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Abstract

Reliability analysts are often faced with the challenge of characterizing the behavior of
system components based on limited data. Any insight into which model input data is
most significant and how much data is necessary to achieve desired accuracy requirements
will improve the efficiency and cost effectiveness of the data collection and data
characterization processes. This thesis assesses potential significant factors in the
probabilistic characterization of component failure and repair behavior with respect to the
effect on system availability estimates. Potential factors were screened for significance
utilizing fractional factorial and Plackett-Burman experimental designs for several system
models developed using an AFOTEC simulation program entitled RAPTOR.

Two input data characterization factors were found to have a significant affect on
availability estimation accuracy: the size of the structure and the number of data points
used for component failure and repair distributional fitting. Estimation error was
minimized when the structures analyzed were small and many data points (in this case, 25)
were used for the distributional fittings. Assuming constant component failure rates and
using empirical repair distributions were found to be equally effective component
characterization methods (pertaining to model availability estimation error) compared to
using automated software fitting tools (or ‘wizards’). The results of this study also
indicate that there is no apparent benefit in concentrating on ‘important’ components for

the highest fidelity distributional fittings.
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SENSITIVITY OF AVAILABILITY ESTIMATES
TO INPUT DATA CHARACTERIZATION

I. INTRODUCTION

Overview
Reliability, maintainability, and availability (RM&A) analysis plays an integral part in
the design and production of efficient, cost-effective systems. According to Kapur and
Lamberson,
“The reliability of a system is the probability that, when operating under stated
environmental conditions, the system will perform its intended function

adequately for a specified time.” [1:1]

“Maintainability is defined as the probability that a failed system can be made
operable in a specified interval of downtime.” [1:225]

“Availability is defined as the probability that a system is operating satisfactorily at
any point in time...” and “is a measure of the ratio of the operating time of the
system to the operating time plus the downtime.” [1:225]
The Department of Defense and the Air Force conduct numerous studies into the
reliability and maintainability of current and future weapons systems in an effort to control
RM&A costs of fielded systems and to verify RM&A characteristics of systems which are
still in development. One key Air Force agency which conducts such studies is
Headquarters Air Force Operational Test and Evaluation Center (HQ AFOTEC).

AFOTEC manages a large portion of the Air Force’s weapons system operational

verification and validation testing.



In an effort to describe a system’s RM&A characteristics, analysts frequently represent
the system with an analytical and/or simulation model. Reliability analysts will base these
models on observed component failure and repair data, historical performance of similar
systems, contractor estimates, as well as on certain traditional theoretical assumptions
which have been developed in the field of reliability. In an ideal circumstance, data from
extensive testing will be available for accurate probabilistic characterization of the various
system components. However, due to various constraints and limitations, the analyst is
often faced with the challenge of characterizing the behavior of system components based
on limited data. In this instance, the analyst will need to make judgments as to how best

characterize the input data to obtain acceptable analytical results.

Background

Systems are frequently broken down into sub-structures of components for RM&A
analysis. Several categories of component structures have been defined in the field of
reliability. The more common classes of structures include series, parallel, series-parallel,
and complex structures. A complex structure is one that cannot be defined as series,
parallel, or series-parallel. The simplest example of a series system contains two

components as shown in Figure 1.

Figure 1. Simple Series System




Given that p; and p, (ranging in value from 0 to 1.0) represent the reliability of
components 1 and 2, respectively, and that all components operate independently of each
other, then the system reliability function, A(p), is

h(p)=p,-p,.

A two component parallel system is shown in Figure 2.

Figure 2. Simple Parallel System
In this case, the system reliability function is
h(p) =1-[(A-p,)-A=p,)].
Series-parallel systems consist of combinations of series and parallel components in the

system. An example is shown in Figure 3.

Figure 3. Series-Parallel System |

The system reliability function for this series-parallel system is
h(p) = [1"(1_1’1)' (1—p2)]'[1"(1—p3)'(1—p4)]'PS.

A typical complex structure can be illustrated by a bridge structure as shown in Figure 4.




Figure 4. Bridge Structure
The system reliability function for a bridge structure is
h()=1-[(A=p;-p,)- A=p;-ps-ps)-(1=py-ps)- (1= p,-ps- p,)].
As can clearly be seen, the complexity of the system reliability function increases
significantly as the size and complexity of the system structure increases.

Several analytical methods exist for determining steady-state properties of systems of
components, including Markovian models, network theory, fault tree analysis, path and
cut set analysis, Venn decomposition, non-homogenous Poisson processes (NHPP), and
power law processes, to name a few. However, if the system under study is large and/or
complicated, as is often the case, analytical methods can become cumbersome.
Furthermore, most analytical methods provide insight only into the system’s steady-state
properties, not it’s transient properties. The task is further complicated when estimating
system availability, since component repair rates must be considered. In such situations
where analytical methods are inadequate or overly cumbersome, simulation provides a
viable (and often times preferable) alternative [2:112].

In developing a simulation model, analysts must collect component failure and repair
rate data (and/or use existing data) and then characterize this data to accurately represent

the true behavior of the components of interest. More often than not, this data collection




process is time consuming and expensive. Any insight into which model input data is most
significant and how much data is necessary to achieve desired accuracy requirements
should improve the efficiency and cost effectiveness of the data collection and data

characterization processes.

Research Objectives

The general purpose of this study is to provide insight into input data characterization
factors (such as volume of data utilized, data fitting methods, system size, type of system
structure, and component importance) which may affect the accuracy of simulation model
availability estimates. If we can identify the key factors which have a significant affect on
model accuracy, the analyst can focus more attention on modeling these significant factors
and less on the insignificant factors when soliciting and characterizing input data for an
RM&A model.
Questions which need to be researched include:

(1) How much failure rate and repair rate data are needed for each component to
obtain a desired model accuracy?

(2) Which data fitting techniques for characterizing component failure and repair
probability distributions produce significant errors in model accuracy, and which do

not?

(3) Do all components need the same fidelity of characterization, or can increased
efficiency be realized by focusing on only the ‘important” components?

(4) Are the answers to the above questions affected by system size, the underlying true
component failure distributions, or other system characteristics?

Although the scope of this effort does not allow for a complete research of the above

questions, much can be ascertained by conducting a controlled experiment. This research




is intended, using a design of experiment approach, to help identify the most critical pieces
of data needed to ensure representative simulation results. Many efficiencies could be
achieved if analysts were provided general input data characterization guidelines based on
experimental results. Insights gained from this research may assist in the reduction of
expensive live testing and unproductive data collection through the efficient use of
simulation models.

The overall research objectives are to:

(1) Identify potential factors which affect availability model output accuracy.

(2) Screen these potential factors to determine which have a statistically significant
effect (or interaction effect) on output accuracy.

(3) Assess the magnitude of the significant effects.

(4) Provide basic insight to analysts to aid in efficient input data characterization for

availability models.
Scope

Although several model output measures may be of interest when analyzing a system,
this study focused on the system availability output measure. A total of nine input data
characterization factors (defined in Chapter 3), identified by several RM&A analysis
experts and the author as factors with a potential affect on the accuracy of availability
estimates, were analyzed. The probability density functions (pdf) used fo define system
component failure and repair rates were limited to ‘common’ functions encountered in
reliability analysis, namely the Weibull and Lognormal pdf’s. Component sparing was not

considered in this research. To maintain economy of effort, the maximum size of any




analyzed system was limited to 20 total components and the structure types analyzed were

series-parallel and complex.

Overview of Subsequent Chapters

Chapter 2 contains a review of existing literature covering several topics pertinent to
this research. Major component importance measures, experimental designs for simulation
(including screening designs), Plackett-Burman two-level experimental screening designs,
and past research relating to this effort are all explored.

The research was conducted in two stages: a preliminary experiment to validate and
refine the methodology, followed by a larger-scale experiment. Chapter 3 includes a

description of the research methodology for the preliminary experiment which assessed

five input data characterization factors. Chapter 3 also includes a discussion of the
specific designed experimental screening methods used as well as specific analytical
techniques used for data analysis for the preliminary experiment. The software used for
availability model development, random variate generation, and data fitting are described.
Chapter 4 contains the results from the preliminary experiment. Statistical results are
presented which identify the factors which proved significant in affecting availability model
output accuracy.
Chapters 5 and 6 include descriptions of the methodology refinements and results of

the final experiment. This experiment analyzed nine input data characterization factors.




Chapter 7 contains a summary of the thesis effort, including an overview and
discussion of the impact of the results, how these results may benefit reliability analysts,

and ideas for future research.




II. LITERATURE REVIEW

Overview

This chapter provides an overview of the current literature in areas pertaining to this
thesis. iThis chapter begins by reviewing several major methods of defining component
importance which are found in the literature. It then provides an overview of two-level
designed experimental methods for factor screening in simulation experiments. One
screening experimental technique, Plackett-Burman (P-B) experimental designs, was used
in this research and is discussed in detail. Finally, past research which relate to this effort

are reviewed.

Component Importance Measures

Systems are frequently broken down into sub-structures of components to aid in
system design, analysis, and repair. Component importance measures provide a scientific,
quantitative approach of identifying the most important components in a given structure of
components. As an example of a common application, system designers can use
component importance measure to identify which components are most critical in the
proposed design structure. Furthermore, reliability analysts can use component important
measures to determine which components are most crucial in defining the overall system
reliability [3:195].

Several component importance measures have been developed in reliability theory since
Birnbaum introduced the first mathematical component importance measures in 1969.

Current component importance measures can be categorized into three areas: structural,




time dependent, and time independent. This section provides an outline of several of the
major component importance measures which have been published in recent years and are
common in use.

Terminology. All systems considered in this paper are coherent systems comprised of
binary state components. A coherent system is one in which all components are relevant
in maintaining a functional system. Binary state components have just two states:
functioning or failed. The states are typically represented as

X(®) =1 if the component functions at time ¢
= () if the component is failed at time z.
A system’s (as opposed to a component’s) reliability function is depicted as A(p), where p
represents the component reliability vector. A component’s reliability function is a
function of time and is depicted as p;(z) for component i.

Structural Component Importance Measures. Structural importance measures are
based solely upon the structural design of the system. They are used when the system
structure function is known, but the individual component reliabilities are not known
[4:583]. Two key structural methods have been developed by Birnbaum as well as
Barlow and Proschan.

Birnbaum Structural Measure. The Birnbaum structural measure provides a
measure of the criticality of a component in maintaining a system’s functional state.

Annotated as [ ,(;',)‘D for component i, it represents the proportion of system state vectors

which are critical for component i [5:456]. When the system components are

independent, it can be calculated by the following equation [4:584]:
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This measure does not take into account the individual reliabilities of each system
component.

Barlow-Proschan (B-P) Structural Measure. The Barlow-Proschan (B-P)
structural measure assumes that component reliabilities are not known, but can be
assumed to be the same for each component and assigned the value p. It is defined by the

equation
(i) !
Iy =, h(1,,p) - h(0,, P dp @

where h(1;, p) represents the system reliability function when component i is functioning
and h(0;, p) represents the system reliability function when component i is not functioning
[5:457].

Time-Dependent Component Importance Measures. While structural importance
measures are only dependent upon the underlying system structure, time-dependent
measures take into consideration the component reliabilities at some chosen time . They
are typically utilized when both the system structure and the component reliability
functions are known. Two frequently used time-dependent measures include one
developed by Birnbaum and another introduced by Veseley and Fussell.

Birnbaum Reliability Importance Measure. Birnbaum’s reliability importance
measure assesses a component’s importance at time ¢. If a system is comprised of »

components whose reliabilities at time ¢ are py, pz, ..., p» and A(p1, P2, p3, ..., P») TEPIESENLS
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the system reliability at time #, then the Birnbaum reliability importance measure for

component i is given by
1P =h(Dysecir Doy Ly Disysees Do) = B(Dysees D505 Piyy e D)

_ 9 h(p)
Y 3

It represents the decrease in system reliability when component i fails [6:266]. The
Birnbaum reliability importance measure is the most frequently used time-dependent
measure because of relative ease in calculation and because it provides the ‘fairest’ basis of
comparison between components [5:458].

Veseley-Fussell (V-F) Importance Measure. Another popular time-dependent
component importance measure, introduced by Veseley and Fussell in 1972, utilizes cut-

set theory to define component importance. The V-F importance measure, 1. (¢),

represents the conditional probability that a cut set containing component i has failed at
time ¢, given that the system has failed at time 7.

Many other time-dependent measures, most of which are variations of those discussed
previously, also exist. For the sake of brevity, these additional measures, including those
developed by Butler and Aven arising from network theory, will not be discussed in this
paper.

Time-Independent Component Importance Measures. Both structural measures
and time-dependent measures have inherent characteristics which make them inappropriate
for certain analyses. Structural measures do not consider component reliabilities, and

time-dependent measures are only valid for one specific instance in time. As a result,
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time-independent measures have been developed in an attempt to address these issues.
Time-independent measures allow component importance rankings for a desired time
interval. Several time-independent measures have been developed, most of which are
some form of weighted average of the Birnbaum reliability measure [7:160]. Two of the
most prominent time-independent measures are those developed by Barlow and Proschan
and B. Natvig.

Barlow-Proschan Time-Independent Measure. The first time-independent
component importance measure was introduced by Barlow and Proschan in 1975. The B-
P measure represents the probability that component i causes system failure in the time

period (0, ©). It is represented by
I9=[ 19®- fOwar )
where I (¢) represents the Birnbaum reliability measure at time # and f () is the failure

probability density function for component i. I{) can also be interpreted as the

probability that the system life equals the life of component i [8:158].
Natvig Importance Measure. In 1979, Natvig introduced another time-

independent component importance measure. The Natvig measure is defined by
19 = [[ 19 1) py (0 (~In pg, (e | ()
where p,,(¢) represents the reliability function for component i. The Natvig measure

represents the reduction in expected remaining system lifetime (up to time T) due to the

failure of the i component [9:280].
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Other time-independent measures have been developed by Aven, Bergman, Narros,
Boland, and Xie, most of which are extensions or advancements of the above listed
measures. Furthermore, a significant amount of work has been done in the development of
importance measures for multi-state and repairable components. Space does not allow
discussion of these additional measures, but Boland and El-Neweihi [5] is an excellent
reference providing an overview of each method and a list of applicable references.

Numerical Example of Component Importance Measures. To further demonstrate
the calculation of the various importance measures, a numerical example is offered. For
the given structure shown in Figure 5, the Birnbaum structural measure, Birnbaum
reliability time-dependent measure, and the Barlow-Proschan and Natvig time-independent

measures will be calculated.

Figure 5. Example System
Table 1 defines the probability distribution and reliability functions for the various system

components.
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Table 1. Component Failure Distributions and Reliability Functions for Example System

Component
(i) Failure Distribution W0 pafd)
Weibull: Shape =1.1 (hrs) 11. 0 [‘(égt@)l.l}
1 Scale = 3500 350000 [_(ﬁ)u]
Location =0
Weibull: Shape = 1.1 11. 70 [_(ﬁ)u]
2 Scale = 3500 575—6(')(1—,1)8 [_(ﬁ)u]
Location = () e
Weibull: Shape=1.5 15. 1 [_( 56166 )15]
3 Scale = 2000 We [’(’27:66)15]
Location =
Weibull: Shape = 1.5 15. ¢ [‘<ﬁ)“5]
4 Scale = 2000 ‘2—0'6'0—(13)'8 [_(ﬁ)l.s]
Location = (
Weibull: Shape =2.0 20-¢ [_(Eb‘_oa)z.o]
5 Scale = 2000 We [_( ﬁ )2,0}
Location =0 e
Based on the structure function, the system reliability function is
h) =[1-(1-p,) (1= p,)]- [1=(1= p;)- (1= p.)] s ©)

Birnbaum Structural Measure Example. Since both components 1 and 2 as well
as 3 and 4 are identical and in-parallel (and the structural importance measure does not
consider component reliability), the structural importance measure values for components
1 through 4 will be the same.

Recall from equation (1) that

d h(p)

O
L=

1
P1=-=Pn =5

For component 1,
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20 nytetenynie

When p,; = —;—, from equation (7),

d h(p)

m _
Igy = 3p
1

=1875=1",

For component 3,

aah;l:) - [1—(1—P1)‘(1‘p2)]'(1—p4)'p5

Therefore, when p, = % )

9 h(p)
I = 2 =1875=1}"

Ps
Using the same method to calculate the measure for component 5,

19, =28 _ 5655
B, a

5

(M

®)

Therefore, the Birnbaum structural measure component ranking (in descending order) is

5,{1,2,3,4)}.

Birnbaum Reliability (Time-Dependent) Measure Example. Recall from

d h(p)

t

equation (3), I¥ (1) =

value (7) must be selected. In this example, £ = 1000 hours. Therefore,

for component 1,

16

. Since this is a time-dependent measure, a specified time




9 h(p) _

Iy () = P
1

(1= p,®)-[1= (1= ps)- (L= P, )] P5 (1) )

=.158135

where p,(t) is given in Table 1. Since component 1 and 2 are identical and in-parallel,

component 2’s importance measure will also equal .158135.

Similarly, for components 3 and 4, 1\ (t) = 9h®) _ 2204821=1(1).
P
For component 5, I (1) = 9 hp) _ 866066.
Ds

Therefore, the Birnbaum reliability (time-dependent) importance measure component

ranking (in descending order) is 5, {3, 4}, {1, 2}.

Barlow-Proschan Time-Independent Measure Example. From equation (4),
19 = J: IP@)- f¥(t)dt. A time period of interest (for the range of integration) must

be specified to calculate time-independent measures. In this example, the time period will

be 0 to 50,000 hours (i.e. T = 50,000). For components 1 and 2, where I’ (¢)is given in
equation (9) and py(#) and f ©° (¢) are provided in Table 1,
19 =" 190 £ O (t)ds = 056671= 12 .
Similarly, for components 3 and 4,
19 =" 190 O ()t = 145126 = 1Y) .
For component 5,

50,
Iy = JOOOOO I () £ ()dr = 596417 .
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Therefore, the Birnbaum time-independent importance measure component ranking (in
descending order) is 5, {3, 4}, {1, 2}.

Natvig Time-Independent Importance Measure Example. From equation (5),
19 =J: 19 () p, (£) (—Inpy, (1))de . For components 1 and 2, where I (¢)is given in
equation (9) and pi(?) is provided in Table 1,
19 = [ 190) - oy () (In py (1) = 667423 =1 .
For components 3 and 4,
19 = [ I90) pey () (~In pisy())dt = 142.9822 = [
and for component 5,
19 = [ 19 (1) piy (6)-(~In pis (D)t = 4023612 .

Therefore, the Natvig importance measure component ranking (in descending order) is
5,{3,4}, {1, 2}.

In this particular example, the various demonstrated measures resulted in equivalent
importance rankings for the system components (the Birnbaum structural method did not
differentiate between components {1, 2} and {3, 4} because it considered only system
structure and not component reliability) as summarized in Table 2.

Table 2. Importance Measure Rankings for Example System

Importance Measure Ranking (highest to lowest)
Birnbaum Structural 5,1{1,2,3,4}
Birnbaum Reliability 5, {3, 4}, {1, 2}

Barlow-Proschan 5, {3, 4}, {1, 2}
Natvig 5, {3, 4}, {1, 2}
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However, due to the different methods used in the calculation of component importance
measures, there will not necessarily be agreement in component rankings between the
various measures. Several instances were cited in the literature where one measure
produced completely opposite ranking results from another measure. Therefore, analyst
judgment is required for the selection of the most appropriate importance measure for any

given situation [10:1431].

Simulation Experimental Design and Factor Screening Methods

The purpose of any experiment is to gain insight about a particular system [11:424].
Typically, changes are made to particular inputs (called factors), and the effects of these
changes on some output parameter(s) (called responses) are analyzed and measured.
Computer simulation models allow analysts the benefit of experimenting with a system
model instead of the actual system. This usually saves time and money, and is frequently
the only practical method of analyses.

Rather than randomly trying different combinations of input factor levels to ascertain
their affect on the response, desi gned experiments provide an efficient and systematic
method for conducting such analysis. Using a designed approach, the analyst can
determine in advance the number of simulation runs and input configurations for each run
to obtain the desired information about the system [12:657]. When more than just a few
factors are under study, a logical first step is to determine or ‘isolate’ those factors which

significantly affect the response measure. The literature commonly describes this as
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factor screening. Several methods of factor screening are outlined in the literature
including two-level factorial designed experiments, fractional factorial experiments, and
Plackett-Burman (P-B) designs. Most factor screening methods consist of two-level
designed experiments [13:50]. In fact, the most popular two-level experimental designs
are fractional factorials and P-B designs [14:94]. Not until recently have designed factor
screening experiments been used in the field of reliability to identify important factors
which affect system performance [15:206].

A P-B designed experiment was used in this effort to identify the subset of active
factors which affect availability estimation accuracy. This section provides a brief
discussion of two-level factorial designed experiments, fractional factorial experiments, as
well as an in-depth discussion of P-B designs and their projection properties.

Two-Level (2°) Factorial Designed Experiments. A full two-level factorial
experiment, where each factor is assigned a high and low level, will be used to estimate the
effects of each of the & factors under study as well as their interaction effects. It requires
simulation runs for each of the 2* possible factor-level combinations (called design points)
[12:660]. When a relatively small number of factors are under consideration, a full two-
level factorial experiment is desirable for factor screening because it identifies all active
effects without confounding. However, when & becomes moderate in size, which is most
often the case, the amount of runs required can become unreasonably large.

Fractional Factorial Designs. To reduce the number of runs required, a fractional
factorial experiment can be run using a subset (2*7) of the 2* full-factorial design points.

This will introduce confounding, thus reducing the amount of conclusive information
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gained from the experiment. However, since we commonly assume higher-order
interactions are negligible in factor screening experiments [16:17], fractional factorials can
serve as excellent screening designs where only the main and two-factor interactions are of
interest. The main disadvantage of fractional factorials is, like full factorials, they
frequently require an impractical amount of simulation runs.

Plackett-Burman (P-B) Experimental Designs. P-B designs have traditionally been
used in factor screening experiments to identify significant main effects [17:137], and they
require significantly fewer runs than full and fractional factorials. P-B designs are
designed experiments with two levels for estimating the effects of # - I factors at two
levelsin 7 runs. The number of runs (n) must be a multiple of four [18:423]. P-B designs
are useful for screening experiments where several factors are of interest, but only a
portion of these factors are suspected as being significant. They allow analysis of the
main effects with a minimal number of experimental runs. The aliasing structure of P-B
designs is complex, with the main effects being aliased with other interaction effects.
Therefore, P-B designs are most effective when the experimenter has good reason to
believe that the interaction effects are negligible. However, if some interaction effects are
significant, they may be identified when using the P-B projection techniques outlined by
Lin and Draper in [19].

Projection Properties of P-B Designs. When an experimental design is projected,
analysis is conducted in a smaller dimension factor space to provide more detailed
information concerning certain retained factors. For example, let’s say an initial full

factorial experiment was conducted assessing four factors with no replicates (i.e. 16 runs)
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and only two factors proved significant. By ignoring the two insignificant factors, the
design could be projected into a 2* full factorial experiment with four replicates. In this
example, the projection produces replicates which allow for the calculation of pure error
and the assessment of the appropriateness of the model fit.

Because of the saturated nature of Plackett-Burman designs, their projection properties
are limited, but they can still be useful. Myers and Montgomery address this limitation by
describing the projection properties of Plackett-Burman (P-B) experimental designs as
unattractive [20:170]. However, with augmentation of additional runs to the original P-B
design, some beneficial projection properties can be obtained. As Lin and Draper show,
P-B designs can be quite useful in conducting screening experiments using a limited
number of runs. Additionally, interaction effects can be analyzed by utilizing Lin and
Draper’s P-B projection techniques to obtain a higher resolution design in the significant
factor space.

Lin and Draper’s P-B Projection Techniques. An overview of Lin and Draper’s
P-B projection concepts can be summarized in a few concise steps:

(1) Conduct a P-B designed experiment with the appropriate number of runs (#)
for the factors which are to be screened and analyzed.

(2) Using Yates algorithm [21:323-324], identify the & factors which exhibit
significant main effects.

(3) Use the associated P-B design columns for the & significant factors as the
projected design in the & factor dimension.

(4) If necessary, conduct supplemental experimental runs using specified levels

for the k significant factors to achieve a desired resolution for the projected
design.
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P-B Projections. Table 3 delineates the projections identified for the 12-run

Plackett-Burman design.

Table 3. Projection of a 12-run Plackett-Burman Design into k£ Dimensions [19]

k Design Number Description
2 2.1 2? design with 3 replicates
3 3.1 2° design plus 2°" design
4 4.1 Add one more run to obtain a 2*" design
Add two more runs to obtain 3/4 replicate design
Add five more runs to obtain a 2* design
5 5.1 Add two more runs to obtain a 25, design
Add six more runs to obtain a 27" design
52 Add two more runs to obtain a 23, design
Add eight more runs to obtain a 23" design
Add ten more runs to obtaina 2] design

A brief theoretical example may be the best method to demonstrate Lin and Draper’s P-B

projection techniques. The following is an example where n = 12 and &£ = 3. After

conducting the 12 P-B runs, suppose only 3 of the 11 main effects prove to be significant

(i.e. k= 3). By focusing only on the 3 columns that correspond to the k significant factors

(in this example A, B, and C), the smaller design can be decomposed into a full 2 design

and a 2°" design (where I = +ABC). Figure 6 shows a full 12-run P-B design. If, after

conducting the 12 runs for the P-B design, only factors A, B, and C possess significant

main effects, the design can be projected (with rows rearranged) into the arrangement

shown in Figure 7.
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Run A B C D E F G H | ] K
1 + - + - - - + + + - +
2 + + - + - - - + + + -
3 - + + - + - - - + + +
4 + - + + - + - - - + +
5 + + - + + - + - - - +
6 + + + - + + - + - - -
7 - + + + - + + - + - -
8 - - + + + - + + - + -
9 - - - + + + - + + - +
10 + - - + + + - + + -
11 - + - - - + + + - + +
12 - - - - - - - - - - -

Figure 6. Plackett-Burman Design (n = 12)
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Figure 7. P-B Design Projection for n =12 and k=3 (A, B, )
As can clearly be seen, runs 1 through 8 represent a full 2 design, and runs 9 through 12
represent a 2*? fractional design (where I = -ABC). These 12 runs will estimate all main
effects of the 3 selected factors without aliasing and will also provide information to
calculate pure error needed for lack of fit testing [19].
When &k =4 and k = 5 for the 12-run P-B design, no complete projection exists for the

factors of interest. However, viable projections can be achieved by conducting
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supplemental runs. When & = 4, one run can be added to obtain a 2%," design, or five runs

can be added to obtain a full 2* factorial design. An additional option is to supplement the
runs to project the design into a three-quarter replicate. The three-quarter replicate
consists of fewer runs than a full factorial design but more runs than a half fraction. The
three-quarter replicate allows for estimation of the main effects and 2-factor interactions
without aliasing with other 2-factor interactions [22]. For k = 4, two additional runs are
needed to complete a three-quarter fraction design for the 4 factors of interest. When

k =5, two possible projection opportunities occur depending on the structure of the rows
of the 5 selected columns from the original P-B design. If a repeat-run pair emerges, Lin

and Draper call this a 5.1 design, where two more runs can be added to obtain a 23,

design, and six more runs can be added to obtain a 2" design. If a mirror image pair
emerges from the selected columns of the P-B design, this is a 5.2 design, where two

additional runs gives a 23, design, eight additional runs gives a 23, design, and ten

additional runs achieves a 25" design.

Benefits of P-B Designs. Utilizing Plackett-Burman designs and Lin and Draper’s
projection techniques offer an efficient way to conduct screening experiments when many
factors are being considered, only a few are suspected of being significant, and higher
order effects are assumed to be negligible. The projection techniques outlined allow
analysis of the two-factor interactions in the k-dimensions of the projection while requiring

less additional runs than a standard foldover.
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Using a P-B experimentai design for factor screening in this research provided the
benefit of accomplishing the required objectives with maximum efficiency. In the final
experiment, nine input data characterization factors were assessed for significance. A
substantial amount of effort was required to set up each experimental run. The
completion of a full two-level factorial experiment would have required 512 runs, while
any viable fractional factorial design would also have required a large amount of runs.
This was well beyond the scope of this research. On the other hand, the selected P-B

design required only 12 experimental runs, while still providing analysis of the main effects

and some two-factor interactions.

Past Research

The literature was reviewed for research in the areas of input data characterization and
factor screening for system availability estimation. Numerous examples of factor
screening experiments were found in the current literature. A few articles reviewed were
closely related to this research and many facets of the final experimental design were
extracted from these specific efforts. This section will briefly discuss six articles which
closely paralleled and/or helped formulate the methodology for this thesis.

Sensitivity Analysis of Availability Estimates. Wolf [23] assessed th<? sensitivity of
space system availability estimates to the underlying component reliability estimates. He
utilized an iterative response surface methodology (RSM) to identify the system
components whose component reliability significantly affected average system availability

estimates. Individual component reliabilities were perturbed to high and low levels, and
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fractional factorial experiments were used for factor screening. From this analysis, Wolf
formulated a regression model predicting average system availability regressed against the
estimated component reliabilities. Extensive regression analysis, involving several
iterations, was necessary to identify the significant or ‘important’ components. Four of
the initial one hundred components were retained in the final system availability regression
model. Wolf found very little sensitivity of predicted system availability to individual
component failure rate estimates. He surmised that this insensitivity may be due in part to
the simplicity of the model [24:69].

Availability Analysis Using Simulation. Edgar and Bendell [24] tested the
robustness of Markov models in estimating mean-time-to-failure (MTTF), mean-time-to-
repair (MTTR), mean-time-to-first-failure (MTTFF), and availability for coherent systems
of identical repairable components (up to 10) by use of simulation. Using Weibull
distributions to define component failure and repair rates, the authors analyzed steady-
state simulation versus Markov analytical results for both increasing failure rate (IFR) and
decreasing failure rate (DFR) component failure and repair distributions. In general, the
simulation steady-state and Markov model results were found to be consistent. The
authors concluded that failure distributions (as opposed to repair distributions) were more
critical in defining overall system behavior, and that decreasing failure rates were more
critical than increasing failure rates [24:125].

System Complexity (or Size). Hwang, Tillman, and Lee [25] performed a literature
review of works which evaluate reliability calculation methods for complex systems. Their

definition of a complex system was one that could not be categorized as a series-parallel
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structure. They categorized these complex systems as either small (1 - 6 components),
moderate (7 - 9 components), or large (10 or more components). The article provided
diagrams of the chosen example complex systems for the study with some small, some
moderate, and some large. They applied various methods defined in the literature to
evaluate the reliability of each example complex system. Hwang, Tillman, and Lee’s
definitions of complexity/size were utilized in this research effort.

Constant Failure Rate Assumption. A common practice in reliability analysis is to
assume that time between failure follows an exponential distribution (i.e. a constant failure
rate). Mortin, Krolewski, and Cushing [26] provided examples where this assumption
produced erroneous results. They concluded that indiscriminate use of this simplifying
assumption can introduce significant error in the analysis [26:54].

Repair Distributions. Kline [27], through in-depth analysis of several systems,
verified that the lognormal is a good distribution for describing repair rates. He also
concluded that use of the exponential distribution for repair rates resulted in negligible
error when the true underlying repair distribution was lognormal [27:79].

Comparison of Screening Designs for Simulation Models. Webb and Bauer [28],
using a large-scale computer simulation, compared three methods of analysis for a
Plackett-Burman screening design: the Box and Meyer approach, the traditional response
surface methodology (RSM) approach, and the Hamanda and Wu approach. This thesis
employed the RSM and Box-Meyer analysis methods.

Box-Meyer Bayesian Method. The Box-Meyer method entails deriving the

marginal posterior probability that a factor is active (i.e. statistically significant) using
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Bayesian techniques. This method determines which model best fits the data by examining
all possible hypotheses and is analogous to all-subsets regression [28:307]. Box and

Meyer explain their method as follows:

“The Bayesian approach to model identification is as follows. We consider the set of all
possible models labeled My, ..., M,,. Each model M; has an associated vector of
parameters 0;, so that the sampling distribution of data y, given the model M,, is described
by the probability density f(ylM;, 0;). The prior probability of the model M;, is p(M;), and
the prior probability density of 0; is f(0; 1M;). The predictive density of y, given model M;,
is written f(y!M;), and is given by the expression

FOIM) = [ f(YIM,.0,)d0,

where R; is the set of possible values of 0;. The posterior probability of the model M;,
given the data y, is then

p(M.ly) = p(M,)f(yIM,)

Y p(M,)f(yIM,)
h=0

The posterior probabilities p(M;l y) provide a basis for model identification. Tentatively
plausible models are identified by their large posterior probability” [14:95].

Since it considers the possibility of interactions, the Box-Meyer method increases the
likelihood of identifying active factors. This is “particularly true of Plackett-Burman
designs where the number of runs is not a power of two” [14:94].

Response Surface Methodology (RSM). The RSM approach consists of
examining the magnitude of the main effects, using analysis of variance (ANOVA), and
examining normal probability and/or Pareto plots. A Pareto plot is a bar chart where the

length of the bars is proportional to the absolute value of the estimated effects [28:309].

Summary
A key objective of this research was to ascertain whether there is utility in focusing on

‘important’ components when characterizing input data for availability models. This
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chapter provided a detailed review of current methods for computing component
importance. Additionally, a general overview of two-level screening designs as well as a
thorough review of Plackett-Burman (P-B) designs was provided. A P-B screening
experimental design was used in this thesis to determine which selected characterization
factors were significant. Finally, pertinent literature which shaped the methodology for
this effort was discussed.

Many factors contribute to the accuracy of availability models. In an effort to
supplement the analyst interviews, the literature review helped identify input data
characterization factor candidates for analysis: component importance, underlying
component failure and repair distribution characteristics (IFR versus DFR), system
structure type, and system complexity level (or size). The literatufe review also provided
insight into appropriate factor levels for the two-level screening experiments and

applicable analysis methods.
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III. METHODOLOGY: PRELIMINARY EXPERIMENT

General Methodology Overview

The general methodology for this research entailed a designed screening experiment to
identify significant input data characterization factors affecting availability estimate
accuracy. The RSM and Box-Meyer methods discussed previously were used for analysis
of the experimental output data. The research was done in two steps: a simplified
preliminary experiment analyzing five factors to validate and refine the methodology, and a
final experiment analyzing nine factors.

Component input data characterization factors of interest were identified using
reliability analyst interviews, ideas derived from the literature review, as well as personal
judgment. The nine factors identified for analysis are listed in Table 4.

Table 4. Selected Experimental Factors

Input Data Characterization Factors
True Failure probability density function (pdf) of important
components
True Failure probability density function (pdf) of non-important
components
Number of data points
(assumed to be same for all components)

Fitting technique for Failure pdf of important components
Fitting technique for Repair pdf of important components
Fitting technique for Failure pdf of
non-important components
Fitting technique for Repair pdf of
non-important components
System Complexity Level (Size)

System Structure Type
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For the conduct of the two-level screening experiments, two levels for each factor were
selected, labeled high and low for simplicity. Availability models for various generic
systems of components were created using a PC-based RM&A software program
developed by the Headquarters Air Force Operational Test and Evaluation Center

(HQ AFOTEC). Each system of components was designed by the researcher for complete
experimental control and do not represent actual existing systems. In accordance with the
experimental design, factors were set to the appropriate levels for each design point. The
response measure for each simulation run was system availability absolute estimation
error. Following the simulation runs, the responses were analyzed to screen the active

factors via traditional RSM as well as Box-Meyer statistical analysis techniques.

Preliminary Experiment

To validate the general methodology and to expose potential problem areas, an initial
smaller scale screening experiment was performed on a subset of the factors listed above.
A 277 factorial designed experiment was conducted to determine which of 5 input data
characterization factors (for a simple series-parallel structure) might significantly affect
availability model accuracy.

Definitions. The system considered in the preliminary experiment was a coherent
system comprised of binary state components. As defined previously, a coherent system is
one in which all components are relevant in maintaining a functional system. Binary state

components have just two states: functioning or failed. The states are represented as
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X(#) =1 if the component functions at time ¢ and
X() =0 if the component is failed at time z.
A system’s (as opposed to component) reliability function is depicted as 4(p), where p
represents the component reliability vector. System availability (A,) is defined as the
percentage of time the system will perform its specified function (i.e. in operational
condition) in a given period of time [29:253].
Assumptions. The following assumptions were applied to the preliminary experiment:
(1) The structure is coherent consisting of binary state components.
(2) All component failure and repair distribution means are bounded by the
following limits:
(a) Weibull failure distributions: 1000 < mean < 5000 (hours)

(b) Lognormal repair distributions: 10 < mean <200 (hours).

(3) Only these specific distributions (Weibull and Lognormal) are used to
represent the true component failure and repair distributions.

(4) All parallel components are identical.
(5) No negative location parameters are allowed in distribution data fitting.

(6) Distributional fitting results obtained for identical parallel components require
only one set of input data sampled from one component.

(7) Maximum Likelihood Estimation (MLE) methods are used to calculate fitted
distribution parameters.

(8) The response function, defined as the absolute error of the system availability
measure from each simulation run, is approximately linear with respect to the input
variables.

(9) Higher order interaction effects are negligible.

(10) The component with the highest ranking Barlow-Proschan time-independent
importance measure represents the most important system component.
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Software. The software used to create the availability simulation model is a PC-based
program entitled Rapid Availability Prototyping Tool for Testing Operational Readiness
(RAPTOR), written by the Headquarters Air Force Operational Test and Evaluation
Center (HQ AFOTEC). RAPTOR can be used to create availability, reliability,
maintainability, and sparing models for various systems undergoing operational testing and
evaluation (OT&E). The program was written in MODSIM 1I, an object-oriented
simulation language, and requires the user to graphically define the system Reliability
Block Diagram (RBD). Component failure and repair rates are simulated over time to
determine overall system R & M characteristics [30]. Weibull++ Version 4.0 was the
software used to generate and fit component failure and repair data sets. Weibull++
Version 4.0 is a reliability software program created by ReliaSoft, Inc. which has robust
data generation and fitting routines for common reliability distributions [31].

Design of Preliminary Experiment. The structure studied was a simple series-

parallel structure consisting of five components depicted in Figure 8.

Figure 8. Experimental Structure for Preliminary Experiment
The experiment consisted of a 2] factorial design (with three replicates) on the five component

series-parallel system shown in Figure 8. Since this is a resolution V design, the main effects and

two-factor effects can be estimated without aliasing with each other. However, two-factor
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interactions are confounded with three-factor interactions [32:163]. The associated experimental
factors and levels are depicted in Table 5.

Table 5. Experimental Factors and Levels for Preliminary Experiment

Factors Levels
Number of data points 50 +
A | (assumed to be same for all components) 10 -
Fitting technique for Failure pdf of Weibull++ Top MLE Ranking | +
B important components Weibull++ MLE: Exponential | -
Fitting technique for Repair pdf of Weibull++ Top MLE Ranking | +
C important components Empirical -
Fitting technique for Failure pdf of non- | Weibull++ Top MLE Ranking | +
D important components Weibull++ MLE: Exponential | -
Fitting technique for Repair pdf of non- | Weibull++ Top MLE Ranking | +
E important components Empirical -

The Weibull++ Monte Carlo data generation module was used to generate simulated
failure and repair times from the defined component distributions. The Weibull++
distribution wizard was used to fit theoretical distributions to the generated data set and to
calculate distribution parameters using the maximum likelihood estimation (MLE) method.
A ‘“forced-fit” exponential distribution was used for the low level for component failure
data fitting due to the frequent use of the exponential assumption in component failure
analysis. Separate data sets were generated and fitted for each of the three replications.

The defined system failure and repair distributions as well as the (replication 1) fitted

distributions for each component are listed in Tables 6 and 7.
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Table 6. System Failure True and Fitted Distributions (Replication 1)

10 Data Points 50 Data Points
True Failure Exponential Exponential
Component | pyisiribution | Wizard Fit Fit Wizard Fit Fit
Weibull: (hrs) | Weibull: Exponential: Weibull: Exponential:
Shape = 1.1 Shape = 1.142 | Mean =3333 Shape = 1.304 | Mean = 3333
172 Scale = 3500 | Scale =3677 | Location=0 Scale =4018 Location = 8.4
Location =0 Location = 0 Location =0
Weibull: Normal: Exponential: Weibull: Exponential:
Shape = 1.5 Mean = 1284 | Mean = 1250 Shape = 1.212 | Mean = 1429
3/4 Scale = 2000 StDev=771 | Location=14.2 | Scale= 1663 Location = 136.4
Location =0 Location = 99.7
Weibull: Weibull: Exponential: Weibull: Exponential:
Shape = 2.0 Shape = 1.872 | Mean = 1428 Shape = 2.220 | Mean = 1429
5 Scale =2000 | Scale=2014 | Location =384.5 | Scale = 2155 Location =478.9
Location =0 Location =0 Location =0

Table 7. System Repair True and Fitted Distributions (Replication 1)

10 Data Points 50 Data Points
True Repair Low Level Low Level
Component | pjistribution Wizard Fit Fit Wizard Fit Fit
Lognormal: Lognormal: Lognormal:
172 Mean = 40 (hrs) Mean =43.4 Empirical | Mean = 39.1 Empirical
St Dev =10 StDev =6.5 StDev =8.8
Lognormal: Weibull: Lognormal:
Mean = 70 Shape = 10.73 Mean = 70.6
3/4 St Dev =15 Scale = 65.2 Empirical | StDev=16.5 Empirical
Location = 0
Lognormal: Weibull: Weibull:
Mean = 60 Shape = 1.582 Shape = 2.744
5 StDev =8 Scale =20.0 Empirical | Scale =25.2 Empirical
Location = 38.9 Location = 38.3

Since components 1 and 2 as well as 3 and 4 were identical, the same data fit was used for

each identical pair. Graphical examples of the results for failure and repair pdf data
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fittings for component 5 are shown in Figures 9 and 10. The generated data sets for the

preliminary experiment data fittings are available in Appendix C.
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Figure 10. Component 5 True Repair pdf versus Weibull++
wizard fit (Replication 1 using 10 data points)
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Simulation Runs. Run duration for each replication was 50,000 hours in simulated
time. Three replications were conducted at each of the 2* design points, resulting in 48
total runs. The response variable was defined as the absolute error of the system
availability measure from each simulation run. The value representing true availability
(Ap = 96.6355 %) used for calculation of absolute error was obtained by conducting 2000
runs using the defined component failure and repair distributions. Banks, Carson, and
Nelson’s [33:449] formula was used to calculate the initial estimate of the number of runs
needed to obtain a 95% confidence limit and a £ .015% tolerance for the ‘true’ system
availability measure:

R> (Z(x/ZSO )2 (10)
£

where R is the estimated number of runs needed, Sy is the standard deviation of the initial
sample, and € is the desired tolerance.

Since each run represents independent and identically distributed random variables,
traditional statistical methods apply. One hundred initial runs of 50,000 hours duration
were completed resulting in an Sy for A of .3168%. From equation (10), R =2171356.

" Therefore, 1714 or more runs were necessary to obtain a baseline availability measure
which would meet the specified tolerance of +.015% at a 95% confidence level. A total
of 2000 runs were completed which resulted in an average availability value (Ao) of
96.6355%. This point estimate of system availability for time O to 50,000 hours was the
benchmark of comparison to calculate the absolute error of the system availability measure

for each design point in the experiment.
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Components were rank-ordered by their Barlow-Proschan time-independent
importance measure for 0 to 50,000 hours, where component 5 was deemed the most
important component. Table 8 shows the calculated B-P importance measure values.

Table 8. Barlow-Proschan Time-Independent Importance Measure Values

Calculated B-P
Component(s) | Importance Measure

1,2 056671
3,4 145126
5 596417

Analysis Methods and Software. The analyzed multiple regression main-effects

model can be described in the following format:

Yi=PBo+ PX: + BoXo + BsXs+ BaXs+ BsXs+ & (11)
where Y;; is the response value for run number i and replication j;

Bo represents the intercept (or response mean);

Br represents the regression coefficients for factors &k = 1,...,5;

X, represents the factor level (either +1 or -1) for factor &; and

g; represents the residual error for run number i and replication j.
Yates algorithm [21:323-324] and least squares methods were used to calculate the main
and interaction effects. The correlation coefficient (R*), ANOVA, and lack of fit statistics
were calculated to assess model adequacy. To identify significant factors, normal
probability plots, Pareto plots, Box-Meyer Bayes plots, and linear regression coefficient

t-test statistics were used. The primary analysis software was JMP version 3.1,
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i

a PC-based statistical analysis program developed by the SAS Institute. JMP possesses
data graphing, experimental design, and statistical analysis routines [34:319-341] which

proved very useful in this research.
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IV. RESULTS: PRELIMINARY EXPERIMENT

Simulation Results

The 2 experimental design and resulting responses for the preliminary experiment

are shown in Table 9.

Table 9. Experimental Design and Responses

Factors Observed Availability” Absolute Error (Y)

Design | A | B| C| D| E |Replication| Replication | Replication | Replication | Replication | Replication

Point 1 2 3 1 2 3
1 -1 -1]-1{-1[ 1| 96.8046% | 96.9903% | 95.8230% | 0.1691% | 0.3548% | 0.8125%
2 -1 -1[-1] 1]-1} 96.7202% | 97.0266% | 95.8372% | 0.0847% | 0.3911% | 0.7983%
3 -1]-1] 1]-1]-1] 96.6918% | 96.9858% | 95.7640% | 0.0563% | 03503% | 0.8715%
4 1]-111]1]1]96.6324% | 96.8985% | 95.7639% | 0.0031% | 02630% | 0.8716%
5 11 ]-14-1]-1{ 96.7904% | 96.8941% | 95.9042% | 0.1549% | 02586% | 0.7313%
6 1) 1]-13 11 96.7261% | 96.8518% | 95.9385% | 0.0906% | 02163% | 0.6970%
7 1)1 14-1]1]96.6137% | 96.8172% | 95.8354% | 0.0218% | 0.1817% | 0.8001%
8 111 1]-1]96.5398% | 96.7937% | 95.9377% | 0.0957% | 0.1582% | 0.6978%
9 1[-1}-1{-1[-1] 96.7274% | 96.0124% | 96.3905% | 0.0919% | 0.6231% | 0.2450%
10 1[-1]-1[{1[1]96.7276% | 96.0496% | 96.3695% | 0.0921% | 0.5859% | 0.2660%
11 1]-1] 1[-1{1}96.6290% | 95.7957% | 96.2251% | 0.0065% | 0.8398% | 0.4104%
12 1]-1]1[1[-1} 96.5982% | 95.8427% | 96.2454% | 0.0373% | 0.7928% | 0.3901%
13 1] 1f-1[-1{1]96.7642% | 959374% | 96.2951% | 0.1287% | 0.6981% | 0.3404%
14 1 1[-1}1{-1] 96.7929% | 95.9976% | 96.4092% | 0.1574% | 0.6379% | 0.2263%
15 P{1[1]-1{-1] 96.6571% | 95.8386% | 96.2923% | 0.0216% | 0.7969% | 0.3432%
16 T{1)1[1]1]96.8079% | 95.8528% | 96.2844% | 0.1724% | 0.7827% | 0.3511%

*2000 Run “Truth’ Availability = 96.6355%

Note that all system availability estimates from each run were within + .88% of the defined

true system availability.
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Statistical Analysis

A summary of the key model statistics is provided in Table 10.

Table 10. Preliminary Experiment Model Statistical Results

Statistic Value Interpretation
Model explains virtually
R® 004537 none of output variability
Whole Model F-test Model as a whole
p-value 9991 is not significant
Lack of Fit F-test Linear model is appropriate
p-value 1.0 (no curvature)

The model statistics show that the defined main-effects model explains very little of the

response variation and that a linear model is appropriate for the experimental region. A

summary of the calculated factor effects and statistics is shown in Table 11.

Table 11. Estimated Effects and Statistical Analysis

Effect t-test
Factor Estimate p-value Interpretation
Intercept .37850% <.0001 Significant (mean response)
A -.00386% 9654 Not significant
B -.02694% 7624 Not significant
C .01933% 8282 Not significant
D -.01871% .8336 Not significant
E .00598% 9465 Not significant

The t-test for each effect estimate indicates that only the mean response (regression

model intercept term) is significant. A supplemental listing of statistical analysis

outputs for the preliminary experiment is provided in Appendix A.
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Graphical Analysis

Figures 11, 12, and 13 show the normal probability, the Pareto, and the Box-Meyer

Bayes plots.
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Figure 11. Normal Probability Plot
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Figure 12. Pareto Plot of Scaled Estimates
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Term Estimate Prior Posterior 2 4 6
A -0.0436317 0.2000 0.0244
B -0.304292 0.2000 0.0256
C 0.21834656 0.2000 0.0250
D -0.2113806 0.2000 0.0250
E 0.06754200 0.2000 0.0245

Figure 13. Box-Meyer Bayes Plot
The normal probability and Bayes plot results are consistent and indicate that no effects
are significant. The Pareto plot indicates that factors B, C, and D explain the most
variation, but since the amount of explained variation by the model is negligible this result

has little significance.

Additional Analysis

Upon closer inspection of the absolute error responses shown in Table 9, it was
discovered that a possible blocking effect may be present between replications. For
example, notice (in Table 9) that the absolute errors in replication 1 are the smallest values
in all cases. To address this, additional data analysis was conducted on models which
included a blocking variable as well as other response measures: error and squared error.
Table 12 contains a summary of the possible significant factors resulting from all analyses
on the preliminary experimental data.

Table 12. Significant Factors Assessing Alternative
Responses and a Blocking Variable

Response
Blocking | Absolute
Variable Error Error Squared Error
No None Possibly C Possibly A & C
Yes None None A and possibly C
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Statistical analysis showed that the blocking variable was strongly significant with all three
IeSpoNse measures.

With the additional responses (error and squared error), factors A (number of data
points) and C (fitting technique for repair pdf of important component: component 5),
presented themselves as possible significant factors. However, these conclusions are not

definitive and thus were addressed again in the final experiment.

Summary

The statistical analysis, using absolute error as a response measure, supports the
hypothesis that there are no significant effects. With the absolute error response, no
effects were shown to be significant in the t-tests, and the normal probability, Pareto, and
Bayes plots revealed no clear significant factor effects. This means that using fewer data
points (i.e. 10 versus 50) and less aggressive fitting techniques (i.e. exponential
assumption for failure rates and use of empirical repair distributions) on important as well
as non-important components did not significantly degrade model accuracy for this
particular structure.

However, introducing a blocking variable in conjunction with two alternative
responses, error and squared error, revealed that factors A and C may be significant.
Therefore, the results from this experiment are inconclusive. Further analysis is required
to determine conclusively if the number of data points (factor A) and the fitting technique

for repair pdf of important component (factor C) are significant.
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V. METHODOLOGY: FINAL EXPERIMENT

Insights Gained from Preliminary Experiment

While the preliminary experiment assessed five input data characterization factors, the
final experiment assessed nine factors listed in Table 4. Several insights were gained from
the preliminary experiment which helped refine the methodology for the final experiment.
After reviewing the methodology and results of the preliminary experiment, AFOTEC
analysts recommended low and high levels of 5 and 25 for the ‘number of data points’
factor levels. They felt that levels of 10 and 50 data points were too generous based upon
their experience in past operational availability analyses. They also pointed out that the
mean-time-to-failure (MTTF) / mean-time-to-repair (MRT) ratios were relatively large for
all five components of the experimental structure, and that a wider range of ratios may be
more appropriate for future experimental designs. It was also pointed out that frequently
the analyst will not have a priori knowledge of component failure behavior. This
information is normally required for the calculation of component importance measures,
with the exception of structural importance measures. An additional suggestion was to
analyze the variability of several availability model outputs for individual runs. This was
addressed in a separate study conducted using multivariate techniques on several
RAPTOR model output measures. A summary of the study is provided in Appendix G.
Finally, it was discovered that a significant amount of time and effort was required to set-
up the experimental runs, which included component failure and repair data point

generation and fitting, construction of RAPTOR models, and completion of ‘truth’ data
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runs. Since the required effort would increase dramatically with the addition of 4 more
factors, any subsequent experimental screening design would need to economize on the

number of simulation runs.

Final Experiment

Assumptions. To produce diversity in the MTTF/MRT ratios for the system
components, wider bounds were allowed for the means of the component failure and
repair distributions. They were bounded by the following limits:

(1) Weibull failure distributions: 1000 < mean < 6500 (hours)

(2) Lognormal repair distributions: 50 < mean < 3000 (hours).
The most important components in a structure were deemed as the ones which fell in the
top 20% of component importance measure rankings based upon component failure
distributions. To allow for the calculation of the importance measures without knowledge
of the underlying failure distributions, the Birnbaum structural importance measure was
used. This measure is based solely upon system structure. All other assumptions outlined
in the preliminary experiment also applied to the final experiment.

Structures. 20 components were designed which were used for the building of system
structures for the RAPTOR models. Each component was designed to have true Weibull
failure and lognormal repair distributions randomly set within the established bounds for
the distribution means. Increasing failure rate (IFR) and decreasing failure rate (DFR)
configurations were created for each component while maintaining the same distribution

mean. To accomplish this, randomly selected Weibull shape and scale parameters were
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utilized to create the IFR failure distributions. Using a randomly generated DFR shape
parameter for each component, the same average failure rate was maintained by adjusting
the Weibull scale parameter to achieve an identical mean failure rate as in the IFR
configuration. This procedure was used to ensure that the results were not biased by
producing a different average failure rate when reconfiguring a component from IFR to
DFR. The shape parameters ranged from 1.1 to 4.0 for IFR configurations and from

4 to .95 for DFR configurations. A complete listing of component failure and repair
distribution parameters (for both configurations) is shown in Appendix B.

Four basic structures were created from the set of 20 components described above: a
small/series-parallel structure, a small/complex structure, a large/series-parallel structure,
and a large/complex structure. The small structures used components 1 through 5, while
the large structures were comprised of all 20 components. Appendix B provides reliability
block diagrams for each structure.

Design of Final Experiment. The factors and levels for the final experiment are
shown in Table 13. Since each run demanded a large set-up effort, a design which
minimized the number of runs was preferable. Replications were still desired to increase
the confidence in the results and to estimate pure error for lack of fit testing. A full

factorial experiment would require 1536 runs (i.e. 512 * 3 replications), and a 2%,

fractional factorial design would require 48 runs (i.e. 16 * 3 replications). A Plackett-
Burman (P-B) design was chosen because it required only 36 (i.e. 12 * 3 replications)

total simulation runs to assess the nine factors.
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Table 13. Factors and Levels for Final Experiment

Factors Levels
True Failure probability density function (pdf) of Weibull IFR +
important components Weibull DFR -
True Failure probability density function (pdf) of Weibull IFR +
non-important components Weibull DFR -
Number of data points 25 +
(assumed to be same for all components) 5 -
Fitting technique for Failure pdf of important Weibull++ Top MLE Ranking +
components Weibull++ MLE: Exponential -
Fitting technique for Repair pdf of important Weibull++ Top MLE Ranking +
components Empirical -
Fitting technique for Failure pdf of Weibull++ Top MLE Ranking +
non-important components Weibull++ MLE: Exponential -
Fitting technique for Repair pdf of Weibull++ Top MLE Ranking +
non-important components Empirical -
H System Complexity Level (Size) Large (20 components) +
Small (5 components) -
I System Structure Type Series-Parallel +
Complex -

The 12-run 9-factor P-B design used for the final experiment is shown in Table 14.

Table 14. 12-run Plackett-Burman Design for Final Experiment

Design Factors
Point A B C D E F G H I
1 + + + + + + + + +
2 - + - + + + - - -
3 - - + - + + + - -
4 - - + - + + + -
5 - + - - + - + + +
6 - - - - + - + +
7 - - - - - + - +
8 + - - - + - - + -
9 + + - - - + - - +
10 + + + - - - - -
11 - + + + - - - -
12 + - + + + - - - +
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Distributional Fittings. As in the preliminary experiment, Weibull++ was used to
generate and fit the component failure and repair data sets for each configuration.
Separate generations and fits were conducted for each replication. Components 14, 15,
and 16 as well as 18, 19, and 20 were identical components, therefore only one generation
and fitting was conducted for each triplicate set per replication. Final experiment fitting
data is contained in Appendix D and graphical examples for the fitted distributions for
some of the components are provided in Appendix E.

Important Components. A complete listing of the Birnbaum structural component
importance measures calculated for each component in each of the four experimental
structures is provided in Appendix F, with a summary provided in Table 15.

Table 15. Top 20% Important Components

Top 20% Important
Structure Components
Small / Series-Parallel Component 3
Small / Complex Component 1
Large / Series-Parallel Components 4, 5, 13, 17
Large / Complex Components 1, 4,7, 8

Simulation Runs. 16 truth runs were required due to the four additional factors. For
each of the four structures, ‘truth’ runs were done with the following configurations:
(1) All components with IFR failure distributions
(2) All components with DFR failure distributions

(3) Important components with IFR failure distributions and non-important
components with DFR failure distributions

(4) Important components with DFR failure distributions and non-important
components with IFR failure distributions.
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As before, each simulation run duration was for 50,000 hours simulation time.

Two thousand replications were run to establish ‘truth’ availability values for each
configuration. For the P-B experimental runs, the response measure was again the
absolute error of the system availability measure from each simulation run as compared to
the ‘truth’ measure.

Analysis Methods. The analysis methods were identical to those used for the
preliminary experiment. Traditional statistical measures were used to assess model
adequacy, and normal probability plots, Pareto plots, Bayes plots, and linear regression
coefficient t-test statistics were used to identify the significant factor effects. A response
surface was formed to graphically portray the combined affect of the active factors on

model availability estimation error.
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VI. RESULTS: FINAL EXPERIMENT

Simulation Results

The results from the truth and Plackett-Burman experimental RAPTOR runs for the

final experiment are shown in Table 16.

Table 16. Numerical Results for Final Experimental Runs

Component
Design [Structure] Failure PDF | Tryth Observed Availability Absolute Error (¥)
Point Important / Runs Replication | Replication| Replication | ReplicationReplication/Replication
Non-important 1 2 3 1 2 3

Large /

1 S-P IFR /IFR ]83.1373%]|81.0810%]| 78.166% [82.5297%| 2.0563%|4.9713%|0.6076%
Small /

2 | Complex] IFR/DFR |77.3638%]81.2591%{78.2235%|80.9242%]| 3.8953%|0.8597%|3.5604%,
Small /

3 Complex| DFR /DFR |76.4428%]77.3795%{79.5758%|74.8265%| 0.9367%|3.1330%|1.6163%
Large /

4 Complex] DFR/IFR ]60.4257%]38.6057%{61.4589%|55.8074%| 21.820%|1.0332%|4.6183%
Large /

5 S-P IFR /DFR |82.7799%|80.6977%|77.8648%|71.5604%| 2.0822%|4.9151%|11.219%
Large /

6 S-P DFR /DFR |81.6366%]|82.0842%|76.8906%(82.4661%| 0.4476%|4.7460%|0.8295%
Small /

7 S-P DFR / DFR |64.6009%]63.2109%(65.2901%|55.2021%]| 1.3900%|0.6892%{9.3988%
Large/

8 Complex| DFR/IFR |60.4257%]41.0340%{61.8580%|54.8932%] 19.391%|1.4323%|5.5325%
Small /

9 S-P IFR /IFR ]65.9448%]64.6130%|65.4925%|64.7097%| 1.3318%]0.4523%|1.2351%
Small /

10 ]| Complex| IFR/IFR }78.2001%]76.4971%(80.2750%|78.4965%] 1.7030%|2.0749%|0.2964 %
Large /

11 ] Complex| IFR/DFR |60.7345%)60.7147%(56.1168%|60.1398%]| 0.0198%(4.6177%]|0.5947%
Small /

12 S-P DFR /IFR |65.0705%]63.5087%|65.8172%|65.2438%| 1.5618%]0.7467%|0.1733%

A much larger variability in the response was observed compared to the preliminary

experiment. The observed absolute errors in availability estimates ranged from .0198% to

21.82%.
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Statistical Analysis

A summary of the key model statistics is provided in Table 17.

Table 17. Final Experiment Model Statistical Results

Statistic Value Interpretation
Model explains one-third
R® 333092 of output variability
Whole Model F-test Model as a whole
p-value 2241 is not significant
Lack of Fit F-test Linear model is appropriate
p-value 9680 (no curvature)

The model statistics show that the defined main-effects model explains approximately one-

third of the response variation and that a linear model is appropriate for the experimental

region. A summary of the calculated factor effects and statistics is shown in Table 18.

Table 18. Estimated Effects and Statistical Analysis

Effect t-test
Factor Estimate p-value Interpretation
Intercept 3.4997% .0001 Significant (mean response)
A .89372% 5688 Not significant
B -1.8335% 2471 Not significant
C -3.5403% 0306 Significant
D -.04232% 9784 Not significant
E 63297 % .6861 Not significant
F -.53829% 7310 Not significant
G 1.2852% 4142 Not significant
H 3.1045% 0555 Significant
I -1.5712% 3197 Not significant

The mean absolute error of availability estimates for all the P-B simulation runs is

3.4997%. The t-test for each effect estimate indicates that the mean response

(regression model intercept term), factor C (number of data points) effect, and
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factor H (system complexity/size) effect are significant. A supplemental listing of

statistical analysis outputs for the final experiment is provided in Appendix A.

Graphical Analysis

Figures 14, 15, and 16 show the normal probability, the Pareto, and the Box-Meyer

Bayes plots.
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Figure 14. Normal Probability Plot
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Figure 15. Pareto Plot of Scaled Estimates
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Figure 16. Box-Meyer Bayes Plot
The normal probability, Pareto, and Bayes plot results are consistent and suggest that
factor C (number of data points) and factor H (system complexity/size) are significant,

while all other factors are not significant.

Significant Effect Model

A subsequent regression model containing only factors C, H, and their interaction term
was analyzed to determine if the C*H interaction term was significant. The results are
shown in Table 19.

Table 19. Estimated Effects and Statistical Analysis for C, H, C¥*H Model

Effect t-test
Factor Estimate p-value Interpretation
Intercept 3.4997% <.0001 Significant (mean response)
C -3.5403% 019 Significant
H 3.1045% 0379 Significant
C*H -2.365766 .1086 Not significant
Statistic Value Interpretation
Model explains approximately
R® 296981 one-third of output variability
Whole Model Model as a whole
F-test p-value .0095 18 significant
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In this case, the model explained approximately 30% of the response variability, and the
model as a whole was significant. As before, the main effects for factors C and H were

significant. The C*H interaction effect was not significant at a 10% level of significance.

Response Surface

A response surface was developed for the resulting C and H main-effects model:

Y=34997-1.770133C+ 1.5522389H (12)
where Y is the estimated absolute error in the availability estimate; and

C and H represent the factor level (either +1 or -1) for each factor.

The resulting response surface and contour plot are shown in Figure 17.

Contour Plot
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Figure 17. Two-Factor Model Response Surface and Contour Plot
As the plots in Figure 17 demonstrate, a high level for factor C (number of data points)
and a low level for factor H (system size) result in the smallest availability estimation

€Iror.
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Additional Analysis

As with the preliminary experiment, subsequent analysis was performed using error and
squared error as response measures as well as introducing a blocking variable for the
replications. In all cases, the blocking variable was insignificant. Furthermore, the results
in all cases were consistent with those achieved using absolute error as the response,

showing factors C and H as significant.

Summary

The statistical analysis tests and the normal probability, Pareto, and Bayes plots
support the hypothesis that factors C and H are significant. Subsequent analysis indicates
that the C*H interaction effect is not significant. The blocking effect between replications
was insignificant, and using error and squared error as response variables resulted in
identical conclusions to those achieved using the absolute error response. Analysis of the
resulting two-factor model reveals that availability error is reduced when operating at a

high level for factor C (number of data points) and a low level for factor H (system size).
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VII. SUMMARY AND CONCLUSIONS

Research Objectives
The general purpose of this study was to provide insight into the input data
characterization factors which may affect the accuracy of availability model output. The
potential benefits of identifying the key factors would be the reduction of unproductive
data collection and more efficient RM&A modeling.
. The overall research objectives were to:
(1) Identify potential factors which affect availability model output accuracy.

(2) Screen the potential factors to determine which have a statistically significant
effect (or interaction effect) on output accuracy.

(3) Assess the magnitude of the significant effects.

(4) Provide basic insights to aid in efficient component input data characterization

for availability models.
Overview of Results

Component input data characterization factors thought to possibly affect system
availability estimates were identified and analyzed. Using a design of experiment approach
with the absolute error of system availability estimates serving as the response, a two-
stage experimental screening process was conducted to identify the active factors.

Preliminary Experiment. The results from the preliminary experiment were
inconclusive, identifying number of data points and fitting method for the important

components as possible significant factors. Using absolute error as the response, all
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factors proved insignificant. The average system availability estimate absolute error was
3785%.

Final Experiment. The final experiment, analyzing four basic structures, revealed that
system size (5-component versus 20-component) and the number of data points
(5 versus 25) do affect estimate accuracy. It also showed that fitting technique, underlying
component failure distribution (IFR versus DFR), and system structure type (series-
parallel versus complex) do not have a significant effect. The interaction effect between
the two active factors was not statistically significant. Using error and squared error as
response variables resulted in the same conclusions achieved using the absolute error
response. The average system availability estimate absolute error was 3.4997%, and the
effect estimates were -3.504% for the ‘number of data points’ factor and 3.1045% for the
‘system size’ factor. The response surface from the two-factor model derived from the
final experiment showed that estimation error is minimized when the number of data
points is at a high level and the system size is small.

Multivariate Analysis. The supplemental multivariate analysis of RAPTOR output
(Appendix G) revealed that multivariate techniques can be used to discriminate between
various structures based on model outputs. It was also discovered that structures with
predominantly DFR components produce higher variability in RAPTOR output measures

than structures with predominantly IFR components.
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Conclusions
Several insights were gained from this research:

(1) More availability estimation error is to be expected when analyzing larger
system structures;

(2) Availability estimation error can be reduced by increasing the number of failure
and repair data points collected for each system component;

(3) There is no measurable significant difference in estimation error when analyzing
systems with IFR component failure characteristics versus systems with DFR
component failure characteristics;

(4) There is no apparent benefit in focusing on ‘important’ versus ‘non-important’
components when characterizing component failure and repair probability

distributions;

(5) There is no apparent difference in estimation error when analyzing
series-parallel structures versus complex structures; and

(6) No single fitting technique utilized in this research provided any distinct
advantage over any other method for availability estimate error reduction.

To summarize, the availability measure appears to be robust to fitting method, component
failure characteristics, and system structure type, and sensitive to the number of data

points used in data fitting and the system size.

Comparison with Past Research Results

Sensitivity to Component Failure Rate Characterization. In analyzing a large
space system, Wolf found very little sensitivity of the predicted system availability to
individual component failure rate estimates [23:69]. The preliminary experimental results
showed that the number of data points may affect availability estimation accuracy. The

final experiment showed conclusively that the number of data points used in the
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characterization of component failure and repair behavior can have a statistically
significant affect on availability estimation accuracy.

Edgar and Bendell concluded that failure distributions were more critical than repair
distributions in defining overall system behavior and that decreasing failure rates (DFR)
were more critical than increasing failure rates (IFR) [24:125]. This study revealed that,
at least when measuring system availability estimation error, the fitting fidelity of the
failure and repair distributions and the underlying component failure rate (IFR versus
DFR) were not significant. System availability appears to be a highly robust system
characteristic and may be less sensitive than other system characteristics to changes in
certain factors. The multivariate study showed that DFR component structures have

higher output variability than IFR component structures.

Exponential Assumption. Mortin, Krolewski, and Cushing provided examples where

the indiscriminate use of the exponential distribution for component failure

characterization can produce erroneous results [26:54]. In this study, the use of the

exponential distribution for component failure characterization (when the true underlying

failure distribution was Weibull) did not significantly alter system availability estimation
accuracy. Again, this may indicate that the availability measure is robust to component

distributional assumptions.

Suggestions for Further Research
Identifying Other Factors. The final regression model (using the absolute error

response) explained only a portion of the overall response measure variability with an R’
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of .297, suggesting that other significant explanatory variables may exist. More formal
methods could be conducted to identify other possible critical input data characterization
factors not addressed in this study, such as a formal survey of several Air Force reliability
analysts. A screening design could then be accomplished to identify other significant
factors.

Mean-Time-to-Failure / Mean-Repair-Time (MTTF/MRT) Ratio. After reviewing

the results of the preliminary experiment, AFOTEC analysts felt one important factor to

analyze would be the component MTTF/MRT ratio. They suspected that system
availability estimates might be more sensitive to some of the factors analyzed in this study
when several components possessed a low MTTE/MRT ratio. Time did not allow for the
inclusion of the MTTE/MRT factor in this study; in fact, it was randomized in the
experimental design to mitigate (‘spread around’) its effect. Follow-on experiments which
incorporate this factor may be insightful.

Response Surface Methodology (RSM). This research addressed qualitative as well
as quantitative factors. In all cases, the qualitative factors proved insignificant. However,
two quantitative factors (number of data points and system size) were significant. A
simple linear response surface was developed for the resultant two-factor model for the
defined experimental region. The factor levels used for the experiment (number of data
points: 5 and 25; system size: 5 components and 20 components) represents a limited
experimental region. Using RSM, the experimental region could be expanded and

explored in more detail.
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Appendix A: Statistical Analysis Qutput

Preliminary Experiment: JMP Output (Without Blocking Variable)

RSquare
RSquare Adj

Screening Fit
ABS Error
Summary of Fit

Root Mean Square Error
Mean of Response
Observations (or Sum Wgis)

Analysis of Variance

0.004537
-0.11397
0.30666
0.378498
48

Source DF Sum of Squares Mean Square
Model 5 0.0180009 0.003600
Error 42 3.9496998 0.094040
C Total 47 3.9677006
Lack of Fit
Source DF Sum of Squares Mean Square
Lack of Fit 10 0.0758773 0.007588
Pure Error 32 3.8738225 0.121057
Total Error 42 3.9496998
Max RSq
0.0237
Parameter Estimates
Term Estimate Std Error t Ratio
Intercept 0.3784979 0.044263 8.55
A -0.001931 0.044263 -0.04
B -0.013469 0.044263 -0.30
C 0.0096646 0.044263 0.22
D -0.009356 0.044263 -0.21
E 0.0029896 0.044263 0.07
Effect Test
Source Nparm DF Sum of Squares F Ratio
A 1 1 0.00017903 0.0019
B 1 ! 0.00870755 0.0926
C 1 1 0.00448340 0.0477
D 1 1 0.00420189 0.0447
E 1 1 0.00042901 0.0046
Error
Summary of Fit
RSquare 0.057138
RSquare Adj -0.05511
Root Mean Square Error 0.427632
Mean of Response 0.237094
Observations (or Sum Wgts) 48
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F Ratio
0.0383
Prob>F
0.9991

F Ratio
0.0627
Prob>F
1.0000

Probsit|
<.0001
0.9654
0.7624
0.8282
0.8336
0.9465

Prob>F
0.9654
0.7624
0.8282
0.8336
0.9465




Analysis of Variance

Source DF Sum of Squares Mean Square
Model 5 0.4654480 0.093090
Error 42 7.6805195 0.182870
C Total 47 8.1459675
Lack of Fit
Source DF Sum of Squares Mean Square
Lack of Fit 10 0.0345872 0.003459
Pure Error 32 7.6459323 0.238935
Total Error 42 7.6805195
Max RSq
0.0614
Parameter Estimates
Term Estimate Std Error t Ratio
Intercept 0.2370937 0.061723 3.84
A 0.0841313 0.061723 1.36
B -0.000431 0.061723 -0.01
C 0.0507771 0.061723 0.82
D -0.003435 0.061723 -0.06
E 0.0053354 0.061723 0.09
Effect Test
Source Nparm DF Sum of Squares F Ratio
A 1 1 0.33974723 1.8579
B 1 1 0.00000893 0.0000
C 1 1 0.12375899 0.6768
D 1 1 0.00056650 0.0031
E 1 1 0.00136640 0.0075
SQ Error
Summary of Fit
RSquare 0.020457
RSquare Adj -0.09616
Root Mean Square Error 0.274629
Mean of Response 0.225921
Observations (or Sum Wgts) 48
Analysis of Variance
Source DF Sum of Squares Mean Square
Model 5 0.0661547 0.013231
Error 42 3.1676947 0.075421
C Total 47 3.2338494
Lack of Fit
Source DF Sum of Squares Mean Square
Lack of Fit 10 0.0548711 0.005487
Pure Error 32 3.1128236 0.097276
Total Error 42 3.1676947
Max RSq
0.0374

F Ratio
0.5090
Prob>F
0.7678

F Ratio
0.0145
Prob>F
1.0000

Probs|t|
0.0004
0.1801
0.9945
04154
0.9559
0.9315

Prob>F
0.1801
0.9945
04154
0.9559
0.9315

F Ratio
0.1754
Prob>F
0.9703

F Ratio
0.0564
Prob>F
1.0000




Term

Intercept

A

B

C

D

E
Source Nparm
A 1
B 1
C 1
D 1
E 1

Parameter Estimates

Estimate
0.2259211

-0.01106
-0.018303
0.0275692
-0.011699
0.0048954

Std Error
0.039639
0.039639
0.039639
0.039639
0.039639
0.039639

Effect Test

F
1
1
1
1
1

Sum of Squares

0.00587120
0.01608043
0.03648302
0.00656969
0.00115031

t Ratio
5.70
-0.28
-0.46
0.70
-0.30
0.12

F Ratio
0.0778
0.2132
04837
0.0871
0.0153

Prob>|t|
<.0001
0.7816
0.6466
0.4906
0.7693
0.9023

Prob>F
0.7816
0.6466
0.4906
0.7693
0.9023

Preliminary Experiment: JMP Output (With Blocking Variable)

Screening Fit
ABS Error

Summary of

RSquare

. RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

Source
Model
Error
C Total

Term
Intercept
A

B

C

D

E
Block[1-3]
Block[2-3]

Fit

Analysis of Variance

DF Sum of Squares
7 2.0907506
40 1.8769500
47 3.9677006
Parameter Estimates
Estimate Std Error
0.3784979 0.031266
-0.001931 0.031266
-0.013469 0.031266
0.0096646 0.031266
-0.009356 0.031266
0.0029896 0.031266
-0.291992 0.044217
0.1172021 0.044217
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0.526943
0.444158
0.216619
0.378498

48

Msan Square

0.298679
0.046924

t Ratio
12.11
-0.06
-0.43

0.31
-0.30
0.10
-6.60
2.65

F Ratio
6.3652
Prob>F
<.0001

Probs|t|
<.0001
0.9511
0.6689
0.7588
0.7663
0.9243
<.0001
0.0115




Effect Test

Source Nparm  DF Sum of Squares F Ratio Prob>F
A 1 1 0.0001790 0.0038 09511
B 1 1 0.0087075 0.1856 0.6689
C 1 1 0.0044834 0.0955 0.7588
D 1 1 0.0042019 0.0895 0.7663
E 1 1 0.0004290 0.0091 0.9243
Block 2 2 2.0727498 22.0864 <.0001
Error
Summary of Fit
RSquare 0.434239
RSquare Adj 0.335231
Root Mean Square Error 0.339436
Mean of Response 0.237094
Observations (or Sum Wgts) 48
Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 7 3.5372968 0.505328 4.3859
Error 40 4.6086707 0.115217 Prob>F
C Total 47 8.1459675 0.0011
Parameter Estimates
Term Estimate Std Error 1 Ratio Prob>|t}
Intercept 0.2370937 0.048993 4.84 <.0001
A 0.0841313 0.048993 1.72 0.0937
B -0.000431 0.048993 -0.01 0.9930
C 0.0507771 0.048993 1.04 0.3062
D -0.003435 0.048993 -0.07 0.9444
E 0.0053354 0.048993 0.11 09138
Block[1-3] -0.30305 0.069287 -4.37 <.0001
Block[2-3] -0.013144 0.069287 -0.19 0.8505
Effect Test
Source Nparm DF Sum of Squares F Ratio Prob>F
A 1 1 0.3397472 2.9488 0.0937
B 1 1 0.0000089 0.0001 0.9930
C 1 1 0.1237590 1.0741 0.3062
D 1 1 0.0005665 0.0049 0.9444
E 1 1 0.0013664 0.0119 09138
Block 2 2 3.0718488 13.3307 <.0001
SQ Error
Summary of Fit
RSquare 0.373498
RSquare Adj 0.26386
Root Mean Square Error 0.225056
Mean of Response 0.225921
Observations (or Sum Wgts) 48
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Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio
Model 7 1.2078352 0.172548 3.4066
Error 40 20260142 0.050650 Prob>F
C Total 47 3.2338494 0.0060
Parameter Estimates

Term Estimate Std Error t Ratio Probs|t|

Intercept 0.2259211 0.032484 6.95 <0001

A -0.01106 0.032484 -0.34 0.7353

B -0.018303 0.032484 -0.56 0.5763

C 0.0275692 0.032484 0.85 0.4011

D -0.011699 0.032484 -0.36 0.7206

E 0.0048954 0.032484 0.15 0.8810

Block{1-3] -0.215254 0.045939 -4.69 <.0001

Block[2-3] 0.0771839 0.045939 1.68 0.1007

Effect Test

Source Nparm  DF Sum of Squares F Ratio Prob>F
A 1 1 0.0058712 0.1159 0.7353
B 1 1 0.0160804 0.3175 0.5763
C 1 1 0.0364830 0.7203 04011
D 1 1 0.0065697 0.1297 0.7206
E 1 1 0.0011503 0.0227 0.8810
Block 2 2 1.1416805 11.2702 0.0001

Final Experiment - Full Main Effect Model: JMP QOutput (Without Blocking Variable)

Screening Fit
Abs Error
Summary of Fit

RSquare 0.333092
RSquare Adj 0.102239
Root Mean Square Error 4.645971
Mean of Response 3.499722
Observations (or Sum Wgts) 36
Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 9 280.30078 31.1445 1.4429
Error 26 561.21112 21.5850 Prob>F
C Total 35 841.51190 0.2214
Lack of Fit
Source DF Sum of Squares Mean Square F Ratio
Lack of Fit 2 1.51785 0.7589 0.0325
Pure Error 24 559.69327 23.3206 Prob>F
Total Error 26 561.21112 0.9680
Max RSq
0.3349
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Parameter Estimates

Term Estimate Std Error t Ratio
Intercept 3.4997222 0.774328 4.52
A 0.4468611 0.774328 0.58
B -0.916772 0.774328 -1.18
C -1.770133 0.774328 229
D -0.021161 0.774328 -0.03
E 0.3164833 0.774328 0.41
F -0.269144 0.774328 -0.35
G 0.6426 0.774328 0.83
H 1.5522389 0.774328 2.00
I -0.785606 0.774328 -1.01
Effect Test
Source Nparm  DF Sum of Squares F Ratio
A 1 1 7.18865 0.3330
B 1 1 30.25697 1.4018
C 1 1 112.80139 5.2259
D 1 1 0.01612 0.0007
E 1 1 3.60582 0.1671
F 1 1 2.60779 0.1208
G 1 1 14.86565 0.6887
H 1 1 86.74004 4.0185
I 1 1 2221834 1.0293
Error
Summary of Fit
RSquare 0.364237
RSquare Adj 0.144165
Root Mean Square Error 5.134356
Mean of Response 2.3826
Observations (or Sum Wgts) 36
Analysis of Variance
Source DF Sum of Squares Mean Square
Model 9 392.6757 43.6306
Error 26 685.4020 26.3616
C Total 35 1078.0777
Lack of Fit
Source DF Sum of Squares Mean Square
Lack of Fit 2 7.62238 3.8112
Pure Error 24 677.77964 28.2408
Total Error 26 685.40201
Max RSq
0.3713
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Probst|
0.0001
0.5688
0.2471
0.0306
0.9784
0.6861
0.7310
04142
0.0555
0.3197

Prob>F
0.5688
0.2471
0.0306
09784
0.6861
0.7310
04142
0.0555
03197

F Ratio
1.6551
Prob>F
0.1515

F Ratio
0.1350
Prob>F
0.8744




Parameter Estimates

Term Estimate Std Error t Ratio
Intercept 2.3826 0.855726 2.78
A 0.9243389 0.855726 1.08
B -0.987061 0.855726 -1.15
C -1.6128 0.855726 -1.88
D -0.121572 0.855726 -0.14
E -0.203883 0.855726 -0.24
F -0.784844 0.855726 -0.92
G 0.8526778 0.855726 1.00
H 22535167 0.855726 2.63
I 0.0108167 0.855726 0.01
Effect Test
Source Nparm  DF Sum of Squares F Ratio
A 1 1 30.75849 1.1668
B 1 1 35.07443 1.3305
C 1 1 93.64046 3.5522
D 1 1 0.53207 0.0202
E 1 1 1.49646 0.0568
F 1 1 22.17531 0.8412
G 1 1 26.17414 0.9929
H 1 1 182.82015 6.9351
I 1 1. 0.00421 0.0002
SQ Error
Summary of Fit
RSquare 0.295785
RSquare Adj 0.052019
Root Mean Square Error 97.38942
Mean of Response 35.62339
Observations (or Sum Wgts) 36
Analysis of Variance
Source DF Sum of Squares Mean Square
Model 9 103578.18 11508.7
Error 26 246602.20 9484.7
C Total 35 350180.38
Lack of Fit
Source DF Sum of Squares Mean Square
Lack of Fit 2 922.26 461.1
Pure Error 24 245679.94 10236.7
Total Error 26 246602.20
Max RSq
0.2984
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Prob>|t|
0.0099
0.2900
02592
0.0707
0.8881
0.8135
0.3675
0.3282
0.0140
0.9900

Prob>F
0.2900
0.2592
0.0707
0.8881
0.8135
0.3675
0.3282
0.0140
0.9900

F Ratio
1.2134
Prob>F
0.3290

F Ratio
0.0450
Prob>F
0.9560




Parameter Estimates

Term Estimate Std Error t Ratio Prob>{i|

Intercept 35.623386 16.23157 2.19 0.0373

A 17.173384 16.23157 1.06 0.2998

B -22.02642 16.23157 -1.36 0.1864

C -30.17743 16.23157 -1.86 0.0744

D 1.7020264 16.23157 0.10 09173

E -0.217741 16.23157 -0.01 0.9894

F 2477217 16.23157 -0.15 0.8799

G 8.4618496 16.23157 0.52 0.6066

H 27.486565 16.23157 1.69 0.1023

I -18.71392 16.23157 -1.15 0.2594

Effect Test

Source Nparm  DF Sum of Squares F Ratio Prob>F
A 1 1 10617.304 1.1194 0.2998
B 1 1 17465.871 1.8415 0.1864
C 1 1 32784.393 3.4566 0.0744
D 1 1 104.288 0.0110 09173
E 1 1 1.707 0.0002 0.9894
F 1 1 220.918 0.0233 0.8799
G 1 1 2577.704 0.2718 0.6066
H 1 1 27198.406 2.8676 0.1023
I 1 1 12607.593 1.3293 0.2594

Final Experiment - Full Main Effect Model: JMP Qutput (With Blocking Variable)

Screening Fit

Abs Error
Summary of Fit

RSquare 0.369889

RSquare Adj 0.081088

Root Mean Square Error 470038

Mean of Response 3.499722

Observations (or Sum Wgts) 36

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio
Model 11 311.26611 28.2969 1.2808
Error 24 530.24579 22.0936 Prob>F
C Total 35 841.51190 0.2931
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Parameter Estimates

Term Estimate Std Error
Intercept 3.4997222 0.783397
A 0.4468611 0.783397
B -0916772 0.783397
C -1.770133 0.783397
D -0.021161 0.783397
E 0.3164833 0.783397
F -0.269144 0.783397
G 0.6426 0.783397
H 1.5522389 0.783397
I -0.785606 0.783397
Block[1-3] 1.2199611 1.10789
Block[2-3] -1.027106 1.10789
Effect Test
Source Nparm  DF Sum of Squares
A 1 1 7.18865
B 1 1 30.25697
C 1 1 112.80139
D 1 1 0.01612
E 1 1 3.60582
F 1 1 2.60779
G 1 1 14.86565
H 1 i 86.74004
I 1 1 22.21834
Block 2 2 30.96533
Error
Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)
Analysis of Variance
Source DF Sum of Squares
Model 11 4479467
Error 24 630.1310
C Total 35 1078.0777
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t Ratio
4.47
0.57

-1.17
-2.26
-0.03
0.40
-0.34
0.82
1.98
-1.00
1.10
-0.93

F Ratio
0.3254
1.3695
5.1056
0.0007
0.1632
0.1180
0.6728
3.9260
1.0056
0.7008

0.415505
0.147612
5.124008
2.3826
36

Mean Square
40.7224
26.2555

Prob>|t|
0.0002
0.5737
0.2534
0.0332
0.9787
0.6898
0.7342
04201
0.0591
0.3260
0.2817
0.3631

Prob>F
0.5737
0.2534
0.0332
0.9787
0.6898
0.7342
0.4201
0.0591
0.3260
0.5061

F Ratio
1.5510
Prob>F
0.1778




Parameter Estimates

Term Estimate Std Error t Ratio
Intercept 2.3826 0.854001 2.79
A 0.9243389 0.854001 1.08
B -0.987061 0.854001 -1.16
C -1.6128 0.854001 -1.89
D -0.121572 0.854001 -0.14
E -0.203883 0.854001 -0.24
F -0.784844 0.854001 -0.92
G 0.8526778 0.854001 1.00
H 22535167 0.854001 2.64
I 0.0108167 0.854001 0.01
Block[1-3] 145715 1.20774 1.21
Block[2-3] -1.571483 120774 -1.30
Effect Test
Source Nparm  DF Sum of Squares F Ratio
A 1 1 30.75849 1.1715
B 1 1 35.07443 1.3359
C 1 1 93.64046 3.5665
D 1 1 0.53207 0.0203
E 1 1 1.49646 0.0570
F 1 1 22.17531 0.8446
G 1 1 26.17414 0.9969
H 1 1 182.82015 6.9631
I 1 1 0.00421 0.0002
Block 2 2 55.27102 1.0526
SQ Error
Summary of Fit

RSquare 0.374379

RSquare Adj 0.087636

Root Mean Square Error 95.54236

Mean of Response 35.62339

Observations (or Sum Wgts) 36

Analysis of Variance
Source DF Sum of Squares Mean Square
Model 11 131100.15 11918.2
Error 24 219080.23 9128.3
C Total 35 350180.38
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Probsit|
0.0102
0.2898
0.2591
0.0711
0.8880
0.8133
0.3672
0.3280
0.0144
0.9900
0.2394
0.2056

Prob>F
0.2898
0.2591
0.0711
0.8880
0.8133
0.3672
0.3280
0.0144
0.9900
0.3646

F Ratio
1.3056
Prob>F
0.2802




Term

Intercept

A

B

C

D

E

F

G

H

I ,

Block[1-3]

Block[2-3]
Source Nparm
A 1
B 1
C 1
D 1
E 1
F 1
G 1
H 1
I 1
Block 2

Parameter Estimates

Estimate
35.623386
17.173384
-22.02642
-30.17743
1.7020264
-0.217741
-2.477217
8.4618496
27.486565
-18.71392
38.210871

-26.2954

Effect Test

Std Error
15.92373
15.92373
15.92373
15.92373
15.92373
15.92373
15.92373
15.92373
15.92373
15.92373
22.51955
22.51955

Sum of Squares

10617.304
17465.871
32784.393
104.288
1.707
220.918
2577.704

27198.406
12607.593
27521.966

1 Ratio
2.24
1.08

-1.38
-1.90
0.11
-0.01
-0.16
0.53
1.73
-1.18
1.70
-1.17

F Ratio
1.1631
1.9134
3.5915
0.0114
0.0002
0.0242
0.2824
2.9796
1.3811
1.5075

Final Experiment - C, H, C¥H Model: JMP Output

Response Variable: Absolute Error

RSquare

Screening Fit

Y

Summary of Fit

RSquare Adj

Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

Source DF
Model 3
Error 32
C Total 35

Analysis of Variance

Sum of Squares

249.91310
591.59880
841.51190
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0.296981
0.231073
4299705
3.499722

36

Mean Square

83.3044
18.4875

Prob>|t|
0.0348
0.2915
0.1793
0.0702
09158
0.9892
0.8777
0.6000
0.0972
0.2514
0.1027
0.2544

Prob>F
0.2915
0.1793
0.0702
0.9158
0.9892
0.8777
0.6000
0.0972
0.2514
0.2417

F Ratio
4.5060
Prob>F
0.0095




Parameter Estimates

Term Estimate Std Error t Ratio
Intercept 3.4997222 0.716617 4.88
C*H -1.182883 0.716617 -1.65
C -1.770133 0.716617 -2.47
H 1.5522389 0.716617 2.17
Effect Test
Source Nparm  DF Sum of Squares F Ratio
C*H 1 1 50.37167 2.7246
C 1 1 112.80139 6.1015
H 1 1 86.74004 46918
Prediction Profile
21.82 -
Y 3499722 A
0.0198 — T 1 [
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Prob>|t|
<.0001
0.1086
0.0190
0.0379

Prob>F
0.1086
0.0190
0.0379




Appendix B: Final Experiment Structures
and True Component Distribution Functions

Small / Series-Parallel:

i

Small / Complex (Bridge Structure):

Large / Series-Parallel:

14

[,

13

~

15

17

o0

16

1
4
2
5
3
Large / Complex:

il

(=)
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Component True Failure and Repair Distributions (Final Experiment)

IFR DFR Repair
Component Failure Distribution Failure Distribution Distribution
Weibull: Shape = 1.5 (hrs) | Weibull: Shape =.50 (hrs) | Lognormal:  (hrs)
1 Scale = 3000 Scale = 1354 Mean = 2800
Location = 0 Location = 0 S.D. =200
Weibull: Shape =4.0 Weibull: Shape = .85 Lognormal:
2 Scale = 2500 Scale = 2082 Mean = 1500
Location=0 Location = 0 S.D. =100
Weibull: Shape =2.5 Weibull: Shape = .95 Lognormal:
3 Scale = 4000 Scale = 3468 Mean = 1000
Location = 0 Location = 0 S.D.=150
Weibull: Shape = 1.7 Weibull: Shape = .60 Lognormal:
4 Scale = 1700 Scale = 1008 Mean = 150
Location = 0 Location = 0 S.D.=25
Weibull: Shape = 2.8 Weibull: Shape = .40 Lognormal:
5 Scale = 3500 Scale = 938 Mean = 850
Location =0 Location = 0 S.D.=90
Weibull: Shape = 1.9 Weibull: Shape = .70 Lognormal:
6 Scale = 3333 Scale = 2336 Mean = 3000
Location = 0 Location = 0 S.D.=125
Weibull: Shape =1.2 Weibull: Shape = .55 Lognormal:
7 Scale = 2575 Scale = 1423 Mean = 190
Location = ( Location = 0 SD.=20
Weibull: Shape =2.7 Weibull: Shape =.78 Lognormal:
8 Scale = 1500 Scale = 1156 Mean= 1200
Location =0 Location = 0 SD.=75
Weibull: Shape = 1.6 Weibull: Shape = .91 Lognormal:
9 Scale = 6000 Scale = 5143 Mean= 1000
Location =0 Location = 0 S.D.=30
Weibull: Shape =2.3 Weibull: Shape = .46 Lognormal:
10 Scale = 4700 Scale = 1763 Mean = 2300
Location = 0 Location = 0 S.D. =133
Weibull: Shape =14 Weibull: Shape = .82 Lognormal:
11 Scale = 2700 Scale = 2210 Mean = 500
Location = 0 Location = 0 S.D. =60
Weibull: Shape =1.9 Weibull: Shape = .67 Lognormal:
12 Scale = 2700 Scale = 1812 Mean = 1000
Location = 0 Location = 0 S.D. =100
Weibull: Shape =1.3 Weibull: Shape = .86 Lognormal:
13 Scale = 4200 Scale = 3591 Mean = 90
Location = 0 Location =0 SD.=15
Weibull: Shape = 1.5 Weibull: Shape = .62 Lognormal:
14/15/16 Scale = 2600 Scale = 1626 Mean = 2200
Location = 0 Location = 0 S.D. =200
Weibull: Shape = 1.1 Weibull: Shape = .75 Lognormal:
17 Scale = 3100 Scale = 2513 Mean = 750
Location = 0 Location = Q S.D. =60
Weibull: Shape = 1.6 Weibull; Shape = .48 Lognormal:
18/19/20 Scale = 2000 Scale = 829 Mean = 280
Location = 0 Location = 0 SD.=50
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Appendix C: Fitting Data (Preliminary Experiment)

Component 1 and 2 ilure | :

(Top Waibuii++ Selection) . Wi+ + Ex
: Low Level Fitting Parameters
Rep1 Rep2 Rep3

Failure PD‘F

3400.2237 290.9722 189, Shape! 1. 0.8048!"

6623.047, 5161.413] 2434.877; " "Scale! 3676.78; 2606.92; 3763.638] mean
1509.313! 2421625 416.6075] Location! 0: 161,866 o "iLocation 1456065

......... : 321 1 .058
1179813 '210.6919

bull++ Selection) ¢ (Weibull++ Exponential)
High Level Fitting Parameters : i Low Level Fitting Parameters
Repl :Hep2 ' Hep2  TRepd

Shape!  1.3037) 1.0481
Scale! 4018.15! 4179.29
: P e 2R
2571992235089
742.0507" 4498.481: 1261039

744.2721! 3508,063;

0.0002; " 0.6004:

170,863 782
1832.077; 5763.669;
17084361 3590.396

6206.759
1753.056;

2004.512; 3384.537:
2014.792: 11180.08: 1525.289:
8001.486; 2610.481

Rt S B
i 5362.177
5850.77

"1682.965;
4359763
- 1186.952

"3830.9141 1580.474] 1952.96
3975.112 3482 506! 33,806
27496321
1755.551

4757568 :
5381.795: 5394.354 4707 271

5093 572 74767621
6399.864 : 1450.601

9:"1651.895

' 6705.746

. '8068.264: 2
9717.07

13761.84

2782.958

1838.203
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True Lognormal Me:

Repair PDF

10 Data Points

True Lognormal St Dev.

0.06062462';

0.246220677

Waeibull Shape:

Scale:

Level Fitting Parameters

Low Level Fitting Parameters ~ :

:Rep2

Rep3
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Components 3 and 4:

Component 3 and 4

Failure Data

|
Failure PDF

(Top Weibull++ Selection)

(Weibull++ Exponential)

10 Data Points

High Level Fitting Parameters

Low Level

Fitting Parameters

Set1 Set2

Set3

Rep1 Rep2

Rep3

Rept Rep2

Rep3

1419.354| 2052.765

2207.199

Shape

1.842 1.701

Lambda

0.0008| 0.

0008  0.0006

963.0771| 1421.759

1785.776

Scale

1808.529| 2257.799

Mean

1250

12501 1666.667

14.1518| 1909.412

2657.587

Location

317.4287( 43.7521

Location

14.1518| 664.

5628| 459.4963

544.4623| 3221.591

5230.137

382.2532| 1794.981

1682.83

Nomal

2046.543| 3727.739

1131.662

Mean

1284.115

1318.988| 2250.122

2304.446

S.D.

771.0283

2070.357| 1122.486

2220.419

1539.051| 664.5628

818.5274

2542.909( 1025.499

459.4963

Failure PDF

(Top Weibull++ Selection)

(Weibull++ Exponential)

50 Data Points

High Level Fitting Parameters

Low Level

Fitting Parameters

Set1 Set2

Set3

Repi Rep2

Rep3

Rept Rep2

Rep3

136.4218| 2006.373

1696.307

Shape

1.2122| 2.0219| 1.6765

Lambda

0.0007| O.

0005|  0.0005

171.3912| 948.7334

1365.369

Scale

1663.22| 2204.209( 2125.105

Mean

1428.571

2000 2000

224.7112| 2500.185

2687.736

Location

99.6879

0 0

Location

136.4218

0 0

277.1905| 1696.223

1805.908

345.4204| 809.518

2860.507

350.7182| 4187.265

2341.057

380.1629( 1980.925

2884.308

479.4368! 1541.282

240.2723

500.3845| 3635.917

4878.578

TRUE PARAMETERS

527.7269| 1674.282

2950.525

Weibull

533.4867] 722.2443

4238.523

Shape

1.5

545.9969| 385.2486

1467.667

Scale

2000

586.504 1605.537

1540.711

Location

0

634.7171] 3350.027

649.1847

641.1439| 4166.519

1783.356

814.9092| 2043.477

80.483

817.0835| 1839.547

4346.261

817.7518] 1992.607

2434.073

1013.223| 364.0332

701.3264

1023.685| 1415.027

1327.958

1041.254| 3404.917

695.0498

1119.601| 2785.675

4072.324

1162.011| 1613.91

641.4696

1323.632| 1456.764

3960.691

1356.765| 403.8959

1580.863

1452.204| 2513.195

1864.181

1517.397| 1049.062

2072.33

1610.408| 1199.236

1395.664

1650.178| 2189.122

1179.098

1747 .276| 894.8619

616.6241

1783.921| 712.8388

2660.072

1787.338] 2992.213

2868.949

1910.095| 851.2721

589.046

2061.335| 3859.053

994.874

2073.654] 1165.431

595.9472

2149.89| 195.2311

1987.552

2202.226| 3017.145

890.1436

2661.079| 3160.684

1949.515

2663.375| 1935.184

1520.993

2824.277| 1190.268

4662.404

2938.453| 2587.891

1383.616

3044.948| 1584.65

2257

3108.324; 2100.979

1979.941

3111.957| 1745.846

2055.053

3218.49( 1494.447

1163.525

3297.171| 2859.441

1122.916

3818.062] 2195.199

2345.829

3881.404| 3036.767

1677.936

4296.429| 2630.787

1388.224

5500.918; 2086.617

465.4539
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Component 3 and 4

Repair Data

True Lognormal Mean:

70

True Lognormal St Dev:

15

i
Repair PDF

|
(Top Weibull++ Selaction)

|
(Empirical)

True Lognormal Variance:

225

10 Data Points

High Level Fitting P:

Low Leval Fitting Par

Setl Set2

Set3

Rep1 Rep2

Rep3

Rep1 [Rep2 Rep3

505429 50.1709

58.4619

N Mean

4.2835

Mean for Normal varates:

4.226047582

54.5919] 59.9039

635271

N S.D.

0.1966

(Empirical)

Var for Normal variates:

0.04489532

54.8351] 64.0371

69.9191

LogN Mean

73.90835 1

St Dev or Normal Variates:

0.211885157

61.5746| 67.9009

70.1893

1
LogN S.D. 0f 14.67192 0

62.2426( 70.2945

721974

634417] 70.9324

83.9836| Weibull Shapg

10.7264

2.0011

63.6161] 80.1769

85.9047

Scals|  65.159

31.3301

68.8356] 82.1574

88.4354

Location 0

51.6926

69.2073| 936345

91.2170

72,6966 99,7863

110.0655

Repair PDF

(Top Weibull++ Selection)

(Empirical)

50 Data Points

High Level Fitting P:

Low Level Fitting Parameters

Setl Set2

Set3

Rep1 Rep2

Rep3

Rep1 [Rep2 Rep3

34.1787| 387913

41.6494

N Mean

4.2304

4.2268

4.2206

483627 46.0611

432507

NS.D.

0.2308

0.1961 0.266

{Empirical)

49.9477] 535753

43.4841

LogN Mean] 70.60029( 69.82748| 70.52576

515149 537212

44.2777

LogN $.D.| 16.51397| 13.82587| 19.09664

54.3864| 55.0942

47.1829

544412] 57.0988

49.7388

54.5729] 575047

497418

56.2162| 57.6721

51.2158

56.7004| 584367

525310

56.9730[ 59.2594

54.6539

57.3835] 59.9447

54.7453

58.8944| 612913

56.0434

59.0369( 61.3342

57.1667

61.1619[ 61.8150

60.0750

61.4112{ 62.3685

60.3486

61.8558| 62.5415

61.1234

62.0726| 62.9040

61.8934

62.0887 62.9070

61.9786

63.3913] 63.0202

62,6219

63.4997] 63.2976

63.4711

63.7484| 63.3424

64.3084

64.2637| 63.3544

64.3633

64.9753F 66.6072

65,3554

65.8449| 67.0459

65.5944

67.5707| 67.1534

67.4849

68.3410| 67.3088

67,9115

68.5082] 69.4443

68,4511

69.2928] 69.4803

68.7440

69.5706| 69.8782

69.7515

70.0106] 69.9384

70.2290

70.2269] 70.0798

70.4140

70.7711]  70.3432

71.1318

716171 72,0448

71.4524

75.8268| 72.7633

73.2540

75.8544| 74.5976

73.2624

76.7763] 77.2004

745592

76.8853] 77.9867

76.8966

80.2664| 81.3173

77.4953

81.9055| 81.4892

78.2504

83.1285| 81.5827

78.5668

84.8814 81.6052

82.8026

85.2087] 82.0497

87.8336

85.4425| 82.3824

88.8182

88.9759| 827042

89.0255

91.0799| 83.2923

102.6272

91,6729 83.6743

108.3565

94.6421] 84.1560

114.8737

105.4016]| 91.3150

115.7703

108.3813| 100.5538

122.6361

132.2814| 129.3339

1229925
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Component 5:

Component 5

Failure Data

Failure PDF

{Top Weibull++ Selection)

{Weibull++ Exponential)

10 Data Points

High Level Fitting Parameters

Low Level

Fitting Parameters

Set1 Set2

Set3

Rep1

Rep2 Rep3

Rep1

Rep2

Rep3

384.4927| 641.1133

244.2498 Shape 1.8723 1.1411 1.8548

Lambda

0.0007

0.0006

0.0009

545.0513| 836.1144

473.7554 Scale

2014.397( 1492.544| 1545.62

Mean

1428.571

1666.667

1111111

1014.724| 1063.66

774.6268] Location 0

530.6213 0

Location

384.4927

440.0948

244.2498

1467.796] 1225.419

1200.055

1528.46| 1386.741

1269.333

1796.037| 1677.181

1431.017

1805.159| 1710.791

1463.062

2685.534 2509.8

1628.846

3171.514] 4063.236

2380.459

3470.297| 4405.597

2878.333

Failure PDF

(Top Weibuli++ Selection)

(Weibull++ Exponential)

50 Data Points

High Level Fitting Parameters

Low Level

Fitting Parameters

Set1 Set2

Set3

Rept

Rep?2 Rep3

Rep1

Rep2

Rep3

478.862( 139.3333

244.5103 Shape|  2.2201

1.7751 1.8758

Lambda

0.0007

0.0007

0.0007|

560.5032| 216.6253

317.6606 Scale

2154.565

1712.647} 1853.406

Mean

1428.571

1428.571

1428.571

606.1648| 481.2112

378.0646| Location 0 0 0

Location

478.862

139.3333

244.5103

666.5704| 481.4101

444.4303

747.9887| 575.2048

563.182

874.4738| 617.7887

606.8696

898.0651| 649.797

690.6264

942.651| 674.0816

697.5089

TRUE PARAMETERS

956.5013| 698.4854

728.1186

Weibull

982.7919] 713.8397

728.617

Shape 2

1002.692| 713.9761

739.3244

Scale 2000

1229.721| 723.6584

750.4836

Location 0

1271.843| 779.9904

944.7299

1296.71| 809.8509

985.4585

1318.26| 1014.29

994.7749

1395.802| 1023.576

1040.816

1407.178| 1053.333

1086.567

1424.359| 1101.47

1120.212

1452.061] 1115.344

1200.526

1525.454| 1172.539

1214.506

1551.733| 1205.425

1254.517

1567.216| 1285.991

1271.458

1606.131] 1297.485

1285.856

1858.728| 1374.334

1346.401

1909.199| 1406.672

1455.681

1927.392| 1414.709

1519.508

1920.022| 1518.297

1571.408

1952.617| 1541.507

1587.083

1967.877| 1592.483

1679.344

1994.657] 1647.969

1773.561

2029.51| 1663.765

1814.845

2038.27[ 1691.25

2049.751

2122.888| 1723.812

2058.304

2235.849| 1737.343

2083.694

2375.611] 1740.056

2154.53

2421.885! 1749.907

2197.575

2436.823| 1755.844

2267.668

2460.293| 1764.924

2268.36

2626.509| 1910.202

2393.67

2549.512| 2171.504

2416.656

2637.84| 2201.866

2493.545

2680.403! 2210.847

2504.284

2842.487| 2315.208

2645.74

2864.291| 2401.005

2753.988

2032.771| 2402.354

2827.33

3146.245| 2633.574

2969.749

3370.188| 2672.251

3015.439

3651.116; 3801.817

3045.548

3730.11] 3867.55

3479.832

4825.686| 4566.505

4417.831
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Component 5 Repair Data | 1 I

True Lognormal Mean: 60
| | I True | | St Dev: 8|
Repair PDF (Top Weibull++ Selection) (Empirical) Desired Log! | Vari 64
10 Data Points High Level Fitting P: t Low Level Fitting P:
Setl Set2 Set3 Rep1 Rep2 Rep3 Repl 1Rep2 Rep3
42.3867| 47.6347| 51.4372 N Mean Mean for Normal vari 4.085533762
43.2308| 48.1388| 52.2682! NS.D. (Empirical) Var for Nomal vari 0.017621601
48.2416| 52.5022] 52.7358 LogN Mean 1 1 1 5t Dev for Normal Variates: 0.13274638|

51.4218| 56.1148| 54.5995 LogN 8.D. 0 0 0
53.5588| 57.9414| 55.6594
53.7508| €0.2239| $6.2238| WeibullShape; 1.5821| 2.0888] 1.8122
61.3120] 65.4354| 56.9997 Scale] 20,0399 24.3756] 7.071%
62.2097| 66.2377( 59.3828 Location| 38.8838] 37.8505{ 49.9941
70.7762| 68.6597| $9.7857
81.3838| 72.4364| 63.5537

Repair PDF {Top Weibull++ Selection) (Empirical)
50 Data Points High Level Fitting P S Low Leve! Fitting P
Set1 Set2 Set3 Rep1 Rep2 Rep3 Repi [Rep2 Rep3
43.3633| 40.7621| 43.0694 N Mean 4.1117 4.0748|
44.4692] 48.5947| 46.7846 NSD, 0.1551]  0.1148| (Empirical)
45.4751] 49.4850] 50.4923! LogN Mean 1] 61.78916| 59.22635|
48.6513| 50.2172] 51.6487 LogN S.D. 0] 9.641424] 6.809686

50.0403| 51.6521] 51.9374
50.2316] 52.1425| 52.1729| Weibull Shape|  2.7445]
51.7557| 52.2455| 52.3547 Scale| 25.1628
52.2082| 52,5248] 52.4985 Location| 38.2597|
52,3060 53.1706] 52.5289
52.5053] 53.1965 528929
52.6333] 55.0626] 52.9650
53.7309| 55.3737| 53.8248
53.9276| 55.7426] 53.8827
54.3120] 55.8370| 53.9105
54.9343| 56.1746] 552268

55.3858| 56.22201 55.2281
$6.2124| 56.3467| 55,9278
96.7725] 56.5004| 56.1931

$6.7782] 56.5145] 56.6390
57.6110| 56.6211} 56.6643
57.7294| 58.0804| 57.5460
57.7883| 58.1192| 57.9742
58.9255] 58.6514] 58.1499
59.2438| 59.3046} 58.2710
59.5306| 59.5374| 58.5631
60.7142| 59.7304| 58.6642
61.3204] 60.5192| 59.2110
61.3278| 60.5882| 59.6570
61.9357] 60.7126] 59.6694
62.3702| 61.4066| 60.5763
63.0976| 62.7784| 60.9542
64.0200| 63.1173] 61.0330
64.2367| 63.4444| 61.6104

L:

6

64.3788{ 65.2601 1.6800
64.4379| 65.6371 1.9636|
65.6116| 66.0719] 62.1527
65.9567| 66.3744] 62.9827
66.8411] 66.3844| 63.0855
67.9192} 67.3746| 63.3517
68.0796| 67.6069| 63.9280
68.8105| 67.6528| 64.0222
68.8541| 68.6839] 64.8802!
70.5540| 68.7946] 64.9155
707772} 756322 66.8994
70.9301] 78.0914] 68.7119
71.4910] 79.7626] 6€8.8166!
71.5870| 80.2364] 70.8727
75.8337| 81.8113] 73.5066
80.9404| 87.1557 75.3719
83.3002| 87.2371] 75.4592
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Appendix D: Fitting Data (Final Experiment)

Component 1:

Component 1: IFR Failure
|

|
TRUE IFR PARAMETERS

Failure PDF]| (Top Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Points High Level Fiting Parameters Low Level Fitting Parameters Shape 1.5
Seti Set2 Set3 Rep1 Rep2 Rep3 Rept Rep2 Rep3 Scale 3000
181.1979| 2223.7486| 287.5772 Shape 0.6094 1.1231 Lambda 0.0004 0.0008 0.0004 Location 0
982.1146| 2379.3399| 937.6879 Scale 383.7708] 2363.258 mean 2500 1250 2500
2226.3576] 2383.1759| 1497.2583 Location 2218.289| 18.7925 Location 0] 1547.451 0
2388.7504] 2472.4279; 2778.1681
5300.2774] 4496.5138| 5903.7465|Exp. Lambda 0.0004
mean 2500
Location 0
Failure PDF (Top Weibull++ Selection) {Woeibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Leve! Fitting Parameters
Sett Set2 Set3 Repi Rep2 Rep3 Rep1 Rep2 Rep3
68.4728| 423.2879 319.593 Shape! 1.6539 1.6359 1.4402 Lambda 0.0005 0.0003 0.0004
331.6175 852.5500 651.7494 Scale] 2430.633{ 3188.455| 2918.504, mean 2000| 3333.333 2500
416.3119 872.1424| 712.6503 Location 0| 76.2918| 126.3392 Location 68.4728 0] 319.503
765.5116 885.9164| 756.6507
985.3227] 1339.2671 945.8708
1091.8591 1384.6532] 956.1866
1200.8468| 1873.6413] 1104.1897
1442.4947| 2102.4384] 1498.2734
1595.0677| 2249.4598| 1754.579
1651.5536| 2297.4357| 19159636
1712.5829| 2419.0937| 1961.8824
1820.5611 2440.497| 2283.4476
1970.983| 2480.1319 2561.7131
2305.9208| 2690.5506| 2579.4042
2535.9024| 2764.3675| 2604.1896
2590.8444| 2930.4622| 3034.4819
2856.3818| 2071.7748| 3627.4104
2030.8024| 2076.9484| 37257776
2977.372] 3598.5336| 4224.4737
3046.7539] 3959.8607| 4353.1658
3702.9801| 4424.5982| 4731.5963
3778.5931| 4635.2492| 4792.5074
3787.6137| 5039.1509] 4808.6287
3996.1117| 7344.0245| 57857093
5170.1898] _8020.4938| 76957031
Component 1: DFR Failure I | I | | |
| | | | TRUE DFR PARAMETERY
Failure PDF | (Top Weibull++ Selection) {Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape| 0.5
Setl Set2 Setd Repi Rep2 Rep3 Repi Rep2 Rep3 Scale 1354
139.4620 0.0637 0.6333 Shape 0.5196 0.2708 Lambda 0.0002 0.0004 0.0004 Location 0
469.7426| 1038.2233 3.8248 Scale] 2700.083 509.9078 mean 5000 2500 2500
836.6793| 1703.1888|  425.0307 Location| 120.3868 0.6248 Location 4] Q 0
7502.4567| 2524.7519| 3214.1432
14660.2643| 6112.2116| 7872.6754 'TExp. Lambda 0.0004
mean 2500
Location []
Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Setl Set2 Set3 Rept Rep2 Rep3 Rept Rep2 Rep3
8.5763 0.001 0.23 Shape 0.5068 0.4887 0.4491 Lambda 0.0003 0.0004 0.0006
12.033 0.1838 3.3597 Scale| 1517.284| 1589.497| 675.7722 mean 3333.333 2500} 1666.667
35.734 6.1297 8.0134 Location 7.7972 0 0.0853 Location 0 0 0
38.9043| 13.0001 9.1801
43.0139, 80.2815 14.0094|
73.9562, 156.3244 22.8833
117.0724 199.4423 38.816
233.2414 285.532 65.5375
208.2057 326.8303 90.886
359.7071 765.5564| 120.6294
543.8688 865.7244 169.409
545.6467 1046.201 199.2903
920.3555| 1061.9274 283.987
973.9422| 1665.1605 346.233
1081.318] 2491.2069] 379.0188
1525.3416] 2855.2028| 466.5133
1646.0548| 2916.4294| 575.8503
2183.3176| 2917.5233] 675.9627
2858.4604 3149.028| 1191.9816
3234.4206] 3167.2538| 1654.3719
4179.5228| 5480.5496| 3587.6506
4360.3714| 5517.3566| 4577.0942
10713.9065| 6790.4468| 5097.7195
14261.0287{ 9955.8328| 7507.7753
22240.9338| 12086.6422| 14256.0549
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Component 1: Repair [ [ | True Lognormal Mean: 2800
Repair PDF | (T op Weibull++ Selection) True Lognormal St Dev: 200,
5 Data Points High Level Fitting Parameters (Empirical) True Lognormal Variance: 40000
Setl Set2 Set3 Rep1 Rep2 Rep3 Low Level Fitting Parameters
2601.5784]  2612.9115] 2601.2429 N Mean Rep1 [Rep2 [Rep3 |
2624.7145| 2771.1435| 2735.2400 NS.D. | Mean for Normal v ariates: 7.934830161
2866.0380] 2811.5681| 2776.2531] LogN Mean 1 1 1 (Empirical) Var for Normal variates: 0.00508907|
2900.4363| 2887.8300] 2910.3966] LogN S.D. 0 1] 0 St Dev for Normal Variates:|  0.071337714
2917.5533| 3024.6103| 3032.1766
Weibull Shape| 26.0652] 4.3832]  3.5523
Scale| 2848.267| 574.006| 523.2674
Location 0| 2209.462{ 2341.219
Repair PDF (T op Weibull++ Selection) (Empirical)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 Rep1 Rep?2 Rep3 Repi [Rep2 Rep3
2439.4242| 2096.6104| 2531.1515 N Mean
2481.7309| 2381.0876| 2552.3793 N S.D. (Empirical)
2513.2920| 2593.7256| 2577.2550| LogN Mean 1 1 1
2517.1491] 2614.5585] 2607.0592] LogN S.D. 0 0 0
2534.7232| 2614.9443| 2615.0955
2577.0690| 2707.7951] 2635.5129Neibull Shape 2.1543] 23.2416 3.1876
2631.8083| 2730.1049| 2655.9119 Scale| 413.0219] 2853.353] 556.6646
2631.9734] 2730.8425| 2724.3992 Location] 2372.44 0f 2322432
2644.6329| 2763.4976| 2747.2355
2691.8745] 2814.7469| 2771.0879
2707.8326| 2828.4549) 2803.8806
2708.698 2828.6183| 2819.1035
2710402 2833.0496| 2822.9242
272427371 2849.2083| 2834.566
2738.4129] 2849.4621| 2853.2614
2778.041| 2868.1963| 2865.1597
2797.5505| 2885.1118] 2885.2162
2806.1783| 2892.7576| 2890.2598
2843.8775| 2912.0356| 2953.696
2917.4224] 2912.6882| 2986.0419
2025.327| 2933.7764| 3031.5726
2952.5002| 2939.0819| 3040.0791
2969.4237 2945.88] 3055.8136
3099.2115| 2962.0594| 3079.2475
3102.8011] 2970.7126] 3148.6606]
Component 2:
IFR Failure | I [ | |
| | | I TRUE_IFR PARAME
Failure PDF (Top Weibull++ Selection) {Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 4
Seti Set2 Set3 Repi Rep2 _ [Rep3 Repl Rep2 _ |Rep3 Scale 2500
1612.093] 1188.4488| 1529.0469 Shape|  3.6567 Lambda 0.0023 0.001 0.0013| Location [
1960.6681| 1290.1264} 2175.3435 Scale] 1065.07 mean 434.7826) 1000| 769.2308
1984.2974| 2068.7919| 2253.8368, Location| 1092.293 Location | 1612.093| 1045.345] 1529.047
2194.6551| 2641.2489( 2700.0165
2503.2496| 3009.1271| 2855.9128 Exp. Lambda| 0.001{ 2302.831[Normal
mean 1000| 464.9841s.d.
Location| 1045.345
Failure PDF (Top Weibull++ Selection) {Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Seti Set2 Set3 Rept Rep2 Rep3 Rept Rep2 Rep3
12171241  870.7077, 1216.433 Shape 2.7507]  4.0263 1.9737, Lambda 0.0009 0.0007 0.0009
1642.9021| 1074.6883| 1286.6517, Scale] 1763.41}| 2625.438{ 1450.112] mean 1111.111] 1428.571| 1111.111
1680.602| 1520.2436] 1496.548; Location| 800.3591 0| 1021.904 Location | 1217.124| 870.7077] 1216.433
1769.1628] 1568.0989| 1498.3784|
1834.9983| 1758.271] 1605.873
1871.1207| 1763.2181| 1610.1992
1899.1965| 1897.8177| 1757.8406
2004.5769) 1923.7924| 1872.5433
2015.2816| 2071.8883| 1976.8157
2087.2999 2113.103| 2049.4764
2092.0926] 2411.2928] 2054.6868
2117.5404| 2539.4189| 2078.8981
2230.4854| 2557.1998| 2229.1075
2384.9624| 2560.0652| 2388.8754
2583.2324|  2641.315| 2389.8225
2610.2233| 2667.9734) 2474.9111
2619.4521| 2687.7639| 2547.2024
2648.8951| 2863.5512| 2638.066
2663.6457] 2941.8754| 3011.1999
2749.9839| 2947.5725| 3066.3981
2904.3552| 2964.1242| 3070.3818
3138.4561| 2974.0513] 3128.5016
3234.2694| 2975.4917| 3307.0873
3271.5803 3487.88| 3426.7407
3936.8724| 3637.9667| 3504.4876
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DFR Failure|

] I

|
TRUE DFR PARAM

Failure PDF

(Top Weibull++ Selection)

{Weibull++ Exponential) Weibull

5 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters Shape

0.85]

Setl [Set2

Set3

Repi Rep2 Rep3

Rep1 Rep2 Rep3 Scale

2082}

674.0396]  263.9219

306.1914,

Shape|

0.9576] 0.4635] 0.7888

Lambda

0.0003] 0.0004] 0.0005| Location

)]

1182.5319] 333.1048

700.7444,

Scale

3132.762| 1321.79| 1698.197

mean

3333.333 2500 2000

3204.7512) 1151.8919

1065.2406

Location

492.1489] 261.3827| 226.7046

Location

66.0606 0 0

5069.5254| 4921.1814

22554658

8181.8846| 6547.0311

6553.1903]

Failure PDF

(Top Weibull++ Selection)

(Weibull++ Exponential)

25 Data Points

High Level Fitting Parameters

Low Leve! Fitting Parameters

Setl [Set2

Set3

Rep1 |Rep2 Rep3

Rep1 Rep2 Rep3

2.98 1.09

11.2664,

Shape|

0.7739]  0.8305] 0.7194

Lambda

0.0007]  0.0004]  0.0004

36.3013 44.3538

20.1814

Scale

1300.736( 2575.825| 1948.33

mean

1428.571 2500 2500

54.824 78.5878

40.3001

Location

0 0 0

Location 0 4] 0

123.6012| 101.6154

111.0903

192.624| 584.1955

161.9492

210.4099] 661.0193

197.7819

260.8614] 690.6734

370.502

362.1208|  709.0175

607.0123

459.2924 955.527

627.617¢

5543346 1120.0438

7189486

693.4356| 1739.1781

921.3175

9034713 2022.778

930.201

9604571 2066.501

1001.5316|

985.9974| 2534.8116

1230.0908|

1104.6616| 2753.3491

2114.7321

1235.0752| 2053.0618

2252.154,

1271.6847| 3076.0826

2464.6736)

1282.2785| 4446.8662

2710.9989

1769.534| 4725.9478

2087.0909

2395.6022] 5045.4621

3266.1679

2886.6052] 5134.4935

4024.5976

3184.4881| 5343.4851

4871.465

3624.5633) 6208.065

67648413

4284.256 6651.23

8281.6728

8885.7876) 9886.4638

12787.509

Repair |

| True Lognormal Mean:

1500

Repair PDF |

[ [
{Top Weibull++ Selection)

True Lognormal St Dev:

100

5 Data Paints

High Level Fitting Parameters

(Empilricat) True Lognormal Variance:

10000

Seti Set2

Set3

Repi Rep2 Rep3

Low Level! Fitting Parameters

1367.8815| 1347.4899

14605701

N Mean

Rept [Rep2 [Rep3 |

1371.0849| 1352.9801

16434742

N§.D.

Mean for Normal varates:

7.311003|

1396.5115| 1555.3694

1553.7403

LogN Mean

—
-

1

{Empirical) Var for Normal variates:

0.004435|

1544.1540| 1567.2647

1628.3525

LogN S.D. 0 0 0

St Dev for Normal Varlates:

0.066593

1753.2314| 1590.2742

1637.7601

Normal

Weibull Shape

0.619] 17.4996] 1564.779|Mean

Scale

85.9718| 1530.836| 64.5028|S.D.

Location

1364.562 0

Repair PDF

(Top Weibull++ Selection)

(Empirical)

25 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Sett Set2

Set3

Rep1 Rep2 Rep3

1280.1149| 1272.3984

1289.9730

N Mean

Rep1 [Rep2 Rep3
[

1357.4532] 1361.6546

1313.6635

NS.D.

(Empirical)

1362.4470] 1405.7792

1373.7726

LogN Mean 1 1 1

1363.4113| 1415.0487

1374.1309

LogN S.D. 0 0

1373.1505[ 1433.5246

1381.1836

1385.1089( 1461.6078

1409.4947

eibull Shape

17.499 175 2.9224

1423.8314( 1466.1447

14156678

Scale

1533.556( 1584.373| 357.4828

1463.0150| 1484.8506

14693752

Location 0 0

119655

1471.6777| 1517.8623

1460.7675

1489.5132| 1533.9066

14625032

1494.1853] 1543.2282

1469.2258

1507.5896| 1546.8919

1510.4431

1508.8267| 1547.176

1511.885

1514.6871| 1549.4138

1625.1673

1520.119] 1569.7016

162601

1539.861] 1588.6071

1541.3123

1544.7079| 1588.8253

1673.8059

1545.5162| 1592.5024

1695.3293

1556.2519] 1604.8355

1618.5044

1574.2129| 1617.0122

1631.1695

1582.1842] 1626.4206

1641.2804

1595.5558| 1630.7171

1678.8727

1596.281 1670.211

1679.022

1622.4525| 1691.6267

1689.7569

1660.6851| 1723.4756

1736.7218
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Component 3:

IFR Failure

f I

|
TRUE IFR PARAME]

Failure PDF

|
(Top Weibull++ Selec

ion)

(Weibull++ Exponential)

Weibull

5 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Shape 2.5

Setl

Set2

Set3

Rep1 Rep2

Rep3

Repl Rep?2

Rep3

Scale 4000

2883.5319

2898.5673

2434.8346

Shape

1.0008

34133

Lambda

0.0009 0.0011

0.0006

Location 0]

3060.1663

3038.2884

20477713

Scale

925.7452

4586.741

mean

1111.111] 909.0908

1666.667

3514.6735

3636.2092

4363.5149

Location

2811.544

0

Location

2634.388| 2788.847

2313.926

3998 5685

3832.8183

4588.3683

5228.9477

4806.3682

6214.0369

Exp. Lambda

0.0011

mean

909.0909

Location

2788.847

Failure PDF

(Top Weibull++ Selec

ion)

(Weibull++ Exponential)

25 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Setl

Set2

Set3

Rep1 Rep2

Rep3

Rept Rep2

Rep3

1711.4399

1278.0886

1557.278

Shape

12574 2.9605

2.8125

Lambda

0.0006 0.0004

0.0004

1794.8646

1808.9081

1611.8093

Scale

1927.631| 4258.217

4263.149

mean

1666.667 2500

2500

2052.9023

2465.6908

1982.5562

Location

1617.411] 166.2515

0

Location

1711.44| 1278.089

1557.278

2058.9274

2494.8888

2069.6192

2073.6771

2546.2591

2151.6954]

2098.9349

2767 6346

2404.9142

3152.5575

2251.1667

2314.9334]

2624.2049

3162.102

2443.4072

2772.2025

3172.1008

2877.3355

2833.8453

3592.8889

3028.6866

2915.2481

3693.995

3596.0093

2985.502
2987.2932

3757.219

3917.9257

3801.8114

4019.9073

3109.4728

3948.7351

4087.4007

3131.6845
3198.8659

4141.2514

4146.7606

4206.1661

4192.7926

3283.6123

4225.2252

4734.3948

3796.4672

4233.9697

4745.9303

3801.7873

5123.1271

4787.0335

4162.7148

5166.0151

4815.4448

4228.3248

5574.046

4872.8703

5341.9776

5658.4477

5028.4013

6312.7596
6389.2901

5746.6372

6280.8288

6369.2437

6387.1472

7126.3486

7081.6374

6617.8441

DFR Failure

L
TRUE DFR PARAM

Failure PDF

[
{Top Weibull++ Selac

ion)

{Weibull++ Exponential)

Weibull

5 Data Points

High Level Fitting Parameters

Low Level! Fitting Parameters

|
Shape 095

Setl

Set2

Set3

Rep1 Rep2

Rep3

Repl Rep2

Rep3

Scale 3468

868.55%

698.6931

169.6434

Shape

2.3023 0.6745

0.8935

Lambda

0.0007 0.0003

0.0004

L 0

1516.3796

1366.5098

401.407

Scale

2553.192| 2135.705

2627.934

mean

1428.571| 3333.333

2500

2218.6249
2697.295

1700.3733

2722.0258

Location

0| 6586182

0

Location

852.0483 4

0

2792.1665

32344815

3966.098

10702.2462

7299.204

Failure PDF

(Top Weibull++ Selec

ion)

(Weibull++ Exponential)

25 Data Points

High Leve! Fitting Parameters

Low Level Fitting Parameters

Setl

Set2

207.8036

42.6759

Set3

Rop1l Rep2

Rep3

Repl Rep?

Rep3

26.6541

Shape

0.9439 0.7877,

0.8449

Lambda

0.0003 0.0003

0.0003

266.2007

110.6362

73.5251

Scale

3714.093| 270241

3310.37

mean

3333.333| 3333.333

3333.333

564.8699

125.2635

202.0481

Location

126.86] 21.438

0

Location

0 0

0

571728

3671112

481.4955

575.5735

412.2275

578.7774

956.9291

417.0253

911.8075

1372.7997

514.4869

958.3334

1458.9632

646.2646

1024.3937

1807.3052

905.7708

1215.1514

2216.5446

937.2157

1340.3025

2250.8431

1167.433

14467933

279.4159

1336.8557

1703.5091

2631.9957

1660.6554;

1726.7708

3200.9254

1813.3288

2022.7823

3607.7149

2070.6515

2047 3684

3808.4165

2174.3106

2517.398

4135.8181

2720.8299

2566.4763

4219.2527

3012.5395

5004.063

4349.9903

4941.1598

5040.78

4892.6842

5374.6816

6443.4536

5591.2831

6328.194

©6489.4017

6274.9309

8346.4754

10469.55

9276.5345

8829.5878

10626.242

15164.2679

10020.3126

11879.798

16880.6085

13523.2832

13441.007
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Repair |

| True Lognormal Mean:

1000

Repair PDF |

(Top Welbull++ Selection)

| True Lognormal St Dev:

150

5 Data Points

High Level Fitting Parameters

(Empirical) True Lognormal Variance:

22500

Setf Set2

Set3

Rep1 Rep2 Rep3

LowLevel Fitting Parameters

953.3588

833.6803

902.1094)

N Mean

Rep1 [Rep2  [Rep3 |

967.4331

1032.5035

979.9325

NS.D.

Mean for Normal variates:

6.89663,

1086.5469

1233.

167| 997.9914

LogN Mean 1 1

1

{Empirical) Var for Normal variates:

0.022251

1088.9893

1274.3727

1123.6429

LogN S.D. 0 0

[¢)

St Dev for Normal Variates:

0.149166

1149.2014

1390.9536

1136.5109

Expon.

Weibull Shape

16.4584 7.3676

0.0078

lambda

Scale 1084.1| 1234.108

128.2051

mean

Location

0 0

900.1852

location

Repair PDF

{Top Weibull++ Selection)

(Empirical)

25 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Sett Set2

Set3

Repi Rep2 Rep3

Repi [Rep2 Rep3

716.0199

844.79%4

785.3390

N Mean 6.9252

763.9341

863.4181

831.6782

NS.D. 0.115

{Empirical)

809.2789

878.9243

836.1035

LogN Mean 1

1024.349

838.1591

881.2346

861.4089

LogN S.D. 0

118.1907|

851.0674

882.3148

890.2926)

852,7825

906.7347

902.7939

Veibull Shape

2.4568

Normal

853.2847|

917.9051

905.3131

Scale| 426.864

1017.332

mean

855.4755

959.7401

945.2810

Location

623.04

124.465

SD

916.6027

968.1007

974.6158

936.9255

980.9357

979.8526

978.7269

084.1481

1032.3233

989.9185

1000.8476

1038.2957

1003.1626

1004.4521

1039.3221

1023.0763

1007.139%6

1039.5993

1027.2774

1036.1979

1044.2233

1027.7069

1075.7431

1047.3587

1071.4796

1090.7627

1067.1107

1082.6045

1091.7172

1083.2208

1093.7505

1096.0161

1088.6456

1123.4648

1108.6823

1094.9963

1154.6627

1161.7262

1105.5099

1155.8881

1178.4055

1116.3549

1165.0033

1203.5632

1217.3168

1353.3809

1238.3239

1224.9552

1381.8487

1247 8068

1281.3968

Component 4:

| I

IFR Failure
|

|
TRUE IFR PARAME]

Failure PDF

(Top Weibull++ Selection)

{Weibull++ Exponential)

5 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters Shape

17

Seti Set2

Set3

Rep1 Rep2 Rep3

Rep1 Rep2 Rep3 Scale

1700

1109.878] 814.5934

Shape

1.3709] 65579

Lambda

0.0012) 0.0007|  0.0024| 1

0

1321.429( 1365.19

Scale

995.1192| 1476.695

mean

833.3333| 1428.571| 416.6667

1895.723| 1475.554

Location

971.24 0

Location

1040.31 0] 458.4051

2216.109| 1517.465

2873409 1664.4

Exp. Lambda

0.0024

mean

416.6667

Location

458.4051

Failure PDF

(Top Weibull++ Selection)

{Welbull++ Exponential)

25 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Seti Set2

Set3

Rep1 Rep2 [Rep3

Rep1 Rep2 Rep3

530.2771| 200.3715

575.2981 Shape

1.208 15358 15218

Lambda

0.0008[ 00007 0.0009

6540401 | 2485755

835.6282 Scale

1501.28| 1741.393| 1347.52

mean

1250 1428.571| 1111.111

726.1561| 359.6599

848.035| Location

440.23 0| 483.3504

Location

5302771 200.3715| 575.2981

760.3249| 426.0651

866.1735

840.5436 434.9741

915.2016

944.0206| 554.9306

1048.103

979.1587| 579.127

1054.785

1069.765( 688.181

1079.655

1075.722| 959.4233

1129.904

1153.182| 996.8733

1156.848

1153.868| 1140.553

1350.402

1375.649| 1432.618

1367.315

1501.503| 1493.902

1469.085

1627.924| 1678.524

1596.448

1919.104| 1869.419

1624.494

2285.03| 1912.531

1842.271

2482.025| 2045.89

1905.994

2566.556; 2082.82

2044.315

2708.679| 2267.416

2119.071

2774.881] 2288.218

2497.592

2938.419| 2367.334

2530.151

2953.365| 2973,474

2671.39

3212.516| 3181.629

3003.419

3238.114| 3333.269

3034.194

4378.909| 3692.152

3810.435
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DFR Failure

[ I
[ I

1
TRUE DFR PARAMETERS

Failure PDF

(Top Weibull++ Selection)

(Weibull++ Exponential)

Weibull

5 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Shape 0.6

Seti Set2

Set3

Repi

Rep2 Rep3

Rept

Rep2 Rep3 Scale 1008

11.0497] 480.894

70.1082

Shape

0.4893

0.9992

Lambda

0.0002 0.0017 0.0026| Location 0

2426425} 559.0181

150.3176

Scale

2642.701

3371318

mean

5000| 588.2353| 384.6154]

1947.525| 728.0175

232.7354]

Location

0 43.9176

Location

0| 349.5782 0

3472.224] 1285.811

569.4263

18283.15| 1555.789

883.2029(p. Lambda

0.0017

mean

588.2353

Location

349.5782

Failure PDF

(Top Weibull++ Selection)

(Weibull++ Exponential)

25 Data Points

High Level

Fitting Parameters

Low Level

Fitting Parameters

Setl [Set2

Set3

Rep1

Rep2 Rep3

Rep1

Rep2 Rep3

55541 16.9831

1.5864 Shape

0.6606

04855 0.6164

Lambda

00008] 0.0009] 0.0005

19.0226] 22131

5.3811 Scale

1006.345

540.1314[ 1474.721

mean

1250] 1111.111 2000

54.69018| 224463

11.718] Location

3.3075

16.7859 0

Location

0 0 0

60.0507| 238545

44.7068

61.9173] 27.0709

111.0731

68.6155| 29.8473

117.8029

82.5532| 37.277

184.8074

114.3219] 90.4036

400.416

131.4785| 106.9176

490.2925

216.6277| 149.1267

635.9928

439.2135| 155.9802

7271333

448.182| 312.0662

746.0528

851.5921 359.9542

902.3072

859.8882| 3754828

980.0742

1061.002| 622.0638

1258.296

1417.39| 633.5568

1342977

1651.562( 661.405

1478737

1744.063| 754.3752

1785762

1967.511| 758.3816

2833623

2031.855] 1264.043]

3223.336

2600.598] 1366.809)

4326.368

3238.654| 1629.048

4453.8

3680.447| 3007.185]

7217.69

3779.719] 5056.075

8415.314]

6110.383| 11335.71

9351.056

Repair |

I True Lognormal Mean:

150

Repair PDF

[ I
(Top Weibull++ Selection)

| True Lognormal St Dev:

25

5 Data Points

High Level Fitting Parameters

(Empirical) True Lognormal Variance:

625

Set! Sef2

Set3

Repi Rep2 Rep3

Low Level Fitting Parameters

107.9361| 112.7261

110.8108[ N Mean

4.9334

Repi [Rep2 {Rep3 [

126.2814| 124.8062

148.5015( N S.D.

0.16

Mean for Normal variates:

4.996936

141.0837| 136.2086

156.1516/ogN Mean

140.6395 1 1

(Empirical) Var for Normal variates:

161.0093| 141.4520

158.4165|LogN S.D.

22.64711 0 0

St Dev for Normal Variates:

0.027399'
0.165526

166.6536] 158.3264)

179.0876

Weibull Shape

3.7243| 8.6173

Scale

56.8317| 159.7675

Location

83.5173 0

Repair PDF

(Top Weibull++ Selection)

(Empirical)

25 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Set! Set2

Set3

Repi Rep2 Rep3

Rep1 [Rep2 Rep3

112.1810} 109.6944

123.0544] N Mean

115.7299} 113.2002

128.6623 N S.D.

(Empirical)

116.9827| 119.7126

130.3761[ogN Mean

1 1 1

122.1091| 120.6516

132.2960{LogN S.D.

0

123.3441| 120.9405

137.8381

135.6326| 121.1742

139.3057|bul! Shape

3.6758| 6.7394] 1.8917

136.4452| 134.9671

141.9222 Scale

82.7082( 160.6862| 43.151

136.6714| 137.0815

143.9501| Location

76.3831 0| 116.0788

137.6559| 137.4096

145.6638

143.8245| 139.9656

146.0071

147.6691| 142.7575

146.1355

151.1929| 151,9322

146,617

151.7625| 153.15

147.6246

157.357] 155.0988

150.5233

1568.1261| 159.2667

151.3792

158.4126| 159.6028

154.678

158.8591| 162.5519

158.9568

159.9018| 165.5747

160.7683

170.0568| 166.6327

164.3028

171.5999| 167.1319

165.501

172.6964| 169.7564

167.8884

173.419] 175.133

173.1062

175.2563| 176.0617

180.6055

183.8417| 198.3452

200.29

201.9854| 198.8682

218.1923
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Component 5:

IFR Failure | | [ I I
[ 1 | TRUE IFR PARAME]
Failure PDF (T op Weibull++ Selection) {Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 2.8
Set1 Set2 Set3 Rep1 Rep2 Rep3 Repi1 Rep2 Rep3 Scale 3500,
15619.116| 2113.463| 1351.0364 Shape 3.3664 2.9259 Lambda 0.0006 0.001 0.0005( Location 0
1766.454| 2682.808| 2244.2143 Scale 2476.582| 3631.724 mean 1666.667. 1000 2000
2884.758| 3010.518| 3833.9542 Location 919.46 0 Location | 1262.577| 2113.463] 1351.036

4180.014| 3646.33| 3848.6219
4389.93] 4226.435| 4858.5665|Exp. Lambda|l  0.0006] Normal

mean| 1666.667 s.d.
Location| 1262.577

Failure PDF (T op Weibull++ Selection) {Weibull++ Exponential)

25 Data Points High Level Fitting Parameters Low Level Fitting Parameters

Set1 Set2 Set3 Rep1 Rep2 Rep3 Repi Rep?2 Rep3
900.3416| 1123.459| 1418.0763| Shape 2.4586 3.8567 Lambda 0.0005 0.0005 0.0005
1428.436] 1170.309| 1520.0759 Scale 2862.708| 3717.19 mean 2000 2000 2000
1455.073| 1770.679| 2050.2135 Location 452.2922 0 Location | 900.3416| 1123.459| 1418.076

1484.823| 1829.859| 2147.0789
1710.945| 18356.78| 2211.8287|Normal
2134.966] 1859.992| 2689.9989|Mean 2954.431
2138.175| 2241.777| 2819.1221|SD 1083.48
2287.051| 2250.085| 2852.6587
2573.535| 2434.664| 2996.6938
2716.043| 2699.351| 3183.7396
2876.521| 2735.001) 3205.9543
20563.765| 2854.768| 32486523
3030.853 2888.969] 3412.3151
3138.188} 3017.953| 3446.7971
3194.012| 3076.167| 3481.3514
3269.62| 3108.421| 3939.5758
3300.383) 3270.869| 4048.7442
3547.358| 3326.3| 4054.2415
3653.454| 3510.003| 4102.369
3676.913| 3867.605| 4237.113
3751.156| 4291.402| 4267.0322
3936.657| 4704.565] 4354.9116
4662.204| 4760.473| 4406.399
4768.117| 4794.134| 44414262
5272.08] 5119.947{ 5530.892

f I [ [ [ TRUE_DFR PARAME
Failure PDF (Top Weibull++ Selection} {Weibull++ Exponential) Weibull

5 Data Points High Level Fitting Parameters Low Level Fitting Paramsters Shape 0.4

Set1 Set2 Set3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 Scale 938

0.3887| 237.7436| 102.8577 Shape| 0.35561 0.4961 0.3509 Lambda 0.0005| 9.55E-05 0.0018| Location 0
44.7175| 1030.879| 103.8032 Scale| 455.3751| 5685.642| 133.5759 mean 2000 10471.27] 555.5556
197.7363| 1372.084| 235.8229 Location 0 207.53 102.7 Location 0 0 0

237.6625| 17016.14| 308.7439
9511.298] 32699.48] 2043.3231|Exp. Lambda

mean #DIV/O!
Location
Failure PDF (Top Weibull++ Selection) {Weibuli++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3
0.0044|  0.0011 0.0001 Shape| 0.4128] 0.3741 0.3391 Lambda 0.0006] 0.0004|  0.0003
0.1409 0.153 2.1644] Scale| 889.8248| 980.7368| 862.057 mean 1666.667| 2500| 3333.333
0.2305| 2.0381 2.5861 Location ¥ 0 0 Location 0 0 0

23157{ 2.8481 2.5863
34037 3.3508 8.3013
15.5762| 9.2546| 12.2399
414359 69.4667| 14.4416
66.006| 72.4795 21.25
169.6024| 98.3835| 23.2016
310.8927| 188.9514| 25,7667
675.65614| 228.1191] 57.6914
747.3958] 472.309] 161.199
950.9716| 542.8395| 213.563
1421.053| 595.3248| 1145.2239
1425.232| 829.2207| 1530.8733
1491.159| 1195.228| 1631.1368
1533.18] 1921.193| 1795.8049
1667.854| 2272.61| 20494273
1816.85| 2776.404| 2686.2033
2661.743| 3540.973| 2855.1948
3469.24| 4220.8| 3805.9691
3482.437| 9999.785| 10099.231
5354.848( 10923.76| 1231246
7718.713| 12973.89| 16991.308
10400.45) 16384.06} 24172.201

89




Repair |

| True Lognormal Mean:

850]

Repair PDF

(Top Weibull++ Selection)

| True Lognormal St Dev:

90

5 Data Points

High Level Fitling Parameters

(Empirical) True Lognormal Variance:

8100

Sett

Set2

Set3

Rep1 Rep2 Rep3

Low Level Fitting Parameters |

747.1571

850.0651

772.8667|

N Mean

Rep1 [Rep2  |Rep3 |

828.7058

935.5551

827.0410

NS.D.

Mean for Normal variates:

6.739662

830.6967

957.0606

937.0020

LogN Mean 1 1

-

(Empirical) Var for Normal variates:

0.011149

833.6765

981.7003

978.3519

LogN S.D. 0 0 0

St Dev for Normal Variates:

0.105587|

902.3605

988.9605

1027.9719

Weibull Shape

8.4508| 27.9086 Normal

Scale

384.543| 963.8849| 908.6467 [Mean

Location

465.21 0| 94.8652|SD

Repair PDF

(Top Weibull++ Selection)}

{Empirical)

25 Data Poil

nts

High Level Fitting Parameters

Low Level Fitting Parameters

Setl

Set2

Set3

Rep1 Rep2 Rep3

Rep1 |Rep2 Rep3

642.7415

691.2975

674.5797

N Mean

6.7196] 6.7275| 6.7245

696.8263

723.6644

683.9227

NS.D.

0.1017] 0.00473 0.1036

(Emplirical}

728.8017

735.9082

711.2389

LogN Mean

832.7816| 838.8122| 837.0355

745.0789

738.2158

752.3358

LogN S.D.

84.91336| 79.63928( 86.95008

773.4927

739.9673

779.8016

774.3035

763.4049

786.2454 N eibull Shape

792.5570

771.2505

787.2781

Scale

792.6556

817.6816

795.3255)

Location

811.2078

822.2252

798.9932

811.2933

823.0084

802.8723

814.0875

827.8375

805.9737

815.4539

831.2502

817.539

830.9855

834.2116

838.9178

834.2839

843.8531

843.2974

858.9568

861.4224

843.6612

862.9996

855.4944

844.3625

867.1553

862.0037

870.6218

872.307

862.5475

878.4302

873.9636

876.9206

885.2466

883.4647

936.0016

886.0297,

884.7831

941.7188

917.3511

906.1892

943.284

940.4368

940.6469

953.0136

958.6495

943.1421

959.3408

1000.5771

1061.907

964.0956

1022.3195

Component 6:

IFR Failure

| {

l
I TRUE iFR PARAME]

[
Failure PDF

i ]
(Top Weibull++ Selection)

{Weibull++ Exponential) Weibull

5 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters Shape

1.9

Set1

Set2

Set3

Repi Rep2 Rep3

Rep1 Rep2 Rep3 Scale

3333]

943.0678

1272.6057,

1373.1654]

Shape

2.0214] 1.0014] 4.5581

Lambda

0.0005] 0.0003| 0.0009| L )

0

2219.2323

1816.7934)

2175.7739

Scale

3343.678| 2549.782| 2673.5645

mean

2000] 3333.333| 1111.111

2853.3978

2781.1238

2552.2985

Location

0| 1065.907 0

Location

864.6482] 519.5057| 1373.165

3069.4

4368.796

2779.7657

5680.3975

7831.8613

3285.1362

Failure PDF

(Top Weibull++ Selection)

{Weibull++ Exponential)

25 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Sett

Set2

Set3

Rep1 Rep2 Rep3

Rep1 Rep2 Rep3

556.924

478.1575

338.3958

Shape

1.7668| 1.8077] 1.9447

Lambda

0.0004] 0.0004] 0.0003

888.1491

548.2909

923.6208

Scale

3576.66| 3112.881| 3793.36

mean

2500 2500| 3333.333

980.9987,

835.3915

938.8093

Location

151.86 0 0

Location

656.924] 478.1575| 338.3958

1524.9478

1028.4228

1144.9473

1651.9424

1252.9216

1383.9967

1554.7179

1318.5908

2032.6482

2180.2115|

1326.72%4

2056.6936]

2196.241

1403.6103

2558.1259

2333.6979

1488.9602

2704.5543

2639.6742

1779.9499

3017.2549

2667.9665

1971.7594)

3194.8691

2838.8861

3073.1181

3208.5318|

2902.5407

3188.9704

3363.2244

2911.8353

3240.6705

3371.6199

3154.5195

3451.9756

3503.761

3245.5848

3453.6347

3767.7008

3798.1278

3474.3802

3811.3404

4401.8804

3533.959%

3829.0021

4454.7244

3609.0219

3895.2004

4692.1923

3828.5382

4917.9287

5156.627

3974.7389

5125.8579

6195.3269

4201.9076

5385.3977

6672.5149

4593.8342

5832.9327

6695.2222

5073.4553

5849.498

7321.4379

6986.9939

8078.036
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DFR Failure | | | [
| | | ] | TRUE DFR PARAME
Failure PDF (Top Weibull++ Selection) {Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 0.7
Sett Set2 Set3 Rep1 Rep?2 Rep3 Repi Rep2 Rep3 Scale 2336
126.6007| 132.5105| 468.6132 Shape 0.8337 0.7236 Lambda 0.0001 0.0003 0.0012] Location 0
3871.6142| 151.9939| 542.8767, Scale| 7308.818] 2441.373 mean 10000] 3333.333| 833.3333
4941.3851| 1810.4893] 1450.5999 Location 0 0 Location 0 Q] 347.763
8492.4261| 5181.3916] 1450.9201
22172.966| 7327.3941| 1977.9812 Normal
1178.198|Mean
582.3018{SD
Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Setl Set2 Set3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3
3.9292] 509178 2.0586 Shape 0.745 0.682| 0.6467 Lambda 0.0003] 0.0004| 0.0003
49.8137|  62.3909) 4.4384 Scale| 2679.482| 2139.162| 2139.572 mean 3333.333 2500| 3333.333
61.4687| 1166026 62.1906 Location o 44.271 0 Location 0 0 0
302.8609| 137.147| 170.8058
318.0808| 1735285] 173.6596
448.9909] 417.1683|  174.1197
562.4808] 541.5138| 348.7671
600.2363] 6£82.8722| 638.6683
754.8118] 833.464] 641.4655
967.56236 1030.7573| 697.9511
1125.4453] 1209.2986| 1150.9406|
1273.4832] 1575.5076| 1324.3108]
1542.3704| 1681.0466| 1527.1351
1607.1968| 1915.0946 1677.1838
2056.0146[ 1927.3436| 1803.4187
3319.1916| 1932.9038 1816.459
3580.5006| 2428.3783| 2521.6041
3866.8573| 2650.1936| 2/04.6753
4930.0673| 2672.4901 3679.97
5678.6557| 2715,7387| 4895.6748
7145.3277| 2867.5279| 5713.7405
7246.6288| 3093.7406| 5798.1658
8642.1941| 8740.6562| 6360.7816
9803.4282| 12507.125| 6652.6711
12761.655| 19032.824| 21372.6813
Repair | I I ] True Lognormal Mean | 3000]
Repair PDF {Top Weibull++ Selection) True Lognormal St Dev: 125
5 Data Points High Level Fitting Parameters (Empirical) True Lognormal Variance: 15625
Seti Set2 Set3 Rep1 Rep2 Rep3 Low Level Fitting Parameters |
2928.2077| 2937.2630| 2727.4405 N Mean Rep1 [Rep2 [Rep3 |
2955.5721} 3008.5301| 2758.0500 NS.D. Mean for Normal varlates: 8.0055|
3118.5662| 3023.0372| 3009.5544| LogN Mean 1 1 1 {Empirical) Var for Normal variates:| 0.001735|
3192.1467| 3067.5622 3059.0098| LogN S.D. 0 0 0 St Dev for Normal Varates:| 0.041649,
3339.1724| 3123.3886| 3116.5662
Weibull Shape 2.9516 Normal
Scale| 456.2813| 3031.956| 2934.124[Mean
Location| 2701.37| 66.0042 160.18|SD
Repair PDF (Top Weibult++ Selection} (Empirical)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 Rep1 Rep2 Rep3 Rept [Rep2 Rep3
2725.9674| 2758.7299] 2741.9086 N Mean
2729.9413| 2770.4859| 2747.9049 NS.D. (Empirical)
2787.6873| 2780.2585| 2794.2454| LogN Mean 1 1 1
2801.4099| 2816.0094| 2891.3066| LogN S.D. 0 0 0
2833.9725| 2866.0869| 2930.3131
2884.5562| 2896.7268| 2046.8886Neibull Shape 5.9116 4.4958 Normal
2920.6486| 2827.8413| 2065.6203 Scale| 856.388| 630.048| 3032.937|Mean
2930.9072| 2034.3030| 2076.0747 Location| 2214.95| 2420.89 145.72|SD
2935.5857] 2044.4503| 2985.9873
2941.8176] 2048.8804] 2997.5822
2970.6641| 2960.577| 3001.2277
3004.238| 2966.7004| 3011.5071
3022.9127| 2080.7188( 3024.4465
3034.4321| 3026.4141| 3044.4719
3089.3571 3030.2003| 3059.7489
3103.579] 3035.5214| 3071.8224
3107.0562| 3076.3435| 3080.8281
3110.1218| 3089.8191| 3119.0444
3116.661| 3089.8886] 3122.4055
3122.7704| 3097.7068| 3165.1266
3135.9401f 3117.2651| 3171.3008
3170.1508{ 3126.9659] 3187.1087
3201.7674| 3153.7086| 3197.7748
3202.9599| 3179.3316[ 3213.8189
3321.2507| 3345.2504| 3374.7772
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Component 7:

IFR Failure

[ |

I
TRUE IFR PARAME]

Failure PDF

(Top Weibull++ Selection)

(Weibull++ Exponential)

Weibull

6 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Shape 12

Seti

Set2

Set3

Rept Rep2 Rep3

Rep1 Rep2

Rep3 Scale 2575,

1233.402

756.0101

507.7995

Shape

0.7525 0.871 1.2663

Lambda

0.0011 0.0002

0.0005| Location 0

1333.494

1517.403

1140.251

Scale

587.5031] 3216.492| 1953.159

mean

909.0909 5000

2000

1502.009

3151.586

1678.789

Location

1215]  562.58| 212.1063

Location

960.43 0

275108

2398.809

3215.274

1965.761

3042.558

11465.09

4809.848

Failure PDF

(Top Weibull++ Selection)

{Weibull++ Exponential)

25 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Setl

Set2

Set3

Rep1 Rep2 Rep3

Rep1 Rep2 Rep3

75.305

11,1745

28.3818

Shape

1.2894 1.2411 12875

Lambda

0.0004 0.0004

0.0004

163.5098

82.8646

351.9838

Scale

2089.621] 2750.429| 2639.941

mean

2500 2500

2500

234.3425

689.9868

419.6121

Location

0 [¢] 0

Location

75.3056] 11.1745

28.3818

273.5559

799.5951

752.1258

703.7099

1089.163

780.3233

862.866

1099.429

888.8444

999.166

1194.189

1020.826

1693.052

1282.23

1250.599

1876.896

1615.5

1383.95

2199.876

1647.912

1635.23

2224.738

1678.276

1971.803

2360.094

2097.373

2005.742

2648.08

2126.218

2273.373

2008.434

2409.684

2282.09

3619.917

2631.809

2284.143

3627.051

2892.163

2668.483

3737.317

3194.973

2640.37,

4502.703

3208.071

2681.885

4507.146

3224.334

3046.235

4518.089

3732.183

3501.406

4562.136

3975.867

3775.582

4720.62

5169.694

4871.772

4807.826

5926.245

5547.4/

6007.031

6115.789

6538.232

6192.146

7042.011

6864.931

DFR Failure

TRUE DFR PARAME

Failure PDF

{Top Weibull++ Selection)

{Weibull++ Exponential)

Weibull

5 Data Points

High Level! Fitting Parameters

Low Level Fitting Parameters

Shape 0.55

Sett

Set2

Set3

Rep1 Rep2 Rep3

Rep1 Rep2 Rep3

Scale 1423

492.9745

6.0805

33.8777

Shape

0.3744 0.3562 05816,

Lambda

0.0002] 00014

0.0007 tion 0|

526.3141

16.1423

340.1097

Scale

1692.354| 181.6411| 9289105

mean

5000| 714.2857 1428.571

1281.924

37.7049

370.6554

Location

491.84 591 2441

Location

0 0

9009.097

385.8074

897.4695

11366.33

3016.537

5712.437|

Failure PDF

{Top Weibull++ Selection)

{Weibull++ Exponential)

25 Data Points

High Level Fitting Parameters

Low Levsl Fitting Parameters

Seti

Set2

Set3

Repi Rep2 Rep3

Rep1 Rep2 Rep3

0.2394

1.6826

1.4205

Shape

0.5956] 0.5474] 06307

Lambda

0.0004; 0.0004

0.0006

34.385

22468

42473

Scale

1671.235| 1783.465| 1159.606

mean

2500 2500| 1666,667|

49.2658

8.1568

23.3267

Location

0 0 0

Location

0 0

0

55.119

9.7845

59.4488

147.6313

67.1513

105.133

215.7498

92.2753

180.356

271.5501

188.8081

202.0613

301.8768

467.0314

205.8487

352.9605

483.8325

260.4402

359.6454

655.3901

310.1456

399.0531

888.7466

4404745

507.7724

1068.396

553.3837

756.2171

1217.062

698.8552

1014.603

1854.382

782.0061

1450.057

1965.781

845.8762

1476.586

2178.458

1603.001

1505.085

2284.18

1717.026

2169.176

2674.79

1776.987

4144.399

2723.829

1810.474

4645.451

4181.331

1889.635

4864.779

4659.631

2164.609

7281.768

6027.841

3077.744

8678.169

7419.469

6075.051

9202.056

8207.573

6330.696

11163.06

20684.81

8855.911
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Repair |

True Lognormal Mean: 190

Repair PDF

I I
(Top Weibull++ Selection)

True Lognormal St Dev: 20

5 Data Points

High Level! Fitting Parameters

(Empirical)

True Lognormal Variance:

400

Set! Set2

Set3

Rep1 Rep2

Rep3

Low Level Fitting Parameters

[

185.8123| 176.8805

161.1705

N Mean

Rep1

[Rep2

[Rep3

199.7590| 182.3526

180.6640

NS.D.

Mean for Normal variates:

5.241514

216.3888| 193.4207

189.0722[ogN Mean 1

1

(Empirical)

Var for Normal variates:

0.011019|

220.6105] 219.0957

200.6946|LogN S.D. 0

o=

0

St Dev for Normal Variates:

0.104973

221.3073| 255.7414

206.9923

Weibull Shape

20.7942 0.902

14.647

Scale| 214.8776] 28.8798

194.8546

Location 0 175.21

0

Repair PDF

(Top Weibull++ Selection)

(Empirical)

25 Data Paints

High Level Fitting Parameters

Low Level Fitting Parameters

Sett Set2

Set3

Rept Rep2

Rep3

Rep1

Rep3

151.6819( 148.6942

160.2890

N Mean

[Rep2
|

153.2431| 159.6656

165.3794

N S.D.

(Empirical)

165.8580| 160.8646

165.6153ogN Mean 1 1

167.9612| 160.8802

169.2260{LogN S.D. 0 0

171.7100| 164.4242

169.8451

171.7493( 165.3973

170.0564bull Shape

3.1127| 2.9685

1.5717

172.8264| 165.7502

172.1972

Scale| 63.9041| 63.9722

33.6968

178.2464| 168.8557

172.9980

Location 133.2] 130.5792

157.98

180.0406| 178.5186

177.9281

180.6566| 181.4259

177.9786

185.031] 184.0292

179.4088

185.5818] 186.2046

181.4112

186.8724( 189.7669

181.4654

193.4076| 190.6778

183.5744

193.7151

195.8077

184.081

200.0819| 196.3376

188.4487

202.1416| 196.909

195.4155

203.9582| 198.6056

197.4176

207.5767| 199.5267

208.3743

207.8584

204.4908

211.0784

216.2846| 209.7566

214.4082

217.6444

214.6417

215.905

219.7088| 216.8286

218.6615

219.8784| 223.4573

222.0428

222.1331| 226.4753

222.46|

Component 8:

IFR Failure

|
TRUE_IFR PARAMETER

Failure PDF

[
(Top Weibull++ Selsction)

|
(Waeibull++ Exponential)

Weibull

5 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Shape 2.7]

Setl Set2

[Set3

Rep1 Rep2 Rep3

Rep1

Rep2

Rep3

Scale 1500

7156579 579.5167

396.932

Shape

Lambda 0.0016

0.0007

0.0012

Locati 0

776.6583| 1052.8389

1199.4863

Scale

mean 625

1428.571

833.3333

1203.9163] 1748.2671

1416.1228

Location

Location | 602.7056

0,

396.932

1379.2357| 1829.2196

1558.6188

1981.4671| 2063.0686

1727.8931x

p. Lambda]  0.0016] 1454.782

1259.811|Normal

mean 625| 552.1929

464.9773|s.d.

Location| 602.7056

Failure PDF

(Top Weibull++ Selection)

{Waeibult++ Exponential)

25 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Setl Set2

Set3

Rep1 Rep2 Rep3

Rep1

Rep2

Rep3

386.4647| 460.3561

321.6691

Shape|  2.9965 332

Lambda 0.001

0.0015

0.0009

3904854| 514.7061

861.4311

Scale| 150222( 1261.441

mean 1000

666.6667

111111

5027313| 560.0918

880.9627

Location 59.04 0]

Location | 386.4647

460.3561

321.6691

508.1005] 690.7912

960.5415

661.7125| 697.2932

1045.6098

1374.37 |Normal

886.7261| 749.5275

1053.1594

409.1649/SD

906.5238| 883.7888

1066.5678

944 8981| 928.9266

1089.5723

9494023 980.7257

1099.6847

975.2178| 1038.1204

11859197

10255719| 10555777

1276.0984

1209.4939] 1071.9417

1333.207

13708123 1140.857

1397.2204

16186314 1167.561

1415.0802

1820.7501] 1223.9014

1516.9275

1840.8863| 1251.3599

1540.3965

18880118| 1257.6638

1627.901

1901.0299] 1351.7852

1693.0526

1947.7009| 1374.6089

1760.9435

2000.4766| 1459.8623

1762.6073

2046.725] 1565.2797

1791.0901

20942647| 1600.459

1869.8137

21451233 1631.8315

18933337

2231.8448| 1685.4786

1915.3189

24385156 1891.9785

2001.1393
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DFR Failure|

I
TRUE DFR PARAMETE

Failure PDF

(Top Weibull++ Selection)

{Waeibull++ Exponential)

Weibull

|

5 Data Points

High Leve! Fitting Parameters

Low Level Fitting

Parameters

Shape

0.78|

Setl Set2

Set3

Rep1

Rep2

Rep3

Rep1 Rep2

Rep3

Scale

1156

118.6141| 198.6125

60.58

Shape| 0.

6114

2.0641

06051

Lambda 0.0008

0.0017

0.001

Location 0

194.014| 720.2697

187.8718

Scale| 790

.3363| 903

1276

674.4438

mean 1250

588.2353

1000

577.863| 730.3798

237 .5621

Location

109.52

0] 51.29

Location 0]

198.6125 0

2314.9153] 897.7414

1671.916

27295595

1460.2987 | 2889.6972

Failure PDF

(Top

Weibull++

Selection)

{Weibull++ Exponential)

25 Data Points

High

Level Fitting Parameters

Low Level Fitting

Parameters

Sett Set2

Set3

Rep1

Rep2

Rep3

Repl Rep2

Rep3

3.408 1.0488

0.3558

Shape| 06532

0.6745

06873

Lambda 0.0009

0.0011

0.0006

14.7588]  13.4405

39.3497

Scale

841.598| 688

7619

1280.568

mean 1111111

909.0909

1666667

29.1609| 18.0861

100.0813

Location

0

0

0

Location 0]

0 0

36.3146| 525854

191.2237

40.3934| 59.1806

193.15¢8

50.2688| 99.5667

218.2887

91.3994] 119.6926

237 .5243

155.1646] 125.5608

320.7486

225.2397] 155.9482

361.0288

265.9484] 185.5911

382.4978

333.1285| 230.0614

437.0379

386.2892( 260.7954

614.6348

408.6879| 313.5362

644.8552

620.3238| 345492

749.0729

703.2736| 507.993

839.4346

1169.0581| 686.1628

978.339

1248.8722| 1007.9691

1131.4744

14453037 1296.3622

1627.7382

1513.3078| 1601.0555

17581167

1550.6736

1640.0109| 2165.3666

1719.6329

1765.7716| 3667.7527

2102.1606

2216.9765| 3749.0485

2652517 2403.9777 | 3936.9421

4391.366

2403.9948 6108.8201

7113.8146| 4681.3171

10811.838

Repair |

True Lognormal Mean:

1200

Repair PDF |

{Top Weibull++ Selection)

[
[

True Lognormal St Dev:

75

5 Data Points

High Level Fitting Parameters

{Empirical)

True Lognormal Variance:

5625

Set1 Set2

Set3

Rep1

Rep2

Rep3

Low Level Fitting Parameters

11311176 1221.7082

1107.4137

N Mean

Rep1 [Rep2

[Rep3 |

1167.4860| 1247.7035

1112.9283

N 8.D.

M

ean for Normal variates:

7.088127516

1181.4529| 1261.8463

1123.7781

LogN Mean

1

1

(Emplrical)

Var for Normal variates:

0.00389864

1201.4202| 1293.5526

1166.9227

LogN S.D.

0

0

St Dev for Nomal Variates:

0.062439094

1263.5318| 1366.3922

1288.2809

Wi

eibull Shape

2.3119

1.3887

0.7407

Scale

98.3282

75.4893

45.4674

Location

1100.11

1209.59

1104.75

Repair PDF

{Top Weib

uli++ Selection)

{Empircal)

25 Data Points

High Level

Fitting Parameters

Low Level Fitting Paramsters

Seti Set2

Set3

Rep1

Rep2

Rep3

Rep1 [Rep2

Rep3

1066.9783| 1070.9030

1128.2738

N Mean

1093.6334 | 1086.7744

1139.6524

NS.D.

(Emplrical

1103.6507| 1092.5652

1157.4686

LogN Mean

1

1

1

1107.5324| 1127.3754

1161.3083

LogN S.D.

0

0

0

1114.7929| 1129.1260

1164.8939

1122.0693| 1142.6189

1165.1140

eibull Shape

2.035

3.1294

2.0033

1130.3149]| 1153.3699

1170.0027

Scale

178.9939

230.5619

131.9044

1133.0859| 1160.5764

1181.0261

Location

1037.74

1001.39

1108.629

1134.2086| 1164.572

1189.92

1162.8855| 1176.5395

1197.8526

1184.7496| 1198.9882

1208.8237

1185.8258| 1205.5373

1210.5951

1201.6919| 1211.736

1221.3367

1201.9551 | 1214.0789

1228 .067

1209.1298| 1230.3851

12376677

1217.8168| 1233.3579

1237.788

1220.1794| 1234.021

1243.0786

1224.1166 | 1252.4657

1255.4936

1224.2382| 1266.4462

1268.1241

1239.0689| 1271.6447

1279.6191

1269.6375| 1300.4542

1281.4493

1277.6708| 1301.6777

1306.2891

1318.4832| 1309.9897

1309.9517

1335.9845| 1313.2514

1311.2866

1417.6112] 1330.7274

1378.1332
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Conmponent 9:

IFR Failure

I l
I ]

|
TRUE 1FR PARAME]

[
Failure PDF

I |
(Top Weibull++ Selection)

{Weibull++ Exponential)

Weibull

5 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Shape 1.6

Setl Set2 Set3

Rep1 Rep2 Rep3

Rep1 Rep2 Rep3

Scale 6000

59.5546 1654.2175] 6134815

Shape|

1.0849] 3.3957[ 1.0719

Lambda

0.0006|  0.0007

0.0002

Location 0

1158.651] 2271.7078] 1717.0383

Scale

1849.276] 3368.241| 6574.887

mean

1666.667] 1428.571

5000

1296.9513| 3279.2189( 6196.8696

Location

0, 0 0

Location

0] 1664.218

0

3188.8792] 3331.5225( 7426.1392

3320.8389) 4547.5771| 16070.173]

Failure PDF

{Top Weibull++ Sslection)

{Weibull++ Exponential)

25 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Setl Set2 Set3

Rep1 Rep2 Rep3

Rep1 Rep2 Rep3

710.1353]  315.042| 67/.8381

Shape|

1.5749] 1.3227; 1.4201

Lambda

0.0002}  0.0003

0.0002

1404.275| 319.0603 812.6982

Scale

5451.465| 4452.107( 4945.843

mean

5000] 3333.333

5000

1697.4788| 865.1356| 1029.7398

Location

136.8 0 188.2

Location

710.1353] 315.042

677.8381

1712.0311]  964.765| 1269.5125

2399.8517| 1565.3756( 1283.0806

2453.028| 1768.3454] 1556.249

3059.8623| 2018.1662] 1768.0291

3205.4976| 2216.0917| 2246.1425

3348.8915| 2299.0348| 2708.4523

3473.4032] 2308.5815| 3038.4733

3690.5026| 2723.8316| 3711.0196

3980.0035| 2833.6595( 4279.3182

4376.2988| 2897.0913| 4651.4644

4563,0706| 3439.8605| 4745.8146)

4687.6538| 3915.9635] 5293.0437

5026.6837| 4195.1227| 5386.0989

5386.7755] 4859.5895| 5630.2301

5665.2326] 4934.6351| 5907.2441

6071.2068] 5281.6802| 6812.7298

6290.1388| 5447.2768| 6856.5882

7676.628| 7422.3666| 8055.3173

8374.2954| 7939.4749| 8449.6528

9111.7105| 9350.079| 8843.0188

11337.734| 9705.5429| 9270.6163

15670.734| 12771.24] 13027.447

DFR Failure
[

PR
TRUE DFR PARAM|

Failure PDF

i !
(Top Weibull++ Selection)

[ [
{Weibull++ Exponential)

Weibull

5 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Shape 0.91

Set1 Set2 Set3

Rep1 Rep2 Rep3

Repi Rep2 Rep3

Scale 5143

681.5702] 596.0467] 119.6449

Shape

0.8243

Lambda

0.0001 0.0002

0.0002

Location 0

2458.446] 712.2351| 936.5725

Scale

5389.666

mean

10000 5000

5000

5510.2312] 3365.8145| 6880.5072

Location

0

Location

0 0]

0

10184.901| 6731.4725( 9813.6578

24128.051) 8823.3123| 11431.131

Exp. Lambdal

0.0001 0.0002

mean

10000 5000

Location

0 0

Failure PDF

op Weibull++ Selection)

(Weibull++ Exponential)

25 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Seti Set2 Set3

Rept Rep2 Rep3

Rep1 Rep2 Rep3

288.56507| 2421327 41.8282

Shape

0.886; 1.0473| 0.8983

Lambda

0.0002]  0.0002

0.0002

454.0527) 494.4891| 167.0204

Scale

4238.59] 5726.453| 4840.68

mean

5000 5000

5000

700.2991] 677.5071] 403.0769

Location

236.27 62.45] 0

Location

0 0

0

701.9181] 1235.1663| 619.0767

1006.5467| 1267.3978| 879.9276

1021.5041| 1763.3643| 930.1831

1249.7236| 2731.0845| 1029.6775

1619.4028] 3326.5544| 1328.8312

1628.0142| 3337.5112| 1474.8382

1751.3391| 3365.3735| 1684.7109

2166.3748| 3429.2985| 2502.2854

2540.1512| 3515.0382| 2693.31

3018.4221) 3761.8162| 2807.075

3867.1797| 3920.6132| 3551.0629

4542.7513| 4452.365| 4450.4991

4934.3277| 4718.1228| 5411.8571

5396.2548) 4722.0321| 5604.2964

5451.2574| 4969.9776| 6749.6905

6577.9466] 5292.6751| 7225.6098

66020741 8146.6918| 9127.3135

6605.3121) 8953.005! 9613.4038

7288.3094) 9086.6108| 13044.791

11396.714| 15407.676| 14046.558

12643.835| 17600.539| 15157.287

25368.238| 25513.732| 16563.952
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Repair |

| True Lognormal Mean:

1000

Repair PDF

(Top Weibull++ Selection)

| True Lognormal St Dev:

30,

5 Data Points

High Level Fitting Parameters

(Empirical) True Lognormal Variance:

900

Setl Set2

Set3

Rep1 Rep2 Rep3

Low Level Fitting Parameters

957.3293| 976.9499

980.0563

N Msan

6.9174

Repl [Rep2  [Rep3 |

1004.1691] 986.0260

993.8689

NS.D.

0.0225

Mean for Normal variates:

6.907305

1019.7928| 1008.2677

1005.0293

LogN Mean 1

-

1009.947

(Empirical) Var for Normal variates:

0.0009

1021.4267] 1009.6679

1027.3645

LogN 8.D.

0 0| 22.72668

St Dev for Normal Variates:

0.029993

1063.3764| 1033.7083

1043.4408

Welbull Shape

1013.219| 1002.924 Normal

Scale

34.1523| 19.9093 Sb

Location

Repair PDF

(Top Weibull++ Selection)

(Empirical)

25 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Seti Set2

Set3

Rep1 Rep2 Rep3

969.4499| 929.7908

906.8867

N Mean

6.9207

Repi [Rep2 Rep3
[

987.9844| 943.7861

965.8418

N 8.D.

0.0214

{Empirical)

988.6763| 960.9697

978.3340

LogN Mean

1013.261 1 1

991.4813] 979.3975

979.6999

LogN 8.D.

21.68627, 0 0

991.6687| 983.9974

9816159

9929107} 990.1479

984.8527

Neibull Shape

1005.308| 1002.698|Normal

1001.3602] 990.5475

986.9105

Scale

29.702| 30.7377[SD

1002.5114{ 995.3010

987.5617

Location

1003.7589; 1001.762

988.0836

1005.574( 1002.1008

995.0697

1008.0845( 1002.689

1003.6294

1008.701| 1004.0883

1004.238

1009.1278| 1008.1903

1004.3948

1010.3378| 1008.6868

1006.5613

1015.067{ 1009.8558

1006.9701

1016.6193| 1017.8083

1008.422

1019.8246| 1020.2354

1009.56552

1021.0363 1020.745

10109104

1022.2379] 1021.1124

1011.4862

1028.7856| 1024.58

1021.9361

1030.7385| 1032.176

1030.1529

1044.5651| 1037.4256

1032.2784

1046.3787| 1041.2503

10439363

1055.5485| 1049.9777

1050.9691

1060.5552) 1056.0762

1067.1425

IFR Failure

Component 10:
I I

| 1
|TRUE IFR PARAMETERS

Failure PDF

|
(Top Weibull++ Selection)

{Weibull++ Exponential) Weibull

5 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters Shape

23

Setl

Set3

Rep1 Rep2 Rep3

Rep1 Rep2 Rep3 Scale|

4700

4sm2
2460.3635| 1391.2082

3104.3889|

Shape

0.9031

Lambda

0.0004] 0.0002|  0.0008 L |

2085.2778| 3824.9763

3239.3708|

Scale|

1682.075

mean

2500 5000 1250

3428.4506| 4646.9928

4151.6844]

Location

234875

Location

1454.85| 939.0042| 2888.68

3829.4519| 5099.4023;

5067.2464

7899.659| 10868.3625

5136.9909|

Ex

p. Lambda

0.0002 0.0008

mean

5000 1250

Location

©939.0042| 2888.68

Failure PDF

{Top Weibull++ Selection)

(Weibull++ E )

25 Data Points

High Level Fitting Parameters

Low Level FiﬂiBg Parameters

Sett Set2

Set3

Rep1 Rep2 Rep3

Rept Rep2 Rep3

894.4406 381.2133

2131.6465]

Shape

21419 2.0096 1.4805|

Lambda

0.0003|  0.0002]  0.0004

1023.1727| 1715.7957

2340.2868|

Scale)

4366.964| 4955.363| 3212.777

mean

3333.333 5000 2500

1310.8676| 2173.6379

2502.6929|

Location

3811 0| 1897.27

Location

894.4406| 331.2133| 2131.647

2000.8766| 2547.4421

2821.5088|

2112.3535| 2581.314

2917.4431

2350.6133| 2846.8133]

3105.3902]

2447.3256) 2874.1741

3417.3013]

2531.0481] 2918.4731

34251682

2756.9077| 3162.4144

3635.6986

2809.8222( 3171.9591

3778.0157

20938.7555| 3428.8095

3824.1597

3549.4744] 3508.1976

3860.8158]

3725.4581] 3838.6692

4335.5436

3818.6762| 4515.6644

4792.2902|

4007.7806| 4651.8767|

5010.0428|

4367.2804| 4715.7704

5324.771

4622.0827| 4729.5918

5377.7319)

5262.9528| 4923.6739

5787.9227|

5510.4431]  4983.704

6245.8785|

5649.2894 5094.7207

6666.7204

©6078.4149| 6895.3167

6890.9982]

6198.2355| 7500.7015;

7054.6766|

6370.6497| 8166.9252,

7089.9942/

6873.8549| 8813.8198;

7181.9843

8151.8431| 9904.6635!

10476.828
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DFR Failure|

| I
|TRUE_DFR PARAMETERS

Failure PDF

{Top Weibull++ Selection)

(Weibull++ Exponential) Weibull

S Data Points

High Level Fitting Parameters

Low Level Fitting P arameters Shape

0.46

Seti Set2 Setd

Repi Rep2 Rep3

Rept Rep2 Rep3 Scale|

1763|

381.118| 44.4075| 152.6667,

0.5506| 0.4267] 0.5068|

Lambda

0.0004  0.0006 0.0003 L 1l

Shape

617.0898 70.8841] 321.0095

Scale| 1454.575| 695.0183] 1963.222

mean

2500| 1666.667| 3333.333

720.741| 817.1918| 9834334

Location

368.83 4318] 138.65|

Location

9 0 0

4788.7914/ 890.296] 3473.1754]

6703.657| 6248.1205( 13650.636

Failure PDF

(Top Weibull++ Selection)

(Weibull++ Exponential)

25 Data Points

High Level Fitting Parameters

Low Level Fitting Paramsters

Set1 Set2 Set3

Repi Rep2 Rep3

Rep1 Rep2 Rep3

0.6963 0.1052 0.8617

Shape| 0.3712] 0.4054] 0.4449

Lambda

0.0002]  0.0004; 0.0002

0.7089 0.2974] 13.3046

Scale| 1373.869| 835.7398( 2318.451

mean

5000 2500, 5000

4.3471 8.9251 14.061

Location

0.57| 0.0365 0.566

Location

0 0 [+]

6.2738) 16.0122( 14.1847

7.6485 28.5815| 52.6527

8.8736) 34.0162 64.047

42,1304 42.8644] 98.1549

62.9165 60.1720| 105.1859

99.5838| 94.3021| 377.8271

143.9208|  161.3008| 426.0947

308.4204 168.157| 436.5944

445.9509 176.267| 677.0956)

528.1258| 210.9908| 830.3045

673.2927| 335.5744| 924.6434

1225,3759|  598.8492| 2801.9214

1893.414|  903.4355| 2950.2222,

2204.4939] 1042.8046| 3284.3576

2916.5381] 1166.8757| 3479.9136

3221.0717] 1287.1444| 5239.1908

7677.4195] 1903.4808| 6528.7926

10511.7004{ 2861.968| 9335.2173

10960.5403] 4074.9577] 11385.745

11707.1679; 8267.2338] 21325.116

13383.5077| 16146.7854| 24594.068

43477.963| 26798.4491| 38939.663

Repair [

[ True Lognormal Mean:

2300

Repair PDF |

I |
(Top Weibull++ Selection)

True Lognormal St Dev:

133

5 Data Points

High Level Fitting Parammeters

(Empirical)

True Lognormal Variance:

17689|

Set1 Set2 Set3

Rep1 Rep2 Rep3

Low Level Fitting Parameters |

2244.4884| 2141.4443| 2276.3188

N Mean 7.7629

Rep1

[Rep2  [Rep3 |

2260.0039| 2328.3686| 2482.6217

N 8.D. 0.0551

Mean for Normal v ariates:

7.738995263

2354.3167| 2335.8325| 2514.6316

LogN Mean 1

2355.287 1

{Empirical)

Var for Normal v ariates:

0.003338278

2362.8009| 2463.2166| 2525.4142

LogN S.D. 0

120.8749 0

St Dev for Normal Variates:

0.057777834

2414.3795| 2507.9680| 2627.1859

Normal| 2327.218,

28.4045|Weibull Shape;

SD| 64.7559

2535.908|Scale

0O|Location

Repair PDF

(Top Weibull++ Selection)

(Empirical)

25 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Set1 Set2 Set3

Rep1 Rep2 Rep3

Rep1

[Rep2 Rep3

2041.8124] 1888.1396| 2098.0090

N Mean

2077.4957| 2142.4601| 2142.8664

N S.D.

Empirical)

2129.4412| 2202.4947| 2169.5474

LogN Mean 1 1

-

2135.9223| 2202.7754| 2169.6936

LogN S.D. 0 0 0

2177.7875| 2241.5206| 2197.0539

2201.6623| 2264.6235| 2223.3397

Neibull Shape

2315.309| 122186

2.5076|Normal

2227.6785| 2265.4355| 2230.1468

Scale| 141.1561| 1213.158| 337.9804/SD

2247.9478| 2265.6194) 2234.5096

Location 1138.31] 2024.68

2278.6822| 2269.1553| 2268.3334

22865.9012] 2277.6492| 2267.9941

2288.4621| 2287.4763| 2273.7032

2291.1901| 2303.3847; 2276.2228

2325.2501| 2303.3995]| 2282.6423

2348.7164| 2304.2275| 2325.19

2348.8709| 2304.6355| 2353.8731

2351.348| 2318.4564| 2368.0734

2372.4001| 2332.3781| 2368.1366

2374.8429| 2345.6113] 2369.3179

2383.5781| 2368.9782| 2453.5628

2445.6536| 2372.1516| 2460.3674

2453.2725| 2375.4344| 2464.775

2453.3264| 2404.7957| 2475.733

2473.8595| 2469.9964| 2530.6703

2503.4369| 2483.9576| 2543.4697

2664.3045| 2511.8641| 2558.3395
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Component 11:

IFR Failure

I
TRUE IFR PARAME]

[
Failure PDF

i [
(Top Weibull++ Selection)

i [
{Weibull++ Exponential)

Weibult

5 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Shape 1.4

Set1 Set2

Set3

Repi Rep2 Rep3

Repl |Rep2 Rep3

Scale 2700

308.3785| 348.758

1171.1815

Shape

1.717]  1.5985

Lambda

0.0008] _ 0.0005

0.0004

Location 0

830.8068| 1017.428

1221.9844

Scale| 1776.997] 2057.368

mean

1250 2000,

2600

1580.886| 1719.111

3127.0986

Location 0 0

Location

321.4348 0

657.75

1963.553| 2494.546

4832.3086

3139.557| 3653.888

5037.1987

0.0004 [Ex. lambda

2500|mean

6657,

75|location

Failure PDF

(Top Weibull++ Selection)

{Weibull++ Exponential)

25 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Setit Set2

Set3

Rep1 Rep?2 Rep3

Repi Rep2 Rep3

135.1654| 205.6775

125.7678

Shape

1.4844| 14247

1.1671

Lambda

0.0005|  0.0004

0.0005

611.4846| 394.5768

252.0802

Scale| 2507.105] 2599.055

2230.025

mean

2000, 2500:

2000

651.0371| 509.56215

291.49%4

Location 0

45.86

49.46

Location

135,1654) 0

125.7678

660.8156| 737.8067

356.3873

1021.222} 752.9524

716.5149

1022.097| 840.2453

781.2346

1263.096| 1089.669

869.563

1281.615| 1356.857

909.8222

1330.08] 1362.603

924.6418

1384.751] 1391.372

1208.1672

1385.471| 1643.994

1245.9077

1576.088( 1929.807

1306.397

1871.908| 1942.723

1530.4185

1993.42| 2024.086

1958.8213

2015.435| 2285.276

2204.4944

2241.681| 2586.417

2349.3161

2455.512| 2881.621

2484.0128

2700.641| 3504.116

2076.4458

2942.081| 4173.105

3206.0688

3105.378| 4200.117

3282.3602

3995412 4339.191

3711.8226

4304.415| 4461.944

4345.3492

4901.161% 4711.247

5114.9785

5623.447| 5461.185

5357,2256)

6151.231) 5482.621

6614.3085

DFR Failure

[ I

1
TRUE DFR PARAM

Failure PDF

| |
(Top Weibull++ Selection)

|
{Weibull++ Exponential)

Weibull

5 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Shape 0.82

Setl [Set2

Set3

Rep1 Rep2 Rep3

Rep1 Rep2 Rep3

Scale 2210

8.6383| 267.351

652.8088

Shape

0.3717 0.8764

0.5997,

Lambda

0.0016]  0.0005

0.0003

Location 0

26.3635| 674.1762

871.4467

Scale| 216.4645| 1834.652

1694.464

mean

625 2000

3333.333

34.4213| 1307.778

1860.3552

Location

848| 140.36

625.

16

Location

0 0 0

1408.127] 2304.159

2150.5854

1577.924| 6288.88

10252.167

Failure PDF

(Top Weibull++ Selection)

{Weibull++ Exponential)

25 Data Points

High Level Fitting Parameters

Low Level Fiiting Parameters

Set1 [Set2

Set3

Rep1 Rep2 Rep3

Rep1 Rep2 Rep3

62.2017] 0.7289

102.2177

Shape

0.612 0.806

0.9371

Lambda

0.0005[  0.0005

0.0004

83.1745] 39.6174

120.7591

Scale| 1477.638| 1885.069

2157.154

mean

2000 2000

2500

98.2315] 48.879

124.0102

Location

59.81 0

0

Location

0 0 0

108.0633| 118.1574

178.337

132.6368( 401.0883

320.1617

141.8487| 422.3874

496.5205]

223.3982| 428.7619

568.83652]

285.5178| 463.5295

570.9538

291.1456| 527.5761

951.019

402.0495| 891.8545

965.9224

494.164| 1148.423

1020.5197|

582.361| 1270.221

1101.879

931.2186] 1693.32

1577.8085

1277.169] 181143

1969.9017

1360.007| 2027.364

2016.8713

1848.355| 2364.114

2172.5559

2216.056| 2416.477

2262.6457,

2803.269! 2602.398

2444.5492

3128.196| 2804.394

2861.5444

3542.853| 3433.076

2865.5286

3571.851| 3981.664

3978.9659

4313.159| 4518.86

4345.9862

7229.554| 4981.317

5207.9364

8208.052} 5998.264

8198.7492

10447.32| 7468.848

9183.7914
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Repair |

I True Lognormal Mean:

500|

Repair PDF

I [
(Top Weibull++ Selection)

| True Lognormal St Dev:

60

5 Data Points

High Level Fitting Parameters

(Empirical) True Lognormal Variance:

3600

Set1 Set2

Set3

Rep1 Rep2 Rep3

Low Level Fitting Parameters

408.5751| 382.8029

434.3379

N Mean

6.158

Rep1 [Rep2  [Rep3 |

506.4561| 456.06501

487.9058

N S.D.

0.125

[ Mean for Normal variates:

6.207459

517.8744| 469.2272

519.6217

LogN Mean

476.1879 1

(Empirical) Var for Normal variates:

0.014297

541.2839| 527.4465

520.6206

LogN 8.D.

ol

59,75676 [

St Dev for Normal Variates:

0.119571

548.1956| 545.1056

621.6798

Weibull Shape

17.501 496.8332|Normal

Scale

526.3015 33.7279{SD

Location 0

Repair PDF

(Top Welbull++ Selection)

{Empirical)

25 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Set1 Set2

Set3

Rept Rep2 Rep3

Rep1 [Rep2 Rep3

379.2242| 376.3529

360.0695

N Mean

6.1715

384.8839| 399.4062

396.3990

N S8.D.

0.1185

(Empirical)

397.9237| 413.9606

423.6617

LogN Mean

482.2782 1

402.2933| 419.7963

427.2547

LogN 8.D.

[=1 Y

67.35118 0

415.7437| 420.9450

428,3661

418.8344] 445.0704

437.9965

Veibull Shape

1.9775 9.1918

434.5456| 449.3883

441.0406

Scal

lo}  119.471

435.1145| 450.3172

463.0509

Location

524.4168
360.36 0

445.4998| 452.9297

462.2056

447.9557| 454.7003

484.4993

452.1994] 456.0182

498.8031

459.6537] 456.1584

504.6379

461.5911| 469.0703

517.1915

462.7588| 480.5202

520.5732

465.9207| 497.5498

521.3292

467.9612| 503.607

623.6307

468.4529| 507.0269

527.6997

470.0837| 510.6749

636.3271

489.2458| 5630.1292

543.2483

493.1113| 534.3102

550.0685

525.0043| 536.2736

656.9517

545.0905| 546.9055

557.8725

561.74| 557.0174

659.7485

566.6206] 584.6395

677.3578

601.0891| 603.7306)

624.3891

Component 12:

IFR Failure

I
TRUE IFR PARAME]

Failure PDF

|
(Top Weibull++ Selection)

{Weibull++ Exponential) Weibull

5 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters Shape!

1.9

Setl Set2

Set3

Rept Rep2 Rep3

Repi Rep2 Rep3 Scale

2700|

1261.7666| 1257.1554

594.7325

Shape

0.5878| 4.1015

Lambda

0.0005| 0.0007{ _ 0.0004/ 1

0

1412.4101| 2493.6134

1682.0797,

Scale

894.3969| 3023.8692

mean

2000| 1428.571 2500

1616.381)  3103.796

22246969

Location

1252.4 0

Location

484.34( 1257.165| 403.5007

4174.5672| 3120.3914

4679.6372

4349.6919] 3691.6301

4807.4154/

0.0004 xp. Lambda

2500 mean

403.5007| location!

Failure PDF

(Top Weibull++ Selection)

Weibull++ Exponential)

25 Data Points

High Level Fiiting Parameters

Low Level Fitting Parameters

Set1 Set2

Set3

Rep1 Rep2 Rep3

Rept Rep2 Rep3

473.7039]  261.6811

660.4892

Shape!

1.9303| 1.7964 1.524

Lambda

0.0007| 0.0004 0.0007

609.1241] 469.3594

761.4232

Scale

2223.877| 2886.111] 1634.32

mean

1428.571 2500 1428.571

670.3734| 765.0322

837.6972

Location

[+] 0 535.1

Location

473.7039¢ 261.6811| 660.4892

714.7449| 1020.8678

1114.6858

799.4156| 1026.4228

1142.0944

821.8652| 1168.1056

1249.2308

1026.1816| 1434.1451

1270.3497,

1052.6776| 1477.053

1354.0603

1113.5933 1586.18

1467.4095

1280.8095] 2030.6364

1471.4072

1641.7102] 2226.5273

1608.0267

1752.6716] 2293.0692

1545.3388)

1775.5144| 2317.9666

1648.2241

2202.4022| 2645.1758

1677.4903

2283.1304| 2783.7913

1849.1673

2304.0152| 2864.0794

1978.8131

2453.8687| 3141.215

2673.5422

2731.204| 3307.7408

2681.0014

2904.4548| 3840.1989

2798.3986

2968.1507] 3939.0021

2856.9645

3017.5133] 4300.7773

3016.9451

3274.07| 4388.5643

3237.0632

3560.5853| 4458.0963

3403.7783

3581.0834| 5184.3219,

3759.0765

4126.66| 5439.7757

4214.8319!
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DFR Failure I | I I é
| | | TRUE DFR PARAM
Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Points High Leve! Fitting Parameters Low Level Fitting Parameters Shape 0.67|
Setl Set2 Set3 Repl Rep2 Rep3 Repl [Rep2 Rep3 Scale 1812
7.6546] 96.0899 21.1995 Shape| 0.7685| 0.63692| 0.6072 Lambda 0.0019]  0.0005] 0.0003] L ion 0
197.1153| 113.9879] 755.0449 Scale| 471.1644| 1448.012| 2426.685 mean 626.3158 2000 3333.333
325.2801 1001.18| 781.0092] Location 0 0 0 Location 0 [i] 0
513.3453| 1377.4546( 4275.7639
1654.508] 7131.7167| 11255.07
Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Leve! Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 Rep1 Rep2 Rep3 Rept Rep2 Rep3
10.9449 3.7484| 87.0939 Shape]  0.7077 0.7423 0.705 Lambda 0.0005 0.0005]  0.0004]
11.1556) 454783 90.6331 Scale] 1630.637| 1816.511] 2203.728 mean 2000 2000 2500
11.6602 76.0758] 124.7874|  Location 0 0 62.81 Location 0 [ 0
49.0084| 175.6284| 149.4903
153.5405:| 188.8683| 162.0355,
176.5265) 272.3074| 196.7246
468,0817| 378.0127]  411.433
576.0046| 526.0171] 476.6189
642.2621] 8536697] 740.2461
6486122 861.7123[ 901.4276
692.8479 941.2544| 1142.9903
788.1248] 976.4346( 1361.5264
797.9105| 1006.7838} 1742.5392
1019.872| 1052.5932| 1782.2856)
1162.9292 1494.4841| 2168.7709
1711.7281] 1495.1746| 2414.2543
2346.9917| 1590.8216| 2528.401
2932.8064| 1779.3303] 2761.1596
3121.6927| 2316.7388| 3271.3115
3265.6842| 2880.537| 4597.1368
3767.835] 3517.6496| 5329.2883
6175.56476| 6082.2382| 6308.3627
5842.0775| 6734.5327| 8273.6667
6673.5799| 9184.2438] 10776.82
7470.7083] 9901.7573| 11152.869
Repair | ] ] | True Lognormal Mean: 1000]
Repair PDF {Top Weibull++ Selection) [ True Lognormal St Dev: 100
5 Data Points High Level Fitting Parameters (Empirical) True Lognormal Variance: 10000
Seti Set2 Set3 Rep1 Rep2 Rep3 Low Level Fitting Parameters
921.2770|  820.7662] 1047.2591 N Mean Rept Rep2 [Rep3 |
1026.8795] 1007.9188| 1086.8297 NS.D. | Mean for Normal variates:| 6.90278
1030.6159! 1161.9647| 1105.8727| LogN Mean 1 1 1 (Empirlcal) Var for Normal variates:| 0.00995
1081.1291] 1213.9549| 1108.91568| lLogN S.D. 0 0 0 St Dev for Normal Variates:} 0.099751

1179.9064| 1230.9343| 1149.3585
Weibull Shape 3.5735 9.636] 1099.667|Normal
Scale} 299.5936| 1150.825| 33.1844|SD

Location 778.58 0

Repair PDF (Top Weibull++ Selection) (Empirical)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 Rep1 Rep2 Rep3 Repi |Rep2 Rep3

863.4720| 816.3019| 836.3563 N Mean 6.9115

870.4745| 836.0325| 857.4328 NS.D. 0.111 {Emplrical)

878.7886 888.8314| 870.3992( LogN Mean 1{ 1009.954 1

881.4143| 889.2765| 881.9993| LogN S.D. 0] 112.4511 0

883.4105 898.2122] 621.5095

891.1241 915.6568] 923.8170]eibull Shape 2.2106 1.8793

892.3451 927.0283| 924.6352 Scale| 184.64684 227.2435

930.7104 941.5621| 930.0624 Location 813.92 807.18

935.6024) 956.2913| 937.2837
947.4867| 967.8106| 945.3822
951.459| 978.4647] 950.9466
966.2018| 1017.5979| 968.5811
986.5928| 1024.2288| 978.9309
889.2622| 1029.7179| 1014.9392
994.16161 1032.0143| 1020.9281
1008.1781 1033.658| 1031.0253
1008.6267 1037.4829{ 1051.3581
1011.6922| 1051.5717| 1085.0167
1030.4598| 1057.6808| 1093.2055
1037.8319| 1086.4589| 1107.9219
1056.746] 1088.8196 1114.7159
1058.7383| 1094.1714| 1146.3594
1068.7242| 1123.3769{ 1160.0313
1137.1276]| 1189.747| 1177.6552
1142.8991| 1368.8295| 1284.396

100




Component 13:

IFR Failure | | | [
| | | |[TRUE IFR PARAMETERS
Failure PDF (Top Webbuil++ Selection) {Weibull++ Exponential) [Weibuli
5 Data Points High Level Fitting P Low Level Fitting Parameters Shape 13
Sett Set2 Set3 Repi Rep2 Rep3 Rep1 Rep2 Rep3 Scale 4200
1534.7392 896.028| 2376.5041 Shape] 1.0452] 0.9373] 1.4478 Lambda 00002} 0.0002] 0.0004] L i 0
2053.8106] 1543.0735| 3122547 Scale| 4776.894] 3617.809] 2920.016 mean 5000 5000 2500
4334.0274| 3307.1905| 3895.0499 Location| 1089.76 669.88] 1841.89 Location 0 0] 205892
5885.3096] 5861.0583| 5460.114
14192.729| 10349.6589 7561.16| Exp. Lambda Normal
mean| #DIV/0! s.d.
Location
Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Setl Set2 Set3 Rept Rep?2 Rep3 Repi Rep2 Rep3
303.173 364.9067 52.2914 Shape 1.099 1.5637 1.3457 Lambda 0.0003 0.0003 0.0003
426.5639 471.2389]1 517.6315 Scale| 3738.021| 4208.958| 3298.907 mean 3333.333| 3333.333| 3333.333
716.8078 5342203 5364013 Location|  185.79 0 0 Location 203.05] 364.9067 52.29
876.5694 692.8011 676.0851
972.2855 835.1185] 743.9198
1083.6165| 11571796 1353.7882
1800.6851] 1813.9937] 1552.2205
1888.3481] 2007.6607| 1642.183
19705479 2590.7362| 1664.7736
2143.4951| 3074.3267| 2000.7745
2294.3538| 3756.3237| 2496.9661
2343.1229| 3858.5608| 2515.8117
2403.8472] 4232.3753] 2581.3519
2907.9941| 4321.4384| 2815.3824
2996.2714| 4630.4668| 2816.2662
3180.0696| 4673.2074| 3561.1123
4185.0583| 5054.6401| 3664.1376
4862.0909 52226811 37347926
5179.9238 5749.319| 3843.1136
5292.771| 5893.3512| 3992.5466
6423.234| 6030.9471| 58626757
8207.1477| 6260.7526] 5985.4605
9439.1723] 6386.9334] 6126.255
9843.7147| 7641.1074| 7591.0921
13060.971| 8022.6307| 7761.8746
DFR Failure ] [ 1
| | |TRUE_DFR PARAMETERS
Failure PDF (Top Webbull++ Selection) (Waeibull++ Exponential) Weibult
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 0.86
Set1 Set2 Set3 Rep1 Rep2 Rep3 Rept Rep2 Rep3 Scale 3591
821.429] 19235228 5053313 Shape 0.7792 0.4406 0.933 Lambda 0.0003 0.0002 0.0004] L ] [
1765.5065] 2224.9034{ 1174.8287 Scale| 2059.37| 1153.917| 2315178 mean 3333.333 5000 2500
1978.1663| 2262.4041{ 1524.5589 Location 753.76| 1918.814 333,62 Location 0 0 0
2189.6663| 2516.0291| 3041.0487
8948.9675| 16093.1049| 7387.8961
Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Levael Fitting Parameters
Setl Set2 Set3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3
36.3236 21.5841 49.1341 Shape 0.7608 0.855 0.9524 Lambda 0.0002 0.0002 0.0004
188.6881 102.3341 118.9211 Scale| 4714.48| 5917.635| 3668.353 mean 5000 5000 2500
199.9364 498.039| 2742967 Location 11.09 Q 0 Location [ 0 0
2225115 614.9749| 393.2561
266.6395 831.7648| 485.8735
567.3778| 146853437 521.5053
944.2548| 1831.2292| 545.8457
1038.0092 2044.4742| 566.8894
1048.6666| 2640.3637| 1212.735
2286.6888( 2906.0534| 1218.5584
2759.1723| 3043.1824| 1545.1322
2961.0126| 3600.0084| 1764.2993
3450.8804 4234.745] 1880.0662
3551.7663| 4412.2526| 2024.5855
3829.7049| 5383.6358| 23145517
4366.7506( 5846,0498| 2387.5884
5261.639| 5928.3691 3156.058
6222.2804] 6579.8596| 3413.1687
6379.6793] 8203.0474( 3588.0676
6982.4762] 853464811 4226.6113
8316.9783| 10004.7272| 4605.8261
13430.928[ 11397.2067| 5564.6401
19695835 19237.692| 6450.3334
20668.013| 19319.2679| 8800.8698
22262.107] 31005.7548] 11070.3856
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Repair |

True Lognormal Mean:

9|

Repair PDF

(Top Weibull++ Selection)

True Lognormal St Dev:

15

5 Data Points

High Level Fitting Paramsters

{Empirical)

True Lognormal Variance:

225

Seti

Set2

Set3

Rep1 Rep2

Rep3

Low Level Fitting Parameters

81.0415

90.2785

80.5283

N Mean

Rep1

[Rep2

[Rep3 |

88.5546

90.3328

81.1774

NS.D.

Mean for Normal variates:

448611

95.8472

92.9108

82,0838

LogN Mean

1 1

1

{Empirical

Var for Normal variates:

0.027399

100.2568

96.0310

102.7992

LogN S.D.

4] 0

0

St Dev for Normal Variates:

0.165526

116.9931

101.0421

119.3345

Weibull Shape

2.1677| 01872

0.0476

Exp. lambda

Scale

27.7927| 534188

21.0084

mean

Location

72.02] 887781

722

location

|Repair PDF

(Top Weibull++ Selection)

{Empirical)

25 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Sett

Set2

Set3

Rep1 Rep2 Rep3

73.2955

57.2922

58.9802

N Mean

4.4783

Rep1 I Rep2 Rep3

73.6014

68,4706

71.5267

N S.D.

0.1567

{Empirical

79.8333

63.5220

75.1428

LogN Mean

1

89.17292

80.8700

64.6013

75.5645

LogN S.D.

1
0 0

14.05962

81,6838

70.2260

777277

83.8330

73.0634

78.3299

Weibull Shape

7.8912| 88.9987|Normal

84.8072

73.7476

78.4352

Scale

103.3727] 18,6082|SD

86.3784

76.5441

80.4052

Location

0

88.3803

76.9418

80.8206

90.2415

85.2288

84.4287

924393

86.6952

87.5769

96.4936

91.0671

87.8593

96.8319

91.121

89,5182

97.3717

91.4527

80.5254

98,1219

91.764

90.0813

1076175

922158

925016

1079168

97.2646

93.7555

108.8023

98.4442

93.8698

108.9241

100.4516

84.2643

111.1314

107.0778

97,6443

114572

108.4233 97.9541

115.0058

112.8608

106.8825

115.7103

114.4181

108,635

116.1526

115.8067|

115.16526

119.8311

125.2759

122.622|

IFR Failure

Components14, 15, 16 (Identical):
I

|
TRUE_IFR PARAME]|

Failure PDF

|
(Top Weibull++ Selection)

{Weibull++ Exponential)

Weibull

5 Data Points

High Level Fitting Parameters

Low Level Fitting Parameters

Shape 1.5

Sett

Set2

Set3

Rep1 Rep2 Rep3

Rep1 Rep2 Rep3

Scale 2600

821.4516

660.6969

1102.2931

Shape

0.7578

Lambda

0.0006 0.001 0.0004

971.1685

1103.9043

1128.3595

Scale

1147 527

mean

1666.667 1000 2500

1651.8559

1667.3854

1137.2242

Location

786.64

Location

31335] 62385 0

2582.7689

2454.4122

2949.5638,

4565.1962

2486.4593

4846.733

Exp. Lambdal

0.001 0.0004

mean 1000 2500

Location 623.85

Failure PDF

(Top Weibull++ Selection)

{Weibull++ Exponential)

25 Data Points

High Level Fitting Parameters

Low Leoval Fitting Parameters

Seti

Set2

Set3

Rep1 Rep?2 Rep3

Rep1 Rep2 Rep3

246.3968

188.0413

476.4257

Shape

1.3582 1.3692 1.8777

Lambda

0.0006] 0.0006] 0.0006

301.6394

245.8962

5022544

Scale

2070.664| 20856.813] 2498.726

mean

1666.667| 1666.667| 1666.667

373.9172

257.3843

739.9818

Location

0 0 71.56

Location

246.3968| 188.0413; 476.4257

459.5992

384.7876

1028.7516

460.1965

3902434

1095.089

653.3002
726.7555

535.6622
788.8533

1209.3161

1437.0933

803.0814

827.7453

1469.8434]

882.3804

905.8843

1572.3952)

987.415

1205.3555

1634.8171

1171.1423

1306.4686

1883.5857

1488.7366

1834.2477

1885.5797

1781.2094

1917.8413

1895.3852

1825.0894

1929.1527

2073.4704

1966.8163

1964.0803

2170.6427

1967.7187

2534.5844)

2659.0682

2218.3616

2573.9208

2716.3803

2697.1431

2617.6154

2736.2439

2721.5915

2860.5413

3602.3901

3112.7985

3064 .5827

3651.0592

3337.3004]

3096.9098

3830.2021

3375.3331] 3

35.062| 3817.4935

3379.2102
4685.2229

3722.8042
4125.5442

3869.5992

4061.0864|

5672.4301

5232.4088

4927.1196
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DFR Failure

Failure PDF

I
{Top Weibull++ Selection)

{Weibull++ Exponential)

Weibull

|
TRUE DFR PARAMI
!

5 Data Points

High Leve! Fitting Parameters

Low Level Fitting Parameters

Shape

0.62

Setl Set2

Sot3

Rep1

Rep2

Rep3

Hep1l Rep2

Rep3

Scale

1626

68.4451| 284.4203

766.6737

Shape

0.761

0.713 05346

Lambda

0.0017

0.0003

0.0003

Location

0

186.4102| 356.9395

862.8837

Scale

461.4434

2281.88

1331.235

mean

588.2353

3333.333

3333.333

2224317 1463.7002

1507.1253

Location

51.78

15467

75719

Location

0

0 0

806.9935( 3642.0894

3671.8118

1675.0516] 9153.306

7681.8881

Failure PDF

(Top Weibull++ Selaction)

{Weibull++ Exponential)

25 Data Points

High Level

Fitting Parameters

Low Level Fitting Parameters

Setl Set2

Set3

Repi

Rep2

Rep3

Rep1 Rep2

Rep3

16.2601 1.3678

21.873

Shape

0.667

0.7194| 0

.7865

Lambda

0.0004

0.0005

0.0005

53.0656| 12.7587

22.5653

Scale

2010.957

1547.771

1646.667

mean

2500

2000

2000

56.5048| 100.2105

276429

Location

1047

0

0 Location

0

0 0

75.7388| 173.0285

47.1459

167.0309| 184.9956

89.8158

3054133] 2726298

212.3958

363.3778| 375.3253

308.2837| 386.2875

539.0818

622.2503

453.2609( 433.4569

672.6159

533.8485( 507.1497

902.2155

573.2808| 5215607
82893891 675.6463

922.8244

925.753

1142.1472| 838.1515

1075.3

1168.4655| 1612.4677

1229.0825

1667.4281| 1694.4022

1310.0152

2415.9013| 1787.7082

1611.4575

2655.8887| 1977.4734

2449.4034)

2845.5341] 2248.1439

2637.9431

3958.6831| 2500.3208

2664.5059

4050.3354 2597.9362

3035.7101

5844.41| 2734.3145

3211.1847

6036.5344] 3052.4287

3918.3462

8379.5623) 4481.6833

8905.7722| 5679.4627

4541.2994,

6036.6228

12085.957] 12446.341

7724.7371

Repair ]

True Lognormal Mean:

Repair PDF |

{Top Weibull++ Selsction)

True Lognormal St Dev:

ﬂOOI
200]

5 Data Points

High Level Fitting Parameters

{Empilrical)

True Lognormal Variance:

40000

Sett Set2

Set3

Repi

Rep2

Rep3

Low Level Fitting Parameters

1949.6625

1886.9895

1872.2611

N Mean

Rep1

[Rep2

[Rep3 |

2100.3616

1967.0133

1955.0769

NS.D.

Mean for Normal variates:

7.692097|

2166.0339

1995.4006

2187.3587

LogN Mean

-

1

1 {Empirical)

Var for Normal variates:

0.00823

2211.5068

2135.2229

22740560

LogN S.D.

0

0

St Dev for Normal Variates:

0.090722

2217.2812

22770469

2636.5608

Weibull Shaps

31.399

0.0055

1.2609|Ex. lambda

Scale

2171618

181.8182

386.1334|mean

Location

0

1869.98

1825.55 | locati

Repair PDF

(Top Weibult++ Selection)

{Empirical)

25 Data Points

High Level

Fitting Paramsters

Low Level Fitting Parameters

Set! Sef2

Set3

Rep1

Rep2

Rep3

Rep1

Rep3

1968.6689

1868.1213

1960.2235

N Mean

7.6987

[Rep2
[

1975.1132

1988.0872

1963.9199

NS.D.

0.0879

(Empirical)

1976.9286

1994.3224

2054.1652

LogN Mean

214016

1

-

1982.9043

1999.3083

2058.3762

LogN S.D.

194.9885

0

2012.7468

2010.2552

2076.2089

2032.3105

2011.2372

2083.2623

Weibull Shaps

2.2168

247

2041.8015

2023.9646

2140.5356

Scale

518.9681

375.512

2064.8301

2084.5795

2141.7546

Location

1774.82

1877.01

2068.504| 2121.8681

2168.6835

2114.9037

2128.7886

2171.3472

2134696

2156.8377
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Appendix E: Data Fitting Graphs

Examples of True versus Weibull++ Wizard and
Exponential Fitted Distributions
for Component 1 (Final Experiment):
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Small / Series-Parallel Structure:

Appendix F:

Birnbaum Structural Component Importance
Measure Results for Final Experiment
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Appendix G: Multivariate Analysis of RAPTOR Output

I. ANALYSIS TECHNIQUES

Overview

A main objective of this study was to provide insight for the reliability community in
assessing differences in various systems of components through multivariate analysis of
simulation output. Several multivariate techniques were applied, including discriminant
analysis (DA), neural networks, logistic regression, principal component analysis (PCA),
and factor analysis (FA).
Discriminant Analysis (DA)

A primary analysis objective was to discriminate between large versus small, complex
versus series-parallel, and increasing failure rate (IFR) versus decreasing failure rate
(DFR) component structures. Discriminant analysis was the key method to achieve this
objective. Due to the relatively small size of the data set, the discriminant function was
formed from the entire data set. Therefore, true validation cannot occur until the
discriminant function is tested against future observations. As will be discussed later, the
formatting of the data was a major difficulty in conducting discriminant analysis. Because
of this, and as a learning exercise, DA was attempted on different forms of the data set,
namely standardized data and transformed data (using a Box-Cox transformation).

Furthermore, since the variance-covariance matrices were only statistically equal for the
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IFR versus DFR case, discriminant functions were calculated using the within-class
covariance matrices in addition to using the pooled matrices (for the large versus small and
complex versus series-parallel cases). This was done mostly as a learning exercise to see
what would happen and if any differences would occur in the discriminant results. In
general, as detailed in the results section of this paper, significant success was achieved in
discriminating between classes in all 3 cases.
Neural Networks

Since a quadratic discriminant function was the most effective for the complex versus
series-parallel case, a neural network was also employed to assess it’s ability to
discriminate between complex and series-parallel component structures. The neural net
was trained on standardized data using back-propagation and sigmoidal processing with
one hidden layer containing 20 nodes. A ‘full’ neural net was run using all the variables as
well as a ‘reduced’ net containing only the 3 most salient variables. Good discriminant
success was achieved (consistent with the DA results) for the training and validation sets
for both the full and reduced models.
Logistic Regression

As an additional exercise, logistic regression was also tried in an attempt to
discriminate between complex and series-parallel component structures. The models
included a full model logistic regression of raw, standardized, and transformed data,

without success. The software used in the logistic regression analysis (SAS and
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JMP) could only produce a viable regression model on a reduced set of variables (the 3
most salient variables identified in the neural net analysis were used). Logistic regression
proved to be the least powerful method for discriminating between complex and series-
parallel component structures.

Principal Component Analysis (PCA)

Another analysis objective was to see if the majority of output variance could be
adequately explained in smaller dimensions. To achieve this objective, principal
component analysis (PCA) based on the correlation matrix was conducted. Although the
loading structure was not completely clear-cut, by using Kaiser’s criterion a reduction in
the dimensionality of the data set to 3 components was achieved which explained a
majority (82%) of the output data variance. Some success in discriminating between large
versus small and IFR versus DFR structures using component score rankings was also
achieved.

Factor Analysis (FA)

Our final analysis objective was to identify possible common underlying factors with
common variance. Using factor analysis with varimax data rotation, 3 underlying factors
were identified. The rotation produced much more clearly defined factor loadings. As
with PCA, some success was achieved in discriminating between large versus small and

IFR versus DFR structures using factor score rankings.
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II. DATABASE
General Description
Multivariate analysis was conducted on output data produced by system component
reliability models developed and run on the Rapid Availability Prototyping for Testing
Operational Readiness (RAPTOR) software. RAPTOR, created by HQ AFOTEC/SAL,
creates reliability, maintainability, availability (RM&A) and sparing models for various
systems undergoing operational test and evaluation (OT&E).
Specific Output Measures
The specific output measures analyzed are defined below:

Availability: The ratio of the time the system is up (operational) versus total
simulation time.

Mean Time Between Downing Events (MTBDE): The average time between
events which bring the entire system down.

Mean Down Time (MDT): The average amount of time the entire system is
down.

Mean Time Between Maintenance (MTBM): The average amount of time
between any maintenance actions performed on any components of the system.

Mean Repair Time (MRT): The average amount of time it takes to repair any
component in the system.
Analysis on the standard deviations of all of the above simulation output measures was

also conducted.
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Thirty-eight different system models with various characteristics were created and run on
RAPTOR for a duration of 50,000 simulation time units per run. The three characteristics
which define each system of components are structure type, failure probability density
function (pdf) type, and system size. The breakdown for each category is as follows:

- Structure Type: Complex (non series-parallel) or Series-Parallel network

- Overall Component Failure pdf Type: Increasing Failure Rate (IFR) or
Decreasing Failure Rate (DFR)

- Size: Large (20 components) or Small (5 components)

Two examples of structure types used in the study are shown in Figures F-1 and F-2.
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Figure F-2. Large / Series-Parallel Structure Type

Twelve basic structures/systems were developed: 3 large complex systems, 3 large series-

parallel systems, 3 small complex systems, and 3 small series-parallel systems. The
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parameters of the Weibull distributed failure rates for specific components in each system
were varied, and 10 runs for each configuration measuring the outputs described above
(averaged over the 10 simulation runs) were conducted. When re-configuring a
component failure rate from IFR to DFR, the same average failure rate was maintained by
adjusting the Weibull scale parameter. Therefore, when a component is altered from IFR
to DFR (or vice versa), the only thing that changes is the fact that it’s failure distribution is
changed from Weibull IFR to Weibull DFR. Some runs were conducted with all
component failure pdf’s either exclusively IFR or DFR, and some were run where 20% of
the component failure distributions were altered to the opposite type. To simplify the
analysis, any system which had a predominant (80% or more) component failure
distributions of IFR or DFR, was labeled as IFR or DFR, respectively. The final result
was 38 total configurations. An entire overview of the structure types -and simulation

outputs is provided in Table F-1.
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Failure [ simulation OutputParameters
Structure | PDF [ Size! Ao |AoS.D.| MTBDE MTBDESD. MDT |MDTSD. | MTBM |[MTBMS.D.| MRT | MRTS.D.
Complex | IFR [Large| 0.62195|0.0317|831.36136| 75.576532| 506.489| 69.955175] 153.7701|  6.125785| 972.288| 36.924329
Complex | DFR |[Large| 0.58173|0.0483| 699.71808| 96.007519| 507.801| 103.79795| 139.7672| 9.816596| 990.091| 76.259607
Complex | IFR |lLarge| 0.63395]0.0373| 880.95237| 158.622887| 505.67| 87.795161| 154.7226| 9.789738| 965.661| 45.291379
Complex | DFR |Large| 0.59402| 0.0503| 728.2015| 125.372449| 490.995| 51.204153| 139.7718| 10.318022| 990.298| 90.250027
S-P IFR [Large| 0.84397]|0.0239| 1859.4221| 185.712002| 343.404| 58.046129| 160.8931|  5.027334( 934.313| 19.928222
S-P DFR |Large| 0.82293(0.0515| 1900.4104| 682.441413| 373.829| 85.693138| 151.0831| 12.875395| 924.663| 71.292258
S-P IFR [Large| 0.8545]|0.0273|2012.4874| 488.187184| 331.872| 48.445802| 162.9239]  9.168588( 927.149| 42.11069
S-P DFR |Large| 0.83093;0.0649| 1813.4586| 468.103509| 340.372| 73.421084| 152.8934] 12.891715| 935.142| 51.081099
Complex | IFR [Small| 0.79723]{0.0411]|2517.4118] 600.101875| 613.235| 62.90322| 607.9589] 52.450363| 962.774| 40.528591
Complex | DFR [Small| 0.77137|0.0709| 2330.3009] 1113.381932| 603.902| 153.02025| 622.7378| 176.694094| 1050.93| 96.956241
Complex | IFR |Small| 0.79269| 0.0727| 2265.9171| 623.983857| 557.461| 176.63768| 591.8588| 56.288879| 972.672| 102.08752
Complex | DFR |Small{ 0.78156|0.0535]| 2124.4053| 546.198341| 583.181| 166.19736| 567.2333|  46.76866| 964.838| 111.4952
S-P IFR | Small| 0.64951|0.0356| 1608.0276| 186.849893| 863.769| 97.571768| 594.1459| 47.864929| 1016.68| 43.676779
S-P DFR |Small| 0.6214)|0.0592] 1336.2383| 391.090585| 788.749( 128.67521] 530.1731| 83.196167| 1097.2| 140.45746
S-P IFR | Small| 0.64273)| 0.0302] 1535.4473| 265.502618| 844.903| 99.479778| 580.5185|  33.05382| 1018.08| 64.554289
S-P DFR |Small| 0.66742| 0.0562| 1658.0624| 336.932573| 812.166( 150.83298| 580.4298| 117.845115| 994.381| 128.14823
Complex | IFR |Large| 0.65005|0.0436| 978.83652| 182.752826| 521.406| 84.959954| 152.2207| 7.777956| 987.486| 33.613689
Complex | DFR [Large| 0.65614)0.0592| 993.56181| 194.133449| 511.751| 85.010133| 150.2238| 16.701989( 984.548| 58.906297
S-P IFR |Large| 0.8629)|0.0308|2562.1308| 460.556013| 396.451| 66.725463| 165.5002 6.53677| 940.918 26.54521
S-P DFR [Large| 0.85516]0.0434| 2318.5127| 727.267637| 377.627| 130.5672| 156.2256| 12.517785| 940.307| 48.952462
s-p IFR_ |Large| 0.87645|0.0416| 2751.387] 1254.914262| 341.681| 124.08618| 160.7838] 12.007663| 935.579| 46.547722
S-P DFR |Large| 0.86522| 0.0399| 2793.5271] 855.937428| 417.518| 121.19979| 160.3137| 10.684756( 954.882| 43.011271
Complex | IFR {Small| 0.73506|0.0199| 1771.9746] 242.296206| 636.269| 81.977295| 599.5027| 26.616841| 1001.37| 62.470026
Complex | DFR [Small| 0.74472]0.0884| 1971.814| 1053.069465] 591.845]) 145.91455| 568.734| 87.423621| 972.397| 149.6474
Complex | IFR |Small| 0.71677| 0.051] 1645.915| 359.040565] 633.405| 89.892048| 576.4315{ 38.333044[ 1039.75| 99.237831
Complex | DFR |Small| 0.74244| 0.0324| 1730.6547| 489.000361| 581.963]| 90.847932( 558.1052] 95.639121| 973.869| 84.669393
S-P IFR |Small| 0.78755)| 0.0218| 3428.6584| 502.256878| 912.667| 69.040485| 601.2296] 29.823233| 931.045| 42.499865
S-P DFR | Small| 0.77451| 0.0418| 2940.9511| 514.004513| 838.49| 111.39209( 578.9948) 77.061728| 993.46| 116.64769
S-P IFR | Small| 0.76007| 0.0584| 3148.3652| 987.897623| 922.938| 43.752593| 607.5508] 33.812394 968.5( 60.030239
S-P DFR | Smali| 0.78267| 0.0314| 3540.7397| 741.920113| 958.127| 63.235759| 571.3842| 77.493459| 978.117( 113.25613
S-P IFR | Small| 0.65559|0.0172] 1573.4632| 157.864481| 822.169| 31.769495| 599.1858| 27.791716| 980.591| 27.843022
S-P DFR [Small} 0.58784)|0.0772| 1225.7376| 388.082703| 819.015| 78.426313| 539.2185| 80.841237| 944.66| 111.6787
Complex | IFR [Small| 0.65806)|0.0219| 1345.2839| 117.197318| 697.664| 57.717031| 572.4634| 21.554528| 980.978| 60.770088
Complex | DFR [Small] 0.67109)|0.0622| 1435.7829| 365.305281| 678.578| 110.01039| 589.7982| 75.434413| 1011.1| 96.192313
s-p IFR |Large| 0.94244/0.0175| 8397.0178| 3438.66978| 470.046| 132.21821| 163.135| 5.218078| 922.436( 25.571554
S-P DFR [Large| 0.95354]|0.0211| 10122.331| 6056.891589| 389.935| 111.03885| 156.0759; 11.852342| 911.461| 40.316235
Complex | IFR large| 0.23384]0.0122] 4155.5733| 1040.334833| 285.465| 43.771342] 162.8321 4.4553| 912.337| 27.591806
Complex | DFR jlarge| 0.9245}0.0354|3976.5947| 3138.595902| 225.842| 64.706545| 156.56| 17.740922| 933.373| 39.069533

Table F-1. RAPTOR Output Database
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HI. ANALYSIS OBJECTIVES
Purpose of Investigation
The purpose of the investigation was to:

1) Ascertain whether one can distinguish between the complex versus series-
parallel structures, IFR versus DFR configurations, and large versus small system sizes
based on the simulation outputs;

2) Identify which output measures provide the most discriminant power;

3) See if one can adequately explain a majority of the output variance in smaller
dimensions; and

4) Identify possible common underlying factors with common variance.
Variables Used

All 10 RAPTOR output variables were used in the analysis. In some cases, nearly
equivalent results could be obtained by only using the most salient variables (this will be
discussed in more detail in the results section of this report). Since there is a large
disparity in magnitudes of the output variables, the variance-covariance matrix was sparse
(contained many zeros). To alleviate computational problems resulting from this,
standardized data was used for most analyses. The standardized data set is depicted in
Table F-2.

When checking for multivariate normality for discriminant analysis, several of the
variables did not pass the Shapiro-Wilk test for normality (at a 10% level of significance).

In an attempt to achieve multivariate normality, a Box-Cox transformation was conducted
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on all variables. The affects of the Box-Cox transformation on the passage of the Shapiro-

Wilk test for each variable are shown in Table F-3.

Failure | Simulation Output Parameters

Struciure | PDE | Size Ao | AoSD. | MIBDE MIBDES.D. MDI |[MDIS.D. BM [MIBMSD.| MRT |MATS.D.
Complex IFR Large | -1.23508| -0.60383| -0.84725| -0.63232609| -0.377552| -0.65269| -1.05905| -0.85128284| 0.020338| -0.88381
Complex DFR Large | -1.61179| 0.30777| -0.91868| -0.6139671| -0.370949| 0.286585| -1.12462| -0.75528568| 0.469788| 0.242433
Complex IFR Large | -1.12264| -0.29764| -0.82035| -0.55770183] -0.381668| -0.15756| -1.05459| -0.75598425| -0.14697) -0.64425
Complex DFR Large | -1.49669] 0.418498| -0.90323| -0.5875802| -0.455488| -1.1731| -1.1246|-0.74224371| 0.47501] 0.643005

S-P IFR Large | 0.844632| -1.03029| -0.28944|-0.53335994] -1.197926( -0.98321| -1.0257| -0.8798533| -0.93838| -1.37044
S-P DFR Large | 0.647505| 0.483103| -0.2672| -0.08700604| -1.044875| -0.2159| -1.07163|-0.67572702| -1.18199| 0.100208
S-P IFR Large | 0.943237| -0.84711] -0.20639| -0.2615601| -1.255933| -1.24966| -1.01619|-0.77214022| -1.11923| -0.73532
S-P DFR Large | 0.722469| 1.214216| -0.31438] -0.279607| -1.213178| -0.55649| -1.06316|-0.67530254| -0.91744] -0.47848

Complex IFR Large | -0.97185| 0.049844| -0.76724|-0.53601902| -0.302513[ -0.23624| -1.06631|-0.80831024} 0.404019] -0.9786
Complex DFR Large | -0.91481] 0.904462| -0.75925| -0.52579255| -0.351082| -0.23485| -1.07566|-0.57619818] 0.320852] -0.25443

S-P IFR Large | 1.021919] -0.65423| 0.0918461 -0.28638307| -0.931079| -0.74232| -1.00412-0.84059321| -0.77163] -1.18099
S-P DFR Large | 0.949401| 0.039314| -0.04034 -0.04672584| -1.025772| 1.029537| -1.04755| -0.68502837| -0.78705| -0.53942
S-P IFR Large | 1.148794| -0.08083| 0.194534| 0.42740982| -1.206594| 0.849663] -1.02621|-0.69829653| -0.90642( -0.60828
S-P DFR Large | 1.043613] -0.15406| 0.217399| 0.06889498| -0.825104| 0.769555| -1.02841|-0.73270504| -0.41908| -0.70953
S-P IFR Large | 1.766935] -1.38288| 3.257803| 2.38970111| -0.560873| 1.075359| -1.0152| -0.87489209| -1.23822| -1.20886
S-P DFR Large | 1.870899 -1.185| 4.193942| 4.74239756| -0.96386] 0.487548| -1.04825|-0.70233638] -1.51529( -0.78669

Complex IFR Large | 1.686361| -1.67371| 0.956433| 0.23459184| -1.48938] -1.37939| -1.01662|-0.89473177| -1.49317| -1.15102
Complex DFR Large | 1.598865| -0.40272| 0.859321| 2.12005904| -1.789305] -0.79836| -1.04539|-0.54917577 -0.96212| -0.82239
Complex IFR Small | 0.406776| -0.08683| 0.067581| -0.16099517| 0.1594215] -0.84841| 1.067802| 0.35360887| -0.21986| -0.78061
Complex DFR Small | 0.164557| 1.545412] -0.03394| 0.30023091 0.11247] 1.652698| 1.137008| 3.58515997| 2.005838| 0.835017|
Complex IFR Small | 0.364287| 1.646762| -0.06888| -0.13953516] -0.121144] 2.308175| 0.992409| 0.4534478| 0.030039| 0.981935,
Complex DFR Small | 0.260034| 0.593831| -0.14566| -0.20943211| 0.0082353| 2.018415| 0.877094| 0.20582907| -0.16774| 1.251295

S-P IFR Small | -0.97687| -0.39093| -0.42584| -0.53233745| 1.4196953| 0.113784| 1.003119]| 0.23434278| 1.141103| -0.69048
spP DFR Smalt | -1.24016| 0.904078| -0.57331| -0.3488097| 1.0423186] 0.977027| 0.70355| 1.15330022} 3.173793| 2.08054
sP IFR Smalt | -1.04043| -0.68653] -0.46522| -0.46166124| 1.3247934| 0.166739| 0.939305| -0.15083079} 1.176339| -0.09271
S-P DFR | Small | -0.80916| 0.739385] -0.39869(-0.39747531| 1.1601118| 1.591992| 0.93889( 2.05451145| 0.578095| 1.728104

Complex IFR Small | -0.17557| -1.24933| -0.33689| -0.48251419| 0.2752868| -0.31902] 1.028203(-0.31831514] 0.754506( -0.15239
Complex DFR | Small | -0.08506| 2.50533] -0.22846| 0.24603499| 0.0518184| 1.455487| 0.884121| 1.26325533] 0.023086| 2.343666
Complex IFR Small | -0.34686| 0.45623] -0.40528|-0.37760939| 0.260883| -0.09933| 0.920167( -0.01355597! 1.723533| 0.900343
Complex DFR | Small | -0.10642| -0.56577| -0.35931]-0.26074851| 0.0021111]| -0.07283] 0.834349| 1.47693861| 0.060263| 0.483221

S-P IFR Small | 0.316085| -1.14524| 0.562016| -0.24891727] 1.6656677] -0.67807 1.03629|-0.23491762) -1.02088( -0.72417
S-P DFR Small | 0.194006| -0.04854| 0.302273( -0.23836102] 1.2925298| 0.497352] 0.93217| 0.99374486, 0.554858| 1.398821
S-P IFR Small | 0.058729| 0.861685| 0.409931| 0.18747251] 1.717337] -1.37991| 1.065891( -0.13116045] -0.07528] -0.22224
S-P DFR Small | 0.270356| -0.62149| 0.627713| -0.03355934] 1.8943498| -0.83918| 0.896531| 1.00497408( 0.167492| 1.301714
S-P IFR Small | -0.91996] -1.39872 -0.4446|-0.55838332] 1.2104309| -1.71249| 1.026719( -0.28775691| 0.229945| -1.14383
S-P DFR Small | -1.55452| 1.891527| -0.63327|-0.35151254] 1.1945657| -0.41758| 0.745908| 1.32613697| -0.67716] 1.256549

Complex IFR Small | -0.89678] -1.14206| -0.5684|-0.59492625| 0.5841287| -0.99234! 0.901585| -0.44998475! 0.239736( -0.20106
Complex DFR Smali_| -0.77479| 1.066304] -0.5193]-0.37198001| 0.4881198| 0.459005] 0.98276] 0.95141877] 1.000255| 0.813144

Table F-2. Standardized Data Set

Large Small Complex S-P IFR DER

Variable Before { After | Before { After i Before | After | Before { After { Before : After i Before After
Ao Fail Fail Fail Fail Pass Pass Pass Pass Fail Fail Pass Pass

Ao S.D. Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
MTBDE Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass
MTBDE S.D. Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass
MDT Pass Pass Fail Fail Fail Pass Fail Fail Pass Pass Pass Pass
MDT S.D. Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass
MTBM Fail Pass Pass Pass Fail Fail Fail Fail Fail Fail Fail Fail
MTBM S.D. Pass Pass Fail Pass Fail Pass Fail Pass Fail Fail Fail Fail
MRT Fail Fail Pass Pass Pass Pass Fail Fail Pass Pass Pass Pass
MRT S.D. Pass Pass Pass Pass Pass Pass Fail Pass Fail Pass Pass Pass

* Boldface cells note where improvement was achieved

Table F-3. Effects of Box-Cox Transformation on Shapiro-Wilk Normality Test for Each Variable
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From Table F-3, it is apparent that an improvement in the overall normality of the data
was achieved. Although not all variables passed the Shapiro-Wilk test after the
transformation, the majority of the variables did pass. Therefore, the assumption of

multivariate normality was reasonably justified for use in discriminant analysis.
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IV. ANALYSIS RESULTS
Special Problems Encountered

The most difficult problem encountered was the formatting of the data. As discussed
previously, the large scale differences in the data caused numerical problems, but this was
overcome via standardization. Another problem was the lack of multivariate normality,
which was addressed by the use of Box-Cox transformations. In the end, several different
data formats were tried (raw, standardized, and transformed) in the discriminant analysis
to see what type of results would be achieved with each format.

When conducting logistic regression, SAS and JMP could not produce a viable
regression model using all variables. This was true using the raw simulation output data,
standardized data, as well as transformed data. However, a viable model was produced
when the set of variables was reduced (down to 3) to those that were identified as most
salient in the neural network analysis.

Another problem was the difficulty in interpreting the principal components. A ‘clean’
separation in the principal component loadings was not apparent, making the analysis
challenging. Although principal components were defined from this analysis, the
interpretation may be subject to debate due to the ambiguity in component loadings.
However, after varimax rotation of the data, a much clearer loading structure was revealed
in the subsequent factor analysis.

Discrimination Between Categories of Component Structures
Several multivariate techniques were used in an attempt to discriminate between large

versus small, complex versus series-parallel, and increasing failure rate (IFR) versus
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decreasing failure rate (DFR) component structures: DA, neural nets, logistic regression,

as well as score rankings resulting from PCA and FA. The overall discriminant results for

all methods are shown in Table F-4 for direct comparison.

Discriminant Results
{(percentages show classification accuracy)
Data Method Large/Small | Complex/S-P IFR/DFR
Standardized SAS Pooled 100% / 100% 94% | 85% 95% | 95%
SAS Pooled 100% / 100% 94% | 90% 89% /95%
Transformed SAS Unpooled 100% /100% | 100 % / 100%
JMP 100% / 100% 94% [ 90% 89% /95%
Full Neural Net: Training - 93% / 100 % ----
Full Neural Net: Validation — 100% / 100% ----
Standardized | Reduced Neural Net: Training -~ 98% / 100 % ----
Reduced Neural Net: Validation e 100% / 100% o
Reduced Logistic Regression ---- 67% / 85% ----
Raw Component Score Ranking 89% [ 90% - 84% | 14%
Factor Score Ranking 100% / 100% -—-- 84% /95%
Best Discriminant Function Linear Quadratic Linear
MTBDE MRT SD
MTBM Ao Ao SD
Best Discriminant Variable(s) MRT MTBM SD
MDT MDT SD

Table F-4. Classification Accuracy for all Methods Used for Discrimination

For the most part, the results were consistent across methods with excellent

discriminant success.

There was strong agreement between methods on which variables

served as the best discriminants (e.g. discriminant loadings, neural net salient variables,

and components/factors which best discriminated for each category showed strong

agreement). This general consistency across methods provided greater confidence in the

overall analysis. The classification accuracy percentages for DA may be inflated because

the entire data set was used. Logistic regression proved to be the weakest discriminant

tool in the complex versus series-parallel case.
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Neural Net Results

To help identify the variables which contributed most in discriminating between classes
in the neural net, several graphical outputs produced by the Statistical Neural Network
Analysis Package (SNNAP) software were reviewed. As an example, the following
derivative graphs help show which variables had the greatest discriminant power. Looking

at Figure F-3, the graphs with the more ‘pointed’ curves identify the more salient variables

(Ag, MDT, and MRT).
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Figure F-3. Neural Net Derivative Saliency Graphs
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Reduction in Dimensionality (PCA)

The objectives of performing a PCA on the database were to reduce the dimensionality
of the data and to further attempt to discriminate between structure (by type, failure pdf,
and size). Due to the difference in the units of the data, the PCA was performed using the

data’s correlation matrix (see Table F-5).

Variable Ao Ao MTBDE | MTBDE | MDT MDT MTBM | MTBM | MRT { MRT
S.D. S.D. S.D. S.D. S.D.
Ao 1 -0.318 0.7206 0.6327 | -0.5495 | 0.0577 -0.332 -0.2459 [ -0.658 | -0.3873
Ao S.D. -0.3177 1 -0.371 -0.2081 | 0.1285 | 0.4976 0.2352 0.5285 0.344 0.692
MTBDE 0.7206 { -0.371 1 0.9219 | -0.1915 | 0.1148 -0.173 -0.1442 [ -0472 | -0.2649
MIBDES.D. | 06327 | -0.208 09219 1 -0.3184 | 0.169 -0.255 -0.1122 | -041 [ -0.1986
MDT -0.5495 | 0.1285 -0.192 -0.3184 1 0.0143 0.8225 0.5198 0.544 | 0.4617
MDT S.D. 0.0577 | 0.4976 0.1148 0.169 0.0143 1 0.1952 0.455 0.268 | 0.5232
MTBM -0.3315 | 0.2352 -0.173 -0.2554 | 0.8225 | 0.1952 1 0.7034 0.547 | 0.5575
MTBMS.D. | -0.2459 | 0.5285 -0.144 -0.1122 | 0.5198 0.455 0.7034 1 0.549 | 0.7272
MRT -0.6576 | 0.3435 -0.472 -0.4099 | 0.5439 | 0.2676 0.5474 0.5487 1 0.5559
MRT S.D. -0.3873 | 0.692 -0.265 -0.1986 | 04617 | 0.5232 0.5575 0.7272 0.556 1

Table F-5. Data Correlation Matrix

JMP software calculated the principle components. Three components were retained
based on Kaiser’s criterion. As Table F-6 indicates, these components accounted for

81.85% of the data set variation.

EigenValue: 4.6365 2.19 1.363 0.5431 04333 | 03292 0.2094 0.1776 0.101 | 0.0219
Percent: 46.3649 | 21.859 | 13.626 54311 4.3333 | 3.2919 2.0938 1.7758 1.006 | 0.2187
Cum Percent | 46.3649 | 68.224 | 81.85 872808 | 91.614 | 94.906 | 96.9998 | 98.7756 | 99.78 100

Table F-6. Component Eigenvalues and Percentages

Using the eigenvalues and eigenvectors (eigenvector multiplied by the square root of the
corresponding eigenvalue), JMP calculated the loadings matrix. As shown in Table F-7,

only the first three loadings were analyzed.
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Component1 | Component2 | Component 3
Availability -0.7264 0.49766 0.01967
Ao S.D. 0.615163 0.28342 -0.59
MTBDE -0.607411 0.6781 0.35319
MTBDE S.D. -0.572701 0.7072 0.16203
MDT 0.71309 -0.01032 0.6206
MDT S.D. 0.33791 0.6865 -0.3972
MTBM 0.74412 0.21079 0.52521
MTBM S.D. 0.75028 0.47291 0.0949
MRT 0.81152 -0.05729 0.067
MRT S.D. 0.79726 0.39407 -0.1759

Table F-7. PCA Loadings Matrix
After careful examination of the above loading matrix, in conjunction with knowledge of
the database, each component was labeled based on the bold numbers in the respective
column of the matrix.
¢ Component 1 =» Maintenance Index

¢ Component 2 =» Deviation Down Time Index
e Component 3 =» Down Time Average Index

After successfully reducing the dimensionality of the database from ten to three,
component scores were calculated to see if they were effective at discriminating a given
structure into the following attributes:

¢ Type: Complex or Series-Parallel

¢ Failure pdf: Increase Failure Rate (IFR) or Decreasing Failure Rate (DFR)

¢ Size: Large or Small

Each vector of component scores was sorted in descending order to look for a pattern.
The noticeable patterns appear in Table F-8.
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Component 1 Component 2

Size Score Failure pdf Type Score

Small 3.9875798 DFR 4.2453607
Small 3.27563 IFR 2.7344832
Small | 3.1916125 DFR 2.6642524
Small | 2.5766016 DFR 2.2635533
Small 2.5624751 - IFR 1.9337528
Small | 23625727 DFR 1.4825866
Small | 1.8048802 DFR 1.4374841
Small 1.7765076 DFR 1.0900088
Small 1.5808509 DFR 0.9908706
Small | 1.5494862 DER 0.6643567
Small | 1.5341994 DFR 0.622185
Small 1.256253 IFR 0.5673482
Small | 12471147 DFR 0.354911
Small 1.0250701 DFR 0.2859006
Small | 06167541 DFR 0.2601498
Large | 0.5833746 DFR 0.2469027
Small | 0.4965454 DFR 0.0693093
Large | 0.4641742 IFR -0.134626
Small | 04333046 TFR -0.141776
Small | 0.2313683 DER -0.239745
Large | 0.2225142 IFR -0.251629
Small | -0.096977 TFR -0.376745
Large -0.292476 DFR -0.504691
Large | -0.394207 TFR -0.505771
Small | -0.451488 TFR -0.810156
Large | -0.550943 IFR -0.821429
Large | -1.330643 IFR -0.847647
Large | -1.357726 TFR -0.899332
Large -1.53975 TFR -1.165003
Large | -1.637563 DFR -1.242413
Large | -1.977937 DFR -1.399575
Large | -2.244068 TFR -1.485876
Large -2.327493 IFR -1.587855
Large 2.39671 TFR -1.683993
Large -3.35344 IFR -1.697677
Large -3.691377 DFR -1.879922
Large -4.077877 IFR -2.083892
Large | -5.058193 IFR -2.153662

Table F-8. Component Scores

Even though the component scores do not discriminate completely, there appears to be
some usefulness in these scores in determining the attributes of a given structure using the
following formulas:

¢ If Component 1 Score 20 = Classify the Structure as Small
¢ If Component 1 Score < 0 =» Classify the Structure as Large
¢ If Component 2 Score 20 =» Classify the Structure as DFR
e If Component 2 Score < 0 =» Classify the Structure as IFR

The component score 3 did not appear to have any discriminating power.
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Identification of Underlying Factors (FA)

Factor analysis was performed on the database for two reasons: to identify any
possible underlying factors and to use these factors to discriminate between the attributes
of a given structure. Using SAS and varimax rotation, a rotated factor pattern was

obtained. As can be seen in Table F-9, the underlying factors fell out very well.

Factor 1 | Factor 2 | Factor 3

Avail 0.79513 -0.37048 -0.07841

Ao S.D. -0.30561 0.02208 0.84431
MTBDE 0.9701 -0.01508 -0.11017
MTBDE S.D. 0.91457 -0.12722 0.04128
MDT -0.21567 0.92026 -0.01965

MDT S.D. 0.21902 0.05537 0.832

MTBM -0.09176 0.91097 0.18895
MTBM S.D. -0.02499 0.64731 0.61313
MRT -0.47654 057019 0.33782
MRT S.D. -0.19501 046513 0.75333

Table F-9. Rotated Factor Pattern (from SAS with Varimax Rotation)

e Factor 1 = Functionality
¢ Factor 2 =» Repair
¢ Factor 3 =» Variance

The common variance contributions for each factor can be seen in Figure F-4.

Other Functionality

Variance

Repair

Figure F-4. Common Variance Contributions by Factor

Using standardized data, the factor scores were obtained for each of the three factors.

As with PCA, an attempt was made to discriminate a given structure by one of its three
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attributes by sorting each factor score in descending order. As seen in Table F-10, factor

scores 2 and 3 were very good at discriminating respectively between structure size and its

failure rate pdf.

Size Factor 2 Failure pdf Type Factor 3

Small 1.754919849 DER 2.375509734
Small 1.262692335 DER 2.108713858
Small 1.257212778 IFR 1.879361215
Small 1.248601501 DFR 1.412724627
Small 1.198436102 DFR 1.338927349
Small 1.171639447 DFR 1.319662935
Small 1.160513013 DFR 0.809561313
Small 1.148780849 DFR 0.752946945
Small 1.070286433 DFR 0.476564177
Small 1.041964654 IFR 0.402846391
Small | 0.803497969 DFR 0.39528509

Small | 0.781802256 DFR 0.351588765
Small | 0.708731145 DFR 0.312586852
Small | 0.645365044 IFR 0.298188266
Small [ 0.636668185 DFR 0.287840003
Small [ 0.616611494 DER 0.235440949
Small | 0581937118 DFR 0.217068964
Small | 0.058035318 DFR 0.0410742

Small | 0.045624986 DFR -0.116572823
Small_| -0.135169869 DFR -0.154178944
Large | -0.157786373 DFR -0.209412144
Large | -0.304504477 IFR -0.331720076
Large | -0.712301993 IFR -0.357517609
Large | -0.754459578 IFR -0.382424315
Large | -0.796558728 DER 052311732
Large | -0.818000077 TFR -0.624436134
Large | -0.874071803 IFR -0.652270592
Large | -0.917883041 IFR -0.658484054
Large | -0.925917777 IFR -0.728537638
Large | -0.975227776 IFR -0.751696689
Large | -1.066756545 IFR -0.788207166
Large | -1.081593052 IFR -0.84117866
Large | -1.104270837 TFR -0.871777043
Large | -1.109476158 IFR -1.021398497
Large | -1.301022087 IFR -1.239891531
Large | -1.306582726 IFR -1.303301235
Large | -1.327933971 IFR -1.459488901
Large | -1.523803607 IFR -2.00028026

Table F-10. Factor Scores

o If Factor Score 2 2 -0.15 =» Classify the Structure as Small
o If Factor Score 2 < -0.15 =» Classify the Structure as Large
e If Factor Score 3 2 -0.30 =» Classify the Structure as DFR
o If Factor Score 3 < -0.30 = Classify the Structure as IFR

Factor score 1 did not appear to have any discriminating power.
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Insights

Several useful conclusions can be drawn from this study. First, it was demonstrated
(using a moderately small sample size) that successful discrimination can occur between
large versus small, complex versus series-parallel, and IFR versus DFR component
structures based on RAPTOR simulation output. All multivariate techniques
demonstrated were moderately-to-highly successful in discriminating between the defined
classes. Through the discrimination analysis, it was discovered that predominantly DFR
structures display a relatively higher simulation output variability. Therefore, RAPTOR
availability model output variability serves as a good discriminant for IFR versus DFR
structures. Furthermore, Mean Time Between Maintenance (MTBM) is an excellent
discriminant variable for the large versus small structure classification case. This
conclusion makes intuitive sense, since one would expect a decrease in the average time
between maintenance actions on components as the number of components in the
structure increases. The analysis provides empirical support to this intuitive assessment.
Additionally, it was discovered that neural nets can be used to effectively discriminate
when the discriminant function may be of a higher order.

Additionally, the analysis revealed that the RAPTOR simulation output variance can
be explained via 3 principal components: a maintenance index, a deviation down time
index, and a down time average index. A majority of the output variance (82%) is

explained by these three components. By using a rank order of the maintenance index
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(component 1) scores and deviation down time index (component 2) scores, reasonable
discrimination between large and small structures, and IFR and DFR structures
respectively, can be achieved.

Finally, three underlying factors were identified by use of factor analysis. The first
factor, functionality, relates to the structure’s ability to get the job done in an efficient
manner. The second factor, repair, reflects the maintenance and down time which is
inherent in the structure. The third factor, variance, refers to the inherent variability of the
output variables measured for each structure. Some success was also achieved in
discrimination between large versus small structures and IFR versus DFR structures by
using a rank order of the repair factor (factor 2) scores and variance factor (factor 3)
scores respectively.

Throughout the discrimination analysis, consistency in the results was observed for
each of the various methods used: similar classification accuracy and similar best
discriminant variable selections. This consistency was further highlighted when
component/factor score rankings were used as a discriminant. For example, based on the
DA observations one would expect the factor which represents maintenance/repair (factor
2) to be the best in large versus small discrimination. This in fact was the case, with the
factor 2 scores being the best large/small discriminant among all factor scores. The same
proved true for factor 3 (variability) and IFR versus DFR discrimination. This consistency

in results provided increased confidence in the conclusions.

130




References

. Kapur, K. C. and L. R. Lamberson. Reliability in Engineering Design. New York:

John Wiley & Sons, Inc., 1977.

. Boyd, Mark A. and Salvatore J. Bavuso. “Simulation Modeling for Long Duration

Spacecraft Control Systems,” Proceedings of the Annual Reliability and
Maintainability Symposium. 106-112. 1IEEE, 1993.

. Hoyland, Arnljot, and Marvin Rausand. System Reliability Theory: Models and

Statistical Methods. New York: John Wiley & Sons, Inc., 1995.

. Birnbaum, Z. W. “On the Importance of Different Components in a Multicomponent

System,” Multivariate Analysis I (P.R. Krishnaiah, Ed): 581-592. New York:
Academic Press, 1969.

. Boland, Phillip J. and Emad El-Neweihi. “Measures of Component Importance in

Reliability Theory,” Computers and Operations Research, 22-4: 455-463 (1995).

. Papastavridis, Stavros. “The Most Important Component in a Consecutive-k-out-of-

n: F System,” IEEE Transactions on Reliability, R-36: 266-268 (June 1987).

. Xie, M. “On Ranking of System Components with respect to Different Improvement

Actions,” Microelectronics and Reliability, 29-2: 159-164 (1989).

. Barlow, Richard E. and Frank Proschan. “Importance of System Components and
Fault Tree Events,” Stochastic Processes and Their Applications, 3: 153-173 (1975).

. Aven, Terje. “On the Computation of Certain Measures of Importance of System

Components,” Microelectronics and Reliability, 26-2: 279-281 (1986).

10. Finkelstein, M. S. “Once More on Measures of Importance of System Components,”

Microelectronics and Reliability, 34-9: 1431-1439 (1994).

11. Hunter, J. S. and T. H. Naylor. “Experimental Designs for Computer Simulation

Experiments,” Management Science, 16-6: 422-433 (March 1970).

12. Law, Averill M., and W. David Kelton. Simulation Modeling and Analysis. New

York: McGraw-Hill, Inc., 1991.

13. Smith, Dennis E. and Carl A. Mauro. “Factor Screening in Computer Simulation,”

Simulation: 49-54 (February 1982).

131




14. Box, G. E. P. and R. Daniel Meyer. “Finding the Active Factors in Fractionated
Screening Experiments,” Journal of Quality Technology, 25-2: 94-105 (April 1993).

15. Hamanda, Michael. “Using Statistically Designed Experiments to Improve Reliability
and to Achieve Robust Reliability,” IEEE Transactions on Reliability, 44-2: 206-215
(June 1995).

16. Montgomery, Douglas C. Methods for Factor Screening in Computer Simulation
Experiments. Contract N0O0014-78-C-0312. Technical Report, Georgia Institute of
Technology, March 1979.

17. Hamanda, Michael and C. F. J. Wu. “Analysis of Designed Experiments with
Complex Aliasing,” Journal of Quality Technology, 24-3: 130-137 (July 1992).

18. Plackett, R. L. and J. P. Burman. “The Design of Optimum Multifactorial
Experiments,” Biometrika, 33: 305-325 (1946).

19. Lin, Dennis K. J. and Norman R. Draper. “Projection Properties of Plackett and
Burman Designs,” Technometrics, 34: 423-428 (November 1992).

20. Myers, Raymond H. and Douglas C. Montgomery. Response Surface Methodology:
Process and Product Optimization Using Designed Experiments. New York: John
Wiley & Sons, Inc., 1995.

21. Box, George E. P., William G. Hunter, and J. Stuart Hunter. Statistics for
Experimenters. New York: John Wiley & Sons, Inc., 1978.

22. John, Peter W. M. “Three-Quarter Replicates of 2* and 2° Designs,” Biometrics, 17:
319-321 (June 1961).

23. Wolf, James R. Sensitivity of Space System Availability Predictions to Underlying
Component Reliability Estimates. MS Thesis, AFIT/GSO/ENS/89D-17. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1989 (AD-A215535).

24. Edgar, John F. and Tony Bendell. “The Robustness of Markov Reliability Models,”
Quality and Reliability Engineering, International, 2: 117-125 (1986).

25. Hwang, C. I, Frank A. Tillman, and M. H. Lee. “System-Reliability Evaluation

Techniques for Complex-Large Systems-A Review,” IEEE Transactions on
Reliability, R-30, 5: 416-422 (December 1981).

132




- 26. Mortin, David E., Jane G. Krolewski, and Michael J. Cushing. “Consideration of
Component Failure Mechanisms in the Reliability Assessment of Electronic Equipment
- Addressing the Constant Failure Rate Assumption,” Proceedings of the Annual
Reliability and Maintainability Symposium. 54-57. 1EEE, 1995.

27. Kline, M. B. “Suitability of the Lognormal Distribution for Corrective Maintenance
Repair Times,” Reliability Engineering, 9. 65-80 (1984).

28. Webb, Timothy S. and Kenneth W. Bauer, Jr. “Comparison of Analysis Strategies for
Screening Designs in Large-Scale Computer Simulation Models,” Proceedings of the
1994 Winter Simulation Conference. 305-311. IEEE, 1995.

29. Jacobson, David W. and Sant Ram Arora. “A Nonexponential Approach to
Availability Modeling,” Proceedings of the Annual Reliability and Maintainability
Symposium. 253-260. IEEE, 1995.

30. Air Force Operational Test and Evaluation Center, Rapid Availability Prototyping for
Testing Operational Readiness (RAPTOR) Version 2 Software User’s Manual,

1995.
31. ReliaSoft, Inc., Weibull++ Version 4 User’s Manual, 1995.

32. Box, George E. P., and Norman R. Draper. Empirical Model-Building and Response
Surfaces. New York: John Wiley & Sons, Inc., 1987.

33. Banks, Jerry, John S. Carson II, and Barry L. Nelson. Discrete-Event System
Simulation. Upper Saddle River: Prentice Hall, Inc., 1996.

34. SAS Institute, Inc., JMP Statistics and Graphics Guide, Version 3.1, 1995.

133




Vita

Major Darren P. Durkee m In June
1983, he received his Bachelor of Science Degree in Operations Research from the United
Stztes Air Force Academy. Upon graduation, he attended Undergraduate Navigation
Training (UNT) and Electronic Warfare Training at Mather AFB, CA. He subsequently
served in several flying assignments compiling over 4000 hours as a navigator and
electronic warfare officer (EWO), mcludmg tours flying the RC-135 Rivet Joint at
Offutt AFB, NE, the EC-130H Compass Call at Sembach AB, Germany, and the B-3
Airbome Warning and Control _Sfy,swm (AWACS) at Tinker AFB, OK. During his flying
tours, he served in sevgra;:staff positions at the Wing and Air Division level in the areas of
© training, smdardlzauon and evaluation, requirements, and weapons and tactics. Major -
Durkee was selected to attend the AFIT Graduate Program in Operations Research in
1995, Updn graduation from AFTT in March 1997, he was assigned to the Alr Staff as an

' operations analyst in the Air Force Studies and Analysis Agency, Pentagon,

- Washingwon, D.C.

134




REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting surden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructicns, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collaction of infarmation, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for information Qperations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE
February 1997

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
SENSITIVITY OF AVAILABILITY ESTIMATES
TO INPUT DATA CHARACTERIZATION

5. FUNDING NUMBERS

8. AUTHOR(S)

Darren P. Durkee, Major, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology/ENS
2750 P Street
Wright-Patterson AFB, Ohio 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GOR/ENS/97-06

3, SPONSCRING/ MIONITORING AGENCY MAME(S) AMD ADDRESS(ZS)
HQ AFOTEC/SAL

8500 Gibson Blvd. SE

Kirtland AFB, NM 87117

10. SPONSORING / MONITORING
AGEINCY REPORT NUMBER

11, SUPPLEMEMTARY NOTES

!

122, DISTRIBUTIOMN / AVAILASILITY STATEMENT

Approved for Public Release; Distribution is Unlimited

§ 12b. DISTRIBUTION CODE

20 ABITIALT (Maximum 200 words)

Reliability analysts are often faced with the challenge of characterizing the behavior of system components based on
limited data. Any insight into which model input data is most significant and how much data is necessary to achieve
desired accuracy requirements will improve the efficiency and cost effectiveness of the data collection and data
characterization processes. This thesis assesses potential significant factors in the probabilistic characterization of
component failure and repair behavior with respect to the effect on system availability estimates. Potential factors were
screened for significance utilizing fractional factorial and Plackett-Burman experimental designs for several system models
developed using an AFOTEC simulation program entitled RAPTOR. Two input data characterization factors were found
to have a significant affect on availability estimation accuracy: the size of the structure and the number of data points used

{ for component failure and repair distributional fitting. Estimation error was minimized when the structures analyzed were
1 small and many data points (in this case, 25) were used for the distributional fittings. Assuming constant component

i failure rates and using empirical repair distributions were found to be equally effective component characterization

1 methods (pertaining to mode! availability estimation error) compared to using automated software fitting tools (or

‘wizards’). The results of this study also indicate that there is no apparent benefit in concentrating on ‘important’

1 components for the highest fidelity distributional fittings.

14, SUBJECT TERMS

Availability Estimation, Fractional Factorial Experiment,
Component Reliability, Distributional Assumptions

15. NUMBE&EF PAGES

16. PRICE CODE

[

17. SETURITY CLASSIFICATIOM ] 18. SECURITY CLASSIFICATION | 19.

OF REPORT OF THIS PAGE
Unclassified i Unclassified

SECURITY CLASSIFICATION ] 20. LIMITATION OF ABSTRACT
OF ABSTRACT

Unclassified UL

NSN 7530-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102




	Sensitivity of Availability Estimates to Input Data Characterization
	Recommended Citation

	tmp.1691777170.pdf.y2y8w

