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AFIT/GOR/ENS/96D-01 

Abstract 

Previous work on personnel airdrop problems involving jumpers has been event- 

oriented - entanglement rates, number of canopy "bumps", landing injuries, and 

deaths represent the typical metrics. The thesis expands this area of research by de- 

veloping cumulative distribution functions of maximum possible chute entanglement 

risk for the C-17 using bootstrap techniques. By comparing the effects of various 

C-17 aircraft configurations on the entanglement CDF, this thesis shows that under 

certain configurations the risk of centerline entanglement for the C-17 is less than 

that for the C-141. 
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Personnel Airdrop Risk Assessment 

Using Bootstrap Sampling 

/.   Introduction 

1.1    Background 

In the military, personnel airdrop is a method the army and other special 

forces use to deploy ground forces inside enemy territory covertly and swiftly. The 

personnel involved are transported via carrier aircraft in day or night to parachute 

down to the designated target area. During the airdrop the personnel line up in 

two columns - equipped with parachute, weapons and other survival gear - and exit 

from the aircraft's left and right side. 

In order for these airdrop operations to go smoothly, the military must con- 

stantly train its members. These exercises present several safety problems such as 

parachute entanglement, deployment bag strikes, parachutes not deploying, and per- 

sonnel injury during landing. Parachute entanglement occurs when the parachute or 

equipment of a jumper becomes entangled with another jumper's parachute during 

the airdrop, or when the parachute canopy contacts some part of the aircraft. D-bag 

strikes occur when the deployment bags of previous jumpers strike the next jumper. 

Parachute non-deployment occurs when the parachute fails to open due to faulty 

packing. Finally, personnel injury during landing occurs for many reasons, such as 

lack of training, catching trees, falling in ground pot holes, hitting some foreign ob- 

ject such as a rock, or injury by their own equipment as they land. Several of these 

problems are controllable, such as the parachute not deploying, entanglement, and 

D-bag strikes. Others are uncontrollable, such as personnel injury during landing, 

weather, wind speed, etc. 
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Historically, safety issues related to the military airdrop operations have in- 

volved event-oriented response data. Typical data include reportable injuries or 

deaths per 10,000 jumpers, the number of high-altitude or low-altitude jumper en- 

tanglements per 10,000 jumpers, and the number of observed canopy contacts (per 

100 jumpers) between the jumper and some portion of the aircraft *. Thus, one 

can view paratrooper operations as a random process where the random variable of 

interest, say the number of entanglements that occur in n jumpers, would have a 

discrete distribution (e.g. Binomial with some probability of "success" p, where the 

parameter p would be estimated using the above empirical rates). This type of anal- 

ysis is satisfactory for determining the risk for existing systems, since empirical data 

is available for estimating the parameters. However for new systems (specifically 

the C-17), it is necessary to develop continuous response variables in order to mini- 

mize the risk of entanglement. Lawson's (1995) approach discusses the development 

of these responses, the experimental design used to explore configuration changes 

that would reduce the risk to paratroopers jumping from the C-17 aircraft, and the 

estimated distribution function of the new response variable (jumper-to-jumper sep- 

aration) for the altered configuration (12). This thesis analyzes the reduction of the 

risk of entanglement for the C-17 as compared to the C-141. The remainder of this 

section will give additional background for this problem. 

1.2   Research Objective 

The C-17 System Program Office (SPO) and US Army are interested in airdrop 

problems, such as entanglement, canopy contacts and D-bag strikes. Specifically, 

these organizations are interested in (i) the D-bag strike potential of the C-17, and 

(ii) characterizing the centerlining tendency of C-17 as compared with C-141. They 

wish to know which factors (variables) affect these responses, the magnitude of these 

JUS Army Safety Center Data for the period of 1980 - 1989 indicates 0.01%(1 in 10,000 jumpers) 
entanglement injury rate for C-141 jumps. 
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effects, and whether the risk of entanglement and D-bag strikes of the C-17 is lower 

than the C-141. 

This thesis is primarily concerned with the probability of jumper-to-jumper en- 

tanglement when paratroopers jump from an aircraft. The binary response variable, 

jumper-to-jumper entanglement, gives the U.S. Army and the U.S. Air Force the 

most direct indication of the risk of deleterious events associated with paratrooper 

operations for current systems. However, this type of data is not always well-suited 

for process improvement or parameter design. Aside from definitional problems and 

potential under-reporting of these binary responses, the likelihood of these events 

is (fortunately) quite low. Therefore, studying process improvement issues with a 

binary response variable requires enough test observations to generate a reasonable 

number of occurrences. 

The objective of this research is to verify that the risk of entanglement from the 

C-17 is lower than C-141 using a bootstrap confidence interval. This study contains 

three sub-objectives, which provide a solution to the research problem. These sub- 

objectives are: 

• Investigate the sources and characteristics of the representative data; 

• Explore methodologies for addressing the problem; and, 

• Identify/recommend a technique that solves the problem. 

This study is limited in scope by the data provided by the C-17 SPO. The data 

generated by the C-17 SPO and U.S. Army while testing the effect of gross weight 

and static line length on separation of C-17 dual-door jumpers, and the separation 

of jumpers from the D-bag cluster, will be the basis for the thesis. However, there 

are several problems encountered during the required testing and analysis. 

First, due to time and rising flight test costs, the average quantity of data is 

limited. Second, since calculating the free fall body in an exact manner is not feasible, 

there will be some process variabilities in the obtained data. Third, static line length, 
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jumper exit style, aircraft weight and aircraft equipment factors all influence the 

outcome. Fourth, jumper exit style influences the jumper's trajectory, speed, and 

direction. Fifth, aircraft speed and pitch can affect the test results. Finally, as 

mentioned in Section 1.1, uncontrollable factors of airdrops such as weather, wind 

speed and personnel injury during landing are not considered. 

1.3    Overview 

This chapter provides a background to understanding the risk of entanglement 

and the D-bag problem in paratroop jumps from the aircraft; presents the thesis 

objective; and, identifies the scope and limitations of the study. The next chapter 

discusses the relevant literature, while Chapter III describes in detail the method- 

ology used to achieve the research objectives. Chapter IV presents the findings and 

analytical results. Finally, Chapter V discusses the significance of the findings, draws 

conclusions, and suggests areas for further research. 
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77.   Review of the Literature 

2.1 Introduction 

The purpose of this review is to discuss the literature relevant to this research. 

This chapter will discuss the data sources of the study, and methods for analyzing 

the data. In Section 2.2, we discuss Lawson's (1995) experimental design used to 

find best configuration and significant variables. 

2.2 C-11 Experimental Results 

Lawson (1995) employs an experimental design described below to select a con- 

figuration for the C-17 that improves paratrooper safety (12). His response variables 

are both closely related to entanglement incidents and useful for detecting differ- 

ences between alternative configurations; thus this research has a close relationship 

to Lawson's. Therefore, this section is a synopsis of his experimental results. 

Experiments are performed by investigators in many fields of inquiry to discover 

something about a particular process or system. The objectives of the experiment 

include the following: 

• Determining which variables are most influential on the response. 

• Deciding where to set the influential variables so that the response variable is 

almost always near the desired nominal value. 

• Considering where to set the influential variables so that variability in the 

response variable is small. 

• Resolving where to set the influential variables so that the effects of the un- 

controllable variables are minimized (14). 

2.2.1 Definitions. Usually we define a response as a variable of interest 

which can be influenced by experimental conditions, and factors as those variables 
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which can affect one of several possible responses. Also we define levels as the value at 

which a given factor will be set - in this case two levels for most of the factors. A test 

matrix provides the factor-level combinations at which a response will be measured. 

Lawson assumes that all factors in the test matrix are controllable factors during 

normal operations. He defines a run as the portion of the test done to generate a 

single response variable value for a specified set of factor-level combinations. Also 

he defines a centerline as a imaginary line which equally splits the aircraft in a 

lengthwise direction. A replicate is defined as a repeat of the basic experiment. The 

goal of his experiment is to determine the factor-level combinations which yield the 

most desirable and least varying response values (12). 

2.2.2 Coordinate System. A trajectory is characterized by the 4-tuple 

(X,Y,Z,t). The distance traveled (in feet) is represented by X; the distance from 

the centerline is Y; the vertical distance is Z; and time (in seconds) is t. Positive X 

is off the nose of the aircraft (jumpers travel in the positive X direction). Positive Y 

is off the left-wing, while positive Z is upward. The origin X = 0 is at the position 

of the left or right door when the person jumps; Y = 0 on the aircraft centerline 

when the person jumps; Z = 0 at the height of the floor when the person jumps; 

and, t = 0 at the moment when the person steps or jumps off the exit ramp (12). 

2.2.3 Configurations. Digitized data was taken in November 1994 from a 

C-17 using a system for taking trajectory data constrained to one jumper per "pass". 

The aircraft flew at 135 knots with a 2° deck angle with the initial response variable 

the distance between the centerline of the aircraft and the apex of the chute when 

the chute first becomes fully open. Figure 2.1 shows the histogram and estimated 

density for this metric based on a sample of 20 jumpers from each door. Subsequent 

analysis using these distributions - along with the distribution of the exit time dif- 

ference for opposite-side, nearest neighbor pairs - estimated a probability that a 

random jumper was separated from his closest neighbor by d feet at the time of full 
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open. This probability can be written as 

P(Sc-ir < d) (2.1) 

where SC-n is a random variable denoting separation (in feet) between jumpers in a 

nearest-neighbor pair at the full-open point for the C-17, and d is a constant (5c-i4i 

designates the equivalent random variable for the C-141). Estimated probabilities 

for selected values of d are shown in Table 2.1. 

distance d d = 24.5 d = 18,375 d = 12.25 d = 6.125 

P(Sc-17 < d) .09665199 .06788232 .04337461 .01858151 

Table 2.1    Estimated Probability (Jumper Separation at full open < d) prior to 
changing the paratrooper drop configuration for the C-17 (12). 

The fact that roughly 10% of jumpers were estimated to be within 24.5 feet 

(the diameter of T-10 parachute) was not out of line with Lawson's expectations. 

However, it was desirable for P(SC-ir < d) < P(SC-ui < d) for 0 < d < oo: i.e., for 

a given distance d the C-17 would provide a smaller probability of encounter from 

the C-141 (12). 

2.2.4 Responses. The primary response for the experiment was the mini- 

mum distance between two trajectories in a given run. The digital records (time, x, y, 

and z) of one left and one right trajectory (taken in separate passes of the aircraft) 

were required to compute one value of this variable. A secondary response was the 

area between the door-line and one trajectory on the same side. The Cinetography 

Theodolite (CINE-T)1 system was used to obtain baseline data for the C-141 as well 

as the baseline and the reconfigured C-17. This system was limited to one jumper 

per pass, but tracked both the body and the chute apex, thus allowing a computed 

"center". 

1 CINE-T is a measurement system consisting of a set of multiple 35 mm movie cameras tracking 
an object for XYZ-&xis positions. 
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Figure 2.1 Histogram and Density for the C-17 distance between Aircraft Center- 
line and apex of the chute at full open prior to changing the paratrooper 
drop configuration (12). 

2.2.5 Variables and Metrics. Finding the appropriate variables and met- 

rics of paratrooper trajectories for the Design of Experiments (DOE) is a process 

unto itself (12). Since some understanding of the phenomena must be used to deter- 

mine the appropriate variables for the DOE, a multi-disciplinary group determined 

the variables using known physics, deterministic computer models, and individual 

experience. This section describes their recommendations (12). 

A large group of potential variables (referred to as factors) were culled by the 

group into those that were considered to be the most important. These included 

aircraft speed, flap setting, landing gear configuration, jumper weight, static line 

length, and jumper exit style. (Later Lawson found that aircraft weight would also 
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be important (12).) The first five factors were tested at two levels each, while three 

types of exit style were tested. 

The group also decided to run a second experiment to consider break-tie (con- 

nects deployment bag to parachute pack) strength, parachute ring slider, position of 

the anchor point, and a modified deflector door. Assessing the effect of these factors 

at various aircraft settings required including the factors of speed, flaps, and landing 

gear. Since these factors were not safety-released for live jumpers, this experiment 

was conducted using mannequins. 

The DOE required the use of a singleton response for each set of factor settings 

tested. This response is needed to describe the most relevant features of the dynamic 

phenomenon, and has to be calculated from the digitized paratrooper trajectory data 

(provided in the form of position vectors in time). This digital data was obtained 

using six camera theodolites which together produced output used to triangulate the 

position of a tracked object. 

The metrics used as the response variables were the minimum approach dis- 

tance between a left and right jumper's trajectory, and a variable that recorded the 

total tendency of the trajectory to go towards the centerline of the aircraft. The 

minimum approach distance was used by the DOE as the primary response vari- 

able. The centerlining tendency variable was used to ensure consistent results for 

the live-jump experiment and was the primary response variable for the mannequin 

experiment. 

A computer algorithm was written to compare the digitized trajectories and 

to compute the centerlining tendency response for each trajectory. The minimum 

distances were computed from comparison between one left and one right trajectory. 

The comparison included a range of time delays for both of the trajectories in a 

"matchable" pair (to be matchable, the two trajectories had to be from opposite 

sides and flown under the same speed, flap, and gear settings). The centerlining 

tendency response was the area projected by the trajectory onto the X — Y plane 
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inside the door line. If the trajectory did not pass inside the door line then the value 

was zero. If the trajectory did pass inside the door line , the amount it had traveled 

was multiplied by the corresponding down range travel and added to any previous 

values of the centerlining response (see Figure 2.2). The advantage of this response 

Centerlihe/ 
"Flight Path 

Y-Dimension 
of Jump 

Door 

Y-Sum Defined as Cumulative'' 
Integral (Area) Inboard of 

Jump Door Position 
Integration Stopped 

at First Vertical 

Paratroop 
Trajectory 

Figure 2.2    Y-sum Measure of Merit (13). 

was that no comparison (with another trajectory) was needed to assess the merit of 

a given trajectory. 

2.2.6   Experimental Design. Experiments involving the study of effects 

of two or more factors on some response variable of interest can be handled very 

efficiently by a factorial design. For a full factorial design, one replication consists 

investigating all possible combinations of the levels of each factor. For example, one 

replication of a full factorial design involving 6 factors, each at 2 levels, would involve 

26 = 64 runs. Factorial experiments can provide the advantage of providing estimates 

of the effects (of the factors) on the response variable that are just as precise as one 

factor-at-a-time experiments, while requiring substantially fewer runs (14). (For this 

example of 6 factors, each at 2 levels, the relative efficiency of the factorial design to 
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the one-factor-at-a-time experiment is approximately 3.5.) A further savings in the 

number of runs can be attained if we can assume that high-order interactions are 

negligible. In this case, information on the main effects (for example, Speed X Gear) 

may be obtained by running only a fraction of the complete factorial experiment. 

Lawson used a design which allowed him to estimate all main effects and two-way 

interaction effects. 

A convenient paradigm for his purpose was to treat the variables in Table 2.2 

as "controllable factors", along with the levels those factors can assume during the 

experiment. Table 2.3 lists the levels the uncontrollable (noise) factor can assume. 

Taking the view advocated by Byrne and Taguchi (4), the DOE was structured 

to find the levels of the controllable factors that were the least influenced by the 

noise factors and that provided the largest minimum distance between a left and 

right trajectory. For this experiment, the exit style was treated as uncontrollable for 

routine operations, even though it can be controlled for the purposes of the test. This 

allows the design to estimate the variance associated with the controllable factors. 

Label Factor 
Level 

l(-) 2(+) 
A Aircraft Speed 135 knots 125 knots 
B Aircraft Flaps 35° 25° 
C Landing Gear Up Down 
D Right Static Line 15' 20' 
E Left Static Line 15' 20' 
F Right Weight 225± 300± 
G Left Weight 225± 300± 

Table 2.2    Controllable Factors for the Inner Array (12). 

Label Description 1 2 3 
H Exit Style 45°, walk out 90°, kick out 90°, vigorous, feet in 

Table 2.3    Uncontrollable Factor for the outer Array (12). 
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Inner Array Outer Array 

Run 
Variables 

Run 
Variables 

A 5 C D E F G H 
1 1 1 1 2 1 2 1 1 
2 1 1 2 2 2 1 2 2 
3 1 2 1 1 2 1 3 3 
4 1 2 2 1 1 2 
5 2 1 1 1 2 2 
6 2 1 2 1 1 1 
7 2 2 1 2 1 1 
8 2 2 2 2 2 2 
9 2 1 1 1 1 1 1 
10 2 1 1 2 1 2 2 
11 2 1 2 1 2 2 2 
12 2 1 2 2 2 1 1 
13 2 2 1 1 2 2 1 
14 2 2 1 2 2 1 2 
15 2 2 2 1 1 1 2 
16 2 2 2 2 1 2 1 

Table 2.4 Each run from the inner array requires a left and a right jump, each at 
3 exit style (from the outer array), for a total of 96 individual live jumps 
(12). 

The design matrix shown in Table 2.4 consists of an inner array of 16 runs 

and an outer array of 3 runs. In the Taguchi form (Ross 1988), each of the 16 

runs of inner array is tested across the 3 runs of outer array for total of 48 runs. 

(This experimental design is also equivalent to a 3 x 27-3 fractional factorial (2).) 

Obtaining a response (minimum distance) for a given run required a left jump and 

a right jump, for a total of 96 individual live jumps. 

Recalling that a trajectory was characterized by the 4-tuple (X, Y, Z, t), Lawson 

used a random number generator to assign the order of the runs to guard against 

falsely attributing some effect to a factor which is in fact due to some variable outside 

of experimental control (12). For example, if the strength of the cross wind increases 

from 5 knots in the morning to 15 knots in the afternoon, he did not want all of the 
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reduced flap runs to be in the afternoon, since doing so could either cause or negate 

an effect. 

Label Factor 
Level 

l(-) 2(+) 
A Landing Gear Down Up 
B Break-Tie 160 pounds 320 pounds 
C Aircraft Speed 135 knots 125 knots 
D Aircraft Flaps 35° 25° 

Table 2.5 Two-level Factors for the Mannequin Drop Test Matrix. A fifth factor, 
Air Deflector, was tested at 3 levels. All factors were viewed as "control- 
lable" for test and operational purpose (12). 

Because of the number of factors under investigation, and the safety clearances 

required for some of those factors, a limited experiment using mannequins was con- 

ducted. Lawson used the trajectory centerlining variable as the response for this 

experiment, so that each run could be obtained from a single trajectory. The vari- 

ables shown in Table 2.5 define the first four factors and levels for the mannequin 

drop experiment. A fifth factor, the Air Deflector (E), was tested at three levels. A 

full factorial experiment (3 x24) was done, involving 48 drops from the right door 

only. Each run in Table 2.6 was repeated three times, one for each air deflector level. 

As with the live jump experiment, Lawson used a limited randomization scheme 

(12). 

2.2.7 Physical Problem. Although people have parachuted from air vehicles 

since before the invention of powered flight, the physics involved is less predictable 

than that relevant to sending a human into space. The assessment of paratrooper 

safety for an aircraft remains a process of observing results without a complete 

understanding of the phenomena. Only the most basic ballistic three degree of 

freedom models (integration of a system of three force equations) exist to yield some 

predictive understanding, which is inadequate to provide a fully quantitative result. 
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Test Matrix 

Run 
Variables 

A ß C £> 
1 1 1 1 
2 1 1 2 
3 1 2 1 
4 1 2 2 
5 2 1 1 
6 2 1 2 
7 2 2 1 
8 2 2 2 
9 2 1 1 1 
10 2 1 1 2 
11 2 1 2 1 
12 2 1 2 2 
13 2 2 1 1 
14 2 2 1 2 
15 2 2 2 1 
16 2 2 2 2 

Table 2.6 Mannequin Drop Experiment. Each run from the Test Matrix required 
a single right door at a constant weight (250 pounds). Each run was 
repeated 3 times, 1 for each Air Deflector setting. Only the trajectory 
centerlining response variable was computed for this experiment, since 
he only observed single trajectories. The actual jump sequence number 
was randomly set (12). 

The dynamics involved in paratrooper trajectories involve many nonlinear or 

unqualified forces, with the aerodynamics constituting a large source of unpre- 

dictability. Classical and new methods for the assessment of the aerodynamic forces 

involved are wind tunnel testing and computational fluid dynamics (CFD), respec- 

tively. Both of these methods involve great expense for the less complex problem of 

the aerodynamics of "slender" bodied aircraft (aircraft length is large compared to 

wake width), though even in this case full fidelity is still not completely achieved. 

Unfortunately, a jumper is a "blunt" body with a rough, irregularly shape and a 

mostly loose cloth-covered surface.  Furthermore, a jumper's shape may change in 
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response to muscle movement or applied force. Wind tunnel tests for a full scale 

combat equipped jumper would have to be done for a full range of speeds, and limb 

configurations. Also, the local flow about the rear of the aircraft would have to be 

mapped either with the wind tunnel method (the scale of the model would cause 

some error here) or by using a CFD solution (error depends on the fidelity of the 

model). Thus, no analytical techniques presently exist for this case, and a full com- 

putational solution (including viscosity terms) would involve massive computational 

power. 

The same difficulties mentioned above also apply to the extremely complex 

aerodynamic characteristics of parachutes. If the above problems could be solved, 

the information could be integrated into a six degree of freedom computer model 

(three force and three moment equations). However with the limited data available 

for the general aerodynamic force coefficients of the human body, a parachute force 

time curve for the T-10 parachute, and the possible jumper weights, a three degree of 

freedom computer model was generated instead. While the model could not predict 

the "centerlining tendency" of jumper trajectories, and the length of the static line 

had little effect, it was useful in giving insight to the dynamics of the trajectories 

(12). 

2.2.8    Result. An analysis of variance procedure was used to evaluate 

the results of both the live-jump and the mannequin experiments. The live-jump 

experiment used both the minimum distance and the trajectory-centerlining variable 

as the response. While the same main effects were found on both experiments, 

differences occurred in the confidence level of contained responses. The mannequin 

experiment could only use the trajectory-centerlining variable, since mannequins 

were dropped from only one side. 

Using the minimum distance response variable, Lawson found main effects for 

gear (significant at the 90% confidence level), speed (80%), and flaps (80%), with the 
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Mean Signal-to-Noise 
Significant 

Factor 
Best 
level 

Significant 
Factor 

Best 
level 

Landing Gear Up Landing Gear Up 
Exit Style 90° Vig 

90° Kick N/A N/A 
Left Jumper Wt. 225 1b Left Jumper Wt. 225 1b 

Speed (80%) 125 knots N/A N/A 
Flaps (80%) 25° N/A N/A 

Table 2.7 Factor-level settings which produce a higher average minimum distance 
between jumpers (significant at 90%, unless indicated) and a lower signal- 

to-noise ratio (12). 

best levels (in that they produced higher mean minimum distance) being gear up, 

125 knots, and 25° flaps, respectively (see Table 2.7). These settings also produced 

a reduction in variance (across the 3 levels of the noise factor, exit style). Jumper 

weight for left-side jumpers was also found to be significant (90% confidence) to the 

45° exit style. (Note that no variance was estimated for exit style, since this factor 

was treated as a noise factor.) No other main effects were found from the list of 

factors in Table 2.2. Figure 2.3 indicates that speed, flap, and gear settings of 125 

knots, 25°, and gear up, respectively, provide the most robust configuration with 

respect to exit style. 

Mean Signal-to-Noise 
Significant 

Factor 
Best 
level 

Significant 
Factor 

Best 
level 

Speed 125 knots Speed 125 knots 
Flaps 25° Flaps 25° 

Exit Style 90° Vig 
90° Kick N/A N/A 

Exit Side(80%) Right Exit Side Right 

Table 2.8 Factor-level settings which produce a lower average trajectory centerlin- 
ing values (significant at 90%, unless indicated) for paratroopers exiting 
from one side (12). 
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Figure 2.3    Exit Style vs.   Gear Position and Exit Style vs.  Speed-Flaps : Factors 
showing a significant effect on the minimum distance (12). 

Table 2.8 gives the results of the analysis of variance using the (single-sided) 

trajectory centerlining response variable. Since the two response variables were de- 

pendent, it is not surprising that the results are similar to those shown in Table 

2.7. Speed and flaps are still significant (now at 90% confidence), but here the 

signal-to-noise ratio is also important. Exit style continues to explain a lot of the 

variability in the mean response. Gear and left jumper weight are not significant (at 

80% or more) when centerlining response variable is used, but exit side is. Figure 

2.4 also indicates that speed, flap, and gear setting of 125 knots, 25°, and gear up, 

respectively, provide the most robust configuration with respect to exit style. Also 

note that the "90° kick" style was relatively robust to configuration changes, at least 

within the aircraft gross weight range used for this experiment (330,000 pounds to 

360,000 pounds). 
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Figure 2.4 Exit Style vs. Speed-Flaps and Gear Position vs. Speed-Flaps : Factors 
showing a significant effect on trajectory centerlining (Y-Sum). Small 
Y-Sum values are more desirable than large values (12). 

The laws of aerodynamics dictate that aircraft speed, flaps, deck angle (pitch), 

and gross weight are interrelated and co-dependent variables. For example, for a 

given speed and deck angle, a gross weight setting of 360,000 pounds requires a 

higher flap setting than a gross weight setting of 330,000 pounds. The desirable 

speed-flap setting happens to correspond to 7° deck angles, which was the maxi- 

mum angle approved for personnel airdrop operations. The gross weight range was 

controlled to be within 330,000 pounds to 360,000 pounds, since the aircraft gross 

weight changes by approximately 30,000 pounds from start to end of a typical mass 

jump due primarily to fuel consumption. Higher gross weight settings tend to do 

worse with respect to the trajectory centerlining variable, since gross weights require 

more lift and thus higher flap settings. 
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Mean 
Significant 

Factor 
Best 
level 

Break-Tie 160 1b 
Speed (80%) 125 knots 

Speed x Break-Tie (80%) 160 lb or 135 knots 
Speed x Deflector-Type (80%) Normal Deflector at 135 knots 

Table 2.9 Factor-level settings which produce a lower average trajectory centerlin- 
ing values (significant at 90%, unless indicated) for mannequins exiting 
from the right side (12). (Note that no signal-to-noise analysis was pos- 
sible since no duplicate cases were tested.) 

Table 2.9 summarizes the results from the mannequin experiment. The stan- 

dard (160 pounds) apex break-tie is better than the alternative (320 pounds) break- 

tie, primarily due to better performance at higher speed. There is no significant 

difference at the lower speed. Overall, the lower speed is better than the higher 

speed for both live jump and mannequins. The alternate deflector types do not 

show any improvement over the standard deflector door; in fact, at the higher speed, 

the standard deflector door does better. 

In summary, Lawson found that lower speeds, reduced flaps, and landing gear 

up produce better trajectories with respect to minimum distance and the trajectory 

centerlining metric (12). A deck angle of 7° is an equivalent way to specify the 

reduced flap setting. Since weight made some difference over the specified range, it 

should stay below 360,000 pounds. The deflector door modifications should not be 

used, since the best setting is the normal door set at 60°. The break-tie should be 

kept at 160 pounds of pressure. Based on these recommendations, data was collected 

on 40 jumpers (20 from each side) with the aircraft flying at 130 knots, landing gear 

up, and standard break-ties. The aircraft gross weight ranged from 330,000 pounds 

to 360,000 pounds. Figure 2.5 compares the favorable result of this configuration to 

that of the November 1994 configuration (Section 2.2.3). 
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Figure 2.5 Estimated cumulative distribution function for old and new configura- 
tion. This chart can be read as the proportion of jumpers expected to 
be separated by a distance d, where the distance is read from the hor- 
izontal axis. The curve for the new configuration is below and to the 
right of that for the baseline configuration (12). 

2.3   Summary 

This chapter presents the literature relevant to this research. This includes ex- 

perimented designs used to find the best configurations and determine which factors 

are significant. The next chapter will discuss the methodology of this research. 
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Z/7.   Methodology 

3.1    Introduction of the Bootstrap 

Statistics is the science of learning from experience, especially experience that 

arrives a little bit at a time (7). Statistical theory provides sound methods for 

finding a real signal in a noisy background while providing strict checks against the 

over-interpretation of random patterns. 

Statistical theory attempts to give answer three basic questions: 

• How should one collect data? 

• How should one analyze and summarize the data collected? 

• How accurate are the data summaries? 

The last question constitutes the part of the process known as statistical inference. 

Several modern methods of what is often called computer-intensive statistics 

make use of extensive repeated calculations to explore the sampling distribution of a 

parameter estimator 9. The bootstrap is a recently developed technique for making 

certain kinds of statistical inference using modern computer power to simplify the 

often intricate calculations of traditional statistical theory (7). It is only recently 

developed because it requires a modern powerful computer to execute the often intri- 

cate calculations of traditional statistical theory. The explanations for the bootstrap 

method involve explanations of traditional ideas in statistical inference. The basic 

ideas of statistics have not changed, but their implementation has. The modern pow- 

erful computer can apply these ideas flexibly, quickly, easily, and with a minimum 

of mathematical assumptions. The primary purpose of this chapter is to explain the 

basic ideas of bootstrap method and how it is applied in this research. 
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3.2   Basic Ideas of the Bootstrap 

The bootstrap is a computer-based method for assigning measures of accuracy 

to statistical estimates (7). As with other methods of statistical inference, the boot- 

strap method makes use of a sample. While the usual assumption is that the sample 

is a collection of independent entities from the same distribution, the central idea 

behind the bootstrap is to let the sample play the role of the population. The same 

functional of the distribution function of the sample should then be a good estimate 

of the parameter. The objective in using a bootstrap method is to estimate some 

parameter of a distribution, or to perform a test of a hypothesis about the parame- 

ter. A parameter of a population is a functional of the distribution function, F; 

for example, the mean 

H=fxdF(x), (3.1) 

or the variance 

a2 = j{x-nfdF{x). (3.2) 

In general, it can be written both as a real-valued functional and as the value of the 

functional; i.e., 

9 = 9(F). (3.3) 

Other methods of statistical inference arise from this same idea. For instance, 

estimating a first moment (the mean) of a population uses the sample first moment. 

By letting the sample play the role of the population, the distribution function for 

the sample is the empirical distribution function.   Because it corresponds to the 
A A 

population distribution function F we will denote it by F or sometimes by Fn to 

emphasize that it relies on a sample of size n. It can be formed from the discrete 

probability density function that puts mass 1/n at each point in the sample of size n. 
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A bootstrap statistic corresponding to 0 = 0(F) is 

0 = 0(F) (3.4) 

and the mean, for example, would be 

fr=fxdF(x). (3.5) 

A bootstrap sample x* = (x{, x*2, x*3, ■ ■ •, x*n) is obtained from F by randomly sampling 

n times, with replacement, from the original data points x\, x2, • • •, xn (7). 

F—>(*;,*;,■•.,*;). (3.6) 

The star notation indicates that x* is not the actual data set x, but rather a random- 

ized, or resampled, version of x. Thus, the bootstrap data points x\,x*2, • • • ,x*n are 

chosen independently and with equal probability from the sample. The bootstrap 

data set (xl,xl, • • •, z*) consists of members of the original data set («i, x2, ■ ■ ■, xn) 

where some values appear zero times, others once, twice, etc. For instance, with 

n=10 there is a finite probability of finding x* = (x3, x8, xi, x5, xg, x3, x4, xt,x5, x2). 

Figure 3.1 is a schematic of the bootstrap process. The bootstrap algorithm 

begins by generating a large number B of independent bootstrap samples x*1, x*2, 

• • •, x*B, each of size n (7). 

3.3    The Bootstrap Estimate of Standard Error 

Standard errors are measures of statistical accuracy, where the estimated stan- 

dard error of a mean x based on n independent data points Xi,x2, ■ • • ,xn, x = 

Xw=i xilni is given by the formula 

4= (3-7) 
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Figure 3.1 Schematic diagram of the bootstrap process for estimating the standard 
error of a statistic s(x). B bootstrap samples are generated from the 
original data set. Each bootstrap sample has n elements, generated by 
sampling with replacement n times from the original data set. Bootstrap 
replicates s(x*1),s(x*2), • • • ,s(x*B) are obtained by calculating the value 
of the statistic s(x) on each bootstrap sample and they can be used to 
estimate the standard error of s(x) (Figure from An Introduction to the 
Bootstrap by Efron and Tibshirani (7)). 

where s = \/T,7=i(xi ~ z)2/(n — !)• Roughly speaking, an estimator will be less than 

one standard error away from its expectation about 68% of the time, and less than 

two standard errors away about 95% of the time due to the central limit theorem 

(CLT). (Typical values for B, the number of bootstrap samples, range from 50 to 

200 for standard error estimation (7).) Corresponding to each bootstrap sample in 

Figure 3.1 is a bootstrap replication of s, namely s(x*m), the value of the statistic 

s evaluated for x*m.  If s(x) is the sample median, for instance, then s(x*) is the 
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median of the bootstrap sample.  The bootstrap estimate of standard error is the 

standard deviation of the bootstrap replications, 

B 

s% = {Ei4*n-sm/(B -i)}*, (3.8) 
m-=\ 

where s(rj) = £m=i s(x*m)/B (7). Suppose s(x) is the mean x. In this case, standard 

probability theory tells us that as B gets very large, formula (3.8) approaches 

{£>,■-a)3/«2}* (3.9) 

This is almost the same as formula (3.7). We could make it exactly the same by 

multiplying formula (3.8) by the factor [^fn/(n - 1)], but there is no real advantage 

in doing so since the factor approaches unity for large n. 

Suppose that a; is a real-valued random variable with an unknown probability 

distribution F. Let us denote the expectation and variance of F by the symbols fiF 

and a2
F respectively, 

HF = EF(x),       aF = va.TF(x) = EF[(x - nFf). (3.10) 

Here we are emphasizing the dependence on F. The alternative notation "varjr^)" 

for the variance, sometimes abbreviated to var(rc), means the same thing as aF. In 

what follows we will sometimes write 

x~(fiF,crF) (3-11) 

to indicate concisely the expectation and variance of random sample x. 

Now let (xi, • ■ ■,, xn) be a random sample of size n from the distribution F. 

The mean of the sample x = £"=i Xi/n has expectation \iF and variance <JFjn\ i.e., 
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x ~ (fiF,(T2
F/n). (3.12) 

In other words, the expectation of x is the same as the expectation of a single x, but 

the variance of x is 1/n times the variance of x. The larger n is, the smaller var(x) 

is, so larger n yields a better estimate of (XF- 

The standard error of the sample mean x, written seF(x) or se(z), is the square 

root of the variance of x, 

(x) = ^/varF(a;) = \joFjn. (3.13) seF 

Under quite general conditions on F, the distribution of x will be approximately 

normal as n gets large due to the CLT, which we can write as 

x ~ N{ßF,<T2
F/n). (3.14) 

The expectation /*F and variance <r£/n in (3.14) are exact, while the normality is 

approximate. A table of the normal distribution gives 

P{| x - HF \< \/^} = 0.683       ?{\x - fiF \< 2J^} = 0.954 (3.15) 
V   ft y   Tl 

as illustrated in Figure 3.2. One of the advantages of the bootstrap method is that 

we do not have to depend entirely on the central limit theorem. Later we will see how 

to get accuracy statements like definition (3.15) directly from the data. It will then 

be clear that formula (3.15), which is correct for large values of n, can sometimes 

be quite inaccurate for the sample size actually available. Keeping this in mind, it 

is still true that the standard error of an estimate usually gives a good idea of its 

accuracy. 
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Figure 3.2 For large values of n, the mean x of a random sample from F will have 
an approximate normal distribution with mean fip and variance ajr/n 
(from An Introduction to the Bootstrap by Efron and Tibshirani (7)). 

Suppose we find ourselves in the following common data-analytic situation: a 

random sample x = (x1, x2, • • •, xn) from an unknown probability distribution F has 

been observed and we want to estimate a parameter of interest 0 = t(F) on the basis 
A 

of x. For this purpose, we calculate an estimate 0 = s(x) from x. 

Algorithm 3.1 is a more explicit description of the bootstrap procedure for 

estimating the standard error of 0 from the observed data x. 
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Bootstrap Algorithm for Estimating Standard Errors 

1. Select a large number B of independent bootstrap samples 

x*1, x*2, • • •, x*B, each consisting of n data values drawn 

with replacement from observed data set x, as in (3.6). 

2. Evaluate the bootstrap mean corresponding to each 

bootstrap sample, 

§*(m) = s(x*m)     m = l,2,---,B 

A 

3. Estimate the standard error sep($) by the sample standard 

deviation of the B replications 

where 0*fo) = ELI **M/B. 

Algorithm 3.1 (Based on an idea from (7)). 

Figure 3.3 is a schematic diagram of the bootstrap procedure as it applies to 

one-sample situations. On the left is the real world, where an unknown distribution 

F has given the observed data x = (x1,x2,-• • ,xn) by random sampling. We have 

calculated a statistic of interest from x, 0 = s(x), and wish to know something about 

ö's statistical behavior, perhaps its standard error SCF(0). On the right side of the 

diagram is the bootstrap world. In the bootstrap world, the empirical distribution F 

gives bootstrap samples x = (a^, x\, ■ ■ ■, x*n) by random sampling with replacement, 
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Figure 3.3    A schematic diagram of the bootstrap which it applies to one-sample 
problems (from An Introduction to the Bootstrap by Efron and Tibshirani 

(7))- 

from which we calculate bootstrap replications of the statistic of interest, 0* = 

s(x*). The advantage of the bootstrap world is that we can calculate as many 

replications of 9* as we want. This allows us to do probabilistic calculations directly 

- for example, using the observed variability of the #*'s to estimate the unobservable 

quantity sef(0). 

Furthermore, it can simply be applied to general data structure by replace F 

to D. There is not much conceptual difference between the two definitions, except 

for the level of generality involved. In the real world, an unknown probability distri- 

bution D gives an observed random sample data set x. In the general data structure, 

the bootstrap world side is defined by analogous quantities in the real world.  The 
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arrow in D —► x* is defined to mean the same way as the arrow D —► x, while the 
A A 

function mapping x* to 0* is the same function s(n) as from x to 0. 

3.4    The Bootstrap Confidence Interval 

3.4.I Introduction. The objective of statistics is to make an inference about 

a population based on information contained in a sample (16). Because populations 

are characterized by numerical descriptive measures called parameters, the objective 

of many statistical investigations is to make an inference about one or more popu- 

lation parameters. Most statistical inference procedures involve either estimation or 

hypothesis testing. An interval estimator is a rule that specifies the method for using 

the sample measurements to calculate two numbers that form the endpoints of the 

interval (16). Interval estimators are called confidence intervals, and the upper and 

lower endpoints of a confidence interval are called the upper and lower confidence 

limits, respectively. Standard errors are often used to assign approximate confidence 

intervals to a parameter 0 and an estimated standard error se; i.e., the usual 90% 

confidence interval for 0 is 

0± 1.645 -se (3.16) 

with the constant value 1.645 coming from a standard normal table. Formula 3.16 

is called an interval estimate or confidence interval for 0. Taken together, the point 

estimate and the interval estimate say what is the best guess for 0, and how far in 

error that guess might reasonably be (7). 

The bootstrap procedure for generating confidence bands for a parameter, es- 

timated by a statistic that is a function of n independent and identically distributed 

(iid) observations, may be summarized as follows. Obtain the empirical distribution 

of the statistic from m independent samples of size n generated with the empirical 

distribution of the original n observations. For sufficiently large m, one thus obtains 

an arbitrarily good approximation to a distribution that in itself is a good estimate 
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of the true distribution of the statistic. Suppose that we are in the one-sample situa- 

tion where the data are obtained by random sampling from an unknown distribution 

F, F —► x = (xi, x2, ■ ■ •, xn). Let 0 = t(F) be the estimate of a parameter of interest 

0 = t(F), and let se be some reasonable estimate of standard error for 0, based 

perhaps on bootstrap computations. Under most circumstances it turns out that as 

the sample size n grows large, the distribution of 0 becomes more and more normal, 

with mean near 0 and variance near se2, written 0 ~ N(0,se2) or equivalently 

^~iV(0,l). (3.17) 
se 

The large-sample result (3.17) usually holds true for general probability models P —> 

x as the amount of data gets large, and for statistics other than the plug-in estimate 

(?)• 

Let za indicate the 100-ath percentile point of a iV(0,1) standard normal dis- 

tribution, as given in a standard normal table. Since Z(i_a) = -z», if we take 

approximation (3.17) to be exact, then 

PFK < "^- < *d-«)} = 1-2«, (3.18) se 

or equivalently 

?F{0 - 2(i_a) • se < 0 < 0 - za ■ se} = 1 - 2a, (3.19) 

where 0 is the maximum likelihood estimate (MLE) of 0, and se is an estimate of its 

standard deviation. 

In general 

[0 — Z(i_a) • se, 0 — za • se] (3.20) 

is called the standard confidence interval with confidence level 100-(1 — 2a)%. Or, 

more simply, it is called a l-2a confidence interval for 0. We can restate (3.20) in 
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the more familiar form 

9 ± 2(i_a) • se. (3.21) 

3.4.2   Review the Logic of Confidence Interval.      We, first,review the logic of 

confidence intervals, and what it means for a confidence interval to be accurate. 

A 

Suppose that we are in the situation where an estimator 9 is normally dis- 

tributed with unknown expectation 9, 

9~N(9,se2), (3.22) 

with the standard error "se" known. (There is no dot over the "~" sign since we are 

assuming that 3.22 holds exactly.) Then the random quantity equaling (9 - 9)/se 

has a standard normal distribution, 

A 

Z = °-^- ~ N(0,1). (3.23) 
se 

For convenience we will denote confidence intervals by [0L,9U]- In this case we can 

see that the interval [0—2(i_„)-se, 9—za-se] has probability exactly l-2a of containing 

the true value of 9. More precisely, the probability that 9 lies below the lower limit 

is exactly a, as is the probability that 9 exceeds the upper limit, 

?e{0 < §L} = a,      ?e{9 > 9V} = a. (3.24) 

The fact that (3.24) holds for every possible value of 9 is what we mean when we say 
A A 

that a (l-2a) confidence interval (0L,9U) is accurate. It is important to remember 
A 

that 9 is a constant in probability statements (3.24), the random variables being 9L 
A 

and 9jj- 

There is another way to express the statement that (#L, 9U) is a l-2a confidence 
A 

interval for 9. Suppose that 9 were equal to 9L, say 

3-12 



0*~N(0L,se2). (3.25) 

Here we have used 0* to denote the random variable, to avoid confusion with the 

observed estimate 0. The quantity §L is considered to be fixed in (3.25), with only 

0* being random.  It is easy to see that the probability that 0* exceeds the actual 
A 

estimate 0 is a, 

P§L{0*>0} = * (3.26) 

and for any value of 0 less than 0i we have 

?e{0* >0}<a. (3.27) 

The probability calculation in (3.27) has 0 fixed at its observed value, and 0* random, 
A A 

0* ~ iV(0, se), so for any value of 0 greater than the upper limit 0y 

Pe{0* <0}<a. (3.28) 

A A 

The logic of the confidence interval (0L, 0U) can be stated in terms of (3.27 
A 

- 3.28). We decide that values of the parameter 0 less than Ojj are implausible, 

since they give probability less than a of observing an estimate as large as the one 

actually seen (3.27). We decide that values of the parameter 0 greater than 0\j are 

implausible, since they give probability less than a of observing an estimate as small 

as the one actually seen (3.28) (7). 

3.4.3 Bootstrap-t Interval. The standard intervals (3.19) are extremely 

useful in statistical practice because they can be applied in an automatic way to 

almost any parametric situation. As we have seen, the standard confidence interval 
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is derived from the assumption that 

Z = —~JV(0,1). (3-29) 
se 

This is valid as n -> oo, but is only an approximation for finite samples. For the 

case 0 = x, Gösset (1908) derived the better approximation 

z = ^ ~ tM- (3-3°) se 

where t(n_!) represents the Student's «-distribution onn-1 degrees of freedom. 

Using this approximation, the confidence interval is 

[0 - <(i_«),(n-i) • se, 6- *(«),(n-i) • se], (3.31) 

with <(a),(n-i) denoting the ath percentile of the «-distribution on n - 1 degree of 

freedom. Using the «-distribution does not adjust the confidence interval to account 

for skewness in the underlying population or other errors that can result when 6 is 

not the sample mean; however, the bootstrap-« interval adjusts for these errors (7). 

Through the use of the bootstrap procedure we can obtain accurate intervals 

without having to make normal theory assumptions like (3.29). The bootstrap-i 

interval approach procedure estimates the distribution of Z directly from the data. 

The bootstrap table is built by generating B bootstrap samples, and then com- 

puting the bootstrap version of Z for each. The bootstrap table consists of the 

percentiles of these B values. Using the algorithm 3.1, we generate B bootstrap 

samples x*1, x*2, • • •, x*s and for each we compute 

*j6)~*, (3.32) ^ = W' 
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where 0*(b) = s(x*6) is the value of 0 for the bootstrap sample x*6 and se*(6) is the 

estimated standard error of 0* for the bootstrap sample x*6. The ath percentile of 

Z*(b) is estimated by the value ta such that 

{Z*(b) < ta}/B = a. (3.33) 

For example, if B = 1000, the estimate of the 2.5% point is the 25th largest value 

of Z*(b) and the estimate of the 97.5% point is the 975th largest value of Z*(b). 

Therefore, the bootstrap-^ confidence interval is 

(0 - t(i_„) • se, 0 - t(a) ■ se). (3.34) 

This is suggested by the same logic that gave (3.31) from (3.30) (7). 

The bootstrap-i confidence interval procedure is a useful and interesting gen- 

eralization of the usual Student's t method. It is particularly applicable to location 

statistics like the sample mean. (A location statistic is one for which increasing 

each data value X{ by a constant c increases the statistic itself by c.) Other location 

statistics are the median, the trimmed mean, or a sample percentile. 

Until now we have discussed one approach to bootstrap confidence intervals. 

Next, we describe another approach based on percentiles of the bootstrap distribution 

of a statistic. 

3.44    Bootstrap Percentile Interval. Let 0 be the usual estimate of a 

parameter 0 and se its estimated standard error. Consider the standard normal 

confidence interval[0 - z^_a) • se, 0 - za • se]. The endpoints of this interval can be 

described in a way that is particularly convenient for bootstrap calculations. Let 0* 

indicate a random variable drawn from the distribution N(0, se ), 

0* ~ N(0, se2). (3.35) 
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Then 9L = 0-Z(i_a)-se and 9V = 9-za-sb are the lOOath and 100(l-a)th percentile 

of 9*. Suppose we are in the general situation of Figure 3.3 (Note: replace F to D). A 

bootstrap data set x* is generated according to D -► x*, and bootstrap replications 

9* = s(x*) are l-2a percentile interval is denned by the a and l-o percentiles of H: 

[9pL,9pu} = [Ha,H{1-a)]. (3.36) 

Since by definition Da - 9*a, the 100-ath percentile of the bootstrap distribution, we 

can also write the percentile interval as 

[9PLJPU} = [0a ,*(i-«)]. (3-37) 

Expressions (3.36) and (3.37) refer to the ideal bootstrap situation in which the 

number of bootstrap replications is infinite. In practice we must use some finite 

number B of replications. To proceed, we generate B independent bootstrap data 

sets x*x,x*2, • ■ • ,x*B and calculate the bootstrap replications 9*(b) = s(x*6), 6=1, 

2, • • •, B. Let 9(B)a be the 100-ath empirical percentile of the 9*(b) values, that is, 

the B ■ ath value in the ordered list of the B replications of 0*. So if B = 1000 and 

a = 0.05, 9(B)a is the 50th ordered value of the replications. 

3.4.5 Application of Bootstrap procedure. With this background we can 

apply the bootstrap procedure to this research. Using November C-141 parachute 

and jumper belt position data and C-17 parachute and jumper belt position data, we 

first calculate midpoint between parachute and jumper belt position. In the C-141 

case, 19 jumpers went out from the left door and 20 jumper's from the right. In the 

C-17 case, 20 jumpers exited from both the left door and right door. Thus, we know 

that there are 380 (19 x 20) possible left and right jumper pairs for the C-141 and 

400 (20 x 20) pairs for the C-17. Second, we calculate minimum distance between 

each left jumper and right jumper pair at a time difference from -0.5 to 0.5 seconds 
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by 0.05 increments (-.5, -.45, -.40, , .40, .45, .5) - in effect, we discretize the 

continuous distribution. Thus, for the C-141 we get 7980 (19 x 20 x 21) minimum 

distances based on 21 different time intervals for each of the 380 possible pairs. 

Figure 3.4    7980 Minimum distances of 19 left and 20 right jumper possible pairs 
in the November C-141. 

The algorithm in Table 3.1 shows the procedure for generating the bootstrap 

replications of the November 1995 C-141 data. Figure 3.4 gives 7980 minimum dis- 

tance as original data. Then, we generate all 1000 bootstrap samples by randomly 

selecting with replacement 19 left jumper and 20 right jumper distance sets using 

S-plus, Fortran, or other math or statistic programs. For example, we generate 

B^ = {14,18,11,14,12,9,3,19,14,4,5,8,11,3,14,2,13,10,1}, 

B;2 = {12,18,5,18,2,19,9,18,12,15,17,4,14,17,3,6,7,15,6} 

B?iooo = (17> 12> 5> 14> 16> !> 6> 18> 13>7' 4> 6> !> 6>12'6'2'14' 15> 
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Algorithm for Bootstrap Procedure 

1. Using the original data, calculate j=(21 xnumber of leftxnumber of right) 
minimum distances (Figure 3.4) using Algorithm for Calculating 
Minimum Distances (Table 4.3). 

2. Produce the sampling arrays 5,* and B*{ (i = 1000) of size left and 
right jumpers, respectively, using replacement sampling. 
Set i = 1. 

3. Using the ith sample arrays B*{ and B*ri get the minimum distance 
from corresponding minimum distance set (Figure 3.4) 

4. Sort this bootstrap sample in ascending order of the minimum distance 
and save as ith column. 

5. Set i = i + 1. If i <1000 go to step 3. 

6. Sort rows 1 through i in ascending order. 

7. Select columns by confidence interval.  

Table 3.1    Algorithm for generating the 1000 independent Bootstrap Replications 
of the November 1995 C-141. 
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and 

B*rl = {9,1,2,11,20,3,4,10,13,14,3,12,8,4,16,1,7,19,18,6} 

B*2 = {20,10,18,20,10,7,16,16,4,19,19,1,20,5,18,14,14,7,17,20} 

B;I0OO = (16,6,15,12,14,4,7,8,12,18,9,1,16,13,13,13,17,20,15,3} 

Using the bootstrap procedure, we generate 7980 minimum distances of the first 

bootstrap iteration with B*n and B*rl by choosing matched 21 minimum distances 

from the original data in Figure 3.4. This procedure repeats until generating the 

7980 minimum distances of the 1000th bootstrap iteration with B^1Q0O and B*1000. 

Visualizing the results in a 7980 by 1000 matrix, each column represents 7980 mini- 

mum distances of each bootstrap iteration. After generating minimum distances of 

each bootstrap iteration, we then sort these minimum distances in ascending order 

for each column 1 - 1000. We sort again on rows 1 - 7980 by ascending order. Af- 

ter this sort, we then select 25th and 975th columns as 95% bootstrap confidence 

bounds, and plot the cumulative density function using these two columns. (Note: 

50th and 950th, 100th and 900th, and 150th and 850th columns are 90%, 80%, and 

70% bootstrap confidence lower and upper bounds, respectively.) Figure 3.5 shows 

95% bootstrap confidence lower and upper bound of the November 1995 C-141 data. 

It should be pointed out that by calculating all minimum distances on the range of 

+.5 to -.5 second separation between left and right jumpers, the measurable out- 

come is the worst case minimum distance. An alternative approach would uniformly 

sample the +.5 to -.5 second separation interval to calculate the expected minimum 

distance; however, the U.S. Army preferred the former method. 

3.4.6 Summary. In this section we discuss bootstrap procedure and how 

it applies to this research. In the next chapter, we discuss data analysis of the 

November C-1411 versus November, March, and March-heavy C-17 data, and show 

'This is the base line of this research for comparing to the C-17. 

3-19 
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Figure 3.5    95% bootstrap confidence lower and upper bound of the November C- 
141. 

the C-17 having a lower probability of entanglement than the C-141 by plotting 

bootstrap confidence bounds. 
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IV.   An Analysis of the Experiment Data 

4-1    Background 

4.I.I Data Source. The data which is used for this analysis can be obtained 

from several systems. We must first decide which data source to use, each presenting 

distinct advantages. As mentioned in Section 2.2.4, the CINE-T system at Edwards 

AFB was used to obtain data for the C-141 and C-17 baseline, and the reconfigured 

C-17. This system is limited to one jumper per pass but can be used to track 

both the body and the chute apex, thus allowing the computation of a centroid 

of the combined jumper-chute configuration. The Kineto Track Mount1 (KTM) at 

Yuma and Fort Bragg is also limited to one jumper per pass. Both systems require 

good weather conditions; however, the weather conditions are usually better than 

Edwards and the co-located Army jumper unit at Yuma gives that KTM system cost 

and location benefits. The Airborne Space Positioning2 (ASP) automatically tracks 

a single object, but offers the possibility of more than one object to be tracked in a 

single pass. The turn-around time for CINE-T is 10 - 14 days, but the accuracy is 

equivalent to that of the Personnel Airdrop Optimization (PAO) I (5 to 6 cameras). 

KTM and ASP would need to be assessed for accuracy, with new baselines established 

if one of these alternate systems were used. The KTM system offers 2-day turn- 

around (Yuma), while ASP has 8 to 24 hour turn-around. The CINE-T data can 

be adjusted for wind using software written by McDonnell Douglas, although under 

most conditions the families of trajectories change very little after adjustment with 

the later version of this software. Since KTM data has the same format as CINE- 

T, this data could also be adjusted for wind effects if deemed necessary. In this 

research I use four data sets (November 1994 C-141, November 1994 C-17, March 

1995 C-17 and March 1995 heavy C-17).  Even though the KTM (Yuma) has cost 

^he brand name for a ground based trajectory tracking system similar to CINE-T, KTM uses 
video instead of film. 

2Similar to CINE-T, but uses aircraft-mounted video cameras instead of movie cameras. 
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and location benefits, the CINE-T's accuracy provides a greater advantage.  Table 

4.1 shows configurations of each data set. 

Factor Nov 94 C-141 Nov 94 C-17 Mar 95 C-17 Mar 95 hC-17 

Aircraft Speed 130 knots 135 knots 130 knots 130knots 

Deck Angle 2° 2° 7° 7° 
Gross Weight 330 - 360K 330 - 360K 330 - 360K 350 - 380K 
Landing Gear Up Up Up Up 

Static Line 15' 15' 15' 15' 
Exit Style 45° 45° 45° 45° 

Table 4.1    Configurations of November 1994 C-141, November 1994 C-17, March 
1995 C-17, and March 1995 heavy C-17. 

4.1.2 Data Form. Since the single data files of the four data set range 

from 460,000 to 1,000,000 bytes in size, we can not reasonably include the raw data 

in this paper3. However, to help understand the data analysis procedure, Table 4.24 

presents a sample of the content of the CINE-T data. 

In order to use the raw data file in the Table 4.2, we need ELAPS time (from 

when a jumper exits out from the aircraft door), XSM, YSM, and ZSM (which 

corresponds to the X, Y, and Z position value detailed in Chapter II). There are 

two columns which we have to consider in the Table 4.2. One is the third column 

(ELAPS), the other column five (YSM). Zero ELAPS time represents the left or 

right jumper exit out from the aircraft door. If ELAPS time value is negative (Index 

1 to 56), it means the jumper has not yet exited. Therefore, in this case, we do not 

use the data from index 1 to index 56 since they are just waiting values. Index 57, 

where the ELAPS time is zero and F-value is negative, indicates this data file is 

for right jumper since we assume positive Y is off the left wing. As mentioned in 

Chapter III, there are 19 left and 20 right jumpers; therefore, we can get files of 19 

3All data set in Table 4.1 would require more than 1000 pages. 
4Table 4.2 shows only one jumper's chute position values. 
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INDEX HMS ELAPS XSM YSM ZSM SECS 

1. 153503. -2.8 -548.7279 -2.7183 -7.3093 56103. 

2. 153503.05 -2.75 -537.8914 -2.6989 -7.3866 56103.05 

3. 153503.1 -2.7 -527.0763 -2.6656 -7.3606 56103.1 

4. 153503.15 -2.65 -516.3075 -2.6066 -7.2129 56103.15 

5. 153503.2 -2.6 -505.6069 -2.5451 -7.0279 56103.2 

6. 153503.25 -2.55 -494.9438 -2.5242 -6.9196 56103.25 

7. 153503.3 -2.5 -484.2321 -2.539 -6.9226 56103.3 

55. 153505.7 -.1 29.6077 -7.0048 -4.8175 56105.7 

56. 153505.75 -.05 40.3143 -7.2243 -5.0583 56105.75 

57. 153505.8 0. 51.0791 -7.321 -5.2729 56105.8 

58. 153505.85 .05 61.7647 -7.478 -5.5057 56105.85 

59. 153505.9 .1 72.2758 -7.7535 -5.8945 56105.9 

60. 153505.95 .15 82.5968 -8.099 -6.3505 56105.95 

61. 153506. .2 92.7835 -8.4493 -6.7382 56106. 

195. 153512.7 6.9 435.3648 -24.9079 -158.6976 56112.7 

196. 153512.75 6.95 434.2697 -25.1097 -159.4688 56112.75 

197. 153512.8 7. 433.1223 -25.5052 -160.2765 56112.8 

198. 153512.85 7.05 431.8921 -26.1185 -161.1653 56112.85 

199. 153512.9 7.1 430.5896 -26.8858 -162.0548 56112.9 

200. 153512.95 7.15 429.2006 -27.7265 -162.7805 56112.95 

201. 153513. 7.2 427.7265 -28.5685 -163.2772 56113. 

Table 4.2    The first right jumper's chute data form of the November C-141. 

left jumper's chute and belt position values, and 20 right jumper's chute and belt 

position values5. 

4.1.3 Jumper Interval Distribution. In a mass jump, the objective is to 

jump from both side doors while maintaining an opposite door stagger. The time 

interval between same side jumpers is, on average, the total time to get n jumpers 

out, divided by n - 1. We define At as the time interval between a given left jumper 

and his closest neighbor (before or after him) from the opposite side.  We assume 

5During the test, 20 jumpers jump out from each door, but one left jumper's trajectory was 
lost. 
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that At directly affects the distance traveled in the time interval between a pair 

of jumpers. (Note that the range on At is 0 to about half of the same side time 

interval.) For instance, the 10 Aug 1994 C-17 jump got 35 jumpers out in 43.945 

seconds, so the average same side time interval is 43.945/34 = 1.29 seconds. Hence, 

we expect the range of At to be from 0 to about 0.65 seconds. While we desire 

At to be concentrated in the upper end of this range, the empirical data show a 

fairly uniform distribution between 0 to 0.65 seconds for both sides (13). Therefore, 

we maintain our assumption that the time interval between left and right jumper is 

uniformly distributed on the range -0.5 to 0.5 seconds. 

4-2    Centerlining Tendency 

To research a centerlining tendency of the airdrop procedure, we first calculate 

geometric midpoint values between each jumper's chute and belt position values (see 

Appendix A). Second, using these new midpoint values, we calculate the minimum 

distances on a range of time intervals between all possible pairs between left and right 

jumpers using the algorithm in Table 4.3 and Program 2 in Appendix B. Notionally, 

the procedure has the following properties: 

• We treat the trajectory of each jumper as a sample trajectory (e.g., 19 left and 

20 right jumpers give 39 sample trajectories). 

• We make two major assumptions : 

- Any two trajectories (one left and one right) are equally likely to pair up 

as a trajectory pair. 

- For any trajectory pair, the time interval between the individual compo- 

nent trajectories commencing is uniformly distributed on the interval -.5 

to .5 seconds. 

• If we use .05 second time intervals, then for each possible left-right jumper 

combination we can simulate 21 paired trajectories, with each trajectory pair 
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Algorithm for Calculating Minimum Distances 

step 1.    L = 1, R = 1. 

step 2.    Calculate 21 minimum distances on At interval of -0.5 to +0.5 using 
Program 2 in Appendix B for trajectory pair LR. 
Save the result to a file (refer to Figure 3.4). 

step 3.    R = R + 1. 
If R > number of right jumpers go to step 4. 
Otherwise go to step 2. 

step 4.    L = L + 1, R = 1. 
If L > number of left jumpers stop. 
Otherwise go to step 2. 

Table 4.3    Algorithm for calculating the minimum distances of all possible trajec- 
tory pairs. 
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having a minimum distance between the two paired jumpers. (Note that the 

previous assumptions imply that the minimum distances of the 21 trajectory 

pairs is equally likely to occur.) 

• Therefore, we can simulate L x R x 21 trajectory pairs, each providing a 

minimum distance. (In the case of the November 1994 C-17, the March 1995 

C-17 (Gross weight 330 - 360 K), and the March 1995 heavy C-17 (Gross 

weight 350 - 380 K), we can get 8400, 8400, and 8379 minimum distances, 

respectively6.) 

In Table 4.3, step 2, we use the formula y/(XK - Xrj)
2 + (YH - Y*jf + (ZK - Zrjy 

to calculate the minimum distance, where 

t   =   interval time on the range from -.5 to .5 seconds 

i   =   time after jumping out 

3 = i + t 

Xu = left jumper X position at time i 

Xrj = right jumper X position at time j 

Yij = left jumper Y position at time i 

Yrj = right jumper Y position at time j 

Y*j = Yrj + (aircraft speed x tf)7 

Zu = left jumper Z position at time i 

Zrj = right jumper Z position at time j 

Figure 4.1 shows the results of the November 1994 C-141, the November 1994 C-17, 

the March 1995 C-17, and the March 1995 heavy gross weight C-17. 

6In the cases of Nov 1994 C-17 and Mar 1995 C-17 (330 - 360 K), each side has 20 jumpers. 
Mar 1995 heavy C-17 produces 21 left jumpers and 19 right jumpers. 

7this is adjusted by aircraft speed since aircraft advance amount of speed x time interval. 
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Figure 4.1 The base risk curves of airdrop tests; 1, 2, 3, and 4 show the risk curve 
of the November 1994 C-141, November 1994 C-17, March 1995 C-17, 
and the March 1995 heavy gross weight C-17, respectively. 

4-3   Analysis 

To analyze the data, we first need to generate TV (in this research we use 

N = 1000) independent bootstrap samples by using the Algorithm in Table 3.1. 

Each bootstrap sample generates a column of K elements, so after repeating N 

times we get a KxN matrix B of minimum distances. We then sort the columns of 

B followed by a row sort using Fortran code in Appendix C. We then check original 

minimum distances and bootstrap median distances. Figure 4.2 shows comparison 

of original minimum distances and bootstrap median distances of each airdrop test. 

Since all plots are nearly equal, so we can use the bootstrap procedure for getting 

confidence intervals in this test. In Chapters II and III, we describe the bootstrap 

confidence interval, with particular interest in the idea of the bootstrap percentile 
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Figure 4.2 Comparing bootstrap median distance vs. original minimum distances 
of November 1994 C-141 (a), November 1994 C-17 (b), March 1995 C-17 
(c), and heavy gross March 1995 C-17 (d). 
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interval (see Section 3.4.3). For instance, if we want a 95% bootstrap confidence 

bounds, we can select the columns matched N times a/2 and N times (1 - a/2) as 

lower and upper bound, respectively. In this case, N is 1000 and a is .05, thus the 

25th column and the 975th column are selected as 95% bootstrap confidence lower 

and upper bound. 

We plot these columns which matched each bootstrap confidence interval as 

a bootstrap confidence bounds, comparing the 95% and 50% bootstrap confidence 

bounds between November 1994 C-141 vs. November 1994 C-17 (Figure 4.3), Novem- 

ber 1994 C-141 vs. March 1995 C-17 (Figure 4.4), and November 1994 C-141 vs. 

heavy gross weight March 1995 C-17 (Figure 4.5). We include the 50% bootstrap 

confidence interval at the Army's request. The 90%, 80%, 70%, and 60% bootstrap 

confidence bounds plots are in the Appendix D. 
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Figure 4.3 Comparing Bootstrap Confidence bounds between C-141 vs. November 
C-17: (a) 95% bootstrap confidence bounds (b) 50% bootstrap confi- 
dence bounds. 
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Figure 4.4 Comparing Bootstrap Confidence bounds between C-141 vs. March C- 
17: (a) 95% bootstrap confidence bounds (b) 50% bootstrap confidence 
bounds. 
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Figure 4.5 Comparing Bootstrap Confidence bounds between C-141 vs. March 
heavy C-17: (a) 95% bootstrap confidence bounds (b) 50% bootstrap 
confidence bounds. 
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4-4    Results 

The results show that the March 1995 C-17 configuration meets or exceeds the 

November 1994 C-141 worst-case minimum separations. In Figure 4.3 (a) between 

12 and 16 feet minimum distance the two confidence bounds are overlapping, so we 

can say that there is a strong evidence that the two systems are not different within 

that range. Conversely, no overlapping between 5 and 11 feet range gives strong 

evidence that the two systems are not the same (P(Sc-i4i < d) < P(Sc-n < d)). 

Comparisons below 5 feet given in Table 4.4 show P(Sc-in < d) < P(Sc-n < 

d). Figure 4.3 (b) and Table 4.4, give similar results. After changing aircraft test 

configurations we get Figure 4.4 - 5. Since it is difficult to distinguish the plots 

below 10 ft, Tables 4.5 - 8 are provided. 

Level <5 <4 <3 <2 <1 
Low 95% C-141.Nov 0.815% 0.539% 0.301% 0.15% 0.075% 

Up 95% C-17.NOV 1.607% 0.940% 0.476% 0.131% 0.024% 
Low 50% C-141.Nov 0.439% 0.301% 0.138% 0.05% 0.025% 

Up 50% C-17.NOV 2.202% 1.262% 0.702% 0.238% 0.095% 

Table 4.4    Comparison the bootstrap confidence bounds between the November C- 
141 vs. the November C-17. 

Table 4.9 is a summary of Figures 4.3 - 5 and Tables 4.4 - 8. For example, 

we can say P(SC-n < d) < P(SC-i4i < d) above 15.6 ft minimum distance at the 

95% and above 14.3 ft minimum distance at the 50% bootstrap confidence interval, 

Level <10 <8 <6 <4 <2 <1 
Up 95% C-Hl.Nov 2.093% 0.702% 0.175% 0.025% 0.0% 0.0% 
Low 95% C-17.Mar 4.321% 2.75% 1.452% 0.595% 0.131% 0.071% 
Low 95% C-141.Nov 6.654% 3.296% 1.491% 0.539% 0.150% 0.0% 
Up 95% C-17.Mar 0.833% 0.345% 0.119% 0.0% 0.0% 0.0% 

Table 4.5    Comparison the 95% bootstrap confidence bounds between the November 
C-141 vs. the March.360 C-17. 

4-13 



Level <io <8 <6 <4 <2 <1 

Up 50% C-Ul.Nov 3.246% 1.303% 0.451% 0.125% 0.0% 0.0% 

Low 50% C-17.Mar 2.869% 1.679% 0.809% 0.286% 0.048% 0.024% 

Low 50% C-141.Nov 4.900% 2.192% 0.877% 0.301% 0.05% 0.0% 

Up 50% C-17.Mar 1.714% 0.857% 0.369% 0.071% 0.0% 0.0% 

Table 4.6    Comparison the 50% bootstrap confidence bounds between the November 
C-141 vs. the March.360 C-17. 

Level < io <8 <6 <4 <2 <1 
Up 95% C-Hl.Nov 2.093% 0.702% 0.175% 0.025% 0.0% 0.0% 

Low 95% hC-17.Mar 8.521% 5.215% 2.876% 1.217% 0.406% 0.298% 
Low 95% C-141.Nov 6.654% 3.296% 1.491% 0.539% 0.150% 0.0% 
Up 95% hC-.17.Mar 3.533% 1.790% 0.847% 0.310% 0.048% 0.0% 

Table 4.7    Comparison the 95% bootstrap confidence bounds between the November 
C-141 vs. the March.380 C-17. 

Level 
Up 50% C-Hl.Nov 

Low 50% hC-17.Mar 
Low 50% C-Ul.Nov 
Up 50% hC-17.Mar 

< 10 
3.246% 
6.599% 
4.900% 
4.810% 

<8 
1.303% 
3.831% 
2.192% 
2.661% 

<6 
0.451% 
2.065% 
0.877% 
1.361% 

<4 
0.125% 
0.847% 
0.301% 
0.513% 

<2 
0.0% 

0.251% 
0.05% 

0.143% 

< 1 
0.0% 

0.167% 
0.0% 

0.023% 

Table 4.8    Comparison the 50% bootstrap confidence bounds between the November 
C-141 vs. the March.380 C-17. 
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Aircraft Test 
Conditions 

P{SC-n <d)< P(SC-i4i < d) P(Sc-ui <d)< P(Sc-n < d) 
95% 50% 95% 50% 

Nov 94 C-141 
vs 

Nov 94 C-17 
d = 15.6 ft d = 14.3 ft d = 11.7 ft d = 13.0 ft 

Nov 94 C-141 
vs 

Mar 95 C-17 
d = 12.6 ft d = 9.3 ft N/A N/A 

Nov 94 C-141 
vs 

Mar 95 Heavy C-17 
d = 14.4 ft d = 12.8 ft N/A d = 9.5 ft 

Table 4.9    Comparison the range of which system is better at 95% and 50% boot- 
strap confidence bounds. 

but P(SC-ui < d) < P{SC-n < d) below 11.7 ft at the 95% and below 13.0 ft 

at the 50% bootstrap confidence intervals. In case of the March 1995 C-17, we 

can not distinguish the C-141 from the C-17 below 12.6 ft and 9.3 ft at 95% and 

50% bootstrap confidence intervals, respectively, since the confidence bounds are 

overlapping. In the March heavy 1995 C-17 case, the two systems are not different 

below 14.4 ft minimum distance at the 95% bootstrap confidence interval; however, 

P(SC-\4i <d)< P(SC-i7 < d) below 9.5 ft at the 50% bootstrap confidence interval. 
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V.   Conclusions and Recommendations 

5.1 Introduction 

This Chapter summarizes the results of this research and makes recommenda- 

tions for future efforts. 

5.2 Results Summary 

This research calculated the centerlining tendency of personnel airdrop of C- 

17 and C-141, compared the risk probability of both systems, and found where 

P(SC-n < d) < P(Sc-ui < d) using the bootstrap method. From Table 4.9 

in Chapter IV, the results show that the risk of entanglement for the C-17 can be 

controlled such that it is less than the C-141's. Under November 1994 configurations, 

P(Sc-ui <d)< P(Sc-n < d) when d = 11.7 ft (95%) and 13.0 ft (50%); i.e., 

the entanglement risk probability of the C-17 is higher than the C-141's at small 

distances. However, the March 1995 configurations show the probability of C-17 

entanglement equal to or lower than the C-141 's at small distances. This result is 

very important to both the C-17 SPO and U.S. Army for the following reason: // 

the results showed that the risk probability of the C-17 is not less than the C-141's at 

any configuration, then the C-17 would be evaluated as not mission ready. However, 

this analysis conclusively shows that - under certain configurations - the C-17 is as 

safe as the C-141 with respect to the risk of chute entanglement. 

5.3 Suggestions for Future Research 

First, additional research should be conducted in the future to eliminate the 

effects of these small sample sizes. For example, the data in this thesis uses a jumper 

sample size of 19 to 21; however, future research should use more jumpers. (For 

example, 51 jumpers exit out from each door per aircraft in operational airdrops.) 

Second, these curves are built under the measurable outcome of worst case scenarios 
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(i.e., smallest possible distances) between each pair of jumpers. Further analysis 

should introduce a uniform sampling of the left-right jumper exit times as a basis for 

simulating the expected outcome (i.e., average distances). Finally, this methodology 

should be applied to the deployment-bag strike problem. 
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Appendix A.   Program 1 
This Fortran program calculates midpoint values between each jumper's belt 

and helmet position. 

C    DECLARE VARIABLE TYPES 
INTEGER I 
REAL XM,  YM,  ZM,  XJ,  XC,  YJ, YC,  ZJ,  ZC 
REAL XD,  DIST, TI,  TT,  COUNT 
0PEN(UNIT=10, FILE-'cl41jll8.dat', STATUS='OLD') 
0PEN(UNIT=20, FILE='cl41cll8.dat', STATUS='OLD') 
0PEN(UNIT=30, FILE='cl41118.dat', STATUS"'NEW) 
DO  15    I = 1,150 

READÜ0,*)  COUNT,TT.TI,  XJ,  YJ,  ZJ 
READ(20,*) COUNT,TT.TI, XC,  YC,  ZC 
XM =  (XJ+XO/2 
YM =  (YJ+YO/2 
ZM =  (ZJ+ZO/2 

XD = ABS(XJ - XC) 
DIST = XD 

IF  (TI   .GT.3.0  .AND.  DIST  .LT.  3.0) THEN 
STOP 

ELSE 
WRITE(30,*)  I,TI,XM,YM,ZM 

END IF 
15 CONTINUE 

STOP 
END 
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Appendix B.   Program 2 

This Fortran program calculates minimum distances between each left and 
right jumper on the interval of +.5 to -.5 seconds (130 Knots = 219.4 feet/second). 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
VARIABLE DICTIONARY 

C  LCNT = LEFT COUNT 

C  RCNT = RIGHT COUNT 

C  LCOUNT = LEFT COUNT 

C  RCOUNT = RIGHT COUNT 

C  LINDEX = LEFT INDEX 

C  RINDEX = RIGHT INDEX 
C  DIST = DISTANCE BETWEEN LEFT AND RIGHT JUMPER TRAJECTORY 

C       MINDIST = MINIMUM DISTANCE 
C  TIMEINT = TIME INTERVAL 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C DECLARE VARIABLE TYPES 

INTEGER LCNT, RCNT 
INTEGER LC0UNT(19), RC0UNT(20) 

INTEGER LINDEX(lOl), RINDEX(lOl) 
REAL XD,YD,ZD,DIST 
REAL TL(101),TR(10i),XL(101),XR(101),YL(101),YR(101) 

REAL ZL(101),ZR(101),TIMEINT, MINDIST(21) 

REAL TMP.MINDIST 
CHARACTER *11, LFN(19), RFN(20) 
DATA LCOUNT /93,97,97,93,88,100,94,86,88,85,92,96,89,96,95,93,95,95,88/ 
DATA RCOUNT /100,101,90,90,88,89,91,94,92,92,79,93,97,87,84,88,83,94,96,96/ 

DATA LFN/'cl41101.dat\'cl41102.datVcl41103.datVcl41104.dat' 
,'cl41105.dat','cl41106.dat','cl41107.dat','cl41108.dat' 
,'cl41109.dat','cl41110.dat','cl41111.dat','cl41112.dat' 
,'cl41113.dat','cl41114.dat\ 'cl41115.dat','cl41116.dat' 
.'cWiliT.dat'.'ci^llS.datVcUllig.dat'/ 

DATA RFN/'cl41r01.dat','cl41r02.dat','cl41r03.dat','cl41r04.dat' 
,'cl41r05.dat','cl41r06.dat','cl41r07.dat','cl41r08.dat' 
,'cl41r09.datVcl41rl0.datVcl41rll.datVcl41rl2.dat' 
,'cl41rl3.dat',,cl41rl4.dat,,,cl41rl5.dat','cl41rl6.dat' 
,,cl41rl7.dat','cl41rl8.dat,,'cl41rl9.dat','cl41r20.dat'/ 

0PEN(UNIT=30, FILE='MINDISC141.DAT', STATUS='NEW) 
DO 777 M=l,19 

0PEN(UNIT=10, FILE=LFN(M), STATUS='OLD') 
DO 35     1=1,  LCOUNT(M) 
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READÜO,*) LINDEX(I), TL(I), XL(I) , YL(I), ZL(I) 

35   CONTINUE 

DO 888 N=l,20 
0PEN(UNIT=20, FILE=RFN(N), STATUS='OLD') 

DO 45 J = 1, RCOUNT(N) 
READ(20,*) RINDEX(J), TR(J), XR(J), YR(J), ZR(J) 

45 CONTINUE 

K = 1 
DO 50 TIMEINT = -0.5/0.05, 0.5/0.05, 0.05/0.05 

IF (TIMEINT .GT. 0.0) THEN 

DO 210 RCNT = 1,RC0UNT(N) 
XR(RCNT) = XR(RCNT) + TIMEINT*219.4*0.05 

210      CONTINUE 

ELSE 
DO 220 LCNT = 1,LC0UNT(M) 

XL(LCNT) = XL(LCNT) - TIMEINT*219.4*0.05 

220      CONTINUE 

ENDIF 

1 = 1 
J = 1 

L = 1 
TMP.MINDIST = 9999.0 

70   IF (TIMEINT .GT. 0.0) THEN 

I = J + TIMEINT 

ELSE 
J = I - TIMEINT 

END IF 
XD = (XL(I) - XR(J))**2 

YD = (YL(I) - YR(J))**2 

ZD = (ZL(I) - ZR(J))**2 
DIST = SQRT(XD + YD + ZD) 
IF (TMP.MINDIST .GT. DIST) THEN 

TMP.MINDIST = DIST 

END IF 
L = L + 1 

1 = 1 + 1 
J = J + 1 
IF (I .GT. LCOUNT(M) .OR. J .GT. RCOUNT(N) ) THEN 

MINDIST(K) = TMP.MINDIST 

K = K + 1 
IF (TIMEINT .GT. 0.0) THEN 

DO 230 RCNT = l.RCOUNT(N) 
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XR(RCNT) = XR(RCNT) - TIMEINT*219.4*0.05 

230 CONTINUE 

ELSE 
DO 240 LCNT = 1,LC0UNT(M) 

XL(LCNT) = XL(LCNT) + TIMEINT*219.4*0.05 

240 CONTINUE 

ENDIF 

GO TO 50 

ELSE 
GO TO 70 

END IF 
50 CONTINUE 

DO 100 K = 1, 21 
WRITE(30,*) MINDIST(K) 

100 CONTINUE 
CLOSE(UNIT=20) 

888 CONTINUE 

CL0SE(UNIT=10) 

777 CONTINUE 

STOP 
END 
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Appendix C.   Program 3 
This program computes minimum distance using the bootstrap method for 

50%, 60%, 70%, 80%, 90%, and 95% confidence bounds from the set of original 
experimental data (130Knots = 219.4 feet/seond). 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
VARIABLE DICTIONARY 
C  0RIGC141 = ORIGINAL MINIMUM DISTANCE DATA SET 
C       UNSRTC141 = UNSORTED EACH BOOTSTRAP MINIMUM DISTANCE DATA SET 

C  TLIMIT = BOOTSTRAP ITERATIONS 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C DECLARE VARIABLE TYPES 
REAL 0RIGC14K7980) 
REAL UNSRTC141(7980,1000) 
REAL   LB95(7980),MB95(7980),UB95(7980) 
REAL   LB90(7980),UB90(7980),LB80(7980),UB80(7980) 
REAL   LB70(7980),UB70(7980),LB60(7980),UB60(7980),LB50(7980),UB50(7980) 

INTEGER CNT, LI(19), RI(20) 
INTEGER LEFT0FF, RGT0FF 
PARAMETER (N = 7980) 
PARAMETER (M = 1000) 
REAL RA(N), RB(N), RC(M), RD(M), TEMP(7980,1000) 

EXTERNAL SVRGN 
0PEN(UNIT=30, FILE='MINDISC141.DAT', STATUS='OLD') 
0PEN(UNIT=50, FILE='left.1000.dat', STATUS='OLD') 
0PEN(UNIT=60, FILE='right.1000.daf, STATUS='0LD') 
0PEN(UNIT=40, FILE='S0RT25.DAT', STATUS='NEW') 
0PEN(UNIT=70, FILE='S0RT500.DAT', STATUS='NEW') 
0PEN(UNIT=90, FILE='S0RT975.DAT', STATUS='NEW') 
0PEN(UNIT=110, FILE='S0RT50.DAT', STATUS='NEW') 
0PEN(UNIT=120, FILE='S0RT950.DAT', STATUS='NEW') 
0PEN(UNIT=130, FILE='S0RT100.DAT', STATUS='NEW') 
0PEN(UNIT=140, FILE='S0RT900.DAT', STATUS='NEW) 
0PEN(UNIT=150, FILE='S0RT150.DAT', STATUS='NEW') 
0PEN(UNIT=160, FILE='S0RT850.DAT', STATUS='NEW) 
0PEN(UNIT=170, FILE='S0RT200.DAT', STATUS='NEW) 
0PEN(UNIT=180, FILE='S0RT800.DAT', STATUS='NEW') 
0PEN(UNIT=190, FILE='S0RT250.DAT', STATUS='NEW) 
0PEN(UNIT=200, FILE='S0RT750.DAT', STATUS='NEW) 
READ(30,*) (0RIGC141(LIMIT), LIMIT=1,7980) 
C GENERATE POSSIBLE MINIMUM DISTANCE OF 1000 BOOTSTRAP ITERATIONS AND 
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C SORT EACH BOOTSTRAP ITERATION (COLUMN SORT) 

DO 1000 TLIMIT = i, 1000 

CNT = 0 

READ(50, *) (LI(I), 1=1,19) 
READ(60, *) (RI(I), 1=1,20) 
DO 600 I = 1,19 

LEFTOFF = (LI(I)-1)*20*21 

DO 700 J = 1, 20 
RGTOFF = (RI(J)-1)*21 

DO 800 K = 1, 21 
CNT = CNT + 1 
UNSRTC141(CNT,TLIMIT) = 0RIGC141(LEFTOFF + RGTOFF + K) 

RA(CNT) = UNSRTC141(CNT,TLIMIT) 

800 CONTINUE 
700   CONTINUE 
600 CONTINUE 
CALL SVRGN (N,RA,RB) 

DO L = 1 ,7980 
TEMP(L,TLIMIT) = RB(L) 

END DO 
1000 CONTINUE 
C SORT EACH ROWS AND GET 25, 50, 100 950, 975TH COLUMNS AS 
C 95'/., 90%, .... 60'/., AND 50'/. BOOTSTRAP CONFIDENCE INTERVALS 

DO TLIMIT = 1, 7980 
DO L = 1 ,1000 
RC(L) = TEMP(TLIMIT,L) 

END DO 
CALL SVRGN (M,RC,RD) 

DO L = 1 ,1000 
TEMP(TLIMIT,L) = RD(L) 

END DO 
END DO 

DO 4000 K = 1, 7980 
LB95(K) = TEMP(K,25) 
MB95(K) = TEMP(K,500) 

UB95(K) = TEMP(K,975) 
LB90(K) = TEMP(K,50) 
UB90(K) = TEMP(K,950) 

LB80(K) = TEMP(K,100) 
UB80(K) = TEMP(K,900) 

LB70(K) = TEMP(K,150) 
UB70(K) = TEMP(K,850) 
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LB60(K) = TEMP(K,200) 
UB60(K) = TEMP(K,800) 

LB50(K) = TEMP(K,250) 
UB50(K) = TEMP(K,750) 

WRITE(40,*) LB95(K) 
WRITE(70,*) MB95(K) 
WRITE(90,*) UB95(K) 

WRITECllO,*) LB90(K) 
WRITE(120,*) UB90(K) 
WRITE(130,*) LB80(K) 
WRITE(140,*) UB80(K) 
HRITE(150,*) LB70(K) 

WRITE(160,*) UB70(K) 
WRITEÜ70,*) LB60(K) 
WRITE(180,*) UB60(K) 
WRITE(190,*) LB50(K) 
WRITE(200,*) UB50(K) 

4000 CONTINUE 

STOP 
END 
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Appendix D.   Bootstrap Confidence Bounds Plots 
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min distance (ft) 
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Figure D.l Comparing Bootstrap Confidence bounds between C-141 vs. November 
C-17: (a) 90% bootstrap confidence bounds (b) 80% bootstrap confi- 
dence bounds, (c) 70% bootstrap confidence bounds, (d) 60% bootstrap 
confidence bounds. 
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Comparing Bootstrap Confidence bounds between C-141 vs. March 
C-17: (a) 90% bootstrap confidence bounds (b) 80% bootstrap confi- 
dence bounds, (c) 70% bootstrap confidence bounds, (d) 60% bootstrap 
confidence bounds. 
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Figure D.3 Comparing Bootstrap Confidence bounds between C-141 vs. March 
heavy C-17: (a) 90% bootstrap confidence bounds (b) 80% bootstrap 
confidence bounds, (c) 70% bootstrap confidence bounds, (d) 60% boot- 
strap confidence bounds. 
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