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Abstract

Reliability analysts are often faced with the challenge of characterizing the behavior of

system components based on limited data. Any insight into which model input data is

most significant and how much data is necessary to achieve desired accuracy requirements

will improve the efficiency and cost effectiveness of the data collection and data

characterization processes. This thesis assesses potential significant factors in the

probabilistic characterization of component failure and repair behavior with respect to the

effect on system availability estimates. Potential factors were screened for significance

utilizing fractional factorial and Plackett-Burman experimental designs for several system

models developed using an AFOTEC simulation program entitled RAPTOR.

Two input data characterization factors were found to have a significant affect on

availability estimation accuracy: the size of the structure and the number of data points

used for component failure and repair distributional fitting. Estimation error was

minimized when the structures analyzed were small and many data points (in this case, 25)

were used for the distributional fittings. Assuming constant component failure rates and

using empirical repair distributions were found to be equally effective component

characterization methods (pertaining to model availability estimation error) compared to

using automated software fitting tools (or 'wizards'). The results of this study also

indicate that there is no apparent benefit in concentrating on 'important' components for

the highest fidelity distributional fittings.

ix



SENSITIVITY OF AVAILABILITY ESTIMATES
TO INPUT DATA CHARACTERIZATION

I. INTRODUCTION

Overview

Reliability, maintainability, and availability (RM&A) analysis plays an integral part in

the design and production of efficient, cost-effective systems. According to Kapur and

Lamberson,

"The reliability of a system is the probability that, when operating under stated
environmental conditions, the system will perform its intended function
adequately for a specified time." [1:1]

"Maintainability is defined as the probability that a failed system can be made
operable in a specified interval of downtime." [1:225]

"Availability is defined as the probability that a system is operating satisfactorily at
any point in time..." and "is a measure of the ratio of the operating time of the
system to the operating time plus the downtime." [1:225]

The Department of Defense and the Air Force conduct numerous studies into the

reliability and maintainability of current and future weapons systems in an effort to control

RM&A costs of fielded systems and to verify RM&A characteristics of systems which are

still in development. One key Air Force agency which conducts such studies is

Headquarters Air Force Operational Test and Evaluation Center (HQ AFOTEC).

AFOTEC manages a large portion of the Air Force's weapons system operational

verification and validation testing.



In an effort to describe a system's RM&A characteristics, analysts frequently represent

the system with an analytical and/or simulation model. Reliability analysts will base these

models on observed component failure and repair data, historical performance of similar

systems, contractor estimates, as well as on certain traditional theoretical assumptions

which have been developed in the field of reliability. In an ideal circumstance, data from

extensive testing will be available for accurate probabilistic characterization of the various

system components. However, due to various constraints and limitations, the analyst is

often faced with the challenge of characterizing the behavior of system components based

on limited data. In this instance, the analyst will need to make judgments as to how best

characterize the input data to obtain acceptable analytical results.

Background

Systems are frequently broken down into sub-structures of components for RM&A

analysis. Several categories of component structures have been defined in the field of

reliability. The more common classes of structures include series, parallel, series-parallel,

and complex structures. A complex structure is one that cannot be defined as series,

parallel, or series-parallel. The simplest example of a series system contains two

components as shown in Figure 1.

Figure 1. Simple Series System

2



Given that pi and P2 (ranging in value from 0 to 1.0) represent the reliability of

components 1 and 2, respectively, and that all components operate independently of each

other, then the system reliability function, h(p), is

h(p)=p, .p 2.

A two component parallel system is shown in Figure 2.

2

Figure 2. Simple Parallel System

In this case, the system reliability function is

h(p) = 1- [(1- P)" (1 - P 2 )].

Series-parallel systems consist of combinations of series and parallel components in the

system. An example is shown in Figure 3.

13

- 24

Figure 3. Series-Parallel System

The system reliability function for this series-parallel system is

h(p) = [1- (1 - P). (1- P 2 )]. [1- (1- P 3 ). (1 - P 4 )]* P5 .

A typical complex structure can be illustrated by a bridge structure as shown in Figure 4.

3



Figure 4. Bridge Structure

The system reliability function for a bridge structure is

h(p)= 1-[(1-pj p4 ). (1-p 1 p 3 p 5).(l-p2 .p 5 ). (l-p 2 -p 3 .P 4 )].

As can clearly be seen, the complexity of the system reliability function increases

significantly as the size and complexity of the system structure increases.

Several analytical methods exist for determining steady-state properties of systems of

components, including Markovian models, network theory, fault tree analysis, path and

cut set analysis, Venn decomposition, non-homogenous Poisson processes (NHPP), and

power law processes, to name a few. However, if the system under study is large and/or

complicated, as is often the case, analytical methods can become cumbersome.

Furthermore, most analytical methods provide insight only into the system's steady-state

properties, not it's transient properties. The task is further complicated when estimating

system availability, since component repair rates must be considered. In such situations

where analytical methods are inadequate or overly cumbersome, simulation provides a

viable (and often times preferable) alternative [2:112].

In developing a simulation model, analysts must collect component failure and repair

rate data (and/or use existing data) and then characterize this data to accurately represent

the true behavior of the components of interest. More often than not, this data collection

4



process is time consuming and expensive. Any insight into which model input data is most

significant and how much data is necessary to achieve desired accuracy requirements

should improve the efficiency and cost effectiveness of the data collection and data

characterization processes.

Research Objectives

The general purpose of this study is to provide insight into input data characterization

factors (such as volume of data utilized, data fitting methods, system size, type of system

structure, and component importance) which may affect the accuracy of simulation model

availability estimates. If we can identify the key factors which have a significant affect on

model accuracy, the analyst can focus more attention on modeling these significant factors

and less on the insignificant factors when soliciting and characterizing input data for an

RM&A model.

Questions which need to be researched include:

(1) How much failure rate and repair rate data are needed for each component to
obtain a desired model accuracy?

(2) Which data fitting techniques for characterizing component failure and repair
probability distributions produce significant errors in model accuracy, and which do
not?

(3) Do all components need the same fidelity of characterization, or can increased
efficiency be realized by focusing on only the 'important' components?

(4) Are the answers to the above questions affected by system size, the underlying true
component failure distributions, or other system characteristics?

Although the scope of this effort does not allow for a complete research of the above

questions, much can be ascertained by conducting a controlled experiment. This research

5



is intended, using a design of experiment approach, to help identify the most critical pieces

of data needed to ensure representative simulation results. Many efficiencies could be

achieved if analysts were provided general input data characterization guidelines based on

experimental results. Insights gained from this research may assist in the reduction of

expensive live testing and unproductive data collection through the efficient use of

simulation models.

The overall research objectives are to:

(1) Identify potential factors which affect availability model output accuracy.

(2) Screen these potential factors to determine which have a statistically significant
effect (or interaction effect) on output accuracy.

(3) Assess the magnitude of the significant effects.

(4) Provide basic insight to analysts to aid in efficient input data characterization for
availability models.

Scope

Although several model output measures may be of interest when analyzing a system,

this study focused on the system availability output measure. A total of nine input data

characterization factors (defined in Chapter 3), identified by several RM&A analysis

experts and the author as factors with a potential affect on the accuracy of availability

estimates, were analyzed. The probability density functions (pdf) used to define system

component failure and repair rates were limited to 'common' functions encountered in

reliability analysis, namely the Weibull and Lognormal pdf's. Component sparing was not

considered in this research. To maintain economy of effort, the maximum size of any

6



analyzed system was limited to 20 total components and the structure types analyzed were

series-parallel and complex.

Overview of Subsequent Chapters

Chapter 2 contains a review of existing literature covering several topics pertinent to

this research. Major component importance measures, experimental designs for simulation

(including screening designs), Plackett-Burman two-level experimental screening designs,

and past research relating to this effort are all explored.

The research was conducted in two stages: a preliminary experiment to validate and

refine the methodology, followed by a larger-scale experiment. Chapter 3 includes a

description of the research methodology for the preliminary experiment which assessed

five input data characterization factors. Chapter 3 also includes a discussion of the

specific designed experimental screening methods used as well as specific analytical

techniques used for data analysis for the preliminary experiment. The software used for

availability model development, random variate generation, and data fitting are described.

Chapter 4 contains the results from the preliminary experiment. Statistical results are

presented which identify the factors which proved significant in affecting availability model

output accuracy.

Chapters 5 and 6 include descriptions of the methodology refinements and results of

the final experiment. This experiment analyzed nine input data characterization factors.

7



Chapter 7 contains a summary of the thesis effort, including an overview and

discussion of the impact of the results, how these results may benefit reliability analysts,

and ideas for future research.

8



II. LITERATURE REVIEW

Overview

This chapter provides an overview of the current literature in areas pertaining to this

thesis. This chapter begins by reviewing several major methods of defining component

importance which are found in the literature. It then provides an overview of two-level

designed experimental methods for factor screening in simulation experiments. One

screening experimental technique, Plackett-Burman (P-B) experimental designs, was used

in this research and is discussed in detail. Finally, past research which relate to this effort

are reviewed.

Component Importance Measures

Systems are frequently broken down into sub-structures of components to aid in

system design, analysis, and repair. Component importance measures provide a scientific,

quantitative approach of identifying the most important components in a given structure of

components. As an example of a common application, system designers can use

component importance measure to identify which components are most critical in the

proposed design structure. Furthermore, reliability analysts can use component important

measures to determine which components are most crucial in defining the overall system

reliability [3:195].

Several component importance measures have been developed in reliability theory since

Birnbaum introduced the first mathematical component importance measures in 1969.

Current component importance measures can be categorized into three areas: structural,

9



time dependent, and time independent. This section provides an outline of several of the

major component importance measures which have been published in recent years and are

common in use.

Terminology. All systems considered in this paper are coherent systems comprised of

binary state components. A coherent system is one in which all components are relevant

in maintaining a functional system. Binary state components have just two states:

functioning or failed. The states are typically represented as

X(t) = 1 if the component functions at time t

= 0 if the component is failed at time t.

A system's (as opposed to a component's) reliability function is depicted as h(p), where p

represents the component reliability vector. A component's reliability function is a

function of time and is depicted as p(1)(t) for component i.

Structural Component Importance Measures. Structural importance measures are

based solely upon the structural design of the system. They are used when the system

structure function is known, but the individual component reliabilities are not known

[4:583]. Two key structural methods have been developed by Birnbaum as well as

Barlow and Proschan.

Birnbaum Structural Measure. The Birnbaum structural measure provides a

measure of the criticality of a component in maintaining a system's functional state.

Annotated as I ( for component i, it represents the proportion of system state vectors

which are critical for component i [5:456]. When the system components are

independent, it can be calculated by the following equation [4:584]:

10



I h(p) (1)

2

This measure does not take into account the individual reliabilities of each system

component.

Barlow-Proschan (B-P) Structural Measure. The Barlow-Proschan (B-P)

structural measure assumes that component reliabilities are not known, but can be

assumed to be the same for each component and assigned the value p. It is defined by the

equation

BP = [h(li,p)-h(0,p)]dp (2)

where h(li, p) represents the system reliability function when component i is functioning

and h(Oi, p) represents the system reliability function when component i is not functioning

[5:457].

Time-Dependent Component Importance Measures. While structural importance

measures are only dependent upon the underlying system structure, time-dependent

measures take into consideration the component reliabilities at some chosen time t. They

are typically utilized when both the system structure and the component reliability

functions are known. Two frequently used time-dependent measures include one

developed by Birnbaum and another introduced by Veseley and Fussell.

Birnbaum Reliability Importance Measure. Birnbaum's reliability importance

measure assesses a component's importance at time t. If a system is comprised of n

components whose reliabilities at time t are Pl, p2, ..., p,n and h(pl, P2, P3, ..., p.) represents

11



the system reliability at time t, then the Birnbaum reliability importance measure for

component i is given by

I (t) =h p ... P -1,1 pi+l,..... p,) - h(p I ..... pi_- ,0, pi+l,..... p.)

a h(p) (3)
a Pi

It represents the decrease in system reliability when component i fails [6:266]. The

Bimbaum reliability importance measure is the most frequently used time-dependent

measure because of relative ease in calculation and because it provides the 'fairest' basis of

comparison between components [5:458].

Veseley-Fussell (V-F) Importance Measure. Another popular time-dependent

component importance measure, introduced by Veseley and Fussell in 1972, utilizes cut-

set theory to define component importance. The V-F importance measure, IV (t),

represents the conditional probability that a cut set containing component i has failed at

time t, given that the system has failed at time t.

Many other time-dependent measures, most of which are variations of those discussed

previously, also exist. For the sake of brevity, these additional measures, including those

developed by Butler and Aven arising from network theory, will not be discussed in this

paper.

Time-Independent Component Importance Measures. Both structural measures

and time-dependent measures have inherent characteristics which make them inappropriate

for certain analyses. Structural measures do not consider component reliabilities, and

time-dependent measures are only valid for one specific instance in time. As a result,

12



time-independent measures have been developed in an attempt to address these issues.

Time-independent measures allow component importance rankings for a desired time

interval. Several time-independent measures have been developed, most of which are

some form of weighted average of the Birnbaum reliability measure [7:160]. Two of the

most prominent time-independent measures are those developed by Barlow and Proschan

and B. Natvig.

Barlow-Proschan Time-Independent Measure. The first time-independent

component importance measure was introduced by Barlow and Proschan in 1975. The B-

P measure represents the probability that component i causes system failure in the time

period (0, t). It is represented by

BPi I I(i)(t).- f(') (t)dt (4)

where I i' (t) represents the Birnbaum reliability measure at time t and f (') (t) is the failure

probability density function for component i. P') can also be interpreted as the

probability that the system life equals the life of component i [8:158].

Natvig Importance Measure. In 1979, Natvig introduced another time-

independent component importance measure. The Natvig measure is defined by

I(' ) (t). -P~i) (t) .(-In P~i) (t))dt(5

where P(j) (t) represents the reliability function for component i. The Natvig measure

represents the reduction in expected remaining system lifetime (up to time t) due to the

failure of the i0 component [9:280].

13



Other time-independent measures have been developed by Aven, Bergman, Narros,

Boland, and Xie, most of which are extensions or advancements of the above listed

measures. Furthermore, a significant amount of work has been done in the development of

importance measures for multi-state and repairable components. Space does not allow

discussion of these additional measures, but Boland and El-Neweihi [5] is an excellent

reference providing an overview of each method and a list of applicable references.

Numerical Example of Component Importance Measures. To further demonstrate

the calculation of the various importance measures, a numerical example is offered. For

the given structure shown in Figure 5, the Birnbaum structural measure, Birnbaum

reliability time-dependent measure, and the Barlow-Proschan and Natvig time-independent

measures will be calculated.

1 3

2 4

Figure 5. Example System

Table 1 defines the probability distribution and reliability functions for the various system

components.
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Table 1. Component Failure Distributions and Reliability Functions for Example System

Component
(i) Failure Distribution f)(t) p(i)(t)

Weibull: Shape = 1.1 (hrs) 1.1. t '1) [-( t).]
Scale = 3500 3500(1.1e 3500 t

Location = 0 360O1 1.30

Weibull: Shape = 1.1 1. t0) [(

S cale = 3500 35 00 ( 1. e35000

Location = 0 e 35 0

Weibull: Shape = 1.5 1.5. t 5 000

Scale 2000 2000e (_ .

Location = 0

Weibull: Shape = 1.5 --- ,1. . e 2000 r_ _
Scale = 2000 2000' (1.5) e )0

Location = 0 e
Weibull: Shape = 2.0 2.0.t [

L  
2.00

5 Scale = 2000 2000.0) 2

Location =e 2000

Based on the structure function, the system reliability function is

h(p) =[1-(1- P ). (1- P2 )]. [1-(1- P3 ). (1- P4 )]. p5  (6)

Birnbaum Structural Measure Example. Since both components 1 and 2 as well

as 3 and 4 are identical and in-parallel (and the structural importance measure does not

consider component reliability), the structural importance measure values for components

1 through 4 will be the same.

Recall from equation (1) that

W h(p)a(l p, ...o:

2

For component 1,
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a h(p)_-(1-P2). [l_- , (_ 4p! -t P, 1 -PI P(7

1
When pi = -i, from equation (7),

__h(p) _

For component 3,

a h(p) _ 1P) -P). 1P)P 8______ -(8)

3 P3

1
Therefore, when P = 2'

J(3) -a h(p) _ 1875 = (4)I ,O a-P3 .175= ,,

Using the same method to calculate the measure for component 5,

1i(5) _a h(p)=.52
"'* 5-.5625.

Therefore, the Birnbaum structural measure component ranking (in descending order) is

5, {1,2, 3,4).

Birnbaum Reliability (Time-Dependent) Measure Example. Recall from

equation (3), I ° (t)- h(p) Since this is a time-dependent measure, a specified time
a pi

value (t) must be selected. In this example, t = 1000 hours. Therefore,

for component 1,
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1) (t)_ =h(p) lp2(t)).[l(l p3(t)).(lp4(t))]. P(0 (9)

= .158135

where pi(t) is given in Table 1. Since component 1 and 2 are identical and in-parallel,

component 2's importance measure will also equal. 158135.

Similarly, for components 3 and 4, IB3) (t) - 3 h(p) _ .220421 B (4) (t).

(5 h(p) _ .866066.
For component 5, B5) (t ) -P5

Therefore, the Birnbaum reliability (time-dependent) importance measure component

ranking (in descending order) is 5, {3, 4}, { 1, 2}.

Barlow-Proschan Time-Independent Measure Example. From equation (4),

iBP I ( (t). f () (t)dt. A time period of interest (for the range of integration) must

be specified to calculate time-independent measures. In this example, the time period will

be 0 to 50,000 hours (i.e. t = 50,000). For components 1 and 2, where P' ) (t) is given in

equation (9) and p1(t) andf ( (t) are provided in Table 1,

B1) I("oo0 I'(t) f (1) (t)dt =.056671 = J2)

Similarly, for components 3 and 4,

(3) = 50 000 1 3)(t) f (3) (t)dt = .145126 =(4)
BP ,tO =.416 B

For component 5,

iB = 50,0o0 i)(t) f (5)(t)dt = .596417
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Therefore, the Bimbaum time-independent importance measure component ranking (in

descending order) is 5, {3, 4), { 1, 2 }.

Natvig Time-Independent Importance Measure Example. From equation (5),

(I) = ft I() (t). p(j) (t) .(- In p(j) (t))dt. For components 1 and 2, where I () (t) is given in

equation (9) and p1(t) is provided in Table 1,

v(1) = [50 i()(t) P(1) (t) .I-lnp() (t))dt 66.7423 = -2

For components 3 and 4,

J(3) = [50 '000 1(3) (t (4)
N - BJo IB (t) P(3) (t) (inP(3)(t))dt 142.9822 = IN

and for component 5,

N IJ 5 I5 (B ) W P(5) (t) .(-Inp(5) (t))dt = 402.3612

Therefore, the Natvig importance measure component ranking (in descending order) is

5, {3,4}, {1,2}.

In this particular example, the various demonstrated measures resulted in equivalent

importance rankings for the system components (the Birnbaum structural method did not

differentiate between components { 1, 2} and {3, 4) because it considered only system

structure and not component reliability) as summarized in Table 2.

Table 2. Importance Measure Rankings for Example System

Importance Measure Ranking (highest to lowest)
Birnbaum Structural 5, { 1, 2, 3, 4)
Birnbaum Reliability 5, {3, 4), {1, 2)

Barlow-Proschan 5, {3, 4}, {1, 2}
Natvig 5, {3, 4}, {1, 2}
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However, due to the different methods used in the calculation of component importance

measures, there will not necessarily be agreement in component rankings between the

various measures. Several instances were cited in the literature where one measure

produced completely opposite ranking results from another measure. Therefore, analyst

judgment is required for the selection of the most appropriate importance measure for any

given situation [10: 1431].

Simulation Experimental Design and Factor Screening Methods

The purpose of any experiment is to gain insight about a particular system [11:424].

Typically, changes are made to particular inputs (called factors), and the effects of these

changes on some output parameter(s) (called responses) are analyzed and measured.

Computer simulation models allow analysts the benefit of experimenting with a system

model instead of the actual system. This usually saves time and money, and is frequently

the only practical method of analyses.

Rather than randomly trying different combinations of input factor levels to ascertain

their affect on the response, designed experiments provide an efficient and systematic

method for conducting such analysis. Using a designed approach, the analyst can

determine in advance the number of simulation runs and input configurations for each run

to obtain the desired information about the system [12:657]. When more than just a few

factors are under study, a logical first step is to determine or 'isolate' those factors which

significantly affect the response measure. The literature commonly describes this as
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factor screening. Several methods of factor screening are outlined in the literature

including two-level factorial designed experiments, fractional factorial experiments, and

Plackett-Burman (P-B) designs. Most factor screening methods consist of two-level

designed experiments [ 13:50]. In fact, the most popular two-level experimental designs

are fractional factorials and P-B designs [ 14:94]. Not until recently have designed factor

screening experiments been used in the field of reliability to identify important factors

which affect system performance [15:206].

A P-B designed experiment was used in this effort to identify the subset of active

factors which affect availability estimation accuracy. This section provides a brief

discussion of two-level factorial designed experiments, fractional factorial experiments, as

well as an in-depth discussion of P-B designs and their projection properties.

Two-Level (2 k) Factorial Designed Experiments. A full two-level factorial

experiment, where each factor is assigned a high and low level, will be used to estimate the

effects of each of the k factors under study as well as their interaction effects. It requires

simulation runs for each of the 2k possible factor-level combinations (called design points)

[12:660]. When a relatively small number of factors are under consideration, a full two-

level factorial experiment is desirable for factor screening because it identifies all active

effects without confounding. However, when k becomes moderate in size, which is most

often the case, the amount of runs required can become unreasonably large.

Fractional Factorial Designs. To reduce the number of runs required, a fractional

factorial experiment can be run using a subset (2 k-P) of the 2k full-factorial design points.

This will introduce confounding, thus reducing the amount of conclusive information
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gained from the experiment. However, since we commonly assume higher-order

interactions are negligible in factor screening experiments [16:17], fractional factorials can

serve as excellent screening designs where only the main and two-factor interactions are of

interest. The main disadvantage of fractional factorials is, like full factorials, they

frequently require an impractical amount of simulation runs.

Plackett-Burman (P-B) Experimental Designs. P-B designs have traditionally been

used in factor screening experiments to identify significant main effects [17:137], and they

require significantly fewer runs than full and fractional factorials. P-B designs are

designed experiments with two levels for estimating the effects of n - 1 factors at two

levels in n runs. The number of runs (n) must be a multiple of four [18:423]. P-B designs

are useful for screening experiments where several factors are of interest, but only a

portion of these factors are suspected as being significant. They allow analysis of the

main effects with a minimal number of experimental runs. The aliasing structure of P-B

designs is complex, with the main effects being aliased with other interaction effects.

Therefore, P-B designs are most effective when the experimenter has good reason to

believe that the interaction effects are negligible. However, if some interaction effects are

significant, they may be identified when using the P-B projection techniques outlined by

Lin and Draper in [19].

Projection Properties of P-B Designs. When an experimental design is projected,

analysis is conducted in a smaller dimension factor space to provide more detailed

information concerning certain retained factors. For example, let's say an initial full

factorial experiment was conducted assessing four factors with no replicates (i.e. 16 runs)
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and only two factors proved significant. By ignoring the two insignificant factors, the

design could be projected into a 24 full factorial experiment with four replicates. In this

example, the projection produces replicates which allow for the calculation of pure error

and the assessment of the appropriateness of the model fit.

Because of the saturated nature of Plackett-Burman designs, their projection properties

are limited, but they can still be useful. Myers and Montgomery address this limitation by

describing the projection properties of Plackett-Burman (P-B) experimental designs as

unattractive [20:170]. However, with augmentation of additional runs to the original P-B

design, some beneficial projection properties can be obtained. As Lin and Draper show,

P-B designs can be quite useful in conducting screening experiments using a limited

number of runs. Additionally, interaction effects can be analyzed by utilizing Lin and

Draper's P-B projection techniques to obtain a higher resolution design in the significant

factor space.

Lin and Draper's P-B Projection Techniques. An overview of Lin and Draper's

P-B projection concepts can be summarized in a few concise steps:

(1) Conduct a P-B designed experiment with the appropriate number of runs (n)
for the factors which are to be screened and analyzed.

(2) Using Yates algorithm [21:323-324], identify the k factors which exhibit
significant main effects.

(3) Use the associated P-B design columns for the k significant factors as the
projected design in the k factor dimension.

(4) If necessary, conduct supplemental experimental runs using specified levels
for the k significant factors to achieve a desired resolution for the projected
design.
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P-B Projections. Table 3 delineates the projections identified for the 12-run

Plackett-Burman design.

Table 3. Projection of a 12-run Plackett-Burman Design into k Dimensions [19]

k Design Number Description
2 2.1 22 design with 3 replicates
3 3.1 23 design plus 2 - design
4 4.1 Add one more run to obtain a 241 design

Add two more runs to obtain 3/4 replicate design
Add five more runs to obtain a 24 design

5 5.1 Add two more runs to obtain a 2'-2 design
Add six more runs to obtain a 2 -1 design

5.2 Add two more runs to obtain a 2-2 design

Add eight more runs to obtain a 21- design

Add ten more runs to obtain a 25- design

A brief theoretical example may be the best method to demonstrate Lin and Draper's P-B

projection techniques. The following is an example where n = 12 and k = 3. After

conducting the 12 P-B runs, suppose only 3 of the 11 main effects prove to be significant

(i.e. k = 3). By focusing only on the 3 columns that correspond to the k significant factors

(in this example A, B, and C), the smaller design can be decomposed into a full 23 design

and a 23-1 design (where I = ±ABC). Figure 6 shows a full 12-run P-B design. If, after

conducting the 12 runs for the P-B design, only factors A, B, and C possess significant

main effects, the design can be projected (with rows rearranged) into the arrangement

shown in Figure 7.
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Run A B C D E F G H I J K
I + - + + + + +
2 + + - + +-+ + -
3 - + - + + + +
4 + - + + + + +
5i + + - + + + +
6 + + + - + + +-
7 - + + + + + +

- _ + + + + + +
9 - - - + + - + + +
10 + - - - + + + + +
1~ - + - - - + + + + +

Figure 6. Plackett-Burman Design (n 12)

Run A B C
I + + +
2 + + -

4 + - -
,5 - +t +

-6 + t

- - +

9 + - +
10 + + -
11 - + +
12 - - -

Figure 7. P-B Design Projection for n = 12 and k = 3 (A, B, C)

As can clearly be seen, runs 1 through 8 represent a full 23 design, and runs 9 through 12

represent a 23-1 fractional design (where I = -ABC). These 12 runs will estimate all main

effects of the 3 selected factors without aliasing and will also provide information to

calculate pure error needed for lack of fit testing [ 19].

When k = 4 and k = 5 for the 12-run P-B design, no complete projection exists for the

factors of interest. However, viable projections can be achieved by conducting
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supplemental runs. When k = 4, one run can be added to obtain a 24- design, or five runs

can be added to obtain a full 24 factorial design. An additional option is to supplement the

runs to project the design into a three-quarter replicate. The three-quarter replicate

consists of fewer runs than a full factorial design but more runs than a half fraction. The

three-quarter replicate allows for estimation of the main effects and 2-factor interactions

without aliasing with other 2-factor interactions [22]. For k = 4, two additional runs are

needed to complete a three-quarter fraction design for the 4 factors of interest. When

k = 5, two possible projection opportunities occur depending on the structure of the rows

of the 5 selected columns from the original P-B design. If a repeat-run pair emerges, Lin

and Draper call this a 5.1 design, where two more runs can be added to obtain a 21H

design, and six more runs can be added to obtain a 257' design. If a mirror image pair

emerges from the selected columns of the P-B design, this is a 5.2 design, where two

additional runs gives a 2 2 design, eight additional runs gives a 2'- design, and ten

additional runs achieves a 257' design.

Benefits of P-B Designs. Utilizing Plackett-Burman designs and Lin and Draper's

projection techniques offer an efficient way to conduct screening experiments when many

factors are being considered, only a few are suspected of being significant, and higher

order effects are assumed to be negligible. The projection techniques outlined allow

analysis of the two-factor interactions in the k-dimensions of the projection while requiring

less additional runs than a standard foldover.
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Using a P-B experimental design for factor screening in this research provided the

benefit of accomplishing the required objectives with maximum efficiency. In the final

experiment, nine input data characterization factors were assessed for significance. A

substantial amount of effort was required to set up each experimental run. The

completion of a full two-level factorial experiment would have required 512 runs, while

any viable fractional factorial design would also have required a large amount of runs.

This was well beyond the scope of this research. On the other hand, the selected P-B

design required only 12 experimental runs, while still providing analysis of the main effects

and some two-factor interactions.

Past Research

The literature was reviewed for research in the areas of input data characterization and

factor screening for system availability estimation. Numerous examples of factor

screening experiments were found in the current literature. A few articles reviewed were

closely related to this research and many facets of the final experimental design were

extracted from these specific efforts. This section will briefly discuss six articles which

closely paralleled and/or helped formulate the methodology for this thesis.

Sensitivity Analysis of Availability Estimates. Wolf [23] assessed the sensitivity of

space system availability estimates to the underlying component reliability estimates. He

utilized an iterative response surface methodology (RSM) to identify the system

components whose component reliability significantly affected average system availability

estimates. Individualcomponent reliabilities were perturbed to high and low levels, and
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fractional factorial experiments were used for factor screening. From this analysis, Wolf

formulated a regression model predicting average system availability regressed against the

estimated component reliabilities. Extensive regression analysis, involving several

iterations, was necessary to identify the significant or 'important' components. Four of

the initial one hundred components were retained in the final system availability regression

model. Wolf found very little sensitivity of predicted system availability to individual

component failure rate estimates. He surmised that this insensitivity may be due in part to

the simplicity of the model [24:69].

Availability Analysis Using Simulation. Edgar and Bendell [24] tested the

robustness of Markov models in estimating mean-time-to-failure (MTTF), mean-time-to-

repair (MTTR), mean-time-to-first-failure (MTTFF), and availability for coherent systems

of identical repairable components (up to 10) by use of simulation. Using Weibull

distributions to define component failure and repair rates, the authors analyzed steady-

state simulation versus Markov analytical results for both increasing failure rate (IFR) and

decreasing failure rate (DFR) component failure and repair distributions. In general, the

simulation steady-state and Markov model results were found to be consistent. The

authors concluded that failure distributions (as opposed to repair distributions) were more

critical in defining overall system behavior, and that decreasing failure rates were more

critical than increasing failure rates [24:125].

System Complexity (or Size). Hwang, Tillman, and Lee [25] performed a literature

review of works which evaluate reliability calculation methods for complex systems. Their

definition of a complex system was one that could not be categorized as a series-parallel
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structure. They categorized these complex systems as either small (1 - 6 components),

moderate (7 - 9 components), or large (10 or more components). The article provided

diagrams of the chosen example complex systems for the study with some small, some

moderate, and some large. They applied various methods defined in the literature to

evaluate the reliability of each example complex system. Hwang, Tillman, and Lee's

definitions of complexity/size were utilized in this research effort.

Constant Failure Rate Assumption. A common practice in reliability analysis is to

assume that time between failure follows an exponential distribution (i.e. a constant failure

rate). Mortin, Krolewski, and Cushing [26] provided examples where this assumption

produced erroneous results. They concluded that indiscriminate use of this simplifying

assumption can introduce significant error in the analysis [26:54].

Repair Distributions. Kline [27], through in-depth analysis of several systems,

verified that the lognormal is a good distribution for describing repair rates. He also

concluded that use of the exponential distribution for repair rates resulted in negligible

error when the true underlying repair distribution was lognormal [27:79].

Comparison of Screening Designs for Simulation Models. Webb and Bauer [28],

using a large-scale computer simulation, compared three methods of analysis for a

Plackett-Burman screening design: the Box and Meyer approach, the traditional response

surface methodology (RSM) approach, and the Hamanda and Wu approach. This thesis

employed the RSM and Box-Meyer analysis methods.

Box-Meyer Bayesian Method. The Box-Meyer method entails deriving the

marginal posterior probability that a factor is active (i.e. statistically significant) using
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Bayesian techniques. This method determines which model best fits the data by examining

all possible hypotheses and is analogous to all-subsets regression [28:307]. Box and

Meyer explain their method as follows:

"The Bayesian approach to model identification is as follows. We consider the set of all
possible models labeled Mo, ..., Mm. Each model Mi has an associated vector of
parameters 0i, so that the sampling distribution of data y, given the model Mi, is described
by the probability densityf(ylMi, O). The prior probability of the model Mi, is p(Mi), and
the prior probability density of Oi isf(Oi IMi). The predictive density of y, given model Mi,
is writtenf(ylMi), and is given by the expression

f (yIMi) = f (yIMiOi)dO
Ri

where Ri is the set of possible values of Oi. The posterior probability of the model Mi,
given the data y, is then

p(Mily)= p(M )f(yIM )

P( Mh)f(yMh)
h=0

The posterior probabilities p(Mil y) provide a basis for model identification. Tentatively
plausible models are identified by their large posterior probability" [ 14:95].

Since it considers the possibility of interactions, the Box-Meyer method increases the

likelihood of identifying active factors. This is "particularly true of Plackett-Burman

designs where the number of runs is not a power of two" [14:94].

Response Surface Methodology (RSM). The RSM approach consists of

examining the magnitude of the main effects, using analysis of variance (ANOVA), and

examining normal probability and/or Pareto plots. A Pareto plot is a bar chart where the

length of the bars is proportional to the absolute value of the estimated effects [28:309].

Summary

A key objective of this research was to ascertain whether there is utility in focusing on

'important' components when characterizing input data for availability models. This
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chapter provided a detailed review of current methods for computing component

importance. Additionally, a general overview of two-level screening designs as well as a

thorough review of Plackett-Burman (P-B) designs was provided. A P-B screening

experimental design was used in this thesis to determine which selected characterization

factors were significant. Finally, pertinent literature which shaped the methodology for

this effort was discussed.

Many factors contribute to the accuracy of availability models. In an effort to

supplement the analyst interviews, the literature review helped identify input data

characterization factor candidates for analysis: component importance, underlying

component failure and repair distribution characteristics (IFR versus DFR), system

structure type, and system complexity level (or size). The literature review also provided

insight into appropriate factor levels for the two-level screening experiments and

applicable analysis methods.
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III. METHODOLOGY: PRELIMINARY EXPERIMENT

General Methodology Overview

The general methodology for this research entailed a designed screening experiment to

identify significant input data characterization factors affecting availability estimate

accuracy. The RSM and Box-Meyer methods discussed previously were used for analysis

of the experimental output data. The research was done in two steps: a simplified

preliminary experiment analyzing five factors to validate and refine the methodology, and a

final experiment analyzing nine factors.

Component input data characterization factors of interest were identified using

reliability analyst interviews, ideas derived from the literature review, as well as personal

judgment. The nine factors identified for analysis are listed in Table 4.

Table 4. Selected Experimental Factors

Input Data Characterization Factors
True Failure probability density function (pdf) of important

components
True Failure probability density function (pdf) of non-important

components
Number of data points

(assumed to be same for all components)
Fitting technique for Failure pdf of important components
Fitting technique for Repair pdf of important components

Fitting technique for Failure pdf of
non-important components

Fitting technique for Repair pdf of
non-important components

System Complexity Level (Size)
System Structure Type
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For the conduct of the two-level screening experiments, two levels for each factor were

selected, labeled high and low for simplicity. Availability models for various generic

systems of components were created using a PC-based RM&A software program

developed by the Headquarters Air Force Operational Test and Evaluation Center

(HQ AFOTEC). Each system of components was designed by the researcher for complete

experimental control and do not represent actual existing systems. In accordance with the

experimental design, factors were set to the appropriate levels for each design point. The

response measure for each simulation run was system availability absolute estimation

error. Following the simulation runs, the responses were analyzed to screen the active

factors via traditional RSM as well as Box-Meyer statistical analysis techniques.

Preliminary Experiment

To validate the general methodology and to expose potential problem areas, an initial

smaller scale screening experiment was performed on a subset of the factors listed above.

A 25- factorial designed experiment was conducted to determine which of 5 input data

characterization factors (for a simple series-parallel structure) might significantly affect

availability model accuracy.

Definitions. The system considered in the preliminary experiment was a coherent

system comprised of binary state components. As defined previously, a coherent system is

one in which all components are relevant in maintaining a functional system. Binary state

components have just two states: functioning or failed. The states are represented as
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X(t) = 1 if the component functions at time t and

X(t) = 0 if the component is failed at time t.

A system's (as opposed to component) reliability function is depicted as h(p), where p

represents the component reliability vector. System availability (A,) is defined as the

percentage of time the system will perform its specified function (i.e. in operational

condition) in a given period of time [29:253].

Assumptions. The following assumptions were applied to the preliminary experiment:

(1) The structure is coherent consisting of binary state components.

(2) All component failure and repair distribution means are bounded by the
following limits:

(a) Weibull failure distributions: 1000 < mean < 5000 (hours)
(b) Lognormal repair distributions: 10 < mean < 200 (hours).

(3) Only these specific distributions (Weibull and Lognormal) are used to
represent the true component failure and repair distributions.

(4) All parallel components are identical.

(5) No negative location parameters are allowed in distribution data fitting.

(6) Distributional fitting results obtained for identical parallel components require
only one set of input data sampled from one component.

(7) Maximum Likelihood Estimation (MLE) methods are used to calculate fitted
distribution parameters.

(8) The response function, defined as the absolute error of the system availability
measure from each simulation run, is approximately linear with respect to the input
variables.

(9) Higher order interaction effects are negligible.

(10) The component with the highest ranking Barlow-Proschan time-independent
importance measure represents the most important system component.
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Software. The software used to create the availability simulation model is a PC-based

program entitled Rapid Availability Prototyping Tool for Testing Operational Readiness

(RAPTOR), written by the Headquarters Air Force Operational Test and Evaluation

Center (HQ AFOTEC). RAPTOR can be used to create availability, reliability,

maintainability, and sparing models for various systems undergoing operational testing and

evaluation (OT&E). The program was written in MODSIM II, an object-oriented

simulation language, and requires the user to graphically define the system Reliability

Block Diagram (RBD). Component failure and repair rates are simulated over time to

determine overall system R & M characteristics [30]. Weibull++ Version 4.0 was the

software used to generate and fit component failure and repair data sets. Weibull++

Version 4.0 is a reliability software program created by ReliaSoft, Inc. which has robust

data generation and fitting routines for common reliability distributions [31].

Design of Preliminary Experiment. The structure studied was a simple series-

parallel structure consisting of five components depicted in Figure 8.

2'

_-9 21 3 1 51

Figure 8. Experimental Structure for Preliminary Experiment

The experiment consisted of a 2' - 1 factorial design (with three replicates) on the five component

series-parallel system shown in Figure 8. Since this is a resolution V design, the main effects and

two-factor effects can be estimated without aliasing with each other. However, two-factor
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interactions are confounded with three-factor interactions [32:163]. The associated experimental

factors and levels are depicted in Table 5.

Table 5. Experimental Factors and Levels for Preliminary Experiment

Factors Levels
Number of data points 50 +

A (assumed to be same for all components) 10
Fitting technique for Failure pdf of Weibull++ Top MLE Ranking +

B important components Weibull++ MLE: Exponential -

Fitting technique for Repair pdf of Weibull++ Top MLE Ranking +
C important components Empirical

Fitting technique for Failure pdf of non- Weibull++ Top MLE Ranking +
D important components Weibull++ MLE: Exponential -

Fitting technique for Repair pdf of non- Weibull++ Top MLE Ranking +
E important components Empirical -

The Weibull++ Monte Carlo data generation module was used to generate simulated

failure and repair times from the defined component distributions. The Weibull++

distribution wizard was used to fit theoretical distributions to the generated data set and to

calculate distribution parameters using the maximum likelihood estimation (MLE) method.

A 'forced-fit' exponential distribution was used for the low level for component failure

data fitting due to the frequent use of the exponential assumption in component failure

analysis. Separate data sets were generated and fitted for each of the three replications.

The defined system failure and repair distributions as well as the (replication 1) fitted

distributions for each component are listed in Tables 6 and 7.
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Table 6. System Failure True and Fitted Distributions (Replication 1)

10 Data Points 50 Data Points
True Failure Exponential Exponential

Component Distribution Wizard Fit Fit Wizard Fit Fit

Weibull: (hrs) Weibull: Exponential: Weibull: Exponential:
Shape= 1.1 Shape= 1.142 Mean=3333 Shape= 1.304 Mean= 3333

1/2 Scale = 3500 Scale = 3677 Location = 0 Scale = 4018 Location = 8.4
Location = 0 Location = 0 Location = 0
Weibull: Normal: Exponential: Weibull: Exponential:
Shape= 1.5 Mean = 1284 Mean = 1250 Shape =1.212 Mean = 1429

3/4 Scale = 2000 St Dev = 771 Location = 14.2 Scale = 1663 Location = 136.4
Location = 0 Location = 99.7
Weibull: Weibull: Exponential: Weibull: Exponential:
Shape = 2.0 Shape = 1.872 Mean = 1428 Shape = 2.220 Mean = 1429

5 Scale = 2000 Scale = 2014 Location = 384.5 Scale = 2155 Location = 478.9
Location = 0 Location = 0 Location = 0

Table 7. System Repair True and Fitted Distributions (Replication 1)

10 Data Points 50 Data Points
True Repair Low Level Low Level

Component Distribution Wizard Fit Fit Wizard Fit Fit

Lognormal: Lognormal: Lognormal:
1/2 Mean = 40 (hrs) Mean = 43.4 Empirical Mean = 39.1 Empirical

St Dev = 10 St Dev = 6.5 St Dev = 8.8
Lognormal: Weibull: Lognormal:
Mean = 70 Shape = 10.73 Mean = 70.6

3/4 St Dev = 15 Scale = 65.2 Empirical St Dev = 16.5 Empirical
Location = 0

Lognormal: Weibull: Weibull:
Mean = 60 Shape = 1.582 Shape = 2.744

5 St Dev = 8 Scale = 20.0 Empirical Scale = 25.2 Empirical
Location = 38.9 Location = 38.3

Since components 1 and 2 as well as 3 and 4 were identical, the same data fit was used for

each identical pair. Graphical examples of the results for failure and repair pdf data
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fittings for component 5 are shown in Figures 9 and 10. The generated data sets for the

preliminary experiment data fittings are available in Appendix C.
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Figure 9. Component 5 True Failure pdf versus Weibull++ wizard
and exponential fits (Replication 1 using 10 data points)
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Figure 10. Component 5 True Repair pdf versus Weibull++
wizard fit (Replication 1 using 10 data points)
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Simulation Runs. Run duration for each replication was 50,000 hours in simulated

time. Three replications were conducted at each of the 24 design points, resulting in 48

total runs. The response variable was defined as the absolute error of the system

availability measure from each simulation run. The value representing true availability

(Ao = 96.6355 %) used for calculation of absolute error was obtained by conducting 2000

runs using the defined component failure and repair distributions. Banks, Carson, and

Nelson's [33:449] formula was used to calculate the initial estimate of the number of runs

needed to obtain a 95% confidence limit and a ± .015% tolerance for the 'true' system

availability measure:

R_ (za /
2 SO )2  (10)

where R is the estimated number of runs needed, So is the standard deviation of the initial

sample, and s is the desired tolerance.

Since each run represents independent and identically distributed random variables,

traditional statistical methods apply. One hundred initial runs of 50,000 hours duration

were completed resulting in an So for A0 of .3168%. From equation (10), R _> 1713.56.

Therefore, 1714 or more runs were necessary to obtain a baseline availability measure

which would meet the specified tolerance of ± .015% at a 95% confidence level. A total

of 2000 runs were completed which resulted in an average availability value (A0) of

96.6355%. This point estimate of system availability for time 0 to 50,000 hours was the

benchmark of comparison to calculate the absolute error of the system availability measure

for each design point in the experiment.
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Components were rank-ordered by their Barlow-Proschan time-independent

importance measure for 0 to 50,000 hours, where component 5 was deemed the most

important component. Table 8 shows the calculated B-P importance measure values.

Table 8. Barlow-Proschan Time-Independent Importance Measure Values

Calculated B-P
Component(s) Importance Measure

1,2 .056671
3,4 .145126

5 .596417

Analysis Methods and Software. The analyzed multiple regression main-effects

model can be described in the following format:

Yij= 0o+ P-IXI + P 2X 2 + 013X 3 + P4X 4 + 5X5+ Eij (11)

where Yij is the response value for run number i and replication j;

Po represents the intercept (or response mean);

P k represents the regression coefficients for factors k = 1,...,5;

Xk represents the factor level (either +1 or -1) for factor k; and

eij represents the residual error for run number i and replication j.

Yates algorithm [21:323-324] and least squares methods were used to calculate the main

and interaction effects. The correlation coefficient (R2), ANOVA, and lack of fit statistics

were calculated to assess model adequacy. To identify significant factors, normal

probability plots, Pareto plots, Box-Meyer Bayes plots, and linear regression coefficient

t-test statistics were used. The primary analysis software was JMP version 3.1,
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a PC-based statistical analysis program developed by the SAS Institute. JMP possesses

data graphing, experimental design, and statistical analysis routines [34:319-341] which

proved very useful in this research.
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IV. RESULTS: PRELIMINARY EXPERIMENT

Simulation Results

The 2 -1 experimental design and resulting responses for the preliminary experiment

are shown in Table 9.

Table 9. Experimental Design and Responses

Factors Observed Availability* Absolute Error (Y)
Design A B C D E Replication Replication Replication Replication Replication Replication
Point 1 2 3 1 2 3

1 -1 -1 -11-1 1 96.8046% 96.9903% 95.8230% 0.1691% 0.3548% 0.8125%
2 -1 -1 -l 1 -1 96.7202% 97.0266% 95.8372% 0.0847% 0.3911% 0.7983%
3 -1 -1 11-1 -1 96.6918% 96.9858% 95.7640% 0.0563% 0.3503% 0.8715%
4 -1 -1 1 1 1 96.6324% 96.8985% 95.7639% 0.0031% 0.2630% 0.8716%
5 -1 1 -11-1 -1 96.7904% 96.8941% 95.9042% 0.1549% 0.2586% 0.7313%
6 -1 1 -1 1 1 96.7261% 96.8518% 95.9385% 0.0906% 0.2163% 0.6970%
7 -1 1 1 -1 1 96.6137% 96.8172% 95.8354% 0.0218% 0.1817% 0.8001%
8 -1 1 1 1 -1 96.5398% 96.7937% 95.9377% 0.0957% 0.1582% 0.6978%
9 1 -1 -1 -1 -11 96.7274% 96.0124% 96.3905% 0.0919% 0.6231% 0.2450%
10 1 -1 -1 1 1 96.7276% 96.0496% 96.3695% 0.0921% 0.5859% 0.2660%
11 1 -1 1 -1 1 96.6290% 95.7957% 96.2251% 0.0065% 0.8398% 0.4104%
12 1 -1 1 1 -1 96.5982% 95.8427% 96.2454% 0.0373% 0.7928% 0.3901%
13 1 1 -1 -1 1 96.7642% 95.9374% 96.2951% 0.1287% 0.6981% 0.3404%
14 1 1 -1 1 -1 96.7929% 95.9976% 96.4092% 0.1574% 0.6379% 0.2263%
15 1 1 1 -1 -1 96.6571% 95.8386% 96.2923% 0.0216% 0.7969% 0.3432%
16 1 1 1 1 1 96.8079% 95.8528% 96.2844% 0.1724% 0.7827% 0.3511%

2000 Run 'Truth' Availability = 96.6355%

Note that all system availability estimates from each run were within ± .88% of the defined

true system availability.
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Statistical Analysis

A summary of the key model statistics is provided in Table 10.

Table 10. Preliminary Experiment Model Statistical Results

Statistic Value Interpretation
Model explains virtually

k 2  .004537 none of output variability
Whole Model F-test Model as a whole

p-value .9991 is not significant
Lack of Fit F-test Linear model is appropriate

p-value 1.0 (no curvature)

The model statistics show that the defined main-effects model explains very little of the

response variation and that a linear model is appropriate for the experimental region. A

summary of the calculated factor effects and statistics is shown in Table 11.

Table 11. Estimated Effects and Statistical Analysis

Effect t-test
Factor Estimate p-value Interpretation

Intercept .37850% <.0001 Significant (mean response)
A -.00386% .9654 Not significant
B -.02694% .7624 Not significant

C .01933% .8282 Not significant
D -.01871% .8336 Not significant
E .00598% .9465 Not significant

The t-test for each effect estimate indicates that only the mean response (regression

model intercept term) is significant. A supplemental listing of statistical analysis

outputs for the preliminary experiment is provided in Appendix A.
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Graphical Analysis

Figures 11, 12, and 13 show the normal probability, the Pareto, and the Box-Meyer

Bayes plots.
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Figure 11. Normal Probability Plot

Term Scaled Estimate .2 .4 .6 .8

B -0.0136113

C 0.00976686
D -0.0094553

E 0.00302122 _ F

A -0.0019517

Figure 12. Pareto Plot of Scaled Estimates
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Term Estimate Prior Posterior .2 .4 .6 .8

A -0.0436317 0.2000 0.0244

B -0.304292 0.2000 0.0256

C 0.21834656 0.2000 0.0250

D -0.2113806 0.2000 0.0250

E 0.06754200 0.2000 0.0245

Figure 13. Box-Meyer Bayes Plot

The normal probability and Bayes plot results are consistent and indicate that no effects

are significant. The Pareto plot indicates that factors B, C, and D explain the most

variation, but since the amount of explained variation by the model is negligible this result

has little significance.

Additional Analysis

Upon closer inspection of the absolute error responses shown in Table 9, it was

discovered that a possible blocking effect may be present between replications. For

example, notice (in Table 9) that the absolute errors in replication 1 are the smallest values

in all cases. To address this, additional data analysis was conducted on models which

included a blocking variable as well as other response measures: error and squared error.

Table 12 contains a summary of the possible significant factors resulting from all analyses

on the preliminary experimental data.

Table 12. Significant Factors Assessing Alternative
Responses and a Blocking Variable

Response

Blocking Absolute
Variable Error Error Squared Error

No None Possibly C Possibly A & C
Yes None None A and possibly C
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Statistical analysis showed that the blocking variable was strongly significant with all three

response measures.

With the additional responses (error and squared error), factors A (number of data

points) and C (fitting technique for repair pdf of important component: component 5),

presented themselves as possible significant factors. However, these conclusions are not

definitive and thus were addressed again in the final experiment.

Summary

The statistical analysis, using absolute error as a response measure, supports the

hypothesis that there are no significant effects. With the absolute error response, no

effects were shown to be significant in the t-tests, and the normal probability, Pareto, and

Bayes plots revealed no clear significant factor effects. This means that using fewer data

points (i.e. 10 versus 50) and less aggressive fitting techniques (i.e. exponential

assumption for failure rates and use of empirical repair distributions) on important as well

as non-important components did not significantly degrade model accuracy for this

particular structure.

However, introducing a blocking variable in conjunction with two alternative

responses, error and squared error, revealed that factors A and C may be significant.

Therefore, the results from this experiment are inconclusive. Further analysis is required

to determine conclusively if the number of data points (factor A) and the fitting technique

for repair pdf of important component (factor C) are significant.
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V. METHODOLOGY: FINAL EXPERIMENT

Insights Gained from Preliminary Experiment

While the preliminary experiment assessed five input data characterization factors, the

final experiment assessed nine factors listed in Table 4. Several insights were gained from

the preliminary experiment which helped refine the methodology for the final experiment.

After reviewing the methodology and results of the preliminary experiment, AFOTEC

analysts recommended low and high levels of 5 and 25 for the 'number of data points'

factor levels. They felt that levels of 10 and 50 data points were too generous based upon

their experience in past operational availability analyses. They also pointed out that the

mean-time-to-failure (MTTF) / mean-time-to-repair (MRT) ratios were relatively large for

all five components of the experimental structure, and that a wider range of ratios may be

more appropriate for future experimental designs. It was also pointed out that frequently

the analyst will not have a priori knowledge of component failure behavior. This

information is normally required for the calculation of component importance measures,

with the exception of structural importance measures. An additional suggestion was to

analyze the variability of several availability model outputs for individual runs. This was

addressed in a separate study conducted using multivariate techniques on several

RAPTOR model output measures. A summary of the study is provided in Appendix G.

Finally, it was discovered that a significant amount of time and effort was required to set-

up the experimental runs, which included component failure and repair data point

generation and fitting, construction of RAPTOR models, and completion of 'truth' data
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runs. Since the required effort would increase dramatically with the addition of 4 more

factors, any subsequent experimental screening design would need to economize on the

number of simulation runs.

Final Experiment

Assumptions. To produce diversity in the MTTF/MRT ratios for the system

components, wider bounds were allowed for the means of the component failure and

repair distributions. They were bounded by the following limits:

(1) Weibull failure distributions: 1000 < mean < 6500 (hours)

(2) Lognormal repair distributions: 50 < mean < 3000 (hours).

The most important components in a structure were deemed as the ones which fell in the

top 20% of component importance measure rankings based upon component failure

distributions. To allow for the calculation of the importance measures without knowledge

of the underlying failure distributions, the Birnbaum structural importance measure was

used. This measure is based solely upon system structure. All other assumptions outlined

in the preliminary experiment also applied to the final experiment.

Structures. 20 components were designed which were used for the building of system

structures for the RAPTOR models. Each component was designed to have true Weibull

failure and lognormal repair distributions randomly set within the established bounds for

the distribution means. Increasing failure rate (LFR) and decreasing failure rate (DFR)

configurations were created for each component while maintaining the same distribution

mean. To accomplish this, randomly selected Weibull shape and scale parameters were
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utilized to create the IFR failure distributions. Using a randomly generated DFR shape

parameter for each component, the same average failure rate was maintained by adjusting

the Weibull scale parameter to achieve an identical mean failure rate as in the IFR

configuration. This procedure was used to ensure that the results were not biased by

producing a different average failure rate when reconfiguring a component from IFR to

DFR. The shape parameters ranged from 1.1 to 4.0 for IFR configurations and from

.4 to .95 for DFR configurations. A complete listing of component failure and repair

distribution parameters (for both configurations) is shown in Appendix B.

Four basic structures were created from the set of 20 components described above: a

small/series-parallel structure, a small/complex structure, a large/series-parallel structure,

and a large/complex structure. The small structures used components 1 through 5, while

the large structures were comprised of all 20 components. Appendix B provides reliability

block diagrams for each structure.

Design of Final Experiment. The factors and levels for the final experiment are

shown in Table 13. Since each run demanded a large set-up effort, a design which

minimized the number of runs was preferable. Replications were still desired to increase

the confidence in the results and to estimate pure error for lack of fit testing. A full

factorial experiment would require 1536 runs (i.e. 512 * 3 replications), and a 29 5

fractional factorial design would require 48 runs (i.e. 16 * 3 replications). A Plackett-

Burman (P-B) design was chosen because it required only 36 (i.e. 12 * 3 replications)

total simulation runs to assess the nine factors.
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Table 13. Factors and Levels for Final Experiment

Factors Levels
A True Failure probability density function (pdf) of Weibull IFR +

important components Weibull DFR
B True Failure probability density function (pdf) of Weibull IFR +

non-important components Weibull DFR
C Number of data points 25 +

(assumed to be same for all components) 5
D Fitting technique for Failure pdf of important Weibull++ Top MLE Ranking +

components Weibull++ MLE: Exponential -

E Fitting technique for Repair pdf of important Weibull++ Top MLE Ranking +
components Empirical

F Fitting technique for Failure pdf of Weibull++ Top MLE Ranking +
non-important components Weibull++ MLE: Exponential -

G Fitting technique for Repair pdf of Weibull++ Top MLE Ranking +
non-important components Empirical

H System Complexity Level (Size) Large (20 components) +
Small (5 components)

I System Structure Type Series-Parallel +
Complex

The 12-run 9-factor P-B design used for the final experiment is shown in Table 14.

Table 14. 12-run Plackett-Burman Design for Final Experiment

Desien Factors
Point A I B IC ID] E I  F I G I H I

2 + + + + + + + + +
2 + - + + + 
3 + - + + + 
4 - + + - + + 
5 + - - + + + +
6 - + - - + + +
7 - - ++ - +
8 + - - - + +

9 + + - - + +
10 + + + - +
11 + + + +
12 + - + + + +
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Distributional Fittings. As in the preliminary experiment, Weibull++ was used to

generate and fit the component failure and repair data sets for each configuration.

Separate generations and fits were conducted for each replication. Components 14, 15,

and 16 as well as 18, 19, and 20 were identical components, therefore only one generation

and fitting was conducted for each triplicate set per replication. Final experiment fitting

data is contained in Appendix D and graphical examples for the fitted distributions for

some of the components are provided in Appendix E.

Important Components. A complete listing of the Birnbaum structural component

importance measures calculated for each component in each of the four experimental

structures is provided in Appendix F, with a summary provided in Table 15.

Table 15. Top 20% Important Components

Top 20% Important
Structure Components

Small / Series-Parallel Component 3
Small / Complex Component 1

Large / Series-Parallel Components 4, 5, 13, 17
Large / Complex Components 1, 4, 7, 8

Simulation Runs. 16 truth runs were required due to the four additional factors. For

each of the four structures, 'truth' runs were done with the following configurations:

(1) All components with IFR failure distributions

(2) All components with DFR failure distributions

(3) Important components with IFR failure distributions and non-important
components with DFR failure distributions

(4) Important components with DFR failure distributions and non-important
components with IFR failure distributions.
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As before, each simulation run duration was for 50,000 hours simulation time.

Two thousand replications were run to establish 'truth' availability values for each

configuration. For the P-B experimental runs, the response measure was again the

absolute error of the system availability measure from each simulation run as compared to

the 'truth' measure.

Analysis Methods. The analysis methods were identical to those used for the

preliminary experiment. Traditional statistical measures were used to assess model

adequacy, and normal probability plots, Pareto plots, Bayes plots, and linear regression

coefficient t-test statistics were used to identify the significant factor effects. A response

surface was formed to graphically portray the combined affect of the active factors on

model availability estimation error.
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VI. RESULTS: FINAL EXPERIMENT

Simulation Results

The results from the truth and Plackett-Burman experimental RAPTOR runs for the

final experiment are shown in Table 16.

Table 16. Numerical Results for Final Experimental Runs

Component
Design Structure Failure PDF Truth Observed Availability Absolute Error (Y)

Point Important / Runs Replication Replication Replication Replication Replication Replicatior
Non-important 1 2 3 1 2 3

Large /
1 S-P IFR/IFR 83.1373% 81.0810% 78.166% 82.5297% 2.0563% 4.9713% 0.6076%

Small/
2 Complex IFR/DFR 77.3638% 81.2591% 78.2235% 80.9242% 3.8953% 0.8597% 3.5604%

Small /
3 Complex DFR/DFR 76.4428% 77.3795% 79.5758% 74.8265% 0.9367% 3.1330% 1.6163%

Large /
4 Complex DFR/IFR 60.4257% 38.6057% 61.4589% 55.8074% 21.820% 1.0332% 4.6183%

Large /
5 S-P IFR/DFR 82.7799% 80.6977% 77.8648% 71.5604% 2.0822% 4.9151% 11.219%

Large /
6 S-P DFR/ DFR 81.6366% 82.0842% 76.8906% 82.4661% 0.4476% 4.7460% 0.8295%

Small /
7 S-P DFR/DFR 64.6009% 63.2109% 65.2901% 55.2021% 1.3900% 0.6892% 9.3988%

Large /
8 Complex DFR/IFR 60.4257% 41.0340%61.8580%54.8932% 19.391% 1.4323% 5.5325%

Small /
9 S-P IFR/IFR 65.9448% 64.6130% 65.4925% 64.7097% 1.3318% 0.4523% 1.2351%

Small /
10 Complex IFR/ IFR 78.2001% 76.4971% 80.2750% 78.4965% 1.7030% 2.0749% 0.2964%

Large /
11 Complex IFR/DFR 60.7345% 60.7147%156.1168% 60.1398% 0.0198% 4.6177% 0.5947%

Small/
12 S-P DFR/ IFR 65.0705% 63.5087% 65.8172% 65.2438% 1.5618% 0.7467% 0.1733%

A much larger variability in the response was observed compared to the preliminary

experiment. The observed absolute errors in availability estimates ranged from .0198% to

21.82%.

52



Statistical Analysis

A summary of the key model statistics is provided in Table 17.

Table 17. Final Experiment Model Statistical Results

Statistic Value Interpretation
Model explains one-third

R2  .333092 of output variability
Whole Model F-test Model as a whole

p-value .2241 is not significant
Lack of Fit F-test Linear model is appropriate

p-value .9680 (no curvature)

The model statistics show that the defined main-effects model explains approximately one-

third of the response variation and that a linear model is appropriate for the experimental

region. A summary of the calculated factor effects and statistics is shown in Table 18.

Table 18. Estimated Effects and Statistical Analysis

Effect t-test
Factor Estimate p-value Interpretation

Intercept 3.4997% .0001 Significant (mean response)
A .89372% .5688 Not significant
B -1.8335% .2471 Not significant
C -3.5403% .0306 Significant
D -.04232% .9784 Not significant
E .63297% .6861 Not significant
F -.53829% .7310 Not significant
G 1.2852% .4142 Not significant
H 3.1045% .0555 Significant
I -1.5712% .3197 Not significant

The mean absolute error of availability estimates for all the P-B simulation runs is

3.4997%. The t-test for each effect estimate indicates that the mean response

(regression model intercept term), factor C (number of data points) effect, and
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factor H (system complexity/size) effect are significant. A supplemental listing of

statistical analysis outputs for the final experiment is provided in Appendix A.

Graphical Analysis

Figures 14, 15, and 16 show the normal probability, the Pareto, and the Box-Meyer

Bayes plots.
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Figure 14. Normal Probability Plot
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Figure 15. Pareto Plot of Scaled Estimates
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Term Estimate Prior Posterior .2 .4 .6 .8

A 0.5770951 0.2000 0.0284

B -1.1839578 0.2000 0.0467

C -2.2860239 0.2000 0.2430

D -0.0273283 0.2000 0.0244

E 0.4087198 0.2000 0.0263

F -0.3475843 0.2000 0.0258

G 0.8298804 0.2000 0.0335
H 2.0046260 0.2000 0.1524

I -1.0145637 0.2000 0.0393

Figure 16. Box-Meyer Bayes Plot

The normal probability, Pareto, and Bayes plot results are consistent and suggest that

factor C (number of data points) and factor H (system complexity/size) are significant,

while all other factors are not significant.

Significant Effect Model

A subsequent regression model containing only factors C, H, and their interaction term

was analyzed to determine if the C*H interaction term was significant. The results are

shown in Table 19.

Table 19. Estimated Effects and Statistical Analysis for C, H, C*H Model

Effect t-test
Factor Estimate p-value Interpretation

Intercept 3.4997% <.0001 Significant (mean response)
C -3.5403% .019 Significant
H 3.1045% .0379 Significant

C*H -2.365766 .1086 Not significant

Statistic Value Interpretation
Model explains approximately

R2  .296981 one-third of output variability
Whole Model Model as a whole
F-test p-value .0095 is significant
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In this case, the model explained approximately 30% of the response variability, and the

model as a whole was significant. As before, the main effects for factors C and H were

significant. The C*H interaction effect was not significant at a 10% level of significance.

Response Surface

A response surface was developed for the resulting C and H main-effects model:

Y = 3.4997- 1.770133C+ 1.5522389H (12)

where Y is the estimated absolute error in the availability estimate; and

C and H represent the factor level (either + 1 or -1) for each factor.

The resulting response surface and contour plot are shown in Figure 17.
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Figure 17. Two-Factor Model Response Surface and Contour Plot

As the plots in Figure 17 demonstrate, a high level for factor C (number of data points)

and a low level for factor H (system size) result in the smallest availability estimation

error.
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Additional Analysis

As with the preliminary experiment, subsequent analysis was performed using error and

squared error as response measures as well as introducing a blocking variable for the

replications. In all cases, the blocking variable was insignificant. Furthermore, the results

in all cases were consistent with those achieved using absolute error as the response,

showing factors C and H as significant.

Summary

The statistical analysis tests and the normal probability, Pareto, and Bayes plots

support the hypothesis that factors C and H are significant. Subsequent analysis indicates

that the C*H interaction effect is not significant. The blocking effect between replications

was insignificant, and using error and squared error as response variables resulted in

identical conclusions to those achieved using the absolute error response. Analysis of the

resulting two-factor model reveals that availability error is reduced when operating at a

high level for factor C (number of data points) and a low level for factor H (system size).
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VII. SUMMARY AND CONCLUSIONS

Research Objectives

The general purpose of this study was to provide insight into the input data

characterization factors which may affect the accuracy of availability model output. The

potential benefits of identifying the key factors would be the reduction of unproductive

data collection and more efficient RM&A modeling.

The overall research objectives were to:

(1) Identify potential factors which affect availability model output accuracy.

(2) Screen the potential factors to determine which have a statistically significant
effect (or interaction effect) on output accuracy.

(3) Assess the magnitude of the significant effects.

(4) Provide basic insights to aid in efficient component input data characterization
for availability models.

Overview of Results

Component input data characterization factors thought to possibly affect system

availability estimates were identified and analyzed. Using a design of experiment approach

with the absolute error of system availability estimates serving as the response, a two-

stage experimental screening process was conducted to identify the active factors.

Preliminary Experiment. The results from the preliminary experiment were

inconclusive, identifying number of data points and fitting method for the important

components as possible significant factors. Using absolute error as the response, all
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factors proved insignificant. The average system availability estimate absolute error was

.3785%.

Final Experiment. The final experiment, analyzing four basic structures, revealed that

system size (5-component versus 20-component) and the number of data points

(5 versus 25) do affect estimate accuracy. It also showed that fitting technique, underlying

component failure distribution (IFR versus DFR), and system structure type (series-

parallel versus complex) do not have a significant effect. The interaction effect between

the two active factors was not statistically significant. Using error and squared error as

response variables resulted in the same conclusions achieved using the absolute error

response. The average system availability estimate absolute error was 3.4997%, and the

effect estimates were -3.504% for the 'number of data points' factor and 3.1045% for the

'system size' factor. The response surface from the two-factor model derived from the

final experiment showed that estimation error is minimized when the number of data

points is at a high level and the system size is small.

Multivariate Analysis. The supplemental multivariate analysis of RAPTOR output

(Appendix G) revealed that multivariate techniques can be used to discriminate between

various structures based on model outputs. It was also discovered that structures with

predominantly DFR components produce higher variability in RAPFOR output measures

than structures with predominantly IFR components.
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Conclusions

Several insights were gained from this research:

(1) More availability estimation error is to be expected when analyzing larger
system structures;

(2) Availability estimation error can be reduced by increasing the number of failure
and repair data points collected for each system component;

(3) There is no measurable significant difference in estimation error when analyzing
systems with IFR component failure characteristics versus systems with DFR
component failure characteristics;

(4) There is no apparent benefit in focusing on 'important' versus 'non-important'
components when characterizing component failure and repair probability
distributions;

(5) There is no apparent difference in estimation error when analyzing
series-parallel structures versus complex structures; and

(6) No single fitting technique utilized in this research provided any distinct
advantage over any other method for availability estimate error reduction.

To summarize, the availability measure appears to be robust to fitting method, component

failure characteristics, and system structure type, and sensitive to the number of data

points used in data fitting and the system size.

Comparison with Past Research Results

Sensitivity to Component Failure Rate Characterization. In analyzing a large

space system, Wolf found very little sensitivity of the predicted system availability to

individual component failure rate estimates [23:69]. The preliminary experimental results

showed that the number of data points may affect availability estimation accuracy. The

final experiment showed conclusively that the number of data points used in the
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characterization of component failure and repair behavior can have a statistically

significant affect on availability estimation accuracy.

Edgar and Bendell concluded that failure distributions were more critical than repair

distributions in defining overall system behavior and that decreasing failure rates (DFR)

were more critical than increasing failure rates (IFR) [24:125]. This study revealed that,

at least when measuring system availability estimation error, the fitting fidelity of the

failure and repair distributions and the underlying component failure rate (IFR versus

DFR) were not significant. System availability appears to be a highly robust system

characteristic and may be less sensitive than other system characteristics to changes in

certain factors. The multivariate study showed that DFR component structures have

higher output variability than IFR component structures.

Exponential Assumption. Mortin, Krolewski, and Cushing provided examples where

the indiscriminate use of the exponential distribution for component failure

characterization can produce erroneous results [26:54]. In this study, the use of the

exponential distribution for component failure characterization (when the true underlying

failure distribution was Weibull) did not significantly alter system availability estimation

accuracy. Again, this may indicate that the availability measure is robust to component

distributional assumptions.

Suggestions for Further Research

Identifying Other Factors. The final regression model (using the absolute error

response) explained only a portion of the overall response measure variability with an R2
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of .297, suggesting that other significant explanatory variables may exist. More formal

methods could be conducted to identify other possible critical input data characterization

factors not addressed in this study, such as a formal survey of several Air Force reliability

analysts. A screening design could then be accomplished to identify other significant

factors.

Mean-Time-to-Failure / Mean-Repair-Time (MTTF/MRT) Ratio. After reviewing

the results of the preliminary experiment, AFOTEC analysts felt one important factor to

analyze would be the component MTTF/MRT ratio. They suspected that system

availability estimates might be more sensitive to some of the factors analyzed in this study

when several components possessed a low MTWT/MRT ratio. Time did not allow for the

inclusion of the MTTF/MRT factor in this study; in fact, it was randomized in the

experimental design to mitigate ('spread around') its effect. Follow-on experiments which

incorporate this factor may be insightful.

Response Surface Methodology (RSM). This research addressed qualitative as well

as quantitative factors. In all cases, the qualitative factors proved insignificant. However,

two quantitative factors (number of data points and system size) were significant. A

simple linear response surface was developed for the resultant two-factor model for the

defined experimental region. The factor levels used for the experiment (number of data

points: 5 and 25; system size: 5 components and 20 components) represents a limited

experimental region. Using RSM, the experimental region could be expanded and

explored in more detail.
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Appendix A: Statistical Analysis Output

Preliminary Experiment: JMP Output (Without Blocking Variable)

Screening Fit
ABS Error

Summary of Fit
RSquare 0.004537
RSquare Adj -0.11397
Root Mean Square Error 0.30666
Mean of Response 0.378498
Observations (or Sum Wgts) 48

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 5 0.0180009 0.003600 0.0383
Error 42 3.9496998 0.094040 Prob>F
C Total 47 3.9677006 0.9991

Lack of Fit
Source DF Sum of Squares Mean Square F Ratio
Lack of Fit 10 0.0758773 0.007588 0.0627
Pure Error 32 3.8738225 0.121057 Prob>F
Total Error 42 3.9496998 1.0000
Max RSq
0.0237

Parameter Estimates
Term Estimate Std Error t Ratio Prob>t
Intercept 0.3784979 0.044263 8.55 <.0001
A -0.001931 0.044263 -0.04 0.9654
B -0.013469 0.044263 -0.30 0.7624
C 0.0096646 0.044263 0.22 0.8282
D -0.009356 0.044263 -0.21 0.8336
E 0.0029896 0.044263 0.07 0.9465

Effect Test
Source Nparm DF Sum of Squares F Ratio Prob>F
A 1 1 0.00017903 0.0019 0.9654
B 1 1 0.00870755 0.0926 0.7624
C 1 1 0.00448340 0.0477 0.8282
D 1 1 0.00420189 0.0447 0.8336
E 1 1 0.00042901 0.0046 0.9465

Error
Summary of Fit

RSquare 0.057138
RSquare Adj -0.05511
Root Mean Square Error 0.427632
Mean of Response 0.237094
Observations (or Sum Wgts) 48
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Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 5 0.4654480 0.093090 0.5090
Error 42 7.6805195 0.182870 Prob>F
C Total 47 8.1459675 0.7678

Lack of Fit
Source DF Sum of Squares Mean Square F Ratio
Lack of Fit 10 0.0345872 0.003459 0.0145
Pure Error 32 7.6459323 0.238935 Prob>F
Total Error 42 7.6805195 1.0000
Max RSq
0.0614

Parameter Estimates
Term Estimate Std Error t Ratio Prob>jtj
Intercept 0.2370937 0.061723 3.84 0.0004
A 0.0841313 0.061723 1.36 0.1801
B -0.000431 0.061723 -0.01 0.9945
C 0.0507771 0.061723 0.82 0.4154
D -0.003435 0.061723 -0.06 0.9559
E 0.0053354 0.061723 0.09 0.9315

Effect Test
Source Nparm DF Sum of Squares F Ratio Prob>F
A 1 1 0.33974723 1.8579 0.1801
B 1 1 0.00000893 0.0000 0.9945
C 1 1 0.12375899 0.6768 0.4154
D 1 1 0.00056650 0.0031 0.9559
E 1 1 0.00136640 0.0075 0.9315

SQ Error
Summary of Fit

RSquare 0.020457
RSquare Adj -0.09616
Root Mean Square Error 0.274629
Mean of Response 0.225921
Observations (or Sum Wgts) 48

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 5 0.0661547 0.013231 0.1754
Error 42 3.1676947 0.075421 Prob>F
C Total 47 3.2338494 0.9703

Lack of Fit
Source DF Sum of Squares Mean Square F Ratio
Lack of Fit 10 0.0548711 0.005487 0.0564
Pure Error 32 3.1128236 0.097276 Prob>F
Total Error 42 3.1676947 1.0000
Max RSq
0.0374
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Parameter Estimates
Term Estimate Std Error t Ratio Prob>t
Intercept 0.2259211 0.039639 5.70 <.0001
A -0.01106 0.039639 -0.28 0.7816
B -0.018303 0.039639 -0.46 0.6466
C 0.0275692 0.039639 0.70 0.4906
D -0.011699 0.039639 -0.30 0.7693
E 0.0048954 0.039639 0.12 0.9023

Effect Test
Source Nparm DF Sum of Squares F Ratio Prob>F
A 1 1 0.00587120 0.0778 0.7816
B 1 1 0.01608043 0.2132 0.6466
C 1 1 0.03648302 0.4837 0.4906
D 1 1 0.00656969 0.0871 0.7693
E 1 1 0.00115031 0.0153 0.9023

Preliminary Experiment: JMP Output (With Blocking Variable)

Screening Fit
ABS Error

Summary of Fit
RSquare 0.526943
RSquare Adj 0.444158
Root Mean Square Error 0.216619
Mean of Response 0.378498
Observations (or Sum Wgts) 48

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 7 2.0907506 0.298679 6.3652
Error 40 1.8769500 0.046924 Prob>F
C Total 47 3.9677006 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>jtj
Intercept 0.3784979 0.031266 12.11 <.0001
A -0.001931 0.031266 -0.06 0.9511
B -0.013469 0.031266 -0.43 0.6689
C 0.0096646 0.031266 0.31 0.7588
D -0.009356 0.031266 -0.30 0.7663
E 0.0029896 0.031266 0.10 0.9243
Block[I-3] -0.291992 0.044217 -6.60 <.0001
Block[2-3] 0.1172021 0.044217 2.65 0.0115
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Effect Test
Source Nparm DF Sum of Squares F Ratio Prob>F
A 1 1 0.0001790 0.0038 0.9511
B 1 1 0.0087075 0.1856 0.6689
C 1 1 0.0044834 0.0955 0.7588
D 1 1 0.0042019 0.0895 0.7663
E 1 1 0.0004290 0.0091 0.9243
Block 2 2 2.0727498 22.0864 <.0001

Error
Summary of Fit

RSquare 0.434239
RSquare Adj 0.335231
Root Mean Square Error 0.339436
Mean of Response 0.237094
Observations (or Sum Wgts) 48

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 7 3.5372968 0.505328 4.3859
Error 40 4.6086707 0.115217 Prob>F
C Total 47 8.1459675 0.0011

Parameter Estimates
Term Estimate Std Error t Ratio Prob>t
Intercept 0.2370937 0.048993 4.84 <.0001
A 0.0841313 0.048993 1.72 0.0937
B -0.000431 0.048993 -0.01 0.9930
C 0.0507771 0.048993 1.04 0.3062
D -0.003435 0.048993 -0.07 0.9444
E 0.0053354 0.048993 0.11 0.9138
Block[1-3] -0.30305 0.069287 -4.37 <.0001
Block[2-3] -0.013144 0.069287 -0.19 0.8505

Effect Test
Source Nparm DF Sum of Squares F Ratio Prob>F
A 1 1 0.3397472 2.9488 0.0937
B 1 1 0.0000089 0.0001 0.9930
C 1 1 0.1237590 1.0741 0.3062
D 1 1 0.0005665 0.0049 0.9444
E 1 1 0.0013664 0.0119 0.9138
Block 2 2 3.0718488 13.3307 <.0001

SQ Error
Summary of Fit

RSquare 0.373498
RSquare Adj 0.26386
Root Mean Square Error 0.225056
Mean of Response 0.225921
Observations (or Sum Wgts) 48
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Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 7 1.2078352 0.172548 3.4066
Error 40 2.0260142 0.050650 Prob>F
C Total 47 3.2338494 0.0060

Parameter Estimates
Term Estimate Std Error t Ratio Prob>tI
Intercept 0.2259211 0.032484 6.95 <.0001
A -0.01106 0.032484 -0.34 0.7353
B -0.018303 0.032484 -0.56 0.5763
C 0.0275692 0.032484 0.85 0.4011
D -0.011699 0.032484 -0.36 0.7206
E 0.0048954 0.032484 0.15 0.8810
Block[I-3] -0.215254 0.045939 -4.69 <.0001
Block[2-3] 0.0771839 0.045939 1.68 0.1007

Effect Test
Source Nparm DF Sum of Squares F Ratio Prob>F
A 1 1 0.0058712 0.1159 0.7353
B 1 1 0.0160804 0.3175 0.5763
C 1 1 0.0364830 0.7203 0.4011
D 1 1 0.0065697 0.1297 0.7206
E 1 1 0.0011503 0.0227 0.8810
Block 2 2 1.1416805 11.2702 0.0001

Final Experiment - Full Main Effect Model: JMP Output (Without Blocking Variable)

Screening Fit
Abs Error

Summary of Fit
RSquare 0.333092
RSquare Adj 0.102239
Root Mean Square Error 4.645971
Mean of Response 3.499722
Observations (or Sum Wgts) 36

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 9 280.30078 31.1445 1.4429
Error 26 561.21112 21.5850 Prob>F
C Total 35 841.51190 0.2214

Lack of Fit
Source DF Sum of Squares Mean Square F Ratio
Lack of Fit 2 1.51785 0.7589 0.0325
Pure Error 24 559.69327 23.3206 Prob>F
Total Error 26 561.21112 0.9680
Max RSq
0.3349
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Parameter Estimates
Term Estimate Std Error t Ratio Prob>jt
Intercept 3.4997222 0.774328 4.52 0.0001
A 0.4468611 0.774328 0.58 0.5688
B -0.916772 0.774328 -1.18 0.2471
C -1.770133 0.774328 -2.29 0.0306
D -0.021161 0.774328 -0.03 0.9784
E 0.3164833 0.774328 0.41 0.6861
F -0.269144 0.774328 -0.35 0.7310
G 0.6426 0.774328 0.83 0.4142
H 1.5522389 0.774328 2.00 0.0555
I -0.785606 0.774328 -1.01 0.3197

Effect Test
Source Nparm DF Sum of Squares F Ratio Prob>F
A 1 1 7.18865 0.3330 0.5688
B 1 1 30.25697 1.4018 0.2471
C 1 1 112.80139 5.2259 0.0306
D 1 1 0.01612 0.0007 0.9784
E 1 1 3.60582 0.1671 0.6861
F 1 1 2.60779 0.1208 0.7310
G 1 1 14.86565 0.6887 0.4142
H 1 1 86.74004 4.0185 0.0555
I 1 1 22.21834 1.0293 0.3197

Error
Summary of Fit

RSquare 0.364237
RSquare Adj 0.144165
Root Mean Square Error 5.134356
Mean of Response 2.3826
Observations (or Sum Wgts) 36

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 9 392.6757 43.6306 1.6551
Error 26 685.4020 26.3616 Prob>F
C Total 35 1078.0777 0.1515

Lack of Fit
Source DF Sum of Squares Mean Square F Ratio
Lack of Fit 2 7.62238 3.8112 0.1350
Pure Error 24 677.77964 28.2408 Prob>F
Total Error 26 685.40201 0.8744
Max RSq
0.3713
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Parameter Estimates
Term Estimate Std Error t Ratio Prob>t
Intercept 2.3826 0.855726 2.78 0.0099
A 0.9243389 0.855726 1.08 0.2900
B -0.987061 0.855726 -1.15 0.2592
C -1.6128 0.855726 -1.88 0.0707
D -0.121572 0.855726 -0.14 0.8881
E -0.203883 0.855726 -0.24 0.8135
F -0.784844 0.855726 -0.92 0.3675
G 0.8526778 0.855726 1.00 0.3282
H 2.2535167 0.855726 2.63 0.0140
I 0.0108167 0.855726 0.01 0.9900

Effect Test
Source Nparm DF Sum of Squares F Ratio Prob>F
A 1 1 30.75849 1.1668 0.2900
B 1 1 35.07443 1.3305 0.2592
C 1 1 93.64046 3.5522 0.0707
D 1 1 0.53207 0.0202 0.8881
E 1 1 1.49646 0.0568 0.8135
F 1 1 22.17531 0.8412 0.3675
G 1 1 26.17414 0.9929 0.3282
H 1 1 182.82015 6.9351 0.0140
1 1 1 0.00421 0.0002 0.9900

SQ Error
Summary of Fit

RSquare 0.295785
RSquare Adj 0.052019
Root Mean Square Error 97.38942
Mean of Response 35.62339
Observations (or Sum Wgts) 36

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 9 103578.18 11508.7 1.2134
Error 26 246602.20 9484.7 Prob>F
C Total 35 350180.38 0.3290

Lack of Fit
Source DF Sum of Squares Mean Square F Ratio
Lack of Fit 2 922.26 461.1 0.0450
Pure Error 24 245679.94 10236.7 Prob>F
Total Error 26 246602.20 0.9560
Max RSq
0.2984
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Parameter Estimates
Term Estimate Std Error t Ratio Prob>t
Intercept 35.623386 16.23157 2.19 0.0373
A 17.173384 16.23157 1.06 0.2998
B -22.02642 16.23157 -1.36 0.1864
C -30.17743 16.23157 -1.86 0.0744
D 1.7020264 16.23157 0.10 0.9173
E -0.217741 16.23157 -0.01 0.9894
F -2.477217 16.23157 -0.15 0.8799
G 8.4618496 16.23157 0.52 0.6066
H 27.486565 16.23157 1.69 0.1023
I -18.71392 16.23157 -1.15 0.2594

Effect Test
Source Nparm DF Sum of Squares F Ratio Prob>F
A 1 1 10617.304 1.1194 0.2998
B 1 1 17465.871 1.8415 0.1864
C 1 1 32784.393 3.4566 0.0744
D 1 1 104.288 0.0110 0.9173
E 1 1 1.707 0.0002 0.9894
F 1 1 220.918 0.0233 0.8799
G 1 1 2577.704 0.2718 0.6066
H 1 1 27198.406 2.8676 0.1023
I 1 1 12607.593 1.3293 0.2594

Final Experiment - Full Main Effect Model: JMP Output (With Blocking Variable)

Screening Fit
Abs Error

Summary of Fit
RSquare 0.369889
RSquare Adj 0.081088
Root Mean Square Error 4.70038
Mean of Response 3.499722
Observations (or Sum Wgts) 36

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 11 311.26611 28.2969 1.2808
Error 24 530.24579 22.0936 Prob>F
C Total 35 841.51190 0.2931
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Parameter Estimates
Term Estimate Std Error t Ratio Prob>t
Intercept 3.4997222 0.783397 4.47 0.0002
A 0.4468611 0.783397 0.57 0.5737
B -0.916772 0.783397 -1.17 0.2534
C -1.770133 0.783397 -2.26 0.0332
D -0.021161 0.783397 -0.03 0.9787
E 0.3164833 0.783397 0.40 0.6898
F -0.269144 0.783397 -0.34 0.7342
G 0.6426 0.783397 0.82 0.4201
H 1.5522389 0.783397 1.98 0.0591
I -0.785606 0.783397 -1.00 0.3260
Block[I-31 1.2199611 1.10789 1.10 0.2817
Block[2-3] -1.027106 1.10789 -0.93 0.3631

Effect Test
Source Nparm DF Sum of Squares F Ratio Prob>F
A 1 1 7.18865 0.3254 0.5737
B 1 1 30.25697 1.3695 0.2534
C 1 1 112.80139 5.1056 0.0332
D 1 1 0.01612 0.0007 0.9787
E 1 1 3.60582 0.1632 0.6898
F 1 1 2.60779 0.1180 0.7342
G 1 1 14.86565 0.6728 0.4201
H 1 1 86.74004 3.9260 0.0591
I 1 1 22.21834 1.0056 0.3260
Block 2 2 30.96533 0.7008 0.5061

Error
Summary of Fit

RSquare 0.415505
RSquare Adj 0.147612
Root Mean Square Error 5.124008
Mean of Response 2.3826
Observations (or Sum Wgts) 36

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 11 447.9467 40.7224 1.5510
Error 24 630.1310 26.2555 Prob>F
C Total 35 1078.0777 0.1778
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Parameter Estimates
Term Estimate Std Error t Ratio Prob>t
Intercept 2.3826 0.854001 2.79 0.0102
A 0.9243389 0.854001 1.08 0.2898
B -0.987061 0.854001 -1.16 0.2591
C -1.6128 0.854001 -1.89 0.0711
D -0.121572 0.854001 -0.14 0.8880
E -0.203883 0.854001 -0.24 0.8133
F -0.784844 0.854001 -0.92 0.3672
G 0.8526778 0.854001 1.00 0.3280
H 2.2535167 0.854001 2.64 0.0144
I 0.0108167 0.854001 0.01 0.9900
Block[I-3] 1.45715 1.20774 1.21 0.2394
Block[2-3] -1.571483 1.20774 -1.30 0.2056

Effect Test
Source Nparm DF Sum of Squares F Ratio Prob>F
A 1 1 30.75849 1.1715 0.2898
B 1 1 35.07443 1.3359 0.2591
C 1 1 93.64046 3.5665 0.0711
D 1 1 0.53207 0.0203 0.8880
E 1 1 1.49646 0.0570 0.8133
F 1 1 22.17531 0.8446 0.3672
G 1 1 26.17414 0.9969 0.3280
H 1 1 182.82015 6.9631 0.0144
I 1 1 0.00421 0.0002 0.9900
Block 2 2 55.27102 1.0526 0.3646

SQ Error
Summary of Fit

RSquare 0.374379
RSquare Adj 0.087636
Root Mean Square Error 95.54236
Mean of Response 35.62339
Observations (or Sum Wgts) 36

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 11 131100.15 11918.2 1.3056
Error 24 219080.23 9128.3 Prob>F
C Total 35 350180.38 0.2802
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Parameter Estimates
Term Estimate Std Error t Ratio Prob>t
Intercept 35.623386 15.92373 2.24 0.0348
A 17.173384 15.92373 1.08 0.2915
B -22.02642 15.92373 -1.38 0.1793
C -30.17743 15.92373 -1.90 0.0702
D 1.7020264 15.92373 0.11 0.9158
E -0.217741 15.92373 -0.01 0.9892
F -2.477217 15.92373 -0.16 0.8777
G 8.4618496 15.92373 0.53 0.6000
H 27.486565 15.92373 1.73 0.0972
I -18.71392 15.92373 -1.18 0.2514
Block[1-3] 38.210871 22.51955 1.70 0.1027
Block[2-3] -26.2954 22.51955 -1.17 0.2544

Effect Test
Source Nparm DF Sum of Squares F Ratio Prob>F
A 1 1 10617.304 1.1631 0.2915
B 1 1 17465.871 1.9134 0.1793
C 1 1 32784.393 3.5915 0.0702
D 1 1 104.288 0.0114 0.9158
E 1 1 1.707 0.0002 0.9892
F 1 1 220.918 0.0242 0.8777
G 1 1 2577.704 0.2824 0.6000
H 1 1 27198.406 2.9796 0.0972
I 1 1 12607.593 1.3811 0.2514
Block 2 2 27521.966 1.5075 0.2417

Final Experiment - C, H, C*H Model: JMP Output

Response Variable: Absolute Error

Screening Fit
Y

Summary of Fit
RSquare 0.296981
RSquare Adj 0.231073
Root Mean Square Error 4.299705
Mean of Response 3.499722
Observations (or Sum Wgts) 36

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 3 249.91310 83.3044 4.5060
Error 32 591.59880 18.4875 Prob>F
C Total 35 841.51190 0.0095

73



Parameter Estimates
Term Estimate Std Error t Ratio Prob>t
Intercept 3.4997222 0.716617 4.88 <.0001
C*H -1.182883 0.716617 -1.65 0.1086
C -1.770133 0.716617 -2.47 0.0190
H 1.5522389 0.716617 2.17 0.0379

Effect Test
Source Nparm DF Sum of Squares F Ratio Prob>F
C*H 1 1 50.37167 2.7246 0.1086
C 1 1 112.80139 6.1015 0.0190
H 1 1 86.74004 4.6918 0.0379

Prediction Profile

21.82-

Y 3.499722

0.0198

* I 0
"7 0 "7 0

C H
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Appendix B: Final Experiment Structures

and True Component Distribution Functions

Small / Series-Parallel:

1 4

3

2 5

Small / Complex (Bridge Structure):

1 4

3

2 5

Large / Series-Parallel:

Large / Complex:
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Component True Failure and Repair Distributions (Final Experiment)

IFR DFR Repair
Component Failure Distribution Failure Distribution Distribution

Weibull: Shape = 1.5 (hrs) Weibull: Shape = .50 (hrs) Lognormal: (hrs)
1 Scale = 3000 Scale = 1354 Mean = 2800

Location = 0 Location = 0 S.D. = 200
Weibull: Shape = 4.0 Weibull: Shape = .85 Lognormal:

2 Scale = 2500 Scale = 2082 Mean = 1500
Location = 0 Location = 0 S.D. = 100

Weibull: Shape = 2.5 Weibull: Shape = .95 Lognormal:
3 Scale = 4000 Scale = 3468 Mean = 1000

Location = 0 Location = 0 S.D. = 150

Weibull: Shape = 1.7 Weibull: Shape = .60 Lognormal:
4 Scale = 1700 Scale = 1008 Mean= 150

Location = 0 Location = 0 S.D. = 25
Weibull: Shape = 2.8 Weibull: Shape = .40 Lognormal:

5 Scale = 3500 Scale = 938 Mean = 850
Location = 0 Location = 0 S.D. = 90

Weibull: Shape = 1.9 Weibull: Shape = .70 Lognormal:
6 Scale = 3333 Scale = 2336 Mean= 3000

Location = 0 Location = 0 S.D. = 125
Weibull: Shape = 1.2 Weibull: Shape = .55 Lognormal:

7 Scale = 2575 Scale = 1423 Mean = 190
Location = 0 Location = 0 S.D. = 20

Weibull: Shape = 2.7 Weibull: Shape = .78 Lognormal:
8 Scale = 1500 Scale = 1156 Mean= 1200

Location = 0 Location = 0 S.D. = 75
Weibull: Shape = 1.6 Weibull: Shape = .91 Lognormal:

9 Scale = 6000 Scale = 5143 Mean = 1000
Location = 0 Location = 0 S.D. = 30

Weibull: Shape = 2.3 Weibull: Shape = .46 Lognormal:
10 Scale = 4700 Scale = 1763 Mean= 2300

Location = 0 Location = 0 S.D. = 133
Weibull: Shape = 1.4 Weibull: Shape = .82 Lognormal:

11 Scale = 2700 Scale = 2210 Mean= 500
Location = 0 Location = 0 S.D. = 60

Weibull: Shape = 1.9 Weibull: Shape = .67 Lognormal:
12 Scale = 2700 Scale = 1812 Mean = 1000

Location = 0 Location = 0 S.D. = 100

Weibull: Shape = 1.3 Weibull: Shape = .86 Lognormal:
13 Scale = 4200 Scale = 3591 Mean = 90

Location = 0 Location = 0 S.D. = 15
Weibull: Shape = 1.5 Weibull: Shape = .62 Lognormal:

14/15/16 Scale = 2600 Scale = 1626 Mean = 2200
Location = 0 Location = 0 S.D. = 200

Weibull: Shape = 1.1 Weibull: Shape = .75 Lognormal:
17 Scale = 3100 Scale = 2513 Mean = 750

Location = 0 Location = 0 S.D. = 60
Weibull: Shape = 1.6 Weibull: Shape = .48 Lognormal:

18/19/20 Scale = 2000 Scale = 829 Mean = 280
Location = 0 Location = 0 S.D. = 50
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Appendix C: Fitting Data (Preliminary Experiment)
o a FComponents 1 and 2:

Fai lure POF .(oWeul+Slection pWiu+ Ejoenil

Se o et2 Set3 Retp RRep i R

3400 2.290. 2722 189. 0183 Sae 1. 1424. 8048 1...... 0 003. 0.0..... . .. 4
6623.047: 5161.413: 2434k877 Scale: 3676.78: 26692i 2..7..6 .3 .6.33 me..aa..n .-3 13 .3 3 .3.33, 3333.333: 2500:..I 6 .. -.1. 1 ......................- -........ ...... ...... ...... ....... ...... ...........-...........II.,.............-... ........................ ................... ..................................... ... .I .159312: 2421.625: 416609Lcto 0: 161.866: 0 :Location 0 :0 145:6065
" ~ ~ 3 .4 i "' ........ ......................................................................a..... .............. i............... i... ..............

r .7i : 32 :is ! . .......i....... ............... ........................ I ................. ................ ...... ..................
i4116.536: 4305.172: 6656.384:

• 2 5 : i g8 r : g g ............. i........... i ....................................... .................................. i................ .............
i .......................................... i.............. .. ...............i................................................... i ...................... .................. ....

' . ~~~~~~~~~~ " ;ri ... c r 1y r ,., ............. .......... .......... ............6 .............

.7 i .6 s 2 " .i ; i i ' '2 i i ~ . .. .............. ..... ....... .................... .......... ...... .. ................ ...........- .. .................................... .............. ...... .. ..... ............ ..

230.2787. 1673.1 3 2719.86'6: .... . . . . . . .

........g ....... 7 ; 6 .. ... ................... .. ... ... ............ ..... ... .. ............ i... ... .......... ... ......... ..... ...................
3375556 7631 6294.531

i" i7 i :7:' 1 " t ,"7 8 6 2 i i....................................... ......... ............... ...................................ie u l : ...................... ......

1954.587: 2410 .21058:

i .... : i :i................ .. ............... .... . ............ ............... ........................si a i ........... .i................. .................

2515611798.13: 210.6919'

.. .... ... ' 6 .o........ .......... ... .... ........ ...... .. ................... ............. ....s i .......... ...... ........... I...... i ......... .

f 2 : i 6 i:4i~ i : ... .. ... .... ... ... .. .. ... ....................................... ............................ ............. ...........................

Failure P .DF .. :Crop Weibull++ Selection) :(Weibul++ Expo.entia
:50 Data Points H ighk Levelf Fitting Parameters :Low Level Fitting Parameters

i"22 5; 7 "g? i7 ! .7 ............... ................................................................ ................................ ..................................

:Seti :Set2 :Set3 :Repi Rep2 iReps Rep Re2 R8
834545513i 925.3368i Shpe 1.3037: 1.0481 14Lmd 03 000 0.0004:

" .'7'2s ' i;4 74;" i ; i$7 ........ ........ ........ ................... ................. ............. .................... ................ ............... ... .... .

69551 69886: 2083.236: Scale 4018.15: 4179.29:21 4 en 33 3 00 20

' i i ; i i .' 2 " . g' "6 .. ....................... ...... .............................................. i .................. ...... ........... ................ ...............

721 8845 867.6317: 485 Location: 0 0 0. Location 83745....8.78...... ..

' 5 g ~ 3 :; 2 ; fi.. .. .. .. .. .. .. .. .......... ............ ................................. ............... -.... ........... :.. ............. ............ .....

737. 2352.... ............ 574*27.22 2328

i .96 i $ 7:~ i 8 7ii ........................................... ................................................... ................ ....................................

.. 6 . ......................... ................ .............. ............... ,................ ................................... .......... ...i. ........... ................. .

74 713508.063: 6648.75

i ; .7i 'i i$ ; g ' 7 'i .................................... i ..... ........................................ ............ ........ ........ .................
",4. ~ ~ ~ ~ 9 6 f 12 ,i -2 ..... .................... ............. ................. ............... ....... ... ........ ..................... ........

i~g. ; ,i: S~i............................................................................................. ...............

1170.862: 782.0633: 620675

r ~ g .g , i $ i ...............................i ........................... .................. ..................... .. ......... ......... ...........
i ,6 1 ! 4 ,i .7sr . .. ..... ... ........... . ............. ..... .............. ........... .. .. ........ .... ... ...... .. ....... .. ... ........ ............... .. .

1708436 3509 1055RUE PARAMVETERS

r 8 2 6 i 7 .;$:i i 3 i : .i .............................................. ...... ...............................................................................................

172418: 8846.494' 778.6821: Weibul
180 00 373.2: 65747Shape: 1.1;

.... 7 1 7 ; 7 . .............. .... .............. .............. ...... .......................... ... .... ......... ............. .... .............. .. ........ ................. .

1807516501:1970.843: Scale: 3500:
2004.512: 334572682 Location; 0:
2014.792: 11180.08: 15228 .,

2016208: 8001.486: 260.861
202 69 479.: 298.2684i...............

2182.257 737.3073: 2800.817:
21869 161.78 2004.737

2252 016: 4.9562: 5362.177:

2342 27: 202289: 3807.239i

2805.726: 5324.474: 596.207:.......
29359: 1835.266: 1682965 :

3095.633: 974 3 4229.763:
32108 1952.818':. 1186*** 9"52
3330.3586 117.2965: 4641868,6

34298 8548 42.8431: ........

.........3465.598 7398.04: 1407 097:
3474.296: 542.9199: 4102534
3505.905'; 2608.717:: 8.5878:

38094 59.474: 1962.96:
39512 3452.596:: 332.806:
397555: 4376: 274.9632i

4158. 176:: 1302.869: 755i 51i . ... ... ii....... ....

4727.568 8041.356: 7054521
5381.795 2394.354 40727

59521635.696F747.6762;
6399.86.:;14488.04: 1450.601i

6793.979: 193.0907: 4390.494:
7673.1891 6415.875 675
7974.926; 823.0479:459
8068.264: 274.0156:: 3508264

13761.84: 1838.203: 2782.958
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[~ ~~~ ~ ~~~~~~~~~~~~ .. : .. .87 2 2743 ...... '~e~l " "17 8i .7 9 .... ... ... .............. ............................ ............. ................... ........................................i e nfrN r a rae : 36 8 6 1 3

Coponent 1 and 2 iRepair Data I . True Lognormal Mean:; 40:

..f.'." .. " .............. "' ...fiiii;~ 9 ,, 7 " '6 .... .....ii....... ....... ........... ................ .. T:"r u" .Lc;gXnBo"r',ioT f DWi. I' i '; "" 6 2 "

. True "u7l..... ....... ......... ......Rpair POF. . . opW i++ SelecionT .(Emical) True Lognormal aran
50 i . .. High Leii tti n g Parameter " ow Loafl iting Parameters

Set i 't2 SetS ......... 2 i p j... .............

... 2".1 f ""S '.'t " .'2 B ap.... ...t$ ! "'$ 2 ..A 6.. ....... . .... ..9 ............ Flap i :'Rii' i ................. i .... ..... .............. ..........

33979 2.46:27.4382: N Men 3728: 379 Mean for Normal moaas3'9574
34116:337581 28 9223.N.SD .147 0.2001 !(Empinical)VafoNrmlaata 06842

398336.. 239530024..og71 2n394:6 41657..7.. 1:e .forNormal Vacates .... 0:06624622

" 9 .' 3 3 0 .' " .2 2 ; ' : L N ......M i ...... ...4 ....... .. ...... ................. .............. , ............ ..................................... i. .................

40-3567 375516 31.9426; LogN D . .6 5....... ...... ..... .. ............................
43020 3699..54

i i 9 f ' i ii~ ii i i i ................... .............. ............. .............. .............. ............. .............. .............. I .......................... ..... ..........

4548 43.1749 34.1744: Weibull Shape 0.9565

......... ................6 ' : 3 ': 5 .................... 7....... I....... :. . ............... .. ......... .. ............................ ............... ..........................................................

451152i 43.2111 35.360: Scalae: 56

i : i -I .: I .. ........ .......... 1 ....... .......... ........... i..... ....... .... ......... .... .... .... ... .. ......i. ...................................

4825 S 80 49.1101: Location 290
73- 5194 56.1393

i ~i: i 8i : ~ i ................................................................. .................................. ............................ .................

6154 357: 64.5566,

i " 7 7 ' ' ............. .................... ............ ............. ................ .............. ......... .............. .................................... .....................

i r(Top Weibull++ Selection) (Empirical)...... .. ..
:50 Data PointasHi g........... ...... ...... .Le ..i ..tl.ngP.amm ........... Low Lew Fitting P.ra..e

.. . ...... . .. ;4 : .i............. ...... ....................... ........................... ............................ .. ... .......... ..........................................................................

Sei Set SetS Rp Rep2 Rp3 Re6pi jHep2 R ep3

..0 8 i 7 1 5 .................. ..I - . ... . .. .. .. .. ............... .. ....... ........ .. ............ .......................... ... .............. ........... ............. ....... ........ ....................... .

2491 26.4643: 18.0659: N Mean 364017361
"4 687i1: " 5: ...... 2 9885 ... 8515 N. .50 0.2218: 0:9(Empirical)

2 7 .6 1 9 3 6 :4 f 4 i i~ .. ,,,- ... ..,~...... n.... 9'... .. .. ... .. .. ... .. .. ........ ...- .. .... ..: 6 .. .... .. * ................. ....................... .................
.............................. I .................... "............. ...... .. ..... ............ ............. .............. ......................................... ............... ....... .......................

28 0627' 26.7059: 24.3652: LogN S.D. 8.772902: 0 1 -6161

" : " i : 3 " : i ................. : .............. ....... ...i ........... ....... ....... i....... ....... .............. .................................................... ......................

29.1609:758 2.45 Weibl Shp807

:1 11 11 - . ., .. .. / 8 0 oI ..8 .. . ... .............. . .. ..................... .. .... ...! ...... .... .. ............. .............. ........................... ........ t - - - 1 ....... ....

29.7943;2 002.87 Sae255
3173 296574 2.02 Location. 17.1612

30.3590: 31.8349: 27.1011: .........

i 7 . ; : ( : s ............ .............. i............. .............. ....... ....... ..... ......... ......... ..... .............. i. .............................. ... .....................

30.9141:394 788

146 33932 268710-

.... ; i " " ....' ..." .....2 .................... .............. i................ ............. ............... .... ................ .............. ............................ .......... .. .. ......... .

324434 5756: 30.3222:

34.1794 314 329
34.2628: 35.2887: 33.4084:

32756 360 361

................. .... ............. i .................... ............................. ............ ............................... ............... -......... ....... * ::::::::: ........: *::........:

34.433 36.0881 33.6211:

369837.31485 33.8202:
3666 37.3771: 3826

3768517: 37 4830:.35.3132:
3322 31706: 35.6575:

35.2895: 3321537772:
38.3758: 3357035698
38.43968 39.0699: 36.051:
33.4502- 39.4282i 36.9805

3867 956 796:............... ....... ....

j38.7681 i40.3300i357

40.1211:413 422

40.8159: 41.5193i 40.3624:

42.5334: 43.1043: 43.4949:

43.0896 448 451
44.3323i 45.9010; 45.5003:.......

* 44554 4085 6,4135:

47.3783:481 407
S572 48.4473: 50.0807,

*49.1954: 4638i 51.5631:
*49.4926 4578006 548195
5748 4669502: 55.6008i

* 83859 52820 58298:
83.3560: 57.2091: 61.'3957:
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Corponents 3 and 4:
Component 3 and 4 Failure Data

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
10 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 Repl Rep2 Rep3 Repi Rep2 Rep3

1419.354 2052.765 2207.199 Shape 1.842 1.701 Lambda 0.0008 0.0008 0.0006
963.0771 1421.759 1785.776 Scale 1808.529 2257.799 Mean 1250 1250 1666.667

14.1518 1909.412 2657.587 Location 317.4287 43.7521 Location 14.1518 664.5628 459.4963
544.4623 3221.591 5230.137
382.2532 1794.981 1682.83 Normal
2046.543 3727.739 1131.662 Mean 1284.115
1318.988 2250.122 2304.446 S.D. 771.0283
2070.357 1122.486 2220.419
1539.051 664.5628 818.5274
2542.909 1025.499 459.4963

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
50 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 1 Repl Rep2 Rep3 Repl Rep2 Rep3

136.4218 2006.373 1696.307 Shape 1.2122 2.0219 1.6765 Lambda 0.0007 0.0005 0.0005
171.3912 948.7334 1365.369 Scale 1663.22 2204.209 2125.105 Mean 1428.571 2000 2000
224.7112 2500.185 2687.736 Location 99.6879 0 0 Location 136.4218 0 0
277.1905 1696.223 1805.908
345.4204 809.518 2860.507
350.7182 4187.265 2341.057
389.1629 1980.925 2884.308
479.4368 1541.282 240.2723
500.3845 3635.917 4878.578 TRUE PARAMETERS
527.7269 1674.282 2950.525 Weibull
533.4867 722.2443 4238.523 Shape 1.5
545.9969 385.2486 1467.667 Scale 2000

586.504 1605.537 1540.711 Location 0
634.7171 3350.027 649.1847
641.1439 4166.519 1783.356
814.9092 2043.477 80.483
817.0835 1839.547 4346.261
817.7518 1992.607 2434.073
1013.223 364.0332 701.3264
1023.585 1415.027 1327.958
1041.254 3404.917 695.0499
1119.601 2785.675 4072.324
1162.011 1613.91 641.4696
1323.632 1456.764 3960.691
1356.765 403.8959 1580.863
1452.204 2513.195 1864.181
1517.397 1049.062 2072.33
1610.408 1199.236 1395.664
1650.178 2189.122 1179.098
1747.276 894.8619 616.6241
1783.921 712.8388 2660.072
1787.338 2992.213 2868.949
1910.095 851.2721 589.046
2061.335 3859.053 994.874
2073.654 1165.431 595.9472

2149.89 195.2311 1987.552
2202.226 3017.145 890.1436
2661.079 3160.684 1949.515
2663.375 1935.184 1520.9931
2824.277 1190.268 4662.404
2938.453 2587.891 1383.616
3044.948 1584.65 2257
3108.324 2100.979 1979.941
3111.957 1745.846 2055.053

3218.49 1494.4471 1163.525
3297.171 2859.441 1122.916
3818.062 2195.199 2345.829
3881.404 3036.767 1677.936
4296.429 2630.787 1388.224
5500.918 2086.617 465.4539 _
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Compoen 3 and4 Repair Oata I IITrue Lognormal Mean: 7
1 True Lognormal St Dev: 

Repair PDF (Top Weibull++ Selection) (Empirical) True Lognormal Variance: 225
10 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Seti Set2 Set3 Repl Rep2 Rep3 Repli Rep2 Rep3

50.5429 50.1709 58.4619 N Mean 4.2835 4 Mean for Normal variates: 4.22604752
54.5919 59.9039 63.5271 N S.D. 0.1966 (Empirical) Var forNormalvariates: 0.04489532
54.8351 64.0371 69.9191 LogN Mean 1 73,9083E St Dev for Normal Variates: 0.211885157
61.5746 67.909 70.1893 LogN S.D. 0 14.6719 .0
62.2426 70.2945 72.19741
63.4417 70.9324 83.9836 WeibullShape 10.7264 2.0011
63.6161 80.1769 85.9047 Scale 65.159 31.3301
68.8356 82.1574 88.4354 Location 0l 51.6926

69.213 93.631 91.2170
5700 5899.7863 110.0655

Repair PDF (Top Weibull++ Selection) (Empirical)
50 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 Repl Rep2 Rep3 ;Repl Rep2 Rep3 1

34.1787 38.7913 41.6494 N Mean 4.2304 4.2268 4.2206
48.3627 46.0611 43,2507 N S.D. 0.2308 0.1961 0.266 (Empirical)
49.9477! 53.5753 43.4841 LogN Mean 70.60029 69.82748 70.52576
51.5149 53.7212 44.2777 LogN S.D. 16.51397 13.82587 19.09664

54.3864 55.0942 47.1829
54.4412 57.098 49.7388
54.5729 57.5047 49,7418
56.21621 57.6721 51.2158
56.7004 58.4367 52.531
56.9730 59.2594 54.6539
57.3835 59.9447 54.7453
58.8944 61.2913 56.0434
59.0369 61.3342 57.1667
61.1619 61.8150 60.0750:
61.4112 62.3685 60.3486,

61.8558 62.5415 61.1234
62.0726 62.9040 61.8934
62.0887 62.9070 61.9786
63.3913 63.0202 62.6219
63.4997 63.2976 63.4711
63.7484 63.3424 64.3084
64.2637 63.3544 64.3633
64.9753 66.6072 65,3554
65.8449 67.0459 65.5944
67.5707 67.1534 67.4849
68.3410 67.3088 67.9115
68.5082 69.4443 68,4511
69.2928 69.4803 68.7440
69.5706 69.8782 69.7515
70.0106 69.9384 70.2290
70.2269 70.0798 70.4140
70.7711 70.3432 71.1318
71.6171 72.0448 71.4524
75.8268 72.7633 73.2540
75.8544 74.5976 73.2624
76.7763 77.2004 74.5592
76.8853 77.9867 76.8966
80.2664 81.3173 77.4953
81.9055 81.4892 78.2504
83.1295 81.5827 78.5668
84.8814 81.6052 82.8026
85.2087 82.0497 87.8336
85.4425 82.3824 88.8182
88.9759 82.7042 89.0255
91.0799 83.2923 102.6272
91.6729 83.6743 108.3565
94.6421 84.1560 114.8737

105.4016 91.3150 115.7703
108.3813 100.5538 122.6361
132.2814 129.3339 122.9925
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Cornonent 5:
Component 5 Failure Data II I
Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
10 Data Points High Level Fitting Parameters Low Level Fitting Parameters
SetI Set2 Set3 Repl Rep2 Rep3 Repl Rep2 Rep3
384.4927 641.1133 244.2498 Shape 1.8723 1.1411 1.8549 Lambda 0.0007 0.0006 0.0009
545.0513 836.1144 473.7554 Scale 2014.397 1492.544 1545.62 Mean 1428.571 1666.667 1111.111
1014.724 1063.66 774.6268 Location 0 530.6213 0 Location 384.4927 440.0948 244.2498
1467.796 1225.419 1200.055

1528.46 1386.741 1259.333
1796.037 1677.181 1431.017
1805.159 1710.791 1463.062
2685.534 2509.8 1628.846
3171.514 4063.236 2380.459
3470.297 4405.597 2878.333

Failure PDF I (Top Weibull++ Selection) (Weibull++ Exponential)
50 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 Rep Rep2 Rep3 Repl Rep2 Rep3

478.862 139.3333 244.5103 Shape 2.2201 1.7751 1.8758 Lambda 0.0007 0.0007 0.0007
559.5032 216.6253 317.6606 Scale 2154.565 1712.647 1853.406 Mean 1428.571 1428.571 1428.571
606.1648 481.2112 378.0646 Location 0 0 0 Location 478.862 139.3333 244.5103
666.5704 481.4101 444.4303
747.9887 575.2048 563.182
874.4738 617.7887 606.8696
898.0651 649.797 690.6264

942.651 674.0816 697.5089 TRUE PARAMETERS
956.5013 698.4854 728.1186 Weibull
982.7919 713.8397 728.617 Shape 2
1002.692 713.9761 739.3244 Scale 2000
1229.721 723.6584, 750.4836 Location 0
1271.843 779.9904 944.7299

1296.71 809.8509 985.4585
1318.26 1014.29 994.7749

1395.802 1023.576 1040.816
1407.178 1053.333 1086.567
1424.359 1101.47 1120.212
1452.061 1115.344 1200.526
1525.454 1172.539 1214.506
1551.733 1205.425 1254.517
1567.216 1285.991 1271.458
1606.131 1297.485 1285.855
1858.728 1374.334 1348.401
1909.199 1406.672 1455.681
1927.392 1414.709 1519.508
1929.022 1518.297 1571.408
1952.617 1541.507 1587.083
1967.877 1592.483 1679.344
1994.657 1647.969 1773.561
2029.51 1663.765 1814.845
2038.27 1691.25 2049.751

2122.888 1723.812 2058.304
2235.849 1737.343 2083.694
2375.611 1740.056 2154.53
2421.885 1749.907 2197.575
2436.823 1755.844 2267.668
2460.293 1764.924 2268.36
2526.509 1910.202 2393.67
2549.512 2171.504 2416.656

2637.84 2201.866 2493.545
2680.403 2210.847 2504.284
2842.487 2315.208 2645.74
2864.291 2401.005 2753.988
2932.771 2402.354 2827.33
3146.245 2633.574 2969.749
3370.188 2672.251 3015.439
3651.116 3801.817 3045.548

3730.11 3867.55 3479.832
4825.686 4566.505 4417.8311
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4.367 476344 1.6432 NMaIMenfrNra ais 4.8;76

4.24379 5.6371 6.9368 Lg en 1 1 1S e orNra : 01243
5.62116 6.0198 6.527, Lg SD
53.56876.344 55.6942

6.8057 6.628 59.0828 oaio 55994
68.8761 68.689 6.78897
7.55401 6.746 63.955

70.777 75.32 66.8964p2 Rp3RT ft R
7033 017.0143.68.19 NMa4.17 .08

7.49510 79.7626 6.8166 gNMa 6.81 5.23
7.65870 50.2364 7.6877 g .. 0964446898

517557 8.8113 723547 SclF5612

52.9460 8.17 5.3719

53.73002 8.2371 5.849

53.926 55.426 5.882



Appendix D: Fitting Data (Final Experiment)

Component 1:

Comp onent 1: IFR Failure i Z iiiLZ
I11 TRUE FR PARAMETERS

Failure PDF I  (Top Weibull++ Selection) (Weibull++ Exponential) Welbull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 1.5
Seti Set2 Set3 Rept Hep2 Rep3 _ Repl Rep2 Rep3 Scale 3000

181.1979 2223.7486 287.5772 Shape 0.6094 1.1231 Lambda 0.0004 0.0008 0.0004 Location 0
982.1146 2379.3399 937.6879 Scale 383.7708 2363.258 mean 2500 1250 2500

2226.3576 2383.1759 1497.2583 Location 2218.289 18.7925 Location 0 1547.451 0
2388.7594 2472.42791 2778.16811

5399.2774 4496.5138 5903.7465 Exp. Lambda 0.0004 
mean 2500

Location 0

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Seti Set2 Set3 Rept Rep2 Rep3 Rapt Rep2 Rep3

68.4728 423.2879 319.593 Shape 1.6539 1.6359 1.4402 Lambda 0.0005 0.0003 0.0004
331.6175 852.5509 651.7494 Scale 2430.633 3188.455 2918.504 mean 2000 3333.333 2500
416.3119 872.1424 712.6503 Location 0 76.2918 126.3392 Location 68.4728 0 319.593
765.5116 885.9164 756.6507
985.3227 1339.2671 945.8708

1091.8591 1384.6532 956.1866
1209.8468 1873.6413 1104.1897
1442.4947 2102.4384 1498.2734
1595.0677 2249.4598 1754.579
1651.5536 2297.4357 1915,9636
1712.5829 2419.0937 1961.8824
1829.5611 2440.497 2283.4476
1970.983 2480.1319 2561.7131

2395.9298 2690.5506 2579. 4042
2535.9924 2764.3675 2604.1896
2590.8444 2930.4622 3034.4819
2856. 3818 2971.7748 3627.4104
2939.8024 2976.9494 3725.7776

2977.372 3598.5336 4224.4737
3046.7539 3959.8607 4353.1658
3702.9801 4424.5982 4731.5963
3778.5931 4635.2492 4792.5074
3787.6137 5039.1509 4808.6287
3996.1117 7344.0245 5785.7093
5170.1898 8029.4939 7695.7031

Coin ponoset 1: DIFR Failu re ____

FI I I TRUE DFR PARAMETER
Failute PDP (Top Weibull++ Selection) _ Weibull++ Exponential) Weibull

5 Data Points High Level Fittng Parameters Low Level Fitting Parameters Shape 0.8
Set Sat2 Set3 Rapt Rep2 Rep3 Rapt Rep2 Rep3 Scale 1354

139.4629 0.0637 0.6333 Shape 0.5196 0.2708 Lambda 0.0002 0.0004 0.0004 Location 0
469.7426 1038.2233 3.8248 Scale 2709.083 509.9078 mean 5000 2500 2500
836.6792 1703.1888 425.0307 Location 120.3868 0.6248 Location 0 0 0

7502.4567 2524.7519 3214.1432
14660.2643 6112.2116 7872.6754 Exp. Lambda 0.0004

mean 2500
Location 0

Failure PDF (Top Weibull++ Salection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
sell Set2 Set3 Rapt Rp2 Rp3 Rapt Rp2 Rp3

8.5763 0.001 0.23 Shape, 0.5068 0.4887 0.4491 Lambda 0.0003 0.0004 0.0006
12.033 0.1838, 3.3597 Scale 1517.284 1589.497 675.7722 mean 3333.333 2500 1666.667
35.734 6.1297) 8.0134 Location 7.7972 O0 0.0953, Location 0 0 0

38.9043 13.0001 9.1801;
43.013 1 80.2815 14.0094
73.9562 156.3244 22.8833

117.0724 199.4423 38.81
233.2414 285.532 65.5375
298.2957 326.8303 90.886
359.7071 765.5564 129.6294
543.8688 865.7244, 169.409

545.6467 1046.201 199.2903
920.3555 1061.9274 283.987
973.9422 1665.1605 346.233
1081,318 2491.2969 379.0188

1525.3416 2855.2928 466.5133
1646.0548 2916.4294 575.8503
2183.3176 2917.5233 675.9627
2858.4604 3149,028 1191.9816
3234.4206 3167.2538, 1654.3719
4179.5228 5480.5496 3587,6506
4360.3714 5517.3566 4577.0942

10713.9065 6790.4468 5097.7195
14261.0287 9955.8328 7507.7753
22240.9338 12086.6422 14256.0549
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Cornonent 1: Re air _ __ _True Lognorrnal Mean: 2800
Repair PDF _ _(Top Weibull++ Selection) True Lognormal St Dev: 200
5 Data Points High Level Fitting Parameters (Errpirical) True Lognormal Variance: 40000
Set1 Set2 Set3 Repl Rep2 Rep3 Low Level Fittin Parameters

2601.5784 2612.9115 2601.2429 N Mean Repi Rep2 IRep3
2624.7145 2771.1435 2735.2400 N S.D. Mean for Normalvariates: 7.934830161
2866.0380 2811.5681 2776.2531 Lo9N Mean 1 1 1 (Empirical) Var for Normal variates: 0.00508907
2909.4363 2887.8300 2910.3966 LogN S.D. 0 0 0 St Dev for Normal Variates: 0.071337714
2917.5533 3024.6103 3032.1756

Weibull Shape 26.0652 4.3832 3.5523
Scale 2848.267 574.006 523.2674

Location 0 2299.462 2341.219

Repair PDF (Fop Weibull++ Selection) (Empirical)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Sell Set2 Set3 - Rp1 Rep2 Rqep,3 Repl Rep2 Rep3

2439.424_2 20-96.6104 251.1515 N Mean

241.745 281.70 271552.3793 N S.D. (Empirical
2513.2920 2593.7256 2577.2550 LogjN Mean 1 1 1.

2517.1491 214.5585 2607.0592 LogN S.D. 0 0
2534.723 2614.9443 2615.0955
2577.069 2907.7951 2635.5129eibull Shape 2.1543 23.2416 3.1876
2631.8083 2730.1049 2655.9119 Scale 413.0219 2853.353 656.6646
2631.9734 2739.8425 2724.3992 Location 2372.44 0 2322.432
2644.6329 2763.4976 2747.2355
2691.8745 2814.7469 2771.0879
2707.8326 2828.45491 2803.8806
2708.698 2828,61831 2819.1035
2710.40"2 2833.04961 2822.9242

2724.2737 2849.2983 2834.566
2738.4129 2849.4621 2853.2614

2778.041 2868.1963 2865.1597
2797.5505 2885.1118 2885.2162
2806.1783 2892.7576 2890.2598
2843.8775 2912.0356 2953.696
2917.4224 2912.6882 2986.0419

2925.327 2933.7764 3031.5726
2952.5002 2939.0819 3040.0791
2969.4237 2945.88 3055.8136
3099.2115 2962.0594 3079.2475
3102.8011 2970.7126 3148.6606 1 F

Component 2:

I FR Failur
TRUE IFR PARAME

Failure PDF (Fop Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 4
Set1 Set2 Set3 Repl Rep2 Rep3 Repl Rep2 Rep3 Scale 2500

1612.093 1188.4488 1529.0469 Shape 3.6567 Larbda 0.0023 0.001 0.0013 Location 0
1960.6681 1290.1264 2175.3435 Scale 1065.07 mean 434.7826 1000 769.2308
1984.2974 2068.7919 2253.8368 Location 1092.293 Location 1612.093 1045.345 1529.047
2194.6551 2641.24891 2700.0165
2503.2496 3009.1271 2855.9128 Exp. Lambda 0.001 2302.831 Normal

mean 1000 464.9841 s.d.
Location 1045.345

Failure PDF (o Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 _ Rpl Rp2 I Rp3 Rap1 Rep2 Rp3

1217.1241 870.7077 1216.433 Shape 2.7507 4.0263 1.9737 Lambda 0.0009 0.0007 0.0009
1642.9021 1074.6883 1286.6517 Scale 1763.41 2625.438 1450.112 mean 1111.111 1428.571 1111.111

1680.602 1520.2436 1496.548 Location 800.3591 0 1021.904 Location 1217.124 870.7077 1216.433
1769.1628 1568.0989 1498.3784
1834.9983 175B.271 1605.873
1871.1207 1763.2181 1610.1992
1899.1965 1897.8177 1757.8406
2004.5769 1923.7924 1872.5433
2015.2816 2071.8883 1976.8157
2087.2999 2113.103 2049.4764
2092.0926 2411.2928 2054.6868
2117.5404 2539.4189 2078.8981
2230.4854 2557.1998 2229.1075
2384.9624 2560.0652 2388.8754
2583.2324 2641.315 2389.8225
2610.2233 2667.9734 2474.9111
2619.4521 2687.7639 2547.2024
2648.8951 2863.5512 2638.066
2663.6457 2941.8754 3011.1999
2749.9839 2947.5725 3066.3981
2904.3552 2964.1242 3070.3818
3138.4561 2974.0513 3128.5016 -
3234.2691 2975.4917 3307.0873
3271.580 3487.88 3426.7407
3936.8724 3637.9667 3504.4876
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DFR Failur iI
I I TRUE DFR PARAM

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 0.85
Set1 Set2 Set3 Repl Rep2 Rep3 Repl Rep2 Rep3 Scale 2082

674.0396 263.9219 305.1914 Shape 0.9576 0.4635 0.7888 Lambda 0.0003 0.0004 0.0005 Location 0
1182.5319 333.1048 700.7444 Scale 3132.762 1321.79 1698.197 mean 3333.333 2500 2000
3294.7512 1151.8919 1065.9406 Location 492.1489 261.3827 226.7046 Location 66.0606 0 0
5069.5254 4921.1814 2255.4658
8181.8846 6547.0311 6553.1903 1

Failure PDF (Top Weibll++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 Repl Rep2 Rp3 Rp1 Rp2 I Rep3

2.98 1.09 11.2664 Shape 0.7739 0.8305 0.7194 Lambda 0.0007 0.0004 0.0004
35.3013 44.3538 29.1814 Scale 1300.736 2575.825 1948.33 mean 1428.571 2500 2500
54.894 78.5878 40.3001 Location 0 0 0 Location 0 0 0

123.6012 101.6154 111.0903
192.524 584.1955 161.9492

210.4099 661.0193 197.7819
260.8614 690.6734 370.502
362.1208 709.0175 607.0123
459.2924 955.527 627.6179
554.3346 1120.0438 718.9486
593.4356 1739.1781 921.3175
903.4713 2022.778 930.201
960.4571 2065.501 1001.5316
965.9974 2534.8116 1230.0906

1104.6616 2753.3491 2114.7321
1235.0752 2953.0618 2252.154
1271.5947 3076.0826 2464.6736
1282.2785 4446.8662 2710.9989

1769.534 4725.9478 2987.0909
2395.5922 5045.4621 3266.1679
2886.6052 5134.4935 4024.5976
3184.48!1 5343.4451 4471 .465
3624.5633 6206.065 6764.8413
4284.256 6651.23 8281.6728

8885.7876 9886.4638 12787.509

Repair I I True Lognormal Mean: 1500
Repair PDF (Top Weibull++ Selection) True Lognormal St Dev: 100
5 Data Points - Hih Level Fitting Parameters (Empirical) True Logrnormal Variance: 10006;

Set1 Set2 Set3 Repl- Rep2 Rep3 Low Level Fitt'n Parmeters
1367.8815 1347.4999 1460.5701 N Mean Re 1 Re P2 Rep3
1371.0849 1352.9801 1543.4742 N S.D. I Mean for Normal varates: 7.311003

1396.5115 1555.3694 1553.7403 LogN Mean 1 1 1 (Empirical' VarforNormalvarlates: 0.004435
1544.1540 1567.2647 1628.3525 LogN S.D., 0 0 0 St Dev for Normal Varlates: 0.066593
1753.2314 1590.2742 1637.7601 1 Normal

Weibull Shape 0.619 17.4996 1564.779 Mean
Scale 85.9718 1530.836 64.5028 S.D.

Location 1364.5621 0I

Repair PDF (Top Weibull++ Selection) (Empirical)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 Rep1 Rep2 Rep3 Repl Rep2 Rep3

1280.1149 1272.3984 1289.9730 N Mean,
1357.4532 1361.6546 1313.6635 N S.D. (Empirical)
1362.4470 1405.7792 1373.7726 LogN Mean 1 1 1
1363.4113 1415.0487 1374.1309 LogN S.D. 0 0 0
1373.1505 1433.5246 1381.1836
1385.1089 1461.6078 1409.4947e ibullShape 17.499 17.5 2.9224
1423.8314 1466.1447 1415.6678 Scale 1533.556 1584.373 357.4828
1463.0150 1484.8506 1459.3752 Location 0 0 1190.55
1471.5777 1517.8623 1460.7675
1489.5132 1533.9066 1462.5032
1494.1853 1543.2282 1469.2258
1507.5896 1546.8919 1510.4431
1508.8267 1547.176 1511.885
1514.6871 1549.4138 1525.1673
1520.119 1569.7016 1526.01
1539.861 1588.6071 1541.3123

1544.7079 1588.8253 1573.9059
1545.5162 1592.5024 1595.3293
1556.2519 1604.8355 1618.5044
1574.2129 1617.0122 1631.1695
1582.1842 1626.4206 1641.2894
1595.5558 1630.7171 1678.8727
1596.281 1670.211 1679.022

1622.4525 1691.6267 1689.75591
1660.6851 1723.4756 1736.7218 1 1
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Component 3:

IFR Failure I
I I TRUE IFR PARAM

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 2.5
Sell Set2 Set3 Repl Rep2 IRep3 Rapl Rep2 Rep3 Scale 4000

2883.5319 2998.5673 2434.8346 Shape 1.0003 3.4133 Lambda 0.0009 0.0011 0.0006 Location
3060.1663 3038.2884 2947.7713 Scale 925.7452 4586.741 mean 1111.111 909.0909 1666.667
3514.6735 3636.2092 4363.5149 Location 2811.544 0 Location 2634.388 2788.847 2313.926
3998.5685 3832.8183 4588.3683
5228.9477 4806.3682 6214.0369 Exp. Lambda 0.0011 1

mean 909.0909
Location 2788.847

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Sell Set2 Set3 Repl Rep2 Rep3 Rept Rep2 Rep3

1711.4399 1278.0886 1557.278 Shape 1.2574 2.9605 2.8125 Lambda 0.0006 0.0004 0.0004
1794.8646 1808.9081 1611.9093 Scale 1927.631 4258.217 4263.149 mean 1666.667 2500 2500
2052.9023 2465.6908 1982.5562 Location 1617.411 166.2515 0 Location 1711.44 1278.089 1557.278
2058.9274 2494.8888 2069.6192
2073.6771 2546.2591 2151.6954
2098.9349 2767.6346 2251.1667
2404.9142 3152.5575 2314.9334
2624.2049 3162.102 2443.4072
2772.2025 3172.1098 2877.3355
2833.8453 3592.8889 3028.6866
2915.2481 3693.995 3596.0093
2985.502 3757.219 3917.9257

2987.2932 3801.8114 4019.9073
3109.4728 3948.7351 4087.4007
3131.6845 4141.2514 4146.7606
3198.8659 4206.1661 4192.7926
3283.6123 4225.2252 4734.3948
3796.4672 4233.9697 4745.9303
3801.7873 5123.1271 4787.0335
4162.7148 5166.0151 4815.4448
4228.3248 5574.046 4872.8703
5341.9776 5658.4477 5028.4013
6312.7596 5746.6372 6369.2437
6389.2901 6280.8288 6387.1472
7126.3486 7081.6374 6617.8441

DFR Failure ____

TRUE DFR PARAMI
Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 0.95
Sell Set2 Set3 Repl Rep2 Rep3 Repi Rep2 Rep3 Scale 3468

868.5596 698.6931 169.6434 Shape 2.3023 0.6745 0.8935 Lambda 0.0007 0.0003 0.0004 Location 0
1516.3796 1366.5098 401.407 Scale 2553.192 2135.705 2627.934 mean 1428.571 3333.333 2500
2218.6249 1700.3733 2722.0258 Location 0 658.6182 0 Location 852.0483 0 0

2697.295 2792.1665 3234.4815
3966.098 10702.2462 7299.204

Failure PDF (op Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Sell Set2 Set3 R:epl Rep2 R13p3 Rapt Fiep2 Rep3

207.8036 42.6759 26.6541 Shape; 0.9439 0.7877 0.8449 Lambda 0.0003 0.0003 0.0003
266.2007 110.63621 73.5251 Scale 3714.093 2702.41 3310.37 mean 3333.333 3333.333 3333.333
564.8699 125.2635 202.0481 Location 126.86 21.438 0 Location 0 0 O1
571.728 367.1112 481.4955

575.5735 412.2275 578.7774
956.9291 417.0253 911.8075

1372.7997 514.4869 958.3334
1458.9632 646.2646 1024.3937
1807.3052 905.7708 1215.1514
2216.5446 937.2157 1340.3025
2250.843 1167.4331 1446.7933
2279.4159 1336.8557 1703.5091
2631.9957 1660.6554 1726.7708
3200.9254 1813.3288 2022.7823
3607.7149 2070.6515 2047.3684
3808.4165 2174.3106 2517.398
41 35.8181 2720.8299 2566.4763
4219.2527 3012.5395 5004,063
4349.9903 4941.1598 5040.78
4892.6842 5374.6816 6443.4536
5591.2831 6328,194 6489.4017
6274,9309 8346.4754 10469.55
9276.5345 8829.5878 10626.242

15164.2679 10020.3126 11879.798
16880.6085 13523.2832 13441.007
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Repair ____True Lognormal Mean: 1000
Repair PDF (Top Weibull++ Selection) True Lognormal St Dev: 150
5 Data Poi Ns High Level Fitting Parameters (Empirical) True La normal Variance: 22500
Set1 Set2 Set3 Repl Rep2 Rep3 Low Level Fittin Parameters

953.3588 833.6803 902.1094 N Mean Repl Rep2 IRep3
967.4331 1032.5035 979.9325 N S.D. Mean for Normal variates: 6.89663

1086.5469 1233.167 997.9914 LoN Mean 1 1 1 Empirical) Varfor Normal variates: 0.022251
1088.9893 1274.3727 1123.6429 LooN S.D. 0 0 0 St Dev for Normal Variates: 0.149166
1149.2014 1390.9536 1136.5109 Expon.

Weibull Shape 16.4584 7.3676 0.0078 lambda
Scale 1084.1 1234.108 128.2051 mean

Location 0 0 900.1852 location

Repair PDF (Top Weibull++ Selection) (Empirical)
25 Data Points High Level Fitting Parameters LowLevel Fitting Parameters
Set1 Set2 Set3 _ _ Repl Rep2 Rep3 Repl Rep2 Rep3

716.0199 844.7964 785.3390 N Mean 6.9252
763.9341 863.4181 831.6782 N S.D. 0.115 (Empirical)
809.2789 878.9243 836.1035 LoN Mean 1 1024.349 1
838.1591 881.2346 861.4089 LogNS.D. 0 118.1907 0
851.0674 882.3148 890.2926
852.7825 906.7347 902.7939M eibull Shape 2.4568 Normal
853.2847 917.9051 905.3131 Scale 426.864 1017.332 mean
855.4755 959.7401 945.2810 Location 623.04 124.465 SD
916.6027 968.1007 974.6158
936.9255 980.9357 979.8526
978.7269 984.1481 1032.3233
989.9185 1000.8476 1038.2957

1003.1626 1004.4521 1039.3221
1023.0763 1007.1396 1039.5993
1027.2774 1036.1979 1044.2233
1027.7069 1075.7431 1047.3587
1071.4796 1090.7627 1067.1107
1082.6045 1091.7172 1083.2206
1093.7505 1096.0161 1088.6456
1123.4648 1108.6823 1094.9963
1154.6627 1161.7262 1105.5099
1155.8881 1178.4055 1116.3549
1165.0033 1205.5632 1217.3168
1353.3809 1236.3239 1224.9552
1381.8487 1247.806 1281.3968

Cornponent 4:
IFR Failure

I ____TRUE IFR PARAM
Failure PDF (ToD Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 1.7
Setl Set2 Set3 Repl Rep2 Rep3 Repl Rep2 Rep3 Scale 1700
1109.878 814.5934 Shape 1.3709 6.5579 KLambda 0.0012 0.0007 0.0024 Location _17

1321.429 1365.19 Scale 995.1192 1476.695 mean 833.3333 1428.571 416.6667
1895.723 1475.554 Location 971.24 0 Location 1040.31 0 458.4051
2216.1039 1517.455
2873.409 1664.4 Es . Lambda 0.0024

mean 416.6667
Location 458.4051

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 Repl Rep2 Rp3 Rep1 Rep2 Rep3
530.2771 200.3715 575.2981 Shape 1.298 1.5358 1.5218 Lambda 0.0008 0.0007 0.0009

540.401 248.5755 835.6282 Scale 1501.29 1741.393 1347.52 mean 1250 1428.571 1111.111
726.1561 359.6599 848.035 Location 440.23 0 483.3504 Location 530.2771 200.3715 575.2981
760.3249 426.0651 866.1735
840.5436 434.9741 915.2016
944.0206 554.9306 1048.103
979.1587 579.127 1054.785
1069.765 688.181 1079.655
1075.722 959.4233 1129.904
1153.189 996.8733 1156.848
1153.868 1140.553 1350.402
1375.649 1432.618 1367.315
1501.503 1493.902 1469.085
1627.924 1678.524 1596.448
1919.104 1869.419 1624.494
2285.03 1912.531 1842.271

2482.025 2045.89 1905.994
2566.556 2082.82 2044.315
2708.679 2267.416 2119.071
2774.881 2288.218 2497.592
2938.419 2367.334 2530.151
2953.365 2973.474 2671.39
3212.516 3181.629 3003.419
3238.114 3333.269 3034.194
4378.909 3692.152 3810.435
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DFR Failure II II
I I IiTRUE DFR PARAMETERS

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Point s High Level Fitting Parameters Low Level Fitting Parameters Shape 0.6
Set1 Set2 Set3 Rep1 Rep2 Rep3 Rapl Rep2 Rep3 Scale 1008

11.0497 480.894 70.1082 Shape 0.4993 0.9992 Lambda 0.0002 0.0017 0.0026 Location 0
242.6425 559.0181 150.3176 Scale 2642.701 337.1318 mean 5000 588.2353 384.6154
1947.525 728.0175 232.7354 Location 0 43.9176 Location 0 349.5782 0
3472.224 1285.811 569.4263
18283.15 1555.789 883.2029 p. Lambda 0.0017

mean 588.2353
Location 349.5782

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 RepI Rep2 Rep3 _ Repl Rep2 Rep3

5.5541 16.9831 1.5864 Shape 0.6606 0.4855 0.6164 Lambda 0.0008 0.0009 0.0005
19.0226 22.131 5.3811 Scale 1006.345 540.1314 1474.721 mean 1250 1111.111 2000
54.6918 22.4463 11.718 Location 3.3075 16.7859 0 Location 0 0 0
60.0507 23.8545 44.7068
61.9173 27.0709 111.0731
68.6155 29.8473 117.8029
82.5532 37.277 184.8074
114.3219 90.4036 400.416
131.4785 106.9176 490.2925
216.6277 149.1267 635.9928
439.2135 155.9802 727.1333
448.182 312.06621 746.05281

851.5921 359.95421 902.30721
859.8882 375.4828 990.0742
1061.002 622.0638 1258.296
1417.39 633.5568 1342.977

1651.562 661.405 1478.737
1744.063 754.3752 1785.76211
1967.511 758.3816 2833.623
2031.855 1264.043 3223.336
2600.598 1366.809 4326.368
3238.654 1629.048 4453.6
3680.4471 3007.1851 7217.69
3779.7191 5056.0751 8415.3141
6110.3831 11335.711 9351.0561118

Repair I True Lognormal Mean: 150
Repair PDF (Top Weibull++ Selection) True Lognormal St Dev: 25
5 Data Points High Level Fitting Parameters (Empirical) True Lognormal Variance: 625
Seti Set2 Set3 Repl Rep2 Rep3 Low Level Fitting Parameters

107.9361 112.7261 110.8108 N Mean 4.9334 Rep1 Rep2 jRep3
126.2814 124.8062 148.5015 N S.D. 0.16 Mean for Normal variates: 4.996936
141.0837 136.2086 156.1516.ogN Mean 140.6395 1 1 (Empirical) Varfor Normal variates: 0.027399
161.0093 141.4520 158.4165 LogN S.D. 22.64711 0 0 St Dev for Normal Variates: 0.165526
166.6536 158.3264 179.0876

Weibull Shape 3.7243 8.6173
Scale 56.8317 159.7675

Location 83.5173 0

Repair PDF ('op Weibull++ Selection) (Empirical)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Seti Set2 Set3 Repl Rep2 Re3 Rep Rep2 Rep3
112.1810 109.6944 123.0544 N Mean F n

115.7299 113.2002 128.6623 N S.D. (Empirical)
116.9827 119.7126 130.3761 ogN Mean 1 1 1
122.1091 120.6516 132.2960 LogN S.D. 0 0 0
123.3441 120.9405 137.8381
135.6326 121.1742 139.3057 bull Shape 3.6758 6.7394 1.8917
136.4452 134.9671 141.9222 Scale 82.7082 160.6862 43.151
136.6714 137.0815 143.9501 Location 76.3831 0 116.0788
137.6559 137.4096 145.6638
143.8245 139.9656 146.0071
147.6691 142.7575 146.1355
151.1929 151.9322 146.617
151.7625 153.15 147.6246

157.357 155.0988 150.5233
158.1261 159.2667 151.3792
158.4126 159.6028 154.678
158.8591 162.5519 158.9568
159.9018 165.5747 160.7683
170.0568 166.6327 164.3028
171.5999 167.1319 165.501
172.6964 169.7564 167.8884
173.419 175.133 173.1062

175.2563 176.0617 180.6055
183.8417 198.3452 200.29
201.9854 198.86821 218.19231
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Corn onent 5:
IFR Failure I

I TRUE IFR PARAME
Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 2.8
Set1 Set2 Set3 Repl Rep2 Rep3 Repl Rep2 Rep3 Scale 3500

1519.116 2113.463 1351.0364 Shape 3.3664 2.9259 Lambda 0.0006 0.001 0.0005 Location 0
1766.454 2682.808 2244.2143 Scale 2476.582 3631.724 mean 1666.667 1000 2000
2884.758 3010.518 3833.9542 Location 919.46 0 Location 1262.577 2113.463 1351.036
4180.014 3646.33 3848.6219
4389.93 4226.435 4858.5665 Exp. Lambda 0.0006 Normal

mean 1666.667 s.d.
Location 1262.577

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Sell Set2 Set3 Rept Rep2 Rep3 Repl ltep2 RepS

900.3416 1123.459 1418.0763 Shape 2.4586 3.8567 Lambda 0.0005 0.0005 0.0005
1428.436 1170.309 1520.0759 Scale 2852.708 3717.19 mean 2000 2000 2000
1455.073 1770.679 2050.2135 Location 452.2922 0 Location 900.3416 1123.459 1418.076
1484.823 1829.859 2147.0789
1710.945 1835.78 2211.8287 Normal
2134.966 1859.992 2689.9989 Mean 2954.431
2138.175 2241.777 2819.1221 SD 1083.48
2287.051 2250.085 2852.6587
2573.535 2434.664 2996.6938
2716.043 2599.351 3183.7396
2876.521 2735.001 3205.9543
2953.765 2854.768 3248.6523
3030.953 2888.969 3412.3151
3138.188 3017.953 3446.7971
3194.012 3076.167 3481.3514
3269.62 3108.42113939.5758

3300.383 3270.86914048.7442
3547.358 3326.314054.2415
3653.454 3510.0031 4102.369
3676.913 3867.605 4237.113

L3751.156 
4291.402 

4'267.032,2
3936.657 4704.565 4354.9116

4662.204 4760.473 4406.399
4768. 117 4794.134 4441.4252
5272.08 5119.947 5530.89

___ __ _ ITRUE DFRPARAME
Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 0.4
Set1 Set2 Set3 Rap Re pe I Rep3 Rpl Rep2 Rep3 Scale 938

0.3887 237.7436 102.8577 Shape 0.3551 0.4961 0.3509 Lambda 0.0005 9.55E-05 0.0018 Location 0
44.7175 1030.879 103.8032 Scale 455.3751 5685.642 133.5759 mean 2000 10471.27 555.5556

197.7363 1372.084 235.8229 Location 0 207.53 102.7 Location 0 0 0
237.6625 17016.14 308.7439
9511.298 32699.4812043.3231 Exp. Lambdal

__ mean #DIV/O!
Location

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Sell Set2 Set3 Repl Rep2 Rep3 Repl Rep2 Rep3

0.0044 0.0011 0.0001 Shape 0.4128 0.3741 0.3391 Lambda 0.0006 0.0004 0.0003
0.1409 0.153 2.1644 Scale 889.8248 980.7368 862.057 mean 1666.667 2500 3333.333
0.2395 2.0381 2.5861 Location 0 0 0 Location 0 0 0
2.3157 2.8481 2.5863
3.4037 3.3508 8.3013

15.5762 9.2546 12.2399
41.4359 69.4667 14.4416

66.006 72.4795 21.25
169.6024 98.3835 23.2016
310.8927 188.9514 25.7567
675.6514 228.1191 57.6914
747.3958 472.309 161.199
950.9716 542.8395 213.563
1421.053 595.3248 1145.2239
1425.232 829.2207 1530,8733
1491.159 1195.228 1631.1368
1533.18 1921.193 1795.8049

1657.854 2272.61 2049.4273
1816.85 2776.404 2686.2033

2661.743 3540.973 2855.1948
3469.24 4220.8 3805.9691

3482.437 9999.785 1099.231
5354.848 10923.76 12312.46
7718.713 12973.89 16991.308
10400.45 15384.06 24172.201
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Repair ___ _ __True Lognormal Mean: 850
Repair PDF (Top Weibull++ Selection) True Lognormal St Dev: 90
5 Data Points High Level Fitting Parameters (Em pirical) True Lognormal Variance: 8100
Set1 Set2 Set3 Rept Rep2 Rep3 Low Level Fittin Parameters
747.1571 850.0651 772.8667 N Mean Repl Rep2 IRep3 1
828.7058 935.5551 827.0410 N S.D. Mean for Normal variates: 6.739862
830.6967 957.0606 937.0020 LogN Mean 1 1 1 (Empirical Var for Normal variates: 0.011149
833.6765 981.7003 978.3519 LogN S.D. 0 0 0 St Dev for Normal Variates: 0.105587
902.3605 988.9605 1027.9719

Weibull Shape 8.4598 27.9086 Normal
Scale 384.543 963.8849 908.6467 Mean

Location 465.21 0 94.8652 SD

Repair PDF (Top Weibull++ Selection) (Empirical)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 Repi Rep2 Rep3 Repl 1 Rep2 Rep3
642.7415 691.2975 674.5797 N Mean 6.7196 6.7275 6.7245
696.8263 723.6644 683.9227 N S.D. 0.1017 0.09473 0.1036 (Empirical)
728.8017 735.9082 711.2389 LogN Mean 832.7816 838.8122 837.0355
745.0789 738.2158 752.3358 LogN S.D. 84.91336 79.63928 86.95008
773.4927 739.9673 779.8016
774.3035 763.4049 786.2454 libull Shape
792.5570 771.2505 787.2781 Scale
792.6556 817.6816 795.3255 Location
811.2078 822.2252 798.9932
811.2933 823.0084 802.8723
814.0875 827.8375 805.9737
815.4539 831.2502 817.539
830.9855 834.2116 838.9178
834.2839 843.8531 843.2974
858.9568 851.4224 843.6612
862.9996 855.4944 844.3625
867.1553 862.0037 870.6218

872.307 862.5475 878.4302
873.9636 876.9206 885.2466
883.4647 936.0016 886.0297
884.7831 941.7188 917.3511
906.1892 943.284 940.4368
940.6469 953.0136 958.6495
943.1421 959.3408 1000.5771
1061.907 964.0956 1022.3195 1

Coronent 6:IFIR Failure

I F___ TRUE IFRPARAME
Failure PDF (Top Weibull++ Selection) tWeibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters _ _Low Level Fitting Parameters Sham 1.9
Seti Set2 Set3 Repl Rep2 Rep3 Repl Rep2 Rep3 Scale 3333

943.0678 1272.6057 1373.1654 Shape 2.0214 1.0014 4.5581 Lambda 0.0005 0.0003 0.0009 Location 0
2219.2323 1816.7934 2175.7739 Scale 3343.678 2549.782 2673.545 mean 2000 3333.333 1111.111
2853.3978 2781.1238 2552.2985 Location 0 1065.907 0 Location 864.6482 519.5057 1373.165

3069.4 4368.796 2779.76571
5680.3975 7831.8613 3285.1362

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 Rip1 Rep2 Rep3 Rap1 Rep2 Rep3

556.924 478.1575 338.3958 Shape 1.7668 1.8077 1.9447 Lambda 0.0004 0.004 0.0003
888.1491 548.2909 923.6208 Scale 3576.66 3112.881 3793.36 mean 2506 2500 3333.3331
980.9987 835.3915 938.8093 Location 151.86 0 0 Location 556.924 478.1575 338.39581

1524.9478 1028.4228 1144.9473
1551.9424 1252.9216 1383.9967
1554.7179 1318.5908 2032.6482
2150.2115 1326.7294 2056.6935

2196.241 1403.6103 2558.1259
2333.6979 1488.9602 2704.5543
2639.6742 1779.9499 3017.2549
2657.9665 1971.7594 3194.8691
283.8861 3073.1181 3298.5318
2902.5407 3188.9704 3363.2244
2911.8353 3240.6705 3371.6199
3154.5195 3451.9756 3503.761
3245.5848 3453.6347 3767.7098
3798.1278 3474.3802 3811.3404
4401.804 3533.9596 3829.0021
4454.7244 3609.0219 3895.2994
4692.1923 3828.5382 4917.9287
5156.627 3974.7389 5125.8579

6195.3269 4201.9076 5385.3977
6572.5149 4593.8342 5832.9327
6595.2222 5073.4553 5849.498
7321.4379 6986.9939 8078.036
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DFR Failure -
ITRUE DFRPARAM

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 0.7
Setl Set2 Set3 Repl Rep2 Rep3 Repl Rep2 Rep3 Scale 2336

126.6007 132.5105 468.6132 Shape 0.8337 0.7236 Lambda 0.0001 0.0003 0.0012 Location 0
3871.6142 151,9939 542.8767 Scale 7308.818 2441.373 mean 10000 3333.333 833.3333
4941.3851 1810.4893 1450.5999 Location 0 0 Location 0 0 347.763
8492.4261 5181.3916 1450.9201
22172.966 7327.3941 1977.9812 Normal

1178.198 Mean
582.3018 SID

Failure PDF (Top Weibull++ Selection) (Weibull ++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters

Sell Set2 Set3 Repl Rep2 I eRep3 Repl Rep2 Rep3
3.92 2 50.9178 2.0586 Shape 0.745 0.682 0.6467 Lambda 0.Ne03 0.0R14 0.0003
49.8137 62.3909 4.4384 Scale 2679.482 2139.15M 2n39.572 mean 3333.333 250v 3333.333
61.4687 116.6026 62.190j Location H 44.271 0 Location 0 O

302.8609 137.147 170.9058

318.0808 173.5285 173.6595
448.9909 417.1683 174.1197

562.4808 541.5138 348.7671
609.23631 582.8722 638.6683"
754.8118 833.464 641.4655

967.5236 1030.757u 697.9511
1125.4453 1209.2984 1150.9406
1273.4832 1575.5976 1324.3103

1542.3704 1681.0462 1527.1351
1607.1968 1915.0946 1677.1838
2056.0146 1927.3436 1803.4187
3319.1916 1932.93B 1816.459
3580.5006 2428.3783 2521.6041

3865.8573 2650.1939 2704.675 N
4930.0673 2672.4901 3679.94
5678.6557 2716.7387 4895.67454 L
7145.3277 2867.5279 5713.7406 L
7246.6288 693.7406 5798.1651
284.1941 8740.556 6360.7816 b
9803.422 12507.12 65.62..
241.55 19032.824 297.8122

Repair I I True Lognormal Mean: 300
Repair PDF (Top Weibull++ Selection) True Lognormal St Dev: 125
5 Data Points High Level Fitting Parameters ( Empirical) True Loora IVariane: 15625
Set1 Set2 Set3 Repl Rep2 Rap3 ;Low Level Fitting Parameters

2928.2077 2937.2639 2727.4405 N Mean Repl Rep2 jRep3 1
2955.5721 3008.5301 2758.0500 NS.D. Mean for Normal varlates: 8.005
3118.5662 3023.0372 3009.5544 LogNMean 1 1 (Empirical) VarforNormalvariates: 0.001735
3192.1467 3067.5622 3059.0098 Lo N S.D., 0 0 St D81 for Normal Vadates: 0.041649
3339.1724 3123.3186 3116.5662

Welbull S hape 2.9516 Normal

Scale 456.2813 3031.956 2934.124Mean
Location 2701.373 66.0042 160.18 SID

Repair PDF (Top Welbull++ Selection) (Empirical)
25 Data Points High Lavel Fitting Parameters Low Level Fitting Parameters
Sell Set2 jSet3 Repl Rep2 Rep3 Repl Rep2 Rep3

272599674 2758.7299 2741.986 N Mean
2729.9413 L7770.4859 2747.9049 N S.D. (Empirical)
2787.6873 2780.2585 279-.2454 LgN Mean 1 1 1
2801.4099 21316.0094 2891.3966 LogN S.D. 0 0 0

2833.9725 2366.0869 2930.3131

2884.5562 21396.7268 2946.8886ebull Shape 5.9116 4.4958 Normal
2920.6486 2927.8413 2965.6203 Scale 856.388, 630.048 3032.97 Mean
2930.972 2934.3030, 2976.0747 Location 2214.961 2420.89 145.72 SD
2935.5857 2944.45031 2985.9873
2941.8176 2948.88041 2997.5822
2970.6641 2960.5771 3001.2277
3004.238 2966.70041 3011.5071
3022.9127 2980.71881 3024.4465
3034.4321 3D26.41 411 3044.4719
3089.3571 3030.29031 3059.7489
3103.579 3035.52141 3071.8224

3107.0562 3076.34351 3080.8281
3110.1218 3089.8191 3119.0444

3116.661 3089.8886 3122.4055
3122.7704 3097.7068 3165.1266
3135.94011 3117.2651 3171.3008
3170.15081 3126.9659 31837.1087
3201.76741 3153.7086 3197.7748

3202.9599 3179.3316 3213.91891
3321.25971 3345.25041 3374.77721
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Corn onent 7:
IFR Failure I

I I I TRUE IFR PARAME
Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 12
Seti Set2 Set3 Repl Rep2 I Rep3 Repl Rep2 Rep3 Scale 2575

1233.402 755.0101 507.7995 Shape 0.7525 0.871 12663 Lambda 0.0011 0.0002 0.0005 Location 0
1333.494 1517.403 1140.251 Scale 587.5031 3216.492 1953.159 mean 909.0909 5000 2000
1502.009 3151.586 1678.789 Location 1215 562.58 212.1063 Location 960.43 0 27.5108
2398.809 3215.274 1955.761
3042.558 11455.09 4809.848

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 Rapt Rep2 I Rep Rep2 Rep3

75.305 11.1745 28.3818 Shape 1.2894 1.2411 1.2875 Lambda 0.0004 0.0004 0.0004
163.5098 82.8646 351.9838 Scale 2989.621 2750.429 2639.941 mean 2500 2500 2500
234.3425 689.9868 419.6121 Location 0 0 0 Location 75.305 11.1745 28.3818
273.5559 799.5951 752.1258
703.7099 1089.153 780.3233
862.866 1099.429 888.8444
999.166 1194.189 1020.826

1593.052 1282.23 1250.599
1876.896 1515.5 1383.95
2199.876 1647.912 1635.23
2224.738 1678.276 1971.803
2360.094 2097.373 2005.742

2548.09 2126.218 2273.373
2998.434 2409.684 2282.09
3619.917 2631.809 2284.14,3
3627.051 2892.163 2568.483
3737.317 3194.973 2640.37
4502.703 3206.071 2681.885
4507.146 3224.334 3046.235
4518.089 3732.183 3501.405
4562.136 3975.867 3775.582

4720.62 5169.694 4871.772
4807.826 5926.245 5547.4
6007.031 6115.789 6538.232
6192.146 7042.011 6864.931

DFR Failure
1 1 1 1 TRUE DFR PARAMI

Failure PDF (Top Weibull++ Selection) (Weibull++ Eponential) Welbull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 0.55
Set1 Set2 Set3 Rept Rep2 Rep3 Repl Rep2 ReO3 Scale 1423
492.9745 6.0805 33.8777 Shape 0.3744 0.3562 0.5816 Lambda 0.0002 0.0014 0.0007 Location 0
526.3141 16.1423 340.1097 Scale 1592.354 181.6411 928.9105 mean 5000 714.2857 1428.571
1281.924 37.7049 370.6554 Location 491.84 5.91 24.41 Location 0 0
9009.097 385.8074 897.4695
11366.33 3016.537 5712.437

Failure PDF (Ton Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Setl Set2 Set3 Rept Rep2 Rep3 RepI Rep2 Rep3

0.2394 1.6826 1.4205 Shape 0.5956 0.5474 0.6307 Lambda 0.0004 0.0004 0.0006
34.385 2.2468 4.2473 Scale 1671.235 1783.465 1159.606 mean 2500 2500 1666.667

49.2658 8.1568 23.3267 Location 0 0 0 Location 0 0 0
55.1196 9.7845 59.4488

147.6313 57.1513 105.133
215.7498 92.2753 180.356
271.5501 188.8081 202.0613
301.8768 457.0314 205.8487
352.9605 483.8325 260.4402
359.6454 655.3901 310.1456
399.0531 888.7466 440.4745
507.7724 1068.396 553.3837
756.2171 1217.062 698.8552
1014.603 1854.382 782.0061
1450.057 1965.781 845.8762
1476.586 2178.458 1603.001
1505.085 2284.18 1717.025
2169.176 2674.79 1776.987
4144.399 2723.829 1810.474
4645.451 4181.331 1889.635
4864.779 4659.631 26.60
7281.768 6027.841 3077.744
8678.169 7419.469 9075.05
9202.056 8297.573 33.:66

11153.06 20684.81 8855.9111
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Repair ______True Lognormal Mean: 190
Repair PDF (Top Weibull++ Selection) True Lognormal St Dev: 20
5 Data Points High Level Fitting Parameters (Empirical) True Lognormal Variance: 400
Set1 Set2 Set3 Repl Rep2 Rep,3 Low Level Fitting Parameters
185.8123 176.8805 161.1705 N Mean Repl Rep2 IRep3
199.7590 182.3526 180.6640 N S.D. Mean for Normal variates: 5.241514
216.3888 193.4207 189.0722.ogN Mean 1 1 1 (Empirical) Var for Normal-variates: 0.011019
220.6105 219.0957 200.6946 LogN S.D. 0 0 0 St Dev for Normal Variates: 0.104973
221.3073 255.7414 206.9923 1

Weibull Shape 20.7942 0.902 14.647
Scale 214.8776 28.8798 194.8546

Location 0 175.21 0

Repair PDF (Top Weibull++ Selection) (Empirical)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Seti Set2 Set3 Repl Rep2 Rep3 Repi Rep2 Rep3
151.6819 148.6942 160.2890 N Mean
153.2431 159.6656 165.3794 N S.D. Empirical)
165.8580 160.8646 165.6153 ogN Mean 1 1 1
167.9612 160.8802 169.2260 LogN S.D. 0 0 0
171.7100 164.4242 169.8451
171.7493 165.3973 170.0564 bull Shape 3.1127 2.9685 1.5717
172.8264 165.7502 172.1972 Scale 63.9041 63.9722 33.6968
178.2464 168.8557 172.9980 Location 133.2 130.5792 157.98
180.0406 178.5186 177.9281
180.6566 181.4259 177.9786

185.031 184.0292 179.4088
185.5818 186.2046 181.4112
186.8724 189.7669 181.4654
193.4076 190.6778 183.5744
193.7151 195.9077 184.081
200.0819 196.3376 188.4487
202.1416 196.909 195.4155
203.9582 198.6056 197.4176
207.5767 199.5267 208.3743
207.8584 204.4908 211.0784
216.2846 209.7566 214.4082
217.6444 214.6417 215.905
219.7088 216.8286 218.6615
219.8784 223.4573 222.0428
222.1331 226.4753 222.46

Cornponent_8:
Failure PDF I Cop Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters _ Low Level Fitting Parameters Shape 2t.7
Set1 Set2 Set3 Rp1 Rep2 IRep3 Repl Rep2 Rep3 Scale 1500

715.6579 579.5167 396.932 Shape Lambda 0.0016 0.0007 0.0012 Location 0
776.6583 1052.8389 1199N.483 Scale mean 625 142.571 833.3333
1203.9163 1749.2671 1416M.2 Locatio Location 602.7056 0 396.932
1379,2357 1829.2196 1558.6188
19181.4671 2063.0686 1727.8931 xp. Lambda 0.0016 1454.782 1259.811 Normal

mean 625 552.1929 464.9773s.d.
Location 602.7056

Failure PDF l(Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points R~ daHigh Level Fitting Parameters Low Level Fitting Parameters
SOt Set2 Set3 Repl Rep2 Rep3 Repl Rep2 Rep3

3864647 4.003561 321.6691 Shap 2.2265 3.32 Lambda 0001 0.0015 0.0009
390.4854 514.7061 861.4311 Scale 1502,22 1261.441 mean 1000 666.6667 1111.111
502,7313 560.0918 880.9627 Location 59.04 0 Location 386.4647 460.3561 321.6691508.1 095 690.7912 960.5415
661.7125 697.2932 1045.6098 1374.37 Normal
886,7261 i 749.5275 1053.1594 409.16491SD
906.5238 883.7888 1066,5678944.8981 928.9266 1089.5723
949.4023 980.72571 10;99.6847 1111
975.21786 1038.1204 1185.9197

1025.5719 1055,5777 1276.0984
1209.4939 1071,9417 1333.207
1370.8123 1140,857 1397.2204
161 8.6314 1167.561 1415.0802
18201.501 i1223.9014 151 6.9275
1840.8863 1251.3599 1540.3965
1888.0118 1257.6638 1627.901
1 9D010299 1351.7852 1693.0526
1947.7009 1374.60891 1760.9435
2000.4766 1459.8623 1762.6073

2046,725 1565.2797 1791.0901
209 42647 1600.459 1869.8137
214 5.1233 1631.8315 189 3.3337
2231.8448 1685.4786 191 5.3189
2438.5156 1891.9785 2001.1393_
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oFA Faiure I I II Z I:- i iZ if
DFR FiludeTRUE DFR PARAMETEF

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 0.78
Set1 Set2 Set3 Repl Rep2 Rep3 Rapt Rep2 Rep3 Scale 1156

118.6141 198.6125 60.58 Shape 0.6114 2.0641 0.6051 Lambda 0.0008 0.0017 0.001 Location 0
194.014 720,2697 187.8718 Scale 790.3363 903.1276 674.4438 mean 1250 588.2353 1000
577.863 730.3799 237.5621 Location 109.52 0 51.29 Location 0198.6125 0

2314.9153 897.7414 1671.916

2729.5595 1460.2987 2889.6972

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 Repl Rep2 Rep3 Rept Fep2 Hep3

3.408 1.0488 0.3558 Shape 0.6532 0.6745 0.6873 Lambda 0.0009 0.0011 0.9006
14.7588 13.4405 39.3497 Scale 841.598 688.7619 1280.568 mean 1111.111 909.0909 1666.667
29.1609 18.0861 100.0813 Location 0 0 0 Location 0 0 0
36.3146 52.5854 191.2237
40.3934 59.1806 193.1598
50.2688 99.5667 218.2887
91.3994 119.6926 237.5243

155.1646 125.5608 329.7486

225.2397 155.9482 361.0288
265.9484 185.5911 382.4978
333.1285 230.0614 437.079
386.2892 26o.79541 614.6348
408.6879 313.5362 644.8552
629.3238 345.492 749.0729
703.2736 507.993 839.4346

1169.0581 686.1628 978.339

1248.8722 1007.9691 1131o4744
1445.3937 1296.3622 1627.7382

1513.3078 1601.0555 1758.1167
1550.6736 1640.0109 2165.3666
1719.6329 1765.8123.77 527
2102.1606 2216.9765 3749.0495

12652.517 2403.9777 3936.9421

431 36 2403.9948 i 6108.8201

7113.146 4681.3171 111.838

pe 7 True Lognormal Mean: 12
Rep ir PDF (To Weibull++ Selection) True Lognormal St Dev: 75
5 Data Points Hi h Level Fitting Parameters LEmLecal) True Lognorm I Varianc: 5625
Set1 Set2 Set3 Rep1 Rep2 IRep3 Low Level Fitting Parameters
1131.1176 1221.7082 1107.4137 N Wan Rel Rep2 IRep3
1167.4860 1247.7035 1112.9283 N S.D. Mean for Normal vadates: 7.088127516
1181.4529 1261.8463 1123.7781 LogN Mean 1 1 1 (Emplrical Var for Normal variates: 0.00389864
1201.4202 1293.5526 1166.9227 LogNS.D., 0 0 0 St Day for Normal Variatee: 0.062439094
1253.5318 1366.3922 1288.2809

16ibull Shape 2.3119 1.3987 0.7407
Scale 98.3282 75.4893 45.4674

Location 1100.11 1209.59 1104.75

Repair PDF (Top Welbull++ Selection) - - Empltcal)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set 1 Set2 Set3 Repl Rep2 Rep3 - Re 1 Re 2 Rep3

1066.9783 1070.9030 1128.2738 N Mean

1093,6934 1086.7744 1139.6524 N S.D. (Empirical
1103.6507 1092.5652 1157.4686 LogN Mean 1 1 1
1107.5324 1127.3754 1161.3083 LogNS.D. 0 0 0

1114.7929 1129.1260 1164.8939
1122.0693 1142.6189 1165.1140 ibullShape 2.035 3.1294 2.0033
1130.3149 113.36e 1.178.999 2305619 131.9044
1133.9859 1160.5764 1181.0261 Location. 1037.74 1001.39 1108.629
1134.2086 1164.572 1189.92
1162.8855 1176.5395, 1197.8526
1184.7496 1198.98821 1208.8237
1185.8258 1205.53731 1210.5951
1201.6919 1211.7361 1221.3367

1201.9551 1214.0789 1228.067
1209.1298 1230.3851 1237.6677

1217.8168 1233.3579 1237.788
1220.1794 1234.021 1243.0786
1224.1166 1252.4657 1255.4936
1224.2382 1266.4462 1268.1241
1239.0689 1271.6447 1279.6191
1269.6375 1300.4542 1281.4493
1277.6708 1301.5777 1306.2891
1318.4832 1309.9897 1309.9517
1335.9845, 1313.25141 1311.2866
1417.1121 1330.72741 1378.1332
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_________ ___ onmponent 9:
IFR Failure

I_ TRUE IFR PARAME
Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential) Weibull 1
5 Data Points Hli h Level Fitting Parameters .Low Level Fitting Parameters Shape 1.6
Setl Se12 Set3 Repl Rep2 IRep3 Repl Rep2 Rep3 Scale 600059.5546 1654.2175 613.4815 Shape 1.0849 3.3957 1.0719 Lambda 0.0006 0.0007 0.0002 Location

1158.651 2271.7078 1717.0383 Scale 1849.276 3368.241 6574.887 mean 1666.667 1428.571 5000
1296.9513 3279.2189 6196.8696 Location 0 0 0 Location 0 1654.218 0
3188.8792 3331.52251 7426.1392:
3320.83139 4547.57711 16070.173

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points _ High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 Repl Rep2 Rep3 Repl Rep2 Rep3

710.1353 315.042 677.8381 Shape 1.5749 1.3227 1.4201 Lambda 0.0002 0.0003 0.0002
1404.275 319.0603 812.6982 Scale 5451.465 4452.107 4945.843 mean 5000 3333.333 5000

1697,4788 865.1356 1029.7398 Location 136.8 0 188.2 Location 710.1353 315.042 677.8381
1712.0311 964.7651 1269.512
2399.8517 1555.376 1283.0806
2453.028 1768.3454 1556.249

3059.8623 2018.16621 1768.0291
3205.4976 2216.09171 2246.1425
3348.8915 2299.03481 2708.4523
3473.4032 2308.58151 3038.4733
3590.5025 2723.83161 3711.0196
3980.0035 2833.5951 4279.3182

4376.2988 2897.0913 4651.4644
4563.0706 3439.8605 4745.8146
4687.6538 3915.9635 5293.0437
5026.6837 4195.1227 5386.0989
5386.7755 4859.56895 5530.2301
5665.2326 4934.6351 5907.2441
6071.2068 5281.6802 6812.7298
6290.1388 5447.2768 6856.5882
7676.628 7422.3666 8055.3173

8374.2954 7939.4749 8449.6528
9111.7105 9350.079 8843.0188
11337.734 9705.5429 9270.6163
15570.734 12771.24 13027.447

DFR Failure T
I i TRUE DFR PARAM

Failure PDF (op Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 0.91
Setl Set2 Set3 Repl Rep2 Rep3 Repl Rep2 Rep3 Scale 5143

681.5702 596.0467 119.6449 Shape 0.8243 Lambda 0.0001 0.0002 0.0002 Location 0
2458.446, 712.2351 936.5725 Scale 5389.666 mean 10000 5000 5000

5510.231 3365.8145 6880.5072 Location 0 Location 0 0
10184.901 6731.4725 9813.6578
24128.051 8823.3123 1143131 Exp. Lambda 0.0001 0.0002

mean 10000 5(00
Location 0 0

Failure PDF (Top Wibull++ Selecion) (Weibull++ Exponential)
25 Data Points Higqh Lovel Fitting Parameters Low Level Fitting Parameters

Set1 Set2 Set3 Repl RP2 Rep Repl Rep2 RP3
288.5507 242.1327 41.8282 Shape 0.886 1.0473 0.8983 Lambda 0.0002 0.0002 0.0002
454.0527 494.4891 167.0204 Scae 4238.59 5726.453 4840.68 mean 5000 5000 500070.2991 677.5071 403.0769 Location 235.27 62.45

=  
0 Location- 0 0 0

701.9181 1235.1553 619.0767
1006.5467 1267.3978 879.9276
1021.5041 1763.3643 930.183
1249.7236 2731.0845 1029.6775

1519.4028 3326.5544 1328.8312
1523.0142 3337.5112 1474.83821
1751.3391 3365.3735 1684.71091
2166.3748 3429.2985 2502.2854
2540,1512 3515.0382 2693.31:
3018.4221 3761.8152 2807.076
3857.1797 3920.6132 3551.0629
4542.7513 4452.365 4450.4991
4934.3277 4718.1228 5411.8571

5396.2548 4722.0321 5604.2964

5451.2574 4969.9776 6749.6905
6577.W46 5292.67511 7225.6098
6602.0741 8146.69181 9127.3135
6605.3121 8953.0051 9613.4038
7288.3094 9086.6108 13044.791
11396.714 15407.676 14046.558
12643.835 17600.539 15157.287M
25368.23' 25513.732 16563.952
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Repair I __ITrue Lognormal Mean: 1000
Repair PDF I(Top Weibull++ Selection) True Lognormal St Dev: 30
5 Data Points High Level Fitting Parameters (Empirical) True Lo rav ,aiac: 900

Set1 Set2 Set3 kepi Rep2 Rap3 Low Level Fitting Parameters
957.3293 976.9499 980.0563 N Mean 6.9174 Repl Rep2 IRep3

1004.1 691 986.0260 993.8689 N S.D. 0.0225 1 Mean for Normal variates: 6.907305

1019.7928 1008.2677 1005.0293 LogN Mean 1 1 1009.947 (Empirical) Var for Normal variates: 0.0009
1021.4267 1009.6679 1027.3645 LogN S.D. 0 0 22.72668 St Dev for Normal Variates: 0.0299931
1063.3764 1033.7083 1043.4408

Weibull Shape 1013.219 1002.924 Normal
Scale 34.1523 19.9093 SD

Location

Repair PDF (Top Weibull++ Selection) (Empirical)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 Repl Rep2 Repp Repl JRep2 Rep3

969.4499 929.7908 906.8867 N Mean 6.9207
987.9844 943.7861 965.8418 N S.D. 0.0214 (Empirical)
988.6763 960.9697 978.3340 LogN Mean 1013.261 1 1
991.4813 979.3975 979.6999 LogN S.D. 21.68627 0 0
991.5687 983.9974 981.6159
992.9107 990.1479 984.8527 leibull Shape 1005.308 1002.698 Normal

1001.3602 990.5475 986.9105 Scale 29.702 30.7377 SD
1002.5114 995.3010 987.5617 Location
1003.7589 1001.762 988.0836

1005.574 1002.1008 995.0697
1008.0845 1002.689 1003.6294

1008.701 1004.0883 1004.238
1009.1278 1008.1903 1004.3948
1010.3378 1008.6868 1006.5613

1015.067 1009.8558 1006.9701
1015.6193 1017.8083 1008.422
1019.8246 1020.2354 1009.5552
1021.0363 1020.745 1010.9104
1022.2379 1021.1124 1011.4862
1028.7856 1024.58 1021.9361
1030.7385 1032.176 1030.1529
1044.5651 1037.4256 1032.2784
1046.3787 1041.2503 1043.9363
1055.5485 1049.9777 1050.9691
1060.5552 1056.0762 1067.1425

Cornponent 10:
IFR Failure - 4 1 TRUE I

______ TRUEFR PARAMETERS
Fa(ureTPDF (Top Weibull++ Selection) (Weibull++ Exponential) aWeibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 2.3
Set Set2 Set3 Rep1 Rep2 ep3 R Rap Rep2 Rep3 Scale 4700

2460.3635 1391.2082 3104.3889 Shape 0.9031 Lambda 0.0004 0.0002 0.0008 Location 0
2985.2778 3824.9763 3239.37068 Scale 1682.075 mean 2500 5000 1250
3428.4506 4646.9928 4151.6844 Location 2349.75 Location 1454.85 939.0042 2888.68
3829.4519 5099.4023 5067,2464

7899.659 10868.3625 5136.9909 Exp. Lambda 0.0002 0.0008
mean 5008 12501

Location 939.0042 2888.68

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponental)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set Set2 Set3 Rep1 Rep2 Rep3 Rapt Rep2 Rep3

894.4406 331.2133 2131.6465 Shape 2.1419 2.0096 1.4895 Lambda 0.0003 0.0002 0.0004
1023.1727 1715.7957 2340.2868 Scale 4366.964 4955.363 3212.777 mean 3333.333 5000 2500
1310.8676 2173.6379 2502.6929 Location 38.1 0 1897.27 Location 894.4406 331.2133 2131.647
2000.8766 2547.4421 2821.5088
2112.3535 2581.314 2917.4431
2350.6133 2846.8133 3105.3902
2447.3256 2874.1741 3417.3013
2531.0481 2918.4731 3425,1682
2756.9077 3162.4144 3635.6986
2899.8222. 3171.9591 3T78.0157
2938.7555 3428.8095 3824.1597
3549.4744 3508.1976 3860.8158
3725.4581 3838.6692 4335.5436
3818.6762 4515.6644 4792.2902
4007.7806 4651.8767 5010.0O428
4367.2804 4715.7704 5324.771
4622.0827 4729.5918 5377.7319
5262.9528 4923.6739 5787.9227
5510.4431 498& 704, 6245.8785
5649.2894 5094.7207 6666.7204
6078.4149 6895.3167 6890.9982
6198,2355 7500.7015= 7054.6766
6370,6497 8166,9252 7089.9942
6873.8549 8813.8198 7181.98431
8151.8431 9904,6635

= 10476.8281
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DF Flu II I TRUE DIFR PARAMETERS
Failure POFl (Top WmbuII++ Selection) (WeibulI++ Exponenial) Welbull
5 Data Points High Leve Fitting Parameters Low Level Fitting Parameters Shape 0.46
Seth Se12 Set3 Repi Hep2 jRep3 Repi Rep2 Rep3 Scale 1763

381.118 44.4075 152.6667 Shape 0.5506 0.4267 0.5068 Lambda 0.0004 0.0006 0.0003 Location 0
617.0898 70.8841 321.0095 Scale 1454.575 695.0183 1983.222 mean 2500 166.67 3333.333

730.741 817.1918 983.4334 Location 388.83 43.18 138.695_____ Location 0 0 0
4788.7914 890.2961 3473.1754
8703.657 6248.1205 13850.6368

109643 40.957 11385.75 ae 031 .05 .49Lmd .00 .04 000
110.179 02.29738 213.1146 all17.6 85.9821.5men 00 200 00

1 68.50778 116.7854 2454.08
4347.83 28.44915 3823.6637

2243.48984 161.4048 4226.318 NMen947_ 7729___

2354.3187 235127 51.68 LN en 125.267 1Epii7)7a.ttNrml0956s: 003387

27.189 241.9964 230.603

2503,490243.93576 254.4227
2284.434 1021.8041 3258.35

29165381116687573479997



_Corn onent 11:
I FR Failure

I TRUE IFR PARAME

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 1.4
Set1 Set2 Set3 Rel Rep2 Rep3 Rapt Re2 Rep3 Scalel 2700
399.3785 348.758 1171.1815 Shape 1.717 1.5995 Lambda 0.0008 0.0005 0.0004 Location 0
830.8968 1017.28 1221.9844 Scale 1776.997 2057.36 mean 1250 2000 2500
1580.886 1719.111 3127.0986 Location 0 4. Location 321.4348 0 657.75
1953.553 2494.546 4832.3086
3139.557 3653.888 5037.1987 0.0004 Ex. larnbda

2500 mean
657.75 location

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Seti Set2 Set3 Repl Rep2 Re 3 Repl Rep2 Rep3

135.1654 205.6775 125.7678 Shape 1.4844 1.4247 1.1671 Lambda 0.0001 0.05 0.00 La5
611.4846 394.576 252.0802 Scale 207.105 2599.055 2230.025 mean 2005 2500 2000
651.0371 509.5215 291.4994 Location 8 45.86 49.46 Location 135.1654 0 125.7678
660.8156 737.8067 355.3873
1021.222 752.9524 716.5149
1022.097 840.2453 781.2346
1263.096 1089.669 869.563
1281.615 1356.857 909.8222
1330.08 1362.603 924.6418

1384.751 1391.372 1208.167 S7
1385.471 1643.994 1245.9077
1576.088 1929.807 1306.397
1871.908 1942.723 1530.418
1993.4 2024.086 1958.8213

2015.435 2285.275 2204.4941
2241.6811 2586.417 2349.3161

2455.51 2881.621 2484.0128
2700.641 3504.116 2976.4458

2942.01 4173.105 3206.0688
3105.378 4200.117 3282.3602
3995.412 4339.191 3711.82261
4304.415 4461.944 4345.3492

4901.151 4711.247 5114.9785
5523.447 5461.185 51.22566151.2311 12.621 66143085

DFR Failure

I TRUE DFR PARAMi

Failure PDF (Fop Weibull++ Selection) (Weibull++ Exponentia) Weilbull
5 Data Points High Lavel Fitting Parameters Low Level F itting Parameters Shape 0.82
Set1 St2 Set3 Repl jRep2 IRp3 Rpl Rp2 Rep3 Scale 2210

8.6383 257.351 652,8088 Shape 0.3717 0.87641 0.5997 Lambda 0.0016 0.000.5 0.0003 Location 0

25.3535 674.175 871.4467 Scale 216.4645 1894.652 1694.464 mean 625 2000 3333.333
34.4213 1307.778 1860.3552 Location 8.48 140.381 625.16 Location 0 0 0

1408.127 2304.15 2150.5854
1577.924 6288.8 10252.167

Failure PF Will++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 Rpl Rep2 Rep3 -Re1 Rep2 Rep3

62.2017 0.7289 102.2177 Shape 0.612 0.806 0.9371 Lambda 0.00 5 0.0005 0.0004
83.1745 39.6174 120.7591 Scale 1477.638 1885.069 2157.154 mean 2000 200]0 2500
98.2315 48.879 124.0102 Location 59.81 0 01 Location 0 0 0

108.0633 118.1574 178.3371
132.6368 401.0883 320.1617
141.8487 422.3874 496.5205
223.3982 428.7619 568.8352
285.51781 463.5295 570.9538
291.1456 527.5761 951.019

c

402.0495 891.8545 955.92241
494.164 1148.423 1020.5197
582.361 1270.221 1101.879

931.2186! 1693.32 1577.8085
1277.169 1811.43 1969.9017
1360.007 2027.364 2016.8713
1848.355 2364,114 2172.5559
2216.056 2416.477 2262.6457
2803.269 2602.398 2444.5492
3128.196 2804.394 2861.5444
3542.853 3433.075 2865.5286
3571.851 3981.664 3978.9659
4313.159 4518.86 4345.9862
7229.554 4981.317 5207.9364
8298.052 5998.264 8198.7492

110447.321 7468.M4 9183.7914
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Repair _____ _True Lognormal Mean: 500
Repair PDF (Top Welbull++ Selection)True Lognormal St Dev: 60
5 Data Points High Level Fitting Parameters (Empirical) True Lognormal Variance: 3600
setl Se12 Set3 ReplI Rep2 R Low Level Fitting Parameters

408.5751 382.8029 434.3379 N Mean 6.158 Repl Rep2 IRe[3 1
505.4561 456.0501 487.9058 N S.D. 0.125 Mean for Normal varlates: 6.207459
517.8744 469.2272 519.6217 LogN Mean 1 476.1879 1 (Empirical) Var for Normal varlates: 0.014297
541.2839 527.4465 520.620: LogN S.D. 0 59.75676 0 St Dev for Normal Variates: 0.119571
549.1956 545.1056 521.6798

Weibull Shap 17.501 496.8332 Normal
Scale 526.3015 33.7279 SD

Location' 01

Repair PDF (Top Weibull++ Selection) (Empirical)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set Set2 Set3 Repl Rep2 Rep3 RepI Rep2 Rep3
379.2242 376.3529 360.0695 N Mean 6.1715
384.8839 399.4062 396.3990 N S.D. 0.1185 (Empirical
397.9237 413.9606 423.6617 LoN Mean 1 482.2782 1
402.2933 419.7963 427.2547 L NS.D. 0 57.35118 0
415.7437 420.9450 428.3661

418.8344 445.0704 437.9965 elbull Shape 1.9775 9.1918
434.5456 449.3883 441.0406 Scale 119.471 524.4168
435.1145 450.3172 453.0509 Location 360.36 0
445.4998 452.9297 462.2056
447.9557 454.7003 484.4993
452.1994 456.0182 498.8031
459.6537 456.1564 504.6379
461.5911 469.0703 517.1915
462.7588 480.5202 520.5732
465.9207 497.5498 521.3292
467.9612 503.607 523.6307
468.4529 507.0269 527.5997
470.0837 510.6749 536.3271
489.2458 530.1292 543.2483
493.1113 534.3102 550.0685
525.0043 536.2736 555.9517
545.0995 546.9055 557.8725

561.74 557.0174 559.7485
566.6206 584.6395 577.3578
601.0891 603.7306 624.3891

IFCR Failure 12: __2I TRU I IPRAI
Failure PDF (op Weibull++ Selection) ',Weibull++ Exponential Weibu
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shae 1.g
Set Set2 Set3 Rapt Rep2 Rep3 Riepl Rep2 Rep3 Scale 2700
1261.7666 1257.1554 594.7325 Shape 0.5878 4.1015 Lambda 0.0005 0.0(007i 0.04 Location 0
14124101 2493.6134 1682.0792 Scale 8,94.3969 3023.592 mean 2000 1428.571 2500

1515.381 3103.796 2224.6969 Location 1252.4 0 Location 494.34 1257.155 403.5007
4174.5672 3120.3914 4679.6372
4349.67761.6301 4807.4154 0.64 0p. Lard

25016 mean
403.5007 Location

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters L1ow Level Fitting Paraeters
Sell Sa12 8et3 I Repl Rep2 Rp3 P Repl Rp2 Rp3

473.7039 261.6811 660.4892 Sae 1.9393 1.7964 1.524 Lambda 0.00307 0.0004 0.0007
609.1241 469.M594 761.4232 Scale 2223.877 2886.111 1634.321 mean 1428.571 2500 1428.571
670.3734 765.0322 837.6972 Location 0 0 535.1 Location 473.7039 261.6811 660.4892

714.7449 1020.8678 1114.6858
799.4156 1026.4228 1142.0944
821.8652 1168.1056 1249.2308

1026.1816 1434.141 1270.3497
1052.67761 1477.G53 1354.06031
1113.5933 1586.18 1467.4095 1
1280.8095 2039.6364 1471.4072
1641.7102 2226.5273 1508.0267
1752.6716 2293.0692 1545.3388
1775.5144 2317.9666 1648.2241
2202.4022 2545.1758 1677.4903
2283.1304 2783.7913 1849.1673

2304.0152 2864.0794 1978.8131
2453.86871 3141.219 2673.5422
2731.204 3307.7406 2681.0014

2904.4548 3840.1989 2798.3986
2968.1507 3939.0921 2856.9645
3017.5133 4300.7773 3016.9451

3274.07 4388.5643 3237.0632
3560.5859 4458.0963 3403.7783
3581.01394 5184.3219 3759.0765

4126.65 5439.7757 4214.8319
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OFR Failure T' iI liI iZTRUE DFR PARAMI

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 0.67
Seti Set2 Set3 Rept Rep2 Rep3 Repl Rep2 Rep3 Scale 1812

7.6546 96.0899 21.1995 Shape 0.7685 0.63692 0.6072 Lambda 0.0019 0.0005 0.0003 Location 0
197.1153 113.9879 755.0449 Scale 471.1644 1448.012 2426.685 mean 526.3158 2000 3333.333
325.2801 1001.18 781.0092 Location 0 0 0 Location 0 0 0
513.3453 1377.4546 4275.7639
1654.598 7131.7167 11255.07

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 Repl jlop2 Rep3 Rapt R 2 Rep3

10.9449 3.7484 87.0939 Shape 0.7077 0.7423 0.705 Lambda 0.0005 0.0005 0.0004
11.1556 45.4783 90.6331 Scale 1630.637 1816.511 2203.728 mean 2000 2000 2500
11.6602 76.0758 124.7874 Location 0 0 62.81 Location 0 0 0
49.9084 175.6294 149.4903

153.5405 188.8683 162.0355
176.5265 272.3074 196.7246
468.0817 378.9127 411.433
576.0046 526.0171 476.6189
642.2621 853.6597 740.2461
648.6122 861.7123 961.4276
692.8479 941.2544 1142.9903
788.1248 976.4346 1361.5264
797.9105 1006.7838 1742.5392
1019.872 1052.5932 1782.2856

1162.9292 1494.4841 2169.7709
1711.7281 1495.1745 2414.2548

2346.9917 1590.8216 2528.401
2932.8064 1779.3303 2761.1596
3121.6927 2316.7368 3271.3115
3265.6842 2880.537 4597.1368
3767.835 3517.6496 5929.2883

5175.5476 6082.2362 6308.3627
5842.0775 6734.5327 8273.6667
6673.5799 9184.2438 10778.82
7470.7063 99017573 11152.869

Repair ________True Lognormal Mean: 1000
Repair PDF __ (Top Weibull++ Selection) True Lognormal St Dev: 100
5 Data Points High Level Fitting Parameters (Empirical) True Lognormal Variance: 10000
Set1 Set2 Set3 _ Repl Rep2 Rep3 Low Level Fitting Paramters

921.2770 820.7662 1047.2591 N Mean pel Re2 IRep3 1
1026.9795 1007.9188 1086.8297 N S.D. Mean for Normal variates: 6.90278
1030.6159 1161.9647 1105.9727 LogN Mean 1 1 1 (Empirical VarforNormalvariates: 0.009965
1081.1291 1213.9549 1108.9158 LogNS.D. 0 0 0 St Dev for Normal Varates: 0.099751
1179.9064 1230.9343 1149.3595

Weibull Shape 3.5735. 9.636 1099.667 Normal
Scale 299.5936 1150.825 33.1844 SD

Location 778.58 0

Repair PDF (Top Weibull++ Selection) _ (Empirical)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Seti Set2 Set3 Rep1 Rep2 Rep3 Repl Rep2 Rep3

863.4720 816.3019 836.3563 N Mean 6.9115
870.4745 836.0325 857.4328 N S.D. 0.111 (Empirical
878.7886 888.8314 870.3992 LogN Mean 1 1009.954 1
811.4143 889.2766 881.9993 LoN S.D. 0 112.4511 0
883.4105 898.2122 921.5095
891.1241 915.6568 923.8170 eibull Shape 2.2105 1.8793
892.3451 927.0283 924.6352 Scale 184.6464 227.2435
930.7104 941.5621 930.0624 Location 813.92 807.18
935.6024 956.2913 937.2837
947.4867 967.8106 945.3822

951.459 978.4647 950.9466
966.2918 1017.5979 968.5811
886.5928 1024.2288 978.9309
889.2622 1029.7179 1014.9392
994.1616 1032.0143 1020.9281

1008.1781 1033.658 1031.0253
1008.6267 1037.4829 1051.3581
1011.5922 1051.5717 1085.0167
1030.4598 1057.6908 1093.2055
1037.8319 1086.4589 1107.9219
1056.746 1088.9196 1114.7159

1058.7383 1094.1714 1146.3594
1068.7242 1123.3769 1160.0313
1137.12761 1189.747 1177.6552!
1142.8991 1368.8295 1284.3961 1 1 1 1
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Co~poent 13:
TRUE IFR PARAMETERS

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 1.3
Seti Set2 Set3 Rep1 Rep2 Rep3 Repl Rep2 Rep3 Scale 4200
1534.7392 896.028 2376.5041 Shape 1.0452 0.9373 1.4478 Lambda 0.0002 0.0002 0.0004 Location 0
2953.8106 1543.0735 3122.547 Scale 4776.894 3617.809 2920.016 mean 5000 5000 2500
4334.0274 3307.1905 3895.0499 Location 1089.76 669.88 1841.89 Location 0 0 2058.92
5885.3096 5861.0583 5460.114
14192.729 10349.6589 7561.16 Exp. Lambda Normal

mean #DIV/01 s.d.

Location

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Setl Set Set3 Repi Rep2 Rep3 Repl Rep2 Rep3

303.173 364.9067 52.2914 Shape 1.099 1.5637 1.3457 Lambda 0.0003 0.0003 0.0003
426.5639 471.2389 517.6315 Scale 3738.021 4208.958 3298.907 mean 3333.333 3333.333 3333.333
716.8078 534.2293 536.4013 Location 185.79 0 0 Location 203.05 364.9067 52.29
876.5694 692.8011 676.0851
972.2855 835.1185 743.9198

1083.6165 1157.1796 1353.7882
1800.6851 1813.9937 1552.2205
1888.3481 2007.6607 1642.183
1970.5479 2590.7362 1664.7736
2143.4951 3074.3267 2000.7745
2294.3538 3756.3237 2496.9661
2343.1229 3858.5608 2515.8117
2403.8472 4232.3753 2581.3519
2907.9941 4321.4384 2815.3824
2996.2714 4630.4668 2816.2662
3180.0696 4673.2074 3561.1123
4185.0583 5054.6401 3664.1376
4862.0909 5222.681 3734,7926
5179.9238 5749.319 3843.1136

5292.771 5893.3512 3992.5466
6423.234 6030.9471 5862.6757

8207.1477 6260.7526 5985.4605
9439.1723 6386.9334 6126.25
9843.7147 7641.1074 7591.0921
13060.971 8022,6307 7761.8746

DFR Faiture
IiTTRUE DFR PARAMETERS

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential) Weibult
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 0.88
Setl Set2 Set3 Rep I Rep2 Rep3 Rel1 Rep2 Rep3 Scale 3591

821.429 1923.5228 505.3313 Shape 0.7792 0.4406 0.933 Lambda 0.0003 0.0002 0.0004 Location 0
1765.5065 2224.9034 1174.8287 Scale 2059.37 1153.917 2315.178 mean 3333.333 5000 2500
1978.1663 2262.4041 1524.5589 Location 753.76 1918.814 333.62 Location 0 0 0
2189.6663 2516.0291 3041.0487
8948.9675 16093.1049 7387.8961

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set Set2 Set3 Repl Rep2 Rep3 Rep1 Rep2 Rep3

36.3236 21.5841 49.1341 Shape 0.7608 0,855 0.9524 Lambda 0.0002 0.0002 0.0004
188.6881 102.3341 118.9211 Scale 4714.48 5917.635 3668.353 mean 5000 5000 2500
199.9364 498.039 274.2967 Location 11.09 0 0 Location 0 0 0
222.5115 614.9749 393.2561
266.6395 831.7643 485.8735
567.3778 1468.5343 521.5053
944.2548 1831.2292 545.8457

1038.0092 2044.4742 566.8894
1948.6666 2640.3637 1212.735
2286.6888 2906.0534 1218.5584
2759.1723 3043.1824 1545.1322
2961.0126 3600.0084 1764.2993
3450.8804 4234.745 1880.0662
3551.7663 4412.2526 2024.5855
3829.7049 5383.6358 2314.5517
4366.7506 5846,0498 2387.5884
5261.639 5928.3691 3156.058

6222.2804 6579.8596 3413.1687
6379.6793 8293.0474 3588.0676
6982.4762 8534.6481 4226.6113
8316.9783 10004.7272 4605.82611
13430.928 11397.2067 5564.6401
19695.835 19237.692 6450.3334
20668.013 19319.2679 8800.8698
22262.107 31005.7548 11070.3856
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Repair True Lognormal Mean: 90
Repair PDF (Top Weibull++ Selection) True Lognormal St Dev: 15
5 Data Points High Level Fitting Parameters (Empirical) True Lognormal Variance: 225
Set Set2 Set3 Repi Rep2 Rep3 Low Level Rtting Parameter

81.0415 90.2785 80.5283 N Mean Repl Rep2 IRep3
88.5546 90.3328 81.1774 N S.D. Mean for Normal variates: 4.48611
95.8472 92.9108 82.0838 LogN Mean 1 1 1 al Var for Normal variates: 0.0273991

100.2568 96.0310 102.7992 LogN S.D. 0 0 0 St Dev for Normal Variatea: 0.165526
116.9931 101.0421 119.3345

Weibull Shape 2.1677 0.1872 0.0476 Exp. lambda
Scale 27.79271 8.W18 21.0084 mean

Location 72.021 88.77811 72,2 location

Repair PDF (Top Weibull++ Selection) (Empirical)
25 Data Points High Level Fitting Parameters Low Level Ritting Parameters
Set1 Set2 Set3 Repl Rep2 Rep3 Re 1 Re 2 Rep3

73.2955 57.2922 58.9802 N Mean 4.4783
73.6014 58.4706 71.5267 IN S.D. 0.15671 (Empirical)
79.8333 63.5220] 75.1428 LogN Mean 1 189.17292
80.87001 64.6013 75.5645 LogN S.D. 0 0 14.05962

81.6838 70.2260 77.7277
83.8330 73.0534 78.3299 Weibull Shape 7.8912 88.9987 Normal
84.8072 73.7476 78.4352 Scale 103.3727 18.6082 SD
86.3784 76.5441 80.4052 Location 0
88.3803 76.9418 80.8206
90.2415 85.2288 84.4287
92.4393 86.6952 87.5769
96.4936 91.0671 87.8593
96.8319 91.121 89.5182
97.3717 91.4527 89.5254
98.1219 91.764 90.0613
107.6175 92.2158 92.5016
107.9168 97.2646 93.7555
108.8023 98.4442 93.8698'
108.9241 100.4516 94.2643
111.1314 107.0778 97.6443
114.572 109.4233 97 .9541

115.0058 112.8608 106.8825

115§.7103 114.4181 108.635
116.1 115.8067 115.1526
119.83111 125.2759 122.622

Comp nent 14,15, 16 (Identical):
IFR Failure ~Z ~ I Z ___ ___

TRUE IFR PARAME
Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 1.5
Setl Set2 Set3 Repi Rep2 Rep3 Rept Rep2 Rep3 Scale 2600

821.4516 660.6969 1102.2931 Shape 0.7578 Lambda 0.0006 0.001 0.0004 Location 0
971.1685 1103.9043 1128.3595 Scale 1147.527 mean 1666.667 1000 2500

1651.8559 1667.3854 1137.2242 Location 786.64 Location 313.35 623.85 0
2582.7689 2454.4122 2949.5638
4565.1962 2486.4593 4846.733 Exp. Lambda 0.001 0.0004

mean 1000 2500
Location 623.85 0

Failure PDF I (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Seti et2 Set3 Repl Rep2 Rep3 Repl Rep2 Rep3

246.3968 188.0413 476.4257 Shape 1.3582 1.3692 1.8777 Lambda 0.0006 0.0006 0.0005
301.6394 245.8962 502.2544 Scale 2070.664 2086.813 2498.726 Imean 1666.667 1666.667 1666.667
373.9172 257.3843 739.9818 Location 0 0 71.56 Location 246.3968 188.0413 476.4257
459.5992 384.7876 1028.7516
460.1965 390.2434 1095.989
653.3902 535.6622 1209.3161
726.7555 788.8533 1437.0933
803.0814 827.7453 1469.8434
882.3804 995.8843 1572.3952
987.415 1205.3555 1634.8171

1171.1423 1306.4686 1883.5857
1498.7366 1834.2477 1885.5797
1781.2094 1917.8413 1895.3852
1825.0894 1929.1527 2073.4704
1966.8163 1964.0803 2170.6427
1967.7187 2534.5844 2659.0682
2218.3616 2573.9208 2716.3803
2697.1431 2617.6154 2736.2439
2721.5915 2960.5413 3602.3901
3112.7985 3064.5827 3651.0592
3337.3004 3096.9098 3830.2021
3375.3331 3135.062 3917.4935
3379.2102 3722.8042 39695992
4685.2229 4125.5442 4061.0864
5672.4301 5232.4088 4927.1196 1
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OPH Failure ___ ~Z
ffi ~ _____ _____TRUE DFR PARAME

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 0.62
Seti Set2 Set3 Repl Rep2 Rep3 Repl Rep2 Rep3 Scale 1626

68.4451 294.4203 766.6737 Shape 0.761 0.713 0.5346 Lambda 0.0017 0.0003 0.0003 Location 0
186.4102 356.9395 862.8837 Scale 461.4434 2281.88 1331.235 mean 588.2353 3333.333 3333.333
222.4317 1463.7002 1507.1253 Location 51.78 154.67 757.19 Location 0 0 0
806.9935 3642.0894 3671.8118

1675.0516 9153.306 7681.8881

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Seti Set2 Set3 Repl Rep2 Rep3 Rept Rep2 Rep3

16.2601 1.3678 21.873 Shape 0.667 0.7194 0.7865 Lambda 0.0004 0.0005 0.0005
53.0656 12.7587 22.5653 Scale 2010.957 1547,771 1646.667 mean 2500 2000 2000
56.5048 100.2105 27.6429 Location 10.47 0 0 Location 0 0 0
75.7388 173.0285 47.1459

167.0309 184.9956 89.8158
305.4133 272.6298 212.3958
363.3778 375.3253 539.9818
398.2837 386.2875 622.2503
453.2609 433.4569 672.6159
533.8485 507.1497 902.2155
573.2808 521.5607 922.8244
828.9389 675.6463 925,753

1142.1472 838.1515 1075.3
1168.4655 1612.4677 1229.0825
1667.4281 1694.4022 1310.0152
2415.9013 1787.7082 1611.4575
2655.8887 1977.4734 2449.4034
2845.5341 2248.1439 2637.9431
3958.6831 2500.3208 2664.5059
4050.3354 2597.9362 3035.7101

5844.41 2734.3145 3211.1847
6036.5344 3052.4287 3918.3462
8379.5623 4481.6833 4541.2994
8905.7722 5679.4627 6036.6228
12985.957 12446.341 7724.7371 1

Repair _I _ _True Lognormal Mean: 2200
Repair PDF (Top Weibull++ Selection) True Lognormal St Dev: 200
5 Data Points High Level Fitting Parameters (Empirical) True Lognormal Variance: 40000
Set1 Set2 Set3 Repl Rep2 Rep3 Low Level Fitt Parameters

1949.6625 1886.9895 1872.2611 N Mean Rep1 Re 2 Rep3
2100.3616 1967.0133 1955.0769 N S.D. I Mean for Normal variates: 7.692097
2166.0339 1995.4006 2187.3587 LogNMean 1 1 1 (Empirical) Varfor Normalvarates: 0.00823
2211.5068 2135.2229 2274.0560 LogN S.D. 0 0 0 St Dev for Normal Varlates: 0.090722
2217.2812 2277.0469 2636.5608

SWeibull Shape 31.399 0.0055 1.2609 Ex. lambda
Scale 2171.618 181.8182 386.1334 mean

Location 0 1869.98 1825.55 location

Repair PDF (Top Weibull++ Selection) (Empirical)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Seti Set2 Set3 Repl Rep2 Rep3 Re 1 Re 2 Rep3

1968.6689 1868.1213 1960.2235 N Mean 7.6987
1975.1132 1988.0872 1963.9199 NS.D. 0.0879 _ (Empirical
1976.9286 1994.3224 2054.1652 LogN Mean 2214.016 1 1
1982.9043 1999.3083 2058.3762 LogN S.D. 194.9885 0 0
2012.7468 2010.2552 2076.2089
2032.3105 2011.2372 2083.2523 Neibull Shape 2.2168 2.4171i
2041.8015 2023.9646 2140.5356 Scale 518.9681 375.5121
2064.8301 2084.5795 2141.7546 Location 1774.82 1877.01
2068.504 2121.9681 2168.6835

2114.9037 2128.7886 2171.3472
2134.696 2156.8377 2180.5995

2219.9131 2192.9171 2186.2351
2223.7538 2223.1086 2186.2956

2223.944 2232.0927 2205.8418
2237.4657 2233.4141 2212.0689
2258.3989 2241.1652 2213.1502
2275.9476 2318.0061 2232.4232
2276.3111 2360.2193 2234.3988
2307.7167 2391.6298 2240.9783
2326.8208 2397.6467 2308.1847
2378.565 2408.2664 2356.1085

2407.8434 2478.9498 2381.4711
2477.8152 2545.9917 2449.3159
2609.5416 2692.0111 2469.2448
2755.4595 2726.8006 2570.22911 1 1 1
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omonent 17:
IFR Failure

TRUE IFR PARAME

Failure PDF (Fop Weibull++ Selection) (Welbull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters Low Level Fitting Parameters Shape 1.1
Set1 Set2 Set3 Repl Rep2 Rep3 Repl Rep2 Rep3 Scale 3100

471.0187 18.1282 1342.6858 Shape 0.9971 .9 0.709 Lambda 0.0004 0.0003 0.0002 Location 0
1625.4132 1531.0269 2023.619 Scale 2283.543 2591.26 mean 2500 3333.333 5000
1837.1238 3433.2333 2130.4663 Location 416.94 1315.93 Location 0 18.13 0
2624.7316 4400.4372 4532.2146
6958.4368 6291.393 17067.397 Ep. Larbda 0.0003

mean 3333.333

Location 18.11

Failure PDF I(Top Weibull++ Selection) lWeibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters

Set1 Set2 Set3 Rp. R9p2 R2p3 Rp1 Rep2 JRp3
407.9259 161.6904 243.6169 Shap 1.237 1.4094 1.0864 Lambda 0.0003 0.0003 0.0003
501.1028 175.6016 280.0406 Scale 4161.14 4131.261 4075.564 mnean 3333.333 3333.3331 3333.333
587.9833 1176.0653 593.2484 Location 0 0 112.77 Location 407.9259 161.6904 243.6169
683.9759 1677.2779 687.6845
716.2102 1745.2267 980.0645
907.7667 1947.059 1318.074,5

1216.00591 1997.7113 1840.1952
1564.0009 2047.4254 1848.0641

2051.6183 2083.6358 1872.9607
2290.1219 2655.9011 1912.3393
2607.4224 2714.4592 2038.531
2858.788 2758.9763 2535.8871

2946.5469 3014.4094 2578.4347
3084.6444 3670.7471 2825.9499
3463.1572 3771.7222 3064.6348
4110.686 3817.2447 4203.3075

5166.31 3384.1581 4662.8708
5666.5912 4489.6753 6309.9644
6045.8874 4966.0705 6627.4906
6318.5496 5577.8774 7723.7112
6783.3715 5864.6091 8116.545
7293.0802 6769.1341 8335.255
9022.5194 7240.909 8715.5821
9309.7971 7877.705 9680.6486

11462.4756 12305.858 12644.521

DFR Failur! [ [ TRUE DFR PARAMI

Failure PDF I (Top Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters LowLevel Fitting Parameters Shae 0.75
Set Set2 Set3 Rept Rep2 Rep3 Repl Rep2 Rep3 Scale 2513

59.5865 100.8272 16.3306 Shape 0.5047 0.5698 0.6788 Lambda 0.0008 0.0604 0.0008 Location 0
107.9897 254.9411 155.4217 Scale 649.5001 1728.702 1012.114 mean 1250 2500 1250
335.4129 1067.409 958.0738 Location 55.81 82.27 0 Location 0 0 0
1597.24 3186.4542 1255.9734

3875.1825 8918.2656 3990.7473

Failure PDF op Weibull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 Repl Rep2 Rap3 Repi Rep2 Rep3

0.5437 7.0506 28.9356 Shape 0.6724 0.8954 0.8901 Lambda 0.0003 0.0004 0.0004
8.6153 156.0988 84.9575 Scale 2462.911 2583.896 2618.34 mean 3333.333 2500 2506
65.457 253.084 192.8653 Location 0 0 0 Location 0 0 0

164.9746 259.6845 213.5302
231.0014 284.2161 390.2366
379.0323 582.6449 465.1325
631.9394 734.086 906.161
737.8507 939.1682 939.50921
901.6432 992.4782 965.1404

1019.4881 1042.3105 1469.977
1207.4124 1063.5557 1511.2874
1363.3861 1431.027 1526.337
1662.5712 1631.9059 1578.4342
1837.826 1877.7505 1734.3744

1899.0532 2392.6403 1954.1419
2045.8198 3066.4352 2278.26
2924.5257 3093.9939 2790.8143
3373.4443 3221.2684 2814.2229
3523.4982 3788.9805 2958.3328
6008.3335 3880.6327 5133.968
6643.9093 5791.521 5383.2228
6991.3563 6352.5353 7049.654
7986.5179 7558.41071 7307.1499
8894.9477 8582.6366 9437.14361

17469.7751 876.2789 10066.398 1
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Repair 1 True Lognormal Mean: 750
Repair PDF (Top Weibull++ Selection) True Lognormal St Dev: 60
5 Data Points High Level Fitting Parameters (Empirical) True Lognormal Variance: 3600
Set1 Set2 Set3 Repl Rep2 Rep3 Low Level Fitting Parameters

703.4492 703.7980 679.0828 N Mean 6.6232 Re Rep2 I Rep3
738.2612 712.6273 741.9910 N S.D. 0.0442 Mean for Normal variates: 6.616883
754.8842 838.4393 748.2545 LogN Mean 753.084 1 1 (Empirical) Var for Normal variates: 0.00638
763.2433 854.3706 757.6201 LogN S.D. 33.30258 0 0 St Dev for Normal Variates: 0.079872
805.4866 971.8440 781.99001

Weibull Shape 2.9491 29.4958
Scale 298.658 756.6656

Location 550.82 0

Repair PDF (Top Weibull++ SeTection) (Empirical)
25 Data Points High Level Fitting Parameters Low Level Fitting Parameters
Set1 Set2 Set3 Repl Rep2 Rep3 Rep1 Rep2 Rep3

655.1149 603.5467 612.7326 N Mean 6.6108
667.5307 657.4044 690.7836 N S.D. 0.0803 (Empirical)
672.4019 680.2897 696.1823 Lo N Mean 1 745.4768 1
690.0443 688.6749 710.6512 Lo N 5.0. 0 59.95842 0
706.7640 693.7778 715.0063
715.2020 698.8124 718.9385 elbullShae 3.3904 17.4999
719.0928 707.1852 735.5823 Scale 158.0607 786.4869
719.6680 714.0726 737.1192 Location 602.81 0
722.7592 716.6129 750.8118
723.5153 721.786 752.1002
726.2934 726.4432 755.6947
731.1426 733.6196 774.3226
746.4191 740.4143 777.4024
750.8742 756.0352, 779.5781
755.3336 764.7515 784.127
755.3454 774.5445 788.3271
761.3573 775.7084 789.5141
766.6826 779.7188 791.2808
779.6974 779.7923 797.9798
784.3381 783.1043 801.6568
797.9828 784.9 804.8027
801.5392 835.0221 817.9762
816.6847 837.9495 829.1064
820.8974 839.5072 829.3362
826.7362 843.1758 855.3795

Cornponents 18, 19, 20 (Identical):
'F- ai u F - 4 i TR UE IFR PA RA M E

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential) Weibull
5 Data Points High Level Fitting Parameters LowLevel Fitting Parameters Shape 1.6
Seti Set2 Set3 Repl Rep2 Rep3 Repl Rep2 Rep3 Scale 2666
1502.388 1191.844 875.9743 Shape 1.3934 9.0738 0.965 Lambda 0.0008 0.0021 0.0015 Location 0
2241.608 1611.518 975.103 Scale 1434.79 1769.724 489.0612 mean 125 476.1905 666.6667
2294.6569 23.97 1294.217 Location 1292.15 0 841.0353, Location 1297.17 1191.844 692.5601
2571.865 1812.564 1312.462
4379.824 1931.782 2231.183

83.01 66.8210.2

Failure PDF (Top Welbull++ Selection) (Weibull++ Exponential)
25 Data Points High Level Fitting Parameters LowL-evel Fitting Parameters
Set1 Set2 Set3 Repl Rep2 Rep3 Repl Rep2 Rep3

314.9132 210.9166 105.374 Shape 1.446 1.2506 1.9818 Lambda 0.000 0.0008 0.0005
468.8809 290.4816 568.2492 Scale 1786.976 1352.796 2071.292 mean 1428.571 1250 2000 1

495.7449 323.9759 643.8168 Location 187.47 148.27 0 Location 314.9132 210.9166 0
644.5407 432.1534 872.5625
801.7565 501.6268 1161.61
838.4091 666.8802 1202.525
976.6914 704.2608 1224.835
1000.785 728.4266 1300.138

1165.984 779.4753 1349.104
1251.536 826.1266 1370.584l
1308.123 829.2261 1410.211
1356.717 1015.429 1420.97"7
1464.409 1399.15 1689.858
1655.118] 1449.675 1957.151

1848.308 1553.081 2001.905
2095.046 1617.314 2041.049
2110.565 1640.227 2149.487
2121.214 1741.425 2186.686
2304.463 1742.711 2200.286
2530.381 1816.523 2424.663
2850.026 1913.521 2814.613
3084.853 2113.321 3143.374
3941.176 2927.76 3409.666
4180.206 3458.394 3651.85
4357.7851 4504.255 3834.2791
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OFR Failure
IZZIITZIZTRUE DFR PARAME

Failure PDF (Top Weibull++ Selection) (Weibull++ Exponential Weibull
5 Data Points High Level Fitting Parameters LowLevel Fitting Parameters Shape 0.48
Set Set2 Set3 Rp1 Reap2 Rep3 Rp Reap2 Rp3 Scale 829

19.2842 24.0392 0.1402 Shape 0.3007 0.4577 0.3947 Lambda 0.0003 0.0028 0.0011 Location 0
45.759 32.7484 81.4712 Scale 676.804 160.2191 310.1298 mean 3333.333 357.1429 909.0909

71.7595 148.4099 103.7989 Location 19.14 23.48 0 Location 0 0 0
3121.848 219.2888 295.1515
14259.96 1387.394 3958.93 . Lambda

mean #DIV/Ol
Location

Failure PDF (Top W eibull++ Selection) (Weibull++ Exponentil)
25 Data Points High Level Fitting Parameters Low Level Fittinw Parameters
Set Set2 Set3 Rep Rep2 Rep3 Rp Rp2 Raep3

0.0133 0.0458 9.4646 Shape 0.4801 0.4267 0.5169 Larbda .00 e 0.0003 0.0004
8.8798 1.5961 293.4149 Scale 753.4989 1087.9 1253.119 mean 1666.667 3333v333 2500

19.6567 11.611 24.64 8 Location 0 00 8.45 Location S 0 O
20.7896 37.99668 33.4034
45.0159 44.7426 75.794
88.2708 64.8171 75.9579
93.5473 79.0982 101.4868

107.3531 166.18671 324.5026
125.3961 211.427 343.8184
162.2768 251.8883 360.2157
187.0662 309.0835 372.9556
317.6282 314.9474 387.9473
404.9284 337.0527 483.8195

420.0821 345.1927 523.1712
420.7332 659.6077 541.1124
551.4718 783.51205 734.027
564.3061 832.9628 863.8202
663.5022 1546.0061 1164.115

822.9871 895.95 2691.308
1084.615 22371328 3127.158
219.137 3253.82 4729.701
2527.125 3877.281 4765.47
4800.574 6135.726 11599.86

10587.4 9381.876 12590.611
17009.16 59438.62 13556.8894

Repair I I True Lognormal Mean: 280
Repair PDF (Top Weibull++ Selection)I True Lognormal St Dev: 50
5 Data Points High Level Fitting Parameters (Empflial) True Lognormal Variance: 2500

Sell Set2 Set3 Repl Rep2 IRep3 Low Level Fittin Parameters160.9515 263.4569 205.7862 N Mean Rel 1 Rep2 I Rep3 I
207.5786 268.0693' 261.3554 N S.D. Mean for Normal variates: 5.619095

249.9895 268.5295 293.248ogN Mean 1 1Empirical Vat for Normal variatos: 0.03139
259.1388 306.5290 324.6998 LogN S.D., 0 St Dov for NormaI Varates: 0.177172
288.9591 354.9991 334.4042 1

Weibull Shape 6.497 0.6542 283.8541 Normal
Scale 251.3703 22.0338 46.7088 SD

Location 0 262.9

Repair PDF (Top Weibull++ Selection) (Empirical)
25 Data Points High Level Fiting Parameters L1ow Level Fitting Parameters
Set 1 Set2 Set3 Rp1 Rep2 IRep3 IRepl Rep2 Rep3

226.1870 192.9462 162.4683 N Mean. 5.5349
226.2906 200.9697, 192.8644 N S.D. 0.1931 (Empirical)
233.5470 205.77031 198.9839 ogN Mean 1 1 258.1508
234.2416 219.17251 204.5344 LogNS.D. 0 0 50.31723
237.7709 234.00491 204.7760
238.4575 240.37531 218.1189 bull Shape 1.916 3.1754
242.8845 244.44751 227.3584 _Scale 74.3501 174.918
250.1624 245.87461 232.3286 Location 210.45, 132.27
260.8614 257.20651 233.5123
267.3973 279.20461 236.7337
271.7493 284.94721 237.1974
271.9375 293.71381 238.1687
272.2074 298.87791 258.0996
276.2545 301.03811 260.832
280.349 307.0936 261.3496

281.0325 307.0983 269.5956
289.3342 321.275 274.1441 11
294.0659 324.7649 298.4224
295.8926 325.7814 300.6731
300.4485 328.0474 306.8594
301.0505 329.8898 309.0275
326.5971 334.6501 313.1513
327.3225 350.8511 317.2415
329.0394 377.89681 321.3988
371.0237 408.87711 374.819
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Appendix E: Data Fitting Graphs

Examples of True versus Weibull++ Wizard and
Exponential Fitted Distributions

for Component 1 (Final Experiment):

IFR Failure PDF (Weibull)
5 data points
Replication 3

0.0004

0.0003tret

f wizard( ,O.0002

exp(t)I

0.0001

0II I I
0 1000 2000 3000 4000 5000

IFR Failure PDF (Weibull)
25 data points
Replication 3

0.0005

0.0004 \

f true(t) 0.0003 -

f wizad(t) --
- "

-

exp(t) 0.0002

0.0001

0 1000 2000 3000 4000 5000
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DFR Failure PDF (Weibull)
5 data points
Replication 3

0.0006111

ftu(00.0004

exp~t) 000

0
0 1000 2000 3000 4000 5000

t

DFR Failure PDF (Weibull)
25 data points
Replication 3

0.0006

ftu()0.0004N

f' tre( t) *

exp~t)

0
0 1000 2000 3000 4000 5000
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Repair PDF (Lognormal)
5 data points
Replication 3

0.003

r

0.002 -

f tre( t)

f wizard(t)

0.001

0
2500 3000 3500

Repair PDF (Lognormal)
25 data points
Replication 3

0.003

O.O3 I

0.002 -
f true(t)
f t)

0.001

0
2500 3000 3500
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Appendix F:

Birnbaum Structural Component Importance
Measure Results for Final Experiment

Small / Series-Parallel Structure: Small / Complex Structure:

Birnbaum Birnbaum
Structural Top Structural Top

Component Importance 20% Component Importance 20%
Measure Measure

1 .1875 1* .410156 __

2 .1875 2 .410156
3 .5625 _ _ 3 .246094
4 ..1875 4 .410156
5 .1875 5 .410156

Smallest MTrF/MRT ratio

Large / Series-Parallel Structure: Large / Complex Structure:

Birnbaum Birnbaum
Structural Top Structural Top

Component Importance 20% Component Importance 20%
Measure Measure

1 .08832 1 .090469
2 .08832 2 .038773
3 .08832 3 .064621
4 .206079 4 .090469
5 .206079 5 .038773

6 .08832 6 .042004
7 .08832 7 .084007
8 .08832 8 .084007
9 .041216 9 .042004
10 .041216 10 .015274
11 .041216 11 .015274
12 .041216 12 .045822
13 .206079 13 .07637
14 .08832 14 .015274
15 .08832 15 015274
16 .08832 16 .07627
17 .206079 1 17 .045822
18 .08832 18 .024002
19 .08832 19 .024002
20 .08832 20 .024002
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Appendix G: Multivariate Analysis of RAPTOR Output

I. ANALYSIS TECHNIQUES

Overview

A main objective of this study was to provide insight for the reliability community in

assessing differences in various systems of components through multivariate analysis of

simulation output. Several multivariate techniques were applied, including discriminant

analysis (DA), neural networks, logistic regression, principal component analysis (PCA),

and factor analysis (FA).

Discriminant Analysis (DA)

A primary analysis objective was to discriminate between large versus small, complex

versus series-parallel, and increasing failure rate (IFR) versus decreasing failure rate

(DFR) component structures. Discriminant analysis was the key method to achieve this

objective. Due to the relatively small size of the data set, the discriminant function was

formed from the entire data set. Therefore, true validation cannot occur until the

discriminant function is tested against future observations. As will be discussed later, the

formatting of the data was a major difficulty in conducting discriminant analysis. Because

of this, and as a learning exercise, DA was attempted on different forms of the data set,

namely standardized data and transformed data (using a Box-Cox transformation).

Furthermore, since the variance-covariance matrices were only statistically equal for the
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IFR versus DFR case, discriminant functions were calculated using the within-class

covariance matrices in addition to using the pooled matrices (for the large versus small and

complex versus series-parallel cases). This was done mostly as a learning exercise to see

what would happen and if any differences would occur in the discriminant results. In

general, as detailed in the results section of this paper, significant success was achieved in

discriminating between classes in all 3 cases.

Neural Networks

Since a quadratic discriminant function was the most effective for the complex versus

series-parallel case, a neural network was also employed to assess it's ability to

discriminate between complex and series-parallel component structures. The neural net

was trained on standardized data using back-propagation and sigmoidal processing with

one hidden layer containing 20 nodes. A 'full' neural net was run using all the variables as

well as a 'reduced' net containing only the 3 most salient variables. Good discriminant

success was achieved (consistent with the DA results) for the training and validation sets

for both the full and reduced models.

Logistic Regression

As an additional exercise, logistic regression was also tried in an attempt to

discriminate between complex and series-parallel component structures. The models

included a full model logistic regression of raw, standardized, and transformed data,

without success. The software used in the logistic regression analysis (SAS and
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JMP) could only produce a viable regression model on a reduced set of variables (the 3

rmst salient variables identified in the neural net analysis were used). Logistic regression

proved to be the least powerful method for discriminating between complex and series-

parallel component structures.

Principal Component Analysis (PCA)

Another analysis objective was to see if the majority of output variance could be

adequately explained in smaller dimensions. To achieve this objective, principal

component analysis (PCA) based on the correlation matrix was conducted. Although the

leading structure was not completely clear-cut, by using Kaiser's criterion a reduction in

the dimensionality of the data set to 3 components was achieved which explained a

majority (82%) of the output data variance. Some success in discriminating between large

versus small and IFR versus DFR structures using component score rankings was also

achieved.

Factor Analysis (FA)

Our final analysis objective was to identify possible common underlying factors with

common variance. Using factor analysis with varimax data rotation, 3 underlying factors

were identified. The rotation produced much more clearly defined factor loadings. As

with PCA, some success was achieved in discriminating between large versus small and

IIFR versus DFR structures using factor score rankings.
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II. DATABASE

General Description

Multivariate analysis was conducted on output data produced by system component

reliability models developed and run on the Rapid Availability Prototyping for Testing

Operational Readiness (RAPTOR) software. RAPTOR, created by HQ AFOTEC/SAL,

creates reliability, maintainability, availability (RM&A) and sparing models for various

systems undergoing operational test and evaluation (OT&E).

Specific Output Measures

The specific output measures analyzed are defined below:

Availability: The ratio of the time the system is up (operational) versus total

simulation time.

Mean Time Between Downing Events (MTBDE): The average time between

events which bring the entire system down.

Mean Down Time (MDT): The average amount of time the entire system is

down.

Mean Time Between Maintenance (MTBM): The average amount of time

between any maintenance actions performed on any components of the system.

Mean Repair Time (MRT): The average amount of time it takes to repair any

component in the system.

Analysis on the standard deviations of all of the above simulation output measures was

also conducted.
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Thirty-eight different system models with various characteristics were created and run on

RAPTOR for a duration of 50,000 simulation time units per run. The three characteristics

which define each system of components are structure type, failure probability density

function (pdf) type, and system size. The breakdown for each category is as follows:

- Structure Type: Complex (non series-parallel) or Series-Parallel network

- Overall Component Failure pdf Type: Increasing Failure Rate (IFR) or

Decreasing Failure Rate (DFR)

- Size: Large (20 components) or Small (5 components)

Two examples of structure types used in the study are shown in Figures F-1 and F-2.

Figure F- 1. Small / Complex Structure Type

Figure F-2. Large / Series-Parallel Structure Type

Twelve basic structures/systems were developed: 3 large complex systems, 3 large series-

parallel systems, 3 small complex systems, and 3 small series-parallel systems. The
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parameters of the Weibull distributed failure rates for specific components in each system

were varied, and 10 runs for each configuration measuring the outputs described above

(averaged over the 10 simulation runs) were conducted. When re-configuring a

component failure rate from IFR to DFR, the same average failure rate was maintained by

adjusting the Weibull scale parameter. Therefore, when a component is altered from IFR

to DFR (or vice versa), the only thing that changes is the fact that it's failure distribution is

changed from Weibull IFR to Weibull DFR. Some runs were conducted with all

component failure pdf's either exclusively IFR or DFR, and some were run where 20% of

the component failure distributions were altered to the opposite type. To simplify the

analysis, any system which had a predominant (80% or more) component failure

distributions of IFR or DFR, was labeled as IFR or DFR, respectively. The final result

was 38 total configurations. An entire overview of the structure types and simulation

outputs is provided in Table F-1.
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Failure _ _Simulation Output Parameters
Structure PDF Size Ao AoS.D. MTBDE MTBDE S.D. MDT MDTS.D. MTBM MTBM S.D. MRT MRTS.D.
Complex IFR Large 0.62195 0.0317 831.36136 75.576532 506.489 69.955175 153.7701 6.125785 972.288 36.924329
Complex DFR Large 0.58173 0.0483 699.71808 96.007519 507.801 103.79795 139.7672 9.816596 990.091 76.259607
Complex IFR Large 0.63395 0.0373 880.95237 158.622887 505.67 87.795161 154.7226 9.789738 965.661 45.291379
Complex DFR Large 0.59402 0.0503 728.2015 125.372449 490.995 51.204153 139.7718 10.318022 990.298 90.250027

S-P IFR Large 0.84397 0.0239 1859.4221 185.712002 343.404 58.046129 160.8931 5.027334 934.313 19.928222
S-P DFR Large 0.82293 0.0515 1900.4104 682.441413 373.829 85.693138 151.0831 12.875395 924.663 71.292258
S-P IFR Large 0.8545 0.0273 2012.4874 488.187184 331.872 48.445802 162.9239 9.168588 927.149 42.11069
S-P DFR Large 0.83093 0.0649 1813.4586 468.103509 340.372 73.421084 152.8934 12.891715 935.142 51.081099

Complex IFR Small 0.79723 0.0411 2517.4118 600.101875 613.235 62.90322 607.9589 52.450363 962.774 40.528591
Complex DFR Small 0.77137 0.0709 2330.3009 1113.381932 603.902 153.02025 622.7378 176.694094 1050.93 96.956241
Complex IFR Small 0.79269 0.0727 2265.9171 623.983857 557.461 176.63768 591.8588 56.288879 972.672 102.08752
Complex DFR Small 0.78156 0.0535 2124.4053 546.198341 583.181 166.19736 567.2333 46.76866 964.838 111.4952

S-P IFR Small 0.64951 0.0356 1608.0276 186.849893 863.769 97.571768 594.1459 47.864929 1016.68 43.676779
S-P DFR Small 0.6214 0.0592 1336.2383 391.090585 788.749 128.67521 530.1731 83.196167 1097.2 140.45746
S-P IFR Small 0.64273 0.0302 1535.4473 265.502618 844.903 99.479778 580.5185 33.05382 1018.08 64.554289
S-P DFR Small 0.66742 0.0562 1658.0624 336.932573 812.166 150.83298 580.4298 117.845115 994.381 128.14823

Complex IFR Large 0.65005 0.0436 978.83652 182.752826 521.406 84.959954 152.2207 7.777956 987.486 33.613689
Complex DFR Large 0.65614 0.0592 993.56181 194.133449 511.751 85.010133 150.2238 16.701989 984.548 58.906297

S-P IFR Large 0.8629 0.0308 2562.1308 460.556013 396.451 66.725463 165.5002 6.53677 940.918 26.54521
S-P DFR Large 0.85516 0.0434 2318.5127 727.267637 377.627 130.5672 156.2256 12.517785 940.307 48.952462
S-P IFR Large 0.87645 0.0416 2751.387 1254.914262 341.681 124.08618 160.7838 12.007663 935.579 46.547722
S-P DFR Large 0.86522 0.0399 2793.5271 855.937428 417.518 121.19979 160.3137 10.684756 954.882 43.011271

Complex IFR Small 0.73506 0.0199 1771.9746 242.296206 636.269 81.977295 599.5027 26.616841 1001.37 62.470026
Complex DFR Small 0.74472 0.0884 1971.814 1053.069465 591.845 145.91455 568.734 87.423621 972.397 149.6474
Complex IFR Small 0.71677 0.051 1645.915 359.040565 633.405 89.892948 576.4315 38.333944 1039.75 99.237831
Complex DFR Small 0.74244 0.0324 1730.6547 489.090361 581.963 90.847932 558.1052 95.639121 973.869 84.669393

S-P IFR Small 0.78755 0.0218 3428.6584 502.256878 912.667 69.040485 601.2296 29.823233 931.045 42.499865
S-P DFR Small 0.77451 0.0418 2949.9511 514.004513 838.49 111.39209 578.9948 77.061728 993.46 116.64769
S-P IFR Small 0.76007 0.0584 3148.3652 987.897623 922.938 43.752593 607.5508 33.812394 968.5 60.030239
S-P DFR Small 0.78267 0.0314 3549.7397 741.920113 958.127 63.235759 571.3842 77.493459 978.117 113.25613
S-P IFR Small 0.65559 0.0172 1573.4532 157.864481 822.169 31.769495 599.1858 27.791716 980.591 27.843022
S-P DFR Small 0.58784 0.0772 1225.7376 388.082703 819.015 78.426313 539.2185 89.841237 944.66 111.6787

Complex IFR Small 0.65806 0.0219 1345.2839 117.197318 697.664 57.717031 572.4634 21.554528 980.978 60.770088
Complex DFR Small 0.67109 0.0622 1435.7829 365.305281 678.578 110.01039 589.7982 75.434413 1011.1 96.192313

S-P IFR Large 0.94244 0.0175 8397.0178 3438.66978 470.046 132.21821 163.135 5.218078 922.436 25.571554
S-P DFR Large 0.95354 0.0211 10122.331 6056.891589 389.935 111.03885 156.0759 11.852342 911.461 40.316235

Complex IFR Large 0.93384 0.0122 4155.5733 1040.334833 285.465 43.771342 162.8321 4.4553 912.337 27.591806
Complex DFR Large 0.9245 0.0354 3976.5947 3138.595902 225.842 64.706545 156.56 17.740922 933.373 39.069533

Table F-1. RAPTOR Output Database
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III. ANALYSIS OBJECTIVES

Purpose of Investigation

The purpose of the investigation was to:

1) Ascertain whether one can distinguish between the complex versus series-

parallel structures, IFR versus DFR configurations, and large versus small system sizes

based on the simulation outputs;

2) Identify which output measures provide the most discriminant power;

3) See if one can adequately explain a majority of the output variance in smaller

dimensions; and

4) Identify possible common underlying factors with common variance.

Variables Used

All 10 RAPTOR output variables were used in the analysis. In some cases, nearly

equivalent results could be obtained by only using the most salient variables (this will be

discussed in more detail in the results section of this report). Since there is a large

disparity in magnitudes of the output variables, the variance-covariance matrix was sparse

(contained many zeros). To alleviate computational problems resulting from this,

standardized data was used for most analyses. The standardized data set is depicted in

Table F-2.

When checking for multivariate normality for discriminant analysis, several of the

variables did not pass the Shapiro-Wilk test for normality (at a 10% level of significance).

In an attempt to achieve multivariate normality, a Box-Cox transformation was conducted
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on all variables. The affects of the Box-Cox transformation on the passage of the Shapiro-

Wilk test for each variable are shown in Table F-3.

Failure Simulation Output Parameters
Structure PDF Size Ao Ao S.D. MTBDE MTBDE S.D. MDT MDT S.D. MTBM MTBM S.D. MRT MRT S.D.
Complex FR Large -1.23508 -0.60383 -0.84725 -0.63232609 -0.377552 -0.65269 -1.05905 -0.85128284 0.020338 -0.88381
Complex DFR Large -1.61179 0.30777 -0.91868 -0.6139671 -0.370949 0.286585 -1.12462 -0.75528568 0.469788 0.242433
Complex IFR Large -1.12264 -0.29764 -0.82035 -0.55770183 -0.381668 -0.15756 -1.05459 -0.75598425 -0.14697 -0.64425
Complex DFR Large -1.49669 0.418498 -0.90323 -0.5875802 -0.455488 -1.1731 -1.1246 -0.74224371 0.47501 0.643005

S-P IFR Large 0.844632 -1.03029 -0.28944 -0.53335994 -1.197926 -0.98321 -1.0257 -0.8798533 -0.93838 -1.37044
S-P DFR Large 0.647505 0.483103 -0.2672 -0.08700604 -1.044875 -0.2159 -1.071631-0.67572702 -1.18199 0.100208
S-P IFR Large 0.943237 -0.84711 -0.20639 -0.2615601 -1.255933 -1.24966 -1.01619 -0.77214022 -1.11923 -0.73532
S-P DFR Large 0.722469 1.214216 -0.31438 -0.279607 -1.213178 -0.55649 -1.06316 -0.67530254 -0.91744 -0.47848

Complex FR Large -0.97185 0.049844 -0.76724 -0.53601902 -0.302513 -0.23624 -1.06631 -0.80831024 0.404019 -0.9786
Complex DFR Large -0.91481 0.904462 -0.75925 -0.52579255 -0.351082 -0.23485 -1.07566 -0.57619818 0.329852 -0.25443

S-P IFR Large 1.021919 -0.65423 0.091846 -0.28638907 -0.931079 -0.74232 -1.00412 -0.84059321 -0.77163 -1.18099
S-P DFR Large 0.949401 0.039314 -0.04034 -0.04672584 -1.025772 1.029537 -1.04755 -0.68502837 -0.78705 -0.53942
S-P IFR Large 1.148794 -0.06083 0.194534 0.42740982 -1.206594 0.849663 -1.02621 -0.69829653 -0.90642 -0.608281
S-P DFR Large 1.043613 -0.15406 0.217399 0.06889498 -0.825104 0.769555 -1.02841 -0.73270504 -0.41908 -0.70953
S-P IFR Large 1.766935 -1.38288 3.257803 2.38970111 -0.560873 1.075359 -1.0152 -0.87489209 -1.23822 -1.20886
S-P DFR Large 1.870899 -1.185 4.193942 4.74239756 -0.96386 0.487548 -1.04825 -0.70233639 -1.51529 -0.78669

Complex IFR Large 1.686361 -1.67371 0.956433 0.23459184 -1.48938 -1.37939 -1.01662 -0.89473177 -1.49317 -1.15102
Complex DFR Large 1.598865 -0.40272 0.859321 2.12005904 -1.789305 -0.79836 -1.04599 -0.54917577 -0.96212 -0.82239
Complex FR Small 0.406776 -0.08683 0.067581 -0.16099517 0.1594215 -0.84841 1.067802 0.35360887 -0.21986 -0.78061
Complex DFR Small 0.164557 1.545412 -0.03394 0.30023091 0.11247 1.652698 1.137008 3.58515997 2.005838 0.835017
Complex IFR Small 0.364287 1.646762 -0.06888 -0.13953516 -0.121144 2.308175 0.992409 0.4534478 0.030039 0.981935
Complex DFR Small 0.260034 0.593831 -0.14566 -0.20943211 0.0082353 2.018415 0.877094 0.20582907 -0.16774 1.251295

S-P IFR Small -0.97687 -0.39093 -0.42584 -0.53233745 1.4196953 0.113784 1.003119 0.23434278 1.141103 -0.69048
S-P DFR Small -1.24016 0.904078 -0.57331 -0.3488097 1.0423186 0.977027 0.70355 1.15330022 3.173793 2.08054
S-P FR Small -1.04043 -0.68653 -0.46522 -0.48166124 1.3247934 0.166739 0.939305 -0.15089079 1.176339 -0.09271
S-P DFR Small -0.80916 0.739385 -0.39869 -0.39747531 1.1601118 1.591992 0.93889 2.05451145 0.578095 1.728104

Complex FR Small -0.17557 -1.24933 -0.33689 -0.48251419 0.2752868 -0.31902 1.028203 -0.31831514 0.754506 -0.15239
Complex DFR Small -0.08506 2.50533 -0.22846 0.24603499 0.0518184 1.455487 0.884121 1.26325533 0.023086 2.343666
Complex IFR Small -0.34686 0.45623 -0.40528 -0.37760939 0.260883 -0.09933 0.920167 -0.01355597 1.723533 0.900343
Complex DFR Small -0.10642 -0.56577 -0.35931 -0.26074851 0.0021111 -0.07283 0.834349 1.47693861 0.060263 0.483221

S-P IFR Small 0.316085 -1.14524 0.562016 -0.24891727 1.6656677 -0.67807 1.03629 -0.23491762 -1.02088 -0.72417
S-P DFR Small 0.194006 -0.04854 0.302273 -0.23836102 1.2925298 0.497352 0.93217 0.99374486 0.554858 1.398821
S-P IFR Small 0.058729 0.861685 0.409931 0.18747251 1.717337 -1.37991 1.065891 -0.13116045 -0.07528 -0.22224
S-P DFR Small 0.270356 -0.62149 0.627713 -0.03355934 1.894498 -0.83918 0.896531 1.00497408 0.167492 1.301714
S-P FR Small -0.91996 -1.39872 -0.4446 -0.55838332 1.2104309 -1.71249 1.026719 -0.28775691 0.229945 -1.14383
S-P DFR Small -1.55452 1.891527 -0.63327 -0.35151254 1.1945657 -0.41758 0.745908 1.32613697 -0.67716 1.256549

omplax FR Small -0.89678 -1.14206 -0.5684 -0.59492625 0.5841287 -0.99234 0.901585-0.44998475 0.239736 -0.20106

Complex DFR Small -0.77479 1.066304 -0.51931-0.37198001 0.4881198 0.459005 0.98276 0.95141877 1.000255 0.813144

Table F-2. Standardized Data Set

S Lar ge Small__ Complex I S-P IFR DFR

vanble Beore Aftr efoe Ate Before After Before After Before After Bfr fe.............. . ......... 1 ....... .... f° ... ... ... ...... ................ ..... ...... .... . ........... ................ .°. ... ..... ........... ...... . ....... ... ... .....
Ao Fail Fail Fail IFail Pass Pass Pass Pass Fail Fail Pass Pass............... . .. .. ... .... ... . ... ...... ...... ; .. i .... ....

AoS.D. Pass Pass ss s ss ass Pass Pass ss s Pass Pass Pass

MTBDE : Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass I Fail Pass

MTBDE S.D. Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass.......... .T ........... ................... ................. . .. ... ........... ....... ......... ....... s .. .... .. ........ ........... ... ................. ...................... .. .........
MD Pass as al Fail iFail Pass iFail Fail Pass Pass 1Pass Pass

MDTS.D. Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass

MTBM Fail Pass Pass-: Pass Fail Fail Fail Fail Fail Fail Fail Fail

MTBfM S.D*. Pass Pass Fail Pass Fi Pas Fail Pass Fail Fail Fail Fail.... ........ r ".,:: ......... ........ ........ ......... .F..! .... ....F. ! .... ....... .. ......... a.!.....
MRT Fail Fail Pass Pass Pass Pa Fail Fail Pass Pass Pass Pass

MRT S.D. Pass Pass Pass Pass Pass Pass F Pass Fail Pass Pass Pass
* Boldface cells note where improvement was achieved

Table F-3. Effects of Box-Cox Transformation on Shapiro-Wilk Normality Test for Each Variable
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From Table F-3, it is apparent that an improvement in the overall normality of the data

was achieved. Although not all variables passed the Shapiro-Wilk test after the

transformation, the majority of the variables did pass. Therefore, the assumption of

multivariate normality was reasonably justified for use in discriminant analysis.
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IV. ANALYSIS RESULTS

Special Problems Encountered

The most difficult problem encountered was the formatting of the data. As discussed

previously, the large scale differences in the data caused numerical problems, but this was

overcome via standardization. Another problem was the lack of multivariate normality,

which was addressed by the use of Box-Cox transformations. In the end, several different

data formats were tried (raw, standardized, and transformed) in the discriminant analysis

to see what type of results would be achieved with each format.

When conducting logistic regression, SAS and JMP could not produce a viable

regression model using all variables. This was true using the raw simulation output data,

standardized data, as well as transformed data. However, a viable model was produced

when the set of variables was reduced (down to 3) to those that were identified as most

salient in the neural network analysis.

Another problem was the difficulty in interpreting the principal components. A 'clean'

separation in the principal component loadings was not apparent, making the analysis

challenging. Although principal components were defined from this analysis, the

interpretation may be subject to debate due to the ambiguity in component loadings.

However, after varimax rotation of the data, a much clearer loading structure was revealed

in the subsequent factor analysis.

Discrimination Between Categories of Component Structures

Several multivariate techniques were used in an attempt to discriminate between large

versus small, complex versus series-parallel, and increasing failure rate (1FR) versus
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decreasing failure rate (DFR) component structures: DA, neural nets, logistic regression,

as well as score rankings resulting from PCA and FA. The overall discriminant results for

all methods are shown in Table F-4 for direct comparison.

Discriminant Results
(percentages show classification accuracy)

Data Method Large/Small Complex/S-P IFR/DFR
Standardized SAS Pooled 100% / 100% 94% /85% 95% / 95%

SAS Pooled 100% / 100% 94% / 90% 89% /95%
Transformed SAS Unpooled 100% / 100% 100 % / 100% ----

JMP 100%/100% 94%/90% 89%/95%
Full Neural Net: Training ---- 93% / 100 % ---

Full Neural Net: Validation ---- 100% / 100%
Standardized Reduced Neural Net: Training -- 98% / 100 %

Reduced Neural Net: Validation ---- 100%/100%
Reduced Logistic Regression ---- 67% /85% ---

Raw Component Score Ranking 89% / 90% ---- 84% / 74%
Factor Score Ranking 100% / 100% ---- 84% / 95%

Best Discriminant Function Linear Quadratic Linear
MTBDE MRTSD

MTBM Ao AoSD
Best Discriminant Variable(s) MRT MTBM SD

[ I MDT MDT SD

Table F-4. Classification Accuracy for all Methods Used for Discrimination

For the most part, the results were consistent across methods with excellent

discriminant success. There was strong agreement between methods on which variables

served as the best discrirninants (e.g. discriminant loadings, neural net salient variables,

and components/factors which best discriminated for each category showed strong

agreement). This general consistency across methods provided greater confidence in the

overall analysis. The classification accuracy percentages for DA may be inflated because

the entire data set was used. Logistic regression proved to be the weakest discriminant

tool in the complex versus series-parallel case.
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Neural Net Results

To help identify the variables which contributed most in discriminating between classes

in the neural net, several graphical outputs produced by the Statistical Neural Network

Analysis Package (SNNAP) software were reviewed. As an example, the following

derivative graphs help show which variables had the greatest discriminant power. Looking

at Figure F-3, the graphs with the more 'pointed' curves identify the more salient variables

(A0, MDT, and MRT).

:: dS-PIdAovsAn :d-PIdMT1DE vs. MTO)E.,.'* C d S-P/d MDT vs. MDT

>_27814: /; . ,0011] ,, ,\ .01610o

1. 10933" "J 100004 \-C. 
1

.30000"
1  

J

0.58173 0.95354 699.71808 1012233105 225.84171 95B.12744

L -ld S-Pd dAo S.D.vs.Ao S.D.. ..: d S-Pt Id MTBDE S.D.,vs. M $ : 4d S-PId MDT S.D.vs. MDI 0:

..10304 3 00000 .00022./

* , \ / K//

.MI: . ........ ).00070 \J .00455: ". .
0L01219 0118839 7557653 6056.89160 31.76950 176.63768

.......... ....
Sd S-P I d MTSM vs. MTB : d::. 8 S-PI dMR MRT

I.00044 ).00159

S // \ /
).00478L . .,f.. . 0 ~ 2206 .. ! .... .

139.76723 622.73785 911.46112 1097.19739

::fd S-PId MTBM S.D. vs.MT W " i: 4d -P d MRT S.D.,.MRT

100228 ".00128'

.00 8 . ) . 00637 .... _.__._.-_'. ...........
4.45530 176.69409 19.92822 14a64740

Figure F-3. Neural Net Derivative Saliency Graphs
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Reduction in Dimensionality (PCA)

The objectives of performing a PCA on the database were to reduce the dimensionality

of the data and to further attempt to discriminate between structure (by type, failure pdf,

and size). Due to the difference in the units of the data, the PCA was performed using the

data's correlation matrix (see Table F-5).

Variable Ao Ao MTBDE MTBDE MDT MDT MTBM MTBM MRT MRT
S.D. S.D. S.D. S.D. S.D.

Ao 1 -0.318 0.7206 0.6327 -0.5495 0.0577 -0.332 -0.2459 -0.658 -0.3873
Ao S.D. -0.3177 1 -0.371 -0.2081 0.1285 0.4976 0.2352 0.5285 0.344 0.692
MTBDE 0.7206 -0.371 1 0.9219 -0.1915 0.1148 -0.173 -0.1442 -0.472 -0.2649

MTBDE S.D. 0.6327 -0.208 0.9219 1 -0.3184 0.169 -0.255 -0.1122 -0.41 -0.1986
MDT -0.5495 0.1285 -0.192 -0.3184 1 0.0143 0.8225 0.5198 0.544 0.4617

MDT S.D. 0.0577 0.4976 0.1148 0.169 0.0143 1 0.1952 0.455 0.268 0.5232
MTBM -0.3315 0.2352 -0.173 -0.2554 0.8225 0.1952 1 0.7034 0.547 0.5575

MTBM S.D. -0.2459 0.5285 -0.144 -0.1122 0.5198 0.455 0.7034 1 0.549 0.7272
MRT -0.6576 0.3435 -0.472 -0.4099 0.5439 0.2676 0.5474 0.5487 1 0.5559

MRT S.D. -0.3873 0.692 -0.265 -0.1986 0.4617 0.5232 0.5575 0.7272 0.556 1

Table F-5. Data Correlation Matrix

JMP software calculated the principle components. Three components were retained

based on Kaiser's criterion. As Table F-6 indicates, these components accounted for

81.85% of the data set variation.

EigenValue: 4.6365 2.19 1 1.363 0.5431 0.4333 1 0.3292 1 0.2094 1 0.1776 0.101 0.0219
Percent: 46.3649 21.859 13.626 5.4311 4.3333 3.2919 2.0938 1.7758 1.006 0.2187

Cum Percent 46.3649 68.224 81.85 87.2808 91.614 94.906 96.9998 98.7756 99.78 100

Table F-6. Component Eigenvalues and Percentages

Using the eigenvalues and eigenvectors (eigenvector multiplied by the square root of the

corresponding eigenvalue), JMP calculated the loadings matrix. As shown in Table F-7,

only the first three loadings were analyzed.
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Component 1 Component 2 Component 3
Availability -0.7264 0.49766 0.01967

Ao S.D. 0.615163 0.28342 -0.59
MTBDE -0.607411 0.6781 0.35319

MTBDE S.D. -0.572701 0.7072 0.16203

MDT 0.71309 -0.01032 0.6206
MDT S.D. 0.33791 0.6865 -0.3972

MTBM 0.74412 0.21079 0.52521

MTBM S.D. 0.75028 0.47291 0.0949

MRT 0.81152 -0.05729 0.067
MRT S.D. 0.79726 0.39407 -0.1759

Table F-7. PCA Loadings Matrix

After careful examination of the above loading matrix, in conjunction with knowledge of

the database, each component was labeled based on the bold numbers in the respective

column of the matrix.

" Component 1 4 Maintenance Index
" Component 2 4 Deviation Down Time Index
" Component 3 4 Down Time Average Index

After successfully reducing the dimensionality of the database from ten to three,

component scores were calculated to see if they were effective at discriminating a given

structure into the following attributes:

* Type: Complex or Series-Parallel
* Failure pdf: Increase Failure Rate (IFR) or Decreasing Failure Rate (DFR)
* Size: Large or Small

Each vector of component scores was sorted in descending order to look for a pattern.
The noticeable patterns appear in Table F-8.
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Com onent 1 Component 2
Size Score Failure pdf Type Score
Small 3.9875798 DFR 4.2453607
Small 3.27563 IFR 2.7344832
Small 3.1916125 DFR 2.6642524
Small 2.5766016 DFR 2.2635533
Small 2.5624751 IFR 1.9337528
Small 2.3625727 DFR 1.4825866
Small 1.8048802 DFR 1.4374841
Small 1.7765076 DFR 1.0900088
Small 1.5808509 DFR 0.9908706
Small 1.5494862 DFR 0.6643567
Small 1.5341994 DFR 0.622185
Small 1.256253 IFR 0.5673482
Small 1.2471147 DFR 0.354911
Small 1.0250701 DFR 0.2859006
Small 0.6167541 DFR 0.2601498
Large 0.5833746 DFR 0.2469027
Small 0.4965454 DFR 0.0693093
Large 0.4641742 IFR -0.134626
Small 0.4333046 IFR -0.141776
Small 0.2313683 DFR -0.239745
Large 0.2225142 IFR -0.251629
Small -0.096977 IFR -0.376745
Large -0.292476 DFR -0.504691
Large -0.394207 IFR -0.505771
Small -0.451488 IFR -0.810156
Large -0.550943 IFR -0.821429
Large -1.330643 IFR -0.847647
Large -1.357726 IFR -0.899332
Large -1.53975 IFR -1.165003
Large -1.637563 DFR -1.242413
Large -1.977937 DFR -1.399575
Large -2.244068 IFR -1.485876
Large -2.327493 IFR -1.587855
Large -2.39671 IFR -1.683993
Large -3.35344 IFR -1.697677
Large -3.691377 DFR -1.879922
Large -4.077877 IFR -2.083892
Large -5.058193 IFR -2.153662

Table F-8. Component Scores

Even though the component scores do not discriminate completely, there appears to be

some usefulness in these scores in determining the attributes of a given structure using the

following formulas:

" If Component 1 Score -> 0 4 Classify the Structure as Small
" If Component 1 Score < 0 4 Classify the Structure as Large
* If Component 2 Score - 0 4 Classify the Structure as DFR
" If Component 2 Score < 0 4 Classify the Structure as IFR

The component score 3 did not appear to have any discriminating power.
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Identification of Underlying Factors (FA)

Factor analysis was performed on the database for two reasons: to identify any

possible underlying factors and to use these factors to discriminate between the attributes

of a given structure. Using SAS and varimax rotation, a rotated factor pattern was

obtained. As can be seen in Table F-9, the underlying factors fell out very well.

Factor 1 Factor 2 Factor 3

Avail 0.79513 -0.37048 -0.07841

Ao S.D. -0.30561 0.02208 0.84431
MTBDE 0.9701 -0.01508 -0.11017

MTBDE S.D. 0.91457 -0.12722 0.04128

MDT -0.21567 0.92026 -0.01965

MDT S.D. 0.21902 0.05537 0.832
MTBM -0.09176 0.91097 0.18895

MTBM S.D. -0.02499 0.64731 0.61313

MRT -0.47654 0.57019 0.33782

MRT S.D. -0.19501 0.46513 0.75333

Table F-9. Rotated Factor Pattern (from SAS with Varimax Rotation)

* Factor 1,4 Functionality
" Factor 2 -4 Repair
" Factor 3 4 Variance

The common variance contributions for each factor can be seen in Figure F-4.

Other Functionality

Variance
Repair

Figure F-4. Common Variance Contributions by Factor

Using standardized data, the factor scores were obtained for each of the three factors.

As with PCA, an attempt was made to discriminate a given structure by one of its three
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attributes by sorting each factor score in descending order. As seen in Table F-10, factor

scores 2 and 3 were very good at discriminating respectively between structure size and its

failure rate pdf.

Size Factor 2 Failure pdf Type Factor 3
Small 1.754919849 DFR 2.375509734
Small 1.262692335 DFR 2.108713858
Small 1.257212778 IFR 1.879361215
Small 1.248601501 DFR 1.412724627
Small 1.198436102 DFR 1.338927349
Small 1.171639447 DFR 1.319662935
Small 1.160513013 DFR 0.809561313
Small 1.148780849 DFR 0.752946945
Small 1.070286433 DFR 0.476564177
Small 1.041964654 IFR 0.402846391
Small 0.803497969 DFR 0.39528509
Small 0.781802256 DFR 0.351588765
Small 0.708731145 DFR 0.312586852
Small 0.645365044 IFR 0.298188266
Small 0.636668185 DFR 0.287840003
Small 0.616611494 DFR 0.235440949
Small 0.581937118 DFR 0.217068964
Small 0.058035318 DFR 0.0410742
Small 0.045624986 DFR -0.116572823
Small -0.135169869 DFR -0.154178944

'Large -0.157786373 DFR -0.209412144
Large -0.304504477 IFR -0.331720076
Large -0.712301993 IFR -0.357517609
Large -0.754459578 IFR -0.382424315
Large -0.796558728 DFR -0.52311732
Large -0.818000077 IFR -0.624436134
Large -0.874071803 IFR -0.652270592
Large -0.917883041 IFR -0.658484054
Large -0.925917777 IFR -0.728537638
Large -0.975227776 IFR -0.751696689
Large -1.066756545 IFR -0.788207166
Large -1.081593052 IFR -0.84117866
Large -1.104270837 IFR -0.871777043
Large -1.109476158 IFR -1.021398497
Large -1.301022087 IFR -1.239891531
Large -1.306582726 IFR -1.303301235
Large -1.327933971 IFR -1.459488901
Large -1.523803607 IFR -2.00028026

Table F- 10. Factor Scores

" If Factor Score 2 -> -0.15 4 Classify the Structure as Small
" If Factor Score 2 < -0.15 4 Classify the Structure as Large
" If Factor Score 3 -> -0.30 4 Classify the Structure as DFR
" If Factor Score 3 < -0.30 4 Classify the Structure as IFR

Factor score 1 did not appear to have any discriminating power.

128



Insights

Several useful conclusions can be drawn from this study. First, it was demonstrated

(using a moderately small sample size) that successful discrimination can occur between

large versus small, complex versus series-parallel, and IFR versus DFR component

structures based on RAPTOR simulation output. All multivariate techniques

demonstrated were moderately-to-highly successful in discriminating between the defined

classes. Through the discrimination analysis, it was discovered that predominantly DFR

structures display a relatively higher simulation output variability. Therefore, RAPTOR

availability model output variability serves as a good discriminant for IEFR versus DFR

structures. Furthermore, Mean Time Between Maintenance (MTBM) is an excellent

discriminant variable for the large versus small structure classification case. This

conclusion makes intuitive sense, since one would expect a decrease in the average time

between maintenance actions on components as the number of components in the

structure increases. The analysis provides empirical support to this intuitive assessment.

Additionally, it was discovered that neural nets can be used to effectively discriminate

when the discriminant function may be of a higher order.

Additionally, the analysis revealed that the RAPTOR simulation output variance can

be explained via 3 principal components: a maintenance index, a deviation down time

index, and a down time average index. A majority of the output variance (82%) is

explained by these three components. By using a rank order of the maintenance index
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(component 1) scores and deviation down time index (component 2) scores, reasonable

discrimination between large and small structures, and IFR and DFR structures

respectively, can be achieved.

Finally, three underlying factors were identified by use of factor analysis. The first

factor, functionality, relates to the structure's ability to get the job done in an efficient

manner. The second factor, repair, reflects the maintenance and down time which is

inherent in the structure. The third factor, variance, refers to the inherent variability of the

output variables measured for each structure. Some success was also achieved in

discrimination between large versus small structures and IFR versus DFR structures by

using a rank order of the repair factor (factor 2) scores and variance factor (factor 3)

scores respectively.

Throughout the discrimination analysis, consistency in the results was observed for

each of the various methods used: similar classification accuracy and similar best

discriminant variable selections. This consistency was further highlighted when

component/factor score rankings were used as a discriminant. For example, based on the

DA observations one would expect the factor which represents maintenance/repair (factor

2) to be the best in large versus small discrimination. This in fact was the case, with the

factor 2 scores being the best large/small discriminant among all factor scores. The same

proved true for factor 3 (variability) and IFR versus DFR discrimination. This consistency

in results provided increased confidence in the conclusions.

130



References

1. Kapur, K. C. and L. R. Lamberson. Reliability in Engineering Design. New York:
John Wiley & Sons, Inc., 1977.

2. Boyd, Mark A. and Salvatore J. Bavuso. "Simulation Modeling for Long Duration
Spacecraft Control Systems," Proceedings of the Annual Reliability and
Maintainability Symposium. 106-112. IEEE, 1993.

3. Hoyland, Arnijot, and Marvin Rausand. System Reliability Theory: Models and
Statistical Methods. New York: John Wiley & Sons, Inc., 1995.

4. Birnbaum, Z. W. "On the Importance of Different Components in a Multicomponent
System," Multivariate Analysis II (P.R. Krishnaiah, Ed): 581-592. New York:
Academic Press, 1969.

5. Boland, Phillip J. and Emad El-Neweihi. "Measures of Component Importance in
Reliability Theory," Computers and Operations Research, 22-4: 455-463 (1995).

6. Papastavridis, Stavros. "The Most Important Component in a Consecutive-k-out-of-
n: F System," IEEE Transactions on Reliability, R-36: 266-268 (June 1987).

7. Xie, M. "On Ranking of System Components with respect to Different Improvement
Actions," Microelectronics and Reliability, 29-2: 159-164 (1989).

8. Barlow, Richard E. and Frank Proschan. "Importance of System Components and
Fault Tree Events," Stochastic Processes and Their Applications, 3: 153-173 (1975).

9. Aven, Terje. "On the Computation of Certain Measures of Importance of System
Components," Microelectronics and Reliability, 26-2: 279-281 (1986).

10. Finkelstein, M. S. "Once More on Measures of Importance of System Components,"
Microelectronics and Reliability, 34-9: 1431-1439 (1994).

11. Hunter, J. S. and T. H. Naylor. "Experimental Designs for Computer Simulation
Experiments," Management Science, 16-6: 422-433 (March 1970).

12. Law, Averill M., and W. David Kelton. Simulation Modeling and Analysis. New
York: McGraw-Hill, Inc., 1991.

13. Smith, Dennis E. and Carl A. Mauro. "Factor Screening in Computer Simulation,"
Simulation: 49-54 (February 1982).

131



14. Box, G. E. P. and R. Daniel Meyer. "Finding the Active Factors in Fractionated
Screening Experiments," Journal of Quality Technology, 25-2: 94-105 (April 1993).

15. Hamanda, Michael. "Using Statistically Designed Experiments to Improve Reliability
and to Achieve Robust Reliability," IEEE Transactions on Reliability, 44-2: 206-215
(June 1995).

16. Montgomery, Douglas C. Methods for Factor Screening in Computer Simulation
Experiments. Contract N00014-78-C-0312. Technical Report, Georgia Institute of
Technology, March 1979.

17. Hamanda, Michael and C. F. J. Wu. "Analysis of Designed Experiments with
Complex Aliasing," Journal of Quality Technology, 24-3: 130-137 (July 1992).

18. Plackett, R. L. and J. P. Burman. "The Design of Optimum Multifactorial
Experiments," Biometrika, 33: 305-325 (1946).

19. Lin, Dennis K. J. and Norman R. Draper. "Projection Properties of Plackett and
Burman Designs," Technometrics, 34: 423-428 (November 1992).

20. Myers, Raymond H. and Douglas C. Montgomery. Response Surface Methodology:
Process and Product Optimization Using Designed Experiments. New York: John
Wiley & Sons, Inc., 1995.

21. Box, George E. P., William G. Hunter, and J. Stuart Hunter. Statistics for
Experimenters. New York: John Wiley & Sons, Inc., 1978.

22. John, Peter W. M. "Three-Quarter Replicates of 24 and 25 Designs," Biometrics, 17:
319-321 (June 1961).

23. Wolf, James R. Sensitivity of Space System Availability Predictions to Underlying
Component Reliability Estimates. MS Thesis, AFIT/GSO/ENS/89D- 17. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1989 (AD-A215535).

24. Edgar, John F. and Tony Bendell. "The Robustness of Markov Reliability Models,"
Quality and Reliability Engineering, International, 2: 117-125 (1986).

25. Hwang, C. I., Frank A. Tillman, and M. H. Lee. "System-Reliability Evaluation
Techniques for Complex-Large Systems-A Review," IEEE Transactions on
Reliability, R-30, 5: 416-422 (December 1981).

132



26. Mortin, David E., Jane G. Krolewski, and Michael J. Cushing. "Consideration of
Component Failure Mechanisms in the Reliability Assessment of Electronic Equipment
- Addressing the Constant Failure Rate Assumption," Proceedings of the Annual
Reliability and Maintainability Symposium. 54-57. IEEE, 1995.

27. Kline, M. B. "Suitability of the Lognormal Distribution for Corrective Maintenance
Repair Times," Reliability Engineering, 9: 65-80 (1984).

28. Webb, Timothy S. and Kenneth W. Bauer, Jr. "Comparison of Analysis Strategies for
Screening Designs in Large-Scale Computer Simulation Models," Proceedings of the
1994 Winter Simulation Conference. 305-311. IEEE, 1995.

29. Jacobson, David W. and Sant Ram Arora. "A Nonexponential Approach to
Availability Modeling," Proceedings of the Annual Reliability and Maintainability
Symposium. 253-260. IEEE, 1995.

30. Air Force Operational Test and Evaluation Center, Rapid Availability Prototyping for
Testing Operational Readiness (RAPTOR) Version 2 Software User's Manual,
1995.

31. ReliaSoft, Inc., Weibull++ Version 4 User's Manual, 1995.

32. Box, George E. P., and Norman R. Draper. Empirical Model-Building and Response
Surfaces. New York: John Wiley & Sons, Inc., 1987.

33. Banks, Jerry, John S. Carson II, and Barry L. Nelson. Discrete-Event System
Simulation. Upper Saddle River: Prentice Hall, Inc., 1996.

34. SAS Institute, Inc., JMP Statistics and Graphics Guide, Version 3.1, 1995.

133



Vita

Major Daren P. Durkee In June

1983, he received his Bachelor of Science Degree in Operations Research from the United

Stztes Air Force Academy. Upon graduation, he attended Undergraduate Navigation

Training (UNT) and Electronic Warfare Training at Mather AFB, CA. He subsequently

seved in several flying assignments compiling over 4000 hours as a navigator and

electronic warfare officer (EWO), including tours flying the RC-135 Rivet Joint at

Offutt AF, NE, the EC-130H Compass Call at Sembach AB, Germany, and the E-3

Airborne Warning and Control System (AWACS) at linker AFB, OK. During his flying

tours, he served in severalstaff positions at the Wing and Air Division level in the areas of

training, standardization and evaluation, requirements, and weapons and tactics. Major

Durkee was selected to attend the APIT Graduate Program in Operations Research in

1995. Upxrn graduation from ART in March 1997, he was assigned to the Air Staff as an

operations analyst in the Air Force Studies and Analysis Agency, Pentagon,

Washington, D.C.

134



ROIForm Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I February 1997 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

SENSITIVITY OF AVAILABILITY ESTIMATES
TO INPUT DATA CHARACTERIZATION

6. AUTHOR(S)

Darren P. Durkee, Major, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
IREPORT NUMBER

Air Force Institute of Technology/ENS R
2750 P Street AFIT/GOR/ENS/97-06
Wright-Patterson AFB, Ohio 45433-7765

9. S-O,5ORING/M0NTOriNG AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING

HQ AFOTEC/SAL AGENCY REPORT NUMBER

8500 Gibson Blvd. SE
Kirtland AFB, NM 87117

il. SUPPLEMENTARY NOTES

12 ISRBU)'J/VAL2()fSTATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release; Distribution is Unlimited

" ' ~A'2 T (Mvaximum 200 words)

Reliability analysts are often faced with the challenge of characterizing the behavior of system components based on
limited data. Any insight into which model input data is most significant and how much data is necessary to achieve
desired accuracy requirements will improve the efficiency and cost effectiveness of the data collection and data
characterization processes. This thesis assesses potential significant factors in the probabilistic characterization of
component failure and repair behavior with respect to the effect on system availability estimates. Potential factors were
screened for significance utilizing fractional. factorial and Plackett-Burman experimental designs for several system models
developed using an AFOTEC simulation program entitled RAPTOR- Two input data characterization factors were found
to have a significant affect on availability estimation accuracy: the size of the structure and the number of data points used
for component failure and repair distributional fitting. Estimation error was minimized when the structures analyzed were
small and many data points (in this case, 25) were used for the distributional fittings. Assuming constant component
failure rates and using empirical repair distributions were found to be equally effective component characterization
methods (pertaining to model availability estimation error) compared to using automated software fitting tools (or
'wizards'). The results of this study also indicate that there is no apparent benefit in concentrating on 'important'
components for the highest fidelity distributional fittings.

14. SUBJECT TERMS 15. NUMBEN IF PAGES

Availability Estimation, Fractional Factorial Experiment, 16. PRICE CODE
Component Reliability, Distributional Assumptions

117. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified j Unclassified UL
SN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed bv ANSI Sid. Z39-8
298-102


	Sensitivity of Availability Estimates to Input Data Characterization
	Recommended Citation

	tmp.1691777170.pdf.y2y8w

