprintf(ofp,"x[%d] is %f",i,x[i]);
fprintf(ofp,"y[%d] is %f",i,y[i]);
fprintf(ofp,"%d", d[i]);
fprintf (ofp, "%f", ea[i]) ;
fprintf(ofp,"%f", la[i]);
fprintf(ofp,"%f", s[i]);

}*/
/*end for*/

t[0].type = 2; /*Reset the 0-depot to the correct type.*/

/*Initialize the remaining vehicle nodes to be the same as the depot
node

"Homogeneous" */

for (i = nc; i < nc+nv; ++i)
t[i].id =i;

t[i].e = t[0].e;
t[i] .i = t[0].1;

t[i].type = 2;
} /*end for*/

free (ea);
free (la);
free (d);

convxy(nc, nv, g, x, y, s, ti, ofp);

free (x);
free (y);
free (s);

return;

}/*end input pbm function*/

convxy(nc, nv, gamma, x, y, s, ti, ofp, lengthx, lengthy)

int nc; /* The number of customers incl the depot.*/
int nv; /* The number of vehicles.*/
int gamma; /* The penalty value for using an add'l veh.*/
float *x, *y; /* The xy coordinates of nodes. */
double lengthx; /*The length of x vector*/
double lengthy; /*The length of y vector*/
float *s; /*Service time vector.*/
int **ti; /* The resulting time (distance) matrix. */
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FILE *ofp; /* The pointer to the problem output file.*/

int i,j, k; /* Indices. *
double dx, dy, dz; /* The difference between the

respective x and y
coordinates. */

double powero; /* The power function prototype. *
mnt nn; /* Computes nnodes.*/

nn = nc + nv;

/*****Do the conversion.******/

for (i0O; i< nn; ++i) { /* Initialize the distance matrix. *
for (j=O; j< nn; ++j)

tili][j] =O;1

/*for (i=O; i< nc; ++i)l
fprintf (ofp, "\ni is %d", i);
for (j=i+l; j< nc; ++j){

dx = x[i] - j]

dy = y[i] - j]

dzsqrt ((dx) *(dx) +(dy) *(dy));
lengthx=O.O*sqrt(dx*dx + dy*dy);

lengthy=O.2*sqrt(dx*dx + dy*dy);
fprintf(ofp,"\nlengthx is %5f",lengthx);
fprintf(ofp,"\nlengthy is %5f",lengthy);

fprintf(ofp,"\ny[%d) is %5f",i,y~i]);

fprintf(ofp,"\ny[%d] is %5f",j,y~j]);

if (yli]==ylj])I

titi] [j] (int) (FACTOR*sqrt(dz*dz+lengthy*lengthy));
ti~j][il ti[ih[j];

fprintf(ofp,"\nyeti[%d] [%d] is %5d",i,j, ti[i] [j]);
fprintf(ofp,"\nyeti[%d] [%d] is %5d",j,i, ti[j] [ifl;

else if (y[j]>y~i])
ti[i]j ] = (int) (FACTOR*.O465847*3qrt(-96*dz*dz*(-

5+2*cos (atan (abs (dx/dy) )))));
ti~ji ti] = (int) (FACTOR*.O465847*sqrt(-96*dz*dz*(-5+2*cos(18O-

atan(abs(dx/dy))))));
fprintf(ofp,"\ngti[%d] [%d] is %5d",i,j, ti[i] [ji);

fprintf(ofp,"\ngti[%d] [%d] is %5d",j,i, ti~ji [ii);

elseI
ti[i] [j] = (int) (FACTOR*.O465847*sqrt(-96*dz*dz*(-5+2*cos(l8O-

atan(abs(dx/dy) )))));
ti~j] [i] =(int) (FACTOR*.O465847*sqrt(-96*dz*dz*(-

5+2*cos (atan (abs (dx/dy) )))));
fprintf(ofp,"\nlti[%d] [%d] is %5d",i,j, ti[i][ji]);
fprintf(ofp,"\nlti[%d] [%d] is %5d",j,i, ti~ji [ii);
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1*//*end for j*/
for (1=0; i< nc; ++i)f
fprintf(ofp,"\ni is %d",i); /* Computation. *
for (j~i+1; j< nc; ++j){

dx = x[i] - j;

dy = yti] - j]
dz=sqrt ((dx) *(dx) +(dy) *(dy));

lengthx=0.l*sqrt(dx*dx + dy*dy);
lengthy=0.0*sqrt(dx*dx + dy*dy);
fprintf(ofp,"\nlengthx is %5f",lengthx);
fprintf (ofp, "\nlengthy is %5f", lengthy);

/*if (y[j]>=y~i]) I*/
fprintf(ofp,"\nx[%d] is %5f",i,x[iI);

fprintf(ofp,"\nx[%d] is %5f",j,x~j]);

if (x~i]==x~j])I

ti [ii [j] (int) (FACTOR*sqrt (dz*dz+lengthx*lengthx));

tpint~i ,\net[%][d is tidii][j];]j]

fprintf(ofp,"\nxeti[%dl [%d] is %5d",ji, ti~j] Ii]);
fpIt~f,\xt[d ~]i 5"ji ii i

else if (xtj]>x[i])I
ti[i][j[i= (int) (FACTOR*.0465847*sqrt(-96*dz*dz*(-

5+2*005 (atan (abs (dy/dx))))));
ti[j] [i] = (int) (FACTOR*.0465847*sqrt(-96*dz*dz*(-5+2*cos(l80-

atan (abs (dy/dx) )))));
fprintf(ofp,"\ngti[%d] t%d] is %5d",i,j, ti[i] [j]);

fprintf(ofp,"\ngti[%d] [%d] is %5d",j,i, titj]i []);

elseI
titi] [j] = (int)(FCO*0687sr(96d~z(52cs10

atan (abs (dy/dx) )))));
ti[j] [i] = (int) (FACTOR*.0465847*sqrt(-96*dz*dz*(-

5+2*cos (atan (abs (dy/dx) )))));
fprintf(ofp,"\nlti[%d] [%d] is %5d",i,j, ti[i] [ji);
fprintf(ofp,"\nlti[%dJ [%d] is %5d",j,i, titji [ii);

)/*end for j*/

/*Process to ensure that the triangle inequality holds:*/

for(i=0; i < no; ++i)
for(jr4+l; j < no; ++j)

for(k=0; k < no; ++k)
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if( k==i ii k==j ) continue;
if(ti[i] [j] > ti[i] [k] + ti[k] [j])

ti[j] [i] = ti[i] [j] = ti[i] [k] + ti[k] [j];
}/*end for*/

for (i=l; i< nc; ++i)
for (j = nc; j < nc+nv; ++j)

tili] [j] = ti[j] [i] = tili] [0];

/* Add scaled service time to each distance vector.*/

for (i=0; i< nc; ++i)
for(j=O; j<nc+nv; ++j)

ti[i] [j] += (int) FACTOR*s[i];
/*divide s[i] by two for "half s"*/

for (i=nc; i< nc+nv; ++i)
for(j=0; j< nc+nv; ++j)

ti[i][j] += (int) FACTOR*s[0];
/*divide s[0] by two for "half s"*/

/*Complete the matrix by input the variable vehicle usage "cost."*/

for (i = nc; i < nn-l; ++i)
for (j= i+l; j < nn-l; ++j)

ti[i] [j] = ti[j] [i] = gamma;

for (i = nc; i < nn-l; ++i)
ti[i] [0] = ti[0] [i] =tili] [nn-l] = ti[nn-l] [i] = gamma;

/*****Produce the output.*************/
# if PRINT TIME

fprintf(ofp, "The time factor for scaling is %5.1f \n", FACTOR);
fprintf(ofp, "%d", nn);
for (i=0; i< nn; ++i)

fprintf(ofp, "\n")
for (j=O; j< nn; ++j)

fprintf(ofp, "%5d", ti[i] [i]);
I /*end for i*/

fprintf(ofp, "\n");

#endif

return;

I /********The end of the convxy
routine.*******************

C++ computer code subroutine to incorporate minimum risk

/**************Computes route penalty**********/

comproutepen(n,rpen,t,k,ofp)
int n; * The number of nodes in tour.*/
float *rpen; * The tour penalty*/
struct node *t; /*The current tour*/
int k;
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float routepen; /*The total penalty of the tour.*/
float y;
float z;
float q;
float bb;
float zz;/*dummy variable*/

int i;
int j;/*counter*/

int x;
int aa;
float *rp;

I*rp =(float *)calloc(n, sizeof(float));*/
routepen = 0.0,
Z=0.0;

q= 1.0;

bb=0.0;

zz=O;

aa=- 1;

for (i =1; i<=n- 1;++i){
if(t[i].type == 1){
x=t[i] .id;

y=y '~rpen[x];

else

q--min(q,y);

routepen=(int)( 100000.0*(1-q));

I Pend for*/
/*fprintf(ofp,"\Jnroutepenin is %tAn",routepen);*/

/*free(rp);*I
return routepen;

/*This ends the comprjoutepen function.*/

C++ computer code subroutine to incorporate maximum coverage
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/**************Computes route penalty**********/
compjoutepen(n,rpen,t,k,ofp)

int n; /* The number of nodes in tour.*/
float *rpen; /* The tour penalty*/
struct node *t; /*The current tour*/
int k;

float routepen; /*The total penalty of the tour.*/
float y;
float z;
float q;
float bb;
float zz;I*dummy variable*/

int i;
iut j;/*counter*/

jut x;
jut aa;
float *rp;

rp =(float *)calloc(n, sizeof(float));
routepen = 0.0,
Z=O.0;

q=01.0;
bb=0.0;
zz=O;
x=0;
aa=l;

/*for (i = 1; i <= n-i; ++aa)
rplli]=0;

I */

for (i =1; i<= n-1; ++i){
if(t[i].type == 1){
x=t~i] .id;

/*printf(\node number is %d\n",x);*/
/* y=y*ipen[x];*/

/*z=rpen[aa 11+rpenhlaa-1] *rpen[aa];*/
rpllaa]=rpenllx];

I*fprintf(ofp,"\Mp[aa] is %t",rp[aaD);
fprintf(ofp,'\nrp[x] is %f\n",rp[x]);*/
aa-i= 1;

/*printf(u\yjpenalty for node is %f\n",rpenl);*/
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else

/*qmin(q,y);

routepen=(int)(1000.O*( lq));*/
/*fpijnff(ofplroutepen is %lf't,routepen);*/

/*fprintf(ofp,"rp[%d]is %f',aa,rp[aa]); *
1* y=l.0;t'

/*zz=-(zz+y);*I

z=z+(rp[l]+rpII]*rp[2]+rp[l]*rp[2]*rp[3]+rp[l]*rp[2]*rp[3]*rp[4]+rp[l]*rp[2]*rp[3]*rp[4]*rp[
5]+rp[11*rp[2] *rp[3]*pp[4]*rp[5] *rp[6]+rp[1]*rp[2]*rp[3] *rp[4] *rp[5] *rp[6]*rp[7]+rp[1] *rp[2]*rpr3]*rp
[4]*wp[5]*[6]*r7]*r8]+T[1]*rp[2]*rp[3] *rp[4]*rp[5]*rp[6]*rp[7]*rp[8]*rp[9]+rp[1]*rp[2] *rp[3]*r
p[4] *rp[5] *rp[76]*rp[7] *rp[81 *rp[9] *rlo]0+w[1*rp[2] *rp[3] *rp[4] *rpr5]*rp[6] *rp[71*rp[8] *rp[9] *rp[10
]*rp[1 1]+rp~l]*rp[2]*rp[31*rp[4]*rp[5]*rp[6]*rp[7]*rp[8*rp[9]*rp[1]*rp[1 1]*rpII12]+~rpII]*rp[2]*rp[3]
*rp[4]*rp[5]*jp[6]*p[7*rp[8]*rp[9J*q4[10]*rp[I 1I*rpI2]*rp[13]+rp[1]*rp[2]*rp[3]*rp[4]*rp[5]*rp[6]
*rp[7]*rp[8]*rpr9]*p[10]*rprl 1]*rp[12] *rprl3]*rp[14]+rp[1] *rp[2]*rp[3]*rp[4]*rp[5]*rp[6]*rp[7]*rp[8
]*rp[9]*rp[10]*rp[1 1] *rp[l2]*r[3*p1]r[5 pl*p2*p[]r[]r[]r[]r[]r[]r
[9] *pp[10]*p~l1*p11r[3*p11r[5p[16]rpl]rp2 *p p[4J*pp[5]*irp[6]*qy[7]*rp[8]
*rp[9J*rp[1O]*rp[1 1]*rpIl2] *rp[13]*rp[14]*rp[15]*rp[16]*rp[17]+rp[l]*rp[2]*rp[3]*rp[4]*rp[5]*rp[6]*r
p[71*rp[8]*rpr9] *rp[lO]*rp[1 1]*rp[12]*rp[ 13]*rp[ 14]*rp[15]*rpl[16]*rp[1'7]*rp[l8]+rp[l]*rp[2]*rp[3]*r
p14]*rp[5]*rpr6] *r[7]*r8*rp[9]*rp[10]*rp[1 1]*rp[12]*rp[13]*rp[14]*rp[15] *rp[16] *rp[17] *rp[l8] *rp
[19]+rp[1]*rp[2]*rp[3]*rp[4]*rp[5]*rp[6]*rp[7]*rp[8]*rp[9]*rp[10] *rp[1 1]*rp[121*rp[ 13]*rp[14]*rp[15]
*rp11]*rp[17]*rp[18] *rp[l9]*rp[20]+rp[1] *rp[2] *rp[3] *rp[4] *rp[5]*rp[6]*rp[7]*rp[8]*rp[9]*rp[1O] *rp[
1 1]*rpI[12]*rpII13]*rpII14]*rp[ 15]*rp[16]*rp[17]*rpI18]*rp[19]*rp[2]*rp[21]+~rpI1l*rp[2]*rp[3]*rp[4]*r
p[5]*pp[6]*pp[7] *qj[8]*pp[9]*rp[10]*q41l 11*rp[12]*rp[13] *rp[14] *rp[15] *rp[16]*rp[17]*rp[18]*rp[19]*r
p[20]*rp[2i]*rp[22]+rpll]*rp[2] *rp[3] *rp[4]*rp[51*rp[6]*rp[7]*rp[8]*rp[9]*rp[l1]*rp[Il *rpI[l2]*rpI[l3
]*rp[14]*rp[15]*rp[16]*r[7*p1]r[9*r[0*p2]r[2*p[3 pl*p2*p3*rp[4] *rp[
5]*r6]*r[7*rp8]*[9*r1O]*p[1 1]*rp[j12]*rp[13]*rp[14]*rp[15]*rp[16]*rp[17]*rp[18*rp[19]*rp[
20] *rp[21] *rp[22] *rp[23] *rp124]);

/*fpfintf(ofp,RJnz is %f\n",z);*/
routepen= 1000*(1/z);

aa=- 1;
for j= 1; j<= n-1; ++j)

rplj]=0;
I

/*printfQ'The iteration is %d't,k);*/

I /*end for*/
/*fprintf(ofp,"\nroutepenin is %t\n",routepen);*/

free(rp);
return routepen;

/*TFhis ends the compgyoutepen function.*/
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/**************A function to perform a swap m****************************/

The following is Carlton's code with the subroutine call comp-routepen in bold.

/* This code performs the input and constructs an initial tour for an mtsptw;
This program incorporates the incremental cost of a neighboring solution.

The code incorporates the STRONG TW checks. The code uses a hashing structure
that identifies whenever a solution is repeated, and then adjusts the search
parameters appropriately. The code also incorporates a time window reduction
scheme and a procedure to compute the amount of TW overlap before and after TW
reduction This algorithm computes the time to the best solution found as well
as the total computation time, the time to best solution found is output.

This incorporates the heirarchical time penalty for saving the best infeasible
tour found.

This code uses redundancy between homogeneous vehicles & strong TW feasibility
to limit the candidate list of neighbors without unduly restricting the
search.*/

/*Version 1 reads in the Solomon problem set, converts the data to one decimal place, truncated, and
procedes as plv7 applied to the UMontreal data set.*/

#include <time.h>

#include <math.h>

#define HTSIZE 1009 /*The dimension of the hashing table*/

/*******************REACTIVE SEARCH PARAMETER INITIALIZATIONS*****************/

#define INCREASE 1.2
/*Should guarantee to increase tabu length by at least one.*/

#define DECREASE .9
/*Allows for any function to be inserted.*/

#define CYMAX 50
/*Allows for any function to be inserted.*/

****************** ************************ ** ****** ***********************

#define SWAP(x, y, t) ((t) = (x), (x) = (y), (y) = (t))
#define max(a, b) ((a>b) ? (a) : (b))
#define min(a, b) ((a<b) ? (a): (b))

/*#define PRINTITERS 1 /*Uncomment to print the move value and other
information.*/

/*#define PRINTHASH 1 /*Uncomment to print the hashing information.*/
/*#define PRINT_HTBL 1 /*Uncomment to print the hashing table.*/

/******** ******************STRUCTURE*************************

typedef struct node { /* The data structure for a vehicle or "task" node.*/
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int id; /*The node number.*/
int e; /*The early time window.*/
int 1; /*The late time window.*/
int qty; /*The node demand or veh capacity.*/
int type; /*The node type: 1 => destination,

2 => vehicle.*/
int arr; /*The arrival time at the node.*/
int dep; /*The departure time from the node.*/
int wait; /*The waiting time at the node.*/

I NODE;

/*The hashing structure.*/

struct hashlist {
unsigned thval; /*The tour hashing value.*/
int cost; /*The cost of the tour.*/
int tvltime; /*The tour travel time.*/
int pen; /*The tour penalty value.*/
int lastfound; /*The iteration on which the tour was

last visited.*/
struct hashlist *next; /*Pointer to the next item in the

list.*/
HASHLIST;

struct hashlist *hashtbl[HTSIZE];
/*The Hashtbl is a vector of pointers to hashlist
structures.*/

#include "twred.h"
#include "solconv.h"
#include "printout.h"
#include "retainc.h"
#include "hash3.h"
#include "makespan.h"
#include "dlaout.h"

float *tsearch(ifp, ofp, niters, PEN, numveh, g)
int niters; /* The number of iterations that the TS

algorithm is allowed to run.*/
FILE *ifp; /*The pointer to the problem input file.*/
FILE *ofp; /*The pointer to the problem output file.*/
double PEN; /*The penalty for TW infeasibility.*/
int numveh; /*The number of vehicles in the problem, or 0.*/
int g; /*The penalty for add'l vehicle.*/

#include "vars6.h"
int rpennew;
int rpenold;
int hold;
int rpeninit;
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k = numfeas =iter-no = bfiter-no = mndiff = 0;
tour-short = 999999;
bftour-cost = bftvl-fime = feas-compl. = 999999;
num-veh-used = num feas veh = 0;

1* Input the data from a data file*/
fscanf(ifp,"%d", &numcust); /*Input the number of customers from the

input file, including the depot. */
++numcust; /*Increases numcust to inci the depot.*/

/*Determine the number of vehicles to be modelled. If no vehicles are input, or
number of vehicles is more than the number of customers then model one vehicle
for each customer.*/

if (numveh == 0 11 numveh >= numcust) numveh = numcust-1;

nnodes = numcust + numveh; /*The total number of modelled nodes.*/

/*Lines to dynamically allocate memory for the problem vectors and matrices based on the number of
nodes actually in the problem. *

mn = (mnt *)calloc(nnodes, sizeof(int));
z = (mnt *)calloc(nnodes, sizeof(int));

tour = (struct node *)calloc(nnodes, sizeof(NODE));
best-tour = (struct node *)calloc(nnodes, sizeof(NODE));

best-ftour = (struct node *)calloc(nnodes, sizeof(NODE));
oldtour = (struct node *)calloc(nnodes, sizeof(NODE));

time = (mnt **)calloc(nnodes, sizeoffint *)
rpen = (float *)calloc(numcust, sizeof(float));

for (i=0; i < nnodes; ++i)
timeri] = (mnt *)calloc(nnodes, sizeof(int));

tabu-list = (int **)calloc(nnodes, sizeof(int *)
for (i=0; i < unodes; ++i)

tabu-list[i] = (mnt *)calloc(nnodes-1, sizeof(int));

inputpbm(numcust, numveh, g, tour, time,rpen, ifp, ofp);

/*Input the number of iterations, tabu length, and depth of search. *

mavg = nnodes-2;
ssltlch = 0;
tabu-length = min(30, nnodes-2);
depth = nnodes-2;

/*Stat Timing Here! */

start = clocko;

/*Initialize the vector z[i] of random numbers.*/
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srand(1);

for (i=O; iknumcust; ++i)
z[i] = 1 + (int) (131072.O*rando/(RAND-MAX+1.O));

for (i = numcust; i < nnodes; ++i) z[i]l = 40O];

# ifdef PRINTHASH
fprintf(ofp,",n");
for(i=0; iknnodes; ++i)

fprintf(ofp,"Z[%d] = %d\n", i, z[i]);
# endif

/*Initialize the hashing table to all NULL pointers.*/
for (i = 0; i<HTSIZE; ++i)

hashtbl Ii] = NULL;

/*Conduct the Tw Reduction.*/

twredol(nnodes, tour, time, ofp);

/*********************DEERMIE INITIAL TU******************

/*A. This code produces a tour based on a sort of increasing average time windows at each node *

Pl1. Compute the average time window at each node "mlii]," excluding the depot nodes. *

for (i=1; i < nnodes; ++i)
m[i] = (tour[i].e + tourlli].l)12;

/* 2. Sort (bubble sort) the initial tour based on the avg TW time. Also do not swap if the customers do
not satisfy strong TW feasibility.*/

for (i = 1; i < numcust- 1; ++i)
for (j = numcust-1; j > i; --j)
if (mU-1> MU] &&

tourUl].e + timelltourUj].d][tourUj-1].id] <= tourUl-1].l)
SWAP(mUj-1], mU], tempi);
SWAP(tourUj-1], touriji, temp2);

)/end if*/

print tour(tour, nnodes, ofp); 1* Print the initial tour.*/

/*B. This computes the initial schedule for the initial tour, and stores the values in the node structure
returns the total tour length excluding any penalty for infeasibility.*/

tourlIO].arr = tourlO].e;
tourllO].dep = tour[O] .e; /*Initialize starting values at the depot.*/
tourllO].wait =0; /*These will never change for this model.*/

tour-length =tour-sched(l, nnodes, tour, time);

/*C. This computes the initial cost of the tour = tour-length + penalty for infeasibility.*/

time-penalty = comp-timepen(nnodes, tour);
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fprintf(ofp,"timepenalty is %d",time.penalty);
r-peninit= (comproutepen(nnodesrpen,tourk,ofp));
time-penalty += r-peninit;

fprintf(ofp,"timepenalty and rpeninit is %d",time penalty);

if (time-penalty > 0) 1
fprintf(ofp,"This starting tour is infeasible!\n");
bLpencost = timepenalty; I/*Initialize the paraneter.*/

else btLpencost = 9999;

pen-cost = PEN*time-penalty;

tourcost = tourlength + pen_cost;

totwait = sumwait(nnodes, tour);
bestcost = tourtt = tourcost - totwait;
tvl = besttt = tourtt - pen-cost;
compl_time = tourjength;

besttime = 0.0;
bestftime = 9999.0;

for (i= 0; i< nnodes; ++i)
besttour[i] = tour/i];

fprintf(ofp,"The tour cost is %9. If, the travel time is %9.1f.\n", (float)tour cost/FACTOR, (float)
best-tt/FACTOR);

/* Compute the hashing value for the initial tour.*/

h3t = 0;
for (i = 0; i < nnodes-1; ++i)

h3t += z[tour[i].id]*z[tour[i+l].idl;

tourhv = h3t;

# ifdef PRINTHASH
fprintf(ofp,"h3 = %u.\n", h3t);

# endif
/* ** * * ******* ****** ******* **** ****************** *** *** ***********/

/* TABU SEARCH SUBROUTINE
/* EVALUATES ALL INSERT NEIGHBORS AND FINDS THE BEST TO CHANGE */

OUTPUTS NEW TOUR AND SCHEDULE */
/* AT EVERY ITERATION */

for (i = *0; i< nnodes-1; ++i)
for ( = 0; j< nnodes-1; ++j)

tabu_list[i] Uj] = 0; /* Initialize tabu structure. */

fprintf(ofp,"\nTabu length is %d and the Number of iterations is %d. \n", tabu-length, niters);
fprintf(ofp,"The depth of the search is %d.\n", depth);
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++k; /* Increment k to k = 1.*/

if (timepenalty == 0)
keepjbfs(nnodes, tour, tour-cost, tvl, best-ftour, &bftour cost, &bftvl time, &bfiterno, k-I,

start, &bestf time);

while (k <= niters)

# if (PRINTITERS 11 PRINTHASH)
fprintf(ofp,"******************ITERATION NUMBER %3d
*************************************nn*** k);

if (timejpenalty == 0)
fprintf(ofp," **************This tour is feasible!****************
print-tour(tour, nnodes, ofp); /*To print the newest incumbent tour.*/
fprintf(ofp,"The tour cost is %d.\", tour-cost);

# endif

/*This is the effort to determine if any tours are repeated and to adjust
the tabujlength accordingly.*/

ptr = lookfor(tour cost, tourhv, timepenalty, k-i, tvl);

if (timepenalty == 0 && ptr == NULL)
++numfeas;

if (ptr == NULL) {
notfound(&tabujlength, &ssltlch, mavg, ofp);
++numdiff;

else
found(ptr, &tabujlength, &ssltlch, &mavg, k, ofp);

# ifdef PRINT-HASH
if (ssltlch == 0) {

fprintf(ofp,"The new tabu-length is %d.\n", tabu-length);
fprintf(ofp,"The moving average is %5.2f.\W", mavg);

# endif

d_best = escbest = dbestf = 99999;

ch_i = feasi = esc-i = 0;

/***************** Check all "later" insertions.****************************/

for (i=1; i< nnodes-2; ++i) {

if(tour[i].type == 2) continue;
/*Don't consider vehicle nodes.*/

for 0=0; j < nnodes ; ++j)
oldtour[j] = tour[j];
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for (d = 1; d <= depth; ++d)I

if (i+d < nnodes-l1) [

if(tour[i+d] .e + time[tour[i+dl .d] [tour[i]J.d]> tour[i] .1)

while (oldtourlli+d].type == 1)

/**If Str TWs violated within a vehicle, move the customer the tour along until a vehicle is
encountered ... swap and "locally update" the schedule as the customer is swapped, and increment d
also.**/

swap-node(i+d-1, i+d, oldtour);
oldtour[i+d- 1 ].arr = oldtour[i+d-2] .dep +

time[oldtourli+d-2] .id][Ioldtourlli+d- 1] .id];
oldtourri+d-1] .dep = max(oldtourri+d- 1] .e, oldtourli+d- 1] .arr);
oldtour[i+d- 1] .wait = oldtour[i+d- 1] .dep - oldtour[i+d- l].arr;

++d; I /*end while customer type*/

if (i+d == nnodes-l) break;
/*If you increment to the last position in the tour, don't swap

with the end depot node! */
)/*end if StrTW violated.*/

swapgiode(i+d-1, i+d, oldtour);
r-pennew= (comproutepen(nnodesrpen,tourk,ofp));
r-penold= (comproutepen(nnodes,rpen,oldtour,k,ofp));
move-val =move -delta(i, d, nnodes, tour, oldtour, time);
hold=r-penold-r-pennew;

/*fprintf(ofp,"hold=%d",hold);
fprintf(ofp,"move-val before=%d",moveval);*/

move-val += PEN*(r -penold-r-pennew);
1* fprintf(ofp,"moveyval after=-%d" ,move-val);

print-tour(tour, nnodes, ofp);
print -tour(oldtour,nnodes,ofp);

fprintf(ofp,"r-pennew=%d r -penold=%d" ,r-pennew,r-penold);*/

/*fprintf(ofp,"moveval+rpen=%d" ,move-val);*/
nbrpen = comptimepen(nnodes, oldtour)+r-penold;
move-val += PEN*(nbrpen - time-penalty);

/*fprintf(ofp," move val+time penalty=%d" ,move-val);*/

# ifdef PRINTITERS
fprintf(ofp,"The move value and tour cost [%d, %d]: %d %cIn", tourl.id, d, move val, move val +
tour tt);

# endif

if (nbrpen == 0)1
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if (move-val < dbesit)I
if ( k > tabu-list[tour[i] .id] [i+d] I I (move-val+tour-tt <

best-cost))
d-bestf = move val;
feas-i =;

feas-d d;
J P~ end if not tabu*/

]/*end if improved move value (travel time).*/
/*end if feasible neighbor found.*/

else (
if (move-val < d-best)
if k k> tabu-list[tour[i] .id] i+d] I I (move-val+tour-tt <

best-cost))
d-best = move val;
ch-i =;

ch-d d;
I/P end if not tabu*/

/*end if improved move value*/
]/*end else: infeasible neighbor.*/

/*escape routine*/

if (move-val < escjbest) t/*Finds the best neighboring move.*/
esc-best = move-val;
esc-i =;

esc-d d;
II/* end escape if*'/

/* end if feasible depth */

if(oldtour[i+d+1I].type == 2 && oldtourlli+d+1].id == i+d+1)
break;
/*If only vehicle nodes are left in the tour stop! */

I/P end for d*/

I /Pend for i*'/

/**************Check all earlier insertions.****************************/

for (i=3; i<=nnodes-2; ++i)t

if(tour[i].type == 2) continue;

/*Don't consider vehicle nodes.*/

for 6j=0; j < nnodes ; ++j)
oldtourUl] = tourUll;

d= 1;

if (tour[i] .e + time[tour[i] .id] [tour[i-1] .id] <= tour[i- 1] .1)
Iswap_ node(i-d, i-d+1, oldtour);
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++d; )/*end if no TW Violation*/
else [

while (oldtour[i-d].type == 1)
swap-node(i-d, i-d+ 1, oldtour);
++d; ) /*endl while customer is adjacent*/

if (i-d == 0) continue;
)/*end else Str TWs violated.*/

for (d; d <= depth; ++d)

if (i-d>O0) [

if(tour[i] .e + time [tourli]J.d] [tour[i-d] .id] > tour[i-d] A)
while (oldtour[i-d].type == 1)t

swapnpode(i-d, i-d+ 1, oldtour);
++d; I /*end while customer is adjacent*/

if (i-d == 0) break;
]/*end if Str TWs violated.*/

swapnode(i-d, i-d+ 1, oldtour);
r-pennew= (comproutepen(nnodesrpen,tourk,ofp));

r-penold= (comproutepen(nnodes,rpen,oldtour,k,ofp));
move-val = move-delta(i, -d, nnodes, tour, oldtour, time);
hold=r-penold-r-pennew;

/*fprintf(ofp,"hold=%d",hold);
fprintf(ofp,"move-val before=%d",move-val);*I

move-val += PEN*(r-penold-r-pennew);
/* fprintf(ofp,"move-val after--%d",move-Val);

fprintf(ofp,"PEN=%d",PEN);
pnint-tour(tour, nnodes, ofp);
print -our(oldour,nnodes,ofp);

fprintf(ofp,"r-pennew=%d r -penold=%d' ,r-pennew,r-penold);

print tour(tour, unodes, ofp);*/
/*fprintf(ofp,'r-pen=%d" ,r-pen);*/

/*fprintf(ofp,"move-val early=%d",move-val);*/
/*move-val +=PEN* r-pen;*/
/*fprintf(ofp,"moveval+r-pen=%d",move-val);*/
nbrpen = comptimepen(nnodes, oldtour)+rpenold;
move-val += PEN*(nbrpen-hime-penalty);

/*fpritf(ofp,"move-val+time penalty=%d",move-val);*/
# ifdef PRINTITERS

fprintf(ofp,'The move value and tour cost [%d, %d]: %d %dn", tour Ii] .id, -d, move-Val, move val +
tour -tt);

# endif

if (nbrpen == 0)

if (move-val < d-bestt)

if ( k > tabu-listlltourli].idl [i-d] 11 (move-val+tour-tt <
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best-cost)) {
d_bestf = move val;
feasi =I;

feas_d=-d;
I/* end if not tabu*/

)/*end if improved move value (travel time).*/
}/*end if feasible neighbor found.*/

else {

if (moveval < dbest)

if ( k > tabulist[tour[i].id][i-d] II (moveval+tourtt<
best-cost))

d_best = move val;
ch_i= i;
ch_d =-d;
I /* end if tabu*/

I/*end if improved move value*/
}/*end else: infeasible neighbor.*/

/*escape routine*/

if (moveval < esc best) {/*Finds the best neighboring move.*/
escbest = move_val;
esc-i =i;

esc_d =-d;
}/* end escape if*/

/* end if feasible depth*/

I/* end for d*/

I Pend for i*/

/*If a feasible move is found...move to it!*/

if (feas i != 0) {
chi = feas i;
chd = feas-d;

}/*end if feasible move is found.*/

/************IF ALL MOVES ARE TABU AND NONE MEET

ASPIRATION*****************/
/* ,/

/* THEN SET CH_I AND CHD TO THE BEST MOVE DISCOVERED
/* AND DECREASE THE TABU LENGTH

OR IF THERE ARE NO MOVES AVAILABLE

if (esc-i == 0) {
fprintf(ofp,"There are no moves available... \nt Increase the number of vehicles

available and try again!\n");
printf(": There are no moves available... \n Increase the number of vehicles available

and try again!\n");
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break; )/*end if no moves available.*/

if(chji == 0)

# ifdef PRINTITERS
fprintf(ofp,"All moves at iteration %d are tabu and none meet the aspiration criteria.\n",

k);
# endif

ch-i = esc-i;
ch-d =esc-d;
tabu-length = max((int) (tabujlength)*DECREASE,5);
I/* end for all moves tabu*/

/***************UPDATE: TABU LIST AND TOUR POSITIONS.**************************/

/*Allows no "return" moves for tabu-length iterations. ~

if (ch-d == 1)
tabu-list [tourlich_i+ 1] .id] [chi+ 1] =k + tabu-length;

else
tabu-list [tour[ch-i] .id] [ch-i] = k + tabu-length;

P~ Allows no "repeat" moves for tabujlength iterations. ~

tabu-list [tour[ch-i] .id] Ech_i+ch-d] = k + tabu-length;

# ifdef PRINTITERS
fprintf(ofp,"\nThe move INSERTS Node %d, to position %d.\nrn", tour[ch i].id, ch-i + chd);

# endif

/*BEFOE the new tour is constructed, update the h3t value:*/

zin = zout = 0;

i= ch-1i
j=((ch-d>0) ? ch-i+ch-d :chli+chd- 1);

zout =z[tour[i-1] .id] *z[tour4i] .id]
+z[tour[il .id] *z[tour[i+1] .id]

+z[tourU] .id] *z[tourj+ 1] .id];

zin =z[tour[i-1].id]*z[tour[i+1].id]

+zrtourj] .id] *z[tour[i] .id]
+Z[tour[i]J.dl*z[tourUlj+].id];

h3t += zin - zout;

tourhv = h3t;

# ifdef PRINTHASH
fprintf(ofp,"'\n");
fprintf(ofp," Tour hashing value = %u.\n", tourhv);

# endif
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tour = insert(ch i, tour, ch-d, nnodes);

/***************UPDATE: THE NEW INCUMBENT SCHEDULE.****************************/

tour length = ((ch d >0) ? tour sched(ch i, nnodes, tour, time)
tour sched(ch-i+ch-d, nnodes, tour, time));

time-penalty = comp, timepen(nnodes, tour);
r-peninit= (comproutepen(nnodesrpen,tour,k,ofp));

time-penalty += r-peninit;
pen cost = PEN * time-penalty;
/*fprntf(ofp,"~pen -cost for incumbant schedule is %d",pen-cost);*I
tour-cost = tourjlength + pen-cost;

/*fprintf(ofp,"'tour cost for incumbant schedule is %d" ,tour-cost);*/
totwait = sum-wait(nnodes, tour);
tour-tt = tour-cost - totwait;
tvl = tourjtt-penscost;

/*dlaout(nnodes, tour, time, 0.0, (float) tvl/FACTOR);*/

if (time -penalty ==0)
keepbfs(nnodes, tour, tour-cost, tvl, best-ftour, &bftour-cost, &bftvl_time, &bfiter-no, k,

start, &bestf time);

if (tour-tt < best-cost)
compl-time = tour-length;
best-tt = tvl;
btpenscost = time-Penalty;
best-cost = tour tt;

/*This is a test routine.
printf("\n %d %d %d %d %d", k, compL time, best-tt, bt -pen cost, best-cost);*/

soln-time = clocko;
best-time =((soln time - start)/(double) CLOCKSPER SEC)

for (i=1; i< nnodes; ++i)
best-tour[i] = tourili];

iter-no = k
I/* end if -- end the update of the best tour value & best tour.*~/

I/Pend while .. ..Ends the tabu search subroutine*/

/*Add the tour found at the last iteration to the hash table, if necessary.*/

ptr = lookfor(tour cost, tourhv, time-penalty, k-1, tvl);

if (time-penalty == 0 && ptr == NULL)
++numfeas;

if (ptr == NULL)
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notfound(&tabuilength, &sslflch, mavg, ofp);
else

found(ptr, &tabujlength, &ssltlch, &mavg, k, ofp);

stop = clocko;
duration = ((stop - start)/(double) CLOCKSPERSEC);

if (bestf-time !=9999.0)
makespan(nnodes, best-ftour, &feas compi, &num-feasveh);

makespan(nnodes, best-tour, &compl time, &num veh used);

/*******OUTPUT:

BEST TOUR FOUND, ITERATION NUMBER, TOUR LENGTH, THE SHORTEST
TOUR FOUND OVERALL REGARDLESS OF TW FEASIBILITY, AND THE NUMBER OF

TW
FEASIBLE TOURS DISCOVERED DURING THE SEARCH.************************/

/*Record the solution values for the summary sheet.*/
soin[O] =

((bestf-time !=9999.0)? feas-compi: compl-time)IFACTOR;
soln[l] =((bestf time != 9999.0)? bftvl time: best-tt)/FACTOR;
soln[2] = bfiter no;
solnI3] = best tt/FACTOR;
soln[4] = ((bftvl time =best tt)? 0: btpencost)/FACTOR;
soln [5] iter no;
solnI6] = ((bestf time !=9999.0)? bestf time: best-time);
soln[7] = numfeas;
soln[8] = compltime/FACTOR;
soin[19] = duration;
soln [10] = ((bestf time != 9999.0)? bfiter-no: iter-no);
soln[1 1] = feas-compl/FACTOR;
soln[12] = num-feas-veh;
solnI[l3] = num Veh used;
solnI[l4] = 0;

if (bftour-cost < 999999) f
fprintf(ofp,"The best feasible tour was found on the %dth iteration.\n", bfiter-no);
print-sched(bestjftour, nnodes, ofp);
fprintf(ofp,"The cost of the tour is %d.\n", bftour cost);
fprintf(ofp,"The travel time of the tour is %d.\n", bftvl time);

/*dlaout(nnodes, best-ftour, time, soln[0], soln[ 1]);*I

else
fprintf(ofp,"THE ALGORITHM FOUND NO FEASIBLE TOUR.");

if (best-tt != 0 /*bftvl-time*/9
fprintf(ofp,"\n\nThe best overall travel time tour was found on the %dth iteration.\n",

iter-no);
print-sched(best-tour, nnodes, ofp);
fprintf(ofp,"The length of the tour is %8.lf.\n", (float) compl time/FACTOR);
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fprintf(ofp,'\nThe travel time of this tour is%8.lf.\n\n', (float) best-tt/FACTOR);

else
fprintf(ofp,"THE BEST TOUR FOUND IS THE FEASIBLE TOUR ABOVE!NMn");

fprintf(ofp,"The tabu search routine took %.3f seconds.\nxn", duration);

fprintf(ofp,"The search found a total of %d feasible tours.\n", numfeas);
fprintf(ofp,"The search found a total of %d different tours.\n", numdiffO;

printf(": The search found %d feasible tours and %d different tours.\n", numfeas, numdiff);

# ifdef PRINTI{TBL

fprintf(ofp,"\nllashing Table:\n");

fprintf(ofp," VAL \t COST TOURHIV PENALTY LAST FOUND\n");

for (i=O; i<IITSIZE; ++i) t
if (hashtbli i != NULL) fprintf(ofp,"\,n%5d\t", i);

for (ptr = hashtbllj]; ptr = NULL; ptr = ptr->next)
fprintf(ofp,"%7d%7d%7d%5d %u\t", ptr->cost, ptr->tvltime, ptr->pen, ptr->lastfound,

ptr->thval);
1/Pend for i*/

# endif

/*Free all the memory structures after every problem to start over every time*/
free(m);
free(z);
free(tour);
free(best tour);
free(best -ftour);
free(oldtour);

for (i=O; i < nnodes; ++i) /*Free the time matrix*/
free(time[i]);

free(time);

for (i=O; i < nnodes; ++i) /*Free the tabu list*/
free(tabulist[i]);

free(tabu list);

return &soln[IO1;

} /*****************ndof the main program******************************/

/**This function computes the incremental change in the value of the incumbent
tour to the proposed neighbor tour.*/

move delta(i, d, n, t, tt, ti)
int i; /*The starting point for computing the value. */
int d; /*The depth of the insertion.*/
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int n; /*The number of nodes in the tour.*/
struct node *1; /*The incumbent tour structure.*~/
struct node *tt; /*The neighbor (temporary) tour structure.*/
mnt **ti; /*The time/distance matrix.*/

mnt is; /*The starting point for the nbr schedule.*/
intj; /*The index of the "target" node of insertion.*/
mnt delin; /*The incremental tour travel time.*~/
mnt delout; /*The incremental tour travel time.*~/

struct node *npi, *npil ;/*Node pointer indexes used to iterate.*/

/*These additions make version 4: Stops computing when a vehicle
node is encountered after the "within" area of change.*/

mnt iend; /*Index to end of "within" area of insertion.*/
struct node *npe; /*Pointer to the end of within insertion.*

delin = delout = 0;

if (d>O)[
j = i+d;
is = id1
iend = i+d+ 1;

)/*end if*/
else

j =i+d-1;
is = i+d;
iend = i+d+3;

]/*end else. */

npi =&tt[is-1I];

npe =&tt[iend];

/* This is a procedure for updating the schedule from istart to the terminal depot.*/

while (npi < npe I I npi->type !=2)

npil = npi+1;

npil->arr = npi->dep + ti[npi->id] [npil->id];

if (npil->type == 2)[
npil->dep =npil->e;
npil->wait= 0; }/*end if vehicle node.*/

else(
npil->dep = max(npil->e, npil->arr);
npilI->wait = npi I->dep - npil1->arr; I/Pend if customer node.*

++npi;
V/end while*/

debout = ti~tli- 1J.id] rtli] .id]+ti[t[i]J.d] [t[i+ 1] .id]
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+ti[t[j].id] [tlj+1].id];

delin = ti[t[i- 1].id][t[i+ 1] .id]+ti[tj].id] [t[i].id]+ti[t[i].id][tUj+l].id];

return (delin - delout);

/* This ends the computation of the move value.*/

/**This function computes the tour schedule for a neighbor (temporary) tour.**/
/*** It returns the total value of the tour tour length.****/

tour sched(istart, n, t, ti)
int istart; /*The starting point for computing the sched.*/
int n; /*The number of nodes in the tour.*/
struct node *t; /*The tour structure.*/
int **ti; /*The time/distance matrix.*/

{

struct node *h; /*Index for the pointer to istart-l1.*/

struct node *lastnp; /*Index for the pointer to the last node.*/
struct node *np, *npl; /*Node pointer indexes used to iterate.*/
int tour-length; /*The total tour length.*/

tourlength = 0;
h = &t[istart-1];
lastnp = &t[n-1];

/*This computes the tour length from the origin depot to istart.*/

for (np = &t[O]; np < h; ++np)

tour-length += ti[np->id][(np+l)->id] + (np+l)->wait;

/* This is a procedure for updating the schedule from istart to the terminal depot.*/

for (np = h; np < lastnp; ++np)

npl = np+l;

np 1->arr = np->dep +ti[np->id] [np 1->id];

if (npl->type == 2) {
npl->dep = npl->e;
npl->wait 0; )/*end if vehicle node.*/

else [
npl->dep = max(npl->e, npl->arr);
npl->wait = npl->dep - npl->arr; )/*end if customer node.*/

tour-length += ti[np->id][npl->id] + npl->wait;

}/*end for*/

return (tour-length);
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)/* This ends the computation of the tour schedule.*/

/********This function computes the EXACT infeasibility penalty.***************/

comp-timepen(n, t)
int n; /* The number of nodes.*/
struct node *t; /* The tour pointer. */

struct node *flp; /*The index for the node pointer.*/
struct node *lastnp; /*The index for pointer to the last node.*/
mnt infeas; /*The total infeasibility of the tour.*/
int num; P* The number of infeasible nodes.*/
int y; P* Dummy.*/

infeas =num = 0;

lastnp = &tI~n-1];

for (np = &t[iO]; np, <= lastnp ;++np){
y = np->dep - np->1;
if (y > 0){

++num;
infeas += y;
I/P end if*/

I /Pend for*/
return infeas;

/*This ends the comp-penalty function.*/
/**********Comnputes route penalty**********/
comproutepen(n,rpen,t,k,ofp)

int n; /* The number of nodes in tour.*/
float *rpen; P~ The tour penalty*/
struct node *t; /*The current tour*/
int k;

float routepen; /*The total penalty of the tour.*/
float y;
float z;
float q;
float bb;
float zz;/*dummy variable*/

int i,
mnt j;/*counter*/

mnt x;
int aa;
float *rp;

rp = (float *)calloc(n, sizeof(float));
routepen = 0.0;
Z=0.0;
y=0.0;
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q-l1.0;
bb=O.0;
zz=0;

aa--l;

/*for (i = 1; i <= n-i; ++aa)
rplli]=O;

for (i= 1; i<= n-1; ++i){
if(t~i]-type == 1) 1
x=t[i].id;

rp[aa]=rpen[x];
aa+=1;

/*printf("\npenalty for node is %f\n",rpen[x]);*/

else

/*q-min(q,y);

routepen=(int)( 1000.0*( lq));*/

if (k>=6000)
routepen=O;

else[

z=z+(rp[1I+rp[lI*rp[2]+rp[1I*rp[2]*rp[3]+rp[1]*rp[2]*rp[3]*rp[4]+rp[1I*rp[21*rp[3]*rp[4]*rp[
5]+rp[1]*rp[2]*rp[3]*rp[41*rp[5] *rp[61+rp[1]*rp[2]*rp[3] *ip[4] *ip[5] *rp[6]*irp[7]+i-p[1]*rp[2] *rp[3]*rp
[4]*rp[5]*rp[6]*1.p[7]*rp[8]+rp[1] *r[2*rp[3*rp[4]*p[5*rp[6*p[7*rp[8*rp[9+rp[l]*rp[2]*rp[3]*r

]*irp[l 1]+rpI~lI*rp[21*rp[3]*rp[4]*rp[5]*rp[61*rp[7]*rp[8]*rp[9]*rp[10I*rp[1 1]*rp[12]+rp[1]*rp[2]*rp[3]
*irp[4]*rp[5]*rp[6]*rp[7]*rp[8]*rp[9*rp[1]*rp[1 1]*rp[12]*rp[131+irp[]*rp[2*rp[3]*rp[4]*rp[5]*rp[6]
*IV[7]*rp[8]*rp[9]*rp[lO]*rp[l 1I1*rp[12] *jp[l3 ]*rp[l 4]+1p[l] *rp[2]*rp[3]*rp[4]*rp[5]*rp[6]*rp[7*rp[8
]*rp[9]*rp[10]*rp[1 1] *rpI[12]*rp[j13]*rp[ 14]*rp[15]+rp[1]*rp[2]*rp[3]*rp[4]*rp[5]*rp[6]*rp[7]*rp[8]*rp
[9]*irp[lO] *rp[1 1]*rp1112]*rp1113]*rp[ 14]*rp[ 151*rp[16]+rp[1]*rp[2]*rp[3] *r[ 4] *rp[5]*rp[6]*rp[7]*rp[8]
*rp[9]*rp[lo]*rp[l 1]*rp[12] *rp[13]*rp[14]*rp[15]*rp[16]*rp[17]+rp[l]*rp[2]*rp[3]*rp[4]*rp[5]*rp[6]*r
p[7]*rp[8]*rp[9]*rp[lO]*rp[1 l]*rp[12]*rp[13]*rp[14]*rp[15]*rp[16*rp[17*rp[l18+rp[11*rp[2]*rp[3]*r
p[4]*rp[5]*rp[6] *ip[7]*rp[8]*rp[9]*rp[101*rp[1 1]*rp[12]*rp[13]*rp[14]*rp[15]*rp[16] *rp[17] *rp[18]*rp
[19]+rp[1I*rp[2]*rp[3]*rp[4]*rp[5]*rp[6]*rp[7]*rp[81*rp[9]*rp[10]*rp[1. 1]*rp[12]*rp[13]*rp[l4]*rp[15]
*rp[l6]*rp[17]*rp[18] *ip[19]*rp[20]+rp[1] *ip[2] *rp[31*rp[4] *rp[5]*rp[61*rp[7]*rp[8]*rp[9]*rp[10] *rp[
11 l*rp[12]*rp[13]*rp[14*rp115]*rp[ 16]*rp[171*rp[18]*rp[191*rp[20]*rp[211+rp[1]*rp[2]*rp[31*rp[4]*r

p[20]*rp[2l]*rp[22]+rp[l]*rp[2] *irp[ 3] *jp[4]*rp[5]*rp[6]*rp[7]*rp[8*.p[9]*rp[10]*rp[1 1]*rp[12]*rp[13

20] *1p[21]*rp[22]*rp[23]*rp[24]);
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routepen=1000*(1/z);

aa=l;
for(j= 1;j <=n-1;++j) {

rpu]=O;
}

/*printf("The iteration is %d",k);*/

}

} /*end for*/
/*fprintf(ofp,"\nroutepenin is %fin",routepen);*/

free(rp);
return routepen;

/*This ends the comp routepen function.*/

/**************A function to perform a swap ****************************I

/* Swaps two node structures in the specified tour.*/

swap-node(i, j, t)
int i, j; /*Indices of the nodes to be swapped.*/
struct node *t; /*Structure for the tour to be swapped.*/

I
struct node x; /*Temporary variable for the SWAP macro.*/
struct node *temp; /*Temporary tour pointer.*/

SWAP(t/i], t/j], x);

}/*end of swap node function*/

/**************A function to perform an insertion move.**********************/

/* Performs "depth" number sequence of swaps and returns a pointer to the resulting tour structure
vector.*/

struct node *insert (is, t, depth, n)
int is; /*The node to be inserted.*/
int depth; /*The depth of the insertion (depth> 0) =>

later; (depth<O) => earlier in the tour.*/
int n; /*The number of nodes in the tour.*/
struct node *t; /*The current tour pointer.*/

intj, i; /*Indices for counting.*/
struct node x; /*Temporary variable for the SWAP macro.*/
struct node *t-t,*pt; /*The structure for the new "inserted" tour.*/
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t-t = (struct node *)calloc(n, sizeof(NODE));
Pt = Ui;

for (i=O; i< n; ++i) /*Make the temp tour =incumbent tour.*/
liii] = i]

if (depth > 0)
for 0j=0; j < depth; ++ij)

SWAP(t-t[is+j], tLt[is+j+ 1], x);
}/*endijf*/

else[
for Oj= 0; j > depth; --j)

SWAP(Lt[is+j], tLt[is+j-1], x);
I /Pend else*/

free(t);

return pt;

/* end of the Insertion function. *

/***********A Function to compute the sum of the waiting tm.********

sum wait(n, t)
struct node *t; /*The tour to be printed.*/
int n; /*The number of nodes in the tour.*/

struct node *lastnp; /*Index for the pointer to the last node.*/
struct node *np; /*Node pointer indexes used to iterate.*/
mnt sum; /*The waiting time sum.*/

sum = 0;
for (up = &tIIO]; up <= &tI~n- 1]; ++np)

sum += np->wait;

return sum;

)/*The end of the sum- wait function.*/
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