
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-1997 

System Comparison Procedures for Automatic Target System Comparison Procedures for Automatic Target 

Recognition Systems Recognition Systems 

Anne E. Catlin 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Other Operations Research, Systems Engineering and Industrial Engineering Commons 

Recommended Citation Recommended Citation 
Catlin, Anne E., "System Comparison Procedures for Automatic Target Recognition Systems" (1997). 
Theses and Dissertations. 5969. 
https://scholar.afit.edu/etd/5969 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact AFIT.ENWL.Repository@us.af.mil. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/310?utm_source=scholar.afit.edu%2Fetd%2F5969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5969?utm_source=scholar.afit.edu%2Fetd%2F5969&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil


System Comparison Procedures for

Automatic Target Recognition Systems

THESIS

Anne E. Catlin
Second Lieutenant, USAF

AFIT/GOR/ENS/97M-03

D~bubutm UuMmnid $
DEPARTMENT OF THE AIR FORCE

eAIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DTIC QUALLTY ~INOM 16



AFIT/GORIENS/97M-03

System Comparison Procedures for
Automatic Target Recognition Systems

TTIESIS

Anne E. Catlin
Second Lieutenant, USAF

AFIT/GOR/ENS/97M-03

Approved for public release; distribution unlimited.



AFIT/GOR/ENS/97M-03

System Comparison Procedures for Automatic Target Recognition Systems

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Operations Research

Anne Elizabeth Catlin, B.S.

Second Lieutenant, USAF

March 1997

Disclaimer: The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.

Approved for public release; distribution unlimited.



THESIS APPROVAL

Student: Anne E. Catlin, Second Lieutenant, USAF Class: GOR-97M

Title: System Comparison Procedures for Automatic Target Recognition Systems

Defense Date: 21 February 1997

Committee: Name/Title/Department Signature

Advisor Kenneth W. Bauer, Jr. , V ,
Professor
Department of Operational Sciences
Air Force Institute of Technology

Reader Edward F. Mykytka
Acting Department Head

Department of Operational Sciences
Air Force Institute of Technology



Acknowledgments

First and foremost, I must thank my advisor, Dr. Ken Bauer, for his patience,

guidance, patience, encouragement, and patience throughout the thesis process. I

particularly appreciate him letting me run with the research, but not letting me run off any

cliffs (without a bungee cord, anyway).

My reader, Dr. Ed Mykytka, provided invaluable (though often frustrating)

suggestions and perspective with the manuscript editing. I particularly appreciate his

patience when I chose to torture him with hopeless new ideas on Friday afternoons.

Thanks also go to Dr. Doug Montgomery for reading the thesis and teaching me

some design of experiments over the phone. His comments provided a bigger-picture

perspective and let me know that I was actually doing something useful.

Several members of the MSTAR team at Wright Laboratory provided essential

insight into the MSTAR system and SAR data. Thanks are due to Maj Tom Bums, the

MSTAR Project Manager, for bringing the topic to my attention and sending me places to

learn about MSTAR. I also appreciate the support of Dr. Tim Ross, Dr. Ron Dilsavor,

Dr. John Mossing, and the rest of the MSTAR team SEQAL denizens, who helped me run

MSTAR, obtain data, learn about ATR, and otherwise catch enough clue to write this

thesis.

Finally, I must thank my parents for their support and encouragement; Ken

Haertling for sitting through the first defense dry-run and keeping me sane throughout the

thesis process; and my roommates Christine and Kim for cooking and doing laundry when

I was stuck in my study writing for days on end. They were great family to have during

the few hours when I wasn't chained to my computer.

Anne E. Catlin

iiiI



Table of Contents

Page

Acknowledgments .................................................................................................... iii

List of Figures ................................................................................................................. vi

List of Tables ................................................................................................................. vii

Abstract ........................................................................................................................ viii

I. Introduction ........................................................................................................ 1-1

1.1. The Automatic Target Recognition System Performance Estimation
Problem ...................................................................................................... 1-1

1.2. Objective .................................................................................................... 1-3
1.3. Scope and Summ ary ................................................................................... 1-3

II. The M STAR System ........................................................................................... 2-1

2.1. MSTAR System Design and Configuration Competition ............................. 2-1
2.2. The M STAR Perform ance Estim ation Problem ........................................... 2-3
2.3. M STAR Extended Operating Conditions (EOC's) ....................................... 2-5
2.4. Synthetic Aperture Radar (SAR) ................................................................ 2-8

III. Binary Data and Sequential Testing ..................................................................... 3-1

3.1. Binary Responses ....................................................................................... 3-1
3.2. Ranking and Selection Techniques .............................................................. 3-4
3.3. Sequential Testing ...................................................................................... 3-8

3.3.1. The W ald sequential test for/p, - p2' ........................................... 3-9
3.3.2. Comparing multiple system s ....................................................... 3-15
3.3.3. Expected sample size calculations ............................................... 3-19

IV. Implementing the W ald Test ................................................................................ 4-1

4.1. Introduction ............................................................................................... 4-1
4.2. Sampling Schemes ...................................................................................... 4-3

4.2.1 Scheme I: "Lock-step" ................................................................ 4-4
4.2.2 Scheme II: Random draw ............................................................. 4-5

iv



Page

4.3. Setting the W ald Test Parameters ............................................................... 4-7
4.3.1. Selection of parameters without regard for sample size ................ 4-7
4.3.2. Expected sample sizes ................................................................ 4-13
4.3.3. Parameter selection procedure .................................................... 4-21

4.4. Comparison of Four Systems .................................................................... 4-24
4.4.1. Test parameter investigation ....................................................... 4-25
4.4.2. Test parameter selection procedure ............................................ 4-27

4.5 Final Comment on Sample Size Restrictions .............................................. 4-32

V. Optimal MSTAR System Selection ................................................................. 5-1

5.1. The MSTAR Data ...................................................................................... 5-2
5.2. The 2-system P/R Comparison .................................................................... 5-5
5.3. The 4-system Peaks and Regions Comparisons ........................................... 5-8

VI. Conclusions and Recommendations ..................................................................... 6-1

6.1. Comments and Conclusions ........................................................................ 6-1
6.2. Recommendations for Further Development ............................................... 6-4

References ................................................................................................................... R- 1

Appendices

A. Confidence Interval Calculation when pD for Different Scenarios is Non-
constant ................................................................................................ A-1

B. The W ald Sequential Probability Ratio Test ........................................... B-1
C. Slope of the W ald Test Boundaries ......................................................... C-1
D. Choosing u-values when a fP.i............................................................. D-1
E. u-values for Test Sensitivity Study ......................................................... E-1
F. Expected Sample Sizes for Confidence Intervals when a = 0.05 ............. F-1
G. W ald Test Parameter Calculation ........................................................... G-1
H. MATLAB® code for Peak/Region W ald Test ........................................... H-1
I. MSTAR Data Summaries ........................................................................ I-1

1. 1. 95% Confidence intervals for pu) for all MSTAR systems ................... I-1
1.2. Difference Intervals and Sample Sizes for Pairwise Comparisons of

Systems ................................................................................................. 1-2
1.3. Sample Size Requirements for Difference Detection ............................... 1-3

V ita ............................................................................................................................. V -1

v



List of Figures

Figure Page

2.1. M STAR system architecture [11] ..................................................................... 2-2
2.2. Aspect and depression angles [3] ...................................................................... 2-7
2.3. Synthetic SAR imagery of M-60 at 200 depression and -123' (left image) and

-120' (right im age) aspect [3] ........................................................................... 2-9

3.1. W ald Test of H o: p2  < p, ............................................. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 3-15

4.1. Wald boundary comparison for different (a,,B) settings ..................................... 4-9
4.2. Sensitivity of the Wald test with a = # = 0.05 for three u-value pairs ............... 4-12
4.3. Average sample sizes required to construct Figure 4.2 ..................................... 4-13
4.4. Expected number of unmatched pairs needed when (afi) = (0.05,0.05) ........... 4-14
4.5. Required sample sizes for confidence intervals when a = 0.05 ......................... 4-18
4.6. Expected sample size comparison for Wald test vs. ranking and selection and

confidence intervals ......................................................................................... 4-19
4.7. Sample sizes for different a values ................................................................... 4-20
4.8. Wald test procedure for fair comparison of two systems .................................. 4-23
4.9. MSRB Wald test for multiple comparison of systems ....................................... 4-25
4.10. Starting Wald boundaries for multi-system comparison tests ............................ 4-26
4.11. Sample sizes for the four-system test when overall a = 0.05 ............................ 4-28
4.12. Wald test procedure for fair comparison of multiple systems ............................ 4-31

5.1. MSTAR configuration A - H data confidence intervals ..................................... 5-4
5.2. Sample Wald MSRB peaks test with a = # = 0.05 ........................................... 5-13
5.3. Sample Wald MSRB regions test with a =13 = 0.05 ......................................... 5-14

B.1. Sample Wald SPRT Graph ............................................................................... B-2

D. 1. Wald test performance for varying parameter levels .......................................... D-2
D.2. Wald test performance for varying parameter levels (smoothed) ................ D-3
D.3. Wald test performance for various parameter values ......................................... D-4

vi



List of Tables

Table Page

2.1. MSTAR EOC target types [6] .......................................................................... 2-6

3.1. Smallest integer sample size n needed to satisfy the (8*,P*) requirement in
selecting the binomial population with the largest probability [7:425] ................ 3-5

3.2. Values of T, for fixed P* [7:400] ....................................................................... 3-6
3.3. Minimum sample sizes for the ranking and selection procedure with

P * = 0.95 ......................................................................................................... 3-7
3.4. Values of u for the full range of possible p, andp 2 ....................... . . . . . . . . . . . . . . . . . . . . 3-11
3.5. Values of u for selectedp, andp 2 from 0.66 to 0.75 ........................................ 3-12

4.1. Pairs of p, andp 2 with 0.03 separation around 0.7 ................... 4-10
4.2. Expected sample sizes for the Wald test ........................................................... 4-17

5.1. Results of the P/R test ...................................................................................... 5-7
5.2. Simulated peaks test and regions test results .................................................... 5-10

vii



AFIT/GOR/ENS/97M-03

Abstract

Estimating the performance of an automatic target recognition (ATR) system in

terms of probability of successful target identification involves extensive image collection

and processing, which can be very time-consuming and expensive. Therefore, we

investigate the Wald sequential test for the difference in two proportions as a sample size-

reducing alternative to the ranking and selection procedure and confidence intervals. An

analysis of the test parameters leads to a practical methodology for implementing the Wald

test for fairly comparing two systems, based on experimental goals. The test is also

modified with the multiple sequentially rejective Bonferroni procedure for the multiple

pairwise comparison of more than two systems, and two sampling schemes for different

experimental goals are discussed.

The test methodology was applied to actual data to compare different

configurations of the Moving and Stationary Target Acquisition and Recognition

(MSTAR) System with good results. In a two-system comparison with real data, the

Wald test required an average of about one sixth as many samples as a confidence interval

to choose the superior system, and about one fifth as many samples as ranking and

selection. To compare four systems with simulated data, the Wald test usually needed

only one third as many samples as multiple pairwise confidence intervals to detect

specified differences between the proportions, and one half as many samples as required

by ranking and selection. These sample size savings demonstrate that the Wald sequential

vi.



procedure with the modifications described in this thesis is a useful alternative to

comparing proportions with confidence intervals, particularly when data is expensive.
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System Comparison Procedures for Automatic Target Recognition Systems

I. Introduction

1.1 The Automatic Target Recognition System Performance Estimation Problem

Over the last fifty years, scientists and engineers have developed increasingly

complex electronic machines designed to think like humans, but more quickly and

efficiently. Long gone are the days of room-sized computers performing only simple

arithmetic; today, computers use complex logic to make decisions, and can also interpret

spoken language and "see" visual images. Advanced software can enable a computer to

identify features in an image from a variety of sources, and actually recognize objects from

trees to trucks. Software exists for the processing of infrared and laser radar imagery, and

the automatic target recognition (ATR) community is currently working to create an

efficient system for analyzing synthetic aperture radar (SAR) returns.

Engineers have developed extensive theory and algorithms for ATR, but have

focused little on the testing and evaluation of their systems. Many ATR system tests have

involved collecting and analyzing huge amounts of data and estimating performance

parameters, such as probability of detection, without accounting for observed variability in

estimates of these parameters. Further, test image sets, sample sizes, and performance

estimation methods vary between developers, so that comparisons of ATR systems based

on performance statistics are at best crude, and often invalid. The ATR community could
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thus benefit greatly from a standardized test procedure which integrates statistical theory

with a common set of test images. This standardized plan concept is currently known as

the "honest broker" approach [2].

Prospective users of the "honest broker" plan include ATR developers worldwide

using imagery from many different sensor types. For example, a team assembled by the

Wright Laboratory Avionics Directorate (WL/AA) at Wright-Patterson Air Force Base,

Ohio, is currently developing a SAR ATR system named MSTAR (Moving and Stationary

Target Acquisition and Recognition). WL needs to estimate MSTAR performance in

terms of probability of target identification, and determine with 95% confidence whether

the system meets specifications. MSTAR is designed to identify over 1.6 x 1011 different

target scenarios, and any valid estimate must represent performance across the entire

scenario space. Testing the system on all the possible scenarios is impractical; WL has

neither the time nor the data to perform such a vast test, and data collection is expensive

and time-consuming. Since SAR imagery requires considerable processing time, and WL

needs to estimate performance for eight possible system configurations and choose the

best within a limited time frame, we want to minimize the number of necessary test

images. Chapter 2 explains these analysis goals in depth. The current WL Performance

Evaluation Team technique is to "randomly" select about 300 representative images from

the scenario space, and calculate confidence intervals to estimate performance.
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1.2 Objective

We applied the Wald sequential test for the difference of two proportions to the

fair comparison of ATR systems, as a sample size-reducing alternative to confidence

intervals. A methodology for implementing the test is explained. A modified Bonferroni

approach is then developed to compare more than two systems while maintaining the

overall desired level of significance for the tests, and the methodology for the multi-system

test is outlined. The test methodologies are then applied to compare different MSTAR

configurations, to choose the optimal system configuration.

1.3 Scope and Summary

After an introduction to MSTAR in Chapter 2, we discuss the challenges presented

by binomial data and introduces the Wald test sequential test for the difference of two

proportions in detail in Chapter 3. Chapter 4 begins with analyses of all Wald test

parameters, and includes derivations of the appropriate parameter relationships which

force the comparisons to be fair. A step-by-step guide for parameter selection and test

implementation, in accordance with experimental goals, for the fair comparison of two

system with the Wald test follows. The modified sequentially rejective Bonferroni

procedure, explained in Chapter 3, is then incorporated into the Wald test to create a valid

methodology for the simultaneous fair comparison of four systems. The chapter

concludes with a discussion of sampling procedures for data input to the test.
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Chapter 5 applies the methodology of Chapter 4 to MSTAR data to meet WL test

goals. Wright Laboratory outlined the following performance evaluation goals (the terms

"peaks" and "regions" will be defined in Chapter 2):

1. Choose the best of four system configurations which analyze image peaks.

2. Choose the best of four system configurations which analyze image regions.

3. Determine whether MSTAR works better when analyzing the peaks or regions version

of a particular configuration.

We address all three of goals in Chapter 5, beginning with the third goal, which involved a

simpler 2-system comparison rather than the more complex 4-system comparison of the

first two goals. Given test parameters set to WL specifications, the Wald test chose the

regions configuration as superior to the peaks configuration in nearly 100% of Wald test

runs with the data randomly reordered each time, using about a quarter of the samples

necessary to compute confidence intervals of similar accuracy. The data sets provided for

the other two testing goals were too small for conclusive testing, so simulated data was

used instead, generated from estimated probabilities of identification from the WL data

sets. The Wald test for 4-system comparisons developed in Chapter 4 successfully chose

the best systems using about one third of the samples necessary to compute confidence

intervals.
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II. The MSTAR System

This chapter provides an introduction to the Moving and Stationary Target

Acquisition and Recognition (MSTAR) System, an example of an ATR system which

presents an ideal application for sequential testing. We include a primer on synthetic

aperture radar, and discuss the factors which affect the performance of an ATR system.

2.1 MSTAR System Design and Configuration Competition

The Moving and Stationary Target Acquisition and Recognition (MSTAR) System

is a model-based approach to automatic target recognition of SAR imagery. Previous

solutions to the SAR ATR problem relied on impractically vast data libraries of targets at

numerous angles and configurations. The model-based algorithm relies on computer-

generated templates for matching an identity to each image, based on only a small data

library of stored actual SAR imagery of targets.

The system consists of six modules [11]:
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SOn-Lie Hypothesize

Figure 2.1 MSTAR system architecture [11]

" Focus of Attention (FOA): From SAR image input, identifies regions of interest in the

image (ROIs) which may contain targets

" Indexing (IX): For each ROI, generates a list of potential "hypotheses" from the

stored imagery database, which serve as initial guesses of the target's identity

" Search (S): Investigates hypotheses and searches for model improvements; acts as a

central node in the PEMS loop (Predict, Extract, Match, Search; see below)

" Predict (PR): Based on the hypothesized model, predicts features which may occur in

the target image

" Feature Extract (FE): Identifies and extracts peaks and regions features from the ROI

(explained in Section 2.4)

* Match (M): Matches extracted features with the predicted target features

The last four modules form an iterative loop, called PEMS (predict, extract, match,

search). This loop explores the hypothesis space for the hypothesis which matches the
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ROI with the highest possible level of confidence. The Search module outputs a target

report listing the specific class and identity of the target (for example, a T72 tank) for each

ROI.

In June 1995, DARPA (Defense Advanced Research Projects Agency) funded and

WL awarded contracts for developing and integrating the system modules described

above. Several of the modules were dually awarded, yielding several possible system

configurations. A configuration is a specific combination of the six modules in Figure 2.1.

Further, systems which extract and match image peaks can be considered different

configurations than those which consider regions. Explanations of peaks and regions

follow in Section 2.4.

Of the configurations which meet specifications, the best configuration will

correctly identify targets in a SAR image more frequently than any other configuration.

Module interaction may affect configuration performance; for example, the match module

in the best configuration may not be the best stand-alone match module. WL must select

the single contractors for the dually-awarded modules which are included in the best full-

system configuration.

2.2 The MSTAR Performance Estimation Problem

In addition to selecting the best configuration, WL needs to estimate four

performance parameters to verify that at least one configuration of the MSTAR system

meets the following specifications for each parameter with 95% confidence:
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e Probability of detection (pD) 0.9

9 Probability of correct classification (pcc) given detection 0.9

e Probability of correct identification (pID) given detection 0.7

e False alarm rate 0.001/km2

"Correct detection" is defined as correctly declaring that a target in an ROI is, in fact, a

target. A "false alarm," or incorrect detection, occurs when the system declares clutter,

such as trees, as a target. "Correct classification" is defined as the system properly

classifying a detected target as a member of one of five classes listed in the table below.

For example, if we input an armored personnel carrier (APC) image and MSTAR reports

the same, though it may not correctly identify the specific APC, we have a correct

classification. "Identification," a subset of classification, is naming the specific

alphanumeric target designator. A sample correct identification would occur if we enter a

T72 image into MSTAR, and MSTAR reports identification of a T72.

WL wants to test the null hypothesis that pD < 0.7 against the alternativepID __

0.7, where pID is the probability of correct target identification. We could simultaneously

test Ho: pcc < 0.9 against H: pcc >- 0.9, where pcc is the probability of correct

classification. The estimates of both parameters, PD and Pcc, are conditioned on

detection and can be calculated from test data as follows [6]:

number of target images declared as targets
number of target images tested
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= number of correctly classified target images
number of detected target images (2.2)

PI= number of correctly identified target images (2.3)

number of detected target images

This study focuses on only on pID such that all result-related experimental decisions

depend on pD estimation above estimating any other performance parameter. WL wants

to know whether at least one MSTAR configuration meets these specifications, but

assuming that at least one system has a pID of at least 0.7, they are most interested in

finding the best system. Since we focus onpD, we will assume that all targets have been

detected, and we want to study system performance in identifying detected targets.

2.3 MSTAR Extended Operating Conditions (EOC's)

The MSTAR extended operating conditions (EOC's) form a set of "highly

challenging, militarily realistic scenarios" which MSTAR is being designed to operate

under [3]. The EOC's incorporate eight factors, each with several variations (the number

of variations for each factor is included in parentheses):

1. target type (20)

2. aspect angle from sensor to target (continuous, 360)

3. depression angle from sensor to target (continuous, all angles from 10 to 450)

4. articulation (examples: hatches open or closed; SCUD up or down) (36)

5. target configuration (variations on target type, e.g. old vs. new T72) (16)

6. obscuration of target by barriers, trees and other objects (20)

7. layover camouflage (20)
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8. netting camouflage (5).

Of the twenty MSTAR target types, the thirteen target types used in the first phase

of the program are listed in Table 2.1.

Table 2.1

MSTAR EOC target types [6]

Main Battle Armored Self-Propelled Truck (T) Mobile Missile
Tank (MBT) Personnel Gun (SPG) Launcher

Carrier (APC) (MML)
T72t BMP2t M109 M548 SCUD*
M1 M2t Milo M35*

M113 HMMWV*
BTR60*
BTR70*

* Wheeled vehicles. All others have tracks.
t Three examples available in the collected MSTAR data. Only one example available of all others.

The version of MSTAR tested in this study was not developed to identify the three

italicized targets above. They act as "confusers," or targets which the system should

declare in the "other" category.

In addition to the target type, engineers have identified the aspect and depression

angles of the target from the sensor as the two other most important factors in the critical

factor set. These angles represent orientation of the SAR sensor with respect to the

target, as seen in Figure 2.2, where OA is the aspect angle and OD is the depression angle.
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Figure 2.2. Aspect and depression angles [3].

WL randomly drew a representative set of images from the space of all target types,

aspect angles (sometimes called azimuth), and depression angles for use in estimating

MSTAR performance. Each target (T) at each aspect (A) and depression (D) angle has a

different pID, since SAR imagery characteristics, including broadside flash, can make a

target more or less difficult to detect at different angles. These characteristics are

explained in Section 2.4. Henceforth, a T, A, D scenario refers to a specific target at a

certain aspect angle and a certain depression angle, such as a T72 at 450 aspect and 30

depression. Therefore, we define pD for a scenario as the probability of identification for a

given T, A, and D. All of the other factors and exterior conditions are lumped into a

variable which we will call environment (henceforth E), and which accounts for the

randomness in the estimate of pD for each scenario, fitD. We further define the overall

pID for an ATR system as the mean of all scenario pD's across the full discrete range of

targets, and the continuous ranges of all aspect angles and depression angles from 15 to

45 . We will use PID as the single performance measure for comparing the MSTAR

configurations.
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Note that the pID of a T, A, D scenario is not binary and may lie anywhere in the

interval [0,1], since MSTAR may correctly identify one image of a scenario, but may not

correctly identify a different example of the same scenario. Most military targets,

particularly tanks, have dents or homemade additions which will alter the SAR image; in

one example, a crew had bolted a hibachi to the back of their tank, which had square metal

corners and thus changed the appearance of the SAR return. If we process one specific

ROI through MSTAR multiple times, the system will always produce the same target

identification report, but a different ROI of the same T, A, D scenario may be differently

identified by MSTAR.

2.4 Synthetic Aperture Radar (SAR)

Though ATR systems have been built using a variety of sensors, MSTAR uses

SAR imagery. SAR sensors collect data while moving around an object, while the object

is moving, or both; therefore, image quality can vary with a sensor's orientation to a target

in terms of aspect and depression angle [10:14]. Synthetic aperture radar simulates a large

antenna by scanning an object with a fanlike beam from a small antenna, and processing

the resulting radar return, which consists of phase-shift data. Sensor range does not affect

resolution, so the sensor vehicle can operate at considerable range from the object [13].

In military applications, this means that an aircraft with a SAR sensor can collect imagery

while maintaining a safe distance from a target. SAR sensors usually use microwaves,

which allows all-weather surveillance of potential targets [13]. SAR images look as if the

sensor has shone light on a contoured, mirrored surface. Imagine walking into a dark
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room full of mirrored objects with a miner's light on your forehead; what you would see

resembles a SAR image, with large and small bright spots and dim regions. Sharp comers,

such as the inside comer of a truck bed, will produce large bright spots when imaged from

certain angles, while the flat area on the front of a tank may appear as a dim or dark region

between bright spots. Images consist of a variety of light and dark spots in arrangements

corresponding to the imaged target. The bright spots, known as "peaks," and the regions

comprise the two types of features in SAR imagery. The MSTAR system can identify

targets based on either the peaks or regions, thus adding feature type to the factor set.

Figure 2.3 is a sample SAR image of an M-60 in which the peaks are clearly visible.

Figure 2.3. Synthetic SAR imagery of M-60 at 200 depression and -123' (left
image) and -120o (right image) aspect [3]

At some aspect angles, particularly 00, 90, 1800, 270', the broadside flash effect

can occur. This effect results when the many bright peaks visible from a cardinal angle

overlap and blur into a flash. This effect makes image analysis very difficult for a trained

human, let alone an ATR system.
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The mathematics of SAR are beyond the scope of this thesis, but the resolution of

the sensor data affects the levels of aspect which we may test. The SAR sensor used to

collect MSTAR data has resolution of 1 foot and a frequency of 10 GHz, so that sensor

data collected 30 of aspect apart can be considered independent. The following angle

resolution calculation below demonstrates this, where A is wavelength, f is frequency, OA is

aspect angle, and c is the speed of light (recall from physics that )Af = c):

resolution = (2.4)
2sin( A

OA - c 2.9979 x 108

2f (resolution) 2(10 x 10')(0.3048)

A = 0.0492 = 2.818' = 30

Therefore, we can collect independent performance data at every three degrees of aspect

around the target, giving us a maximum of (3607/3) = 120 possible aspect angle levels [5]

for each pass around the target at each depression angle. If the sensor platform circles the

target many times, independent imagery can be collected at all aspect angles. The

MSTAR EOC list also includes all depression angles between 10 and 45; however, only

two are available for this experiment, restricting our choice of levels. The experiments in

Chapter 5 were thus performed on data which is not truly representative of the whole

depression angle space, but we will treat them as such for demonstrative purposes.
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III. Binary Data and Sequential Testing

This chapter describes some simple statistics and techniques for analyzing binary

data, and introduces the Wald test for the difference in two proportions. We consider the

Wald test since it generally requires fewer sample images to compare two ATR systems

than are required by conventional statistics, and is thus more efficient in most cases.

3.1 Binary Responses

To estimate PID, for example, we must process enough images through a given

MSTAR configuration to estimate performance with sufficient accuracy, per WL

judgment. The outcome of each run consists of a correct or incorrect identification; in

other words, the experiment yields a binary response.

Estimating the probability of success p of a binomial distribution involves

averaging n observations xi, wherexi E (0,1 } (0 for incorrect identification and 1 for

correct identification):

n

dX!

(3.1)
n

The variance of the estimate is dependent on both /3 and the number of
n

independent samples n. Therefore, confidence interval widths vary with both parameters
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[12:417], as seen in Equation (3.2), which assumes large sample sizes and thus uses zl_,j2

instead of tl-,,2 as the critical statistic.

for large n: Z z 1 112  (3.2)

We generally need very large sample sizes to obtain reasonably narrow interval

widths, but also want to reduce data requirements as much as possible. To compare two

systems, we can either compare the interval calculated via Equation (3.2) for two systems,

or we can use an interval for the difference Ip, -p21, henceforth called a difference interval.

The difference interval allows us to choose a superior system with fewer samples than

comparing two intervals, but still needs large sample sizes when the difference is small. As

in the construction of Equation (3.2), we require independent sampling for estimation of

hA and h2 . We calculate difference intervals for large sample sizes via

(PI-h2)I z-, 2 ( P2 ) (3.3)ni n2

When constructing intervals, we want the data to represent the spectrum of aspect

angles and depression angles for all of the targets, since pD may differ for different targets

at different angles. The binomial confidence interval method assumes constant variance

for all observations, and since pJD(l - pID) is different for different scenarios, the MSTAR

case violates this assumption. Unless we sample data to estimate pID for each
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configuration independently and thus treat the data as samples from a binomial population

with parameter pID, we must derive and use a confidence interval which accounts for

variation in the scenario pID's. Given binary data from a set of scenarios which represents

performance across the entire aspect, depression, and target space, we can construct the

confidence interval in Equation (3.4), derived in Appendix A, where i, j, and k represent

target, aspect, and depression, Pjk is the estimated probability of identification for a

scenario with target i, aspect j, and depression k, and Nijk is the number of independent

observations of scenario ijk. Pijk is the probability of acquiring scenario ijk; for example,

guerrillas in underdeveloped countries may have more trucks than Scuds, so the

probability of acquiring a Scud would be lower than that for a truck. The MSTAR design

initially assumes that all targets are equally likely, to be mission-nonspecific.

mk -- Zl-,i2 (3.4)i j k k Nijk

This confidence can be used if sufficient data for a representative scenario set is available.

Unlike Equations (3.2) and (3.3), this interval accounts for the variation in observed

system /ID caused by T, A, D and E. A difference interval can also be constructed from

this formulation. The choice of confidence interval depends on the sampling method,

which is discussed in Section 4.2.
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3.2 Ranking and Selection Techniques

When we want compare probabilities of success for different systems but prefer a

procedure which uses fewer samples than confidence intervals, we can use ranking and

selection procedures. The goal of this technique is to "select the population with the

largest p value" from a set of k binomial populations with ordered p-values such that pu1] <

P[2] < ... <Ptk] [7:105]. Note that the procedure does not aim to specifically estimate the

probabilities, but merely to identify which population has the highest p-value. The

procedure is based on the distance measure 8, where = PtkI - P8k-1], the difference between

the highest and second-highestp-values. The analyst must choose a value 6, which

represents the indifference region forp[k] - Ptk-)], and a confidence level P*, which is the

probability of correctly selecting the highest p. To relate this to classical hypothesis

testing, we may consider P* as analogous to 1 - a. Tables included in the appendices of

Gibbons et al. provide the required common sample size n to correctly select the best

system with a probability of"at least P* for all 8 > 6*" [7:107].

The test is performed by collecting n samples from each population and calculating

the proportion of successes, then ordering those proportions. Mathematically, we

estimate proportion pj for populationj as 3j = xjnj, where xj is the number of successes in

the ni total samples collected from populationj. Provided that n independent samples

have been collected from each population, we may conclude with a (1 - P*)% chance of

error that we have correctly identified the highest proportion.

To illustrate this procedure, suppose we want to find the highest p from a set of

four populations with 90% confidence, such that the difference between the highest and
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second highest p is 0.10. Therefore, k = 4 and (6*,P*) = (0.10, 0.90). We would refer to

Table E. 1 of Gibbons et al. to find the required common sample size, an excerpt of which

appears in Table 3.1.

Table 3.1

Smallest integer sample size n needed to satisfy the (6*,P*) requirement in selecting the
binomial population with the largest probability [7:425]

k=4
p*

_ * .80 .85 .90 .95

.05 359 458 601 850

.10 90 114 150 212

.15 40 51 67 94

.20 23 29 38 53

The underlined entry in the table shows that we need 150 samples of each population to

calculate proportions which we can order to find the best population with 95%

confidence.

The test allows for ties for first place such that when the two highest p-values are

equal, one of the populations is selected at random. The random selection preserves the

maximum probability of error P* so that no correction to the confidence level is necessary

[7:108].

If the desired (5* or P* values for an experiment do not appear in Table E. 1 of

Gibbons et al., we may use the figures of Appendix F of the same reference to calculate

the required sample size. If 3* or P* is beyond the range of those figures, we may try to
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extrapolate from the figures [7:427], or may use an approximation if we want to detect

small differences in the probabilities with a high level of confidence.

In cases where we want a small a* and a large P*, we may use a normal

approximation to this binomial problem. This tests uses different tables and a different

sample size calculation. In this case, we approximate n = (1 - 8*2)('cd28*)2, where r, is

found in Table A. 1 of Gibbons et al. based on P* and the number of systems being

compared k. An excerpt of this table appears in Table 3.2.

Table 3.2

Values of r, for fixed P* [7:400]

p*

k .900 .950 .975
2 1.8124 2.3262 2.7718
3 2.2302 2.7101 3.1284
4 2.4516 2.9162 3.2220
5 2.5997 3.0552 3.4532

For example, in the MSTAR case, we will compare 2 and 4 systems with a = 0.05

and 61 = 0.03. To perform this selection test, we need to collect n = (1 - & 2)(rt23*)2 =

(1 - 0.032)(2.3262/0.06)2 = 1502 samples from each system for the 2-system comparison,

and (1 - 0.032)(2.9162/0.06)2 = 2361 samples for a 4-system comparison. The difference

intervals described in Section 3.1 require about 1800 and 3300 samples respectively to

perform the same test, as shown later, so the ranking and selection procedure provides

some savings over the confidence interval comparison technique in the MSTAR case.
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Sample sizes for the ranking and selection procedure for choosing the best of 2, 3, or 4

systems with 95% confidence appear in Table 3.3.

Table 3.3

Minimum sample sizes for the ranking and selection procedure with P* = 0.95

Number of Systems Compared
*2 3 4

0.01 13527 18360 21259
0.02 3381 4589 5314
0.03 1502 2039 2361

0.04 845 1146 1327
0.05 540 733 849
0.06 375 509 589
0.07 275 373 432
0.08 211 286 331
0.09 166 225 261
0.10 134 182 211
0.11 111 150 174
0.12 93 126 146

Though the ranking and selection sample sizes improve upon the confidence

interval sample sizes, sequential tests may require even fewer samples. Since image

processing can be time-consuming and image collection is very expensive, we prefer to

compare ATR systems with the smallest possible number of samples needed to choose one

system as statistically significantly better than another. We will therefore explore

sequential testing, keeping in mind that we can terminate a sequential test and use another

technique on the data collected if the sequential test fails to terminate within the sample

sizes required by the fixed-sample-size techniques.
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To address the MSTAR performance specification of pJD> 0.7, we assume that at

least one MSTAR configuration will meet the specification, and can verify this with a

single confidence interval after comparing the systems.

3.3 Sequential Testing

Abraham Wald developed several sequential tests for making acceptance or

rejection decisions of hypotheses with the minimum number of trials [19]. Some of these

tests specifically concern binary data. For example, the sequential probability ratio test

reduces the expected number of samples required to determine whether a proportion p is

equal to one of two hypothesized proportions, po or pi, as compared to the sample sizes

required by confidence intervals or ranking and selection. Appendix B contains a

description of this test. Wald also derived a procedure to test for a difference in the

probabilities of success for two processes, p, andp 2, such that one produces successful

trials (i.e., a value of 1) significantly more often than the other. While we could simply

test two systems on a large enough set of representative scenario data to be able to

calculate confidence intervals as in Equation (3.3) which detect a difference, or perform

the ranking and selection procedure, the Wald test cuts the runs required for system

comparison by a large amount, particularly when the difference 'p, - p21 is less than 0.05.

Wald noted "that these sequential tests usually lead to average savings of about 50 per

cent in the number of trials as compared with" confidence intervals [19:36], which can

translate into significant cost savings in some experiments. Also, recall from Section 2.3

that the ROI pD's are not constant, so the variances p,1 (1 - pl) and p2(1 - p2) are also not
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constant, and thus binomial confidence intervals as in Equation (3.2) are not truly valid

when we cannot independently sample from pl and p2. In the case of the unequal pl and

p2p across the range of i, the Wald test is a "correct procedure," while binomial confidence

intervals are theoretically inapplicable [ 19:109].

A description of the Wald Ip, - p2' test follows in order of implementation, starting

with necessary parameter selection, and proceeding to actual execution.

3.3.1 The Wald sequential test for Ip, - p21. In many industrial examples, a given

process is installed and operating, and the company must determine whether to replace it

with a new process, usually at some cost. The hypothesis for Wald's test is as follows.

Ho: pi > P2

H-1: p, < P2

The null hypothesis supposes that existing process 1 is as least as good or better than new

process 2, while the alternate hypothesis states that process 2 is better, assuming that we

prefer high values of p.

The test is based on the ratio of the "efficiencies" of the two processes. Wald

defines "efficiency" k as the ratio of successes (ones) to failures (zeros) such that for any

process, k = p/(l-p), where p is the true probability of success. The value u is the ratio of

efficiencies for two processes:

k2  P2 (- 1 -P)
U k= L p(-P 2 ) (3.5)

k 3 A(1- P2)
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Inspection shows that if u < 1, process 1 is better; further, if u = 1, the processes are

equally efficient, and if u > 1, process 2 is better.

To implement the test, we must first set parameters uo and ul. Wald explains the

procedure for choosing these values in terms of manufacturing processes:

"...select two values of u, Uo and Ul say, such that the rejection of process 1 in
favor of process 2 is considered an error of practical importance whenever the true
value of u < uo, and the maintenance of process 1 is considered an error of
practical importance whenever u > ul. If u lies between UO and ul, the
manufacturer does not particularly care which decision is made." [19:110]

Since u-space is less than intuitive, we may choose u values more easily by

investigating u in terms of p, and p2. Table 3.4 displays of u values for various p, and p2

values.
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Table 3.4

Values of u for the full range of possible p, and p2

Pi / P2 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.10 0.00 1.00 2.25 3.86 6.00 9.00 13.50 21.00 36.00 81.00
0.20 0.00 0.44 1.00 1.71 2.67 4.00 6.00 9.33 16.00 36.00
0.30 0.00 0.26 0.58 1.00 1.56 2.33 3.50 5.44 9.33 21.00
0.40 0.00 0.17 0.38 0.64 1.00 1.50 2.25 3.50 6.00 13.50
0.50 0.00 0.11 0.25 0.43 0.67 1.00 1.50 2.33 4.00 9.00
0.60 0.00 0.07 0.17 0.29 0.44 0.67 1.00 1.56 2.67 6.00
0.70 0.00 0.05 0.11 0.18 0.29 0.43 0.64 1.00 1.71 3.86
0.80 0.00 0.03 0.06 0.11 0.17 0.25 0.38 0.58 1.00 2.25
0.90 0.00 0.01 0.03 0.05 0.07 0.11 0.17 0.26 0.44 1.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

As seen in the table, u can assume values from zero to very large; values in thep = 0.0

row and p2 = 1.0 column are infinite and were therefore omitted.

Since u ranges significantly with pi and p2, we may find a table with higher

resolution in a specific area of interest more useful. For this, we need an educated guess

or reference point of the true values of p. For example, in the MSTAR case, pID > 0.7

according to system specifications. Therefore, we are most interested in detecting

differences in p, and p2 when both are near 0.7. Table 3.5 contains u-values in this

neighborhood.
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Table 3.5

Values of u for selected p, and p2 from 0.66 to 0.75

P1! P2 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75
0.66 1.00 1.05 1.09 1.15 1.20 1.26 1.32 1.39 1.47 1.55
0.67 0.96 1.00 1.05 1.10 1.15 1.21 1.27 1.33 1.40 1.48
0.68 0.91 0.96 1.00 1.05 1.10 1.15 1.21 1.27 1.34 1.41
0.69 0.87 0.91 0.95 1.00 1.05 1.10 1.16 1.21 1.28 1.35
0.70 0.83 0.87 0.91 0.95 1.00 1.05 1.10 1.16 1.22 1.29
0.71 0.79 0.83 .87 0.91 0.95 1.00 1.05 1.10 1.16 1.23
0.72 0.75 0.79 0.83 O.87 0.91 0.95 1.00 1.05 1.11 1.17
0.73 0.72 0.75 0.79 0.82 0.86 0.91 0.95 1.00 1.05 1.11
0.74 0.68 0.71 0.75 0.78 0.82 0.86 0.90 0.95 1.00 1.05
0.75 0.65 0.68 0.71 0.74 0.78 0.82 0,K 0.90 0.95 1.00

Suppose that we are interested in detecting a difference of 0.03 between p, and p2.

We can look along the underlined diagonals in Table 3.5 where Ip, - p21 = 0.03. Forp, >

p2, the u values are 0.86 or 0.87, and forp, <p2, u ranges from 1.15 to 1.17. Note that uo

= 1/ui, since we want to compare the systems fairly. In a manufacturing case where

process 1 with probability of success pi is already installed and running, we may prefer to

maintain process 1 if p, - p2 > 0.03, but we will only install system 2 if p2 -p, > 0.05. If p2

-p, = 0.04, we will maintain process 1. In such a situation, the u-values will not

necessarily be reciprocals, but in the MSTAR case, we want to compare the systems fairly.

Further argument for setting Uo = 1/u, appears in Section 4.3.

After setting uo and uj, we also choose the values a and 13 to reflect risk tolerance.

In many statistical tests, a and 13 are the desired significance level and 1 minus the power

of the test respectively. The significance level a is the probability of a type I error, the

case in which the test rejects the null hypothesis when the null is actually true. 3 is the

3-12



probability that the test accepts the null when the alternate hypothesis is correct, also

known as Type I error [8:224]. Appropriate values of 0c and /3 depend on the required

accuracy of the test and the resources available, since increased accuracy usually increases

the cost of the experiment. However, Wald also defines a and 3 as risk tolerances for this

test. Parameter a is an upper bound on "the probability of rejecting process 1.. .whenever

u < uo," and parameter /3 is an upper bound on "the probability of maintaining process

1...whenever u > ul" [ 19:110]. Parameters a and 13 represent risk tolerances for choosing

the wrong process, as well as test significance and power. Also, the actual probability of

incorrectly choosing process 1 could be less than a for some u-values, for example, since

a is an upper bound.

The last step in setting up the test is to ensure that the data is in paired format. In

other words, the two sets of zeros and ones from each process must be paired in the form

(ci, di), such that ci is the ith data point from process 1, and di is the iti result from process

2. In the MSTAR case, a data point is the result of the system processing a specific ROI,

and holds a value of one if the system correctly identified a target, and zero if it incorrectly

identified the target. To maintain the fairest comparison between the configurations, we

could require that c, and di be the processing results from the exact same ROI, where each

ROI has a different pD depending on T, A, D and E. This blocks on the effects of T, A,

D, and E, so only system performances are compared, and is mathematically correct since

the Wald test allows for tests in which pD is nonconstant between samples [19:109].

Alternatively, we can randomly draw an ROI for ci and another for di, ignoring the effects

of T, A, D and E and treating the data as random draws from a binomial distribution with
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a constant overall system pD. The choice of sampling scheme depends on the

experimental goals, and will be discussed further in Chapter 4.

Starting with the first data pair and proceeding through the set, we increment a

counting variable, called ti, each time a pair (1,0) appears, and increment counting variable

t2 for each (0,1). The test ignores all (0,0) and (1,1) pairs. Further, t is the total number

of (0,1) and (1,0) pairs, such that t = t + t2. The following equations provide critical

values of t2 for choosing the superior process [ 19:111]:

/3 l+u l

log1  log1+u 0

lower bound: 1- + t + (3.6)
log u, - log u0  log u1 - log u0 (

log 1- log 1 + u

upper bound: - (3.7)
log u1- log uo  logu - log u

If t2 falls below the lower bound for any value of t, we conclude that process 1 is better

than process 2. If t2 exceeds the upper bound, process 2 is better than process 1. If t2

remains between the bounds, we continue testing.

We can depict this procedure in graphical form, plotting the values of the bounds

as functions of t:

3-14



30 1process 2 superior

30--]

continue sampling
12 20-

15- . . . . ..............

5 .. process 1 supeior

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
t! + t 2

Figure 3.1. Wald Test of H o: p 2 < p,

When t2 breaks through a boundary, conclusions can be drawn as labeled.

3.3.2 Comparing multiple systems. In comparing more than one process, we

could perform several of these tests simultaneously with the same critical values. For

example, in the MSTAR case, we want to choose the best of systems A, B, C and D. The

null hypothesis is now pA = pB = PC = pD, where px is the probability of identification for

system X. The alternate hypothesis is that anypx is higher than any otherpx. We

construct the (4) = 6 simultaneous pairwise tests with the following null hypotheses:

PA =PB
PA = PC
PA =PD
PB = PC

PB = PD
Pc = PD
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Further suppose that when t, + t2 = 26, the fifth test rejects the null hypothesis and finds

that pB > PD. Though we have not disproven the hypothesis that pA = PD and pc = pD, we

can discard D, as we have shown that it cannot be the best system.

When performing multiple pairwise comparisons like those described in the

previous example, we must modify our choice of a. If the maximum probability of type I

error of each pairwise comparison is 0.05, then the probability of correctly choosing the

best configuration in all six tests could be as poor as (1 - 0.05)6 = 0.735 if the tests were

independent. Since probabilities of selecting the correct configuration of less than (1 - a)

are unsatisfactory by definition, we can apply the Bonferroni inequality and use a level of

significance aIM for each test, where M is the number of pairwise comparisons. The

Bonferroni inequality states that the sum of the maximum probabilities of type I error for

all of the pairwise tests Ai is at least as great as the joint significance for all of the pairwise

comparisons together

[ 17:153]. Mathematically, if we perform M simultaneous tests and let AI denote the event

that test i results in a type I error, then

P nA. __ 1- YP(Ai) (3.8)

Therefore, using a significance level of P(Ai) = a/NI for each pairwise test provides a

conservative approximation of the desired joint maximum probability of type I error of a
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for all of the multiple comparisons. The same procedure may be applied to parameter Pl to

achieve the desired maximum joint probability of type II error.

To increase the power of multiple pairwise comparison tests, Holm [9] proposed a

sequentially rejective Bonferroni (SRB) procedure which maintains a as the overall test

significance. Rather than using a/M for all tests, Holm uses a / (M - j), wherej is the

number of hypotheses which have been rejected so far, or pairwise tests which have

terminated. For example, in the(4)= 6 pairwise tests case with a desired overall

maximum probability of type I error of 5%, we begin with an individual test maximum

probability of type I error of c16 = 0.0083. After one of the tests terminates, the

remaining five continue with an individual maximum probability of type I error level of

a/(6 - 1) = 0.01, and so forth until the final remaining test uses a = 0.05. For a given set

of pairwise tests, this SRB procedure allows at least as many tests to conclude as the

original Bonferroni procedure, and can actually resolve some of the pairwise tests which

the Bonferroni procedure may deem inconclusive. (Since the Bonferroni procedure

maintains /M as the significance even to the last remaining hypothesis, the test

boundaries seen in Figure 3.1 are often too far apart for the plot of a limited data set to

reach either boundary if the difference between the pID's for the final two systems is small.

Therefore, a test may fail to conclude, whereas the SRB allows the boundaries to move

closer together after some hypotheses are rejected or accepted, so that the same test may

reach a boundary more easily and thus conclude.)
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Shaffer [18] further modified the SRB to account for overlap in test hypotheses.

Suppose, for example, that in the case of processes A, B, C and D above, we found that pB

> pD. Under the SRB procedure, our individual test maximum probability of type I error

would increase from a/6 = 0.0083 to a/5 = 0.01. However, logically, we are also

eliminating the tests forpA = pD and pc = pD, since we know that system D cannot be the

best. The maximum number of possible true hypotheses t, or test outcomes, is actually

reduced from six to three. Therefore, we can continue testing with a13 = .0167, and the

individual test maximum probability of type I error under Shaffer's Modified Sequentially

Rejective Bonferroni procedure (MSRB) is a/tj. Holm proved that the SRB maintains the

overall maximum probability of type I error of < a, and the MSRB follows under the same

proof, summarized by Shaffer, where m is the total number of true hypotheses, n is the

maximum possible number of true hypotheses, and Yi is the probability that the test

statistic of hypothesis i is greater than the statistic for the observed data:

"The basic idea behind Holm's proof is that if m hypotheses are true, an error must
occur at or before stage n - m + 1. Therefore, P(no errors) > P(Yi < am for some
iE I)> 1 - .,,a/m=l-a." [18:827]

We thus may use alt in place of a in Wald tests which we intend to use for

multiple pairwise comparison purposes, and modify the Wald bounds to reflect changes in

the individual test significance level as the test progresses. Henceforth, we refer to the

Wald p - p21 test modified by the MSRB as the Wald MSRB test.
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3.3.3 Expected sample size calculations. When performing the Wald MSRB or

any other test which requires sampling, experimenters usually need an estimate of the data

requirements for the test. For example, when testing whether a certain drug helps to

accelerate the recovery of heart attack victims, doctors need to know how roughly many

patients they need for the study so they can collect data as efficiently as possible.

Wald derived expected sample size equations for all of his sequential tests [19].

For the Ip, - p21 test, the expected sample size is calculated as follows. E.(t) is the

expected value of t, where t is the total number of unmatched pairs counted during testing,

(i.e. t = t1 + t2, where t and t2 are the counters for (1,0) and (0,1) pairs, respectively)

[19:115]:

L(u)(log J+)+ (1- L(u))(log 11)
E.(t)- ul( +uo) 1 g 1+Ul (3.9)

-..-log + l
1+u u0(1+ul) 1+u l u0

In this equation, L(u) is the probability that the test will retain process 1 when that process

is as at least as good as process 2 [19:113]. L(u) and u are calculated as [19:114]:

log -

L(u)= (3.10)
log 1 0l

a 1-a

3-19



log1 + u

log 1 +

u0(1+ u1 )

In his book Sequential Analysis, Wald gives both of these equations in terms of a

parameter h. Letting h -+ 0 produces Equations (3.10) and (3.11). Since Wald defined

L(u) as the "probability of maintaining process 1," and L(u) = 0.5 when h -* 0 and a = /3,

we will let h - 0 and proceed with Equations (3.10) and (3.11). Section 4.3.1 shows

that from Equation (3.10), L(u) = 0.5 when a = Pt. For further discussion and definition of

the parameter h and the operating characteristic of the test, refer to Wald, but for the

purposes of our objective, we assume that h --> 0 since this provides our desired value of

L(u).

In the special case that slope s of the test boundaries is equal to u/(1 + u),

particularly when both systems have equal probability of winning the test and are therefore

fairly compared, the expected number of unmatched pairs required for the test is

- (log 1 4 )~(log I 3ja
E , (t) = l (1+ u ) log l+ux (3.12)

guo (1 + ) l+u 0

To calculate the total expected sample size required, we divide Equation (3.9) or (3.12),

whichever applies, by p,(1 - p2) + p2(1 - pl). Therefore, the total expected sample size for

this special case is seen in Equation (3.13) [19:115].
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E , (total) = u1 (1+u0) 1+u1 (p 1(-p)+p2 (1-p1 ))' (3.13)
1--S log u (1 + u0) log 1uO Gl+ ul) l+Uo

More investigation of expected sample sizes appears in Chapter 4, in which we

perform sensitivity experiments on both the Wald Ipi - p2' test and the Wald MSRB test

and develop a methodology for implementation.
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IV. Implementing the Wald Test

4.1 Introduction

We chose to measure the performance of ATR systems by their probability of

identification pD, where we estimate pm by averaging the O's and l's which denote

incorrect and correct identifications of targets drawn from the T, A, D experimental

region. The identification of each target processed on an ATR system, either correct or

incorrect, is thus considered a binary response. To choose the best of a set of systems

which output binary responses, we usually require large sample sizes to get any clear

distinction in performance if the difference in the system probabilities of success is

relatively small. Wald's test for comparing two proportions can greatly reduce test sample

sizes, which is particularly helpful in cases which involve destructive testing (such as

testing a batch of fuses) or long processing times. In the ATR case, new systems such as

MSTAR take anywhere from a few minutes to hours to process an image and determine a

correct or incorrect identification of a target. The following methodology discusses the

implementation of Wald's procedure to compare two or four generic competing systems,

with examples from the competing configurations of the MSTAR system. The procedure

can be used to compare any set of systems which output binary response data, including

ATR systems for a military application. In the ensuing discussions, "configuration" and

"system" will be used interchangeably, since the MSTAR configuration comparison is an
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example of a system comparison. In many cases, engineers compare different systems,

which are not necessarily different configurations of the same system.

Throughout the following discussions, we will refer to the difference in probability

of identification for two systems 1p1 -p21 which we want to detect with our test as

sensitivity. WL has specified that in the comparison of two MSTAR configurations, they

want to choose the superior system with 95% certainty when the pID of one system is 0.03

greater than that of the other, but are indifferent if the difference in system performance is

less than 0.03; therefore, they want a test sensitivity of 0.03. Also, we will use test

performance as a metric of parameter suitability to attain a certain goal (for example, to

provide a certain sensitivity.) Test performance is based on an average of the scores from

running the Wald test with a certain parameter set on simulated data with known results,

and comparing the actual test results to the known expected results. If a test chose the

known superior system as the better one, the test performance score for that run was 1; if

the test chose the wrong system, the test performance score was zero. We calculate the

overall test performance for that set of parameters as the sum of the test performance

scores divided by the number of scores, so that if a test correctly picked the best system in

87 of 100 runs, the test performance was 0.87. Mathematically, where n is the total

number of runs and we are comparing parameter settings represented by tests j:
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0, if test j picks incorrect system as superior on run i

ziJ = 1, if testj picks correct system on run i

n

I<zij (4.1)
tpj = ' Vj, 1<j < total number of tests

n

As discussed above, a and P3 are the upper bounds on the error probabilities; now

let the realized probability of incorrectly choosing system 1 for a given set of u-values be

ox,,, and the realized probability of incorrectly choosing system 2 for a given set of u-

values, &i,.

We begin by describing two sampling schemes in Section 4.2. In Section 4.3, we

explore the parameters of the Wald test and create a methodology for setting up the two-

system comparison test. Section 4.4 includes a discussion of the modifications required to

compare multiple systems, followed by the outline of a four-system comparison

procedure. In Section 4.5, we address cautions and concerns for implementing the Wald

test. Throughout the following procedure, the engineer must set and remember the

experimental goals, in terms of desired sensitivity, desired a and P3, sample size limit, and

fairness of the sampling plan.

4.2 Sampling Schemes

Before discussing parameter choices for constructing a fair comparison of two or

more systems, we will address the data handling required to execute the tests. We can

collect data for the Wald test by following one of two sampling schemes. Scheme I

4-3



provides the fairest comparison from the producer's point of view, while Scheme I may

be the consumer's preferred method. Both use random drawn ROI's and are correct for

implementing the Wald test, but the schemes account for the effects of T, A, D and E

differently.

4.2.1 Scheme I: "Lock-step." In this scheme, each sample point is one randomly

drawn ROI which we input to all of the systems. For example, the thirty-second sample

for systems A, B, C, and D may be a T72 at 1230 aspect and 42 depression. Since all

systems are tested on the same ROI simultaneously, we are essentially blocking on the

effects of T, A, D and E. We thus treat the performance function for systempD as

follows:

Pm =f(system, T, A, D, E)

The "lock-step" pairing of samples acknowledges that pD for a system changes with T, A,

and D, and aims to minimize the effect of those factors on the system selection. E

accounts only for randomness in the observations at each T, A, D scenario, and we do not

treat it as a factor in pID, but lock-step comparison blocks on E as well since all systems

must process the same E at each step.

The hypothesis we test with this scheme is

Ho: pil -P21 = PI -P31 = ...= pn-m -pnm = O,
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for the multiple pairwise comparison of n systems processing m ROI's. The alternate

hypothesis is that at least onepik - pf 0 for any two systems i andj on an ROI k, ij E

{1...n},i#j,ke {E ... ml.

The producers of competing systems would appreciate this sampling scheme, since

every system is tested on performance on the exact same imagery in the same order, so the

factors T, A, D and E do not adversely affect which system is chosen as the best by the

Wald test. Systems may have strong and weak points, however, which may affect the

decision. Suppose that we are testing a system which is better with trucks than tanks

against one that successfully identifies tanks more frequently than it identifies trucks. If

our random sequence of ROI's begins with five trucks, the producer of the system which

performs better on tanks would be unhappy. We simply rely on randomness and our

choice of a to provide fairness in the sampling sequence.

4.22 Scheme II: Random Draw. This scheme ignores the fact that the piD's

change with T, A and D, and aims to test the overall pID for each system against all others.

For each sample point, we randomly draw an ROI for each of the systems. We treat

performance function for system pD as follows:

pID =f(system, all other factors)

Since we this scheme does not block on the other factors, which include T, A, D, and E,

these other factors cause randomness in the observations of the system performance for

different ROI's. We essentially treat the observed binary responses from all of the ROI's
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as Bernoulli trials from the same binomial population with an unknown system pD. As in

Scheme I, the sampling order can cause problems depending on system strong and weak

points, but in Scheme 11, one system can also be tested on six fairly easy targets while a

competitor receives six difficult targets. Again, randomness and a well-chosen a should

minimize these problems.

The hypothesis for Scheme II is

H4o: p, = P2 =.=P,,

again for n systems. The alternate hypothesis is thatpi #p2 for any two systems i and j, ij

{ f1...n}, i j. Note that in Scheme I, we test for differences in system performance

from ROI to ROI, whereas in Scheme II, we directly compare the overall system pD's.

Before executing any Wald test, the engineer must consider their experimental

goals, and choose the sampling scheme which best suits their needs. The lock-step

procedure has the advantage of requiring only one set of data collection instead of one set

for each system, so it may be less expensive and therefore a better choice if the

experimenter has no preference of sampling schemes according to his or her goals.

However, the random-draw scheme may require slightly fewer samples, and since it

requires independent sampling of the p-values, we can validly perform the ranking and

selection procedure on the data if the Wald test reaches the sample size required for

ranking and selection before terminating. Test parameters can be selected independently
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of the sampling scheme, since the parameters and the sampling scheme reflect different

goals.

4.3 Setting the Wald Test Parameters

4.3.1 Selection of parameters without regard for sample size. As discussed in

Chapter 3, we must begin implementation of the Wald test design by setting parameters uo

and ul, henceforth also referred to as the u-values. Our objective is to construct a

sequential test which compares two systems equally, i.e. each system has a chance of being

selected of 0.5 when pi = P2. In manufacturing cases like the one mentioned in Section

3.3.1, we may want to favor one system, or we may want to weight the probabilities of

selecting each system based on cost. However, in the ATR and MSTAR case, we assume

that system cost is a negligible factor in system selection and that we simply want to

choose the system with the best performance.

To compare the systems fairly, we assert that uo = l/u1, as mentioned in Section

3.3.1. Note in Equations (3.6) and (3.7) that only u-values, and not the parameters a and

18, are used to calculate the slope of the test boundaries. Assume that a = 1, which will be

discussed in more detail later. Given that uo = l/ui and a = , the slope of the test

boundaries becomes 0.5 as proven in Appendix C, and the chance of choosing either

system becomes equal when u = 1. The likelihood function of the test, in which L(u) is the

probability of retaining process or system 1, is as follows [19:114]:
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1-f3
log a

L(u) =a (4.2)
log - 1 P a

1- 0.05
log 0.05 log 19

L(u) 1-0.05 0.05 - 1 = 0.5
log0.05 log log 19-log -

Note that L(u) = s = 0.5, where s is the slope of the test boundaries, allowing us

to use the special case for sample size calculation mentioned in Section 3.3.2.

As discussed in Section 3.3.1, a is the upper bound on the probability of

incorrectly rejecting system 1, and 3 is the upper bound on the probability of incorrectly

maintaining system 1. Assuming that all tests conclude that one of the systems is superior,

a is also the upper bound on the probability of incorrectly choosing process 2, and /3 is

also the upper bound on the probability of incorrectly failing to select process 2. If a < 3,

then the upper bound on the probability of incorrectly choosing process 2 over process 1

is smaller than the upper bound on the probability of incorrectly choosing process 1 over

process 2. In other words, the maximum probability of incorrectly maintaining process 1

is greater than the maximum probability of incorrectly removing process 1 and installing

process 2 in its place. However, for the fairest system comparison, the systems must have

equal opportunity to demonstrate superiority. Therefore, we will set a = /3. WL has

requested that a = 0.05, so we will henceforth let a = 3 = 0.05.

To graphically demonstrate the effect of changing a and 3 such that a < /3, we

refer to Figure 4.1. As seen in Equations (3.6) and (3.7), these parameters affect only the
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test boundary intercepts and not the slopes, so assume constant u-values. In this example,

the dashed boundaries represent a test in which a = /3, while a < /3 for the test with the

solid boundaries. The different intercepts can give one system a sort of head start over the

other; the higher solid-line intercepts would allow the same plot of t, versus t + t2 to

break its lower boundary more easily than its upper boundary. In Figure 4.1, the plot has

broken the lower boundary for the test with the solid boundaries, but has not yet

concluded and could still potentially break the upper boundary of the test with the dashed

boundaries. Therefore, the solid boundaries allow a greater chance for the plot to break

the lower boundary and choose system 1 than the dashed boundaries.

25-20--

t2

0-
1116 1820--2 2426 28 30

-10

-15
t] + t 2

Figure 4.1. Wald boundary comparison for different (a,fi) settings

dashed bounds: a =/3; solid bounds, a < P

Given that a =/3 and uo = 11u, to construct a test to compare two systems fairly, to

find the proper u-values for an experiment, we need to start by selecting a test sensitivity
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level. WL expressed interest in detecting a difference of 0.03 between the ptD's of two

configurations, but we will examine other sensitivities as well, since other system

comparisons may require more sensitivity, and we may not have enough MSTAR data to

detect the specified sensitivity. For MSTAR, the specification for overall system pID is

0.7, so Uo and ul should be set such that the test correctly selects a configuration which

has apD 0.03 or more above the pD of a competing configuration, near the value of 0.7.

The test should be able to detect the difference between configurations A and B when the

true po's are at the following paired levels, which allow for 0.05 deviation above and

below the performance specification, as in Table 4.1.

Table 4.1

Pairs of p, and p2 with 0.03 separation around 0.7

A 0.75 0.74 0.73 0.72 0.71 0.70 0.69 0.68

B 0.72 0.71 0.70 0.69 0.68 0.67 0.66 0.65

Similarp-value pairs appear in Appendix E for other sensitivities.

To find the best u-values for sequentially testing MSTAR system configurations,

we conducted simulations with the following procedure, and examined the results. Note

that a similar simulation procedure can be used to find appropriate u-values if a must be

different for #3 for some reason, such as customer specification, but a fair comparison is
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still desired. Appendix D describes such a procedure, though setting a = P3 is easier and

more practical.

1. Choose the first (plp2) pair shown in Table 4.1, (0.75,0.72). Let (a, P5) = (0.05,0.05).

Let (uo, u1 ) = (0.5,2) as a starting setting. (For MSTAR, we determined from Table

3.5 that we should investigate around (uo, ul) = (0.86,1.16), but starting with other

parameters further from 1 demonstrates the effects of different u-values on test

sensitivity.)

2. Randomly generate 1000 Bernoulli trials for p, = 0.75 and 1000 for p2 = 0.72, using

the binornd command in the MATLAB® Statistics Toolbox.

3. Run the Wald test on the simulated data using a MATLAB®program.

4. Record whether the test correctly chose the system 1 (or the system with p = 0.75) as

superior.

5. Starting at Step 1, repeat the simulation 99 more times, and average the 100 results to

obtain a percentage of runs for which the test correctly chose the best system. Also

record percentage of incorrect and inconclusive tests.

6. Repeat Steps 1-5 with all other (pl, p2) pairs shown in Table 4.1.

7. Reverse the system order and repeat Steps 1-6, such that the first (pi, p2) pair is (0.72,

0.75). This ensures that correct testing does not depend on system order. Average

these results with those obtained in Step 5 for each (pl, p2) pair.

8. Repeat Steps 2-7 for other sensitivities featured in Appendix E.

9. Repeat Steps 2-8 for a range of u-values.

We began with three uo levels: 0.5, 0.67, and 0.75, shown in Figure 4.2.

Corresponding u levels are 2, 1.5, and 1.33. The y-axis represents test performance.
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Figure 4.2. Sensitivity of the Wald test with a = 0.05 for three u-value pairs.

Apparently, we can achieve sensitivity between 0.05 and 0.06 with (UO,ui) = (0.75,1.33).

In the simulation, this required an average of 200 samples, though Figure 4.3 shows that

the average required samples varies considerably. Smoothing the data logarithmically

using the MS Excel® trendline command results in the gray curves.
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Figure 4.3. Average sample sizes required to construct Figure 4.2.

The results displayed in Figure 4.2 essentially confirm Table 3.5 for a = 13 = 0.05.

This simulation procedure therefore has validated the Wald test, since the results show

that we can achieve given sensitivities with (1 - a)% accuracy when we use the u-values

which correspond to the sensitivities in Table 3.5. For example, Figure 4.2 shows that

when Uo = 0.67, and therefore u, = lluo = 1.5, we can achieve slightly better than 0.08

sensitivity; when we refer to Table 3.5, we see that these u-values lay appear near the

lower left and upper right comers, and correspond to just worse than 0.08 sensitivity (uo =

0.68 appears at (pl,p2) = (0.66,0.74), and 0.74 - 0.66 = 0.08 sensitivity). The slight but

favorable discrepancy on either side of 0.08 exemplifies an a. value of less than a, since

the simulation achieved the expected slightly-over-0.08 sensitivity at (Uo,Ul) = (0.67,1.5)

with about 97% accuracy instead of just 95%.

4.3.2. Expected sample sizes. The sample size results from the simulation plotted

in Figure 4.3 demonstrate that better sensitivity requires exponentially increasing sample

sizes. Though we can easily select u-values from Table 3.5 to detect the desired

sensitivity and perform the Wald test, we may need more samples than we can obtain with

our resources.

In his discussion of the test for Ip, - p21, Wald gives Equation (3.12) for the

expected number of (0,1) and (1,0), or unmatched, pairs required for test completion

when the slope of the test boundaries s is equal to the desired likelihood L(u) of the test.

Since we want L(u) = 0.5 and s = 0.5 so that each test has a probability of winning of 0.5,
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we can apply this special case. (Recall that L(u) =f(ta,A, and we let a =fl= 0.05 so that

L(u) = 0.5.) Appendix C demonstrates that u = 1 and s = 0.5 in the MSTAR tests.

By inserting parameters (a,f#) = (0.05,0.05) and a range of (uo,ul) = (uo, 1/Uo) pairs

into Equation (3.12), we obtain Figure 4.4. Note that as the u-values approach 1, the

expected number of unmatched pairs required to complete the test increases exponentially.

350

300

250,

expected number
of (0,1) and (1,0?00

pairs needed
150

100

50

0 L. .. is j e II

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

U 0

Figure 4.4. Expected number of unmatched pairs needed when (afl) = (0.05,0.05)

To find the total expected number of data points required, including matched and

unmatched pairs, we refer to Equation (3.13). This equation provides an average number

of ROI's required by the Wald test to detect the desired sensitivity with the selected a.

To compare the expected sample size for the Wald test to that of confidence

intervals and ranking and selection, we begin with Equation (3.13) for the Wald test, and

rearrange Equation (3.3) to obtain the required sample size for difference intervals in

Equation (4.3), since difference intervals require smaller sample sizes than comparing

4-14



independent interval estimates of each PD. We can calculate sample sizes for the ranking

and selection procedure directly from tables as described in Section 3.2. We acknowledge

that, as discussed earlier, binomial confidence intervals calculated for ATR systems violate

the constant variance assumption in the lock-step sampling scheme, since pID is not

necessarily constant for each sample. In the random-draw sampling scheme, we can use

binomial confidence intervals since we sample independently and treat the samples as

draws from the overall population with pD as its parameter. The lock-step scheme also

violates the independent sampling assumption of the ranking and selection procedure, but

the random-draw scheme does not and is thus valid. Despite the violation of

independence in the lock-step sampling scheme, we will use the confidence interval and

ranking and selection technique sample sizes as benchmarks to compare to the Wald test

expected sample sizes, and thus assume that we are using the random-draw sample scheme

throughout the sample size comparisons. Equation (4.3) provides the required sample

sizes for difference intervals, which can be estimated by inserting p-values with a

difference equal to the sensitivity on either side of the reference point, such as (pi,p2) =

(0.685,0.715) for 0.03 sensitivity and a reference point of 0.7.

n= Z_./2 VP1( 1 -A)+ P2(1-P2) (.(P1 - P2) "(43

The ranking and selection procedure requires smaller sample sizes than the

difference intervals. In the multiple comparisons case, this occurs since ranking and
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selection only identifies the best binomial population, and does not attempt to rank the

other populations with statistical significance as in the case of multiple pairwise difference

intervals. The smaller ranking and selection sample sizes provide a more challenging

benchmark for comparison to the Wald test sample sizes than the confidence intervals.

These sample sizes also provide a stopping condition with fewer required samples than the

confidence intervals; in other words, if a Wald test has not terminated but has collected the

number of samples required to choose the best system with the ranking and selection

procedure, we may simply terminate the Wald test and perform the ranking and selection

procedure to find a conclusion with the minimum number of samples.

We will now examine expected sample size for the Wald test. Table 4.2

demonstrates the robustness of expected total sample size to the true difference Ip, -p21.

To construct the table, we solved Equation (3.13) with u-values for sensitivities ranging

from 0.01 to 0.12, and with p-values on either side of 0.07 which reflect true Ipj - p2'

values ranging from 0.01 to 0.12. The u-values were calculated for the sensitivities via

Equation (3.5), again using p-values on either side of 0.07 to reflect the desired sensitivity.

For example, for sensitivity of 0.05, we used (plp2) = (0.7 - 0.05/2, 0.7 + 0.05/2) =

(0.675,0.725), and then reversed them to (0.725,0.675) to calculate the reciprocal u-value.

The values of p, andp 2 are interchangeable in Equation (3.13), so we need not

compensate for system order.
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Table 4.2

Expected sample sizes for the Wald test

Sens. 0,01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12
uO 0.95 0.91 0.87 0.83 0.79 0.75 0.72 0.68 0.65 0.62 0.59 0.56

True True ul 1.05 1.10 1.15 1.21 1.27 1.33 1.40 1.47 1.54 1.62 1.70 1.78
[pl-p2/ pl p2 Expected Sample Size

0.01 0.695 0.705 9101 2274 1010 568 363 252 184 141 111 90 74 62
0.02 0.690 0.710 9098 2273 1010 567 363 251 184 141 111 90 74 62
0.03 0.685 0.715 9092 2272 1009 567 362 251 184 141 111 90 74 62
0.04 0.680 0.720 9085 2270 1008 567 362 251 184 141 111 90 74 62
0.05 0.675 0.725 9075 2268 1007 566 362 251 184 141 111 89 74 62
0.06 0.670 0.730 9063 2265 1006 565 361 251 184 140 111 89 74 62
0.07 0.665 0.735 9049 2261 1004 564 361 250 183 140 110 89 74 62
0.08 0.660 0.740 9033 2257 1003 563 360 250 183 140 110 89 73 61
0.09 0.655 0.745 9015 2253 1001 562 359 249 183 140 110 89 73 61
0.10 0.650 0.750 8995 2248 998 561 359 249 182 139 110 89 73 61
0.11 0.645 0.755 8973 2242 996 560 358 248 182 139 110 88 73 61
0.12 0.640 0.760 8949 2236 993 558 357 247 181 139 109 88 73 61

Unlike the Wald test, the sample sizes for the confidence intervals are determined

by the desired sensitivity and a and the pD reference point, as is evident from Equation

(4.3) and explained above. The sample sizes in Figure 4.5 are the average sample sizes for

the eight points at each sensitivity level given in Appendix E, as used in the simulation

above. Actual results which show the change in sample size as p-values vary appear in

Appendix F.
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Figure 4.5. Required sample sizes for confidence intervals when a = 0.05.

To compare the sample sizes for confidence intervals with those for ranking and

selection and the Wald test, we can add the graphs of ranking and selection minimum

sample sizes and Wald test expected sample sizes to Figure 4.5, omitting sensitivity levels

0.01 and 0.02 to make the graph easier to read.
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Figure 4.6. Expected sample size comparison for Wald test vs. ranking and selection and
confidence intervals

Based on expected sample sizes, the Wald test requires about an average of about half as

many samples than confidence intervals for a = 0.05, and about two thirds as many

samples as ranking and selection.

Since a requirements depend on the experiment, examining the relationship

between sample sizes and a is worthwhile. Figure 4.7 summarizes sample sizes for the

Wald test, ranking and selection (R&S), and confidence intervals (CI's) for sensitivities of

0.03 or greater. Again, we omit 0.01 and 0.02 for legibility, and the order of the key

corresponds with the order of the lines as they appear on the chart. Note that the Wald

test is designated by solid markers, the R&S procedure markers are hollow, and the CI

markers are gray with a black border. Also notice that the expected sample size for the

Wald test at a = 0.05 is smaller than that for confidence intervals at a =0.10. We will use
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R&S samiple sizes as our 5 tOPPlflg condition; CI sizes are included merely for

denioflstatve purposes.
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Figure 4.7. Sample sizes for different c values
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well. Using the confidence interval sample size as a stopping condition guarantees that the

experiment cannot require a larger sample size than the precalculated confidence interval

sample size, but we can do much better if the Wald test terminates close to its expected

sample size.

4.3.3. Parameter selection procedure. Given the above examination of the

behavior of the parameters, the following procedure provides instructions for setting up

the Wald test to fairly compare two systems.

1. Determine whether a sample size constraint exists, due to time or resources.

2. Identify your desired test sensitivity, desired a, and reference point for the p-values.

Construct a figure similar to Figure 4.7 using Equation (4.3) and Equation (3.13) for

the range of p-values near your reference point, using the methods discussed to

construct the figures above.

3. Refer to Figure 4.7. Choose the best sensitivity level and a which you can achieve

with the sample size constraint. This will require balancing the a and sensitivity

requirements as well. Find the sample size required to detect this sensitivity and a

with ranking and selection for the difference in the two proportions.

4. Calculate the u-values corresponding to your achievable sensitivity using Equation

(3.5). Refer to the construction of Table 3.5 as an example.

5. Let 13 =a. Also verify that ul = l/uo, using u-values from Step 4.
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6. Perform the Wald test. Stop when the test terminates or when the sample size reaches

that required for ranking and selection. In the latter case, perform the procedure and

draw a conclusion.

For example, if we can afford only 500 images to test MSTAR and absolutely require a =

0.05, then according to Figure 4.7, our sensitivity will be approximately 0.045. Table 3.5

shows that u-values of (0.8,1.25) should work; note that 0.8 = 1/1.25. We can check this

by calculating Equation (3.5) for (pl,p2) = (0.7 - 0.045/2, 0.7 + 0.045/2) =

(0.6775,0.7225), so the u-values are (0.81,1.24) when the true p-values surround 0.70. If

we want to achieve 0.03 sensitivity with a = 0.05 as in the MSTAR case, we need to

obtain 1000 samples, according to Figure 4.7. We can calculate this exactly as well, but

since this number is only an expected value and not an exact deterministic sample size

requirement, reading the graph provides sufficient information for planning purposes. We

can expect to need about 1000 samples, and should decide if this is feasible given our

resources. Our R&S sample size is 1502.

Figure 4.8 summarizes the procedure described above.
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Figure 4.8. Wald test procedure for fair comparison of two systems.
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To summarize, balancing of the sample size, a, and sensitivity constraints depends

on the experiment, and appropriate tradeoffs should be made according to the

experimenter's objectives and required accuracy. The expected sample sizes are only

estimates of the actual required sample sizes, so allowance should be made for actual

required sample sizes larger than expected. For example, if we absolutely cannot exceed

1000 samples in an experiment, we should pick a sensitivity and/or a which corresponds

to an expected sample size of about 800. Engineering judgment thus dictates parameter

settings.

4.4 Comparison of Four Systems

To fairly compare four ATR systems, we introduce the MSRB procedure into the

Wald test to create what we will call the Wald MSRB test. The MSRB procedure states

that the significance level a of each pairwise test is the desired overall significance level ao

divided by the number of pairwise comparisons. In the four-system test, we begin with

(4) =6 comparisons and a = m0/6, then drop to (2 = 3 comparisons with a = o/3, and

then (2) = 1 comparison with a = a/1 as the test eliminates each system. As the value of

a changes throughout the test, the test boundaries move closer together each time a

system is eliminated, as prescribed by Equations (3.6) and (3.7). Figure 4.9 exemplifies a
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Wald MSRB test with constant uo and ui, where the center trace displays the sampled pair

data plot, and the outer lines are the test boundaries.
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Figure 4.9. MSRB Wald test for multiple comparison of systems

(t, + t2 counts unmatched pairs (0,1) and (1,0); t2 counts only (0,1) pairs)

4.4.1 Test parameter investigation. As in the two-system (henceforth two-

system) comparison test, we must begin by selecting the u-values. As discussed in

Chapter 3, these values represent efficiency ratios of two systems. In the four-system

case, we are simply performing simultaneous six pairwise comparisons, so the u-values

chosen in the single pairwise test apply. We begin with (uo,ul) = (0.867,1.153) for all

three tests, and obtain the boundaries shown in Figure 4.10.
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Figure 4.10. Starting Wald boundaries for multi-system comparison tests.

Gray lines - final test; Dashed lines - intermediate test; Solid black lines - initial test.

The further apart the boundaries lie, the more samples we need to conclude a test.

Ideally, we would like adjustable u-values which change each time a configuration is

dropped and the significance and power of the individual tests increase, so that the

boundaries for the four-system comparison exactly follow those of the single comparison

test and the tests can thus conclude with a minimal sample size. Unfortunately, this would

reduce our test sensitivity to a coarser level than our goal. We verified this by running the

Wald test 500 times on different sets of data simulated for four hypothetical systems with

pJD's (0.715,0.685,0.685,0.685) and using only the 2-system comparison boundaries with

parameter vector (a,3, uo,ul) = (0.05,0.05,0.867,1.153), which corresponds to 0.03

sensitivity. The test chose the system with pID = 0.715 as superior in only 87.7% of runs,

less than the 95% required by specifications. The Wald MSRB procedure with the same

u-values selected the pD = 0.715 system in 95.2% of 500 runs, thus achieving our test

goals of 95% accuracy in detecting 0.03 sensitivity.
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Though we cannot adjust the test boundaries to lower the expected sample size

and maintain the desired sensitivity and/or a and fP, we may want to adjust parameters to

correspond to a desired sample size. In addition to examining Figure 4.7, we can

investigate the exact tradeoff between ot and P3 and the u-values, which correspond to

sensitivity as shown in Table 3.5, if we decide that we need to adjust our parameters to

better reflect our available sample size. Appendix G demonstrates the mathematics of this

tradeoff in detail when a = P and u0 = 1/u, for a constant expected sample size (in other

words, constant test boundaries).

4.4.2 Test parameter selection procedure. The procedure for constructing the 4-

system test is no more difficult than for the 2-system test. The 4-system test does allow

for screening experiments for the 4- and/or 3-system comparisons by starting with a

coarser sensitivity and thus a narrower region between the boundaries, but coarser initial

sensitivity means that the chance of incorrect test outcomes increases, so this is not

recommended. For example, in Figure 4.2, when uo = 0.67, we can achieve sensitivity of

0.075 with 95% accuracy; however, sensitivity of 0.03 is only attainable with 77%

accuracy. In 23% of runs, systems with pJD's 0.03 apart will be incorrectly eliminated in

the screening part of the experiment (inconclusive tests cannot occur since sampling will

continue through the final 2-system selection stage). Therefore, the author recommends

choosing one sensitivity and using it throughout the experiment, which is easier to

implement when given a sensitivity specification anyway.
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The analyst should plan sample size requirements based on the expected sample

size for the initial test, which has the smallest a. Figure 4.11 displays a sample size chart

for the four-system comparison when overall a =0.05.

3,500

-... Confidence intervals
3,000 -,

-o - Ranking and selection

2,500 
i\ -.- Wald test

samp~le 200
size ,--00--0Wald test, 3-system comparison

1,500

1,000 I""

500-

0

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12

sensitivity

Figure 4.11. Sample sizes for the four-system test when overall a = 0.05

Notice that the expected sample sizes for the Wald test are greater than the

minimum required sample sizes for the ranking and selection procedure when we compare

4 systems. This means that on average, we will reach the stopping condition of the R&S

sample size before the Wald test terminates if the difference between the highest and

lowest PID's is equal to the sensitivity. In many experiments, however, the difference

between the best and worst systems will be greater than the sensitivity, so that the Wald

test will usually terminate well before the expected sample size, at which point the
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significance level for the remaining hypotheses increases according to the MSRB

procedure. The expected sample sizes for greater values of a are lower, so the Wald

MSRB test may still require fewer samples than the R&S procedure. The curve of the 3-

system Wald test demonstrates that after the first hypothesis is rejected by the Wald test,

the expected sample size is reduced to less than the R&S sample size. In any case, by

setting the R&S sample size as a stopping condition, we will find the best system with the

minimum sample size from one of the tests (Wald MSRB or R&S.)

To set up the multiple-system test, execute the following instructions.

1. Determine whether a sample size constraint exists, due to time or resources.

2. Identify your reference point for the p-values, desired overall a for the test, and the

desired test sensitivity. Construct figures similar to Figure 4.11 using Equation (4.3)

and Equation (3.13) for the range of p-values near your reference point, using the

methods discussed to construct Figure 4.7 for the two-system case. Use tIM to

construct the figures, where M is the number of pairwise comparisons and a is the

desired overall significance level.

3. Refer to Figure 4.11. Choose the best sensitivity level and overall a which you can

achieve with the sample size constraint, keeping in mind that the expected sample size

for the Wald test is probably a very conservative estimate. Again, this choice will

require balancing the a and sensitivity requirements with the expected sample size.

Determine the sample size required for the R&S procedure to determine the best

system with this sensitivity (o*) and a (or 1-P*).
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4. Calculate the u-values for your achievable sensitivity using Equation (3.5). Refer to

the construction of Table 3.5 as an example.

5. Perform the Wald test. Drop configurations and hypotheses as tests terminate. Stop

when only one system remains, or when the sample size reaches that required for the

R&S procedure. In the latter case, perform the R&S procedure and draw a

conclusion.

The MATLAB® code in Appendix H performs the Wald MSRB test, and can also perform

the 2-system comparison test. The code does not account for the stopping condition,

however, though this feature could be easily added.

Figure 4.12 summarizes this procedure.
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Figure 4.12. Wald test procedure for fair comparison of multiple systems.
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4.5 Final Comment on Sample Size Restrictions

In many experiments, the true pD's for two compared systems may be further apart

than the required sensitivity. In these cases, the tests are likely to conclude with less than

the expected sample size, and we have saved ourselves considerable resources. However,

sometimes the sample size allowed falls short of that needed for testing. In these cases,

we generally must settle for coarser sensitivity or overall test significance, but we may also

try the rerun procedure. We can also use this procedure to verify results from tests which

concluded within specifications, since it requires no additional data collection, only

running additional Wald tests on the computer.

We first execute the test with parameters which give the desired sensitivity, and

record the result if the test concludes. We then would take the data collected for this first

test, randomize the order, and rerun the Wald test several times without collecting any

new data. If the test continues to choose the same superior system, we may assume that

the test has chosen the true optimal system. If most of the tests fail to conclude, we may

decide to collect more data, depending on engineering judgment. If the data collected on

the first run is not a representative sample, we risk choosing the wrong system; also, we

may collect too small a data set on the first run to effectively perform reruns, should the

original test conclude quickly. In the first case, we would have a difficult time verifying

whether the sample was representative, and therefore must ensure that the data points are

selected truly randomly from an experimental region which is known to be representative

of overall system performance. In the second case, most of the reruns will not conclude,
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so we would have few to no verification runs. Despite these risks, the rerun procedure is

an option which can preserve the minimum-data optimality of the Wald test in many

experiments. The procedure can also confirm that the test is robust to the random data

order, especially when we have collected enough data to conclusively rerun the Wald test

many times.

In Chapter 5, we will apply both the 2-system and 4-system comparison

procedures to real and simulated data. In the real-data 2-system case, we will try both of

the sampling schemes and compare the results.
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V. Optimal MSTAR System Selection

In Chapter 4, we applied the Wald test to the fair comparison of two systems by

setting the parameters such that a = f3 and uo = 1/u1. We then outlined the procedure for

setting a and uo to reflect experimental goals and sample size constraints, and introduced

the MSRB procedure for the comparison of multiple systems. Also, we discussed two

sampling schemes for executing the test. With this test methodology in hand, we can

proceed to run the procedures on actual and simulated MSTAR data.

The MSTAR system developers identified several system comparisons to perform.

For the FE and M module developer selection, WL required a comparison of the four

system configurations analyzing peaks, followed by a comparison of the four systems

analyzing regions. They also specified one feature extractor and one match module, and

wanted to determine whether this configuration performed better when analyzing peaks or

regions in the SAR imagery. To compare the peak and region versions of the specific

FE/M system configuration, we simply applied the Wald test methodology described in

Section 4.3.3. We will refer to this 2-system comparison as the P/R test. To conduct the

comparisons of the four peaks systems and the four regions systems, henceforth called the

peaks test and regions test respectively, we used the procedure of Section 4.4.2. We also

compared our P/R results to confidence intervals like the one in Equation (3.2) to verify

our test results. The results of those experiments follow a survey of the data.
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5.1 The MSTAR Data

WL provided the author with ten binary data sets: one for each of the four peaks

configurations, labeled A - D; one for each of the four regions configurations, labeled E -

H; and two longer data sets for a particular set of FE and M modules, one analyzing peaks

and one analyzing regions, labeled P and R respectively. Each set consisted of the binary

processing results for ROI's which were randomly selected from a representative

experimental region of all targets at all aspect angles and 30' and 45 depression angles

(data was unavailable for other depression angles). Though sets P and R are each results

from MSTAR configurations included in sets A - H, we kept the data separate because

sets R and P were produced after developers modified the processing algorithms.

Therefore, the R and P data sets resulted from processing imagery on slightly different

systems than their counterparts C and G.

Summaries of the MSTAR data appear in Appendix I. Section 1.1 presents two

sets of confidence intervals for pIDof each system. The first set of intervals, labeled "all

data points," provides 95% normal confidence intervals for all of the data provided for

each system. The "common data points" intervals resulted from a screening of the ROI's

tested to construct the data sets, such that only ROI's tested by all of the regions, peaks,

or P/R configurations remained in the data set. For example, the P/R common data set

contains 962 points, while the R all points set contains 1152 and the P all points set

contains 1048. This means that system R was tested on 1152 - 962 = 190 ROI's that were

not introduced to system P, and system P processed 86 images not processed by system R.

One may argue that the common data sets provide fairer competition between the
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configurations, since the common sets are results from the systems processing the exact

same imagery, whereas in the all-points sets, the average level of complexity of the

imagery processed by one system could be less than for another system, so that one

system's pD estimate appears inflated by the effects of T, A, D and E when compared to

the other. On the other hand, the all-points sets could comprise more representative

samples of each system's performance, and allow more points for random draws. In most

sequential testing situations, we collect data as we test and not before as in the MSTAR

case, so this decision will rarely arise in the implementation of the Wald test. We

therefore made the engineering judgment decision to use the common data set for the P/R

test in the interest of fairness. We performed the test with both of the sampling schemes

described in Section 4.2.

Though the P/R common data set was large enough to obtain useful results,

because of the limited size of the system A - H data sets, none of the 500 peaks or regions

tests concluded with the 141 and 244 common data points available, respectively. We

therefore decided to simulate data for these tests, based on f1D 's from the all-points data

set. We could also have used the iID's from the common data set, but since the all-points

data consisted of more samples for each system, it may provide better estimates of overall

system PID. Also, the all-points data 3 ID's are closer together and thus provide a more

interesting demonstration of Wald test. Since we are not using real data, results from

simulating data based on either set of PID's does not provide a true comparison of the

peaks and regions systems, so we may choose either set for demonstrative purposes.
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Figure 5.1 displays these 95% confidence intervals for the all-points data, and

shows no statistically significant differences between any configurations when we compare

the P
31D intervals. (The intervals do show that system G is better than system A, but since

A is a peaks system and G is a regions system, we are not comparing them.)

0.80 259
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237 226 272

0.70 194 ..... .. ..

P ID .0 S

0.65 -
.............
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0.55!
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Figure 5.1. MSTAR configuration A - H data confidence intervals.

Sample sizes appear above the interval bars.

Section 1.2 displays difference intervals for the PID 's for all of the system

comparisons, nearly all of which indicate no statistically significant differences given the

available data. The hypothesis for all of the intervals is Ho: pi = pj versus HI: pi # pj, for

any two systems i andj. Note that for the common data sets, system R has a statistically

significantly higher PID than system P, but in the all-points data, the confidence interval

for PR - Pp does not include zero and therefore does not demonstrate a significant
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difference. Since we chose to use the common data set for the Wald test example, we will

also use the confidence interval resulting from the common data set and conclude that pR >

pp with 95% confidence. By design, the Wald test can identify the true optimal

configuration and resolve this dilemma, assuming that the common data set is a

representative sample of the experimental region.

5.2 The 2-System PIR Comparison

We implemented the 2-system test by following the procedure in Chapter 4 and

using both sampling schemes for experimental purposes, to investigate whether the

sampling scheme choice makes a difference in test accuracy or sample size. For MSTAR,

the schemes are applied as follows:

* Scheme I: the results for the same ROI processed with each system were paired (e.g.

the twenty-second data point is the binary result pair for system R and system P both

processing the exact same ROI of a T72 at some A and D)

* Scheme II: the scenarios were randomly drawn for each system (e.g. the twenty-

second data point is the binary result pair for system P processing a certain ROI of a

T72 at some A and D, and for system R processing an ROI of a Scud at some A and

D).

Pre-collected data permitted the testing of both sampling schemes, but in most

experiments, we can only test with the scheme we use to collect the data. Scheme choice

depends on experimental goals, as discussed in Section 4.2, but Scheme I is generally less

expensive since we need only pay for the collection of one set of images. Also, Scheme I
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blocks on the T, A, D, E effects and thus provides the fairest comparison. Therefore,

Scheme I is the default choice when the experimenter has no preference but wishes to

minimize data collection. The independent sampling of Scheme II allows for easier

analysis since the R&S procedure is valid in this case, so this scheme may be preferable if

data is unlimited.

According to Table 4.2 and Figure 4.7, we need about 1000 samples to achieve

0.03 sensitivity at the a = 0.05 level, which meets WL specifications. Given just over 962

samples in the common data set, we will proceed with these parameter settings. Note that

the R&S procedure requires 1502 samples to detect a difference of 0.03 at the a = 0.05

level, so we do not have enough data to use the stopping condition.

We ran the Wald test 500 times with parameter vector (aj,,uo,Ui) =

(0.05,0.05,0.867,1.153) to detect 0.03 sensitivity. Table 5.1 contains a summary of the

results.
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Table 5.1

Results of the P/R test

Data set/sampling scheme Common Common
data, data,

Scheme I Scheme 2
Percent of tests which concluded with the available data 100% 100%

Percentage of completed tests which chose the system 100% 100%
with the highest pID (system R)

Average number of samples required* 290 282

Standard error of required number of samples 90.1 101.7

95% normal confidence interval for the average number of (282,298) (273,291)

samples required*

Maximum number of samples required 550 595

Minimum number of samples required 111 84

*rounded up to the next integer

Apparently, we met our objective of choosing the optimal system with 0.03 sensitivity and

95% minimum accuracy with the available data, assuming that system R is superior to

system P as discussed previously. Conversely, the Wald test verifies that system R is

superior to system P.

Scheme I appears to require slightly more samples but a smaller standard error

than Scheme II. This makes sense, since matched pairs are more likely to arise when the

two systems are testing the same ROIs at each point, and more matched pairs means a

higher overall sample size is necessary to collect enough unmatched pairs for a conclusive

test. For example, an M35 at 30 aspect and 30 depression may generally be a much

easier target to identify than a T72 at 90' aspect and 450 depression, so if we randomly
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draw the M35 for testing system R and the T72 for testing system P as our thirtieth data

point, we are more likely to get a (1,0) (for (R,P)) result than if both systems were tested

on the M35 for that data point.

To test the hypothesis Ho: R - Pp = 0.03, H1 : PR - Pp 0.03 with a 95%

confidence interval, we need about 1800 samples, while the Wald test only required

between 282 and 298 samples for Scheme I, and between 273 and 291 samples for

Scheme II, 95% of the time. The R&S procedure requires 1502 samples to test the same

hypothesis, while the confidence intervals require about 1800. In both sampling schemes,

the Wald test has significantly reduced the data and processing requirements to select the

optimal system in a 2-system comparison as compared to the R&S procedure or the

confidence interval.

Since the peaks and regions systems comparisons require about 3300 samples to

construct confidence intervals to detect 0.03 difference when a = 0.05/6 as in the initial 4-

system comparison, which starts with the six pairwise hypotheses mentioned in Section

3.3.1, the peaks and regions sample sizes allow even more room for reduction. Even the

R&S procedure requires 2361 samples to choose the best of four systems.

5.3 The 4-system Peaks and Regions Comparisons

To implement the peaks and regions tests, we followed the 4-system comparison

test procedure outlined in Section 4.4.2, using the same parameter vector as for the P/R

test and applying the MSRB. The expected sample size to detect 0.03 differences in PID

with the Wald MSRB test is 2658 for the worst-case scenario, and since the WL data sets
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contained under 300 samples for each configuration, only 1 run out of 500 peaks tests and

none of the 500 regions test runs concluded. (The worst-case scenario occurs when the

pID'S of best and worst systems have a difference equal to the sensitivity.) Therefore, WL

needs more data to choose the optimal system in each group, or needs to choose a coarser

sensitivity or larger a.

Rather than performing the tests with much coarser sensitivity or a large a and

very little data, we treated the all-points data ID 's as the true pID's, and used them to

simulate Bernoulli trials as data. As mentioned previously, we chose the all-points PID's

instead of the common data !3JD's for demonstrative purposes, since the all-data ID's are

closer together (particularly in the peaks case) and therefore better demonstrate Wald test

performance when relatively small differences exist between system 3 1D 's. Therefore, we

simulated 10,000 data points for each system, to guarantee no data limit, and performed

the Wald MSRB test on simulated data for both the peaks and regions systems. Since we

use simulated data generated from the fiD's and not from some system performance

functionf(pD) = (system, T, A, D), this test mimics Sampling Scheme II. Table 5.2

displays the results.
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Table 5.2

Simulated peaks test and regions test results

Test Peaks Regions

Percent of tests which concluded with the available data 100% 100%

Percentage of completed tests which chose the system 73% 93%
with the highest pD

Percentage of completed tests which chose the two 99.2% 100%
systems with the highest pD's**

Average number of samples required by completed tests* 1159 856

Standard error of required number of samples, completed 729.4 551.1
tests

95% normal confidence interval for the average number of (1095,1223) (808,905)
samples required by completed tests *

Maximum number of samples required by a completed 5269 4219
run

Minimum number of samples required by a run 180 159
*rounded up to the next integer
**since the highest two Pro's are within 0.03 of each other, and thus either of the best two peaks or

regions systems is an acceptable choice.

Since we simulated the data and are treating the P3JD's as the true piD's, by construction, pD

> pC > PB > PA, and PG > PE > PF > PH in this experiment. In the regions case, PE - pF =

0.0306, so the Wald test with our parameters should be able to declare systems E and/or

G superior to F and H at least 95% of the time. The results show 100% success in making

this distinction with about a quarter of the 3300 samples required to make the 4-system

pairwise distinction with confidence intervals and just over one third of the 2361 samples
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needed for R&S, on average. The test even concluded thatpG >PE in 93% of cases,

where PG - PE = 0.0243.

The pD's used for the peaks test were much closer together; pD - pA > 0.03 andpD -

pB > 0.03, and pc - pA > 0.03, but pD -pc = 0.0095, so under the sensitivity specification of

0.03, the test should not be able to successfully choose PD over pc, but should successfully

eliminate systems A and B. The Wald test did this in 99.2% of the runs with an average of

about half of the 2361 samples required by ranking and selection, and one third of the

3300 samples needed for confidence intervals.

In the procedures of Chapter 4, we instruct the engineer to stop sampling when the

Wald test sample size met the R&S sample size. We did not use this stopping condition in

the peaks and regions experiments, merely to demonstrate how large the sample size can

grow, and to better model the distribution. The maximum sample sizes were quite a bit

higher than the R&S sample size of 2361, but the 95% confidence intervals for the sample

sizes showed that the Wald test needed only about half of the samples required by the

R&S procedure. Therefore, the maximum sample sizes are well into the tails of the

distributions, and using the R&S sample size as a stopping condition as discussed in

Chapter 4 ensures that we cannot require more samples than the R&S procedure. The

95% confidence intervals for the sample sizes of the experiments showed that we can do

considerably better with the Wald test, however, most of the time.

So far in these experiments, we have used knowledge of the true ptD's or the

superior system to validate the results of the Wald test. Suppose now that we have no

knowledge of the pD's, but were only supplied with the data for the 2-system P/R and the
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simulated data for the 4-system peaks and regions tests. The Wald test has thus concluded

the following answers to the WL system selection questions with a = 0.05, allowing for

the example that the all-points PID 's used to simulate the peaks and regions data are

accurate estimates of the true pD's:

1. In the P/R test, the regions configuration is optimal

2. In the peaks test, configurations C and D are better than A and B, andpc and pDare

within 0.03 of each other in pD

3. In the regions test, configurations E and G are better than F and H, andpE andp Pare

within 0.03 of each other in pID.

Still allowing that the all-points PID's used to simulate the peaks and regions data are

accurate estimates of the true pD's for the example, WL can base the choice between

systems E and G on tiebreaking factors such as system cost, but cannot declare one or the

other superior in terms of probability of target identification within the specified margin of

0.03. Assuming that the P/R test has demonstrated that regions systems are better than

peaks systems in general (a conclusion based on engineering judgment), WL may decide to

discard systems A through D entirely. Note that we have drawn these conclusions based

on simulated data for the regions and peaks tests; if the pID's used to generate the

simulated data are reflective of the true pID's then the conclusions are valid, but we cannot

show this without more sampling. We would usually draw conclusions based on actual

data; the simulated data simply provided an illustration of implementation of the test.
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Figure 5.2 displays the final comparison graph of a peaks test which took 512

samples to complete. Note how the boundaries converge quickly (and discretely) as

hypotheses, and thus systems, are rejected near the end of the test.

Configuration B (bottom) vs. Configuration C (top)

120

100

80-

t2 60

40-

20

0
50 100 150 200

t + t 2

Figure 5.2. Sample Wald MSRB peaks test with a = 13=0.05

Figure 5.3 displays the final comparison graph of a regions test which required 986

samples to complete. This graph clearly shows the sequential system rejections.
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Configuration G (bottom) vs. Configuration E (top)
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Figure 5.3 Sample Wald MSRB regions test with a =13=0.05
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VI. Comments, Conclusions and Recommendations

6.1 Comments and Conclusions

The Wald test for comparing two proportions can be applied to compare any two

systems which produce binary responses, and can be easily initialized to compare systems

fairly based on randomly ordered data. In the ATR case, the fairest comparisons occur

when each data point compares the performance of different systems on the same image,

or at least the same target in the same conditions, in the case of ATR systems which use

different sensors. By adding the MSRB procedure and thus changing the a and 3 as

systems are rejected, several systems can be compared simultaneously with sequential

testing. Fair comparison entails that the different systems are tested on images drawn

from the same population. In comparing ATR systems which analyze different imagery

types, such as SAR versus forward-looking infrared radar (FLIR), experimenters should

obtain imagery of the same targets in the same conditions, angles, etc. if feasible.

Conditions should also be chosen so that the systems are compared on the same standard,

and not on each individual system's strong or weak points. Analysts should select a fair

mix of imagery representing the spectrum of capability for each system and randomly

order the images. If for some reason data of the same mix of targets and conditions is

unavailable for two systems which use different sensors, different randomly drawn images

for each system may be used in the test, but a common experimental region is preferable

for the fairest comparison.
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The MSTAR tests all demonstrated considerable savings in image processing,

when compared to the number of images which must be collected and processed for

ranking and selection or confidence interval construction. Note that sample sizes required

to complete the Wald test can vary considerably; the random sample order for any given

test may also lead to unusually large or small required sample sizes. However, the Wald

test can significantly reduce required sample sizes to detect system differences most of the

time. These reduced sample sizes translate into lower CPU, engineering, and data-

collection costs, which can equate to hundreds of thousands of dollars. One would think

that choosing to use the Wald test involves calculated risk, since the random data ordering

could lead to unusually large sample size requirements; but since the experimenter can

conduct the Wald test while collecting ranking and selection data and using the ranking

and selection sample size as a stopping condition, he or she has nothing to lose in

implementing the Wald test, provided the data is conducive to sequential testing. Data

conducive to sequential testing is generally collected point by point or in small batches,

though data points from large batches can also be randomly ordered and processed with

the Wald test. In the case of large batches, ranking and selection or confidence intervals

are usually faster to calculate, however, if sufficient data has been collected to accept or

reject the hypothesis.

When implementing the Wald test, one should choose the parameters with special

care. The analysis in Chapter 4 demonstrated that setting a = /3 and uo = 1/u, provides an

fair comparison, i.e., the probability of the test selecting one system over the other is 0.5

when the system pi's are equal. If an engineer wanted to test a new ATR system against
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one already installed in an intelligence center, for example, a < /3 and u-values which are

not reciprocals could be appropriate parameter choices, but in that case, parameters

should be chosen carefully. Choosing u-values closer to 1 allows for better resolution

between the systems under examination, but also leads to higher sample size requirements,

as the boundaries of the test move further apart. Estimates of the PID's, the probabilities of

success for the systems, also help in choosing u-values, as inserting the pD estimates into

Equation (3.5) and then reinserting them in reverse order yields two starting u-values.

Overall, we obtained excellent results in implementing the Wald and Wald MSRB

sequential testing procedures to compare two or four MSTAR configurations, assuming

that the P. 's for the all-points data reflected the true pD's for each system. In the

comparison of regions and peaks systems with the same FE and M modules (the P/R test),

the 1 ID's provided enough evidence to declare the regions configuration superior with

95% confidence; we exhibited nearly perfect accuracy at determining this difference with

the Wald test, while reducing the necessary sample size considerably. The four-system

comparisons consistently distinguished between the two best systems and two worst

systems in each test, in accordance with the specified 0.03 sensitivity.

In addition to choosing the best system, WL wanted to ensure that at least one

system meets the specified > 0.7. Confidence intervals showed that systems R and P

met this specified PD, though none of the pmD's for systems A - H were statistically

significantly 0.7. Since configuration R is a refined version of configuration G, one of

the superior regions configurations, WL can safely choose to purchase configuration R

and meet their performance specification of iD >- 0.7 as well as their goal of choosing the
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optimal configuration. (This assumes that a refined version of configuration E will have a

PID within 0.03 or lower than pR, an assumption which WL should verify before purchasing

configuration R.)

The MSTAR test results have illustrated the success with which we can implement

the Wald test to fairly compare any ATR systems, provided we clearly define the

necessary degree of resolution (i.e., the sensitivity Ip, -p21 which we want to detect) and

the desired significance level, and balance these with the amount of available data. We can

also simultaneously compare more than two systems by implementing the modified

sequentially rejected Bonferroni approach. Therefore, the Wald test can provide an

"honest broker" comparison of ATR systems, and allow system developers to choose the

true superior ATR system which will maximize the safety of ground troops and other units

which use ATR for safety and targeting.

6.2 Recommendations for Further Development

The methodology and procedure for the fair comparison of two or four systems

can easily be extended to compare any number of systems. The Wald test could also be

further explored to develop a procedure of unfair comparison of systems, such that system

performance is weighted by cost, flexibility, or other quantitative measures and measures

which can modeled in a quantitative form. This may be accomplished by setting the

likelihood function L(u) to a value other than 0.5, and using Wald's sample size formulas

for the general case. For the fair comparison, we used the equations for our special case.
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We treated the targets in the MSTAR data as equally likely, since the MSTAR

developers want to build a mission-nonspecific system. In some experiments, we may

want the best ATR system for a specific mission. For a mission-specific selection, we can

simply modify the target sampling to favor the more likely targets in the mission scenario.

Rather than selecting targets at random from the T, A, D, space, we can sample certain

targets more frequently than others, depending on the probability of acquiring each target

for the mission in question. The systems will thus be compared on their performance for

targets which are representative of the mission, rather than assuming all targets equally

likely.

Once an optimal ATR system has been chosen by implementing the sequential

testing procedures developed in Chapter 4, one may want to model system performance

over the T, A, D space, and use this model to improve the weak points of the system.

This performance modeling could involve binary experimental design or neural networks,

and presents a challenging problem in both the analysis and model verification and

validation. One possible procedure for comparing systems while modeling performance is

to design an experiment for modeling system performance, and then to randomly sample

the design points for a Wald test, and continue sampling even after the Wald test has

concluded until all replicates of all design points have been collected. This provides the

engineer with information about the best system, as well designed experiment results for

performance modeling analysis.

Finally, a potential research area lies in the construction of a three-way or more

test to replace multiple pairwise comparisons. The error types would have to be expanded
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to include the incorrect rejection or acceptance of the third system, thus introducing a new

parameter yto complement a and /3. For sequential analysis, the Wald test could be

rederived to produce a three-dimensional graphical test with planes as boundaries.

Proving the validity of such a test for both sequential analysis and conventional hypothesis

testing presents an interesting challenge to the curious researcher, particularly if a three-

way test can be found to be more powerful than multiple pairwise comparisons for three

systems.
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Appendix A

Confidence Interval Calculation when pD for Different Scenarios is Non-constant

In ATR, pD frequently varies between target types, and as aspect and depression

angles change for each target. We may calculate a valid confidence interval which

accounts for this as follows, for target ti drawn from m possible targets (denoted ti E

{t.... .,t,,}), aspect angle aj e (0',...,360°}, and depression angle dk E (10,...,450. We

require data from NJk replicate observations for each scenario where Nijk is as large as

feasible, data availability permitting. Larger Nijk values reduce interval width.

" Let sijk be the processing result of any ROI of a scenario (T = ti, A = aj, D = dk) such

that sijk = 1 signifies a correct target identification.

" Let P(sJk= 1) =Pik for scenario (T = ti, A =aj, D =dk)

si~k

,, ..ij =ij Ips i

" E( Pik ) =Pik and var(/ik ) = (I _ )ii

Nijk

" For any target draw ijk, let Pijk = P(T = ti, A = aj, D = dk); in other words, Pjk is the

probability of choosing scenario (T = ti, A = aj, D = dk). Note that probabilities of

obtaining certain targets can change with different battle conditions, so to estimate an

ATR system's performance for a certain battle, the analyst should properly adjust the

Pijk's. For MSTAR, we assume that all scenarios are equally likely to be observed.
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" Letp=P(s=1)= jjypkkp
i j k

" Let p= _ j Pijk ; thenE(/) =p andvar(/b) = Xy_,Pi (1 pijk)-
i j k i j k Nijk

" Resulting confidence interval for large n:

i j k i i k NijA
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Appendix B

The Wald Sequential Probability Ratio Test

Pairwise sequential testing can be very helpful in identifying the best of a set of

processes with minimal testing. However, in many cases, an experiment aims to test

whether a single process meets a specification. A sequential test, the Wald sequential

probability ratio test (SPRT), exists for this purpose.

The SPRT behaves similarly to the p, - P2 test, except that the SPRT tests the

simple hypothesis Ho: p = po against alternate H1 : p = pl. Also, we now count successes

instead of t2 and total samples m instead of t + t2. The critical values are calculated as

follows [19:91]:

log log 1 -PO

lower bound: +I+ m (B. 1)log -P-1- log P log P- log l- P,

PO i-p0 P0  1-P 0

log 1-fl log 1- Po

upper bound: a + m (B.2)log09 log 1 -P-1 log P- log 1 - Pi

PO 1- Po PO 1- P0

In the MSTAR case, we would test the compound hypothesis Ho: p < Pipec versus

H1 : p _ pspec, so choices of po and pi slightly above and below pspec respectively require

engineering judgment. As before in the case of u, we need to select po and p, such that we

are indifferent in our decision when p is between po and pl.
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The graphical implementation of the SPRT looks very similar to the other Wald

test, and is performed in the same way.

lO--

10 L --u -
Successes

,j .... ,t ,es not meet specs

0 -

0 2 4 6 8 10 12 14 16 18 20

Trials

Figure B.l. Sample Wald SPRT Graph

To supplement the pairwise comparison testing plan, we could run a SPRT on each of the

four processes while simultaneously performing the pairwise tests. This allows for the

possibility that one or more of the processes will fail the specification tests before losing

the pairwise tests, thus eliminating itself early from its pairwise tests and cutting testing

requirements. However, preliminary experimentation showed that for the level of

sensitivity required to determine whether a system meets specs, the comparison tests

terminate well before the SPRT, thus making the redundant SPRT unnecessary. We

therefore focused on the comparison test for selection of the superior system.
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Appendix C

Slope of the Wald Test Boundaries

The following demonstration shows that the slope of the Wald test boundaries is equal to

0.5 whenever Uo = l/ul, and equivalently, uj = luo.

log 1 + uo

Slope s I+uo (C.l1)log U, - log u0

Let uo =lu:

1+ u1

log 1
1+-

u (C.2)

log u, -log-

l+u1
log( + u ) -log --

ul
S- log u1 -log ul1

log(1 + u1) - (log(l + u1) - log u1)
S log u1 - (-log u1 )

logu, 1

2logul - 2

The same arithmetic may be performed by substituting ul = i/Uo instead, with the same

result.
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Appendix D

Choosing u-values when a j3

Though the best way of constructing the Wald test for fair comparison of two

systems is to set a = /3 and uo = 1/ui, a fair test can also be constructed when a and P3 are

different. To choose suitable u-values, we can perform an iterative simulation procedure

similar to the one used for the sensitivity experiments. This case reflects WL's

specification of P = 0.05 and P = 0.10, and is a summary of the preliminary experiments

performed before we concluded that we should set a = P3 and uo = l/u,.

The simulation was conducted with the following procedure.

1. Choose the first (pp2) pair shown in Table 4.1, (0.75,0.72). Let (a, f) = (0.05,0.10)

per WL specification. Let (uo, ul) = (0.86,1.16) as a starting setting.

2. Randomly generate 300 Bernoulli trials forpi = 0.75 and 300 for p2 = 0.72, using the

binornd command in the MATLAB® Statistics Toolbox. (WL chose to process a

maximum of 300 images per configuration.)

3. Run the Wald test on the simulated data using a MATLAB®program.

4. Record whether the test correctly chose the system 1 (or the system with p = 0.75) as

superior.

5. Starting at Step 1, repeat the simulation 99 more times, and average the 100 results to

obtain a percentage of runs for which the test correctly chose the best system. Also

record percentage of incorrect and inconclusive tests.

6. Repeat Steps 1-5 with all other (pi, P2) pairs shown in Table 4.1.

7. Reverse the system order and repeat Steps 1-6, such that the first (p], p2) pair is (0.72,

0.75). This ensures that correct testing does not depend on system order. Average

these results with those obtained in Step 5 for each (pl, p2) pair.
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8. Repeat Steps 2-7 for a range of uo and ui values.

9. Compare test performance for each u-value combination, and select the (uo, ul) pair

with the best test performance in the experimental region.

In initial tests with uo and u, set at 0.86 and 1.16 respectively, more than half of

the tests were inconclusive with only 300 samples. Trial and error showed increases in

test performance when both parameters were increased. Based on this preliminary

information, we chose a range of nine uo and six ui values and tested the system at all

value combinations, such that 0.82 < uo < 0.96 and 1.5 < ul < 1.8. The surface which

resulted from the range simulations follows in Figure D. 1.

0.7.

uO 0.8 1.5 ul

Figure D. 1. Wald test performance for varying parameter levels

This surface is difficult to read well. To produce a smoother plot, we input the

performance data into a neural network and used simulated output to create a smoothed

surface, which appears imprecise but is useful for our needs.
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0.9

0.8,

0.95 1.9

Figure D.2. Wald test performance for varying parameter levels (smoothed)

Performance clearly increases as u., increases. Interaction between the parameters also

seems to exist. We will move in the direction of increasing u., and investigate further to

choose the preferred value.

We move to the right side of the surface and simulate on a new region, including

six uo and eight Uj values such that 0.86 < uo < 0.98 and 1.5 <is., < 3. The following

surface resulted:
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0.98 .- "-

0H96,t

0.94.

0"92 I

0.88

0.86

0.9 2

110 0.85 1.5 U

Figure D.3. Wald test performance for various parameter values

Here, we see that setting (Uo, ui) to (0.96,2) achieves excellent performance, with an

average of 98% of Wald tests successfully choosing the known superior configuration, and

very few tests producing inconclusive or incorrect results. We should bear in mind that

the random data generated may actually have had sample pID's which varied from the true

pID's, yet the tests still mostly produced correct results as for the true pID's.

The surface plot shows that performance may increase for ul values over 2.

However, we should revert back to Wald's directions for parameter selection and note that

by setting a parameter at 2, we already imply that we are testing that one procedure is

twice as "efficient" as another. The favoring of the status quo in the hypothesis structure

previously discussed makes "efficient" a relative term, mostly in the sense of cost

effectiveness of the new process installation and operational savings versus the old process
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operational costs. This conditional nature of the term "efficiency" means that we are not

restricted to keeping u, under 2, but in the interest of staying somewhat near Wald's

guidelines, we can forsake very slight improvements in test performance which we could

gain with higher levels of ul. Increased u, levels simply suffer from diminished returns in

terms of test performance.
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Appendix E

u-values for Test Sensitivity Study

0.01 0.03 0.04 0.05
PL P2 PL P2 Pa Pa1 Pa PI

0.66 0.67 0.65 0.68 0.65 0.69 0.64 0.69
0.67 0.68 0.66 0.69 0.66 0.70 0.65 0.70
0.68 0.69 0.67 0.70 0.67 0.71 0.66 0.71
0.69 0.70 0.68 0.71 0.68 0.72 0.67 0.72
0.70 0.71 0.69 0.72 0.69 0.73 0.68 0.73
0.71 0.72 0.70 0.73 0.70 0.74 0.69 0.74
0.72 0.73 0.71 0.74 0.71 0.75 0.70 0.75
0.73 0.74 0.72 0.75 0.72 0.76 0.71 0.76

0.06 0.07 0.08 0.10
Pa Pa- Pa Pa- Pa P2a Pa Pa

0.63 0.69 0.63 0.70 0.62 0.70 0.62 0.72
0.64 0.70 0.64 0.71 0.63 0.71 0.63 0.73
0.65 0.71 0.65 0.72 0.64 0.72 0.64 0.74
0.66 0.72 0.66 0.73 0.65 0.73 0.65 0.75
0.67 0.73 0.67 0.74 0.66 0.74 0.66 0.76
0.68 0.74 0.68 0.75 0.67 0.75 0.67 0.77
0.69 0.75 0.69 0.76 0.68 0.76 0.68 0.78
0.70 0.76 0.70 0.77 0.69 0.77 0.69 0.79
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Appendix F

Sample Sizes for Confidence Intervals when a = 0.05

True 0.01 True 0.02 True 0.03 True 0.04
p1 p2  Size pl p2  Size pl p2  Size pl p2  Size

0.66 0.67 17114 0.65 0.67 4308 0.65 0.68 1900 0.65 0.69 1060
0.66 0.67 17114 0.66 0.68 4245 0.66 0.69 1871 0.66 0.70 1043
0.67 0.68 16852 0.67 0.69 4178 0.67 0.70 1840 0.67 0.71 1025
0.68 0.69 16576 0.68 0.70 4107 0.68 0.71 1808 0.68 0.72 1006
0.69 0.70 16284 0.69 0.71 4032 0.69 0.72 1773 0.69 0.73 987
0.70 0.71 15977 0.70 0.72 3953 0.70 0.73 1738 0.70 0.74 966
0.71 0.72 15654 0.71 0.73 3870 0.71 0.74 1700 0.71 0.75 945
0.72 0.73 15316 0.72 0.74 3784 0.72 0.75 1661 0.72 0.76 922

Average 16361 Average 4059 Average 1786 Average 994

True 0.05 True 0.06 True 0.07 True 0.08
p1 p2  Size p1 p 2  Size p] p2  Size p1 p2  Size

0.64 0.69 683 0.64 0.70 470 0.63 0.70 347 0.63 0.71 263
0.65 0.70 672 0.65 0.71 462 0.64 0.71 342 0.64 0.72 259
0.66 0.71 661 0.66 0.72 455 0.65 0.72 336 0.65 0.73 255
0.67 0.72 650 0.67 0.73 446 0.66 0.73 330 0.66 0.74 250
0.68 0.73 637 0.68 0.74 437 0.67 0.74 324 0.67 0.75 245
0.69 0.74 624 0.69 0.75 428 0.68 0.75 318 0.68 0.76 240
0.70 0.75 611 0.70 0.76 419 0.69 0.76 311 0.69 0.77 235
0.71 0.76 597 0.71 0.77 409 0.70 0.77 303 0.70 0.78 229

Average 642 Average 441 Average 327 Average 247

True 0.09 True 0.10 True 0.11 True 0.12
p1 p2  Size pl p2  Size p1 p2  Size pl p2  Size

0.62 0.71 209 0.62 0.72 168 0.61 0.72 140 0.61 0.73 116
0.63 0.72 206 0.63 0.73 165 0.62 0.73 137 0.62 0.74 114
0.64 0.73 203 0.64 0.74 162 0.63 0.74 135 0.63 0.75 112
0.65 0.74 199 0.65 0.75 159 0.64 0.75 133 0.64 0.76 110
0.66 0.75 195 0.66 0.76 156 0.65 0.76 130 0.65 0.77 108
0.67 0.76 191 0.67 0.77 153 0.66 0.77 127 0.66 0.78 106
0.68 0.77 187 0.68 0.78 150 0.67 0.78 125 0.67 0.79 103
0.69 0.78 183 0.69 0.79 146 0.68 0.79 122 0.68 0.80 101

Average 197 Average 157 Average 131 Average 109
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Appendix G

Wald Test Parameter Calculation

When a =fl and Uo = 1/ui, we can calculate the exact tradeoff in a (and therefore

[) and sensitivity for a fixed expected sample size by holding the slopes and intercepts of

the test boundaries constant. The following derivations demonstrate this.

The Wald test for uo - ul has four variables and three equations, after decomposing

the boundary equations:

" variables: a, 1, uo, u,

" equations: upper bound intercept, lower bound intercept, slope

Given a variable vector (a, , o, ul), suppose that we want to the uo and Ul values for a

given new (a, P) pair, as in the MSRB Wald test, such that we maintain the same slope

and intercepts as in the original case. We will refer to the original vector (a, , uo, ul) and

the new vector as (a', #, uo', ul'). The values a' and fl'are specified (for example, in the

four-system comparison test, (a', 13) = (a/6, P/6)).

We start by setting the original equations equal to the new equations:

l+u1  ~ u
log 1- log-

Slope: s= = -+
log u1 - log u0  log u -log u0

1-13 1-fllog -alog /

Upper intercept: U = o log - a

l0ogu 1 -og 0  log u -log u,
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log 9log 1 0
Lower intercept: L - l 1  f 1- a

logu1 -logu 0  logu I -logu0

Since the left-hand sides are all known when the original vector (a, P3, uo, ul) is given, we

will rename them S, U, and L, respectively (slope, upper intercept, lower intercept.)

Beginning with the slope and upper intercept equations, we can solve each in terms

of the denominator log u1 - log uo

log

Slope: logu1 -logu 0 = l+u°
S

log-,
Upper intercept: log u1 - logu0 = a

U

It then follows that

1-13l' log
log- a 1+ u0

U S

Since a' and fl' are also known, solve this equation for ul as a function of UO as follows:

Slog 1-, =log 1 + UI
U a 1+U

S•

log 1_0I = log 1+U1

1+ U0
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1- fl Y =1 + u0___,
clzP ) l+uo

~uo41 7 -l=ul

Ux = O u0. ' +  -f 1 (G.1)

We have now solved for u/'in terms of uo', such that the linear Equation (G.1) provides a

relationship to find u-value pairs which give the same slope and upper intercept as for the

original vector. However, notice that if we perform the exact same procedure using the

lower intercept equation, we obtain Equation (G.2):

u1= Uo -- ' + V aL- _ 1 (G.2)

Setting the us'values equal:

10 - fl "Lg+¢l-f " '" + ¢ L '

S S
( 1 = +(f ff+uoi)
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(laU'y - a'J

Using (a', /3') (a/6, //6) = (0.05/6, 0.1/6) and (L, U) = (-2.6675, 3.4247) from the 4-

system and 2-system comparison respectively with (uo,ul) (0.86,2):

1 1C0.9833)3.447 (0.0 167 >2.6675

0.0083) =0.9917)

4.0270o 4.6263

Therefore, by contradiction, we cannot necessarily solve for a new vector (a, /3', Uo', ul')

when given an initial vector (a, 3, uo, ul) and new parameters (a', #3), unless a =3. In this

case, the lower intercept is the negative of the upper intercept, since when a =/3, the

following holds:

1-fl 1-a a J6
log =log- = - log - log

a a gjya 1-a

The equations for the upper and lower intercepts, respectively, are

log a-' log 1 P

Slogu 1 -loguo 'logu1 -logu 0

Therefore, since log = -log-- when a =fl, U =-L.

Given that U = -L and a = /3, so also a' f3':
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1 L

a"f 1 ,-a')

1- - (-a U-=( a"' -- a' )- L"
a13 J = a,'-- l-' =, 1-a' I-a'

Therefore, if a = fi, we can obtain the same intercepts with (a', fJ). We can also obtain

the same slope if uo = 1/ul, which always provides a slope of 0.5, as shown in Appendix C.
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Appendix H

MATLAB 0code for Peaks Wald Test

This code can easily be adapted for the Regions and P/R test by modifying the names of

the loaded data files and the data names.

close all;
clear all;
dc;

% initialize variables

u~vals = ones(l,6)*.867;
ulvals = l./u~vals;
alpha = 0.05;
beta = alpha;
dropped = 0;
cnflag=0O;

% SET THESE THREE PARAMETERS
nruns=2; %0 number of test runs - use 1 to do only one
nruns = input(Number of runs [1]: ');
if isempty(nruns),nun = 1; end;

% DATA CHOICES
simfiag = 1; % 1 for simulate, 0 for randomize
simfiag = input('Enter 1 to simulate or 0 to randomize data [1]:')
if isempt-y(nms),siimflag = 1; end;

dispCChoose data set: ');
disp('1 - regions/peaks, all points');
disp('2 - regions/peaks, common sets');
disp(Q3 - peaks, conmmon sets');
disp('4 - peaks, all points');
disp('5 - regions, common sets');
disp('6 - regions, all points');
disp('7 - special Pids for simulation, coded into program');
dataflag = input(Enter data choice [7]:')
if isempty(dataflag), dataflag = 7; end;
%dataflag = 7; % 1 for XRXP,

%2 for regions ,peaks
% 3 for PA - PD
% 4for XA -XD

* 5 for RE - RH
* 6 for XE - XH
* 7 for testing

% load data - all-points sets

if dataflag == 1, load XR.txt; load XP.txt; lvec = [length(XR) length(XP)]; end;
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if dataflag == 4, load XA.txt; load XB .txt; load XC.txt; load X.D.txt; ivec = [length(XA) length(XB) length(XC)
length(XD)]; end;
if dataflag == 6, load XE.txt; load XF.txt; load XG.txt; load XH.txt; lvec = [length(XE) length(XF) length(XG)
length(XH)]; end;
if dataflag == 3, load PA.txt; XA PA(:,7); load PB .txt; XB =PB(:,7); load PC.txt; XC = PC(:,7); load PD.txt; XD
PD(:,7); lvec = length(PA); end;
if dataflag == 5, load RE.txt; XE RE(:,7); load RF.txt; XF =RF(:,7); load RG.txt; XG = RG(:,7); load RH.txt; XH=
RH(: ,7); lvec =length(RE); end;
if dataflag ==2, load regions.txt; XR = regions(:,7); load peaksl.txt; XP = peaksl(:,7); lvec = length(XP); end;
if dataflag ==7, lvec = 1; end;
datalength = min(lvec);

if (dataflag 1 lIdataflag ==2), pids = [mean(XR) mean(XP)]; names = ['R 71; end;
if (dataflag ==3ldataflag ==4), pids = [mean(X.A) mean(XB) mean(XC) mean(XD)]; names = ['A' B' 'C 'D; end;
if (dataflag = Sdatafiag =6), pids = [mean(XE) mean(XF) mean(XG) inean(XH)]; names = ['E'1'F'-G-1'H]; end;
if dataflag == 7, pids =[.715 .685 .685 .685]; names =['J '''L M]; end;

% BEGIN RUNS

for rnms= :nrns
clear dropped dropme cnflag cnumc i j;
cnflag=0O;
dropped=0O;

% randomize data order or simulate data

% for lock-step
if dataflag ==2, rawdata, = [XR XP]; end;
if dataflag ==3, rawdata = [XA XB XC XD)]; end;
if dataflag ==5, rawdata = [XE XF XG XII]; end;

if simfiag =0

r = rand(4,datalength);
[rl,index] = sort(r(l,:));
[r2,index2] = sort(r(2,:));
[r3,index3] = sort(r(3,:));
[r,4,irdex4] = sort(r(4,:));

for i=1l:length(index)
% tdata(i,:) = rawdata(index(i),:); % for lock-step

tdata(i,:) =[XR(index(i)) XP(index2(i))]; % for random draw
end;

else
Npts = 10000; %l sample size to generate
for i=-1: leng th(pids)

tdata(:,i) = binomd(1,pids(i),Npts,1);
end;

end;

% randomize config order

rr = rand(l,size(tdata,2));
[nt,v] = sort(rr);
for i=1:length(v)

rdata(: ,i) =tdata(: ,v(i));
end;
for kk=l :length(v), name(kk)=names(v(kk)); end;
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pt=mean(rdata);

numsamps = size(rdata,1); % number of samples for each configuration
numconf = Iength(nt); 17o number of configurations
nconf = length(nt); % number of configs - won't be decremented
pairs = combnk(inx(numconf),2);
pairix = inx(size(pairs,1));
cnumc =length(pairix); 9o' number of comparisons

for i=1 :(numconf)
numc(numconf-i+l) = size(combnk(inx(i),2),l); % number of comparisons after each drop

end;

% Construct Wald intercepts, slopes on first run

if runs==l
denom. = log(ulvals) - log(u~vals);
slope =log((1 + ulvals)./(l + u~vals))./denom.;
for i= l:numsamps
for j = l:size(pairs,l)

fline(ij) log((beta/j) / (1 - (alpha/j)))/denomQj) + i*slopeo);
pline(ij) I og((l - (beta/j)) / (alpha/j))/denomoj) + i*slopeo.);

end;
end;

end; % if runs==l

% plot pass/fail lines
%plot(lispace(1 ,30,30),fline(l :30,:));
%hold;
%plot(linpace(1,30,30),pline(1 :30,:));
%title(Wald Bounds for Decreasing Alpha Values','fontname','timesnewromnan);
%axis([ 130 025]);
%xlabel('tl + t2','fontame','timesnewr-oman');
%ylabel('t2','fontname','timesnewromn');
%disp(Press any key');
%pause;
%close;

% The Wald Sequential Test for p1 - p2

clear t2 t;

t2(1,:) = zeros(l,numc);
t= t2;

report = t2;
rc = ones(1 ,nc); % row counter for pline/fline

for j=l:numsarnps
rcflag = zeros(l,length(pairix));
for i=1:max(pairix)

% check for norimatched data pairs
if pairix(i)>0

if rdataojpairs(ijl)) > rdataojpairs(i,2))

t2(rc(i),i) = max(t2(:,i));
rcflag(i) = 1;

elseif rdataoj,pairs(ijl)) < rdataojpairs(i,2))
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t2(rc(i),i) = max(t2(:,i)) + 1;
rcflag(i) = 1;

end;

% compare to pass/fail lines, update report
if rcflag(i)==l

if t2(rc(i),i) > pline(rc(i),cnumc), report(i) = 2;
elseif t2(rc(i),i) < fline(rc(i),cnumc), report(i) =1; end;
tpassline(rc(i),i) = pline(rc(i),cnumc);
tfailline(rc(i),i) = fline(rc(i),cnumc);
rc(i) = rc(i) + rcflag(i);

end; % rcflag(i)-==l

end; % for pairix(i)>O

end; % for i=l:max(pairix) to get reports

% drop losing configs
for k=l:max(pairix)

dropme=-O;
if report(k) = 1, dropme = pairs(k,2);
elseif report(k) == 2, dropme = pair(k,l); end;

% check for no drop of 0 and if config was already dropped
dflag=-O;
if dropme>0&numconfAl, dflag=l; end;
for g=l :length(dropped)

if dropme=dropped(g)Idropme==0O, dflag=O; end;
end;
if dflag=1I

if dropped = 0, dropped = dropme;
else dropped =[dropped dropmel; end;
nuinconf = nuxnconf - 1;

end;

% drop loser
if numconf>lI
for m-1 :size(pairs,1)
if dflag=1l

if (pairs(m,l)==dropme)(pairs(m,2)--=dropne)
pairs(m,:) = [0 01;
pairix(m) =0;
cnuxnc = cnumc - 1;

end;
end; % if dflag==l
if cnumc == 1

lastix = max(pairix);
lastpairs = pairs(max(pairix),:);

end; % if cmnc=l1
end; % for m=1I:size(pairs,l)
end; % for if numconf>l

if numconf==l
cnflag=1;
win = num2str(sum(inx(nconf))-swm(dropped));
break;

end;
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end; % for k=l:max(pairix) for losing config
if numconf==l, break, end;

end; % for j=1 :numsamps

cdc;
disp(['RUN #'num2str(rnms)]);
if cnflag>O

compl(runs) = 1;
lastt2 = t2(.,lastix);
for l=2:lengthalastt2)

if lastt2(1)<lastt2(l-1),lastt2=[lastt2(1 :1-1)]; break; end;
end;
lastt = inx(length(lastt2));
ipairi = nurn2str(name(lastpairs(l)));
lpair2 = num2str(name(lastptairs(2)));
stp = length(lastt);
x = linspace(1,stp,stp);
plot(lastt,lastt2,'r',x,tpassline(1 :stp,lastix),'g',x,tfailline(1 :stp,lastix),'g');
xlabel('tl + t2','FontName',TimnesNewRoman','FontSize',14);
ylabel('t2','FontName,'TimesNewRoman','FontSize', 14);
title(['Configuration' ipairi '(bottom) vs. Configuration 'lpair2'

(topyi]'fontsize,14,'FontNane','TirnesNewRoman');
axis([1 stp 0 max(tpassline(1:stp,lastix))+2]);
titlefnt;

maxs = num2str(j);
disp([maxs 'total samples needed to choose #' win' as the best configuration.']);
disp(Drop order')
disp(dropped);
Er,s]=sort(pt)
disp('Tnie order (randomized index):');
disp(s);
disp(r);
disp(True pid for order data was loaded:')
disp(mean(tdata));
disp('Key - index order over load order);
disp(inx(length(v)));
disp([' 'names(v(l))' 'names(v(2))]); %' 'names(v(3)) ' 'names(v(4))]);

elseif j~nusanips
win--nuxn2str(O);
compl(runs) = 0;
disp('More samples required');
disp(Configurations dropped:');
disp(dropped);
[r,s]=sort(pt);
disp('True order:');
disp(s);
disp(r);
disp(True pid for order data was loaded:')
disp(mean(tdata));
disp('Key - index order over load order');
disp(inx(length(v)));
disp([' 'names(v(1)) 'narnes(v(2))I); % ' 'names(v(3)) ''names(v(4))]);

disp('Nurnber remaining:');

H-5



disp(numconf);
if cnumnc==1

lastt2 t2(:,lastix);
for 1=2:lengtholastt2)

if lastt2(1)<lastt2(l),lastt2=[1astt2(l :1-1)]; break; end;
end;
lastt = inx~length(lastt2));
ipairi = nuin2str(namne(lastpairs(1)));
lpair2 = num2str(name(lastpairs(2)));
stp = length(lastt);
x = linspace(1,stp,stp);
plot(lastt,lastt2,'r,x,tpassline(1:stp,lastix),'b',x,tfailline(1 :stp,lastix),'b');
xlabel('tl + t2','FontName',TimesNewRoman','FontSize',14);
ylabel('t2','FontNaine','TimesNewRoman','FontSize',14);
title(['Configuration 'ipairi ' (bottom) vs. Configuration lpair2

(top)'],'fontsize,14,'FontName','TimesNewRoman');
axis([l stp 0 stp+2]);

end; % if cnuxnc=l
end;

% get run reports

dternp=[dropped zeros(l nconf-length(dropped))];
repdrop(runs,:)=dtemp;
reptrue(ruxls,:)=s;
repkey(rns,:)=v;
repsamps(runs)=j;
repwin(ns,l)=(str2num(win)*(str2num(win)>0)) + 0;

end; % for runs=1:nnms

% collect sample size stats on complete runs only

for reep=l :length(repsamps)
if compl(reep)>0,ssizs=[ssizs;repsamps(reep)]; end;

% if repsamps(reep)-length(rdata),ssizs=[ssizs;repsamps(reep)]; end;
end;

trepsamps = repsamnps';
repcompl = mean(compl); % pct of time test completed with less than avail, samples
pctcorr = mean(compl'.*(repwin==-reptrue(: ,size(reptrue,2))));
pct2 = mean(compl'.*(repwin---reptrue(:,size(reptrue,2)-1)));
ssizavg =mean(ssizs);

ssizstdv =std(ssizs);

ssizcil c il(.05,ssizavg,ssizstdvnuns);
ssizciu =ciu(.05,ssizavg,ssizstdvjnruns);

ssizci=[ssizcil ssizciu]; % 95% ci of sample size
tpctcorr = pctcorr/repcomnpl; % pot of completed test which chose system with highest pid
tpctcorr2 = (pctcorr+pct2)/repcompl; pct of completed test which chose system with 1st or 2nd highest pid

save filename.mat pctcorr tpctcorr tpctcorr2 repcompl ssizs ssizci ssizavg ssizstdv;

end % program
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Appendix I

MSTAR Data Summaries

1. 95% Confidence intervals for plD for all MSTAR systems

All data points Common data points

System Sampe Interval Sample Interval

size size

A 240 0.6167 (0.5221,0.6836) 141 0.6028 (0.5552, 0.6782)

B 194 0.6237 (0.5294,0.6904) 141 0.6099 (0.5555, 0.6919)

C 237 0.6498 (0.5368,0.6973) 141 0.6170 (0.5891, 0.7105)

D 226 0.6593 (0.6039,0.7578) 141 0.6809 (0.5975,0.7211)

E 283 0.7103 (0.6564,0.7699) 244 0.7131 (0.6574,0.7631)

F 281 0.6797 (0.6132,0.7310) 244 0.6721 (0.6252,0.7343)

G 259 0.7336 (0.6781,0.7891) 244 0.7336 (0.6798,0.7874)

H 272 0.6618 (0.5919,0.7114) 244 0.6516 (0.6055,0.7180)

R 1152 0.7708 (0.7465,0.7951) 962 0.7994 (0.7781,0.8206)

P 1048 0.7376 (0.7110,0.7642) 962 0.7297 (0.7062,0.7533)
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1.2. Difference Intervals and Sample Sizes for Pairwise Comparisons of Systems

Interval calculation [14:360]:

-/31) -P 2 ( 1 -P5 2 )
(/il -fi 2 ) ± ZI-a/2 1 (l :n 2) + 2

Sample size required to declare p, -p2' significant, where n = n = n2:

2

z1 /2 ,(1-A3)+ 2 (1-3 2 ) (1.2
n -- l-a/2 JP1 )1 --/2)( 2 (1.2)

All of the following intervals contain zero, and therefore demonstrate a statistically
insignificant difference, except for the ones in bold.

All data points, a = 0.05 All data points, a = 0.05/6
AvB AvC AvD AvB A C A-D

-0.0989 0.0848 -0.1196 0.0533 -0.1298 0.0446 -0.1306 0.1165 -0.1495 0.0832 -0.1600 0.0748

ByC BvD CvD BvC BvD CvD
-0.1174 0.0652 -0.1276 0.0565 -0.0961 0.0772 -0.1490 0.0968 -0.1594 0.0883 -0.1261 0.1072

EvF EvG Ev- EvF EvG -I
-0.0454 0.1065 -0.0988 0.0521 -0.0287 0.1257 -0.0717 0.1328 -0.1249 0.0782 -0.0554 0.1524

FvG FvI GyH FvG FvH U vxH
-0.0060 0.0227 -0.0610 0.0963 -0.0060 0.1497 -0.0329 0.0493 -0.0883 0.1234 -0.0329 0.1766

RvPE RvP
-0.0028 0.0692 -0.0153 0.0817

Common data points, a = 0.05 Common data points, a = 0.05/6
AvB AvC AvD AvB AvC AvD

-0.1211 0.1069 -0.1280 0.0996 -0.1896 0.0334 -0.1606 0.1464 -0.1674 0.1390 -0.2283 0.0721
BvC BvD CvD BvC BvD CvD

-0.1208 0.1066 -0.1824 0.0404 -0.1751 0.0473 -0.1601 0.1459 -0.2209 0.0789 -0.2135 0.0857

EvF EvG EvH EvF EvG Evil

-0.0408 0.1228 -0.0999 0.0589 -0.0209 0.1439 -0.0691 0.1511 -0.1273 0.0863 -0.0495 0.1725
FvG FvH GvH FvG FvH GvH

-0.1424 0.0194 -0.0634 0.1044 0.0004 0.1636 -0.1704 0.0474 -0.0925 0.1335 -0.0278 0.1918
RvP RvP

0.1075 0.0319 0.0188 0.1206
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1.3. Minimum Sample Size Requirements for Difference Detection

For information only. In an experiment, we must precalculate the sample size and

independently sample the data to use confidence intervals for analysis. These tables

demonstrate the sample sizes that would be required to detect differences between the

MSTAR configurations if the WL data pJD's are perfect estimates of the true pD's.

All data points, a = 0.05 All data points, a = 0.05/6
AvB AvC AvD AvB AvC AvD

36,410 1,622 976 65,972 2,939 1,768
BvC BvD CvD BvC BvD CvD
2,607 1,396 19,452 4,723 2,530 35,245
EvF EvG EvH EvF EvG EvH
1,743 2,827 702 3,158 5,122 1,271
FvG FvH GvH FvG FvH GvH

546 5,264 312 990 9,539 565
RvP RvP
1,290 2,338

Common data points, a = 0.05 Common data points, a = 0.05/6
AvB AvC AvD AvB AvC AvD
36,376 9,063 288 65,911 16,422 521
BvC BvD CvD BvC BvD CvD

36,138 347 427 65,480 629 773
EvF EvG EvH EvF EvG EvH
971 3,657 438 1,760 6,625 794
FvG FvH GvH FvG FvH GvH

422 4,090 241 765 7,410 437
RvP RvP
283 512
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