Air Force Institute of Technology

AFIT Scholar

Theses and Dissertations

Student Graduate Works

3-1997

Statistical Modeling and Optimization of Nuclear Waste Vitrification

Todd E. Combs

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Operational Research Commons

Recommended Citation

Combs, Todd E., "Statistical Modeling and Optimization of Nuclear Waste Vitrification" (1997). Theses and Dissertations. 5949.

https://scholar.afit.edu/etd/5949

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact AFIT.ENWL.Repository@us.af.mil.

STATISTICAL MODELING AND OPTIMIZATION OF NUCLEAR WASTE VITRIFICATION

1Lt Todd E. Combs

AFIT/GOA/ENS/97M-02

DISTRIBUTION STATEMENT A

Approved for public releases Distribution Unlimited

AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY

19970429 236

Wright-Patterson Air Force Base, Ohio

AFIT/GOA/ENS/97M-02

STATISTICAL MODELING AND OPTIMIZATION OF NUCLEAR WASTE VITRIFICATION

1Lt Todd E. Combs

AFIT/GOA/ENS/97M-02

Approved for public release; distribution unlimited

STATISTICAL MODELING AND OPTIMIZATION OF NUCLEAR WASTE VITRIFICATION

THESIS

Presented to the Faculty of the Graduate School of Engineering of the

Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Operations Research

Todd E. Combs, B.S.

First Lieutenant, USAF

March 1997

Approved for public release; distribution unlimited.

THESIS APPROVAL

Student: Todd E. Combs, First Lieutenant, USAF Class: GOA-97M

Title: Statistical Modeling and Optimization of Nuclear Waste Vitrification

Defense Date: 13 March 1997

<u>Committee</u>: <u>Name/Title/Department</u> <u>Signature</u>

Advisor Jack M. Kloeber, Lieutenant Colonel, USA

Assistant Professor of Operations Research

Department of Operational Sciences

Reader Jack A. Jackson Jr., Lieutenant Colonel, USAF

Assistant Professor of Operations Research

Department of Operational Sciences

Reader Kenneth W. Bauer, Jr.

Professor of Operations Research Department of Operational Sciences

Acknowledgments

Several people deserve recognition for the help they gave me during this research. My advisor LTC Kloeber, for providing guidance throughout the research process. My readers, Lt Col Jackson and Dr. Bauer, for providing insight into areas of research where I had none. DOE/EM-50, for sponsoring my research. The AFIT Operations Research faculty, for providing the skills and developing the thought process needed to complete such a project.

I especially thank my wife Michelle. The support, love, and patience she provided throughout this entire program made things bearable.

Table of Contents

Acknowledgments	iii
List of Figures	vi
List of Tables	vii
Abstract	viii
I. Introduction	1
1.1 Historical Background	1
1.2 Problem Statement and Scope	2
1.3 Research Objectives	3
1.4 Thesis Organization	3
II. Literature Review	4
2.1 Vitrification of Nuclear Waste	4
2.2 Statistical Models 2.2.1 Multiple Linear Regression 2.2.2 Neural Networks	6
2.3 Nonlinear Programming	8
III. Methodology	9
3.1 Statistical Modeling	10 14 15
3.2 Nonlinear Programming	20
3.2.1 General Form of Nonlinear Program and GRG Algorithm	ا ∠د

3.2.2 Nonlinear Program24 3.2.3 Excel Form of Nonlinear Program28	
3.3 Comparing the Models29 3.3.1 Statistical MOP29 3.3.2 Probability MOP30 3.3.3 NLP MOP31	
IV. Results33	
4.1 Statistical Modeling Results	
4.1.2 Statistics for Training and Validation Set Models	
4.2 Nonlinear Optimization Results44	
V. Recommendations/Conclusion47	
5.1 Recommendations.475.2 Contributions to Sponsor.475.3 Recommendations for further research.485.3.1 Study of Mixed Waste.485.3.2 Neural Network Modeling of NLP Surface.48	
Appendix A. Data on Waste Glass	

List of Figures

<u>Figure</u>	<u>Page</u>
General Overview of Nuclear Waste Vitrification Provided Basic Address of Page 1981 Control of Page 1	
Modeling of PNL Original and Revised Regression Equation	
3. Modeling of Neural Networks	
4. Structure of the Neural Network Models	17
5. Developing the Nonlinear Programs	20
Developing the Nonlinear Programs Results of Statistical Modeling Nonlinear Optimization of 10 Waste Streams	33

List of Tables

Table	<u>e</u> .	Page
1.	First and Reduced Second-Order Mixture Models for In(Viscosity at 1150° C).	11
2.	First and Reduced Second-Order Mixture Models for In(Elec Cond at 1150° C)12
3.	First and Reduced Second-Order Mixture Models for In(PCT B)	12
4.	First and Reduced Second-Order Mixture Models for In(MCC-1 B)	13
5.	Microsoft Excel NLP Form	29
6.	PNL First and Second Order Models for Viscosity Training Set	34
7.	PNL First and Second Order Models for PCT-B Training Set	34
8.	PNL First and Second Order Models for MCC-1 Training Set	35
9.	Revised PNL First and Second Order Models for Viscosity Training Set	35
10.	Revised PNL First and Second Order Models for PCT-B Training Set	36
11.	Revised PNL First and Second Order Models for MCC-1 Training Set	36
12.	Parameters Used for Neural NetworkTraining Set	37
13.	R ² Statistics for Training and Validation Set Models	37
14.	Final Revised PNL First and Second Order Models for Viscosity	38
15.	Final Revised PNL First and Second Order Models for Electrical Conductivity	39
16.	Final Revised PNL First and Second Order Models for PCT-B	39
17.	Final Revised PNL First and Second Order Models for MCC-1	40
18.	Parameters Used for Final Neural Network Models	40
19.	Final R ² Results	41
20.	Confusion MatrixPNL 1st Order Model	42
21.	Confusion MatrixPNL 2nd Order Model	42
	Confusion MatrixRevised 1st Order Model	
23.	Confusion MatrixRevised 2nd Order Model	42
24.	Confusion MatrixNeural Network Model	42
25.	Probability MOPs for Statistical Models	43
26.	Ten Glass Inputs to be Optimized	44
27.	Results of Optimizing 10 Glass Inputs (\$)	45
28.	Mean and Standard Deviation of Optimization Results (\$)	45
29.	Calculation of Total Expected Cost of Vitrification	46

Abstract

This thesis describes the development of a methodology to minimize the cost of vitrifying nuclear waste. Pacific Northwest Laboratory (PNL) regression models are used as baseline equations for modeling glass properties such as viscosity, electrical conductivity, and two types of durability. Revised PNL regression models are developed that eliminate insignificant variables from the original models. The Revised PNL regression model for electrical conductivity is shown to better predict electrical conductivity than the original PNL regression model. Neural networks are developed for viscosity and the two types of durability, PCT-B and MCC-1 B. The neural network models are shown to outperform every PNL and Revised PNL regression model in terms of predicting property values for viscosity, PCT-B, and MCC-1 B. The combined Neural Network/Revised PNL 2nd order electrical conductivity models are shown to be the best classifiers of nuclear waste glass, i.e. they have the highest probability of classifying a vitrified waste form as glass when it actually did produce glass in the laboratory. Finally, five nonlinear programs are developed with constraints containing 1) the PNL original 1st order models, 2) the PNL original 2nd order models, 3) the Revised PNL 1st order models, 4) the Revised PNL 2nd order models, and 5) the Neural Network/Revised PNL 2nd order electrical conductivity models. The Neural Network/Revised PNL 2nd order electrical conductivity nonlinear program is shown to minimize the total expected cost of vitrifying nuclear waste glass. This nonlinear program allows DOE to minimize its risk and cost of high-level nuclear waste vitrification.

STATISTICAL MODELING AND OPTIMIZATION OF NUCLEAR WASTE VITRIFICATION

1. INTRODUCTION

1.1 Historical Background

Vitrification is the process of turning an object into glass. For the purposes of this research, I will study the vitrification of nuclear waste.

Figure 1--General Overview of Nuclear Waste Vitrification

Figure 1 displays an overview of the waste vitrification process. One or more waste streams are placed into a joule-heated melter along with any necessary chemical additives. The melter turns the waste streams and additives into a molten glass form.

The glass form is poured into canisters, allowed to cool, and placed into long-term storage facilities.

Studies have been done for over two decades to characterize high-level nuclear waste glass. Pacific Northwest Laboratory established a program to characterize high-level nuclear waste glass in 1975 and published its first report on the subject in 1977 (2:1). These studies usually focus on how different compositions of glass will affect certain properties of the glass. Researchers are usually concerned with developing models to predict a nuclear waste glass's properties given its particular composition. The models

generally take two forms: equations determined by the theoretical physics of glass formation or empirically derived regression equations.

Once the predictor equations have been formed, no researcher to date has attempted to take advantage of these equations in optimizing the production of nuclear waste glass with respect to cost. White et. al. developed a simple linear program within a simulation of the vitrification process, but this first attempt still did not take advantage of existing property prediction models (23:35). The constraints in their model were only approximate bounds for the components of the waste glass. This study will take the obvious next step in nuclear glass cost optimization by incorporating existing and newly developed predictor models for glass properties into a nonlinear mathematical program.

1.2 Problem Statement and Scope

The goal of this research effort is to minimize the cost of vitrifying nuclear waste glass while satisfying properties such as viscosity, electrical conductivity, durability, and glass transition temperature requirements. Linear regression (linear and nonlinear) and multilayer perceptron models are used to build a region of feasible glass composition.

Nonlinear programming (NLP) is then used to search this feasible region for the optimal (lowest cost) glass composition.

The data used in this study is based on high-level nuclear waste glass (3:175-177).

Therefore, the resulting NLP models are able to reliably minimize the cost of vitrifying this type of waste only. The final presentation of the research to the Department of Energy (DOE) will include models which predict feasibility and a nonlinear optimization model minimizing cost.

1.3 Research Objectives

The following research objectives must be met to solve the proposed problem:

- 1. Data on waste vitrification must be obtained and transformed into the proper form for prediction modeling.
- 2. Statistical models must be developed to determine the effects that the chemical composition of waste glass has on the four measured properties: viscosity, electrical conductivity, and two types of durability. These model should outperform existing linear or nonlinear mixture models which include the linear regression model developed by Pacific Northwest Laboratory (PNL) (3).
- 3. The model will produce a region of glass feasibility. A mathematical optimization program will be developed to search for the minimum cost over the feasible region formed by the model.

1.4 Thesis Organization

Chapter II will review previous studies done on vitrification, neural networks, linear regression, and mathematical programming. Chapter III will discuss the methodology that will be used to solve the existing problem. Chapter IV will present the results of the application of the methodology from Chapter III. Finally, Chapter V will discuss the conclusions that can be made from the resulting research and recommend direction for future research.

II. LITERATURE SEARCH

2.1 Vitrification of Nuclear Waste

Historically, the properties studied in a vitrification project tend to depend on what agency is completing the research. The Environmental Protection Agency states that it examines four properties to determine whether a prediction of glass can be made using historical data. The four properties the EPA examines are, "organic content of the waste, concentration of specific metal ions in the waste, concentrations of compounds in the waste that interfere with the glassmaking process, and moisture content of the waste" (1:24-6).

This differs slightly from Pacific Northwest Laboratory, which from 1989 to 1994 performed another study called the Compositional Variation Study (CVS). The goals of the study as stated in Mixture Experiment Design and Property Modeling in a Multi-Year Nuclear Waste Glass Study are as follows (3:173):

- 1. Make nuclear waste glass and measure viscosity, electrical conductivity, transition temperature, and two types of durability over a wide compositional range.
- 2. Understand glass composition effects on those five properties and develop statistical models to describe the relationships.
- 3. Use the statistical models to make processable waste glass that meets product requirements.

The CVS study produced a significant amount of data on glass composition and properties. This data set will be used to form the new statistical models developed in this study. Since the CVS produced empirical models exclusively, it will also be used as a benchmark to compare the models developed in this thesis.

In 1993, Pacific Northwest Laboratory initiated a shift of focus on research from vitrifying strictly high-level nuclear waste to vitrifying mixed low-level nuclear waste.

Mixed waste represents a broadened challenge for vitrification because its composition is highly uncertain (5:v).

The Catholic University of America then established a broad program to study the vitrification of various nuclear wastes. The program was called the Minimum Additive Waste Stabilization (MAWS) demonstration and was conducted at DOE sites such as Hanford, Idaho National Engineering Laboratory, Oak Ridge National Laboratory (6), and Fernald (7). Ian Pegg, one of the primary scientists conducting the demonstration, states the MAWS system is innovative because 1) it views the waste streams as process resources and 2) the chemical properties of the waste streams are used to minimize the cost of purchasing necessary additive chemicals (7:2). A shortcoming of the MAWS technology developed by Catholic University is that the process today makes no attempt to use mathematical optimization methods.

It is important to note that the United States is not the only country concerned with nuclear waste treatment and disposal. For example, in Canada, Munz and Chen published a paper describing how they vitrified mixed and high-level waste in a continuous transferred arc plasma melter (4:32). One of the goals of their research was to study how quantities of waste components disappear as vitrification occurs.

2.2 Statistical Models

As defined by Devore, "Regression analysis is the part of statistics that deals with investigation of the relationship between two or more variables related in a nondeterministic fashion" (22:454). An advanced tool in regression analysis is multiple

linear regression. The multiple linear regression model is a good approximator for many functions because even if the true relationship between the dependent and independent variables is unknown, "over certain ranges of the regressor (independent) variables the linear regression model is an adequate approximation" (21:110).

2.2.1 <u>Multiple Linear Regression</u>. As defined by Montgomery and Peck, "Regression analysis is one of the most widely used statistical techniques for analyzing multifactor data" (20:v). One form of regression analysis is multiple linear regression. In multiple linear regression, a dependent variable (one of the four property values) is modeled as the linear sum of numerous independent variables (the mass fraction of the waste components). Thus, once a model is developed the dependent variable value can be predicted given a set of independent variable values. This type of function approximation is one of the fundamental uses of linear regression.

The multiple linear regression model takes the following form:

$$y = \beta_0 + \beta_1 x_1 + ... + \beta_n x_n + \varepsilon$$
 (21:109)

where y is the dependent variable, the x's are the independent variables, and ϵ is the random error component of the model. For this study it is important to note that "any regression model that is linear in the parameters (the β 's) is a linear regression model" (21:111). This means that a regression model can form a nonlinear surface and still be considered a linear multiple regression model. Therefore, another typical linear regression model contains two-factor interactions such as the following:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_i x_i + \beta_{12} x_{12} + \dots + \beta_{ij} x_{ij} + \varepsilon$$

where $i = 1 \dots n$, $j = 1 \dots n$, and x_{ij} is the interaction term (21:111). for x_i and x_j .

6

The method of least squares is used to estimate the parameters of most linear regression models. A full theoretical development of the estimators ($\hat{\beta}$'s) can be found in Montgomery and Peck (21:111-123). It is very important to note that the estimators are the minimum variance unbiased estimators of the β 's. This means there exists no other unbiased estimators (where $E[\hat{\beta}] = \beta$) that more closely approximate the β 's.

Once a model is developed, hypothesis testing must be conducted to determine whether a model is adequate. Two types of tests are conducted: 1) Is the regression model significant and 2) Is each model parameter significant. Test 1 indicates whether multiple linear regression, in general, is a good tool to capture the relationships between the dependent and independent variables. Test 2 gives an indication of whether particular independent variables should be included in the regression model.

The hypothesis for test 1 can be written as follows:

$$H_0: \beta_1 = \beta_2 = \dots = \beta_n = 0$$

 $H_1: \beta_j \neq 0$ for at least one j (21:128).

The hypothesis for test 2 can be written as follows:

$$H_0: \beta_j = 0$$

 $H_1: \beta_j \neq 0$ for every jth variable in the model (21:128).

As a part of its computational results, Minitab produces a very good statistic to test each of these hypotheses. The statistic is the p-value. As stated in <u>Probability and Statistics for Engineering and the Sciences</u>:

The P-value is the smallest level of significance at which H_0 would be rejected when a specified test procedure (generally the t-test statistic) is used on a given data set. Once the P-value has been determined, the conclusion at any particular level α results from comparing the P-value to α :

a. P-value $\leq \alpha \Rightarrow$ reject H_0 at level α .

b. P-value $> \alpha \Rightarrow$ do not reject H₀ at level α . (22:315).

An α of 0.05 was chosen for all hypothesis tests performed in this study.

2.2.2 <u>Neural Networks</u>. For the purposes of this research, a trained artificial neural network is a specific model of the well-known general field of nonlinear regression. Skapura defines neural networks as "a collection of simple, analog signal processors, connected through links called connections" (8:6). This research focuses on the multi-layered perceptron (MLP) model.

Choosing the number of layers, number of hidden nodes, and learning strategies for the MLP can be a very time consuming process. Steppe proposed a methodology for choosing the structure of an artificial neural network which allows a scientific selection of the proper neural network algorithm and can decrease development time (10).

2.3 Nonlinear Programming

Choosing the proper search mechanism to optimize a nonlinear program can be difficult. The feasible region is probably nonlinear and possibly nonconvex and may even be disconnected.

For this study, all nonlinear optimization is accomplished using a General Reduced Gradient (GRG) solver that implements Lasdon and Waren's GRG2 code (MS Excel) (24:WWWeb). The GRG2 is used because: 1) Himmelblau performed nonlinear optimization over a variety of problems of varying difficulty. The GRG is the only solver that could optimize all of the problem types (13:386-431); and 2) Microsoft Excel is a popular spreadsheet package that uses the GRG algorithm in its nonlinear optimization solver. This makes the GRG accessible to DOE engineers who have a familiarity with nonlinear optimization.

III. METHODOLOGY

The following chapter will discuss the methodology used to solve the research problem. The solution process can be broken into three main components: 1) Statistical Modeling, 2) Nonlinear Programming, and 3) Discussion of measures of effectiveness to compare the various models.

3.1 Statistical Modeling

Figure 2-Modeling of PNL Original and Revised Regression Equations

Sections 3.1.1 and 3.1.2 discuss PNL's original regression equations and discuss the methodology used to revise these equations.

There are four types of glass properties modeled in this section: viscosity, electrical conductivity, and two types of durability (MCC and PCT). Transition temperature will

not be modeled because although it is measured, there exists no standard range of transition temperature for a glass to be adequate. Two types of statistical tools are used to develop the four glass property models. This section of the chapter is broken into these two statistical tools: multiple linear regression and neural network modeling.

3.1.1 Pacific Northwest Laboratory Models. Piepel et al. developed baseline models for all regression analysis in this thesis (3:177-178). This paper discusses the Composition Variation Study (CVS) completed at PNL. The CVS used a general experimental design to: a) select a region of waste glass having acceptable properties and b) to investigate glasses on the exterior and interior of this region (3:173). The authors used a special form of the multiple linear regression model, the Scheffe 1st and 2nd order mixture models.

The Scheffe 1st and 2nd order mixture models have the following form: Scheffe 1st Order Mixture Model

$$y = \sum_{i=1}^{10} b_i x_i,$$

where b_i is the coefficient of the mass fraction of the ith component, x_i .

Scheffe 2nd Order Mixture Model

$$y = \sum_{i=1}^{10} b_i x_i + \sum_{i=1}^{10} \sum_{i>i}^{10} b_{ij} x_i x_j,$$

where b_{ij} is the coefficient for the interaction term $x_i x_j$.

The models differ from the regression models previously discussed in that they contain no β_0 . In addition, while they left all independent variables in the 1st order models they eliminated various two-factor interactions deemed insignificant in the 2nd order models. The data used for their analysis is found in Appendix A.

10

The four properties used in this thesis are as follows: viscosity (η), electrical conductivity (ε), and two types of durability (PCT B and MCC-1 B). The ten independent variables are: SiO2, B2O3, Na2O, Li2O, CaO, MgO, Fe2O3, Al2O3, ZrO2, and Others. These variables represent the mass fraction of each chemical found in the soil and additive mixture. The mass fraction is defined as the proportion of chemical found in the total mass of the soil and additive mixture. For example, if the total mixture is 100 kilograms and the mass of SiO2 is 50 kilograms, SiO2's mass fraction is 0.50. The Others variable represents 40 chemicals that also occur in high-level nuclear waste, but are not as significant as the nine explicitly stated above. The 10 independent input variables are further defined in Section 3.2.1. PNL found that they achieved the best results if a natural log transformation was performed on each dependent variable before regressing. The results for their models (in tabular form) are as follows:

Table 1. First and Reduced Second-Order Mixture Models for ln(Viscosity at 1150° C)

Model	1st-Order Model		2nd-Order Model	
Term	Coefficient	Standard Dev	Coefficient	Standard Dev
SiO2	8.968	0.237	10.987	0.254
B2O3	-6.204	0.442	-6.165	0.467
Na2O	-11.017	0.479	-26.388	2.480
Li2O	-34.239	1.069	-75.868	4.409
CaO	-7.466	0.791	-5.572	0.566
MgO	-2.776	0.874	-3.233	1.649
Fe2O3	-0.037	0.620	0.148	0.962
A12O3	11.306	0.569	14.491	0.503
ZrO2	7.434	0.687	10.145	0.538
Others	-0.156	0.762	-2.119	0.981
B2O3 x Fe2O3			30.098	7.148
Na2O x Li2O			126.749	16.609
Na2O x MgO			29.875	12.028
Li2O x Others			78.943	20.439
MgO x Fe2O3			-39.527	13.508
Na2O x Na2O			43.574	8.890
Li2O x Li2O			296.59	41.326
R2	0.939		0.975	
R2(ADJ)	0.934		0.971	

Table 2. First and Reduced Second Order Mixture Models for ln(Elect Cond at 1150° C)

Model	1st-Order Model		2nd-Order Model	
Term	Coefficient	Standard Dev	Coefficient	Standard Dev
SiO2	0.847	0.150	0.303	0.154
B2O3	2.252	0.275	1.878	0.293
Na2O	11.040	0.307	14.543	0.419
Li2O	23.536	0.676	31.634	1.183
CaO	1.413	0.494	-0.223	0.535
MgO	1.056	0.547	0.720	0.453
Fe2O3	2.586	0.388	0.771	0.557
Al2O3	1.311	0.355	1.104	0.272
ZrO2	1.122	0.433	-0.329	0.579
Others	3.453	0.477	-5.287	2.626
Na2O x Li2O			-84.820	9.244
CaO x Fe2O3			28.333	7.013
B2O3 x Fe2O3			12.012	4.337
MgO x ZrO2			25.753	9.164
SiO2 x Others			17.260	5.403
Li2O x ZrO2			32.044	10.168
R2	0.931		0.973	
R2(ADJ)	0.926		0.969	

Table 3. First and Reduced Second Order Mixture Models for ln(PCT B)

Model	1st-Order Model		2nd-Order Model	
Term	Coefficient	Standard Dev	Coefficient	Standard Dev
SiO2	-4.303	0.568	-5.180	0.619
B2O3	11.831	1.101	13.811	1.139
Na2O	17.826	1.182	20.851	1.192
Li2O	22.970	2.665	23.454	2.188
CaO	-9.046	2.015	14.111	5.562
MgO	10.582	2.216	-36.638	14.982
Fe2O3	-3.101	1.554	-1.942	1.341
Al2O3	-25.443	1.395	-44.502	3.184
ZrO2	-10.630	1.773	-10.589	1.523
Others	0.164	1,919	2.771	1.616
SiO2 x MgO			97.566	30.293
B2O3 x CaO			-90.152	29.714
Na2O x CaO			-121.921	34.365
A12O3 x A12O3			126.554	17.688
R2	0.818		0.886	
R2(ADJ)	0.806		0.875	

Table 4. First and Reduced Second Order Mixture Models for ln(MCC-1 B)

Model	1st-Order Model		2nd-Order Model	
Term	Coefficient	Standard Dev	Coefficient	Standard Dev
SiO2	-0.223	0.395	-1.119	0.425
B2O3	10.039	0.747	15.430	0.985
Na2O	10.139	0.766	10.698	0.649
Li2O	12.067	1.719	13.124	1.392
CaO	3.481	1.258	-24.717	7.633
MgO	4.987	1.514	7.129	1.250
Fe2O3	5.809	1.116	6.122	0.981
A12O3	-6.614	1.014	-12.546	2.406
ZrO2	-0.963	1.238	-1.820	1.065
Others	3.484	1.336	4.513	1.147
SiO2 x CaO			58.519	15.843
B2O3 x Al2O3			-70.216	12.270
Al2O3 x Al2O3			83.074	12.393
R2	0.675		0.794	
R2(ADJ)	0.652		0.774	

Notice the two statistics at the bottom of each row. R^2 , the coefficient of multiple determination, is defined as, "A measure of the reduction in the variability of y obtained by using the regressor variables $x_1, x_2, ..., x_n$ " (21:146). It takes on values between 0 and 1. Unfortunately, a large R^2 does not mean that the regression is a good fit. Extra factors will always increase the value of R^2 . Because of this problem, the adjusted coefficient of multiple determination, R^2_{adj} , is often used instead to evaluate the overall regression. The adjusted coefficient of multiple determination is defined as follows:

$$\overline{R}_{adj}^2 = 1 - \left(\frac{n-1}{n-p}\right)(1 - R_p^2)$$
 (21:251).

The R_{adj}^2 does not necessarily increase as you add independent variables to the model. Therefore, it will produce a better evaluation of each model.

As shown in Tables 1-4, the R_{adj}^2 shows that the models for viscosity, electrical conductivity, and PCT B are all very good. Further examination of the coefficients of each model indicates that there still may be extraneous waste components in each model.

Take the shaded area in Table 1 for example. In the first order model, the coefficient for the Fe2O3 term is -0.037 while its standard deviation is 0.620. A statistical test may prove that the coefficient for the term is in fact, statistically equal to 0. This would lead to dropping the Fe2O3 term from the model.

This type of examination can be made on each model and motivates section 3.1.2 of this thesis.

3.1.2 Revised Multiple Linear Regression Models. As stated before, visual examination of each coefficient in the PNL models motivates a possible streamlining of each by eliminating excess variables. This is important because extraneous variables could skew the feasible region, and hence the results of the ensuing nonlinear program that uses the regression models.

The models were reduced using the stepwise regression, backward elimination method:

- 1. Regress using the general multiple linear regression models.
- 2. Conduct hypothesis tests 1 and 2 (from Section 2.2.1) on the model. If all tests do not reject H_0 , stop.
- 3. After eliminating extraneous variables, regress over the new set of waste component variables. Return to step 2.

The models resulting from the stepwise regression are found in Sections 4.1.1.2 and 4.1.3 of Chapter 4.

3.1.3 Neural Network Modeling, the Multi-Layer Perceptron.

Figure 3--Modeling of Neural Networks

As seen in section 3.1.1, the second order regression models of PNL seemed to fit the data the best. There are many reasons to investigate using a multi-layer perceptron (MLP) instead of 2nd order linear regression to model the data.

First, the Pacific Northwest Laboratory's (PNL) study showed that regression equations with second order terms always modeled glass properties better than regression equations with only linear terms (3:177-78). This indicates that the feasible glass composition region is probably nonlinear. The feasible region will be developed with a MLP because it can form nonlinear decision surfaces (9:214).

Second, the underlying population distributions for the four measured glass properties are unknown. A MLP is a nonparametric tool, and does not make the strong assumptions

concerning underlying distributions that are typical of linear regression models. As Lippmann states, "They may thus prove to be more robust when distributions are generated by nonlinear processes and are strongly non-Gaussian" (12:4). The added robustness may allow the MLP to outperform the nonlinear mixture model that has been previously developed by PNL.

Third, there exists no *a priori* knowledge of the shape of the nonlinear feasible composition region. The MLP will provide a means to take data, adapt or learn from it, and build the nonlinear region.

Finally, the major reason for using an MLP is to increase the performance (data fitting) of the model. If a previous regression model had a very high R_{adj}^2 value, there would be little motivation to use a more complex MLP to model the property.

There are four major concerns in developing a MLP: 1) determining how to present the data to the input layer, 2) determining what kind of network structure is optimal, 3) determining what learning algorithm to use, and 4) determining how to represent the output.

For the three modeled properties, the network is developed in the software package SNNAP (Statistical Neural Network Analysis Package) (26). SNNAP provides a proprietary expert system that suggests a network architecture to use given a particular set of data. This expert system suggested the following structure for each property:

1. All input data is standardized. This means the actual standardized input x to node i is:

$$x_i = \frac{(x_{oi} - \overline{x}_o)}{s_o}$$

where x_{oi} is the original input x_i ,

 $\overline{\boldsymbol{x}}_{\boldsymbol{O}}$ is the mean of all the original input values,

 s_0 is the standard deviation of the original input values.

2. The MLP's is structured as follows:

Figure 4. Structure of the Neural Network Models

The hidden layer actually has 36 nodes because it has a bias node with a permanent output (activation) of 1. The hidden layer is fully connected to the input layer with weights w_{ij}^1 and the output layer is fully connected with the hidden layer with weights w_{jk}^2 .

- 3. The backpropagation algorithm with momentum is used for training the networks Skapura (8:31-32). A momentum term has been added to the algorithm which Skapura did not include:
- a) Select the first training vector pair from the set of training vector pairs. Call this the vector pair (\mathbf{x},\mathbf{y}) .
 - b) Use the input vector, \mathbf{x} , as the output from the input layer of processing elements.
 - c) Compute the activation to each unit on the subsequent layer as follows:

$$net_i(t) = \sum_{j=1}^n w_{ij}(t)o_j(t)$$

where $net_i(t)$ is the net input signal to the ith unit in the network, $o_j(t)$ represents the output from the jth unit in the network, the term $w_{ij}(t)$ represents the weight of the connection between the jth and ith unit, and the value n represents the number of other units connected to the input of the ith unit.

d) Apply the appropriate activation function, f(net^h) and f(net^o), to the hidden layer and output layer. For this study, these are defined as follows:

$$f(net_i^h(t)) = \frac{1}{1 + e^{-net_i^h(t)}}$$
$$f(net_i^o(t)) = net_i^o(t)$$

- e) Repeat steps c and d for each layer in the network.
- f) Compute the error, δ_{p1}^o , for this pattern p for the one output layer unit by using the formula:

$$\delta_{p1}^o = (y_1 - o_1) f'(net_1^o(t)).$$

$$f(net_i^o(t)) = net_i^o(t), \ f'(net_1^o(t)) = \frac{\partial net_1^o(t)}{\partial net_1^o(t)} = 1,$$
Therefore, $\delta_{p1}^o = (y_1 - o_1).$

g) Compute the error, δ_{nj}^h , for all J = 35 hidden layer units using the recursive formula:

$$\begin{split} \delta^h_{pj} &= f'(net^h_j(t)) \delta^o_{p1} w_{1j}, \text{ where } f'(net^h_j(t)) = net^h_j(t) (1-net^h_j(t)). \end{split}$$
 Therefore,
$$\delta^h_{pj} &= net^h_j(t) (1-net^h_j(t)) (y_1-o_1) w_{1j}.$$

h) Update the weights to the hidden layer by using the equation:

$$w_{ji}(t+1) = w_{ji}(t) + \eta \delta^h_{pj} x_i + \alpha (w_{ji}(t) - w_{ji}(t-1)),$$

where η is a small value called the learning rate and α is a value between 0 and 1 called the rate of momentum

i) Update the weight values to the output layer by using the equation:

$$w_{1j}(t+1) = w_{1j}(t) + \eta \delta_{p1}^{o} f(net_{j}^{h}) + \alpha(w_{1j}(t) - w_{1j}(t-1))$$

- j) Repeat steps b through I for all (x,y) in the training set. Call this one training epoch.
- k) Repeat steps a-j for as many epochs as it takes to reach the desired sum-squared error value. The sum-squared error calculation is as follows:

$$SSE = \sum_{p=1}^{P} (\delta_{p1})^2$$

The training is stopped when SSE(t+1) - SSE(t) < 0.001.

- 4) As was the case in the multiple regression models, the neural networks were trained to output the natural logarithms of the three modeled properties.
- 3.1.4 <u>Training and Validation Sets</u>. PNL originally used all the data to develop the regression models. The MLP requires the data to be separated into training and validation sets so the network can be checked for proper generalization (lack of

memorization of input data). Comparing the MLP using half the data for training and a regression model using all the data for training would handicap the MLP. Therefore, all the statistical modeling is completed first on identical training and validation sets (Appendix B). Notice the data set for electrical conductivity was not divided. This is because no MLP was developed for this property, hence the data could stay intact to compare regression models to each other.

Finally, the original undivided data sets are used to compose final PNL regression models, Revised regression models, and MLP models. These "best" models will form the constraints used in the nonlinear optimization program. The final PNL regression models are found in Section 3.1.1, the final Revised regression models are found in Section 4.1.3, and the final MLP models are found in Appendix K. The MLP models are represented by the final weights of their hidden and output layers.

3.2 Nonlinear Programming

This section discusses the nonlinear programs developed to minimize vitrification cost.

Figure 5--Developing the Nonlinear Programs

As defined by Himmelblau, "The general nonlinear problem is to find an extremum of an objective function subject to equality and/or inequality constraints. The constraints can be linear and/or nonlinear" (13:14). The following section discusses the development of the nonlinear program used to optimize the vitrification process.

3.2.1 <u>General Form of Nonlinear Program and GRG Algorithm</u>. The general nonlinear program is stated in the form that Lasdon and Waren's Generalized Reduced Gradient (GRG2) algorithm requires.

GRG2 requires nonlinear programs (NLP) to be placed in the following form:

Let

```
g_{m+1}(X(i)) = 	ext{the objective function},
neq = 	ext{the number of equality constraints},
m - (neq + 1) = 	ext{the number of inequality constraints},
ub(n+i) = 	ext{the upper bound of the inequality constraints},
lb(i) = 	ext{the lower bound of the } X(i) 	ext{ variables}, 	ext{ and }
ub(i) = 	ext{the upper bound of the } X(i) 	ext{ variables}.
\min g_{m+1}(X(i)) 	ext{ subject to } g_i(X(i)) = 0, \ i = 1, ..., neq
```

As stated in Chapter 2, the Excel Solver uses Lasdon and Waren's GRG2 code to optimize general NLP. The following is a brief stepwise outline of how the GRG2 conducts its optimization. The full theoretical development is found in, "Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming," written by Lasdon et al. (25).

 $0 \le g_i(X(i)) \le ub(n+i), i = neq + 1,...,m$

 $lb(i) \le X(i) \le ub(i), i = 1,...,n$

1. The user places the NLP in the form found in Section 3.2.1.

- 2. GRG2 adds slack variables to all inequality constraints and transforms them into equality constraints. This allows the inequalities to be represented by a system of equations that can later be solved.
- 3. GRG2 assumes nb of the original constraints in Section 3.2.1 are binding. It then uses these binding constraints to solve for nb basic variables. Basic variables are those variables whose values depend on other variables in the problem (13:275). The algorithm chooses the nb original constraints that make this system of equations solution process computationally efficient. The basic variables are now stated in terms of the n nb remaining nonbasic variables (i.e. $x_1 = x_2 + x_3 x_4$). The nonbasic variables are those variables whose values are independent of any other variable in the problem (13:275).
- 4. Now there is a set of basic variables (y) and a set of nonbasic variables (x). The binding constraints are now: g(y,x) = 0.
- 5. Since the y are solved in terms of x, the original objective function can be written as a function of x, F(x). This F(x) is called the reduced objective function. The problem can now be stated as follows:

minimize F(x)

subject to $1 \le x \le u$, where 1 and u are the upper and lower bounds of the nonbasic variables.

The following example shows this process (13:287).

$$\min g_{m+1}(x) = 4x_1 - x_2^2 - 12$$
s.t.
$$25 - x_1^2 - x_2^2 = 0$$

$$10x_1 - x_1^2 + 10x_2 - x_2^2 - 34 \ge 0$$

$$x_1 \ge 0, x_2 \ge 0$$

Take an initial starting point of $x_1=2$ and $x_2=4$. This point violates the equality constraint. Therefore, an artificial variable, x_3 , is added to the equality constraint. A slack variable, x_4 , is also subtracted from the inequality constraint. The problem is restated:

$$\min g_{m+1}(x) = 4x_1 - x_2^2 - 12 - 10^5 x_3$$
s.t.
$$25 - x_1^2 - x_2^2 + x_3 = 0$$

$$10x_1 - x_1^2 + 10x_2 - x_2^2 - 34 - x_4 \ge 0$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

$$-10^{10} \le x_3 \le 0$$

$$0 \le x_4 \le 10^{10}$$

Now, x_3 and x_4 are solved in terms of x_1 and x_2 . Therefore, x_3 and x_4 are the basic variables and x_1 and x_2 are the nonbasic variables.

$$x_3 = x_1^2 + x_2^2 - 25$$

 $x_4 = 10x_1 - x_1^2 + 10x_2 - x_2^2 - 34.$

Now F(x) is formed and the problem restated in terms of the nonbasic variables.

$$\min F(x) = 4x_1 - x_2^2 - 12 - 10^5 (x_1^2 + x_2^2 - 25)$$
s.t. $x_1 \ge 0, x_2 \ge 0$

6. GRG then performs a one-dimensional search of F(x) using its gradient, $\nabla F(x)$, and Newton's Method. Newton's Method is an algorithm that uses second derivative information to solve an unconstrained nonlinear program (13:73). The GRG algorithm attempts to return to the feasible area at each step in the one-dimensional search. It does so by completing Newton Method iterations each time a basic variable is infeasible. As

F(x) is searched the values of the basic variables, y, are found (25:34-37). The GRG is stopped when $g_{m+1}(X^{k+1}(i)) - g_{m+1}(X^k(i)) \le \varepsilon$, where ε is a user defined value.

3.2.2 <u>Nonlinear Program</u>. For this study, there are no equality constraints. The NLP are special forms of the general NLP (Section 3.2.1) because all the objective functions are linear. The NLP for this study take the following form:

minimize 0.0497*SIO2A + 0.0435*B2O3A + 0.3392*NA2OA + 1.378*LI2OA + 0.02998*CAOA + 0.0473*MGOA + 0.01608*NA2CO3A + 0.01868*H3BO3A + 0.01002*BORAX

subject to $2 \le VISC \le 10$ $10 \le ELEC \le 100$ $PCT \le 8.2$ $MCC \le 28$ all variables ≥ 0

The VISC, ELEC, PCT, and MCC models are found in Sections 3.1.1, 4.1.3, and Appendix K as stated previously.

The objective function consists of the 8 additives that can be added to the waste to produce "good" glass. The cost coefficients for the additives come from Aldrich Chemical Company's catalog of chemicals (26). The bounds on each property are needed for the following reasons:

- 1. If the viscosity of the vitrification mixture is lower than 2 Pa-s, then the mixture seeps into the bricks of the joule heater and corrodes the melter walls. If viscosity is greater than 10 Pa-s, then the mixture has a slow melting rate and is difficult to pour.
- 2. If electrical conductivity is less than 10 S/m, then the melter has start-up difficulties. If the electrical conductivity is higher than 100 S/m, then the current required to heat the glass exceeds the recommended maximum density for the melter electrodes.

3. If PCT is $> 8.2 \text{ g/m}^2$ or MCC-1 B is greater than 28 g/m^2 , then the glass has too high a dissolution rate and releases boron into the environment.

The constraints are the various statistical models developed in section 3.1. Five different NLPs are developed using various sets of constraints as follows:

- 1) Constraints consist of PNL 1st order models (Tables 1-4).
- 2) Constraints consist of PNL 2nd order models (Tables 1-4).
- 3) Constraints consist of Revised 1st order models (Tables 14-17).
- 4) Constraints consist of Revised 2nd order models (Tables 14-17).
- 5) Constraints consist of three neural network models and Revised 2nd order electrical conductivity model (Appendix K and Table 15). Each of these five sets contain models for each type of glass property. Each property has to stay within certain bounds in order to make good glass. PNL produced bounds for the constraints (11:3.2). Therefore, any of the five sets of models is considered a "constraint" because they define the area of suitable glass production.

The statistical models require mass fractions of the components. These mass fractions are defined in the following equations:

- 1. TOTAL = total of initial mass of components plus all additives.
- 2. $SiO_2 = (SiO_2I + SiO_2A)/TOTAL$ (SiO₂I means initial mass of SiO₂I)
- 3. $B_2O_3 = (B_2O_3I + 2*BORAX + 0.5*H_3BO_3)/TOTAL$
- 4. $Na_2O = (Na_2OI + BORAX + Na_2CO_3)/TOTAL$
- 5. $Li_2O = (Li_2OI + Li_2OA)/TOTAL$
- 6. CaO = (CaOI+CaOA)/TOTAL

- 7. MgO = (MgOI + MgOA)/TOTAL
- 8. $Fe_2O_3 = (Fe_2O_3I)/TOTAL$
- 9. $Al_2O_3 = (Al_2O_3I)/TOTAL$
- 10. $ZrO_2 = (ZrO_2I)/TOTAL$
- 11. OTHERS = (OTHERSI)/TOTAL.

Finally, all mass fraction components are standardized as discussed earlier for input to the neural network models.

Given these mass fractions, the nonlinear programs are stated as follows:

1) Constraints with PNL 1st order models:

subject to
$$\mathbf{2} \le 8.968SiO_2 - 6.204B_2O_3 - 11.017Na_2O - 34.239Li_2O - 7.466CaO - 2.776MgO$$

 $-0.037Fe_2O_3 + 11.306Al_2O_3 + 7.434ZrO_2 - 0.156Others \le \mathbf{10}$
 $\mathbf{10} \le 0.847SiO_2 + 2.252B_2O_3 + 11.040Na_2O + 23.536Li_2O + 1.413CaO$
 $+1.056MgO + 2.586Fe_2O_3 + 1.311Al_2O_3 + 1.122ZrO_2 + 3.453Others \le \mathbf{100}$
 $-4.303SiO_2 + 11.831B_2O_3 + 17.826Na_2O + 22.970Li_2O - 9.046CaO + 10.582MgO$
 $-3.101Fe_2O_3 - 25.443Al_2O_3 - 10.630ZrO_2 + 0.164Others \le \mathbf{8.2}$
 $-0.223SiO_2 + 10.039B_2O_3 + 10.139Na_2O + 12.067Li_2O + 3.481CaO + 4.987MgO$
 $+5.809Fe_2O_3 - 6.614Al_2O_3 - 0.963ZrO_2 + 3.484Others \le \mathbf{28}$
 $SiO_2 + B_2O_3 + Na_2O + Li_2O + CaO + MgO + Fe_2O_3 + Al_2O_3 + ZrO_2 + Others = 1$
all variables ≥ 0

2) Constraints with PNL 2nd order models:

```
0.02998*CAOA + 0.0473*MGOA + 0.01608*NA2CO3A +
   0.01868*H3BO3A + 0.01002*BORAX
 2 \le 10.987 SiO_2 - 6.165 B_2 O_3 - 26.388 Na_2 O - 75.868 Li_2 O - 5.572 CaO - 3.233 MgO
  0.148Fe_2O_3 + 14.491Al_2O_3 + 10.145ZrO_2 - 2.119Others + 30.098B_2O_3 * Fe_2O_3
   +126.749 Na_2 O*Li_2 O+29.875 Na_2 O*Mg O+78.943 Li_2 O*Others
-39.527 MgO*Fe_2O_3 + 43.574 Na_2O*Na_2O + 296.59 Li_2O*Li_2O*10
\mathbf{10} \leq 0.303 SiO_2 + 1.878 B_2 O_3 + 14.543 Na_2 O + 31.634 Li_2 O - 0.223 CaO
      +0.720MgO + 0.771Fe_2O_3 + 1.104Al_2O_3 - 0.329ZrO_2 - 5.287Others
   -84.820Na_2O*Li_2O+28.333CaO*Fe_2O_3+12.012B_2O_3*Fe_2O_3
       +25.753MgO*ZrO_2+17.260SiO_2*Others+32.044Li_2O*ZrO_2 \le 100
       -5.180SiO_2 + 13.811B_2O_3 + 20.851Na_2O + 23.454Li_2O + 14.111CaO - 36.638MgO
      -1.942Fe_2O_3 - 44.502Al_2O_3 - 10.589ZrO_2 + 2.771Others + 97.566SiO_2 * MgO_3 + 10.589ZrO_2 + 2.771Others + 97.566SiO_2 * MgO_3 + 10.589ZrO_3 + 10.589Zr
       -90.152B_2O_3*CaO-121.921Na_2O*CaO-126.554Al_2O_3*Al_2O_3 \le 8.2
       -1.119 SiO_2 + 15.430 B_2 O_3 + 10.698 Na_2 O + 13.124 Li_2 O - 24.717 CaO + 7.129 MgO + 10.698 Na_2 O_3 + 10.698 Na_2
       +6.122 Fe_2 O_3 - 12.546 Al_2 O_3 - 1.820 Zr O_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 4.513 Others + 58.519 Si O_2 * CaO_2 + 6.510 Si O_2 + 6.510 S
       -70.216B_2O_3 * Al_2O_3 + 83.074Al_2O_3 * Al_2O_3 \le 28
           SiO_2 + B_2O_3 + Na_2O + Li_2O + CaO + MgO + Fe_2O_3 + Al_2O_3 + ZrO_2 + Others = 1
```

minimize 0.0497*SIO2A + 0.0435*B2O3A + 0.3392*NA2OA + 1.378*LI2OA +

3) Constraints consisting of Revised 1st Order models:

all variables ≥ 0

```
minimize 0.0497*SIO2A + 0.0435*B2O3A + 0.3392*NA2OA + 1.378*LI2OA + 0.02998*CAOA + 0.0473*MGOA + 0.01608*NA2CO3A + 0.01868*H3BO3A + 0.01002*BORAX
\mathbf{2} \leq 8.9657SiO_2 - 6.2113B_2O_3 - 11.034Na_2O - 34.290Li_2O - 7.5308CaO - 2.8496MgO + 11.3224Al_2O_3 + 7.5083ZrO_2 \leq \mathbf{10}
\mathbf{10} \leq 2.2587 - 1.3724SiO_2 + 8.8420Na_2O + 21.6596Li_2O - 1.2081Al_2O_3 - 1.2968ZrO_2 \leq \mathbf{100}
-3.6659 + 15.3460B_2O_3 + 21.330Na_2O + 26.5710Li_2O - 5.8900CaO + 13.7370MgO - 22.5100Al_2O_3 - 7.4900ZrO_2 \leq \mathbf{8.2}
4.6375 - 4.7862SiO_2 + 5.2860B_2O_3 + 5.4920Na_2O + 7.360Li_2O - 11.5936Al_2O_3 - 5.7810ZrO_2 \leq \mathbf{28}
SiO_2 + B_2O_3 + Na_2O + Li_2O + CaO + MgO + Fe_2O_3 + Al_2O_3 + ZrO_2 + Other = 1
all variables \geq 0
```

4) Constraints consisting of Revised 2nd Order models:

```
minimize 0.0497*SIO2A + 0.0435*B2O3A + 0.3392*NA2OA + 1.378*LI2OA +
                                              0.02998*CAOA + 0.0473*MGOA + 0.01608*NA2CO3A +
                                              0.01868*H3BO3A + 0.01002*BORAX
                                               2 \le 10.7967 SiO_2 - 6.4873 B_2 O_3 - 25.8010 Na_2 O - 73.996 Li_2 O - 5.7882 CaO
                                                 +14.3699Al_2O_3 + 10.1045ZrO_2 + 29.9500B_2O_3 * Fe_2O_3 + 120.9600Na_2O * Li_2O_3 + 120.9600N
                                                 +44.0600 Li_2O*Others-39.8930 MgO*Fe_2O_3+44.0760 Na_2O*Na_2O
                                                 +297.2500Li_2O*Li_2O\leq 10
                                            \mathbf{10} \le 0.38257 + 1.13355B_2O_3 + 14.5157Na_2O + 33.4372Li_2O
                                              -94.390Na_2O*Li_2O+16.3778CaO*Fe_2O_3+14.2337B_2O_3*Fe_2O_3
                                               +27.9140 \, MgO*ZrO_2 + 5.5687 SiO_2*Others + 0.099976 Li_2O*ZrO_2 \leq \textbf{100}
                                              -5.2717SiO_2 + 13.909B_2O_3 + 20.890Na_2O + 23.992Li_2O + 13.251CaO - 37.540MgO
                                               -43.629 Al_2O_3 - 10.362 ZrO_2 + 98.980 SiO_2 * MgO - 87.110 B_2O_3 * CaO
                                                 -120.720Na_2O*CaO-123.090Al_2O_3*Al_2O_3 \le 8.2
                                              6.0779 - 7.301 \\ \mathrm{S}iO_2 + 9.199 \\ B_2O_3 + 4.5813 \\ Na_2O + 6.8850 \\ Li_2O - 32.432 \\ CaO_3 + 4.5813 \\ Na_2O_3 + 6.8850 \\ Li_2O_3 + 6.8850 \\ L
                                                 -18.397 Al_2O_3 - 7.605 ZrO_2 + 61.820 SiO_2 * CaO
                                                 -68.220B_2O_3*Al_2O_3+82.200Al_2O_3*Al_2O_3 \le 28
                                                 SiO_2 + B_2O_3 + Na_2O + Li_2O + CaO + MgO + Fe_2O_3 + Al_2O_3 + ZrO_2 + Others = 1
                                                 all variables \geq 0
```

5) Constraints consisting of Neural Networks and Revised 2nd Order ELEC model:

2 ≤ VISC calculated using weights of MLP from Appendix K ≤ 10
10 ≤
$$0.38257 + 1.13355B_2O_3 + 14.5157Na_2O + 33.4372Li_2O$$

 $-94.390Na_2O*Li_2O + 16.3778CaO*Fe_2O_3 + 14.2337B_2O_3*Fe_2O_3$
 $+27.9140MgO*ZrO_2 + 5.5687SiO_2*Others + 0.099976Li_2O*ZrO_2 ≤ 100$
PCT B calculated using weights of MLP from Appendix K ≤ 8.2
MCC - 1 B calculated using weights of MLP from Appendix K ≤ 28
 $SiO_2 + B_2O_3 + Na_2O + Li_2O + CaO + MgO + Fe_2O_3 + Al_2O_3 + ZrO_2 + Others = 1$
all variables ≥ 0

3.2.3 Excel Form of Nonlinear Program. The NLP discussed in Section 3.2.1 takes the following tabular form in Excel. Table 5 is an example of the spreadsheet a

DOE engineer examines after mathematical optimization. The top block of the spreadsheet represents the initial mass of each waste component. The 2^{nd} block shows the value of the additives added to the waste. For example, SIO2A = 8.106138 means that 8.1068138 kg of SiO₂ should be added to the waste stream before placing it into the melter. The 3^{rd} block shows the costs/kg of the additives in the 2^{nd} block. The 4^{th} block shows the final mass fraction values of the 10 glass components. The bottom block shows the cost of the additives and the values of each glass property. An example of Excel code is given for the neural network NLP in Appendix K.

Table 5. MicroSoft Excel NLP Form

SIO2I	B2O3I	NA2OI	LI2OI	CAOI	MGOI	FE2O3I	AL2O3I	ZRO2I	OTHERSI
48.95	11.12	16.71	4.28	1.13	1.66	8.97	3.67	0.41	3.1
SIO2A	B2O3A	NA2OA	LI2OA	CAOA	MGOA	NA2CO3A	Н3ВОЗА	BORAX	TOTAL
8.106138	0	0	0	3.5985412	0	0	0	0	111.70468
C1	C2	C3	C4	C5	C6	C7	C8	C9	
0.0497	0.0435	0.3392	1.378	0.02998	0.0473	0.01608	0.01868	0.01002	
SIO2	B2O3	NA2O	LI2O	CAO	MGO	FE2O3	AL2O3	ZRO2	OTHERS
0.5108	0.0995	0.1496	0.0383	0.0423	0.0149	0.0803	0.0329	0.0037	0.0407
OBJ FN		ELEC	LNVISC	VISC	LNPCT	PCT	LNMCC	MCC	
0.510759		40.213295	0.7027243	2.0192463	1.4267913	4.1653127	3.3322045	28	

3.3 Comparing the Models

Comparison of the various NLPs requires development of three types of measure of performance (MOP). The first two types of MOP address the statistical models themselves, while the third type of MOP addresses the final NLP models.

 $3.3.1 \ \underline{Statistical\ MOP}. \ The\ coefficient\ of\ multiple\ determination,\ R^2\ ,\ statistic$ and three types of probability MOP are used to compare the various statistical models. Calculations for the validation sets' R^2 are found in Appendix I.

The coefficient of multiple determination is used to compare statistical models for the following reasons:

- 1. The results found in Appendices C-F show that R^2 and adjusted R^2 are very close values. Therefore, it is reasonable to use R^2 itself and not its adjusted value.
- 2. R^2 represents the percentage of uncertainty in the model that can be tied to the regression itself. It is calculated as 1 SSE/SST. SSE is defined as $\sum_i (y_i \hat{y}_i)^2$, where y_i is the actual dependent data value and \hat{y}_i is the dependent data value predicted by the regression model. SST is defined as $\sum_i (y_i \overline{y}_i)^2$, the "total variation defined by the regression model" (22:531). Low values tell the modeler that the uncertainty is occurring because of reasons other than the method of least squares, i.e. the dependent and independent variables have no linear relationship. Therefore, the scientist can look at the statistic and determine whether the linear regression model is suitable.
- 3.3.2 <u>Probability MOPs</u>. Three types of probabilities are used to compare the statistical models. All the probabilities are calculated by using the tables in Appendix J. The first is the probability of correctly classifying the vitrified waste as glass or not glass, P(correct classify). There are 113 glasses in the total database that have all four property values measured. Each set of glass inputs is tested to see if each individual predicted property value falls within its feasible bounds. If any property is infeasible, the glass is classified as "not glass". This is then compared to the actual glass classification to determine proper classification.

If the inputs are misclassified, two errors can occur. These two types of errors drive the use of the final two probability MOP. The first type of error is predicting that vitrifying the inputs will not produce glass (without additives) when the vitrified inputs actually did produce glass, P(pred not glass|glass). This will cause the NLP to tell DOE to add unnecessary chemicals to the waste stream. The second type of error is predicting that vitrifying the inputs will produce glass (without additives) when the vitrified inputs actually did not produce glass, P(pred glass|not glass). This will cause DOE to run the joule heaters without adding any chemicals, and adequate glass will not result. This is the worst type of error because the operation is run for an unuseful day, hence wasting money. Chemicals will have to be added on a second day and the process re-run. The ideal statistical model has a high P(correct classify) and P(pred not glass|glass) >> P(pred glass|not glass).

3.3.3 <u>NLP MOP</u>. Since the objective of the NLP is to minimize cost, the obvious choice for MOP is some type of cost. Therefore, expected cost is the MOP for the NLP.

Expected total cost of vitrification is defined as follows:

 $E(Total\ Cost) = (Expected\ Cost\ of\ Additives + Fixed\ Cost\ of\ Running\ Plant)*E(X),$ where $X = number\ of\ times\ the\ waste\ stream\ is\ vitrified\ before\ a\ successful\ glass\ is\ made.$

After the NLP is solved, the model predicts that the final glass components make "good" glass. The one error that occurs "post-optimization" is predicting glass when the final mass fraction components do not make glass.

The distribution of X, the number of trials before the first success in a sequence of independent Bernoulli trials of probability p (probability of success on each trial), is geometric. X has the following probability distribution function:

Let p = the probability of predicting glass given that the final components do make glass.

$$p(x) = \begin{cases} (1-p)^{x-1} p & x = 1,2,3,... \\ 0 & \text{otherwise} \end{cases}$$
 (22:88)

The expected value of X, E(X), is 1/p(22:96).

Therefore, expected total cost is now calculated as follows:

 $E(Total\ Cost) = (Expected\ Cost\ of\ Additives + Fixed\ Cost\ of\ Running\ Plant)*(1/p).$

Note that Expected Cost of Additives = f(P(pred not glass|glass)). The probability is wrapped up in the Expected Cost of Additives (ECOA) because the error simply causes unnecessary chemicals to be added to the waste. Those additives are used in calculating ECOA. A small P(pred not glass|glass) will yield a smaller value for ECOA.

The ideal situation occurs when an NLP produces the smallest ECOA and E(X). The worst case occurs when the NLP produces the largest ECOA and E(X). Using this model, DOE would have the highest percentage of reprocessing, and when it added chemicals it would do so at the highest average cost. To choose the NLP that has the best E(Total Cost), both ECOA and E(X) have to be examined simultaneously.

IV. RESULTS

4.1 Statistical Modeling Results

The following section presents the results from the statistical modeling efforts of this study.

Figure 6--Results of Statistical Modeling

- 4.1.1 <u>Modeling of Training Sets</u>. As discussed in Section 3.1.3, the original PNL and Revised PNL regression equations are developed for each data set used to train the neural networks. This allows a fair comparison of all the regression equations and the neural networks.
- 4.1.1.1 <u>Regression on Training Sets Using PNL Models</u>. This section contains the results of using the original PNL models to regress on the training sets.

 These models are then revised using stepwise regression (Section 4.1.1.2). Notice that

there is no training set regression for electrical conductivity. This is because a stepwise regression completed on all data points produces a revised PNL electrical conductivity model with an R² of 99.9%. A neural network cannot beat this performance, therefore no multi-layer perceptron is developed for electrical conductivity.

Table 6. PNL First and Second Order Models for Viscosity Training Set

Model	1st-Ord	er Model	2nd-Ord	ler Model
Term	Coefficient	Standard Dev	Coefficient	Standard Dev
SiO2	8.8121	0.2691	10.6283	0.2531
B2O3	-6.1954	0.4463	-6.2945	0.3814
Na2O	-10.8000	0.6253	-24.819	2.5750
Li2O	-34.5030	1.248	-77.478	4.5230
CaO	-6.3084	0.8096	-5.0912	0.4546
MgO	-1.9434	0.8768	-2.180	1.3350
Fe2O3	0.0609	0.6224	0.6936	0.7788
A12O3	11.1117	0.6904	14.1206	0.4768
ZrO2	7.8691	0.7163	10.4672	0.4805
Others	-0.7670	0.7553	-2.7285	0.7210
B2O3 x Fe2O3			29.1740	5.1780
Na2O x Li2O			122.5600	19.9700
Na2O x MgO			22.6210	8.9400
Li2O x Others			88.5700	17.4400
MgO x Fe2O3			-44.7200	10.4800
Na2O x Na2O			42.4980	9.0430
Li2O x Li2O			339.7500	40.8000

Table 7. PNL First and Second Order Models for PCT-B Training Set

Model	1st-Orde	er Model	2nd-Ord	er Model
Term	Coefficient	Standard Dev	Coefficient	Standard Dev
SiO2	-3.1399	0.9125	-4.7800	1.0480
B2O3	10.244	1.5190	12.6840	1.6050
Na2O	15.091	2.1130	19.0620	2.1560
Li2O	18.595	4.3030	19.7800	3.5430
CaO	-10.0240	2.7840	14.5990	8.6430
MgO	9.5410	3.0300	-50.9900	20.5500
Fe2O3	-2.1340	2.1080	-0.4110	1.9100
Al2O3	-26.6650	2.3840	-43.2760	5.4980
ZrO2	-8.8760	2.4760	-7.6650	2.2180
Others	2.1150	2.5950	5.4930	2.2530
SiO2 x MgO			121.7600	41.3600
B2O3 x CaO			-100.5300	41.2300
Na2O x CaO			-151.6300	52.8000
Al2O3 x Al2O3			145.4600	38.7700

Table 8. PNL First and Second Order Models for MCC-1 Training Set

Model	1st-Ord	er Model	2nd-Ord	ler Model
Term	Coefficient	Standard Dev	Coefficient	Standard Dev
SiO2	0.3018	0.4474	0.1036	0.5635
B2O3	9.0717	0.8043	13.2080	1.2500
Na2O	9.0333	0.9918	9.1767	0.9007
Li2O	9.2790	2.0510	10.1860	1.8230
CaO	7.3270	1.2510	-11.0110	9.6560
MgO	6.4490	1.5080	7.1690	1.3230
Fe2O3	5.1000	1.1540	4.6210	1.1850
Al2O3	-6.9410	1.4030	-15.1590	3.6830
ZrO2	-0.5070	1.3770	-1.9840	1.3370
Others	0.4520	1.3590	1.8150	1.3490
SiO2 x CaO			33.9800	19.4500
B2O3 x Al2O3			-49.9300	15.5800
Al2O3 x Al2O3	,		89.2700	22.0800

4.1.1.2 <u>Regression on Training Sets Using Revised PNL Models</u>. The stepwise modeling efforts of the various training sets are found in Appendices C-F. The two hypothesis tests discussed in Section 3.1.1 are completed on the PNL models. If a p-value is > 0.05 for a particular waste component, that variable is eliminated in the Revised regression models. The final models are as follows:

Table 9. Revised PNL First and Second Order Models for Viscosity Training Set

Model	1st-Ord	er Model	2nd-Ord	ler Model
Term	Coefficient	Standard Dev	Coefficient	Standard Dev
Constant			-2.5969	0.6120
SiO2	8.6000	0.2316	13.2282	0.6794
B2O3	-6.1712	0.4518	-3.6852	0.7302
Na2O	-10.8403	0.6391	-22.1830	2.7100
Li2O	-34.6290	1.2730	-74.6640	4.4320
CaO	-5.5507	0.7483	-2.5294	0.7876
MgO				
Fe2O3			3.2198	0.8841
Al2O3	11.2714	0.6695	16.6586	0.7453
ZrO2	8.0675	0.7104	13.0175	0.6917
Others				
B2O3 x Fe2O3			29.0850	5.1240
Na2O x Li2O			122.0900	19.7500
Na2O x MgO			25.0410	5.6580
Li2O x Others			85.6500	15.2200
MgO x Fe2O3			-42.8120	8.8910
Na2O x Na2O			42.2380	8.9310
Li2O x Li2O			339.8600	40.4200

Table 10. Revised First and Second Order Models for PCT-B Training Set

Model	1st-Orde	er Model	2nd-Ord	ler Model
Term	Coefficient	Standard Dev	Coefficient	Standard Dev
Constant	-1.3624	0.5934	5.8660	2.2260
SiO2		,	-10.2020	2.7700
B2O3	10.7110	1.9580	6.1240	2.5880
Na2O	15.1520	2.6880	12.2380	2.6990
Li2O	18.0200	4.9920	14.1090	4.3030
CaO	-13.4490	2.8640		
MgO			-56.2100	21.3300
Fe2O3			-6.2960	2.5410
A12O3	-25.7650	2.4510	-50.7690	5.5530
ZrO2	-8.4440	2.6460	-13.5650	2.8160
Others				
SiO2 x MgO			115.1300	40.9100
B2O3 x CaO			-66.6300	25.4900
Na2O x CaO			-106.8800	30.9700
Al2O3 x Al2O3			158.6900	36.6700

Table 11. Revised PNL First and Second Order Models for MCC-1 Training Set

Model	1st-Ord	er Model	2nd-Ord	ler Model
Term	Coefficient	Standard Dev	Coefficient	Standard Dev
Constant			1.7322	0.2624
SiO2				
B2O3	9.2714	0.6850	11.1870	1.3990
Na2O	9.4281	0.6952	6.3700	1.1310
Li2O	10.0950	1.5440	6.7760	2.1340
CaO	7.5530	1.1950		
MgO	6.5960	1.4510	3,7940	1.4030
Fe2O3	5.5081	0.9021		
A12O3	-6.5880	1.0020	-23.1140	3.5790
ZrO2			-5.7950	1.2620
Others				
SiO2 x CaO				
B2O3 x Al2O3			-53.4400	16.7300
Al2O3 x Al2O3			123.9800	21.9100

Tables 9-11 show that there are nonsignificant variables left in the original PNL models that are eliminated in the revised regression models. For example, the shaded areas in Table 6 indicate that Mgo, Fe_2O_3 and Others all seem to be insignificant. The

stepwise regression showed this by eliminating them from the Revised PNL regression model for viscosity (see shaded areas in Table 9).

4.1.1.3 <u>Neural Network Modeling Results</u>. The neural networks for each parameter are developed using the training set and the following parameters:

Table 12. Parameters Used for Neural Network--Training Set

	ln(viscosity)	ln(PCT-B)	ln(MCC-1 B)
learning rate	0.000944	0.000500	0.001328
momentum	0.9500	0.9500	0.9500
# of epochs trained	3071	482	972

4.1.2 Statistics for Training and Validation Set Models. The following table presents the resulting R^2 statistics for all training and validation sets.

Table 13. R² Statistics for Training and Validation Set Models

	Training	Validation
PNL 1st Order VISC	0.958634	0.900706
Revised 1st Order VISC	0.953909	0.889256
PNL 2nd Order VISC	0.990429	0.938008
Revised 2nd Order VISC	0.990000	0.938238
MLP VISC Model	0.998600	0.946300
PNL 1st Order PCT B	0.783881	0.676223
Revised 1st Order PCT B	0.730000	0.603272
PNL 2nd Order PCT B	0.866581	0.679495
Revised 2nd Order PCT B	0.864000	0.616962
MLP PCT-B Model	0.960500	0.727100
PNL 1st Order MCC-1 B	0.709254	0.105532
Revised 1st Order MCC-1 B	0.704916	0.113086
PNL 2nd Order MCC-1 B	0.793147	0.358522
Revised 2nd Order MCC-1 B	0.716000	0.138776
MLP MCC-1 B Model	0.963200	0.637400

The results from the validation sets indicate that the 1st order regression models may not be adequate in predicting future glass property values. This is especially true for MCC-1 B. R² values of 0.105532 and 0.113086 indicate that a linear model is not appropriate for modeling this property. The 2nd order models do a better job of

generalization, but they still poorly perform for the MCC property. The R^2 values are only increased to 0.358522 and 0.138776 respectively. Note that the revised models did not increase the property modeling performance. NLPs will still be formed using these models to determine if using a smaller number of variables in each equation changes the feasible region and possibly lowers optimization costs. The neural network models are clearly the best. They have the highest training and validation R^2 values. They outperform every regression model, especially for the PCT and MCC properties.

4.1.3 <u>Final Revised PNL and Neural Network Models</u>. The following equations (in tabular form) are the final Revised PNL and Neural Network models that serve as constraints in the NLP models. Shaded areas indicate variables existing in the original PNL models, but eliminated by stepwise regression for the revised regression models. The original PNL Model also serve as constraints in a NLP model, but they are already displayed in Tables 1-4 in Chapter 3.

Table 14. Final Revised PNL First and Second Order Models for Viscosity

Model	1st-Ord	er Model	2nd-Order Model	
Term	Coefficient	Standard Dev	Coefficient	Standard Dev
SiO2	8.9657	0.1988	10.7967	0.2562
B2O3	-6.2113	0.4399	-6.4873	0.3559
Na2O	-11.0340	0.4782	-25.8010	2.3470
Li2O	-34.2900	1.0600	-73.9960	4.2710
CaO	-7.5308	0.7900	-5.78820	0.5832
MgO	-2.8496	0.8764		
Fe2O3				
Al2O3	11.3224	0.5088	14.3699	0.4596
ZrO2	7.5083	0.6708	10.1045	0.5206
Others				
B2O3 x Fe2O3			29.9500	4.3410
Na2O x Li2O			120.9600	15.8700
Na2O x MgO				
Li2O x Others			44.0600	11.4600
MgO x Fe2O3			-39.8930	8.2440
Na2O x Na2O			44.0760	8.6940
Li2O x Li2O			297.2500	42.8500

Table 15. Final Revised PNL First and Second Order Models for Electrical Conductivity

Model	1st-Orde	er Model	2nd-Ord	er Model
Term	Coefficient	Standard Dev	Coefficient	Standard Dev
Constant	2.2587	0.1917	0.38257	0.01626
SiO2	-1.3724	0.3240		
B2O3			1.13355	0.04340
Na2O	8.8420	0.3467	14.5157	0.0906
Li2O	21.6596	0.6891	33.4372	0.2158
CaO				
MgO				
Fe2O3				
A12O3	-1.2081	0.3565		
ZrO2	-1.2968	0.4603		
Others				
Na2O x Li2O			-94.3090	1.7020
CaO x Fe2O3			16.3778	0.7669
B2O3 x Fe2O3			14.2337	0.4371
MgO x ZrO2			27.9140	1.3590
SiO2 x Others			5.5687	0.1224
Li2O x ZrO2			0.099976	0.001748

Table 16. Final Revised First and Second Order Models for PCT-B

Model	1st-Orde	er Model	2nd-Ord	er Model
Term	Coefficient	Standard Dev	Coefficient	Standard Dev
Constant	-3.6659	0.3680		
SiO2			-5.2717	0.5021
B2O3	15.3460	1.3190	13.9090	1.1540
Na2O	21.3330	1.4310	20.8900	1.2040
Li2O	26.5710	2.8760	23.9920	2.2090
CaO	-5.8900	2.1180	13.2510	5.6100
MgO	13.7370	2.3370	-37.5400	13.8100
Fe2O3				
Al2O3	-22.5100	1.2630	-43.6290	3.1390
ZrO2	-7.4900	1.8080	-10.3620	1.4750
Others				
SiO2 x MgO			98.9800	27.8300
B2O3 x CaO			-87.1100	30.1200
Na2O x CaO			-120.7200	34.6200
Al2O3 x Al2O3			123.0900	17.8900

Table 17. Final Revised PNL First and Second Order Models for MCC-1

Model	1st-Orde	er Model	2nd-Ord	er Model
Term	Coefficient	Standard Dev	Coefficient	Standard Dev
Constant	4.6375	0.7071	6.0779	0.7096
SiO2	-4.7862	0.9939	-7.3010	1.0340
B2O3	5.2860	1.0470	9.1990	1.1510
Na2O	5.4920	1.0900	4.5813	0.9442
Li2O	7.360	1.8360	6.8850	1.5440
CaO			-32.4320	7.8820
MgO				
Fe2O3				
Al2O3	-11.5936	0.8782	-18.3970	2.2960
ZrO2	-5.7810	1.2170	-7.6050	1.0220
Others				
SiO2 x CaO			61.8200	15.7400
B2O3 x Al2O3			-68.2200	12.2600
Al2O3 x Al2O3			82.2000	12.1100

Table 18 shows the parameters used to train the final neural network models. The final data is trained approximately the same number of epochs as the training models. This is purposely done to avoid memorizing the data. Memorizing the data hinders the neural networks capability to predict future glass production.

Table 18. Parameters Used for Final Neural Network Models

	In(viscosity)	ln(PCT-B)	ln(MCC-1 B)
learning rate	0.000944	0.000769	0.001145
momentum	0.9500	0.9500	0.9500
# of epochs trained	3000	400	1500

Complex mathematical equations are developed in spreadsheet form to enable the neural networks to be used in the NLP. The spreadsheet of the weights used to build these equations for each neural network is found in Appendix K.

4.1.4 <u>Statistics for Final Models</u>. The following table presents the resulting R² statistics for final statistical models.

Table 19. Final Model R² Results

	Final R ² (entire data set used for modeling)
PNL 1st Order VISC	0.939
Revised 1st Order VISC	0.939
PNL 2nd Order VISC	0.975
Revised 2nd Order VISC	0.972
MLP VISC Model	0.992
PNL 1st Order ELEC	0.931
Revised 1st Order ELEC	0.924
PNL 2nd Order ELEC	0.973
Revised 2nd Order ELEC	0.999
PNL 1st Order PCT B	0.818
Revised 1st Order PCT B	0.813
PNL 2nd Order PCT B	0.886
Revised 2nd Order PCT B	0.881
MLP PCT-B Model	0.962
PNL 1st Order MCC-1 B	0.675
Revised 1st Order MCC-1 B	0.666
PNL 2nd Order MCC-1 B	0.794
Revised 2nd Order MCC-1 B	0.789
MLP MCC-1 B Model	0.966

The shaded areas in Tables 19 indicate the models that modeled each property the best: Revised PNL 2nd Order regression model for electrical conductivity and the neural network models for the other three properties. The neural networks clearly outperform all regression models for the durability properties, PCT-B and MCC-1 B.

The following tables are referred to as confusion matrices. They show how the final models classified the 113 glasses represented in Appendix J. The matrices are used to calculate the 3 probability MOP discussed in Section 3.3.2 and the p used in the geometric distribution of Section 3.3.3.

Table 20. Confusion Matrix--PNL 1st Order Model

Predicted

Actual

	Glass	Not Glass
Glass	60	2
Not Glass	8	43

Table 21. Confusion Matrix--PNL 2nd Order Model

Predicted

Actual

	Glass	Not Glass
Glass	58	4
Not Glass	5	46

Table 22. Confusion Matrix--Revised 1st Order Model

Predicted

Actual

	Glass	Not Glass
Glass	60	2
Not Glass	10	41

Table 23. Confusion Matrix--Revised 2nd Order Model

Predicted

Actual

	Glass	Not Glass
Glass	58	4
Not Glass	5	46

Table 24. Confusion Matrix--Neural Network Model

Predicted

Actual

	Glass	Not Glass
Glass	58	4
Not Glass	2	49

The confusion matrices are used to calculate the following probability MOPs described in Chapter 3. After optimization with the NLP, the only column of the confusion matrix used is the Predicted (Glass) column. This is because the NLP constraints force the final mass fractions of the waste components to have values that predict that glass is produced. The p value for the geometric distribution is calculated using this column. For example, the Neural Network model in Table 24 has a p value of 58/60. The Neural Network model's E(X) is 1/p, or 1.0345.

Table 25. Probability MOPs for Statistical Models

·	P(correct classify)	P(not glassiglass)	P(glasslnot glass)
PNL 1st Order Model	0.9115	0.0177	0.0708
PNL 2nd Order Model	0.9204	0.0354	0.0442
Revised 1st Order Model	0.8938	0.0177	0.0885
Revised 2nd Order Model	0.9204	0.0354	0.0442
MLP Model	0.9469	0.0354	0.0177

One point of Table 25 is very prominent. The neural network models (with the Revised 2nd order ELEC) outperform all other models with the highest P(correct classify) and a much lower P(glasslnot glass). If the NLP results show that it has the lowest average cost as well, it will clearly outdistance all other models for selection as the best alternative for DOE.

4.2 Nonlinear Optimization Results.

This section analyses the results of the optimization of 10 nuclear waste stream vitrifications.

Figure 7--Nonlinear Optimization of 10 Waste Streams

The following ten waste inputs are optimized with the nonlinear MicroSoft Excel programs.

Table 26. Ten Glass Inputs to be Optimized

Input	SIO2I	B2O3	NA2O	LI2OI	CAOI	MGOI	FE2O3I	AL2O3I	ZRO2I	OTHERSI
1	50.40	13.55	7.97	6.96	0.07	0.02	0.46	16.40	0.01	4.16
2	48.95	11.12	16.71	4.28	1.13	1.66	8.97	3.67	0.41	3.10
3	43.91	20.00	6.75	1.00	8.00	0.00	2.00	0.00	8.34	10.00
4	57.00	20.00	9.00	1.00	2.00	8.00	2.00	0.00	0.00	1.00
5	55.00	5.00	5.00	7.00	10.00	0.00	2.00	15.00	0.00	1.00
6	55.89	5.00	12.11	7.00	0.00	8.00	2.00	0.00	0.00	10.00
7	50.18	6.00	18.00	6.32	4.00	0.50	10.50	2.00	0.50	2.00
8	54.79	16.00	5.00	1.21	0.50	0.50	10.50	2.00	0.50	9.00
9	52.81	6.64	12.00	7.30	0.00	0.00	2.00	16.25	1.75	1.25
10	48.95	11.12	16.71	4.28	1.13	1.66	8.97	3.67	0.41	3.10

The resulting costs, means, and standard deviations of the optimization are found in the following two tables:

Table 27. Results of Optimizing 10 Glass Inputs (\$)

	1 1	2	2	1	5	6	7	8	Q	10
	<u> </u>	- 4	3		3	0	, ,	0 10 7	0.006	
PNL 1st Order	0	0.537	0.057	0.428	0.012	0.284	0.623	0.125	0.006	0.537
PNL 2 nd Order	0	0.491	1.289	7.176	0.017	1.206	0.634	2.515	0.014	0.491
Rev 1st Order	0	0.476	0.378	0.446	0.012	0.253	0.590	0.137	0.006	0.476
Rev 2 nd Order	0	0.434	0.609	4.769	0.016	0.923	0.558	2.934	0.014	0.434
MLP	0.0024	0.510	0.558	0.054	0.018	0.224	0.452	0.076	0.011	0.510

Table 27 shows the total cost of the additives (\$) for each model and each waste input. The output from waste input #1 shows that the MLP is the only model to avoid making the error of classifying the final waste form as glass when it actually is not glass. This is apparent because it is the only model that added chemicals to the waste stream with a cost equal to \$0.0024.

Table 28. Mean and Standard Deviation of Optimization Results (\$)

	Mean	Standard Deviation
PNL 1st Order	0.2612	0.2511
PNL 2nd Order	1.3837	2.1777
Rev 1st Order	0.2778	0.2254
Rev 2nd Order	1.0670	1.5574
MLP	0.2420	0.2385

As seen from Table 28, the PNL 1st Order, Revised 1st Order, and MLP models have the lowest mean cost and standard deviations. The 2nd order regression models have the highest cost and highest standard deviations. The high standard deviations indicate that the results from these models are not as predictable as the other 3 models. The high mean costs and low predictability is a risk to the DOE.

Notice that the MLP model has the lowest mean cost and a small standard deviation of 0.2385. This indicates that the MLP provides a low cost, low risk alternative to the DOE. The expected total cost MOE from Section 3.3.2 is restated here:

 $E(Total\ Cost) = (Expected\ Cost\ of\ Additives + Fixed\ Cost\ of\ Running\ Plant)*(1/p).$

The following table shows calculated total expected costs for the PNL, Revised PNL, and Neural Network/Revised PNL 2nd Order ELEC models.

Table 29. Calculation of Total Expected Cost of Vitrification

	E(Total Cost)
PNL 1st Order	(0.2612+Fixed Cost)*1.1333
PNL 2nd Order	(1.3837+Fixed Cost)*1.0862
Revised PNL 1st Order	(0.2778+Fixed Cost)*1.1667
Revised PNL 2nd Order	(1.0670+Fixed Cost)*1.0862
Neural Net/Rev 2nd Order ELEC	(0.2420+Fixed Cost)*1.0345

To minimize expected total cost, the best case situation occurs when ECOA and E(X) are minimized. The MLP/Revised 2nd Order ELEC nonlinear program demonstrates the optimal performance. The MLP has both the lowest average cost and lowest E(X). In addition, it has the highest P(correct classify). This means the DOE could use this tool and be very confident in its results.

V. RECOMMENDATION/CONCLUSION

5.1 Recommendations

The statistical and nonlinear programming tools developed in this thesis provide a means for DOE engineers to minimize the expected cost of vitrifying high level nuclear glass. The DOE goal is to minimize the cost of vitrifying its high-level nuclear waste. With this goal in mind, the recommendation is to optimize the additive values by using the nonlinear program with MLP/Combs 2nd Order ELEC constraints. This program has the lowest mean cost, lowest E(X), and highest P(correct classify). Therefore, it will provide the lowest cost, lowest risk DOE vitrification solution.

5.2 Contributions to Sponsor

This optimization study provides a good solution to the DOE problem of minimizing its costs when vitrifying high-level nuclear waste. The study has made three major contributions in solving this problem. One, the neural networks provide better statistical models for predicting property values (viscosity, PCT B, MCC-1 B) given a set of waste component inputs. Two, a nonlinear optimization program (Appendix K shows an example for the neural network nonlinear program) has been developed in MicroSoft Excel to minimize the cost of vitrifying nuclear waste given various statistical models. The program will output the following:

- 1. Type and amount of additive chemicals.
- 2. Final mass fraction values of waste components.
- 3. Cost of the additives.

Finally, the study provides a lowest cost, lowest risk program for optimizing highlevel waste vitrification. The MLP NLP has been shown to provide the lowest cost solution while minimizing the risk of producing glass with infeasible property values.

5.3 Recommendations for further research.

While completing this study, a two other opportunities for further research have been identified. A brief description of each follows below.

- 5.3.1 Study of Mixed Waste. This data concentrated on modeling the property values of high-level nuclear wastes and optimizing its vitrification process at 1150° C. Work should now be completed on vitrifying DOE mixed waste at varying temperature values. Models could then be developed to optimize the vitrification of any type of waste in any temperature range.
- 5.3.2 Neural Network Modeling of NLP Surface. This study took many statistical models and used them in nonlinear programs. Now, there exists Excel programs to optimize the vitrification. So given a set of inputs, the NLP have to be run to obtain optimal additive values. The process could be streamlined by taking the existing NLPs and solving them for a great number of different inputs. Then a new neural network could be developed which mapped waste component inputs to the NLP outputs. This would decrease the complexity of the whole optimization process for DOE. There would no longer be a need for running optimization code. A spreadsheet model could be developed to model the neural network. Then DOE could change the input cells in the model and obtain optimal cost and additive values.

APPENDIX A--Data on Waste Glass

This Appendix is a compilation of all the waste component and property data that is used in this study.

0100	0000	N=00	1:00	0-0	14~0	F-2002	A IO O O	7-00	Others	Visc	Elec	DCT D	MCC-1 B
SiO2	B2O3	Na20	Li2O	CaO	MgO	Fe2O3	Al2O3 6.36	ZrO2 4.29	4.07	5.78	18.65	0.521	12.47
48.01	11.42	10.03	3.76	2.75	3.63	5.68	15	0	4.07	13.29	25.97	0.066	7.46
55	5	5	7	10	0	2	14	1	1	2.39	35.64	0.864	15.57
42	20	5	7	0	8	2		0	1	8.7	9.11	20.64	189.71
57	20	9	1	2	8	2	0		1			0.355	11.48
57	5	7	7	0	0	15	8	0		13.24	30.74		121.3
44	20	5	7	0	0	2	0	12	10	2.01	47.29	6.113	
57	5	9.64	1	10	0	3.36	0	13	1	72.88	6.87	0.287	10.995
53.63	5	8.37	. 1	0	8	15	0	8	1	29.26	8.84	1.238	17.875
42	19.62	5.38	1	0	8	14	0	0	10	4.06	8.37	10.99	158.72
57	8.51	9.49	1	0	0	2	12	0	10	83.83	20.61	0.127	2.745
42	15.49	7.51	1	10	0	2	14	0	8	14.5	7.47	0.099	8.25
42	17.64	7.36	7	10	0	15	0	0	1	0.42	65.44	4.662	118.48
57	20	18.62	1	0	0	2	0.38	0	1	3.31	34.17	14.07	690.515
42	20	18.62	1	0	0	2	2.38	13	1	3.42	34.92	9.847	73.635
55.89	5	12.11	7	0	8	2	0	0	10	2.55	58.2	18.78	210.285
43.27	5	18.73	1	0	8	8.58	14.42	0	1	17.81	26.36	0.523	16.85
45.45	5	14.55	1	10	0	14	0	0	10	2.23	28.53	2.235	39.1
42.14	5	11.86	7	2	8	2	0	13	9	1.87	65.5	11.24	24.055
48.01	11.42	10.03	3.76	2.75	3.63	5.68	6.36	4.29	4.07	5.76	24.27	0.523	13.025
48.01	11.42	10.03	3.76	2.75	3.63	5.68	6.36	4.29	4.07	5.71	26.88	0.455	12.505
57	20	9	1	2	8	2	0	0	1	9.36	8.05	18.85	205.79
53.63	5	8.37	1	0	8	15	0	8	1	38.11	9.24	1.119	17.36
51.53	9.56	10.52	3.75	2.89	0.84	11.79	4.56	0.63	3.93	5.69	28.03	0.525	15.37
52.26	8.74	7 -	6	0	5	4	8	1	8	7.74	32.55	0.312	12.24
50.17	7	8.83	6	7	0	4.5	11	3	2.5	6.26	33.08	0.128	8.44
46.45	13.2	7	4.35	7	1	4.5	10.32	3.68	2.5	5.56	22.36	0.137	8.87
56	10.95	7	5.36	7	0	4	6.19	1	2.5	6.37	23.43	0.158	9.73
47.51	15.9	10.1	2	3.48	0	4	8	1	8	8.18	17	0.284	10.405
53.73	7	7	3.82	7	0.46	12	1.59	1	6.41	6.19	19.63	1.185	17.475
48.14	17	7	5.91	0.94	0	4	9.53	1	6.48	4.26	30.39	0.74	5.02
51.15	7	9.85	6	0	5	11.4	6.1	1	2.5	4.36	38.78	0.484	18.505
54.31	9.44	9.24	6	0	0	7.12	1.38	10	2.5	7.3	35.84	0.56	13.2
46.94	17	13.06	2	0	0	6.69	10.43	1	2.88	8.99	23.58	1.332	12.275
49.15	7.51	8.33	6	7	1	4	1	9.35	6.65	3.07	35.3	1.587	19.85
46.83	17	7	4.66	7	1	4	9.01	1	2.5	3.38	23.26	0.194	9.86
49.37	7	16.92	2.25	3	5	4	8.96	1	2.5	7.27	33.95	0.36	13.36
46	13.13	8.02	4.86	5	2	4	2.43	10	4.57	2.97	27.4	1.656	15.095
47.29	7	17	2.14	6.01	0	4	7.56	1	8	4.47	35.85	0.331	25.1
53.53	10.53	11.25	3.75	0.83	0.84	7.19	2.31	3.85	5.92	6.57	27.54	2.937	18.085
48.01	11.42	10.03	3.76	2.75	3.63	5.68	6.36	4.29	4.07	5.37	26.06	0.495	12.325
53.53	10.53	11.25	3.75	0.83	0.84	7.19	2.31	3.85	5.92	6.41	28.34	2.578	19.72
	10.48	11.29	3.73	0.82	0.84	7.33	2.35	3.92	5.96	6.76	27.55	1.99	13.69
57	5	10.31	6.69	0	0	6	1	13	1	12.31	38.08	0.347	8.425
57	13.14	5	7	0	8	2	6.86	0	1	6.01	31.58	3.854	11.805
57	5	7.35	7	0	8	2	3.65	0	10	5.92	37.02	9.646	15.595

57	5.22	20	1	8	0	2	5.78	0	1	9.91	34.97	0.173	11.21
44.64	20	7.36	7	0	0	2	9.61	0	9.39	1.99	40.91	4.522	19.855
50.59	5	8.41	7	8	0	15	0.33	0	5.67	1.35	50.7	4.662	34.5
44.31	20	5.12	7	8	0	2	2.57	10	1	1.26	34.3	1.628	39.145
54.63	5	20	1.55	0	8	2	7.82	0	1	14.41	36.98	3.27	11.22
56.19	5	20	1.26	0	0	2	5.55	0	10	13.44	43.25	5.144	9.835
43.91	20	6.75	1	8	0	2	0	8.34	10	5.32	6.89	1.286	42.285
51.9	20	8.32	1	0	0	13.2	4.58	0	1	27.42	10.85	6.512	24.435
57	18.43	5	3.31	8	0	2	5.26	0	1	10.3	10.96	0.411	47.02
54.45	5	20	4.28	0	0	2	0.27	13	1	8.07	57.11	9.646	16.62
42	5.44	20	3.64	0	8	2	8.92	0	10	2.15	60.94	1.723	14.51
42	17.43	20	3.69	0	0	2	13.88	0	1	1.79	52.63	4.34	29.24
			4.28	8	0	6.32	13.4	0	1	2.82	57.81	0.32	11.61
42	5	20						0	1	1.91	39.89	0.48	21.09
54.21	5	8.91	7	8	0	15	0.88						
57	8.39	10.61	7	0	0	2	14	0	1	12.34	41.6	0.246	9.635
51.47	11.09	10.44	1	0	8	14.28	2.72	0	1	12.02	13.62	1.119	23.645
48.38	5	13.62	7	0	8	7.42	2.58	7	1	1.98	61.14	12.7	16.3
50.4	6.39	15	4.21	2	5	2	10	2	3	6.88	38.09	0.337	12.205
53.25	6.94	7.81	7	5	2	3	10	2	3	6.2	30.87	0.177	9.425
56.75	5	6.25	7	3.2	3.8	10	3	2	3	5.51	31.9	1.694	14.31
50.7	14.77	5	6.53	2	3	3	5	7	3	4.43	31.42	0.767	11.33
57	10.78	5	6.99	5	2	2	6.23	2	3	6.08	28.6	0.255	10.275
52.99	11.06	5	5.95	2	5	3.08	5.92	2	7	6.03	25	0.5	11.6
52.64	12.59	5.77	7	2	2	2	7.46	2	6.54	4.7	34.77	0.317	10.985
52.94	5	12.77	4.29	5	2	2	4	5	7	6.64	26.65	1.159	11.555
47	14.42	9.68	3.9	5	2	2	8.54	2	5.46	3.94	22.48	0.307	10.625
50.73	13.57	9.57	4.13	2	2	5.15	7.85	2	3	6.46	23.38	0.303	11.35
48.01	11.42	10.03	3.76	2.75	3.63	5.68	6.36	4.29	4.07	5.71	24.81	0.442	11.43
53.28	10.48	11.29	3.73	0.82	0.84	7.33	2.35	3.92	5.96	7.07	28.3	1.764	12.35
60	8.17	4.5	7.88	80.0	0.09	7.2	2.33	3.85	5.9	9.22	35.17	0.557	10.075
53.28	10.48	11.29	3.73	0.82	0.84	7.33	2.35	3.92	5.96	6.26	27.02	1.342	15.905
53.28	10.48	11.29	3.73	0.82	0.84	7.33	2.35	3.92	5.96	6.12	27.83	1.419	17.23
53.28	10.48	11.29	3.73	0.82	0.84	7.33	2.35	3.92	5.96	6.74	28.13	1.164	15.28
39	20	5	7	2	8	2	15	1	1	1.85	32.87	0.778	13.15
43.8	17.18	12.68	7.27	3.75	0.05	2	11.5	0.75	1.02	1.15	48.41	1.591	11.975
52.81	8.76	17.25	7.43	0.63	0.05	2	9.25	0.75	1.07	2.61	68.96	1.624	16.52
52.81	6.64	12	7.3	0	0	2	16.25	1.75	1.25	12.9	45.69	0.222	10.895
	17.65	11.25	1.56	5	0.05	2	5	0.75	0.95	9.95	15.18	1.002	12.39
32.32	17.17	19	0.51	10	0	2	18	0	1	2.38	34.05	0.332	9.645
56.97		9.25	6.42	0.25	0.08	8.12	2.88	4.31	6.63	8.89	39.53	0.379	12.315
53.44		8.6	6.97	0.07	0.04	0.13	1.96	15.5	2.03	8.2	36.43	0.335	9.405
51.75		12.11	5.23	0.97	0.61	3.88	11.8	0.26	4.22	8.24	37.74	0.21	11.745
45.96		10.86	5.83	0.24	0.01	0.04	20.43	0	0.76	8.97	36.2	0.512	11.145
	13.55	7.97	6.96	0.07	0.02	0.46	16.4	0.01	4.16	17.05	35.28	0.308	10.56
56.6	7.81	6.64	7.13	0.79	0.32	3.34	8.16	0.05	9.16	22.15	36.01	0.226	9.88
	14.18	8.12	6.91	0.08	0.08	0.8	18.19	0.05	3.05	10.8	36.97	0.312	11.56
56.97		9.25	6.42	0.25	0.08	8.12	2.88	4.31	6.63	8.5	38.46	0.411	12
51.75		12.11	5.23	0.97	0.61	3.88	11.8	0.26	4.22	7.81	36.88	0.21	11.745
50.4	13.55	7.97	6.96	0.07	0.02	0.46	16.4	0.01	4.16	8.67	36.85	0.244	6.645
56.6	7.81	6.64	7.13	0.79	0.32	3.34	8.16	0.05	9.16	9.55	35.4	0.226	9.88
	14.18	8.12	6.91	0.08	0.08	0.8	18.19	0.05	3.05	8.66	36.4	0.278	8.62
40.04	14.10	0.12	0.71	0.00	0.00	0.0	10.17	0.00	0.00	0.00	QU. -1	5.276	0.02

50.18	6	18	6.32	4	0.5	10.5	2	0.5	2	1.18	80.23	14.87	26.53
45.5	6	18	7	0.5	0.5	0.5	2	11	9	1.55	85.62	9.512	49.575
56	16	5	2.54	0.5	4	6.99	2	4.97	2	28.12	9.96	0.934	32.15
54.79	16	5	1.21	0.5	0.5	10.5	2	0.5	9	57.26	10.44	0.744	32.15
50.74	16	5	1.76	0.5	4	10.5	2	7.5	2	66.25	8.08	0.764	45.215
44	6	17.34	7	0.5	4	10.5	2	0.5	8.16	0.69	19.24	16.61	107.18
56	9.5	18	7	0.5	4	0.5	2	0.5	2	1.58	76.39	44	643.09
49	9.51	18	6.99	4	0.5	0.5	2	0.5	9	0.74	94.09	34.66	37.19
45.5	6	18	7	0.5	0.5	10.5	2	8	2	1.19	81.62	12.46	30.01
44	6	18	7	0.5	2	0.5	17	0.5	4.5	4.02	72.19	0.456	18.49
47.64	6	18	1.36	4	0.5	0.5	17	0.5	4.5	29.69	30.93	0.115	8.305
49.83	8	18	1.8	1.37	0.5	2.5	9.87	6.13	2	17.98	34.12	0.178	9.445
45.97	6	14.03	7	4	0.5	2.5	10.5	7.5	2	3.57	56.7	0.308	9.11
44	11.71	18	1	4	0.5	10.5	2	6.29	2	2.78	36.92	1.716	38.44
56	16	5.42	7	0.5	0.5	10.08	2	0.5	2	3.65	32.58	5.577	29.14
56	16	10.5	1	0.5	4	0.5	2	0.5	9	14.31	12.9	8.642	44.21
44	16	10.0	7	0.5	4	0.5	2	7	9	1	54.07	18.59	86.415
44	13.37	12.79	7	0.98	0.5	9.86	2	0.5	9	0.64	73.54	13.23	216.45
44	16	18	5.26	4	0.5	2.71	7.03	0.5	2	0.81	68.27	4.07	87.42
48.95	11.12	16.71	4.28	1.13	1.66	8.97	3.67	0.41	3.1	1.6	54.06	9.976	49.16
48.01	11.42	10.03	3.76	2.75	3.63	5.68	6.36	4.29	4.07	5.55	25.08	0.493	12.53
53.28	10.48	11.29	3.73	0.82	0.84	7.33	2.35	3.92	5.96	7.25	24.56	1.434	12.89
42	17.43	20	3.69	0	0	2	13.88	0	1	1.9	59.92	4.52	30.44
52.03	9.69	9.8	3.56	0.97	0.77	10.19	5.23	1.99	5.77	8.53	19.71	0.232	13.94
53.29	7.4	6.26	5.96	0.35	0.12	12.29	2.86	4.43	7.04	6.85	27.21	0.326	14.125
		16.71	4.28	1.13	1.66	8.97	3.67	0.41	3.1	1.51	58.16	8.644	90.76
53.53	11.12	11.25	3.75	0.83	0.84	7.19	2.31	3.85	5.92	1.01	00.10	2.672	19.238
41	13.37	14.28	4.76	1.05	1.07	9.13	2.93	4.89	7.52			6.073	52.909
45	12.46	13.32	4.70	0.98	0.99	8.51	2.73	4.56	7.02			5.548	30.967
49	11.56	12.35	4.12	0.91	0.92	7.89	2.54	4.23	6.5			4.59	22.669
57	9.74	10.41	3.47	0.77	0.72	6.65	2.14	3.56	5.48			1.651	13.37
56.84	5	11.95	3.98	0.88	0.89	7.63	2.45	4.09	6.29			0.788	12.54
50.86	15	10.69	3.56	0.79	0.8	6.83	2.2	3.66	5.62			2.144	22.722
47.86	20	10.06	3.35	0.74	0.75	6.43	2.07	3.44	5.29			5.707	90.836
57.3	11.27	5	4.01	0.89	0.9	7.7	2.47	4.12	6.34			0.314	10.128
51.27		15	3.59	0.8	0.81	6.89	2.21	3.69	5.67			6.135	25.972
48.25		20	3.38	0.75	0.76	6.48	2.08	3.47	5.34			14.4	98.259
55.06		11.57	1	0.85	0.86	7.4	2.38	3.96	6.09			0.612	12.767
52.28		10.99	6	0.81	0.82	7.02	2.26	3.76	5.78			7.116	20.331
51.72		10.87	7	0.8	0.81	6.95	2.23	3.72	5.72			9.406	29.404
	10.41	11.12	, 3.71	2	0.83	7.11	2.28	3.81	5.85			3.012	19.768
	10.62	11.35	3.78	0.84	0	7.25	2.33	3.88	5.97			1.59	19.983
	10.41	11.12	3.71	0.82	2	7.11	2.28	3.81	5.85			3.63	20.386
54.8	10.78	11.52	3.84	0.85	0.86	7.36	0	3.94	6.06			3.803	56.673
	10.24	10.94	3.65	0.81	0.82	6.99	5	3.74	5.76			0.291	13.502
49.32	9.7	10.36	3.46	0.77	0.77	6.62	10	3.55	5.45			0.199	10.11
46.58		9.79	3.26	0.72	0.73	6.26	15	3.35	5.15			0.193	9.302
	10.48	11.29	3.73	0.82	0.84	7.33	2.35	3.92	5.96			1.473	15.648
00.20	10.40	11,47	0.70	0.02	0.04	7.00	2.00	0.72	0.70			1.470	.0.040

APPENDIX B--Training and Validation Data Sets

This Appendix displays the data sets used for training and validation of viscosity, PCT B and MCC-1 B.

Table 1. Training Set for Viscosit	Table 1	. Training	Set for	Viscosity
------------------------------------	---------	------------	---------	-----------

Table 1	. IIan	nng Se	LIUI	A 12CO2	ity						
SIO2	B2O3		LI2O			FE2O3	AL2O3	ZRO2	OTHERS	VISC	LNVISC
0.4801	0.1142	0.1003	0.04	0.028	0.0363	0.0568	0.0636	0.0429	0.0407	5.78	1.754404
0.55	0.05	0.05	0.07	0.1	0	0.02	0.15	0	0.01	13.29	2.587012
0.42	0.2	0.05	0.07	0	0.08	0.02	0.14	0.01	0.01	2.39	0.871293
	0.2	0.09	0.01	0.02	0.08	0.02	0.14	0.01	0.01	8.7	2.163323
0.57								0		13.24	2.583243
0.57	0.05	0.07	0.07	0	0	0.15	0.08		0.01	13.24	
0.44	0.2	0.05	0.07	0	0	0.02	0	0.12	0.1	2.01	0.698135
0.57	0.05	0.0964	0.01	0.1	0	0.0336	0	0.13	0.01	72.88	4.288814
0.5363	0.05	0.0837	0.01	0	0.08	0.15	0	0.08	0.01	29.26	3.376221
0.42	0.1962	0.0538	0.01	0	0.08	0.14	0	0	0.1	4.06	1.401183
0.57	0.0851	0.0949	0.01	0	0	0.02	0.12	0	0.1	83.83	4.428791
0.42	0.1549	0.0751	0.01	0.1	Ō	0.02	0.14	0	0.08	14.5	2.674149
0.42	0.1764	0.0736	0.07	0.1	Ŏ	0.15	0	Ŏ	0.01	0.42	-0.8675
0.57	0.1704	0.1862	0.01	0	ŏ	0.02	0.0038	Ŏ	0.01	3.31	1.196948
0.42	0.2	0.1862	0.01	ő	ő	0.02	0.0238	0.13	0.01	3.42	1.229641
		0.1002	0.07	Ö	0.08	0.02	0.0200	0.10	0.1	2.55	0.936093
0.5589	0.05		0.07	ő	0.08	0.0858	0.1442	Ô	0.01	17.81	2.87976
0.4327	0.05	0.1873					0.1442	0	0.1	2.23	0.802002
0.4545	0.05	0.1455	0.01	0.1	0	0.14		0.13	0.09	1.87	0.625938
0.4214	0.05	0.1186	0.07	0.02	0.08	0.02	0	0.13			
0.4801	0.1142	0.1003	0.04	0.028	0.0363	0.0568	0.0636	0.0429	0.0407	5.76	1.750937
0.4801	0.1142	0.1003	0.04	0.028	0.0363	0.0568	0.0636	0.0429	0.0407	5.71	1.742219
0.57	0.2	0.09	0.01	0.02	0.08	0.02	0	0	0.01	9.36	2.236445
0.5363	0.05	0.0837	0.01	0	0.08	0.15	0	0.08	0.01	38.11	3.640477
0.5153	0.0956	0.1052	0.04	0.029	0.0084	0.1179	0.0456	0.0063	0.0393	5.69	1.73871
0.5226	0.0874	0.07	0.06	0	0.05	0.04	0.08	0.01	0.08	7.74	2.046402
0.5017	0.07	0.0883	0.06	0.07	0	0.045	0.11	0.03	0.025	6.26	1.83418
0.4645	0.132	0.07	0.04	0.07	0.01	0.045	0.1032	0.0368	0.025	5.56	1.715598
0.56	0.1095	0.07	0.05	0.07	0	0.04	0.0619	0.01	0.025	6.37	1.851599
0.4751	0.159	0.101	0.02	0.035	0	0.04	0.08	0.01	0.08	8.18	2.101692
0.5373	0.07	0.07	0.04	0.07	0.0046	0.12	0.0159	0.01	0.0641	6.19	1.822935
0.4814	0.17	0.07	0.06	0.009	0	0.04	0.0953	0.01	0.0648	4.26	1.449269
0.5115	0.07	0.0985	0.06	0.007	0.05	0.114	0.061	0.01	0.025	4.36	1.472472
0.5431	0.0944	0.0924	0.06	ő	0.00	0.0712	0.0138	0.1	0.025	7.3	1.987874
0.4694	0.17	0.1306	0.02	ŏ	Ö	0.0669	0.1043	0.01	0.0288	8.99	2.196113
0.4915	0.0751	0.0833	0.02	0.07	0.01	0.0007	0.01	0.0935	0.0665	3.07	1.121678
	0.0731	0.0033	0.05	0.07	0.01	0.04	0.0901	0.01	0.025	3.38	1.217876
0.4683				0.03		0.04	0.0896	0.01	0.025	7.27	1.983756
0.4937	0.07	0.1692	0.02		0.05			0.01	0.023	2.97	1.088562
0.46	0.1313	0.0802	0.05	0.05	0.02	0.04	0.0243	0.01		2.97 4.47	1.497388
0.4729	0.07	0.17	0.02	0.06	0	0.04	0.0756	0.01	0.08		
0.5353	0.1053	0.1125	0.04	0.008	0.0084	0.0719	0.0231	0.0385	0.0592	6.57	1.882514
0.4801	0.1142	0.1003	0.04	0.028	0.0363	0.0568	0.0636	0.0429	0.0407	5.37	1.680828
0.5353	0.1053	0.1125	0.04	0.008	0.0084	0.0719	0.0231	0.0385	0.0592	6.41	1.857859
0.5328	0.1048	0.1129	0.04	0.008	0.0084	0.0733	0.0235	0.0392	0.0596	6.76	1.911023
0.57	0.05	0.1031	0.07	0	0	0.06	0.01	0.13	0.01	12.31	2.510412
0.57	0.1314	0.05	0.07	0	0.08	0.02	0.0686	0	0.01	6.01	1.793425
0.57	0.05	0.0735	0.07	0	0.08	0.02	0.0365	0	0.1	5.92	1.778336
0.57	0.0522	0.2	0.01	0.08	0	0.02	0.0578	0	0.01	9.91	2.293544
0.4464	0.2	0.0736	0.07	0	0	0.02	0.0961	0	0.0939	1.99	0.688135
0.5059	0.05	0.0841	0.07	0.08	0	0.15	0.0033	0	0.0567	1.35	0.300105
0.4431	0.2	0.0512	0.07	0.08	0	0.02	0.0257	0.1	0.01	1.26	0.231112
0.5463	0.05	0.2	0.02	0	0.08	0.02	0.0782	0	0.01	14.41	2.667922
0.5619	0.05	0.2	0.01	Ŏ	0	0.02	0.0555	Ō	0.1	13.44	2.598235
0.4391	0.2	0.0675	0.01	0.08	ŏ	0.02	0	0.0834	0.1	5.32	1.671473
0.4391	0.2	0.0832	0.01	0.00	Ő	0.132	0.0458	0.0004	0.01	27.42	3.311273
0.519	0.1843	0.0032	0.03	0.08	0	0.02	0.0526	Ö	0.01	10.3	2.332144
0.5445		0.03	0.03	0.08	0	0.02	0.0027	0.13	0.01	8.07	2.088153
	0.05								0.01	2.15	0.765468
0.42	0.0544	0.2	0.04	0	0.08	0.02	0.0892	0			0.765466
0.42	0.1743	0.2	0.04	0	0	0.02	0.1388	0	0.01	1.79	
0.42	0.05	0.2	0.04	0.08	0	0.0632	0.134	0	0.01	2.82	1.036737
0.5421	0.05	0.0891	0.07	0.08	0	0.15	0.0088	0	0.01	1.91	0.647103
0.57	0.0839	0.1061	0.07	0	0	0.02	0.14	0	0.01	12.34	2.512846
0.5147	0.1109	0.1044	0.01	0	0.08	0.1428	0.0272	0	0.01	12.02	2.486572

 0.4838
 0.05
 0.1362
 0.07
 0
 0.08
 0.0742
 0.0258
 0.07
 0.01
 1.98
 0.683097

 0.504
 0.0639
 0.15
 0.04
 0.02
 0.05
 0.02
 0.1
 0.02
 0.03
 6.88
 1.928619

Table 2. Validation Set for Viscosity

I able		uation		A 19COSI	Ly						
SIO2	B2O3	NA2O	LI2O			FE2O3	AL2O3	ZRO2	OTHERS	VISC	LNVISC
0.55671 (0.18221	0.10704	0.00911	0.04471	0.072885	0.018221	0	0	0.009111	6.2	1.824549
0.5325	0.0694	0.0781	0.07	0.05	0.02	0.03	0.1	0.02	0.03	6.2	1.824549
0.5675	0.007	0.0625	0.07	0.032	0.038	0.1	0.03	0.02	0.03	5.51	1.706565
						0.03	0.05	0.02	0.03	4.43	1.4884
0.507	0.1477	0.05	0.0653	0.02	0.03						
0.57	0.1078	0.05	0.0699	0.05	0.02	0.02	0.0623	0.02	0.03	6.08	1.805005
0.5299	0.1106	0.05	0.0595	0.02	0.05	0.0308	0.0592	0.02	0.07	6.03	1.796747
0.5264	0.1259	0.0577	0.07	0.02	0.02	0.02	0.0746	0.02	0.0654	4.7	1.547563
0.5294	0.05	0.1277	0.0429	0.05	0.02	0.02	0.04	0.05	0.07	6.64	1.893112
0.47	0.1442	0.0968	0.039	0.05	0.02	0.02	0.0854	0.02	0.0546	3.94	1.371181
0.5073	0.1357	0.0957	0.0413	0.02	0.02	0.0515	0.0785	0.02	0.03	6.46	1.865629
				0.0275	0.0363	0.0568	0.0636	0.043	0.0407	5.71	1.742219
0.4801	0.1142	0.1003	0.0376								
0.5328	0.1048	0.1129	0.0373	0.0082	0.0084	0.0733	0.0235	0.039	0.0596	7.07	1.95586
0.6	0.0817	0.045	0.0788	0.0008	0.0009	0.072	0.0233	0.039	0.059	9.22	2.221375
0.5328	0.1048	0.1129	0.0373	0.0082	0.0084	0.0733	0.0235	0.039	0.0596	6.26	1.83418
0.5328	0.1048	0.1129	0.0373	0.0082	0.0084	0.0733	0.0235	0.039	0.0596	6.12	1.811562
0.5328	0.1048	0.1129	0.0373	0.0082	0.0084	0.0733	0.0235	0.039	0.0596	6.74	1.90806
0.39	0.2	0.05	0.07	0.02	0.08	0.02	0.15	0.01	0.01	1.85	0.615186
0.438	0.1718	0.1268	0.0727	0.0375	0.0005	0.02	0.115	0.008	0.0102		0.139762
								0.008	0.0102	2.61	0.95935
0.5281	0.0876	0.1725	0.0743	0.0063	0.0005	0.02	0.0925				
0.5281	0.0664	0.12	0.073	0	0	0.02	0.1625	0.018	0.0125	12.9	2.557227
0.5579	0.1765	0.1125	0.0156	0.05	0.0005	0.02	0.05	0.008	0.0095	9.95	2.297573
0.3232	0.1717	0.19	0.0051	0.1	0	0.02	0.18	0	0.01	2.38	0.8671
0.5697	0.0509	0.0925	0.0642	0.0025	0.0008	0.0812	0.0288	0.043	0.0663	8.89	2.184927
0.5344	0.1128	0.086	0.0697	0.0007	0.0004	0.0013	0.0196	0.155	0.0203	8.2	2.104134
0.5175	0.0917	0.1211	0.0523	0.0097	0.0061	0.0388	0.118	0.003	0.0422	8.24	2.109
		0.1086	0.0583	0.0024	0.0001	0.0004	0.2043	0.000	0.0076	8.97	2.193886
0.4596	0.1587						0.164		0.0416	17.05	2.83615
0.504	0.1355	0.0797	0.0696	0.0007	0.0002	0.0046		1E-04			
0.566	0.0781	0.0664	0.0713	0.0079	0.0032	0.0334	0.0816	5E-04	0.0916	22.15	3.097837
0.4854	0.1418	0.0812	0.0691	0.0008	8000.0	0.008	0.1819	5E-04	0.0305	10.8	2.379546
0.5697	0.0509	0.0925	0.0642	0.0025	0.0008	0.0812	0.0288	0.043	0.0663	8.5	2.140066
0.5175	0.0917	0.1211	0.0523	0.0097	0.0061	0.0388	0.118	0.003	0.0422	7.81	2.055405
0.504	0.1355	0.0797	0.0696	0.0007	0.0002	0.0046	0.164	1E-04	0.0416	8.67	2.159869
0.566	0.0781	0.0664	0.0713	0.0079	0.0032	0.0334	0.0816	5E-04	0.0916	9.55	2.256541
0.4854	0.1418	0.0812	0.0691	0.0008	0.0002	0.008	0.1819	5E-04	0.0305	8.66	2.158715
						0.105	0.02		0.02	1.18	0.165514
0.5018	0.06	0.18	0.0632	0.04	0.005	0.100		0.005			
0.455	0.06	0.18	0.07	0.005	0.005	0.005	0.02	0.11	0.09		0.438255
0.56	0.16	0.05	0.0254	0.005	0.04	0.0699	0.02	0.05	0.02	28.12	3.336481
0.5479	0.16	0.05	0.0121	0.005	0.005	0.105	0.02	0.005	0.09	57.26	4.047602
0.5074	0.16	0.05	0.0176	0.005	0.04	0.105	0.02	0.075	0.02	66.25	4.193435
0.44	0.06	0.1734	0.07	0.005	0.04	0.105	0.02	0.005	0.0816	0.69	-0.37106
0.56	0.095	0.18	0.07	0.005	0.04	0.005	0.02	0.005	0.02	1.58	0.457425
0.49	0.0951	0.18	0.0699	0.04	0.005	0.005	0.02	0.005	0.09	0.74	-0.30111
0.455	0.06	0.18	0.07	0.005	0.005	0.105	0.02	0.08	0.02	1.19	0.173953
0.44	0.00	0.18	0.07	0.005	0.02	0.005	0.17	0.005	0.045		1.391282
				0.04	0.005	0.005	0.17	0.005	0.045	29.69	3.39081
0.4764	0.06	0.18	0.0136				0.0987	0.061	0.02	17.98	2.88926
0.4983	0.08	0.18	0.018	0.0137	0.005	0.025					
0.4597	0.06	0.1403	0.07	0.04	0.005	0.025	0.105	0.075	0.02	3.57	1.272566
0.44	0.1171	0.18	0.01	0.04	0.005	0.105	0.02	0.063	0.02	2.78	1.022451
0.56	0.16	0.0542	0.07	0.005	0.005	0.1008	0.02	0.005	0.02	3.65	1.294727
0.56	0.16	0.105	0.01	0.005	0.04	0.005	0.02	0.005	0.09	14.31	2.660959
0.44	0.16	0.1	0.07	0.005	0.04	0.005	0.02	0.07	0.09	1	0
0.44	0.1337	0.1279	0.07	0.0098	0.005	0.0986	0.02	0.005	0.09	0.64	-0.44629
0.44	0.16	0.18	0.0526	0.04	0.005	0.0271	0.0703	0.005	0.02	0.81	-0.21072
0.4895	0.112	0.1671	0.0328	0.0113	0.0166	0.0897	0.0367	0.004	0.031	1.6	0.470004
					0.0363	0.0568	0.0636	0.004	0.0407	5.55	1.713798
0.4801	0.1142	0.1003	0.0376	0.0275							
0.5328	0.1048	0.1129	0.0373	0.0082	0.0084	0.0733	0.0235	0.039	0.0596	7.25	1.981001
0.42	0.1743	0.2	0.0369	0	0	0.02	0.1388	0	0.01	1.9	0.641854
0.5203	0.0969	0.098	0.0356	0.0097	0.0077	0.1019	0.0523	0.02	0.0577	8.53	2.143589
0.5329	0.074	0.0626	0.0596	0.0035	0.0012	0.1229	0.0286	0.044	0.0704	6.85	1.924249
0.4895	0.1112	0.1671	0.0428	0.0113	0.0166	0.0897	0.0367	0.004	0.031	1.51	0.41211

Table 3. Training Set for PCT B

I abie		ining Sei		1 D				
SIO2	B2O3	NA20	Li2O	0.040004	MGO	FE2O3		OTHERS PCT LNPCT 0 0.00756 0.557 -0.58519
0.46270	0.19850	0.115182 0.045	0.0700	0.0008	0.0009	0.015119	0 (0.0233 0.0385	
0.6 0.5226	0.0874	0.07	0.0760 AO O	0.0008	0.0009	0.072	0.0200 0.0000	
0.5328	0.1048	0.1129	0.0373	0.0082	0.0084	0.0733	0.0235 0.0392	2 0.0596 2.761 1.015593
0.5328	0.1048	0.1129	0.0373	0.0082	0.0084 0.0084	በ በ733	0.0235 0.0392	0.0596 1.342 0.294161
0.5328 0.5328	0.1048	0.1129	0.0373	0.0082 0.0082	በ በበደለ	0.0733 0.0733	0.0235 0.0392	0.0596 1.419 0.349952
0.5328	0.1048	0.1129 0.1129 0.1129 0.1129 0.1129	0.0373	0.0082	0.0084 0.08 0.0005 0.0005	0.0733	0.0235 0.0392	0.0596 1.164 0.151862
0.39	0.2	0.05	0.07	0.02 0.0375	0.08 0.005	0.02	0.15 0.01 0.115 0.0075	0.01 0.778 -0.25103 5 0.0102 1.591 0.464363
0.438 0.5281	0.1718 0.0876	0.1268 0.1725	0.0727	0.0073	0.0003	0.02	0.0925 0.0075	5 0.0107 1.624 0.484892
0.5281	0.0664	0.12	0.07 0.0373 0.0373 0.0373 0.0373 0.077 0.0727 0.0743 0.073	0	0	0.02	0.1625 0.0175	5 0.0125 0.222 -1.50508
0.5579 0.3232	0.1765	0.1125	U.U.I.X	0.05	0.0005	0.02 0.02 0.02 0.02	0.05 0.0075	0.0095 1.002 0.001998
0.3232	0.1717	0.12 0.1125 0.19 0.0925	0.0051	0.1 0.0025	0	0.02 0.0812 0.0013 0.0388	0.18 0 0.0288 0.0431	0.01 0.332 -1.10262 0.0663 0.379 -0.97022
0.5697 0.5344	0.0509	0.0925	0.0642	0.0025	0.0008 0.0004	0.0612	0.0200 0.0431	0.0663 0.379 -0.97022 0.0203 0.335 -1.09362
0.5175	0.1128 0.0917	0.086 0.1211 0.1086 0.0797	0.0697 0.0523	0.0097	0.0061	0.0388	0.0196 0.1548 0.118 0.0026	0.0422 0.21 -1.56065
0.4596	0.1587	0.1086	0.0583	0.0024	0.0061	0.0004	0.2043	0.0076 0.512 -0.66943
0.504	0.1355	0.0797	0.0696	0.0007	0.0002	0.0046	0.164 0.0001	0.0416 0.308 -1.17766 0.0916 0.226 -1.48722
0.566 0.4854	0.0781 0.1418	0.0664 0.0812	0.0713	0.0079 0.0008	0.0032 0.0008	0.0334 0.008	0.0816 0.0005 0.1819 0.0005	5 0.0916 0.226 -1.48722 5 0.0305 0.312 -1.16475
0.5697	0.1418	0.0612	0.0642	0.0008	0.0008	0.0812	0.0288 0.0431	
0.5175	0.0917	0.0925 0.1211 0.0797 0.0664	0.0523	0.0025 0.0097	0.0061	0.0388	0.118 0.0026	0.0422 0.21 -1.56065
0.504	0.1355	0.0797	0.0696	0.0007	0.0002	0.0046	0.164 0.0001	0.0416 0.244 -1.41059
0.566	0.0781	0.0664	0.0713	0.0079 0.0008	0.0032 0.0008	0.0334	0.0816 0.0008	5 0.0916 0.226 -1.48722 5 0.0305 0.278 -1.28013
0.566 0.4854 0.5018	0.1418	0.0812	0.0632	0.0008	0.0006	0.006 0.105	0.1619 0.0000	5 0.0303 0.278 -1.28013 5 0.02 14.87 2.699413
0.455	0.06	0.18	0.0002	0.04 0.005	0.005	0.005	0.02 0.11	0.02 14.87 2.699413 0.09 9.512 2.252554
0.56	0.06 0.06 0.16	0.05	0.0254	0.005	0.04	0.0699	0.02 0.0497	0.02 0.934 -0.06828
0.56 0.5479 0.5074	0.16	0.0812 0.18 0.05 0.05 0.05 0.1734	0.0121	0.005 0.005 0.005	0.005	0.105	0.02 0.008	0.09 0.744 -0.29571 0.02 0.764 -0.26919
0.5074	0.16 0.06	U.U5 0.1737	U.U176 0.07	0.005	0.04 0.07	0.105 0.105	0.02 0.070	5 0.0816 16.61 2.810186
0.56	0.095	0.1734	0.07	0.005 0.005	0.04	0.005	0.02 0.008	0.02 44 3.78419
0.49	0.0951	0.18	0.0696 0.0713 0.0691 0.0632 0.07 0.0254 0.0121 0.0176 0.07 0.07 0.0699 0.07 0.07	0.04	0.005 0.005 0.04 0.04 0.04 0.04 0.005 0.005 0.005 0.005	0.0046 0.0334 0.008 0.105 0.005 0.0699 0.105 0.105 0.005 0.005 0.005 0.005 0.025 0.025 0.105 0.1008	0.0816 0.0006 0.1819 0.0006 0.02 0.010 0.02 0.006 0.02 0.006 0.02 0.076 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.006	0.09 34.65 3.545471
0.455	0.06	0.18	0.07	, 0.005	0.005	0.105	0.02 0.08	3 0.02 12.46 2.522524 5 0.045 0.456 -0.78526
0.44 0.4764	0.06 0.06	0.18 0.18	U.U/ 0.0136	0.005 0.04	0.02	0.005	0.17 0.008	0.045 0.456 -0.76526 0.045 0.115 -2.16282
0.4783	0.08	0.18	0.0136 0.018 0.07 0.01 0.07 0.01 0.07	0.0137	0.005	0.025	0.0987 0.0613	0.02 0.178 -1.72597
0.4597	0.06	0.18 0.1403 0.18 0.0542	0.07	0.04	0.005	0.025	0 105 0 07 <i>9</i>	. 002 0308 -117766
0.44	0.1171	0.18	0.01	0.04	0.005	0.105	0.02 0.0629 0.02 0.005 0.02 0.005	0.02 1.716 0.539996
0.56	0.16	0.0542 0.105	0.07	0.005 0.005	0.005 0.04	U. 1008 0.006	0.02 0.000	5 0.02 5.577 1.718651 6 0.09 8.642 2.156634
0.56 0.44	0.16 0.16	0.103	0.01	0.005	0.04	0.005	0.02 0.00	0.09 18.59 2.922624
0.44	0.1337	0.1279	0.07	n nnor	0.005	0.0986 0.0271	0.02 0.005	5 0.09 13.22 2.58226
0.44	0.16	0.1 0.1279 0.18	0.07 0.0526 0.0428	0.04	0.005	0.0271	0.0703 0.005	0.02 4.07 1.403643
0.4895 0.4801	0.1112 0.1142	0.1671 0.1003	0.0428	0.04 0.0113 0.0275	0.04 0.005 0.005 0.0166 0.0363 0.0084	0.0897	0.0367 0.0041 0.0636 0.0429	0.031 9.976 2.300182 0.0407 0.493 -0.70725
0.5328	0.1048	n 1120	0.0373	0.0273	0.0084	0.0568 0.0733	0.0235 0.0392	2 0.0596 1.434 0.360468
0.42	0.1743	0.2 0.098 0.0626 0.1671	0.0373 0.0369	Λ	L)	0.02 0.1019 0.1229 0.0897	0.1388 (0.01 4.52 1.508512
0.42 0.5203	0.0969	0.098	0.0356	0.0097	0.0077	0.1019	0.0523 0.0199	0.0577 0.232 -1.46102
0.5329	0.074	0.0626	0.0596	0.0035	0.0012	0.1229	0.0286 0.0443 0.0367 0.004	3 0.0704 0.326 -1.12086 0.031 8.644 2.156865
0.4895 0.5353	0.1112 0.1053	0.1125	0.0428 0.0375	0.0083	0.0084	0.0719	0.0231 0.038	5 0.0592 2.672 0.982827
0.41	0.1337	0.1428	0.0476	0.0097 0.0035 0.0113 0.0083 0.0105	0.0166 0.0084 0.0107	0.0719 0.0913	0.0293 0.0489	0.0752 6.073 1.803853
0.45	0.1246	0.1332	0.0444	0.0098	0.0099	0.0851	0.0273 0.0456	
0.49 0.57	0.1156	0.1235 0.1041	0.0412 0.0347	0.0091 0.0077	0.0092 0.0078	0.0789 0.0665	0.0254 0.0423 0.0214 0.0356	3 0.065 4.59 1.52388 5 0.0548 1.651 0.501381
0.5684	0.0974 0.05	0.1041	0.0347	0.0077	0.0089	0.0763	0.0245 0.0409	0.0629 0.788 -0.23826
0.5086	0.15	0.1195 0.1069	0.0356	0.0079	0.008	0.0683	0.022 0.0366	5 0.0562 2.144 0.762673
0.4786	0.2	0.1006	0.0335	0.0074	0.0075	0.0643	0.0207 0.0344 0.0247 0.0412	4 0.0529 5.707 1.741693 2 0.0634 0.314 -1.15836
0.573 0.5127	0.1127 0.1009	0.05 0.15	0.0401 0.0359	0.0089 0.008	0.009 0.0081	0.077 0.0689	0.0247 0.0412 0.0221 0.0369	0.0567 6.135 1.81401
0.4825	0.0949	0.13	0.0338	0.0075	0.0076	0.0648	0.0208 0.0347	7 0.0534 14.4 2.667228
0.5506	0.1083	0.1157	0.01	0.0085	0.0086	0.074	0.0238 0.0390	5 0.0609 0.612 -0.49102
0.5228	0.1028	0.1099	0.06	0.0081	0.0082	0.0702	0.0226 0.0376	5 0.0578 7.116 1.962346 2 0.0572 9.406 2.241348
0.5172 0.529	0.1017 0.1041	0.1087 0.1112	0.07 0.0371	0.008 0.02	0.0081 0.0083	0.0695 0.0711	0.0223 0.0372 0.0228 0.038	0.0585 3.012 1.102604
0.5398	0.1041	0.1135	0.0378	0.0084	0	0.0725	0.0233 0.0388	3 0.0597 1.59 0.463734
0.529 0.548	0.1041	0.1112	0.0371	0.0082	0.02	0.0725 0.0711	0.0228 0.038	I 0.0585 3.63 1.289233
0.548	0.1078	0.1152	0.0384	0.0085	0.0086	0.0736	0 0.0394	4 0.0606 3.803 1.33579 4 0.0576 0.291 -1.23443
0.5206	0.1024 0.097	0.1094 0.1036	0.0365 0.0346	0.0081 0.0077	0.0082 0.0077	0.0699 0.0662	0.05 0.0374 0.1 0.0358	4 0.0576 0.291 -1.23443 5 0.0545 0.199 -1.61445
0.4932 0.4658	0.0916	0.1036	0.0326	0.0072	0.0073	0.0626	0.15 0.033	5 0.0515 0.193 -1.64507
0.5328	0.1048	0.1129	0.0373	0.0082	0.0084	0.0733	0.0235 0.039	2 0.0596 1.473 0.387301
0.37	0.1428	0.1525	0.0508	0.0113	0.0114	0.0975	0.0313 0.052	2 0.0803 5.567 1.716856

Table 4. Validation Set for PCT B

rable -		uauon 8					41000	70.00	OTHERO.	DOT	LLIDOT
SIO2	B2O3	NA2O 0.115182	LI2O 0.048313	CAO 0.048324	MGO 0.087705 (FE2O3	AL2O3 0	ZRO2 (0.00756	PCT 0.557	LNPCT -0.58519
0.46270 0 0.6	0.0817	0.113162	0.046313	0.0463.24	0.0009	0.072	0.0233	0.0385	0.059	0.557	-0.58519
0.5226	0.0874	0.07	0.06	0.0000	0.05	0.04	0.08	0.01	0.08	0.304	-1.19073
0.5328	0.1048	0.1129	0.0373	0.0082	0.0084	0.0733	0.0235	0.0392	0.0596	2.761	1.015593
0.5328	0.1048	0.1129	0.0373	0.0082	0.0084	0.0733	0.0235	0.0392	0.0596	1.342	0.294161
0.5328	0.1048	0.1129	0.0373	0.0082	0.0084	0.0733	0.0235	0.0392	0.0596	1.419	0.349952
0.5328	0.1048 0.2	0.1129 0.05	0.0373 0.07	0.0082 0.02	0.0084 0.08	0.0733 0.02	0.0235 0.15	0.0392 0.01	0.0596 0.01	1.164 0.778	0.151862 -0.25103
0.39 0.438	0.1718	0.1268	0.0727	0.0375	0.0005	0.02	0.115	0.0075	0.0102	1.591	0.464363
0.5281	0.0876	0.1725	0.0743	0.0063	0.0005	0.02	0.0925	0.0075	0.0107	1.624	0.484892
0.5281	0.0664	0.12	0.073	0	0	0.02	0.1625	0.0175	0.0125	0.222	-1.50508
0.5579	0.1765	0.1125	0.0156	0.05	0.0005	0.02 0.02	0.05 0.18	0.0075 0	0.0095 0.01	1.002 0.332	0.001998 -1.10262
0.3232 0.5697	0.1717 0.0509	0.19 0.0925	0.0051 0.0642	0.1 0.0025	0 8000.0	0.0812	0.0288	0.0431	0.0663	0.379	-0.97022
0.5344	0.1128	0.086	0.0697	0.0007	0.0004	0.0013	0.0196	0.1548	0.0203	0.335	-1.09362
0.5175	0.0917	0.1211	0.0523	0.0097	0.0061	0.0388	0.118	0.0026	0.0422	0.21	-1.56065
0.4596	0.1587	0.1086	0.0583	0.0024 0.0007	0.0001 0.0002	0.0004 0.0046	0.2043 0.164	0.0001	0.0076 0.0416	0.512 0.308	-0.66943 -1.17766
0.504 0.566	0.1355 0.0781	0.0797 0.0664	0.0696 0.0713	0.0007	0.0002	0.0334	0.184	0.0005	0.0416	0.226	-1.48722
0.4854	0.1418	0.0812	0.0691	0.0008	0.0008	0.008	0.1819	0.0005	0.0305	0.312	-1.16475
0.5697	0.0509	0.0925	0.0642	0.0025	0.0008	0.0812	0.0288	0.0431	0.0663	0.411	-0.88916
0.5175	0.0917	0.1211	0.0523	0.0097	0.0061	0.0388	0.118	0.0026	0.0422	0.21	-1.56065 -1.41059
0.504 0.566	0.1355 0.0781	0.0797 0.0664	0.0696 0.0713	0.0007 0.0079	0.0002 0.0032	0.0046 0.0334	0.164 0.0816	0.0001 0.0005	0.0416 0.0916	0.244 0.226	-1.41039
0.4854	0.1418	0.0812	0.0691	0.0008	0.0008	0.008	0.1819	0.0005	0.0305	0.278	-1.28013
0.5018	0.06	0.18	0.0632	0.04	0.005	0.105	0.02	0.005	0.02	14.871	2.699413
0.455	0.06	0.18	0.07	0.005	0.005	0.005	0.02	0.11	0.09	9.512	2.252554
0.56	0.16	0.05 0.05	0.0254 0.0121	0.005 0.005	0.04 0.005	0.0699 0.105	0.02 0.02	0.0497 0.005	0.02 0.09	0.934 0.744	-0.06828 -0.29571
0.5479 0.5074	0.16 0.16	0.05	0.0121	0.005	0.003	0.105	0.02	0.005	0.07	0.764	-0.26919
0.44	0.06	0.1734	0.07	0.005	0.04	0.105	0.02	0.005	0.0816	16.613	2.810186
0.56	0.095	0.18	0.07	0.005	0.04	0.005	0.02	0.005	0.02	44	3.78419
0.49	0.0951	0.18 0.18	0.0699 0.07	0.04 0.005	0.005 0.005	0.005 0.105	0.02 0.02	0.005 0.08	0.09 0.02	34.656 12.46	3.545471 2.522524
0.455 0.44	0.06 0.06	0.18	0.07	0.005	0.003	0.005	0.17	0.005	0.045	0.456	-0.78526
0.4764	0.06	0.18	0.0136	0.04	0.005	0.005	0.17	0.005	0.045	0.115	-2.16282
0.4983	0.08	0.18	0.018	0.0137	0.005	0.025	0.0987	0.0613 0.075	0.02	0.178	-1.72597
0.4597	0.06	0.1403	0.07	0.04 0.04	0.005 0.005	0.025 0.105	0.105 0.02	0.0629	0.02 0.02	0.308 1.716	-1.17766 0.539996
0.44 0.56	0.1171 0.16	0.18 0.0542	0.01 0.07	0.005	0.005	0.103	0.02	0.0029	0.02	5.577	1.718651
0.56	0.16	0.105	0.07	0.005	0.04	0.005	0.02	0.005	0.09	8.642	2.156634
0.44	0.16	0.1	0.07	0.005	0.04	0.005	0.02	0.07	0.09	18.59	2.922624
0.44	0.1337	0.1279	0.07	0.0098	0.005 0.005	0.0986 0.0271	0.02 0.0703	0.005 0.005	0.09 0.02	13.227 4.07	2.58226 1.403643
0.44 0.4895	0.16 0.1112	0.18 0.1671	0.0526 0.0428	0.04 0.0113	0.003	0.0271	0.0763	0.003	0.031	9.976	2.300182
0.4801	0.1142	0.1003	0.0376	0.0275	0.0363	0.0568	0.0636	0.0429	0.0407	0.493	-0.70725
0.5328	0.1048	0.1129	0.0373	0.0082	0.0084	0.0733	0.0235	0.0392	0.0596	1.434	0.360468
0.42	0.1743	0.2 0.098	0.0369 0.0356	0 0.0097	0 0.0077	0.02	0.1388 0.0523	0.0199	0.01 0.0577	4.52 0.232	1.508512 -1.46102
0.5203 0.5329	0.0969 0.074	0.0626	0.0596	0.0035	0.0077	0.1019 0.1229	0.0286	0.0443	0.0704	0.326	-1.12086
0.4895	0.1112	0.1671	0.0428	0.0113	0.0166	0.0897	0.0367	0.0041	0.031	8.644	2.156865
0.5353	0.1053	0.1125	0.0375	0.0083	0.0084	0.0719	0.0231	0.0385	0.0592	2.672	0.982827
0.41 0.45	0.1337 0.1246	0.1428 0.1332	0.0476 0.0444	0.0105 0.0098	0.0107 0.0099	0.0913 0.0851	0.0293 0.0273	0.0489 0.0456	0.0752 0.0701	6.073 5.548	1.803853 1.713438
0.49	0.1156	0.1335	0.0412	0.0091	0.0092	0.0789	0.0254	0.0423	0.065	4.59	1.52388
0.57	0.0974	0.1041	0.0347	0.0077	0.0078	0.0665	0.0214	0.0356	0.0548	1.651	0.501381
0.5684	0.05	0.1195	0.0398	0.0088	0.0089	0.0763	0.0245	0.0409	0.0629	0.788	-0.23826
0.5086	0.15 0.2	0.1069 0.1006	0.0356 0.0335	0.0079 0.0074	0.008 0.0075	0.0683 0.0643	0.022 0.0207	0.0366 0.0344	0.0562 0.0529	2.144 5.707	0.762673 1.741693
0.4786 0.573	0.1127	0.1005	0.0300	0.0089	0.009	0.077	0.0247	0.0412	0.0634	0.314	-1.15836
0.5127	0.1009	0.15	0.0359	0.008	0.0081	0.0689	0.0221	0.0369	0.0567	6.135	1.81401
0.4825 0.5506	0.0949	0.2	0.0338	0.0075	0.0076	0.0648	0.0208	0.0347	0.0534 0.0609	14.4 0.612	2.667228 -0.49102
0.5506	0.1083 0.1028	0.1157 0.1099	0.01 0.06	0.0085	0.0086 0.0082	0.074 0.0702	0.0238 0.0226	0.0396 0.0376	0.0578	7.116	1.962346
0.5172	0.1017	0.1099	0.07	0.0081 0.008	0.0081	0.0695	0.0223	0.0372	0.0572	9.406	2.241348
0.529	0.1041	0.1112	0.0371	0.02	0.0083	0.0711	0.0228	0.0381 0.0388	0.0585	3.012	1.102604
0.5398	0.1062	0.1135	0.0378	0.0084	0 03	0.0725 0.0711	0.0233 0.0228	0.0388	0.0597 0.0585	1.59 3.63	0.463734 1.289233
0.529 0.548	0.1041 0.1078	0.1112 0.1152	0.0371 0.0384	0.0082 0.0085	0.02 0.0086	0.0711	0.0228	0.0394	0.0363	3.803	1.33579
0.5206	0.1024	0.1094	0.0365	0.0081	0.0082	0.0699	0.05	0.0394 0.0374	0.0576	0.291	-1.23443
0.4932	0.097	0.1036	0.0346	0.0077	0.0077	0.0662	0.1	0.0355	0.0545	0.199	-1.61445
0.4658	0.0916	0.0979	0.0326	0.0072 0.0082	0.0073 0.0084	0.0626 0.0733	0.15 0.0235	0.0335 0.0392	0.0515 0.0596	0.193 1.473	-1.64507 0.387301
0.5328 0.37	0.1048 0.1428	0.1129 0.1525	0.0373 0.0508	0.0082	0.0084	0.0733	0.0233	0.0592	0.0390	5.567	1.716856
0.57	0.1420	0.1020	0.0000	5.0110	0.0114	5.0770	0.0010	5.5022	2.3550		

Table 5. Training Set for MCC-1 B FE2O3 AL2O3 7RO2 OTHERS LNMCC LI2O MGO B2O3 0.0429 0.0407 12.47 7.46 0.0376 0.0275 2.523326 0.1003 0.0568 0.0636 0.4801 0.1142 0.0363 Ö 2.009555 0.01 0.55 0.05 0.05 0.07 0.1 0 0.02 0.150.01 15.57 2.745346 0.01 0.42 0.2 0.05 0.07 0 0.08 0.02 0.1411.48 10.995 2.440606 0.01 0.57 0.05 0.07 0.07 0 0 0.150.08 0 $0.1\overline{3}$ 2.397441 0.0964 0.1 0 0.0336 0 0.01 0.57 0.05 0.01 17.875 2.883403 0.01 0.05 0.08 0.15 80.0 0.0837 0.01 0.5363 0.57 0.42 Ō 0 0.02 0.12 0 0.1 2.745 1.009781 0.0851 0.0949 0.01 2.110213 0.08 8.25 0.1549 0.02 0.14 0 0.0751 0.01 0.1 0.42 118.48 4.774744 0.0736 Ö 0 0.01 0.1764 0.070.1 0.15 0.0238 0.13 4.29912 0.01 0 Õ 0.02 0.01 73.635 0.2 0.42 0.1862 0.05 Õ 0.08 0.0858 0.1442 0 0.01 16.85 2.824351 0.4327 0.1873 0.01 39.1 3.666122 $0.\overline{1}$ 0.14 0 0.1 0.1455 0.01 n 0.4545 0.05 3.180343 2.566871 0.08 0.13 0.09 24.055 0.02 0.02 n 0.4214 0.05 0.1186 0.07 0.0568 13.025 0.0376 0.0275 0.0636 0.0429 0.0407 0.4801 0.1142 0.1003 0.0363 0.0429 12.505 17.36 2.526129 0.0407 0.4801 0.1142 0.1003 0.0376 0.0275 0.0363 0.0568 0.0636 0.08 2.854169 0.01 0.05 0.0837 0.01 0.08 0.15 0.5363 15.37 12.24 0.0456 0.0393 0.0289 0.0084 2.732418 0.5153 0.0956 0.1052 0.0375 0.1179 0.08 0.025 0.5226 0.5017 2.504709 0.01 0.0874 0.06 0.05 0.04 0.08 0.07 2.504709 2.132982 2.182675 2.275214 2.342286 8.44 8.87 0.045 0.03 0.07 0.0883 0.06 0.07 0.11 0.01 0.0368 0.025 0.07 0.045 0.1032 0.4645 0.132 0.07 0.0435 0.4645 0.56 0.4751 0.5373 0.4814 0.0619 0.025 9.73 0.1095 0.07 0.0536 0.07 0 0.04 0.01 10.405 0.159 0.101 0.02 0.0348 0 0.04 0.08 0.01 0.08 0.0641 0.0046 0.12 0.0159 0.01 17.475 2.860771 0.07 0.0382 0.07 0.07 0.04 0.0953 0.01 0.0648 5.02 1.61343 0.17 0.07 0.0591 0.0094 0 2.918041 18.505 $0.0\bar{5}$ 0.114 0.061 0.01 0.025 0.0985 0.06 0 0.5115 2.518041 2.580217 2.507565 2.988204 2.288486 2.592265 2.714364 0.0924 0.1306 0.06 Ö 0 0.0712 0.0138 0.1 0.025 13.2 0.5431 0.0944 12.275 0.0288 0.0669 0.1043 0.01 0 0.4694 0.4915 0.17 0.06 0.0466 0.01 0.01 0.0935 0.0665 19.85 0.0751 0.0833 0.07 0.04 0.07 0.1692 0.04 0.0901 0.01 0.025 9.86 0.07 0.01 0.4683 0.17 0.0466 0.0225 0.0486 0.0214 0.0375 0.0376 0.0373 0.03 0.05 0.04 0.0896 0.01 0.025 13.36 0.4937 0.07 0.0802 0.05 0.02 0.04 0.0243 0.1 0.0457 15.095 0.1313 0.46 0.17 0.1125 0.0601 0.01 0.08 25.1 3.222868 0 0.04 0.0756 0.4729 0.07 0.0083 0.0275 0.0084 0.0719 0.0231 0.0385 0.0592 18.085 2.895083 0.1053 0.5353 0.0429 0.0407 12.325 2.51163 0.0363 0.0568 0.0636 0.4801 0.1142 0.1003 0.0084 0.0719 0.0231 0.0385 0.0592 19.72 2.981633 0.1125 0.1129 0.5353 0.1053 0.0083 2.616666 2.131203 2.468523 0.0235 0.0392 0.0596 13.69 0.0084 0.0733 0.0082 0.5328 0.1048 0.06 0.01 0.01 8.425 0.1031 0.0669 0.13 0.57 0.05 O 0.08 0.0686 0.01 11.805 0.02 0 0.1314 0 0.57 0.05 0.07 0.02 0.0365 15.595 2.74695 0.0735 0.07 n 0.08 n 0.10.57 0.05 0.02 0.0578 0 0.01 11.21 2.416806 0.2 0.0736 0.08 0 0.57 0.0522 0.01 19.855 2.988456 0.2 0.02 0.0961 0 0.0939 0.44640.07 n 3.540959 3.667273 0.08 0.0033 Ö 0.0567 34.5 0 0.15 0.07 0.5059 0.0841 39.145 0.0257 0.1 0.01 0.44310.2 0.0512 0.07 0.08 0.2 $0.0\bar{2}$ 0.0782 0.01 11.22 2.417698 0.08 n 0.5463 0.05 0.0155 Ω 9.835 2.285947 0.02 0.0555 O 0.1 0.5619 0.05 0.0126 n 0 0.2 0.0675 80.0 0 0.02 0.0834 0.1 42.285 3.744432 0.4391 0.01 0.0458 24.435 3.196017 0.01 0 n 0.0832 0.01 0 0.1320.519 3.850573 2.810607 0.0526 0.0027 47.02 0.08 0.02 0 0.01 0.57 0.1843 0.05 0.0331 0 0.2 0.2 0.2 0.2 0.13 0.01 16.62 0.5445 0.05 0.0428 0 n 0.020.0892 2.674838 14.51 0.08 0.02 0 0.1 0.0544 0.0364 O 0.423.375538 2.451867 0.01 29.24 0.1388 n 0.02 0.42 0.1743 0.0369 n Ō 0.0632 0.134 0.01 11.61 80.0 0.42 0.05 0.0428 0 n 3.048799 2.265402 0.0088 n 0.01 21.09 0.5421 0.05 0.0891 0.07 0.08 0 0.15 0.01 9.635 0.020.14 n 0.57 0.0839 0.1061 0.07 n 0 0.0272 23.645 3.163152 80.0 0.1428 0.0742 n 0.01 0.5147 0.1109 0.1044 0.01 0 0.07 16.3 2.791165 0.0258 0.01 0.4838 0.05 0.1362 0.07 0 0.08 0.02 12.205 2.501846 0.03 0.0639 0.15 0.0421 0.02 0.05 0.02 0.1 0.504 0.03 9.425 2.243366 0.1 0.02 0.5325 0.0694 0.0781 0.07 0.05 0.02 0.03 0.02 0.07 2.660959 14.31 0.032 0.03 0.5675 0.05 0.0625 0.07 0.0380.1 11.33 10.275 2.427454 2.329714 0.03 0.507 0.1477 0.05 0.0653 0.03 0.05 0.03 0.0623 0.0592 0.0699 0.05 0.02 0.02 0.02 0.03 0.57 0.5299 0.1078 0.05 11.6 10.985 2.451005 0.1106 0.0595 0.02 0.05 0.0308 0.02 0.070.05 2.396531 0.5264 0.1259 0.02 0.02 0.02 0.0746 0.02 0.0654 0.0577 0.07 11.555 2.447118 0.5294 0.0429 0.05 0.02 0.02 0.04 0.05 0.07 0.1277 0.47 0.039 0.02 0.0854 0.02 0.0546 10:625 2.36321 0.1442 0.0968 0.05 0.02 2.429218 0.1357 0.0957 0.02 0.0515 0.0785 0.02 0.03 11.35 0.5073 0.0413 0.02 2.436241 0.1003 0.1129 0.0407 0.1142 0.0275 0.0568 0.0636 0.042911.43 0.4801 0.0376 0.0363 2.513656 0.1048 0.0373 0.0082 0.0084 0.0733 0.0235 0.0392 0.0596 12.35 0.53282.310057 2.766634 0.6 0.0817 0.045 0.0008 0.0009 0.072 0.0233 0.0385 0.059 10.075 0.0788 0.0733 0.0235 0.0392 0.0596 15.905 0.5328 0.1048 0.1129 0.0373 0.0082 0.0084

Table 6. Validation Set for MCC-1 B

Lubic		Idution	L DOL 10						~		
SIO2	B2O3		LI2O			FE2O3	AL2O3	ZRO2			LNMCC
0.5328	0.1048	0 1129	0.0373	0.0082	0.0084	0.0733	0.0235	0.0392	0.0596	17.23	2.846652
0.5328	0.1048	0.1129	0.0373	0.0082	0.0084	0.0733	0.0235	0.0392	0.0596	15.28	2.726545
							0.15	0.01	0.01	13.15	2.576422
0.39	0.2	0.05	0.07	0.02	0.08	0.02					
0.438	0.1718	0.1268	0.0727	0.0375	0.0005	0.02	0.115	0.0075	0.0102	11.975	2.482821
0.5281	0.0876	0.1725	0.0743	0.0063	0.0005	0.02	0.0925	0.0075	0.0107	16.52	2.804572
0.5281	0.0664	0.12	0.073	0	0	0.02	0.1625	0.0175	0.0125	10.895	2.388304
			0.0156	0.05	0.0005	0.02	0.05	0.0075	0.0095	12.39	2.51689
0.5579	0.1765	0.1125	0.0100								
0.3232	0.1717	0.19	0.0051	0.1	O	0.02	0.18	0	0.01	9.645	2.26644
0.5697	0.0509	0.0925	0.0642	0.0025	0.0008	0.0812	0.0288	0.0431	0.0663	12.315	2.510818
0.5344	0.1128	0.086	0.0697	0.0007	0.0004	0.0013	0.0196	0.1548	0.0203	9.405	2.241241
			0.0523	0.0097	0.0061	0.0388	0.118	0.0026	0.0422	11.745	2.463428
0.5175	0.0917	0.1211									
0.4596	0.1587	0.1086	0.0583	0.0024	0.0001	0.0004	0.2043	0	0.0076	11.145	2.410991
0.504	0.1355	0.0797	0.0696	0.0007	0.0002	0.0046	0.164	0.0001	0.0416	10.56	2.357073
0.566	0.0781	0.0664	0.0713	0.0079	0.0032	0.0334	0.0816	0.0005	0.0916	9.88	2.290513
		0.0812	0.0691	0.0008	0.0008	0.008	0.1819	0.0005	0.0305	11.56	2.447551
0.4854	0.1418		0.0091								
0.5697	0.0509	0.0925	0.0642	0.0025	0.0008	0.0812	0.0288	0.0431	0.0663	_12	2.484907
0.5175	0.0917	0.1211	0.0523	0.0097	0.0061	0.0388	0.118	0.0026	0.0422	11.745	2.463428
0.504	0.1355	0.0797	0.0696	0.0007	0.0002	0.0046	0.164	0.0001	0.0416	6.645	1.893865
				0.0079	0.0032	0.0334	0.0816	0.0005	0.0916	9.88	2.290513
0.566	0.0781	0.0664	0.0713								
0.4854	0.1418	0.0812	0.0691	0.0008	0.0008.	0.008	0.1819	0.0005	0.0305	8.62	2.154085
0.5018	0.06	0.18	0.0632	0.04	0.005	0.105	0.02	0.005	0.02	26.53	3.278276
0.455	0.06	0.18	0.07	0.005	0.005	0.005	0.02	0.11	0.09	49.575	3.903487
		0.05	0.0254	0.005	0.04	0.0699	0.02	0.0497	0.02	32.15	3.470412
0.56	0.16								0.02		3.470412
0.5479	0.16	0.05	0.0121	0.005	0.005	0.105	0.02	0.005		32.15	
0.5074	0.16	0.05	0.0176	0.005	0.04	0.105	0.02	0.075	0.02	45.215	3.811429
0.44	0.06	0.1734	0.07	0.005	0.04	0.105	0.02	0.005	0.0816	107.18	4.67451
		0.18	0.0699	0.04	0.005	0.005	0.02	0.005	0.09	37.19	3.61604
0.49	0.0951								0.07	30.01	3.401531
0.455	0.06	0.18	0.07	0.005	0.005	0.105	0.02	0.08			
0.44	0.06	0.18	0.07	0.005	0.02	0.005	0.17	0.005	0.045	18.49	2.91723
0.4764	0.06	0.18	0.0136	0.04	0.005	0.005	0.17	0.005	0.045	8.305	2.116858
0.4983	0.08	0.18	0.018	0.0137	0.005	0.025	0.0987	0.0613	0.02	9.445	2.245486
									0.02	9.11	2.209373
0.4597	0.06	0.1403	0.07	0.04	0.005	0.025	0.105	0.075			
0.44	0.1171	0.18	0.01	0.04	0.005	0.105	0.02	0.0629	0.02	38.44	3.649099
0.56	0.16	0.0542	0.07	0.005	0.005	0.1008	0.02	0.005	0.02	29.14	3.372112
0.56	0.16	0.105	0.01	0.005	0.04	0.005	0.02	0.005	0.09	44.21	3.788951
			0.07	0.005	0.04	0.005	0.02	0.07	0.09	86.415	4.459161
0.44	0.16	0.1							0.09		5.37736
0.44	0.1337	0.1279	0.07	0.0098	0.005	0.0986	0.02	0.005		216.45	
0.44	0.16	0.18	0.0526	0.04	0.005	0.0271	0.0703	0.005	0.02	87.42	4.470724
0.4895	0.1112	0.1671	0.0428	0.0113	0.0166	0.0897	0.0367	0.0041	0.031	49.16	3.89508
0.4801	0.1142	0.1003	0.0376	0.0275	0.0363	0.0568	0.0636	0.0429	0.0407	12.53	2.528126
								0.0392	0.0596	12.89	2.556452
0.5328	0.1048	0.1129	0.0373	0.0082	0.0084	0.0733	0.0235				
0.42	0.1743	0.2	0.0369	0	0	0.02	0.1388	O	0.01	30.44	3.415758
0.5203	0.0969	0.098	0.0356	0.0097	0.0077	0.1019	0.0523	0.0199	0.0577	13.94	2.634762
0.5329	0.074	0.0626	0.0596	0.0035	0.0012	0.1229	0.0286	0.0443	0.0704	14.125	2.647946
			0.0428	0.0113	0.0166	0.0897	0.0367	0.0041	0.031	90.76	4.508219
0.4895	0.1112	0.1671									
0.5353	0.1053	0.1125	0.0375	0.0083	0.0084	0.0719	0.0231	0.0385	0.0592	19.238	2.956887
0.41	0.1337	0.1428	0.0476	0.0105	0.0107	0.0913	0.0293	0.0489	0.0752	52.909	3.968573
0.45	0.1246	0.1332	0.0444	0.0098	0.0099	0.0851	0.0273	0.0456	0.0701	30.967	3.432922
0.49	0.1156	0.1235	0.0412	0.0091	0.0092	0.0789	0.0254	0.0423	0.065	22.669	3.120998
			0.0347		0.0078	0.0665	0.0214	0.0356	0.0548	13.37	2.593013
	0.0974	0.1041		0.0077						10.07	
0.5684	0.05	0.1195	0.0398	0.0088	0.0089	0.0763	0.0245	0.0409	0.0629	12.54	2.528924
0.5086	0.15	0.1069	0.0356	0.0079	0.008	0.0683	0.022	0.0366	0.0562	22.722	3.123334
0.4786	0.2	0.1006	0.0335	0.0074	0.0075	0.0643	0.0207	0.0344	0.0529	90.836	4.509056
	0.1127	0.05	0.0401	0.0089	0.009	0.077	0.0247	0.0412	0.0634	10.128	2.315304
0.573											
0.5127	0.1009	0.15	0.0359	0.008	0.0081	0.0689	0.0221	0.0369	0.0567	25.972	3.257019
0.4825	0.0949	0.2	0.0338	0.0075	0.0076	0.0648	0.0208	0.0347	0.0534		4.587607
0.5506	0.1083	0.1157	0.01	0.0085	8800.0	0.074	0.0238	0.0396	0.0609	12.767	2.546864
0.5228	0.1028	0.1099	0.06	0.0081	0.0082	0.0702	0.0226	0.0376	0.0578	20.331	3.012147
							0.0223	0.0372	0.0572	29.404	3.381131
0.5172	0.1017	0.1087	0.07	0.008	0.0081	0.0695		0.0072			0.001101
0.529	0.1041	0.1112	0.0371	0.02	0.0083	0.0711	0.0228	0.0381	0.0585	19.768	2.984064
0.5398	0.1062	0.1135	0.0378	0.0084	0	0.0725	0.0233	0.0388	0.0597	19.983	2.994882
0.529	0.1041	0.1112	0.0371	0.0082	0.02	0.0711	0.0228	0.0381	0.0585	20.386	3.014848
0.029			0.0384	0.0085	0.0086	0.0736	0.0220	0.0394	0.0606	56.673	4.037298
0.548	0.1078	0.1152		0.0000	0.0000			0.0074			
0.5206	0.1024	0.1094	0.0365	0.0081	0.0082	0.0699	0.05	0.0374	0.0576	13.502	2.602838
0.4932	0.097	0.1036	0.0346	0.0077	0.0077	0.0662	0.1	0.0355	0.0545	10.11	2.313525
0.4658	0.0916	0.0979	0.0326	0.0072	0.0073	0.0626	0.15	0.0335	0.0515	9.302	2.230229
0.5329	0.1048	0.1129	0.0373	0.0082	0.0084	0.0733	0.0235	0.0392	0.0596	15.648	2.750343
0.0020	0.1040	U. 1 1 Z 7	0.0070	0.0002	0.0004	5.5700	0.0200	5.50,2	3.0070		

APPENDIX C--PNL 1st Order Regression of Glass Properties, Training

This Appendix displays the resulting Pacific Northwest Laboratory 1st Order viscosity, PCT B, and MCC-1 B models after regression on the appropriate training sets from Appendix B.

1. PNL 1st Order Regression on Viscosity Training Set

LNVISC = 8.81 SIO2 - 6.20 B2O3 - 10.8 NA2O - 34.5 LI2O - 6.31 CAO - 1.94 MGO + 0.061 FE2O3 + 11.1 AL2O3 + 7.87 ZRO2 - 0.767 OTHERS

Predictor	Coef	Stdev	t-ratio	p
Noconstan	nt			
SIO2	8.8121	0.2691	32.75	0.000
B2O3	-6.1954	0.4463	-13.88	0.000
NA2O	-10.8000	0.6253	-17.2	7 0.000
LI2O	-34.503	1.248	-27.65	0.000
CAO	-6.3084	0.8096	-7.79	0.000
MGO	-1.9434	0.8768	-2.22	0.031
FE2O3	0.0609	0.6224	0.10	0.922
AL2O3	11.1117	0.6904	16.09	0.000
ZRO2	7.8691	0.7163	10.99	0.000
OTHERS	-0.7670	0.755	3 -1.0	0.315

s = 0.2074

Analysis of Variance

SOURCE	Ξ	DF	SS	MS	F	p
Regression	on 1	0 2	53.262	25.326	588.57	0.000
Error	53	2.2	81 (0.043		
Total	63	255.	542			

SOURCE	DF		SEQ SS
SIO2	1	210	458
B2O3	1	2.	868
NA2O	1	0	.653
LI2O	1	23.	745
CAO	1	1.	774
MGO	1	0.	.658
FE2O3	1	1	.150
AL2O3	1	6	5.590
ZRO2	1	5.	321
OTHERS		1	0.044

Unusual Observations

 Obs.
 SIO2
 LNVISC
 Fit Stdev.Fit Residual
 St.Resid

 7
 0.570
 4.2888
 3.7135
 0.1105
 0.5753
 3.28R

 12
 0.420
 -0.8675
 -1.2312
 0.1162
 0.3637
 2.12R

 53
 0.519
 3.3113
 2.6001
 0.0892
 0.7112
 3.80R

2. PNL 1st Order Regression on PCT B Training Set

LNPCT = - 3.14 SIO2 + 10.2 B2O3 + 15.1 NA2O + 18.6 LI2O - 10.0 CAO + 9.54 MGO - 2.13 FE2O3 - 26.7 AL2O3 - 8.88 ZRO2 + 2.12 OTHERS

Predictor	Coef	Stdev	t-ratio	p			
Noconstant							
SIO2	-3.1399	0.9125	-3.44	0.001			
B2O3	10.244	1.519	6.74	0.000			
NA2O	15.091	2.113	7.14	0.000			
LI2O	18.595	4.303	4.32	0.000			
CAO	-10.024	2.784	-3.60	0.001			
MGO	9.541	3.030	3.15	0.002			
FE2O3	-2.134	2.108	-1.01	0.315			
AL2O3	-26.665	2.384	-11.13	0.000			
ZRO2	-8.876	2.476	-3.58	0.001			
OTHERS	2.115	2.595	0.82	2 0.418			

s = 0.7275

Analysis of Variance

SOURCE DF SS MS F p Regression 10 123.056 12.306 23.25 0.000 Error 64 33.874 0.529 Total 74 156.930

SOURCE DF SEQ SS SIO2 1 0.135 7.893 B2O3 1 1 9.320 NA2O LI2O 1 0.255 22.512 CAO 1 7.481 MGO 1 3.056 FE2O3 1 AL2O3 1 64.909 ZRO2 7.143 1 **OTHERS** 1 0.352

Unusual Observations

Obs. SIO2 LNPCT Fit Stdev.Fit Residual St.Resid 2 0.550 -2.7181 -4.1822 0.3251 1.4641 2.25R

46 0.570 -1.7545 -0.4154 0.3130 -1.3390 -2.04R 53 0.519 1.8736 0.3790 0.3052 1.4947 2.26R

R denotes an obs. with a large st. resid.

3. PNL 1st Order Regression on MCC-1 B Training Set

LNMCC = 0.302 SIO2 + 9.07 B2O3 + 9.03 NA2O + 9.28 LI2O + 7.33 CAO + 6.45 MGO + 5.10 FE2O3 - 6.94 AL2O3 - 0.51 ZRO2 + 0.45 OTHERS

Predictor	Coef	Stdev	t-ratio	p			
Noconstant							
SIO2	0.3018	0.4474	0.67	0.502			
B2O3	9.0717	0.8043	11.28	0.000			
NA2O	9.0333	0.9918	9.11	0.000			
LI2O	9.279	2.051	4.53	0.000			
CAO	7.327	1.251	5.86	0.000			
MGO	6.449	1.508	4.28	0.000			
FE2O3	5.100	1.154	4.42	0.000			
AL2O3	-6.941	1.403	-4.95	0.000			
ZRO2	-0.507	1.377	-0.37	0.714			
OTHERS	0.452	1.359	0.33	3 0.741			

s = 0.3283

Analysis of Variance

SOURCE DF SS MS F p
Regression 10 523.846 52.385 485.97 0.000
Error 60 6.468 0.108
Total 70 530.313

SOURCE DF SEQ SS SIO2 1 495.359 7.827 B2O3 1 4.416 1 NA2O LI2O 0.892 1 CAO 1 2.424 1.806 MGO 1 6.529 FE2O3 1 AL2O3 1 4.557 0.024 ZRO2 1 **OTHERS** 1 0.012

Unusual Observations

Obs. SIO2 LNMCC Fit Stdev.Fit Residual St.Resid 10 0.420 4.2991 3.5914 0.1734 0.7078 2.54R

24 0.481 1.6134 2.5039 0.0968 -0.8904 -2.84R 48 0.570 3.8506 2.9304 0.1597 0.9202 3.21R

APPENDIX D--PNL 2nd Order Regression of Glass Properties, Training

This Appendix displays the resulting Pacific Northwest Laboratory 2nd Order viscosity, PCT B, and MCC-1 B models after regression on the appropriate training sets from Appendix B.

1. PNL 2nd Order Regression on Viscosity Training Set

LNVISC = 10.6 SIO2 - 6.29 B2O3 - 24.8 NA2O - 77.5 LI2O - 5.09 CAO - 2.18 MGO + 0.694 FE2O3 + 14.1 AL2O3 + 10.5 ZRO - 2.73 OTHERS + 29.2 BXFE + 123 NAXLI + 22.6 NAXMG + 88.6 LIXOTH - 44.7 MGXFE + 42.5 NAXNA + 340 LIXLI

Predictor	Coef	Stdev	t-ratio	. p
Noconstar	ıt			
SIO2	10.6283	0.2531	42.00	0.000
B2O3	-6.2945	0.3814	-16.50	0.000
NA2O	-24.819	2.575	-9.64	0.000
LI2O	-77.478	4.523	-17.13	0.000
CAO	-5.0912	0.4546	-11.20	0.000
MGO	-2.180	1.335	-1.63	0.109
FE2O3	0.6936	0.7788	0.89	0.378
AL2O3	14.1206	0.4768	3 29.6	2 0.000
ZRO	10.4672	0.4805	21.78	0.000
OTHERS	-2.7285	0.721	.0 -3.7	78 0.000
BXFE	29.174	5.178	5.63	0.000
NAXLI	122.56	19.97	6.14	0.000
NAXMG	22.621	8.94	0 2.5	3 0.015
LIXOTH	88.57	17.44	5.08	0.000
MGXFE	-44.72	10.48	-4.27	0.000
NAXNA	42.498	9.043	3 4.70	0.000
LIXLI	339.75	40.80	8.33	0.000

s = 0.1071 Analysis of Variance

SOURCE DF SS MS F p
Regression 17 255.015 15.001 1307.66 0.000
Error 46 0.528 0.011
Total 63 255.542

SOURCE DF SEQ SS SIO2 1 210.458 B2O3 1 2.868

NA2O	1	0.653
LI2O	1	23.745
CAO	1	1.774
MGO	1	0.658
FE2O3	1	1.150
AL2O3	1	6.590
ZRO	1	5.321
OTHERS	1	0.044
BXFE	1	0.392
NAXLI	1	0.010
NAXMG	1	0.130
LIXOTH	1	0.134
MGXFE	1	0.062
NAXNA	1	0.230
LIXLI	1	0.795

Unusual Observations

Obs.	SIO2	LNVIS	SC Fit	Stdev.Fit	Residual	St.Resid
7	0.570	4.2888	4.0286	0.0649	0.2602	3.05R
16	0.433	2.8798	2.6751	0.0683	0.2047	2.48R
58	0.420	1.0367	0.8721	0.0709	0.1646	2.05R

2. PNL 2nd Order Regression on PCT Training Set

The regression equation is

LNPCT = -4.78 SIO2 + 12.7 B2O3 + 19.1 NA2O + 19.8 LI2O + 14.6 CAO - 51.0 MGO

- 0.41 FE2O3 43.3 AL2O3 7.66 ZRO + 5.49 OTHERS + 122 SIXMG
- 101 B2XCA 152 NAXCA + 145 ALXAL

Predictor	Coef	Stdev	t-ratio	p
Noconstan	t			
SIO2	-4.780	1.048	-4.56	0.000
B2O3	12.684	1.605	7.90	0.000
NA2O	19.062	2.156	8.84	0.000
LI2O	19.780	3.543	5.58	0.000
CAO	14.599	8.643	1.69	0.096
MGO	-50.99	20.55	-2.48	0.016
FE2O3	-0.411	1.910	-0.22	0.830
AL2O3	-43.276	5.498	-7.87	0.000
ZRO	-7.665	2.218	-3.40	6 0.001
OTHERS	5.493	2.253	2.4	4 0.018
SIXMG	121.76	41.36	2.94	0.005
B2XCA	-100.53	41.23	-2.4	4 0.018
NAXCA	-151.63	52.80	0 -2.8	37 0.006
ALXAL	145.46	38.77	3.75	5 0.000

s = 0.5904

Analysis of Variance

SOURCE DF SS MS F p 27.88 0.000 Regression 14 136.0182 9.7156 20.9116 0.3485 Error 60 156.9298 74 Total

SEQ SS **SOURCE** DF 0.1345 SIO2 1 7.8934 **B2O3** 1 NA2O 1 9.3202 LI2O 0.2549 1 22.5119 CAO 1 7.4811 MGO 1 FE2O3 1 3.0556 64.9094 AL2O3 1 7.1431 ZRO 1 **OTHERS** 1 0.3517 1.5251 SIXMG 1 1.4146 **B2XCA** 1

NAXCA 1 5.1161 ALXAL 1 4.9064

Unusual Observations

Obs.	SIO2	LNPC	T Fit	Stdev.Fit	Residual	St.Resid
51	0.562	1.6378	0.5974	0.2954	1.0404	2.04R
53	0.519	1.8736	0.1636	0.2663	1.7101	3.25R
59	0.542	-0.7340	0.4348	0.2695	-1.1688	-2.23R
62	0.484	2.5417	1.4042	0.2302	1.1375	2.09R

3. PNL 2nd Order Regression on MCC-1 B Training Set

The regression equation is

LNMCC = 0.104 SIO2 + 13.2 B2O3 + 9.18 NA2O + 10.2 LI2O - 11.0 CAO + 7.17 MGO

+ 4.62 FE2O3 - 15.2 AL2O3 - 1.98 ZRO + 1.81 OTHERS + 34.0 SIXCA - 49.9 BXAL + 89.3 ALXAL

Predictor	Coef	Stdev	t-ratio	p
Noconstan	ıt			
SIO2	0.1036	0.5635	0.18	0.855
B2O3	13.208	1.250	10.56	0.000
NA2O	9.1767	0.9007	10.19	0.000
LI2O	10.186	1.823	5.59	0.000
CAO	-11.011	9.656	-1.14	0.259
MGO	7.169	1.323	5.42	0.000
FE2O3	4.621	1.185	3.90	0.000
AL2O3	-15.159	3.683	-4.12	0.000
ZRO	-1.984	1.337	-1.48	0.143
OTHERS	1.815	1.349	1.35	5 0.184
SIXCA	33.98	19.45	1.75	0.086
BXAL	-49.93	15.58	-3.20	0.002
ALXAL	89.27	22.08	4.04	0.000

s = 0.2841

Analysis of Variance

SOURCE DF SS MS F Regression 13 500.94 0.000 40.439 525.712 0.081 57 4.601 **Error** 530.313 Total 70

SOURCE DF SEQ SS 495.359 SIO2 1 B2O3 1 7.827 NA₂O 1 4.416 0.892 LI2O 1 2.424 CAO 1 1.806 MGO 1 6.529 FE2O3 1 4.557 AL2O3 1 0.024 **ZRO** 1 0.012 **OTHERS** 1 **SIXCA** 1 0.037 0.509 **BXAL** 1

ALXAL 1 1.320

Obs.	SIO2	LNM	CC Fi	t Stdev.Fi	t Residua	l St.Resid
4	0.570	2.4406	1.9449	0.1471	0.4957	2.04R
10	0.420	4.2991	3.8003	0.1692	0.4988	2.19R
24	0.481	1.6134	2.4294	0.0906	-0.8160	-3.03R
32	0.473	3.2229	2.4656	0.1011	0.7573	2.85R
48	0.570	3.8506	3.0339	0.1464	0.8167	3.35R

APPENDIX E--Revised 1st Order Regression of Glass Properties, Training

This Appendix displays the stepwise regression used to form the Revised PNL 1st Order viscosity, PCT B, and MCC-1 B models (using the appropriate training set).

1. Revised 1st Order Regression on Training Set for Viscosity

LNVISC = - 0.767 + 9.58 SIO2 - 5.43 B2O3 - 10.0 NA2O - 33.7 LI2O - 5.54 CAO - 1.18 MGO + 0.828 FE2O3 + 11.9 AL2O3 + 8.64 ZRO

```
Predictor
             Coef
                     Stdev t-ratio
                                        p
Constant -0.7667
                      0.7553
                                -1.01
                                       0.315
           9.5787
                     0.8449
                               11.34 0.000
SIO<sub>2</sub>
                      0.9148
                                -5.93 0.000
B2O3
           -5.4287
NA<sub>2</sub>O
           -10.033
                       1.017
                                -9.87 0.000
                              -22.08 0.000
          -33.736
                      1.528
LI<sub>2</sub>O
           -5.542
                      1.124
                               -4.93 0.000
CAO
            -1.177
                      1.169
                               -1.01
                                      0.319
MGO
            0.8276
                      0.9254
                                 0.89 0.375
FE2O3
                                 12.38 0.000
            11.8784
                       0.9599
AL2O3
           8.6358
                     0.9938
                                8.69 0.000
ZRO
```

s = 0.2074 R-sq = 95.9% R-sq(adj) = 95.2% Analysis of Variance

SOURCE DF SS MS F p 0.000 5.8724 136.47 Regression 9 52.8515 53 2.2806 0.0430 **Error** 62 55.1321 **Total**

SOURCE DF SEQ SS SIO2 16.8613 1 **B2O3** 0.2012 1 0.0160 NA₂O 1 20.4055 LI2O 1 CAO 2.6055 1 MGO 1 1.9528 1 4.1824 FE2O3 3.3773 **AL2O3** 1 3.2496 **ZRO** 1

Unusual Observations

Obs. SIO2 LNVISC Fit Stdev.Fit Residual St.Resid

```
7 0.570 4.2888 3.7135 0.1105 0.5753 3.28R
12 0.420 -0.8675 -1.2313 0.1162 0.3638 2.12R
53 0.519 3.3113 2.6001 0.0892 0.7112 3.80R
```

LNVISC = - 0.696 + 9.52 SIO2 - 5.51 B2O3 - 10.1 NA2O - 33.8 LI2O - 5.05 CAO + 11.6 AL2O3 + 8.48 ZRO

Predictor	Coef	Stdev	t-ratio	p
Constant	-0.6959	0.4346	-1.60	0.115
SIO2	9.5245	0.6209	15.34	0.000
B2O3	-5.5143	0.6057	-9.10	0.000
NA2O	-10.1433	0.7661	-13.2	4 0.000
LI2O	-33.782	1.363	-24.79	0.000
CAO	-5.0470	0.8023	-6.29	0.000
AL2O3	11.6356	0.6984	16.6	0.000
ZRO	8.4796	0.7465	11.36	0.000

s = 0.2101 R-sq = 95.6% R-sq(adj) = 95.0%

Analysis of Variance

SOURCE	Ξ	DF	SS	MS	\mathbf{F}	p
Regression	on	7 52	2.7042	7.5292	170.56	0.000
Error	55	2.42	280	0.0441		
Total	62	55.1	321			

SOURCE	Ι	OF	SEQ SS
SIO2	1	16.8	613
B2O3	1	0.2	012
NA2O	1	0.0	0160
LI2O	1	20.4	055
CAO	1	2.6	055
AL2O3	1	6.	9187
ZRO	1	5.69	960

Unusual Observations

 Obs.
 SIO2
 LNVISC
 Fit Stdev.Fit
 Residual
 St.Resid

 7
 0.570
 4.2888
 3.7394
 0.1109
 0.5494
 3.08R

 12
 0.420
 -0.8675
 -1.2843
 0.1057
 0.4168
 2.30R

 53
 0.519
 3.3113
 2.4956
 0.0671
 0.8156
 4.10R

LNVISC = 8.60 SIO2 - 6.17 B2O3 - 10.8 NA2O - 34.6 LI2O - 5.55 CAO + 11.3 AL2O3 + 8.07 ZRO

Predictor	Coef	Stdev	t-ratio	p
Noconstar	nt			
SIO2	8.6000	0.2316	37.13	0.000
B2O3	-6.1712	0.4518	-13.66	0.000
NA2O	-10.8403	0.6391	-16.9	6 0.000
LI2O	-34.629	1.273	-27.20	0.000
CAO	-5.5507	0.7483	-7.42	0.000
AL2O3	11.2714	0.6695	5 16.84	4 0.000
ZRO	8.0675	0.7104	11.36	0.000

s = 0.2130

Analysis of Variance

SOURCE	DF	SS	MS	F	p
Regression	ı 7	253.001	36.143	796.50	0.000
Error :	56	2.541	0.045		
Total	63 2	255.542			
SOURCE	DF	F SEQ	SS		
SIO2	1 2	210.458			
B2O3	1	2.868			
NA2O	1	0.653			
LI2O	1 :	23.745			
CAO	1	1.774			
AL2O3	1	7.652			
ZRO	1	5.851			

O II G	June -	J - 1				
Obs.	SIO2	LNVIS	C Fit	Stdev.Fit	Residual	St.Resid
7	0.570	4.2888	3.6959	0.1090	0.5929	3.24R
12	0.420	-0.8675	-1.2535	0.1053	0.3860	2.08R
53	0.519	3.3113	2.4972	0.0680	0.8141	4.03R

2. Revised 1st Order Regression on Training Set for PCT B

LNPCT = 2.11 - 5.25 SIO2 + 8.13 B2O3 + 13.0 NA2O + 16.5 LI2O - 12.1 CAO + 7.43 MGO - 4.25 FE2O3 - 28.8 AL2O3 - 11.0 ZRO

```
Predictor
            Coef
                    Stdev
                           t-ratio
                                     p
                                   0.419
           2.113
                    2.595
                             0.81
Constant
                   2.906
                           -1.81 0.075
          -5.252
SIO2
B2O3
           8.132
                    3.137
                             2.59 0.012
           12.979
                     3.484
                              3.72 0.000
NA2O
                             3.14 0.003
LI2O
          16.483
                    5.252
          -12.136
                    3.859
                             -3.15 0.003
CAO
                             1.84 0.070
           7.429
                    4.030
MGO
                             -1.36 0.180
FE2O3
           -4.247
                     3.132
                              -8.74 0.000
AL2O3
           -28.778
                     3.292
         -10.989
                    3.421
                             -3.21 0.002
ZRO
```

s = 0.7275 R-sq = 78.4% R-sq(adj) = 75.3% Analysis of Variance

MS F DF SS **SOURCE** p 0.000 13.651 25.79 122.862 Regression 33.875 **Error** 64 0.529 73 156.737 Total

DF SEQ SS **SOURCE** SIO2 1 0.501 7.975 **B2O3** 1 15.246 NA₂O 1 3.434 LI2O 1 14.776 CAO 1 14.082 MGO 1 12.958 FE2O3 1 1 48.428 AL2O3 5.462 **ZRO** 1

Unusual Observations

 Obs.
 SIO2
 LNPCT
 Fit Stdev.Fit Residual
 St.Resid

 2
 0.550
 -2.7181
 -4.1821
 0.3251
 1.4640
 2.25R

 46
 0.570
 -1.7545
 -0.4153
 0.3130
 -1.3392
 -2.04R

 53
 0.519
 1.8736
 0.3790
 0.3052
 1.4946
 2.26R

LNPCT = - 1.36 + 10.7 B2O3 + 15.2 NA2O + 18.0 LI2O - 13.4 CAO - 25.8 AL2O3 - 8.44 ZRO

Predictor	Coef	Stdev	t-ratio	p
Constant	-1.3624	0.5934	-2.30	0.025
B2O3	10.711	1.958	5.47	0.000
NA2O	15.152	2.688	5.64	0.000
LI2O	18.020	4.992	3.61	0.001
CAO	-13.449	2.864	-4.70	0.000
AL2O3	-25.765	2.451	-10.51	0.000
ZRO	-8.444	2.646	-3.19	0.002

s = 0.7947 R-sq = 73.0% R-sq(adj) = 70.6%

Analysis of Variance

SOURCE	\mathbf{D}	F SS	MS	F	p
Regression	6	114.427	19.071	30.20	0.000
Error 6	7	42.310	0.631		
Total 7	3	156.737			
SOURCE	\mathbf{D}	F SEQ	SS		
B2O3	1	8.354			
NA2O	1	13.523			
LI2O	1	2.562			
CAO	1	17.163			
AL2O3	1	66.394			
ZRO	1	6.431			

Obs.	B2O3	LNPC	CT Fit	Stdev.Fit	Residual	St.Resid
18	0.050	2.4193	0.8649	0.2831	1.5544	2.09R
43	0.050	-1.0584	0.5855	0.2826	-1.6439	-2.21R
45	0.050	2.2665	0.6078	0.2433	1.6587	2.19R
46	0.052	-1.7545	-0.1579	0.2927	-1.5966	-2.16R

3. Revised 1st Order Regression on Training Set for MCC-1 B

LNMCC = 0.45 - 0.15 SIO2 + 8.62 B2O3 + 8.58 NA2O + 8.83 LI2O + 6.87 CAO + 6.00 MGO + 4.65 FE2O3 - 7.39 AL2O3 - 0.96 ZRO

```
Predictor
            Coef
                    Stdev t-ratio
                                     p
                    1.359
                              0.33
                                   0.741
Constant
            0.452
                            -0.10 0.924
SIO2
          -0.150
                    1.574
                             5.14 0.000
B2O3
           8.620
                    1.677
                              4.82 0.000
                     1.782
NA<sub>2</sub>O
            8.581
                    2.459
                             3.59 0.001
           8.827
LI2O
           6.875
                    1.888
                             3.64 0.001
CAO
                              2.91 0.005
            5.997
                    2.058
MGO
                              3.11 0.003
            4.649
                     1.494
FE2O3
            -7.392
                     1.677
                              -4.41 0.000
AL2O3
          -0.959
                    1.670
                            -0.57 0.568
ZRO
```

s = 0.3283 R-sq = 70.9% R-sq(adj) = 66.6%Analysis of Variance

MS F **SOURCE** DF SS 1.7530 16.26 0.000 9 15.7774 Regression 6.4677 0.1078 Error 60 Total 69 22.2451

DF SOURCE SEQ SS SIO2 1 3.3329 **B2O3** 1 0.3211 NA₂O 0.1419 1 LI2O 1 0.0263 **CAO** 1 0.7286 0.4857 MGO 1 6.4196 FE2O3 1 4.2858 AL2O3 1 1 0.0355 ZRO

Unusual Observations

Fit Stdev.Fit Residual St.Resid Obs. SIO2 LNMCC 0.1734 0.7078 2.54R 10 0.420 4.2991 3.5914 2.5039 0.0968 -0.8904 -2.84R 24 0.481 1.6134 3.21R 0.570 3.8506 2.9304 0.1597 0.9202 48

LNMCC = 0.233 + 8.77 B2O3 + 8.71 NA2O + 8.95 LI2O + 7.11 CAO + 6.15 MGO + 5.10 FE2O3 - 6.70 AL2O3

Predictor	Coef	Stdev	t-ratio	p
Constant	0.2332	0.3236	0.72	0.474
B2O3	8.7672	0.9809	8.94	0.000
NA2O	8.711	1.216	7.17	0.000
LI2O	8.954	2.216	4.04	0.000
CAO	7.110	1.348	5.27	0.000
MGO	6.154	1.581	3.89	0.000
FE2O3	5.099	1.068	4.77	0.000
AL2O3	-6.697	1.017	-6.58	0.000

s = 0.3240 R-sq = 70.7% R-sq(adj) = 67.4%

Analysis of Variance

SOURC	Œ	DF	SS	MS	F	p
Regress	ion	7 1	5.7355	2.2479	21.41	0.000
Error	62	6.:	5096	0.1050		
Total	69	22.	.2451			

SOURCE	Γ) F	SEQ SS
B2O3	1	1.	7376
NA2O	1	0.	.9347
LI2O	1	0.0	922
CAO	1	1.3	3205
MGO	1	0.	9043
FE2O3	1	6.	.1958
AL2O3	1	4	.5503

Unusual Observations

Obs.	B2O3	LNM	CC Fi	it Stdev.F	it Residua	1 St.Resid
10	0.200	4.2991	3.6408	0.1519	0.6584	2.30R
24	0.170	1.6134	2.4952	0.0881	-0.8817	-2.83R
48	0.184	3.8506	2.8995	0.1054	0.9511	3.10R

The regression equation is

LNMCC = 9.27 B2O3 + 9.43 NA2O + 10.1 LI2O + 7.55 CAO + 6.60 MGO + 5.51 FE2O3

- 6.59 AL2O3

Predictor Coef Stdev t-ratio p

Noconstan	t				
B2O3	9.2714	0.6850	13.54	0.000	
NA2O	9.4281		13.56	0.000	•
LI2O	10.095	1.544	6.54	0.000	
CAO	7.553	1.195	6.32	0.000	
MGO	6.596			0.000	
FE2O3	5.5081	0.9021	6.11		•
AL2O3	-6.588	1.002	-6.57	0.000	
s = 0.3228					
Analysis of	f Variance				
	DF		MS	_	þ
Regression				18.10	0.000
Error (6.56	4 0.10	4		
Total	70 530.3				
SOURCE		SEQ SS			
B2O3	1 436.3	363			
NA2O	1 56.2				
LI2O					
CAO	1 3.86	57			
MGO	1 2.8	78			
FE2O3	1 8.1	68			
AL2O3	1 4.5	603			
Unusual O					
Obs. B20					ual St.Resid
10 0.200		3.6641			
24 0.170	1.6134	2.4962	0.0877	-0.8828	-2.84R

R denotes an obs. with a large st. resid.

2.9280

0.0798

0.1023

-0.6395

0.9684

-2.04R

3.16R

2.2885

48 0.184 3.8506 2.8822

29

0.170

APPENDIX F--Revised 2nd Order Regression of Glass Properties, Training

This Appendix displays the stepwise regression used to form the Revised PNL 2nd Order viscosity, PCT B, and MCC-1 B models (using the appropriate training set).

1. Revised 2nd Order Regression on Training Set for Viscosity

```
LNVISC = - 2.73 + 13.4 SIO2 - 3.57 B2O3 - 22.1 NA2O - 74.8 LI2O - 2.36 CAO
+ 0.55 MGO + 3.42 FE2O3 + 16.8 AL2O3 + 13.2 ZRO + 29.2 BXFE
+ 123 NAXLI + 22.6 NAXMG + 88.6 LIXOTH - 44.7 MGXFE + 42.5 NAXNA
+ 340 LIXLI
```

Predictor	Coef	Stdev t	ratio:	p
Constant	-2.7276	0.7211	-3.78	0.000
SIO2	13.3557	0.7759	17.21	0.000
B2O3	-3.5670	0.8102	-4.40	0.000
NA2O	-22.090	2.748	-8.04	0.000
LI2O	-74.751	4.481	-16.68	0.000
CAO	-2.3640	0.9239	-2.56	0.014
MGO	0.546	1.555	0.35	0.727
FE2O3	3.421	1.060	3.23	0.002
AL2O3	16.8480	0.9254	18.2	1 0.000
ZRO	13.1947	0.8613	15.32	0.000
BXFE	29.176	5.179	5.63	0.000
NAXLI	122.55	19.98	6.13	0.000
NAXMG	22.624	8.941	2.5	3 0.015
LIXOTH	88.55	17.44	5.08	0.000
MGXFE	-44.72	10.49	-4.26	0.000
NAXNA	42.491	9.044	4.70	0.000
LIXLI	339.78	40.80	8.33	0.000

s = 0.1071 R-sq = 99.0% R-sq(adj) = 98.7%

Analysis of Variance

SOURCE DF SS MS F 297.45 0.000 3.4128 Regression 16 54.6043 0.5278 0.0115 Error 46 Total 62 55.1321

SOURCE DF SEQ SS SIO2 1 16.8613 B2O3 1 0.2012 NA2O 1 0.0160

LI2O	1	20.4055
CAO	1	2.6055
MGO	1	1.9528
FE2O3	1	4.1824
AL2O3	1	3.3773
ZRO	1	3.2496
BXFE	1	0.3915
NAXLI	1	0.0097
NAXMG		1 0.1304
LIXOTH	1	0.1343
MGXFE	1	0.0617
NAXNA	1	0.2297
LIXLI	1	0.7956

Obs.	SIO2	LNVIS	C Fit	Stdev.Fit	Residual	St.Resid
7	0.570	4.2888	4.0286	0.0649	0.2602	3.05R
16	0.433	2.8798	2.6751	0.0683	0.2047	2.48R
58	0.420	1.0367	0.8721	0.0709	0.1647	2.05R

LNVISC = - 2.60 + 13.2 SIO2 - 3.69 B2O3 - 22.2 NA2O - 74.7 LI2O - 2.53 CAO + 3.22 FE2O3 + 16.7 AL2O3 + 13.0 ZRO + 29.1 BXFE + 122 NAXLI + 25.0 NAXMG + 85.7 LIXOTH - 42.8 MGXFE + 42.2 NAXNA + 340 LIXLI

Predictor	Coef	Stdev t	t-ratio	p
Constant	-2.5969	0.6120	-4.24	0.000
SIO2	13.2282	0.6794	19.47	0.000
B2O3	-3.6852	0.7302	-5.05	0.000
NA2O	-22.183	2.710	-8.19	0.000
LI2O	-74.664	4.432	-16.85	0.000
CAO	-2.5294	0.7876	-3.21	0.002
FE2O3	3.2198	0.8841	3.64	0.001
AL2O3	16.6586	0.7453	22.33	5 0.000
ZRO	13.0175	0.6917	18.82	0.000
BXFE	29.085	5.124	5.68	0.000
NAXLI	122.09	19.75	6.18	0.000
NAXMG	25.041	5.658	3 4.43	0.000
LIXOTH	85.65	15.22	5.63	0.000
MGXFE	-42.812	8.891	-4.82	0.000
NAXNA	42.238	8.931	4.73	0.000
LIXLI	339.86	40.42	8.41	0.000

s = 0.1061 R-sq = 99.0% R-sq(adj) = 98.7%

Analysis of Variance

SOURCE DF SS MS F p
Regression 15 54.6029 3.6402 323.30 0.000
Error 47 0.5292 0.0113
Total 62 55.1321

SOURCE DF SEQ SS 1 16.8613 SIO2 0.2012 **B2O3** 1 0.0160 NA2O 1 LI2O 1 20.4055 2.6055 CAO 1 3.1792 FE2O3 1 AL2O3 1 4.5966 4.9427 ZRO 1 0.4052 **BXFE** 1 0.0091 NAXLI 1 NAXMG 1 0.0022 0.2716 LIXOTH 1 0.0830 **MGXFE** 1

NAXNA 1 0.2279 LIXLI 1 0.7960

Unusual Observations

 Obs.
 SIO2
 LNVISC
 Fit Stdev.Fit Residual
 St.Resid

 7
 0.570
 4.2888
 4.0230
 0.0624
 0.2658
 3.10R

 16
 0.433
 2.8798
 2.6788
 0.0668
 0.2010
 2.44R

 58
 0.420
 1.0367
 0.8617
 0.0638
 0.1750
 2.06R

2. Revised 2nd Order Regression on Training Set for PCT

LNPCT = 5.49 - 10.3 SIO2 + 7.19 B2O3 + 13.6 NA2O + 14.3 LI2O + 9.11 CAO - 56.5 MGO - 5.90 FE2O3 - 48.8 AL2O3 - 13.2 ZRO + 122 SIXMG - 101 BXCA - 152 NAXCA + 145 ALXAL

Predictor	Coef	Stdev	t-ratio	p
Constant	5.490	2.253	2.44	0.018
SIO2	-10.269	2.769	-3.71	0.000
B2O3	7.194	2.780	2.59	0.012
NA2O	13.572	2.983	4.55	0.000
LI2O	14.290	4.303	3.32	0.002
CAO	9.110	8.712	1.05	0.300
MGO	-56.47	21.42	-2.64	0.011
FE2O3	-5.902	2.567	-2.30	0.025
AL2O3	-48.766	5.870	-8.31	0.000
ZRO	-13.156	2.841	-4.63	0.000
SIXMG	121.74	41.36	2.94	0.005
BXCA	-100.53	41.23	-2.44	0.018
NAXCA	-151.63	52.8	1 -2.8	7 0.006
ALXAL	145.45	38.77	3.75	0.000

s = 0.5904 R-sq = 86.7% R-sq(adj) = 83.8%

Analysis of Variance

MS F **SOURCE** DF SS p 29.97 0.000 10.448 Regression 13 135.823 Error 60 20.914 0.349 73 156.737 Total

DF SEQ SS SOURCE 0.501 SIO2 1 7.975 **B2O3** 1 15.246 NA2O 1 3.434 1 LI2O CAO 1 14.776 14.082 MGO 1 12.958 1 FE2O3 AL2O3 48.428 1 ZRO 1 5.462 **SIXMG** 1 1.524 1.415 **BXCA** 1 **NAXCA** 5.116 1 4.906 **ALXAL** 1

Obs.	SIO2	LNPC	Γ Fit	Stdev.Fit	Residual	St.Resid
51	0.562	1.6378	0.5973	0.2954	1.0406	2.04R
53	0.519	1.8736	0.1636	0.2663	1.7100	3.25R
59	0.542	-0.7340	0.4349	0.2695	-1.1689	-2.23R
62	0.484	2.5417	1.4043	0.2302	1.1374	2.09R

LNPCT = 5.87 - 10.2 SIO2 + 6.12 B2O3 + 12.2 NA2O + 14.1 LI2O - 54.2 MGO - 6.30 FE2O3 - 50.8 AL2O3 - 13.6 ZRO + 115 SIXMG - 66.6 BXCA - 107 NAXCA + 159 ALXAL

Predictor	Coef	Stdev	t-ratio	p
Constant	5.866	2.226	2.64	0.011
SIO2	-10.202	2.770	-3.68	0.000
B2O3	6.124	2.588	2.37	0.021
NA2O	12.238	2.699	4.53	0.000
LI2O	14.109	4.303	3.28	0.002
MGO	-54.21	21.33	-2.54	0.014
FE2O3	-6.296	2.541	-2.48	0.016
AL2O3	-50.769	5.553	-9.14	0.000
ZRO	-13.565	2.816	-4.82	0.000
SIXMG	115.13	40.91	2.81	0.007
BXCA	-66.63	25.49	-2.61	0.011
NAXCA	-106.88	30.9	7 -3.4	5 0.001
ALXAL	158.69	36.67	4.33	0.000

s = 0.5908 R-sq = 86.4% R-sq(adj) = 83.7% Analysis of Variance

MS F **SOURCE** DF SS p Regression 12 135.442 11.287 32.33 0.000 21.295 Error 61 0.349 Total 73 156.737

SOURCE DF **SEQ SS** SIO2 1 0.501 7.975 B2O3 1 1 15.246 NA2O LI2O 3.434 1 27.644 MGO 1 14.091 FE2O3 AL2O3 1 46.737 **ZRO** 1 1.998 **SIXMG** 1 0.792 6.961 **BXCA** 1 **NAXCA** 1 3.525 **ALXAL** 1 6.537

Unusual Observations

Obs. SIO2 LNPCT Fit Stdev.Fit Residual St.Resid 51 0.562 1.6378 0.6099 0.2954 1.0279 2.01R

53 0.519 1.8736 0.1315 0.2647 1.7422 3.30R 62 0.484 2.5417 1.3885 0.2299 1.1532 2.12R

3. Revised 2nd Order Regression on Training Set for MCC-1 B

LNMCC = 1.82 - 1.71 SIO2 + 11.4 B2O3 + 7.36 NA2O + 8.37 LI2O - 12.8 CAO + 5.35 MGO + 2.81 FE2O3 - 17.0 AL2O3 - 3.80 ZRO + 34.0 SIXCA - 49.9 BXAL + 89.3 ALXAL

Predictor	Coef	Stdev	t-ratio p
Constant	1.815	1.349	1.35 0.184
SIO2	-1.712	1.712	-1.00 0.321
B2O3 ·	11.392	1.668	6.83 0.000
NA2O	7.361	1.613	4.56 0.000
LI2O	8.370	2.142	3.91 0.000
CAO	-12.83	10.38	-1.24 0.222
MGO	5.353	1.849	2.89 0.005
FE2O3	2.806	1.358	2.07 0.043
AL2O3	-16.975	3.775	-4.50 0.000
ZRO	-3.799	1.585	-2.40 0.020
SIXCA	33.99	19.45	1.75 0.086
BXAL	-49.94	15.58	-3.20 0.002
ALXAL	89.27	22.08	4.04 0.000
	_		D (1) 7500
c = 0.2841	P-60 -	70 3%	$R_{-so}(adi) = 75.0\%$

s = 0.2841 R-sq = 79.3% R-sq(adj) = 75.0%

Analysis of Variance

MS SOURCE DF SS F 18.21 0.000 Regression 12 17.6437 1.4703 Error 57 4.6014 0.0807 69 22.2451 Total SOURCE DF SEQ SS 3.3329 SIO2 1 **B2O3** 1 0.3211 0.1419 NA2O 1 0.0263 LI2O 1 1 0.7286 CAO 0.4857 MGO 1 6.4196 FE2O3 1 4.2858 AL2O3 1 0.0355 ZRO 1 0.0373 SIXCA 1 0.5091 **BXAL** 1 1 1.3199 **ALXAL**

Obs.	SIO2	LNMO	CC Fi	t Stdev.Fi	t Residual	St.Resid
4	0.570	2.4406	1.9449	0.1471	0.4957	2.04R
10	0.420	4.2991	3.8003	0.1692	0.4988	2.19R
24	0.481	1.6134	2.4295	0.0906	-0.8160	-3.03R
32	0.473	3.2229	2.4656	0.1011	0.7573	2.85R
48	0.570	3.8506	3.0339	0.1464	0.8167	3.35R

LNMCC = 1.41 + 11.4 B2O3 + 6.67 NA2O + 7.27 LI2O + 3.69 MGO + 1.83 FE2O3 - 20.3 AL2O3 - 4.61 ZRO - 53.6 BXAL + 113 ALXAL

Predictor	Coef	Stdev	t-ratio	p
Constant	1.4068	0.3444	4.08	0.000
B2O3	11.431	1.397	8.18	0.000
NA2O	6.675	1.141	5.85	0.000
LI2O	7.274	2.143	3.39	0.001
MGO	3.689	1.393	2.65	0.010
FE2O3	1.827	1.268	1.44	0.155
AL2O3	-20.252	4.066	-4.98	0.000
ZRO	-4.612	1.496	-3.08	0.003
BXAL	-53.61	16.58	-3.23	0.002
ALXAL	112.56	23.12	2 4.8	7 0.000

s = 0.3190 R-sq = 72.6% R-sq(adj) = 68.4%

Analysis of Variance

 SOURCE
 DF
 SS
 MS
 F
 p

 Regression
 9
 16.1392
 1.7932
 17.62
 0.000

 Error
 60
 6.1058
 0.1018

 Total
 69
 22.2451

SOURCE DF SEQ SS **B2O3** 1.7376 1 0.9347 NA2O 1 0.0922 LI2O 1 MGO 0.0850 1 5.3872 1 FE2O3 4.5778 1 AL2O3 ZRO 0.1813 1 **BXAL** 1 0.7306 2.4127 ALXAL 1

Unusual Observations

 Obs.
 B2O3
 LNMCC
 Fit Stdev.Fit Residual
 St.Resid

 7
 0.085
 1.0098
 1.7655
 0.1305
 -0.7557
 -2.60R

 24
 0.170
 1.6134
 2.4978
 0.0887
 -0.8844
 -2.89R

 32
 0.070
 3.2229
 2.3529
 0.0940
 0.8700
 2.85R

 48
 0.184
 3.8506
 2.8510
 0.1188
 0.9996
 3.38R

LNMCC = 1.73 + 11.2 B2O3 + 6.37 NA2O + 6.78 LI2O + 3.79 MGO - 23.1 AL2O3 - 5.79 ZRO - 53.4 BXAL + 124 ALXAL

Predictor	Coef	Stdev	t-ratio	p
Constant	1.7322	0.2624	6.60	0.000
B2O3	11.187	1.399	8.00	0.000
NA2O	6.370	1.131	5.63	0.000
LI2O	6.776	2.134	3.18	0.002
MGO	3.794	1.403	2.70	0.009
AL2O3	-23.114	3.579	-6.46	0.000
ZRO	-5.795	1.262	-4.59	0.000
BXAL	-53.44	16.73	-3.19	0.002
ALXAL	123.98	21.91	5.60	0.000

s = 0.3218 R-sq = 71.6% R-sq(adj) = 67.9%

Analysis of Variance

SOURC	E	Dl	F SS	MS	\mathbf{F}	p
Regressi	ion	8	15.9279	1.9910	19.23	0.000
Error	61		6.3171	0.1036		
Total	69	2	22.2451			

SOURCE DF SEQ SS B2O3 1.7376 1 0.9347 NA2O 1 LI2O 0.0922 MGO 0.0850 1 AL2O3 1 8.0516 ZRO 1.0665 **BXAL** 1 0.6434 ALXAL 1 3.3169

Obs	. B2O3	3 LNM	CC F	it Stdev.F	it Residu	al St.Resid
3	0.200	2.7453	2.7058	0.2058	0.0396	0.16 X
7	0.085	1.0098	1.8225	0.1255	-0.8127	-2.74R
10	0.200	4.2991	3.7359	0.1771	0.5632	2.10R
24	0.170	1.6134	2.4799	0.0886	-0.8665	-2.80R
32	0.070	3.2229	2.3637	0.0946	0.8591	2.79R
48	0.184	3.8506	2.9459	0.0998	0.9046	2.96R

APPENDIX G--Revised Final 1st Order Regression of Glass Properties

This Appendix displays the stepwise regression used to form the FINAL Revised PNL 1st Order viscosity, electrical conductivity, PCT B, and MCC-1 B models (using the appropriate data set from Appendix A).

1. Revised Final 1st Order Modeling for Viscosity

LNVISC = - 0.128 + 9.11 SIO2 - 6.08 B2O3 - 10.9 NA2O - 34.1 LI2O - 7.40 CAO - 2.72 MGO + 0.083 FE2O3 + 11.4 AL2O3 + 7.61 ZRO2

```
Predictor
            Coef
                    Stdev t-ratio
                                     p
           -0.1277
                     0.7680
                              -0.17
                                     0.868
Constant
          9.1117
                   0.8748
                             10.42 0.000
SIO2
          -6.0835
                    0.8975
                              -6.78 0.000
B2O3
NA<sub>2</sub>O
          -10.9035
                     0.9214
                              -11.83 0.000
          -34.144
                    1.392
                            -24.53 0.000
LI2O
          -7.405
                    1.088
                             -6.81 0.000
CAO
           -2.725
                     1.156
                             -2.36 0.020
MGO
                     0.9288
                               0.09 0.929
FE2O3
           0.0825
                               13.47 0.000
                      0.8477
AL2O3
           11.4170
                    0.9707
                               7.84 0.000
ZRO2
           7.6142
```

s = 0.2551 R-sq = 93.9% R-sq(adj) = 93.4% Analysis of Variance

SOURCE DF SS MS F 12.539 192.66 0.000 Regression 9 112.849 112 7.289 0.065 Error 121 120.138 Total

SOURCE DF SEQ SS 34.679 SIO2 1 **B2O3** 1 0.222 NA₂O 1 1.955 LI2O 39.357 1 6.140 CAO 1 5.115 **MGO** 1 FE2O3 1 12.842 8.535 1 AL2O3 1 4.004 ZRO2

Unusual Observations

Obs. SIO2 LNVISC Fit Stdev.Fit Residual St.Resid

```
0.6674
                                           2.91R
                  3.6214 0.1111
7 0.570 4.2888
                                           2.67R
                           0.0867
                                  0.6415
53
    0.519
           3.3113
                   2.6697
                           0.0620
                                  0.5735
                                           2.32R
           2.8362
                   2.2627
    0.504
89
                                            3.36R
    0.566
           3.0978
                   2.2669
                           0.0634
                                   0.8309
90
                                            3.67R
                           0.0795
                                   0.8903
100 0.548
           4.0476
                   3.1573
                   3.0382
                                   1.1553
                                            4.72R
           4.1934
                           0.0714
     0.507
101
```

LNVISC = - 0.045 + 9.03 SIO2 - 6.17 B2O3 - 11.0 NA2O - 34.2 LI2O - 7.49 CAO - 2.81 MGO + 11.3 AL2O3 + 7.53 ZRO2 - 0.083 OTHERS

Predictor	Coef	Stdev 1	t-ratio	p
Constant	-0.0451	0.6236	-0.07	0.942
SIO2	9.0291	0.7665	11.78	0.000
B2O3	-6.1661	0.7390	-8.34	0.000
NA2O	-10.9862	0.7886	-13.9	3 0.000
LI2O	-34.226	1.236	-27.68	0.000
CAO	-7.487	1.052	-7.11	0.000
MGO	-2.807	1.093	-2.57	0.012
AL2O3	11.3344	0.6529	17.3	6 0.000
ZRO2	7.5316	0.8282	9.09	0.000
OTHERS	-0.0827	0.928	9 -0.0	0.929
s = 0.2551	R-sq =	93.9%	R-sq(adj) = 93.4%

Analysis of Variance

SOURC	E D	F SS	MS	F	p
Regressi	on 9	112.849	12.539	192.66	0.000
Error	112	7.289	0.065		
Total	121	120.138			

SOURCE	Γ	F	SEQ S	SS
SIO2	1	34.6	579	
B2O3	1	0.2	222	
NA2O	1	1.	955	
LI2O	1	39.3	357	
CAO	1	6.1	.40	
MGO	1	5.	115	
AL2O3	1	18	.960	
ZRO2	1	6.4	421	
OTHERS	1		0.001	

Unusual Observations

Obs	. SIO2	LNVIS	C Fit	Stdev.Fit	Residual	St.Resid
7	0.570	4.2888	3.6214	0.1111	0.6674	2.91R
53	0.519	3.3113	2.6698	0.0867	0.6415	2.67R
89	0.504	2.8362	2.2627	0.0620	0.5735	2.32R
90	0.566	3.0978	2.2669	0.0634	0.8309	3.36R
100	0.548	4.0476	3.1573	0.0795	0.8903	3.67R
101	0.507	4.1934	3.0382	0.0714	1.1553	4.72R

LNVISC = - 0.077 + 9.06 SIO2 - 6.14 B2O3 - 11.0 NA2O - 34.2 LI2O - 7.45 CAO - 2.77 MGO + 11.4 AL2O3 + 7.56 ZRO2

Predictor	Coef	Stdev	t-ratio	p
Constant	-0.0768	0.5095	-0.15	0.880
SIO2	9.0619	0.6690	13.55	0.000
B2O3	-6.1372	0.6609	-9.29	0.000
NA2O	-10.9557	0.7074	1 -15.49	9 0.000
LI2O	-34.204	1.207	-28.34	0.000
CAO	-7.4495	0.9592	-7.77	0.000
MGO	-2.773	1.018	-2.72	0.007
AL2O3	11.3617	0.5736	5 19.83	1 0.000
ZRO2	7.5606	0.7578	9.98	0.000
SIO2 B2O3 NA2O LI2O CAO MGO AL2O3	9.0619 -6.1372 -10.9557 -34.204 -7.4495 -2.773 11.3617	0.6690 0.6609 0.7074 1.207 0.9592 1.018 0.5736	13.55 -9.29 4 -15.49 -28.34 -7.77 -2.72 5 19.83	0.000 0.000 9 0.00 0.000 0.000 0.007 1 0.00

 $s = 0.2540 \qquad \text{R-sq} = 93.9\% \qquad \text{R-sq(adj)} = 93.5\%$

Analysis of Variance

SOURC	E I	OF SS	MS	\mathbf{F} .	p
Regressi	on 8	112.848	14.106	218.66	0.000
Error	113	7.290	0.065		
Total	121	120.138			

SOURCE	Γ	F	SEQ SS	
SIO2	1	34.6	579	
B2O3	1	0.2	222	
NA2O	1	1.	955	
LI2O	1	39.3	357	
CAO	1	6.1	40	
MGO	1	5.	115	
AL2O3	1	18	3.960	
ZRO2	1	6.4	421	

Unusual Observations

Obs.	SIO2	LNVIS	C Fit	Stdev.Fit	Residual	St.Resid
7	0.570	4.2888	3.6214	0.1106	0.6674	2.92R
53	0.519	3.3113	2.6657	0.0734	0.6456	2.66R
89	0.504	2.8362	2.2633	0.0613	0.5728	2.32R
90	0.566	3.0978	2.2699	0.0539	0.8280	3.34R
100	0.548	4.0476	3.1585	0.0780	0.8891	3.68R
101	0.507	4.1934	3.0356	0.0649	1.1578	4.72R

LNVISC = 8.97 SIO2 - 6.21 B2O3 - 11.0 NA2O - 34.3 LI2O - 7.53 CAO - 2.85 MGO + 11.3 AL2O3 + 7.51 ZRO2

Predictor	Coef	Stdev	t-ratio	p
Noconstan	ıt			_
SIO2	8.9657	0.1988	45.11	0.000
B2O3	-6.2113	0.4399	-14.12	0.000
NA2O	-11.0340	0.4782	2 -23.07	7 0.000
LI2O	-34.290	1.060	-32.35	0.000
CAO	-7.5308	0.7900	-9.53	0.000
MGO	-2.8496	0.8764	-3.25	0.002
AL2O3	11.3224	0.5088	3 22.25	0.000
ZRO2	7.5083	0.6708	11.19	0.000

s = 0.2529

Analysis of Variance

SOURC	E	DI	F SS	MS	F	p
Regressi	on	8	470.686	58.836	919.93	0.000
Error	114		7.291	0.064		
Total	122	4	477.978			

SOURCE	I	DF	SEQ SS
SIO2	1	377	.227
B2O3	1	2.	535
NA2O	1	10).964
LI2O	1	42.	627
CAO	1	3.	691
MGO	1	1.	.763
AL2O3	1	23	3.867
ZRO2	1	8.	013

Unusual Observations

Obs.	SIO2	LNVIS	C Fit	Stdev.Fit	Residual	St.Resid
7	0.570	4.2888	3.6163	0.1048	0.6725	2.92R
53	0.519	3.3113	2.6685	0.0706	0.6427	2.65R
89	0.504	2.8362	2.2628	0.0609	0.5733	2.34R
90	0.566	3.0978	2.2710	0.0532	0.8269	3.34R
100	0.548	4.0476	3.1640	0.0689	0.8837	3.63R
101	0.507	4.1934	3.0381	0.0625	1.1553	4.71R

2. Revised Final 1st Order Modeling for Electrical Conductivity

LNELEC = 3.44 - 2.60 SIO2 - 1.18 B2O3 + 7.64 NA2O + 20.1 LI2O - 2.04 CAO - 2.39 MGO - 0.833 FE2O3 - 2.15 AL2O3 - 2.35 ZRO2

Predictor	Coef	Stdev	t-ratio	p
Constant	3.4389	0.4759	7.23	0.000
SIO2	-2.5975	0.5449	-4.77	0.000
B2O3	-1.1758	0.5549	-2.12	0.036
NA2O	7.6351	0.5671	13.46	0.000
LI2O	20.1276	0.8593	23.42	0.000
CAO	-2.0428	0.6724	-3.04	0.003
MGO	-2.3920	0.7118	-3.36	0.001
FE2O3	-0.8333	0.5717	-1.46	0.148
AL2O3	-2.1512	0.5280	-4.07	0.000
ZRO2	-2.3473	0.6042	-3.88	0.000

s = 0.1570 R-sq = 93.2% R-sq(adj) = 92.6%Analysis of Variance

 SOURCE
 DF
 SS
 MS
 F
 p

 Regression
 9
 37.3656
 4.1517
 168.43
 0.000

 Error
 111
 2.7362
 0.0247

Total 120 40.1017

SOURCE DF SEQ SS 2.2643 SIO2 1 **B2O3** 1 7.3093 3.5054 NA₂O 1 LI2O 23.6161 1 CAO 0.0161 1 MGO 1 0.0650 FE2O3 0.1423 1 AL2O3 0.0750 1 ZRO2 1 0.3720

Obs.	SIO2	LNVIS	C Fit	Stdev.Fit	Residual	St.Resid
6	0.440	3.8563	3.5532	0.0604	0.3031	2.09R
7	0.570	1.9272	2.2994	0.0694	-0.3722	-2.64R
9	0.420	2.1247	2.4213	0.0672	-0.2966	-2.09R
10	0.570	3.0258	2.5093	0.0582	0.5165	3.54R
11	0.420	2.0109	2.4183	0.0595	-0.4074	-2.80R
12	0.420	4.1811	3.7821	0.0705	0.3990	2.84R
52	0.439	1.9301	2.4039	0.0602	-0.4739	-3.27R

LNELEC = 2.61 - 1.76 SIO2 - 0.343 B2O3 + 8.47 NA2O + 21.0 LI2O - 1.21 CAO - 1.56 MGO - 1.32 AL2O3 - 1.51 ZRO2 + 0.833 OTHERS

Predictor	Coef	Stdev	t-ratio	p
Constant	2.6056	0.3868	6.74	0.000
SIO2	-1.7642	0.4780	-3.69	0.000
B2O3	-0.3425	0.4571	-0.75	0.455
NA2O	8.4684	0.4855	17.44	0.000
LI2O	20.9609	0.7645	27.42	0.000
CAO	-1.2095	0.6500	-1.86	0.065
MGO	-1.5588	0.6730	-2.32	0.022
AL2O3	-1.3179	0.4085	-3.23	0.002
ZRO2	-1.5139	0.5164	-2.93	0.004
OTHERS	0.8333	0.571	7 1.4	6 0.148

s = 0.1570 R-sq = 93.2% R-sq(adj) = 92.6%

Analysis of Variance

 SOURCE
 DF
 SS
 MS
 F
 p

 Regression
 9
 37.3656
 4.1517
 168.43
 0.000

 Error
 111
 2.7362
 0.0247

 Total
 120
 40.1017

SOURCE DF SEQ SS 2.2643 SIO2 1 7.3093 **B2O3** 1 NA2O 1 3.5054 1 23.6161 LI2O 0.0161 CAO 1 0.0650 MGO 1 **AL2O3** 1 0.1827 0.3543 ZRO2 1 1 0.0524 **OTHERS**

Obs.	SIO2	LNVIS	C Fit	Stdev.Fi	t Residual	St.Resid
6	0.440	3.8563	3.5532	0.0604	0.3031	2.09R
7	0.570	1.9272	2.2994	0.0694	-0.3722	-2.64R
9	0.420	2.1247	2.4213	0.0672	-0.2966	-2.09R
10	0.570	3.0258	2.5093	0.0582	0.5165	3.54R
11	0.420	2.0109	2.4183	0.0595	-0.4074	-2.80R
12	0.420	4.1811	3.7821	0.0705	0.3990	2.84R
52	0.439	1 9301	2.4039	0.0602	-0.4739	-3.27R

LNELEC = 2.35 - 1.45 SIO2 + 8.75 NA2O + 21.5 LI2O - 1.05 MGO - 1.33 AL2O3 - 1.41 ZRO2

Predictor	Coef	Stdev	t-ratio	p
Constant	2.3460	0.1951	12.02	0.000
SIO2	-1.4498	0.3230	-4.49	0.000
NA2O	8.7549	0.3460	25.30	0.000
LI2O	21.5175	0.6856	31.38	0.000
MGO	-1.0534	0.5569	-1.89	0.061
AL2O3	-1.3341	0.3588	-3.72	0.000
ZRO2	-1.4119	0.4593	-3.07	0.003

s = 0.1614 R-sq = 92.6% R-sq(adj) = 92.2%

Analysis of Variance

SOURCE DF SS MS F Regression 6 37.1312 6.1885 237.50 0.000 0.0261 Error 114 2.9705 Total 120 40.1017 **SOURCE** DF **SEQ SS** SIO2 2.2643 1 8.0923 NA2O 1 LI2O 26.3335 0.0355 MGO 1 0.1594 AL2O3 1 0.2462 ZRO2 1

Unusual Observations

Obs.	SIO2	LNVIS	SC Fit	Stdev.Fit	Residual	St.Resid
6	0.440	3.8563	3.4827	0.0510	0.3736	2.44R
7	0.570	1.9272	2.3953	0.0566	-0.4681	-3.10R
10	0.570	3.0258	2.4056	0.0460	0.6202	4.01R
11	0.420	2.0109	2.4230	0.0506	-0.4121	-2.69R
21	0.570	2.0857	2.4385	0.0471	-0.3528	-2.29R
52	0.439	1.9301	2.3978	0.0510	-0.4677	-3.05R
80	0.438	3.8797	4.2209	0.0331	-0.3412	-2.16R
81	0.528	4.2335	4.5549	0.0385	-0.3213	-2.05R

LNELEC = 2.26 - 1.37 SIO2 + 8.84 NA2O + 21.7 LI2O - 1.21 AL2O3 - 1.30 ZRO2

Predictor	Coef	Stdev	t-ratio	p
Constant	2.2587	0.1917	11.78	0.000
SIO2	-1.3724	0.3240	-4.24	0.000
NA2O	8.8420	0.3467	25.50	0.000
LI2O	21.6596	0.6891	31.43	0.000
AL2O3	-1.2081	0.3565	-3.39	0.001
ZRO2	-1.2968	0.4603	-2.82	0.006

s = 0.1632 R-sq = 92.4% R-sq(adj) = 92.0%

Analysis of Variance

MS F SOURCE DF SS 278.05 0.000 Regression 5 37.0380 7.4076 Error 115 3.0637 0.0266 120 40.1017 Total

SOURCE DF SEQ SS SIO2 1 2.2643 8.0923 NA2O 1 26.3335 LI2O 1 AL2O3 1 0.1365 ZRO2 1 0.2114

Unusual Observations

Obs. SIO2 LNVISC Fit Stdev.Fit Residual St.Resid 2.57R 6 0.440 3.8563 3.4575 0.0498 0.3988 -2.94R 7 0.570 1.9272 2.3769 0.0564 -0.4497 10 0.570 3.0258 2.3872 0.0454 0.6386 4.07R -2.46R 11 0.420 2.0109 2.3938 0.0487 -0.3829 0.0578 0.3319 2.17R 12 0.420 4.1811 3.8493 0.0392 -0.4032 -2.54R 21 0.570 2.0857 2.4888 -2.76R 52 0.439 1.9301 2.3614 0.0478 -0.4313 80 0.438 3.8797 4.2048 0.0324 -0.3251 -2.03R

3. Revised Final 1st Order Modeling for PCT B

LNPCT = 0.16 - 4.46 SIO2 + 11.7 B2O3 + 17.7 NA2O + 22.8 LI2O - 9.21 CAO + 10.4 MGO - 3.27 FE2O3 - 25.6 AL2O3 - 10.8 ZRO2

Predictor	Coef	Stdev	t-ratio	p
Constant	0.163	1.919	0.09	0.932
SIO2	-4.465	2.168	-2.06	0.041
B2O3	11.666	2.264	5.15	0.000
NA2O	17.659	2.316	7.62	0.000
LI2O	22.803	3.459	6.59	0.000
CAO	-9.208	2.659	-3.46	0.001
MGO	10.419	2.851	3.65	0.000
FE2O3	-3.272	2.394	-1.37	0.174
AL2O3	-25.606	2.107	-12.1	5 0.000
ZRO2	-10.792	2.487	-4.34	0.000

s = 0.6621 R-sq = 81.8% R-sq(adj) = 80.6%Analysis of Variance

 SOURCE
 DF
 SS
 MS
 F
 p

 Regression
 9
 270.428
 30.048
 68.55
 0.000

 Error
 137
 60.056
 0.438
 0.000
 0.000

Total 146 330.484

SOURCE DF SEQ SS 5.320 SIO2 1 B2O3 1 8.202 57.966 NA2O 1 18.008 LI2O 1 9.759 CAO 1 MGO 31.953 1 52.193 FE2O3 1 78.773 1 AL2O3 ZRO2 1 8.254

Unusual Observations

Obs.	SIO2	LNPC	T Fit	Stdev.Fit	Residual	St.Resid
2	0.550	-2.7181	-4.0569	0.2370	1.3388	2.17R
45	0.570	2.2665	0.9295	0.2209	1.3371	2.14R
46	0.570	-1.7545	-0.2948	0.2332	-1.4597	-2.36R
48	0.506	1.5394	0.2574	0.2200	1.2821	2.05R
53	0.519	1.8736	0.2720	0.2132	1.6016	2.56R
90	0.460	-0 6694	-2.0437	0.1893	1.3743	2.17R

LNPCT = - 1.83 - 2.50 SIO2 + 13.8 B2O3 + 19.7 NA2O + 25.2 LI2O - 7.49 CAO + 12.3 MGO - 23.4 AL2O3 - 8.69 ZRO2

Predictor	Coef	Stdev	t-ratio	p
Constant	-1.834	1.248	-1.47	0.144
SIO2	-2.502	1.629	-1.54	0.127
B2O3	13.767	1.667	8.26	0.000
NA2O	19.697	1.778	11.08	0.000
LI2O	25.172	3.003	8.38	0.000
CAO	-7.494	2.352	-3.19	0.002
MGO	12.287	2.510	4.89	0.000
AL2O3	-23.445	1.397	-16.79	0.000
ZRO2	-8.694	1.963	-4.43	0.000

s = 0.6642 R-sq = 81.6% R-sq(adj) = 80.5%

Analysis of Variance

SOURC	E	DI	F SS	MS	\mathbf{F}	p
Regress	ion	8	269.610	33.701	76.40	0.000
Error	138		60.874	0.441		
Total	146		330.484			

SOURCE DF SEQ SS SIO2 5.320 1 B2O3 8.202 1 57.966 NA2O 1 LI2O 18.008 1 9.759 CAO 1 MGO 31.953 1 AL2O3 1 129.746 8.655 ZRO2 1

Unusual Observations

Obs.	SIO2	LNPC	T Fit	Stdev.Fit	Residual	St.Resid
2	0.550	-2.7181	-4.0404	0.2374	1.3223	2.13R
45	0.570	2.2665	0.7658	0.1862	1.5007	2.35R
46	0.570	-1.7545	-0.3044	0.2338	-1.4501	-2.33R
53	0.519	1.8736	0.4382	0.1756	1.4355	2.24R
90	0.460	-0.6694	-1.9984	0.1870	1.3290	2.09R

LNPCT = - 3.67 + 15.3 B2O3 + 21.3 NA2O + 26.6 LI2O - 5.89 CAO + 13.7 MGO - 22.5 AL2O3 - 7.49 ZRO2

Predictor	Coef	Stdev	t-ratio	p
Constant	-3.6659	0.3680	-9.96	0.000
B2O3	15.346	1.319	11.64	0.000
NA2O	21.333	1.431	14.91	0.000
LI2O	26.571	2.876	9.24	0.000
CAO	-5.890	2.118	-2.78	0.006
MGO	13.737	2.337	5.88	0.000
AL2O3	-22.510	1.263	-17.82	0.000
ZRO2	-7.490	1.808	-4.14	0.000

s = 0.6674 R-sq = 81.3% R-sq(adj) = 80.3%

Analysis of Variance

SOURC	CE D	OF SS	MS	F	p
Regress	sion 7	268.569	38.367	86.13	0.000
Error	139	61.915	0.445		
Total	146	330.484			

SOURCE	Γ	F	SEQ SS
B2O3	1	12	109
NA2O	1	5	4.173
LI2O	1	12.	.976
CAO	1	15	.923
MGO	1	23	3.501
AL2O3	1	14	12.245
ZRO2	1	7	642

Unusual Observations

Obs.	B2O3	LNPC	CT Fit	Stdev.Fit	Residual	St.Resid
45	0.050	2.2665	0.8067	0.1852	1.4598	2.28R
46	0.052	-1.7545	-0.1048	0.1953	-1.6497	-2.58R
48	0.050	1.5394	0.2100	0.1999	1.3295	2.09R
53	0.200	1.8736	0.4129	0.1757	1.4608	2.27R
90	0.159	-0.6694	-1.9763	0.1874	1.3068	2.04R

R denotes an obs. with a large st. resid.

4. Revised Final 1st Order Modeling for MCC-1 B

LNMCC = 3.49 - 3.71 SIO2 + 6.55 B2O3 + 6.65 NA2O + 8.58 LI2O - 0.00 CAO + 1.50 MGO + 2.32 FE2O3 - 10.1 AL2O3 - 4.45 ZRO2

Predictor	Coef	Stdev	t-ratio	p
Constant	3.485	1.336	2.61	0.010
SIO2	-3.709	1.548	-2.40	0.018
B2O3	6.553	1.571	4.17	0.000
NA2O	6.654	1.616	4.12	0.000
LI2O	8.582	2.230	3.85	0.000
CAO	-0.004	1.757	-0.00	0.998
MGO	1.502	1.971	0.76	0.448
FE2O3	2.324	1.538	1.51	0.133
AL2O3	-10.100	1.383	-7.30	0.000
ZRO2	-4.448	1.605	-2.77	0.006

s = 0.4095 R-sq = 67.5% R-sq(adj) = 65.2% Analysis of Variance

SOURCE DF SS MS F p
Regression 9 44.1841 4.9093 29.27 0.000
Error 127 21.3018 0.1677

Total 136 65.4859

SOURCE DF SEQ SS SIO2 6.5411 1 **B2O3** 1.4246 1 NA₂O 1 4.2441 LI2O 0.9481 1 0.0355 CAO 1 MGO 0.8685 1 18.2358 FE2O3 1 10.5979 AL2O3 1 1.2884 ZRO2 1

Unusual Observations

Obs.	SIO2	LNMC	CC Fit	t Stdev.Fi	t Residual	St.Resid
2	0.550	2.0096	1.2378	0.1537	0.7718	2.03R
24	0.481	1.6134	2.8730	0.0823	-1.2596	-3.14R
48	0.570	3.8506	2.7109	0.1482	1.1397	2.99R
74	0.438	2.4828	3.3067	0.1028	-0.8239	-2.08R
95	0.507	3.8114	2.9043	0.1172	0.9071	2.31R
107	0.440	5.3774	4.1939	0.1210	1.1835	3.02R
126	0.482	4.5876	3.7362	0.0901	0.8514	2.13R

LNMCC = 4.64 - 4.79 SIO2 + 5.29 B2O3 + 5.49 NA2O + 7.36 LI2O - 11.6 AL2O3 - 5.78 ZRO2

Predictor	Coef	Stdev	t-ratio	p
Constant	4.6375	0.7071	6.56	0.000
SIO2	-4.7862	0.9939	-4.82	0.000
B2O3	5.286	1.047	5.05	0.000
NA2O	5.492	1.090	5.04	0.000
LI2O	7.360	1.836	4.01	0.000
AL2O3	-11.5936	0.878	2 -13.	20 0.000
ZRO2	-5.781	1.217	-4.75	0.000

s = 0.4100 R-sq = 66.6% R-sq(adj) = 65.1%

Analysis of Variance

SOURCE	3	DF	SS	MS	F	p
Regression	on (5 43	3.6288	7.2715	43.25	0.000
Error	130	21.	8571	0.1681		
Total	136	65.	4859			
SOURCE	3	DF	SEQ S	SS		
SIO2	1	6.5	411			
B2O3	1	1.4	1246			
NA2O	1	4.	2441			
LI2O	1	0.9	48 1			
AL2O3	1	26	5.6787			
ZRO2	1	3.	7922			

Unusual Observations

Obs.	SIO2	LNMC	C Fit	Stdev.Fit	Residual	St.Resid
10	0.420	4.2991	3.7532	0.1664	0.5460	1.46 X
24	0.481	1.6134	2.8887	0.0705	-1.2752	-3.16R
48	0.570	3.8506	2.7919	0.1067	1.0587	2.67R
74	0.438	2.4828	3.3040	0.0953	-0.8212	-2.06R
95	0.507	3.8114	2.7934	0.0997	1.0181	2.56R
107	0.440	5.3774	4.1950	0.1084	1.1823	2.99R
115	0.489	4.5082	3.6659	0.0783	0.8423	2.09R
126	0.482	4.5876	3.7351	0.0895	0.8525	2.13R

R denotes an obs. with a large st. resid.

APPENDIX H--Revised Final 2nd Order Regression of Glass Properties

This Appendix displays the stepwise regression used to form the FINAL Revised PNL 2nd Order viscosity, electrical conductivity, PCT B, and MCC-1 B models (using the appropriate data set from Appendix A).

1. Revised Final 2nd Order Modeling for Viscosity

LNVISC = - 2.10 + 13.1 SIO2 - 4.06 B2O3 - 24.3 NA2O - 73.9 LI2O - 3.47 CAO - 1.13 MGO + 2.26 FE2O3 + 16.6 AL2O3 + 12.3 ZRO2 + 30.1 BXFE + 43.6 NAXNA + 127 NAXLI + 30.0 NAXMG + 298 LIXLI + 78.7 LIXOTH - 39.7 MGXFE

```
Predictor
            Coef
                    Stdev t-ratio
                                     p
          -2.1048
                    0.9911
                              -2.12 0.036
Constant
SIO2
          13.097
                    1.074
                            12.20 0.000
          -4.063
                    1.098
                            -3.70 \quad 0.000
B2O3
NA2O
           -24.305
                     2.768
                             -8.78 0.000
LI2O
          -73.903
                    4.414
                            -16.74 0.000
CAO
          -3.472
                    1.206
                            -2.88 0.005
           -1.134
MGO
                    1.995
                            -0.57 0.571
FE2O3
            2.255
                    1.402
                             1.61 0.111
AL2O3
           16.608
                             14.27
                     1.164
                                    0.000
                             10.92 0.000
ZRO2
           12.286
                     1.125
BXFE
           30.059
                     7.224
                             4.16 0.000
NAXNA
            43.590
                      9.014
                               4.84 0.000
NAXLI
           126.79
                     16.81
                              7.54 0.000
              29.99
NAXMG
                      12.16
                               2.47 0.015
          298.25
                             7.10 0.000
LIXLI
                    42.02
             78.71
LIXOTH
                     20.69
                              3.80
                                    0.000
MGXFE
            -39.74
                      13.67
                              -2.91 0.004
```

s = 0.1709 R-sq = 97.4% R-sq(adj) = 97.1%

Analysis of Variance

SOURCE DF SS MS F Regression 16 117.0725 7.3170 250.62 0.000105 3.0655 0.0292 Error Total 121 120.1380

SOURCE DF SEQ SS SIO2 1 34.6787 B2O3 1 0.2221

NA2O	1	1.9554
LI2O	1	39.3568
CAO	1	6.1396
MGO	1	5.1149
FE2O3	1	12.8422
AL2O3	1	8.5352
ZRO2	1	4.0040
BXFE	1	0.8216
NAXNA	1	0.3479
NAXLI	1	0.9248
NAXMG	1	0.2291
LIXLI	1	1.3070
LIXOTH	1	0.3465
MGXFE	1	0.2468

Unusual Observations

					Residual	
9	0.420	1.4012	1.5898	0.1211	-0.1886	-1.56 X
89	0.504	2.8362	2.2696	0.0455	0.5665	3.44R
90	0.566	3.0978	2.4167	0.0554	0.6812	4.21R
100	0.548	4.0476	3.7257	0.0840	0.3219	2.16R
101	0.507	4.1934	3.5411	0.0722	0.6523	4.21R

R denotes an obs. with a large st. resid. X denotes an obs. whose X value gives it large influence.

LNVISC = - 0.540 + 11.5 SIO2 - 6.09 B2O3 - 24.9 NA2O - 75.4 LI2O - 4.95 CAO + 15.0 AL2O3 + 10.7 ZRO2 - 1.66 OTHERS + 36.1 BXFE + 41.0 NAXNA + 125 NAXLI + 11.6 NAXMG + 299 LIXLI + 79.6 LIXOTH - 46.3 MGXFE

Predictor	Coef	Stdev	t-ratio	p
Constant	-0.5405	0.9150	-0.59	0.556
SIO2	11.4898	0.9354	12.28	0.000
B2O3	-6.0866	0.7769	-7.83	0.000
NA2O	-24.862	2.934	-8.47	0.000
LI2O	-75.355	4.903	-15.37	0.000
CAO	-4.951	1.110	-4.46	0.000
AL2O3	15.0295	0.8290	18.1	3 0.000
ZRO2	10.7055	0.9126	11.73	0.000
OTHERS	-1.661	1.385	-1.20	0.233
BXFE	36.120	6.583	5.49	0.000
NAXNA	40.992	9.025	5 4.54	4 0.000
NAXLI	124.66	16.99	7.34	0.000
NAXMG	11.646	7.64	0 1.5	2 0.130
LIXLI	298.57	42.55	7.02	0.000
LIXOTH	79.63	20.95	3.80	0.000
MGXFE	-46.32	13.40	-3.46	0.001
c = 0.1730	$\mathbf{p}_{\text{ca}} = 0$	27 1%	R-sa(ad	i) - 97 0%

s = 0.1730 R-sq = 97.4% R-sq(adj) = 97.0%

Analysis of Variance

SOURCE DF SS MS F p Regression 15 116.9645 7.7976 260.46 0.000 Error 106 3.1735 0.0299 Total 121 120.1380

SOURCE DF SEQ SS SIO2 34.6787 1 **B2O3** 0.2221 1 1 1.9554 NA2O 1 39.3568 LI2O 6.1396 CAO 1 1 21.9748 AL2O3 8.0421 ZRO2 1 **OTHERS** 1 0.0504 **BXFE** 1.2205 0.3710 NAXNA 1 0.9294 NAXLI 1 **NAXMG** 1 0.0669

1.2588 LIXLI 1 0.3404 LIXOTH 1 **MGXFE** 0.3577 1

Unusual Observations

Obs	SIO2	LNVIS	C Fit	Stdev.Fit	t Residual	St.Resid
9	0.420	1.4012	1.6525	0.1181	-0.2514	-1.99 X
89	0.504	2.8362	2.2443	0.0441	0.5919	3.54R
90	0.566	3.0978	2.4049	0.0558	0.6929	4.23R
98	0.455	0.4383	0.7600	0.0733	-0.3217	-2.05R
100	0.548	4.0476	3.6997	0.0839	0.3479	2.30R
101	0.507	4.1934	3.5601	0.0725	0.6334	4.03R
110	0.440	1.0225	1.3450	0.0654	-0.3225	-2.01R

R denotes an obs. with a large st. resid. X denotes an obs. whose X value gives it large influence.

LNVISC = - 0.807 + 11.6 SIO2 - 5.87 B2O3 - 23.9 NA2O - 72.3 LI2O - 4.94 CAO + 15.0 AL2O3 + 10.7 ZRO2 + 33.9 BXFE + 40.5 NAXNA + 116 NAXLI + 290 LIXLI + 55.8 LIXOTH - 30.1 MGXFE

Predictor	Coef	Stdev	t-ratio	p
Constant	-0.8068	0.6285	-1.28	0.202
SIO2	11.6219	0.6917	16.80	0.000
B2O3	-5.8667	0.5996	-9.78	0.000
NA2O	-23.903	2.767	-8.64	0.000
LI2O	-72.256	4.469	-16.17	0.000
CAO	-4.9358	0.8826	-5.59	0.000
AL2O3	14.9694	0.6542	22.88	0.000
ZRO2	10.6872	0.6895	15.50	0.000
BXFE	33.850	5.288	6.40	0.000
NAXNA	40.490	9.108	3 4.45	0.000
NAXLI	115.68	16.35	7.07	0.000
LIXLI	289.85	43.11	6.72	0.000
LIXOTH	55.76	14.62	3.81	0.000
MGXFE	-30.13	11.20	-2.69	0.008
0.4560		27.20	T / 1'	0000

s = 0.1760 R-sq = 97.2% R-sq(adj) = 96.9%

Analysis of Variance

SOURCE DF SS MS F p Regression 13 116.7927 8.9841 290.05 0.000 Error 108 3.3452 0.0310 Total 121 120.1380

DF SOURCE SEQ SS SIO2 34.6787 1 **B2O3** 0.2221 1 NA2O 1 1.9554 1 39.3568 LI2O 6.1396 CAO 1 21.9748 AL2O3 1 ZRO2 1 8.0421 **BXFE** 1 0.7621 0.3106 1 NAXNA 1.0054 NAXLI 1 LIXLI 1 1.1393 LIXOTH 0.9815 1 0.2242 MGXFE 1

Unusual Observations

```
Obs. SIO2 LNVISC
                       Fit Stdev.Fit Residual St.Resid
                          0.0840 0.3164
7
   0.570 4.2888
                  3.9725
                                          2.05R
          1.4012
9 0.420
                  1.7713
                          0.0968 -0.3701
                                          -2.52R
16 0.433 2.8798
                  2.4977
                          0.0748
                                  0.3821
                                           2.40R
89
   0.504 2.8362
                  2.2596
                          0.0444
                                  0.5765
                                           3.38R
                                  0.6871
                                           4.12R
   0.566 3.0978
                  2.4108
                          0.0565
90
                                          -2.08R
98 0.455 0.4383
                  0.7694
                          0.0743 -0.3311
           4.0476 3.7080
                           0.0842
                                  0.3396
                                           2.20R
100 0.548
           4.1934 3.5154
                           0.0699
                                  0.6780
                                           4.20R
101 0.507
```

R denotes an obs. with a large st. resid.

LNVISC = 10.8 SIO2 - 6.49 B2O3 - 25.8 NA2O - 74.0 LI2O - 5.79 CAO + 14.4 AL2O3 + 10.1 ZRO2 + 29.9 BXFE + 44.1 NAXNA + 121 NAXLI + 297 LIXLI + 44.1 LIXOTH - 39.9 MGXFE

Predictor	Coef	Stdev	t-ratio	p
Noconstar	nt			
SIO2	10.7967	0.2562	42.15	0.000
B2O3	-6.4873	0.3559	-18.23	0.000
NA2O	-25.801	2.347	-10.99	0.000
LI2O	-73.996	4.271	-17.32	0.000
CAO	-5.7882	0.5832	-9.92	0.000
AL2O3	14.3699	0.4596	31.2	7 0.000
ZRO2	10.1045	0.5206	19.41	0.000
BXFE	29.950	4.341	6.90	0.000
NAXNA	44.076	8.694	4 5.07	7 0.000
NAXLI	120.96	15.87	7.62	0.000
LIXLI	297.25	42.85	6.94	0.000
LIXOTH	44.06	11.46	3.84	0.000
MGXFE	-39.893	8.244	4 -4.84	4 0.000

s = 0.1765

Analysis of Variance

 SOURCE
 DF
 SS
 MS
 F
 p

 Regression
 13
 474.581
 36.506
 1171.63
 0.000

 Error
 109
 3.396
 0.031

 Total
 122
 477.978

SOURCE DF SEQ SS 377.227 1 SIO2 **B2O3** 1 2.535 1 10.964 NA2O LI2O 1 42.627 3.691 CAO 1 24.638 AL2O3 1 8.328 ZRO2 1 **BXFE** 0.232 1 NAXNA 1 0.662 1.273 NAXLI 1 LIXLI 1 1.157 0.517 LIXOTH 1 **MGXFE** 1 0.730

Unusual Observations

Obs. SIO2 LNVISC Fit Stdev.Fit Residual St.Resid

```
0.0820 0.3408
7 0.570 4.2888
                  3.9480
                                           2.18R
   0.420
          1.4012
                   1.7760
                          0.0971 -0.3749
                                           -2.54R
9
                   4.7745
          4.4288
                           0.0656 -0.3457
                                            -2.11R
   0.570
10
           2.8798
                   2.5087
                           0.0745
                                   0.3711
                                            2.32R
    0.433
16
           2.8362
                   2.2468
                           0.0433
                                   0.5894
                                            3.44R
89
    0.504
                           0.0536
                                   0.7110
                                            4.23R
    0.566
           3.0978
                   2.3869
90
                                           -2.03R
    0.455
           0.4383
                   0.7637
98
                           0.0744 -0.3254
101 0.507 4.1934
                   3.5240
                           0.0697
                                   0.6694
                                            4.13R
```

R denotes an obs. with a large st. resid.

2. Revised Final 2nd Order Modeling for Electrical Conductivity

LNELEC = - 9.47 + 9.93 SIO2 + 11.2 B2O3 + 24.0 NA2O + 40.8 LI2O + 8.68 CAO + 9.79 MGO + 8.89 FE2O3 + 10.9 AL2O3 + 8.98 ZRO2 - 94.5 NAXLI + 42.2 CAXFE + 19.3 BXFE + 38.6 MGXZR + 24.7 SIXOTH + 43.3 LIXZR

Predictor	Coef	Stdev	t-ratio	p
Constant	-9.470	4.135	-2.29	0.024
SIO2	9.931	3.994	2.49	0.014
B2O3	11.190	4.362	2.57	0.012
NA2O	24.044	4.244	5.67	0.000
LI2O	40.826	4.384	9.31	0.000
CAO	8.685	4.490	1.93	0.056
MGO	9.786	4.404	2.22	0.028
FE2O3	8.895	4.402	2.02	0.046
AL2O3	10.895	4.269	2.55	0.012
ZRO2	8.981	4.341	2.07	0.041
NAXLI	-94.49	14.68	-6.44	0.000
CAXFE	42.24	10.98	3.85	0.000
BXFE	19.283	6.850	2.82	0.006
MGXZR	38.59	14.51	2.6	6 0.009
SIXOTH	24.693	8.555	2.8	9 0.005
LIXZR	43.28	16.14	2.68	0.009

s = 0.1622 R-sq = 93.1% R-sq(adj) = 92.1%

Analysis of Variance

SOURCE DF SS MS F 95.12 0.000 Regression 15 37.5252 2.5017 Error 106 2.7878 0.0263 Total 121 40.3130

SOURCE DF SEQ SS 1 2.0872 SIO2 **B2O3** 1 6.7194 NA2O 1 3.3538 22.3609 LI2O 1 CAO 1 0.0004 0.1194 MGO 1 FE2O3 1 0.0183 AL2O3 0.0303 1 ZRO2 0.1344 1 1.5893 NAXLI 1

0.3515 CAXFE 1 **BXFE** 1 0.2168 0.1716 MGXZR 1 SIXOTH 1 0.1828 0.1891 LIXZR 1

Unusual Observations

Obs.	SIO2	LNELE	EC Fit	Stdev.Fi	t Residual	St.Resid
10	0.570	3.0258	2.6696	0.0762	0.3561	2.49R
12	0.420	4.1811	4.2665	0.1171	-0.0854	-0.76 X
14	0.420	3.5531	3.4908	0.1025	0.0622	0.49 X
18	0.421	4.1821	4.2697	0.1223	-0.0877	-0.82 X
102	0.440	2.9570	4.1365	0.0679	-1.1795	-8.01R

R denotes an obs. with a large st. resid. X denotes an obs. whose X value gives it large influence.

LNELEC = - 5.31 + 5.60 SIO2 + 7.20 B2O3 + 19.9 NA2O + 37.0 LI2O + 5.12 CAO + 6.01 MGO + 6.12 FE2O3 + 6.38 AL2O3 + 4.93 ZRO2 - 85.0 NAXLI + 27.4 CAXFE + 12.1 BXFE + 25.8 MGXZR + 17.3 SIXOTH + 32.0 LIXZR

121 cases used 1 cases contain missing values

Predictor	Coef	Stdev	t-ratio	p
Constant	-5.310	2.632	-2.02	0.046
SIO2	5.601	2.545	2.20	0.030
B2O3	7.198	2.773	2.60	0.011
NA2O	19.911	2.700	7.38	0.000
LI2O	37.030	2.785	13.30	0.000
CAO	5.116	2.849	1.80	0.075
MGO	6.011	2.797	2.15	0.034
FE2O3	6.119	2.788	2.19	0.030
AL2O3	6.376	2.719	2.34	0.021
ZRO2	4.933	2.760	1.79	0.077
NAXLI	-85.029	9.300	-9.14	4 0.000
CAXFE	27.424	7.030	3.9	0.000
BXFE	12.100	4.363	2.77	0.007
MGXZR	25.811	9.22	1 2.8	30 0.006
SIXOTH	17.272	5.434	3.1	8 0.002
LIXZR	31.98	10.23	3.13	0.002

s = 0.1024 R-sq = 97.3% R-sq(adj) = 96.9%

Analysis of Variance

SOURCE DF SS MS F 39.0004 2.6000 247.90 0.000 Regression 15 0.0105 Error 105 1.1013 40.1017 Total 120

DF SOURCE SEQ SS SIO2 1 2.2643 7.3093 B2O3 1 3.5054 NA2O 1 23.6161 LI2O 1 0.0161 CAO 1 MGO 0.0650 1 FE2O3 1 0.1423 0.0750 AL2O3 1 0.3720 ZRO2 1 NAXLI 1 1.1640 **CAXFE** 1 0.1303

BXFE 1 0.0796 MGXZR 1 0.0725 SIXOTH 1 0.0859 LIXZR 1 0.1025

Unusual Observations

Fit Stdev.Fit Residual St.Resid Obs. SIO2 LNELEC 1 0.480 2.92585 3.14406 0.01442 -0.21821 -2.15R 6 0.440 3.85630 3.67552 0.05091 0.18078 2.03R 10 0.570 3.02578 2.56691 0.04879 0.45887 5.10R 12 0.420 4.18113 4.16525 0.07440 0.01589 0.23 X 14 0.420 3.55306 3.47948 0.06471 0.07358 0.93 X 16 0.433 3.27185 3.46589 0.04845 -0.19405 -2.15R -0.90 X21 0.570 2.08567 2.27135 0.04595 -0.18568 -2.03R

R denotes an obs. with a large st. resid.

LNELEC = - 0.587 + 1.05 SIO2 + 2.25 B2O3 + 15.1 NA2O + 32.5 LI2O + 1.03 MGO + 1.20 FE2O3 + 1.52 AL2O3 - 88.3 NAXLI + 28.7 CAXFE + 12.1 BXFE + 25.2 MGXZR + 7.56 SIXOTH + 31.3 LIXZR

121 cases used 1 cases contain missing values

Predictor	Coef	Stdev t	-ratio	p
Constant	-0.5875	0.3505	-1.68	0.097
SIO2	1.0504	0.4036	2.60	0.011
B2O3	2.2519	0.4743	4.75	0.000
NA2O	15.1254	0.5473	27.64	4 0.000
LI2O	32.459	1.182	27.46	0.000
MGO	1.0283	0.4993	2.06	0.042
FE2O3	1.1984	0.6108	1.96	0.052
AL2O3	1.5175	0.4396	3.45	0.001
NAXLI	-88.301	9.168	-9.63	0.000
CAXFE	28.688	5.906	4.86	0.000
BXFE	12.078	4.377	2.76	0.007
MGXZR	25.240	9.154	2.76	0.007
SIXOTH	7.5603	0.8729	8.66	0.000
LIXZR	31.255	8.365	3.74	0.000

s = 0.1030 R-sq = 97.2% R-sq(adj) = 96.8%

Analysis of Variance

DF SS MS **SOURCE** F 282.41 0.000 Regression 13 38.9661 2.9974 1.1357 0.0106 Error 107 Total 120 40.1017

SOURCE DF SEQ SS 1 2.2643 SIO2 7.3093 B2O3 1 NA2O 1 3.5054 LI2O 1 23.6161 0.0318 MGO 1 0.1667 FE2O3 1 0.0538 AL2O3 1 1.0454 NAXLI 1 **CAXFE** 1 0.0142 0.1400 **BXFE** 1 0.0137 **MGXZR** 1 SIXOTH 1 0.6572 LIXZR 1 0.1482

Unusual Observations

 Obs.
 SIO2
 LNELEC
 Fit Stdev.Fit Residual
 St.Resid

 1
 0.480
 2.92585
 3.14104
 0.01399
 -0.21520
 -2.11R

 10
 0.570
 3.02578
 2.53665
 0.04573
 0.48912
 5.30R

 12
 0.420
 4.18113
 4.14279
 0.07274
 0.03834
 0.53 X

 16
 0.433
 3.27185
 3.46026
 0.04861
 -0.18841
 -2.07R

 18
 0.421
 4.18205
 4.26414
 0.07533
 -0.08209
 -1.17 X

 21
 0.570
 2.08567
 2.27716
 0.04542
 -0.19149
 -2.07R

R denotes an obs. with a large st. resid.

LNELEC = - 0.195 + 0.617 SIO2 + 1.55 B2O3 + 14.9 NA2O + 33.5 LI2O + 0.656 MGO + 0.939 AL2O3 + 0.984 ZRO2 - 92.2 NAXLI + 25.4 CAXFE + 18.1 BXFE + 26.9 MGXZR + 6.85 SIXOTH

121 cases used 1 cases contain missing values

Predictor	Coef	Stdev t	ratio:	p
Constant	-0.1947	0.4098	-0.48	0.636
SIO2	0.6168	0.4677	1.32	0.190
B2O3	1.5461	0.4013	3.85	0.000
NA2O	14.9441	0.6023	24.8	1 0.000
LI2O	33.525	1.211	27.67	0.000
MGO	0.6560	0.5893	1.11	0.268
AL2O3	0.9387	0.5177	1.81	0.073
ZRO2	0.9836	0.5791	1.70	0.092
NAXLI	-92.205	9.503	-9.70	0.000
CAXFE	25.352	7.063	3.59	0.000
BXFE	18.110	3.290	5 .51	0.000
MGXZR	26.862	9.612	2.79	0.006
SIXOTH	6.8458	0.9860	6.94	4 0.000

s = 0.1077 R-sq = 96.9% R-sq(adj) = 96.5%

Analysis of Variance

SOURCE DF SS MS F p
Regression 12 38.8488 3.2374 279.06 0.000
Error 108 1.2529 0.0116
Total 120 40.1017

SOURCE DF SEQ SS SIO2 1 2.2643 **B2O3** 1 7.3093 1 3.5054 NA2O LI2O 1 23.6161 0.0318 MGO 1 AL2O3 1 0.1592 ZRO2 1 0.2519 1.0405 **NAXLI** 1 0.0111 **CAXFE** 1 **BXFE** 0.0542 1 1 0.0458 MGXZR 0.5592 **SIXOTH** 1

Unusual Observations

```
Obs. SIO2 LNELEC
                        Fit Stdev.Fit Residual St.Resid
 1 0.480 2.92585 3.14805 0.01499 -0.22220
                                            -2.08R
6 0.440 3.85630 3.64880 0.04491 0.20750
                                             2.12R
7 0.570 1.92716 2.20363 0.04834 -0.27647
                                             -2.87R
10 0.570 3.02578 2.48805 0.04583 0.53772
                                              5.52R
12  0.420  4.18113  4.19687  0.07418 -0.01574
                                             -0.20 X
18  0.421  4.18205  4.24372  0.07573  -0.06167
                                             -0.81 X
52 0.439 1.93007 2.16271 0.04820 -0.23264
                                             -2.42R
```

R denotes an obs. with a large st. resid.

LNELEC = 0.383 + 1.13 B2O3 + 14.5 NA2O + 33.4 LI2O - 94.3 NAXLI + 16.4 CAXFE + 14.2 BXFE + 27.9 MGXZR + 5.57 SIXOTH + 0.100 LIXZR

121 cases used 1 cases contain missing values

Predictor	Coef	Stdev t-	ratio	p
Constant	0.38257	0.01626	23.52	0.000
B2O3	1.13355	0.04340	26.12	0.000
NA2O	14.5157	0.0906	160.27	0.000
LI2O	33.4372	0.2158	154.93	0.000
NAXLI	-94.309	1.702	-55.41	0.000
CAXFE	16.3778	0.7669	21.36	0.000
BXFE	14.2337	0.4371	32.56	0.000
MGXZR	27.914	1.359	20.54	0.000
SIXOTH	5.5687	0.1224	45.51	0.000
LIXZR	0.099976	0.001748	57.2	0.000

s = 0.01956 R-sq = 99.9% R-sq(adj) = 99.9%

Analysis of Variance

SOURCE DF SS MS F p
Regression 9 40.0593 4.4510 11637.31 0.000
Error 111 0.0425 0.0004
Total 120 40.1017

DF SEQ SS SOURCE 4.0591 B2O3 1 1 7.2225 NA2O 25.2515 LI2O 1 NAXLI 1 0.7986 0.2932 **CAXFE** 1 0.3175 **BXFE** 1 **MGXZR** 1 0.0683 0.7967 SIXOTH 1 1.2517 LIXZR 1

Unusual Observations

 Obs.
 B2O3
 LNELEC
 Fit Stdev.Fit Residual
 St.Resid

 5
 0.050
 3.42556
 3.47278
 0.00571
 -0.04722
 -2.52R

 9
 0.196
 2.12465
 2.10517
 0.00983
 0.01948
 1.15 X

 10
 0.085
 3.02578
 2.99463
 0.01151
 0.03114
 1.97 X

 12
 0.176
 4.18113
 4.13114
 0.01219
 0.04999
 3.27RX

 17
 0.050
 3.35096
 3.35212
 0.01043
 -0.00117
 -0.07 X

 18
 0.050
 4.18205
 4.16025
 0.01368
 0.02180
 1.56 X

86 0.113 3.59539 3.55510 0.00366 0.04029 2.10R 104 0.095 4.54425 4.58400 0.00667 -0.03974 -2.16R

3. Revised Final 2nd Order Modeling for PCT B

LNPCT = 2.77 - 7.95 SIO2 + 11.0 B2O3 + 18.1 NA2O + 20.7 LI2O + 11.3 CAO - 39.4 MGO - 4.72 FE2O3 - 47.3 AL2O3 - 13.4 ZRO2 + 97.5 SIXMG - 90.2 BXCA - 122 NAXCA + 127 ALXAL

Predictor	Coef	Stdev	t-ratio	p
Constant	2.769	1.616	1.71	0.089
SIO2	-7.946	1.939	-4.10	0.000
B2O3	11.041	1.966	5.62	0.000
NA2O	18.078	1.955	9.25	0.000
LI2O	20.681	2.807	7.37	0.000
CAO	11.337	5.624	2.02	0.046
MGO	-39.38	15.51	-2.54	0.012
FE2O3	-4.721	1.929	-2.45	0.016
AL2O3	-47.278	3.469	-13.6	3 0.000
ZRO2	-13.359	2.030	-6.58	0.000
SIXMG	97.52	30.29	3.22	0.002
BXCA	-90.15	29.71	-3.03	0.003
NAXCA	-121.87	34.30	6 -3.5	55 0.001
ALXAL	126.58	17.69	7.10	6 0.000

s = 0.5310 R-sq = 88.7% R-sq(adj) = 87.5%

Analysis of Variance

SOURCE DF SS MS F Regression 13 292.987 22.537 79.94 0.000 Error 133 37.497 0.282 Total 146 330.484

SOURCE DF SEQ SS SIO2 1 5.320 8.202 **B2O3** 1 NA2O 57.966 1 18.008 LI2O 1 CAO 1 9.759 31.953 MGO 1 52.193 FE2O3 1 78.773 AL2O3 1 ZRO2 8.254 1 **SIXMG** 1 2.632 2.461 **BXCA** 1 NAXCA 3.024 1 ALXAL 1 14.441

Unusual Observations

Obs.	SIO2	2 LNPC	T Fit	Stdev.Fit	Residual	St.Resid
2	0.550	-2.7181	-2.9619	0.2859	0.2438	0.54 X
5	0.570	-1.0356	-2.1751	0.1944	1.1394	2.31R
12	0.420	1.5394	2.0962	0.2846	-0.5567	-1.24 X
13	0.570	2.6442	3.7489	0.2415	-1.1047	-2.34R
45	0.570	2.2665	1.2132	0.2219	1.0533	2.18R
46	0.570	-1.7545	-1.1848	0.2844	-0.5696	-1.27 X
51	0.562	1.6378	0.4042	0.1980	1.2337	2.50R
53	0.519	1.8736	0.0414	0.1840	1.8323	3.68R
59	0.542	-0.7340	0.6355	0.2104	-1.3695	-2.81R
86	0.323	-1.1026	-1.5958	0.3626	0.4932	1.27 X

R denotes an obs. with a large st. resid. X denotes an obs. whose X value gives it large influence.

LNPCT = - 5.18 SIO2 + 13.8 B2O3 + 20.8 NA2O + 23.5 LI2O + 14.1 CAO - 36.6 MGO - 1.95 FE2O3 - 44.5 AL2O3 - 10.6 ZRO2 + 2.77 OTHERS + 97.5 SIXMG - 90.2 BXCA - 122 NAXCA + 127 ALXAL

Predictor	Coef	Stdev	t-ratio	p
Noconstar	nt			
SIO2	-5.1771	0.6187	-8.37	0.000
B2O3	13.810	1.139	12.12	0.000
NA2O	20.847	1.191	17.50	0.000
LI2O	23.450	2.188	10.72	0.000
CAO	14.107	5.562	2.54	0.012
MGO	-36.62	14.98	-2.44	0.016
FE2O3	-1.951	1.341	-1.46	0.148
AL2O3	-44.508	3.184	-13.98	0.000
ZRO2	-10.589	1.522	-6.96	0.000
OTHERS	2.771	1.616	1.71	0.089
SIXMG	97.53	30.29	3.22	0.002
BXCA	-90.15	29.71	-3.03	0.003
NAXCA	-121.87	34.30	6 -3.5	5 0.001
ALXAL	126.58	17.69	7.16	0.000

s = 0.5310 Analysis of Variance

 SOURCE
 DF
 SS
 MS
 F
 p

 Regression
 14
 299.222
 21.373
 75.81
 0.000

 Error
 133
 37.496
 0.282

 Total
 147
 336.718

SEQ SS **SOURCE** DF SIO2 1 5.065 14.254 1 **B2O3** NA2O 1 40.586 LI2O 1 3.745 25.914 CAO 1 13.470 MGO 1 16.338 FE2O3 1 AL2O3 1 141.346 15.942 ZRO2 1 **OTHERS** 1 0.003 2.632 SIXMG 1 2.462 **BXCA** 1 NAXCA 1 3.024 14.441 ALXAL 1

Unusual Observations

Obs.	SIO2	2 LNPC	T Fit	Stdev.Fit	Residual	St.Resid
2	0.550	-2.7181	-2.9619	0.2859	0.2438	0.54 X
5	0.570	-1.0356	-2.1752	0.1944	1.1395	2.31R
12	0.420	1.5394	2.0961	0.2846	-0.5566	-1.24 X
13	0.570	2.6442	3.7487	0.2415	-1.1045	-2.34R
45	0.570	2.2665	1.2134	0.2219	1.0532	2.18R
46	0.570	-1.7545	-1.1849	0.2844	-0.5695	-1.27 X
51	0.562	1.6378	0.4042	0.1980	1.2337	2.50R
53	0.519	1.8736	0.0413	0.1840	1.8324	3.68R
59	0.542	-0.7340	0.6354	0.2104	-1.3694	-2.81R
86	0.323	-1.1026	-1.5958	0.3626	0.4932	1.27 X

R denotes an obs. with a large st. resid. X denotes an obs. whose X value gives it large influence.

LNPCT = -0.11 - 5.13 SIO2 + 14.0 B2O3 + 21.0 NA2O + 24.1 LI2O + 13.3 CAO - 36.8 MGO - 43.6 AL2O3 - 10.3 ZRO2 + 97.7 SIXMG - 87.1 BXCA - 120 NAXCA + 123 ALXAL

Predictor	Coef	Stdev	t-ratio p
Constant	-0.107	1.130	-0.10 0.924
SIO2	-5.128	1.589	-3.23 0.002
B2O3	14.011	1.576	8.89 0.000
NA2O	20.987	1.581	13.28 0.000
LI2O	24.098	2.480	9.72 0.000
CAO	13.313	5.668	2.35 0.020
MGO	-36.82	15.76	-2.34 0.021
AL2O3	-43.587	3.182	-13.70 0.000
ZRO2	-10.297	1.628	-6.33 0.000
SIXMG	97.74	30.85	3.17 0.002
BXCA	-87.12	30.23	- 2.88 0.0 05
NAXCA	-120.33	34.99	9 -3.44 0.001
ALXAL	123.09	17.95	6.86 0.000

s = 0.5408 R-sq = 88.1% R-sq(adj) = 87.1%

Analysis of Variance

SOURC	\mathbf{E}	F SS	MS	F	p
Regress	ion 12	291.298	24.275	83.01	0.000
Error	134	39.186	0.292		
Total	146	330.484			

D	F SEQ SS
1	5.320
1	8.202
1	57.966
1	18.008
1	9.759
1	31.953
1	129.746
1	8.655
1	2.643
1	2.327
1	2.972
1	13.747
	1 1 1 1 1 1 1 1

Unusual Observations

Obs. SIO2 LNPCT Fit Stdev.Fit Residual St.Resid 2 0.550 -2.7181 -2.9657 0.2912 0.2476 0.54 X

```
13 0.570 2.6442 3.7565 0.2459 -1.1123
                                          -2.31R
45 0.570 2.2665 0.9834
                         0.2047
                                 1.2831
                                          2.56R
                         0.2897 -0.5615
                                          -1.23 X
   0.570 -1.7545 -1.1930
46
   0.562 1.6378 0.1726 0.1772
                                 1.4652
                                          2.87R
51
   0.519 1.8736 0.2821
                          0.1584
                                 1.5915
                                          3.08R
53
                          0.1940 -1.5886
                                          -3.15R
59
   0.542 -0.7340 0.8546
61
   0.515 0.1124
                  1.2230 0.1469 -1.1105
                                          -2.13R
                                 0.2885
                                          0.62 X
   0.390 -0.2510 -0.5395
                          0.2812
81
86 0.323 -1.1026 -1.5570 0.3689 0.4544
                                          1.15 X
```

R denotes an obs. with a large st. resid.

LNPCT = - 5.27 SIO2 + 13.9 B2O3 + 20.9 NA2O + 24.0 LI2O + 13.3 CAO - 37.5 MGO - 43.6 AL2O3 - 10.4 ZRO2 + 99.0 SIXMG - 87.1 BXCA - 121 NAXCA + 123 ALXAL

Predictor	Coef	Stdev	t-ratio	p
Noconstar	nt			
SIO2	-5.2717	0.5021	-10.50	0.000
B2O3	13.909	1.154	12.06	0.000
NA2O	20.890	1.204	17.35	0.000
LI2O	23.992	2.209	10.86	0.000
CAO	13.251	5.610	2.36	0.020
MGO	-37.54	13.81	-2.72	0.007
AL2O3	-43.629	3.139	-13.90	0.000
ZRO2	-10.362	1.475	-7.02	0.000
SIXMG	98.98	27.83	3.56	0.001
BXCA	-87.11	30.12	-2.89	0.004
NAXCA	-120.72	34.62	2 -3.4	9 0.001
ALXAL	123.09	17.89	6.8 8	0.000

s = 0.5388

Analysis of Variance

SOURC	E I	OF SS	MS	F	p
Regressi	on 12	297.530	24.794	85.41	0.000
Error	135	39.189	0.290		
Total	147	336.718			

SOURCE	\mathbf{D}	F SEQ SS
SIO2	1	5.065
B2O3	1	14.254
NA2O	1	40.586
LI2O	1	3.745
CAO	1	25.914
MGO	1	13.470
AL2O3	1	157.277
ZRO2	1	14.581
SIXMG	1	3.557
BXCA	1	2.303
NAXCA	1	3.032
ALXAL.	1	13.746

Unusual Observations

 Obs.
 SIO2
 LNPCT
 Fit Stdev.Fit
 Residual
 St.Resid

 2
 0.550
 -2.7181
 -2.9688
 0.2882
 0.2507
 0.55 X

 13
 0.570
 2.6442
 3.7426
 0.1973
 -1.0984
 -2.19R

```
0.570 2.2665 0.9876
                                            2.55R
                          0.1992
                                   1.2789
45
                                   1.4664
                                            2.88R
                  0.1714
                           0.1760
    0.562 1.6378
51
                                            3.08R
53
   0.519 1.8736
                   0.2838
                           0.1569
                                   1.5899
   0.542 -0.7340
                           0.1932 -1.5892
                   0.8552
                                            -3.16R
59
                           0.1397 -1.1147
                                            -2.14R
   0.515 0.1124
                   1.2271
61
    0.390 -0.2510 -0.5475
                                            0.63 X
                           0.2676
                                   0.2964
81
                           0.3655
                                   0.4507
                                            1.14 X
    0.323 -1.1026 -1.5533
86
```

R denotes an obs. with a large st. resid.

4. Revised Final 2nd Order Modeling for MCC-1 B

LNMCC = 4.52 - 5.64 SIO2 + 10.9 B2O3 + 6.18 NA2O + 8.61 LI2O - 29.2 CAO + 2.61 MGO + 1.61 FE2O3 - 17.1 AL2O3 - 6.34 ZRO2 + 58.5 SIXCA - 70.2 BXAL + 83.1 ALXAL

Predictor	Coef	Stdev	t-ratio	p
Constant	4.516	1.147	3.94	0.000
SIO2	-5.635	1.399	-4.03	0.000
B2O3	10.915	1.511	7.22	0.000
NA2O	6.183	1.317	4.70	0.000
LI2O	8.607	1.832	4.70	0.000
CAO	-29.239	8.081	-3.62	0.000
MGO	2.613	1.624	1.61	0.110
FE2O3	1.607	1.251	1.28	0.201
AL2O3	-17.063	2.575	-6.63	0.000
ZRO2	-6.335	1.328	-4.77	0.000
SIXCA	58.53	15.84	3.69	0.000
BXAL	-70.21	12.27	-5.72	0.000
ALXAL	83.08	12.39	6.70	0.000

s = 0.3296 R-sq = 79.4% R-sq(adj) = 77.4%

Analysis of Variance

SOURCE DF SS MS F 4.3347 39.90 0.000 Regression 12 52.0160 Error 124 13.4699 0.1086 Total 136 65.4859 **SOURCE** DF SEQ SS 6.5411 SIO2 1 **B2O3** 1 1.4246 4.2441 NA2O 1 0.9481 LI2O 1 CAO 1 0.0355 MGO 1 0.8685 FE2O3 18.2358 1 10.5979 **AL2O3** 1 1.2884 ZRO2 1 SIXCA 1.0404 1 BXAL 1.9092 1 ALXAL 1 4.8823

Unusual Observations

Obs. SIO2 LNMCC Fit Stdev.Fit Residual St.Resid

```
2.3974
                    2.1742
                             0.1809
                                     0.2232
                                               0.81 X
 5
    0.570
                    4.9073
                             0.1809 -0.1326
                                               -0.48 X
9
    0.420
           4.7747
                             0.0808 -0.9683
                                               -3.03R
                    2.5817
24
    0.481
            1.6134
                                      0.6523
                                               2.05R
32
    0.473
            3.2229
                     2.5706
                             0.0883
                                      0.9276
                                               3.08R
    0.570
            3.8506
                     2.9229
                             0.1344
48
    0.420
            2.6748
                     3.3320
                             0.1349
                                     -0.6571
                                               -2.19R
50
    0.323
            2.2664
                    2.2374
                             0.2358
                                      0.0290
                                               0.13 X
78
                             0.1163
                                      0.6627
                                               2.15R
92
    0.455
            3.9035
                     3.2408
            3.8114
                             0.1004
                                      0.6804
                                               2.17R
95
    0.507
                     3.1310
                                      0.8787
                                                2.81R
             5.3774
                     4.4987
                              0.1055
107
     0.440
                                                2.59R
     0.440
             4.4707
                     3.6550
                              0.0966
                                      0.8158
108
115
     0.489
             4.5082
                     3.7265
                              0.0687
                                      0.7817
                                                2.42R
                     3.7990
                              0.0740
                                      0.7886
                                                2.46R
             4.5876
126
     0.482
```

R denotes an obs. with a large st. resid.

LNMCC = 6.08 - 7.30 SIO2 + 9.20 B2O3 + 4.58 NA2O + 6.89 LI2O - 32.4 CAO - 18.4 AL2O3 - 7.61 ZRO2 + 61.8 SIXCA - 68.2 BXAL + 82.2 ALXAL

Coef	Stdev	t-ratio	p
6.0779	0.7096	8.57	0.000
-7.301	1.034	-7.06	0.000
9.199	1.151	7.99	0.000
4.5813	0.9442	4.85	0.000
6.885	1.544	4.46	0.000
-32.432	7.882	-4.11	0.000
-18.397	2.296	-8.01	0.000
-7.605	1.022	-7.44	0.000
61.82	15.74	3.93	0.000
-68.22	12.26	-5.56	0.000
82.20	12.11	6.79	0.000
	-7.301 9.199 4.5813 6.885 -32.432 -18.397 -7.605 61.82 -68.22	6.0779 0.7096 -7.301 1.034 9.199 1.151 4.5813 0.9442 6.885 1.544 -32.432 7.882 -18.397 2.296 -7.605 1.022 61.82 15.74 -68.22 12.26	6.0779 0.7096 8.57 -7.301 1.034 -7.06 9.199 1.151 7.99 4.5813 0.9442 4.85 6.885 1.544 4.46 -32.432 7.882 -4.11 -18.397 2.296 -8.01 -7.605 1.022 -7.44 61.82 15.74 3.93 -68.22 12.26 -5.56

s = 0.3310 R-sq = 78.9% R-sq(adj) = 77.2%

Analysis of Variance

 SOURCE
 DF
 SS
 MS
 F
 p

 Regression
 10
 51.6782
 5.1678
 47.16
 0.000

 Error
 126
 13.8077
 0.1096

 Total
 136
 65.4859

DF · SEQ SS SOURCE SIO2 1 6.5411 B2O3 1 1.4246 4.2441 NA2O LI2O 1 0.9481 CAO 0.0355 1 26.6474 AL2O3 1 3.9559 ZRO2 1 1.0460 SIXCA 1 1.7834 **BXAL** 1 5.0521 ALXAL 1

Unusual Observations

Obs.	SIO2	LNM	CC Fi	t Stdev.F	it Residua	l St.Resid
5	0.570	2.3974	2.1784	0.1816	0.2191	0.79 X
9	0.420	4.7747	4.8063	0.1698	-0.0316	-0.11 X
24	0.481	1.6134	2.6414	0.0713	-1.0280	-3.18R
48	0.570	3.8506	2.8912	0.1327	0.9593	3.16R
50	0.420	2.6748	3.3607	0.1146	-0.6859	-2.21R
78	0.323	2.2664	2.2012	0.2357	0.0652	0.28 X

```
0.1700 -0.1209
                   2.5319
                                            -0.43 X
82
    0.460
           2.4110
95
                                   0.7451
    0.507
           3.8114
                   3.0663
                           0.0923
                                            2.34R
                                    0.8209
                                             2.60R
                   4.5564
                            0.0997
    0.440
            5.3774
107
                                    0.8485
                                             2.68R
     0.440
            4.4707
                    3.6223
                            0.0952
108
115
     0.489
            4.5082
                    3.6886
                            0.0639
                                    0.8197
                                             2.52R
                                             2.40R
126
    0.482
            4.5876
                    3.8119
                            0.0740
                                    0.7757
```

R denotes an obs. with a large st. resid.

APPENDIX I--R2 Calculations for Validation

This Appendix displays the R² calculations made on the validation sets for viscosity, PCT B, and MCC-1 B. Each table has calculations for the PNL 1st order model for that property (PNLL), PNL 2nd order model for that property (PNLN), Revised PNL 1st order model for that property (RevL), and Revised 2nd order model for that property (RevN).

1. R² Calculations for Viscosity Model Validation

Glass #	LNVISC	PNLL	PNLN	RevL	RevN
1	1.8245	1.8769	1.8646	1.9392	1.8601
2	1.8245	1.8969	1.9724	1.8915	1.9730
3	1.7066	1.7990	1.6995	1.7923	1.7006
4	1.4884	1.6604	1.6206	1.6627	1.6201
5	1.8050	1.8768	1.8938	1.8602	1.8969
6	1.7967	1.9314	1.8793	1.9898	1.8731
7	1.5476	1.5927	1.6879	1.5918	1.6891
8	1.8931	1.9272	1.7564	1.9511	1.7574
9	1.3712	1.5686	1.3218	1.5986	1.3219
10	1.8656	2.0159	1.8528	1.9929	1.8527
11	1.7422	1.9151	1.7226	1.9451	1.7205
12	1.9559	1.9998	1.8268	1.9554	1.8291
13	2.2214	2.0905	2.4672	2.0080	2.4726
14	1.8342	1.9998	1.8268	1.9554	1.8291
15	1.8116	1,9998	1.8268	1.9554	1.8291
16	1.9081	1.9998	1.8268	1.9554	1.8291
17	0.6152	0.6998	0.5525	0.8141	0.5384
18	0.1398	0.0102	0.0662	-0.0369	0.0714
19	0.9594	0.7235	1.1937	0.6263	1.1976
20	2.5572	2.3626	2.6339	2.2759	2.6366
21	2.2976	2.3617	2.2872	2.2955	2.2887
22	0.8671	0.9192	1.0292	0.9574	1.0163
23	2.1849	2.0868	2.1716	2.0178	2.1733
24	2.1041	2.0919	2.1031	2.0197	2.1104
25	2.1090	2.1083	2.0420	2.0579	2.0426
26	2.1939	2.1314	1.9988	2.0665	2.0009
27	2.8362	2.1263	2.2063	2.0695	2.2109
28	3.0978	2.1130	2.3847	2.0767	2.3873
29	2.3795	2.1334	2.1987	2.0761	2.2026
30	2.1401	2.0868	2.1716	2.0178	2.1733
31	2.0554	2.1083	2.0420	2.0579	2.0426
32	2.1599	2.1263	2.2063	2.0695	2.2109
33	2.2565	2.1130	2.3847	2.0767	2.3873
34	2.1587	2.1334	2.1987	2.0761	2.2026
35	0.1655	-0.0838	0.1509	-0.1509	0.1498
36	0.4383	0.2564	0.8946	0.2525	0.8919
37	3.3365	3.0201	3.1923	3.0056	3.1873
38	4.0476	3.0371	3.5622	3.0015	3.5672
39	4.1934	3.0269	3.4522	3.0275	3.4445
40	-0.3711	-0.6862	-0.2670	-0.6520	-0.2633

41	0.4574	0.1243	0.5117	0.0925	0.5207
42	-0.3011	-0.6962	-0.2265	-0.7010	-0.2250
43	0.1740	0.0801	0.5597	0.0105	0.5568
44	1.3913	0.9701	1.6230	0.9672	1.6200
45	3.3908	3.0452	3.1055	3.0390	3.1004
46	2.8893	2.7995	2.8371	2.7481	2.8314
47	1.2726	1.2298	1.5015	1.2048	1.5005
48	1.0225	1.3090	1.4465	1.2747	1.4383
49	1.2947	1.1541	1.3225	1.0550	1.3294
50	2.6610	2.5481	2.3643	2.5821	2.3719
51	0.0000	-0.0141	0.0349	0.0509	0.0337
52	-0.4463	-0.6205	-0.2739	-0.6402	-0.2747
53	-0.2107	-0.3280	-0.3674	-0.3654	-0.3664
54	0.4700	0.6614	0.5746	0.6139	0.5757
55	1.7138	1.9151	1.7226	1.9451	1.7205
56	1.9810	1.9998	1.8268	1.9554	1.8291
57	0.6419	0.7239	0.6919	0.6550	0.6878
58	2.1436	2.3214	2.2417	2.2776	2.2413
59	1.9242	2.1005	2.2296	2.0441	2.2288
60	0.4121	0.6614	0.5746	0.6139	0.5757
SST	56.2165	50.6991	55.6690	50.7187	
SSE	5.5820	3.1429	6.1650	3.1279	
R2	0.900706	0.938008	0.889256	0.938328	

2. R² Calculations for PCT Model Validation

Glass #	LNPCT	PNLL	PNLN	RevL	RevN
1	-0.58519	3.553373	2.858979	2.729748	3.040806
2	-0.58519	0.10606	-0.32572	0.678327	-0.15952
3	-1.19073	-0.23459	-0.421	-0.43006	-0.36267
4	1.015593	0.791013	0.742093	1.096156	0.785122
5	0.294161	0.791013	0.742093	1.096156	0.785122
6	0.349952	0.791013	0.742093	1.096156	0.785122
7	0.151862	0.791013	0.742093	1.096156	0.785122
8	-0.25103	-0.6668	-0.78025	-1.41937	-0.71299
9	0.464363	0.124757	0.057796	0.178435	0.120343
10	0.484892	0.612487	0.457644	0.997168	0.458513
11	-1.50508	-2.31426	-1.21571	-1.85207	-1.03939
12	0.001998	0.125298	-0.79034	0.489773	-0.70152
13	-1.10262	-2.11743	-1.82163	-2.53514	-1.28016
14	-0.97022	0.121344	-0.16634	0.601643	-0.04706
15	-1.09362	0.211779	0.025208	0.583327	0.089778
16	-1.56065	-1.08761	-0.90548	-0.79553	-0.8448
17	-0.66943	-2.54995	0.26867	-2.26256	0.496132
18	-1.17766	-1.99837	-0.75933	-1.68497	-0.58848
19	-1.48722	-0.75576	-1.08487	-0.44785	-0.97677
20	-1.16475	-2.36896	-0.50864	-2.06969	-0.30353
21	-0.88916	0.121344	-0.16634	0.601643	-0.04706
22	-1.56065	-1.08761	-0.90548	-0.79553	-0.8448
23	-1.41059	-1.99837	-0.75933	-1.68497	-0.58848
24	-1.48722	-0.75576	-1.08487	-0.44785	-0.97677
25	-1.28013	-2.36896	-0.50864	-2.06969	-0.30353
26	2.699413	1.817917	1.566234	2.051004	1.616159
27	2.252554	1.871621	2.172152	1.757635	2.181156
28	-0.06828	0.357775	0.343484	0.564456	0.367302
29	-0.29571	0.284423	0.241745	0.702237	0.322299
30	-0.26919	0.078427	-0.02391	0.210267	-0.01254
31	2.810186	2.853867	2.921952	2.544252	2.918684
32	3.78419	3.018336	3.182684	3.01914	3.156592
33	3.545471	2.700569	2.477654	2.547694	2.575284
34	2.522524	1.776451	1.976492	2.010955	1.958506
35	-0.78526	-1.10111	0.485336	-1.2205	0.603899
36	-2.16282	-2.75812	-1.47627	-2.70754	-1.30222
37	-1.72597	-0.97061	-1.04023	-0.69867	-1.04566
38	-1.17766	-1.23968	-1.27625	-1.2091	-1.27391
39	0.539996	1.093721	0.82256	1.215031	0.872553
40	1.718651	1.247376	1.030628	1.809233	1.098329
41	2.156634	1.584721	1.799393	1.497755	1.808687
42	2.922624	2.424814	2.385601	1.954335	2.3866
43	2.58226	2.571583	2.857681	2.579681	2.869222
44	1.403643	1.664245	0.996553	1.635113	1.064954
45	2.300182	1.823981	1.70746	1.999649	1.68218
46	-0.70725	-0.16593	-0.54472	-0.31266	-0.56665
47	0.360468	0.791013	0.742093	1.096156	0.785122
48	1.508512	0.448495	1.587855	0.623683	1.501371

```
-1.46102 -0.19054 -0.43047 0.155904 -0.40014
49
      -1.12086 -0.15507 -0.35004 0.294702 -0.23948
50
      2.156865 1.823981 1.70746 1.999649 1.68218
51
      52
      1.803853 1.86811 2.030627 1.782078 2.002916
53
      1.713438 1.529365 1.634274 1.570294 1.627962
54
      1.52388 1.188423 1.22466 1.35549 1.239997
55
      0.501381 0.508852 0.381959 0.927934 0.448902
56
      -0.23826 0.221528 0.097031 0.606057 0.171816
57
58
      0.762673 1.273614 1.287463 1.523383 1.305321
      1.741693 1.801878 1.897352 1.98443 1.886033
59
      -1.15836 -0.20234 -0.41191 0.220947 -0.32131
60
      1.81401 1.40816 1.459775 1.649476 1.473706
61
      2.667228 2.213225 2.4113 2.363764 2.385603
62
      -0.49102 0.294194 0.218551 0.668982 0.260048
63
      1.962346 1.21886 1.186767 1.476375 1.233498
64
      2.241348 1.404839 1.38238 1.639063 1.430876
65
      1.102604 0.67796 0.591168 0.927921 0.630582
66
      67
      1.289233 0.907873 0.898378 1.086619 0.930989
68
      1.33579 1.45441 1.722831 1.782714 1.799896
69
      -1.23443 0.048513 -0.17926 0.336773 -0.15641
70
      -1.61445 -1.35944 -1.35474 -1.11001 -1.31914
71
72
      -1.64507 -2.76489 -1.79811 -2.5549 -1.68399
      0.387301 0.791013 0.742093 1.096156 0.785122
73
      1.716856 2.206408 2.417074 1.994032 2.36917
74
      159.8244 113.8844 148.2088 106.3678
SST
      51.7474739 36.50055046 58.79853 40.74295
```

0.676223 0.679495 0.603272 0.616962

SSE R2

3. R² Calculations for MCC Model Validation

Glass #	LNMCC	PNLL	PNLN	RevL	RevN
1	2.846652	2.809514	2.912986	2.778885	3.074898
2	2.726545	2.809514	2.912986	2.778885	3.074898
3	2.576422	2.755997	2.799758	2.833037	2.72724
4	2.482821	3.093292	2.914329	3.161294	2.838604
5	2.804572	2.712111	2.652787	2.740234	2.762632
6	2.388304	1,493969	2.212096	1.52354	2.573857
7	2.51689	3.055544	3.100573	3.016255	3.170113
8	2.26644	3.008643	2.825114	3.114345	3.102681
9	2.510818	2.310789	2.235019	2.273795	2.437945
10	2.241241	2.417167	2.414775	2.446213	2.595097
11	2.463428	2.07429	2.180998	2.069729	2.312509
12	2.410991	1.706027	2.771732	1.758863	3.314673
13	2.357073	1.657402	2.189889	1.661818	2.583843
14	2.290513	1.864347	1.872506	1.797061	2.1201
15	2.447551	1.610329	2.382081	1.634838	2.823485
16	2.484907	2.310789	2.235019	2.273795	2.437945
17	2.463428	2.07429	2.180998	2.069729	2.312509
18	1.893865	1,657402	2.189889	1.661818	2.583843
19	2.290513	1.864347	1.872506	1.797061	2.1201
20	2.154085	1.610329	2.382081	1.634838	2.823485
21	3.278276	3.636682	3.601676	3.673037	3,491442
22	3.903487	2.897615	2.903366	2.926518	2.929044
23	3.470412	2.803939	3.04916	2.766103	3.292783
23 24	3.470412	2.684474	3.037393	2.594314	3.328909
2 4 25	3.811429	2.881871	3.067325	2.880697	3.093317
26	4.67451	3.618621	3.744786	3.645962	3.628267
20 27	3.61604	3.535347	3.746161	3.515289	3.89199
28	3.401531	3.391185	3.297936	3.477328	3.102894
29	2.91723	1.981568	2.954418	2.037258	3.179799
30	2.116858	1.628928	2.463546	1.633315	2.740723
31	2.245486	2.222148	2.06979	2.244403	2.063925
32	2.209373	2.294976	2.141818	2.366759	1.959034
33	3.649099	3.613027	3.551663	3.665379	3.373178
34	3.372112	3,21026	3.522556	3.195279	3.747993
35	3.788951	2.881187	3.312846	2.77171	3.797819
36	4.459161	3.323589	3.716342	3.33027	3.795854
37	5.37736	3.656802	3.980748	3.670428	3.951353
38	4.470724			3.732712	3.401846
39	3.89508	3.467627	3.494135	3.485621	3.470468
40	2.528126	2.716282	2.553134	2.72501	2.435863
41	2.556452	2.809514	2.912986	2.778885	3.074898
42	3.415758	3.000118	3.075248	3.069878	3.093569
43	2.634762	2.545066	2.450034	2.522511	2.455031
44	2.647946	2.421669	2.389195	2.400824	2.437734
45	4.508219	3.467627	3.494135	3.485621	3.470468
46	2.956887	2.80959	2.919739	2.777448	3.091913
47	3.968573	3.485655	3.609299	3.526186	3.437145
48	3.432922	3.270103	3.392707	3.287464	3.328356

```
3.120998 3.054507 3.172463 3.048728 3.217038
49
      2.593013 2.622011 2.723067 2.569708 2.994099
50
      2.528924 2.422555 2.364802 2.376042 2.561863
51
      3.123334 3.122192 3.374339 3.10166 3.52583
52
      4,509056 3,471687 3,890865 3,464091 4,019948
53
      2.315304 2.371342 2.485202 2.309087 2.734547
54
55
      3.257019 3.073945 3.182674 3.059875 3.307191
      4.587607 3.423429 3.530194 3.433358 3.592004
56
      2.546864 2.623974 2.713169 2.567605 2.934038
57
      3.012147 2.960298 3.086819 2.947994 3.218857
58
      3.381131 3.027645 3.162223 3.024138 3.276829
59
60
      2.984064 2.864317 2.968311 2.835308 3.077813
      2.994882 2.779236 2.884891 2.745585 3.071057
61
      3.014848 2.853312 2.970008 2.823356 3.122203
62
      4.037298 3.040782 3.427157 2.999544 3.736486
63
      2.602838 2.54173 2.457973 2.520176 2.516966
64
      2.313525 2.041937 1.961748 2.040147 1.945244
65
      2,230229 1,542637 1,940557 1,560508 2,023198
66
      2.750343 2.809514 2.912986 2.778885 3.074898
67
      24.63421 19.89193 25.17666 17.70036
SST
SSE
      22.03451 12.76023 22.32954 15.24397
      0.105532  0.358522  0.113086  0.138776
R2
```

APPENDIX J--Classification of Waste Glasses

Table 1 displays the set of 113 glasses to be classified as glass/non-glass by each statistical model. Tables 2-6 show the actual classifications. In each table, there are four columns that determine if one of the four properties is violated for a property given that the property value is physically MEASURED. Then a fifth column displays the overall classification of the waste form. Five more columns are then dedicated to determining if the particular statistical model classifies the waste form as a glass/non-glass. The last column of Tables 2-6 determines if there is a difference between the actual measurement and the model's prediction.

1. Set of Glasses To Be Classified

Glass #	SIO2 0.4801	B2O3 0.1142	NA2O 0.1003	LI2O 0.0376	CAO 0.0275	MGO 0.0363	FE2O3 0.0568	AL2O3 0.0636	ZRO2 0.0429	OTHERS 0.0407
2	0.55	0.05	0.05	0.07	0.1	0	0.02	0.15	0	0.01
3	0.42	0.2	0.05	0.07	0	80.0	0.02	0.14	0.01	0.01
4	0.57	0.05	0.07	0.07	0	0 -	0.15	0.08	0	0.01
5	0.57	0.05	0.0964	0.01	0.1	0	0.0336	0	0.13	0.01
6	0.5363	0.05	0.0837	0.01	0	80.0	0.15	0	0.08	0.01
7	0.57	0.0851	0.0949	0.01	0	0	0.02	0.12	0	0.1
8	0.42	0.1549	0.0751	0.01	0.1	0	0.02	0.14	0	0.08
9	0.42	0.1764	0.0736	0.07	0.1	0	0.15	0	0	0.01
10	0.42	0.2	0.1862	0.01	0	0	0.02	0.0238	0.13	0.01
11	0.4327	0.05	0.1873	0.01	0	0.08	0.0858	0.1442	0	0.01
12	0.4545	0.05	0.1455	0.01	0.1	0	0.14	0	0	0.1
13	0.4214	0.05	0.1186	0.07	0.02	0.08	0.02	0	0.13	0.09
14	0.4801	0.1142	0.1003	0.0376	0.0275	0.0363	0.0568	0.0636	0.0429	0.0407
15	0.4801	0.1142	0.1003	0.0376	0.0275	0.0363	0.0568	0.0636	0.0429	0.0407
16	0.5363	0.05	0.0837	0.01	0	0.08	0.15	0	0.08	0.01
17	0.5153	0.0956	0.1052	0.0375	0.0289	0.0084	0.1179	0.0456	0.0063	0.0393
18	0.5226	0.0874	0.07	0.06	0	0.05	0.04	0.08	0.01	0.08
19	0.5017	0.07	0.0883	0.06	0.07	0	0.045	0.11	0.03	0.025
20	0.4645	0.132	0.07	0.0435	0.07	0.01	0.045	0.1032	0.0368	0.025
21	0.56	0.1095	0.07	0.0536	0.07	0	0.04	0.0619	0.01	0.025
22	0.4751	0.159	0.101	0.02	0.0348	0	0.04	0.08	0.01	0.08
23	0.5373	0.07	0.07	0.0382	0.07	0.0046	0.12	0.0159	0.01	0.0641
24	0.4814	0.17	0.07	0.0591	0.0094	0	0.04	0.0953	0.01	0.0648
25	0.5115	0.07	0.0985	0.06	0	0.05	0.114	0.061	0.01	0.025
26	0.5431	0.0944	0.0924	0.06	0	0	0.0712	0.0138	0.1	0.025
27	0.4694	0.17	0.1306	0.02	0	0	0.0669	0.1043	0.01	0.0288
28	0.4915	0.0751	0.0833	0.06	0.07	0.01	0.04	0.01	0.0935	0.0665
29	0.4683	0.17	0.07	0.0466	0.07	0.01	0.04	0.0901	0.01	0.025
30	0.4937	0.07	0.1692	0.0225	0.03	0.05	0.04	0.0896	0.01	0.025
31	0.46	0.1313	0.0802	0.0486	0.05	0.02	0.04	0.0243	0.1.	0.0457
32	0.4729	0.07	0.17	0.0214	0.0601	0	0.04	0.0756	0.01	0.08
33	0.5353	0.1053	0.1125	0.0375	0.0083	0.0084	0.0719	0.0231	0.0385	0.0592
34	0.4801	0.1142	0.1003	0.0376	0.0275	0.0363	0.0568	0.0636	0.0429	0.0407
35	0.5353	0.1053	0.1125	0.0375	0.0083	0.0084	0.0719	0.0231	0.0385	0.0592

36	0.5328	0.1048	0.1129	0.0373	0.0082	0.0084	.0.0733	0.0235	0.0392	0.0596
37	0.57	0.05	0.1031	0.0669	0	0	0.06	0.01	0.13	0.01
38	0.57	0.1314	0.05	0.07	0	0.08	0.02	0.0686	0	0.01
39	0.57	0.05	0.0735	0.07	Ō	0.08	0.02	0.0365	Ō	0.1
40	0.57	0.0522	0.2	0.01	0.08	0	0.02	0.0578	Ö	0.01
		0.0022	0.0736	0.07	0.00	0	0.02	0.0961	0	0.0939
41	0.4464			0.07	0.08	0	0.02	0.0033	0	0.0567
42	0.5059	0.05	0.0841			. 0				0.0007
43	0.4431	0.2	0.0512	0.07	0.08		0.02	0.0257	0.1	
44	0.5463	0.05	0.2	0.0155	0	0.08	0.02	0.0782	0	0.01
45	0.5619	0.05	0.2	0.0126	0	0	0.02	0.0555	0	0.1
46	0.4391	0.2	0.0675	0.01	0.08	0	0.02	0	0.0834	0.1
47	0.519	0.2	0.0832	0.01	0	0	0.132	0.0458	0	0.01
48	0.57	0.1843	0.05	0.0331	0.08	0	0.02	0.0526	0	0.01
49	0.5445	0.05	0.2	0.0428	0	0	0.02	0.0027	0.13	0.01
50	0.42	0.0544	0.2	0.0364	0	0.08	0.02	0.0892	0	0.1
51	0.42	0.1743	0.2	0.0369	0	0	0.02	0.1388	0	0.01
52	0.42	0.05	0.2	0.0428	0.08	0	0.0632	0.134	0	0.01
53	0.5421	0.05	0.0891	0.07	0.08	0	0.15	0.0088	0	0.01
54	0.57	0.0839	0.1061	0.07	0	0	0.02	0.14	. 0	0.01
55	0.5147	0.1109	0.1044	0.01	Ö	0.08	0.1428	0.0272	0	0.01
56	0.4838	0.05	0.1362	0.07	0	0.08	0.0742	0.0258	0.07	0.01
57	0.504	0.0639	0.15	0.0421	0.02	0.05	0.02	0.1	0.02	0.03
58	0.5325	0.0694	0.0781	0.07	0.05	0.02	0.03	0.1	0.02	0.03
		0.0094	0.0761	0.07	0.032	0.038	0.1	0.03	0.02	0.03
59	0.5675				0.032	0.03	0.03	0.05	0.02	0.03
60	0.507	0.1477	0.05	0.0653			0.03	0.0623	0.02	0.03
61	0.57	0.1078	0.05	0.0699	0.05	0.02				0.03
62	0.5299	0.1106	0.05	0.0595	0.02	0.05	0.0308	0.0592	0.02	
63	0.5264	0.1259	0.0577	0.07	0.02	0.02	0.02	0.0746	0.02	0.0654
64	0.5294	0.05	0.1277	0.0429	0.05	0.02	0.02	0.04	0.05	0.07
65	0.47	0.1442	0.0968	0.039	0.05	0.02	0.02	0.0854	0.02	0.0546
66	0.5073	0.1357	0.0957	0.0413	0.02	0.02	0.0515	0.0785	0.02	0.03
67	0.4801	0.1142	0.1003	0.0376	0.0275	0.0363	0.0568	0.0636	0.0429	0.0407
68	0.5328	0.1048	0.1129	0.0373	0.0082	0.0084	0.0733	0.0235	0.0392	0.0596
69	0.6	0.0817	0.045	0.0788	0.0008	0.0009	0.072	0.0233	0.0385	0.059
70	0.5328	0.1048	0.1129	0.0373	0.0082	0.0084	0.0733	0.0235	0.0392	0.0596
71	0.5328	0.1048	0.1129		0.0082		0.0733	0.0235	0.0392	0.0596
72	0.5328	0.1048	0.1129	0.0373		0.0084	0.0733	0.0235	0.0392	0.0596
73	0.39	0.2	0.05	0.07	0.02	0.08	0.02	0.15	0.01	0.01
74	0.438	0.1718	0.1268	0.0727		0.0005	0.02	0.115	0.0075	0.0102
75	0.5281	0.0876	0.1725	0.0743	0.0063	0.0005	0.02	0.0925	0.0075	0.0107
76	0.5281	0.0664	0.12	0.073	0	0	0.02	0.1625	0.0175	0.0125
77	0.5579	0.1765	0.1125	0.0156	0.05	0.0005	0.02	0.05	0.0075	0.0095
78	0.3232	0.1717	0.19	0.0051	0.1	0	0.02	0.18	0	0.01
79	0.5697	0.0509	0.0925	0.0642	0.0025	0.0008	0.0812	0.0288	0.0431	0.0663
80	0.5344	0.1128	0.086	0.0697	0.0007	0.0004	0.0013	0.0196	0.1548	0.0203
81	0.5175	0.0917	0.1211	0.0523	0.0097		0.0388	0.118	0.0026	0.0422
82	0.4596	0.1587	0.1086	0.0583		0.0001	0.0004	0.2043	0	0.0076
83	0.504	0.1355	0.0797	0.0696		0.0002	0.0046	0.164	0.0001	0.0416
84	0.566	0.0781	0.0664	0,0713		0.0032	0.0334	0.0816	0.0005	0.0916
85	0.4854	0.1418	0.0812	0.0691		0.0002	0.008	0.1819	0.0005	0.0305
86	0.5697	0.0509	0.0012	0.0642		0.0008	0.0812	0.0288	0.0431	0.0663
90	0.0097	0.0009	0.0920	0.0042	0.0020	5,5000	0.0012	0.0200	0.0-01	5.5555

87	0.5175	0.0917	0.1211	0.0523	0.0097	0.0061	0.0388	0.118	0.0026	0.0422
88	0.504	0.1355	0.0797	0.0696	0.0007	0.0002	0.0046	0.164	0.0001	0.0416
89	0.566	0.0781	0.0664	0.0713	0.0079	0.0032	0.0334	0.0816	0.0005	0.0916
90	0.4854	0.1418	0.0812	0.0691	8000.0	0.0008	0.008	0.1819	0.0005	0.0305
91	0.5018	0.06	0.18	0.0632	0.04	0.005	0.105	0.02	0.005	0.02
92	0.455	0.06	0.18	0.07	0.005	0.005	0.005	0.02	0.11	0.09
93	0.56	0.16	0.05	0.0254	0.005	0.04	0.0699	0.02	0.0497	0.02
94	0.5479	0.16	0.05	0.0121	0.005	0.005	0.105	0.02	0.005	0.09
95	0.5074	0.16	0.05	0.0176	0.005	0.04	0.105	0.02	0.075	0.02
96	0.49	0.0951	0.18	0.0699	0.04	0.005	0.005	0.02	0.005	0.09
97	0.455	0.06	0.18	0.07	0.005	0.005	0.105	0.02	80.0	0.02
98	0.44	0.06	0.18	0.07	0.005	0.02	0.005	0.17	0.005	0.045
99	0.4764	0.06	0.18	0.0136	0.04	0.005	0.005	0.17	0.005	0.045
100	0.4983	80.0	0.18	0.018	0.0137	0.005	0.025	0.0987	0.0613	
101	0.4597	0.06	0.1403	0.07	0.04	0.005	0.025	0.105	0.075	0.02
102	0.44	0.1171	0.18	0.01	0.04	0.005	0.105	0.02	0.0629	0.02
103	0.56	0.16	0.0542	0.07	0.005	0.005	0.1008	0.02	0.005	0.02
104	0.56	0.16	0.105	0.01	0.005	0.04	0.005	0.02	0.005	0.09
105	0.44	0.16	0.1	0.07	0.005	0.04	0.005	0.02	0.07	0.09
106	0.44	0.1337	0.1279	0.07	0.0098	0.005	0.0986	0.02	0.005	0.09
107	0.44	0.16	0.18	0.0526	0.04	0.005	0.0271	0.0703	0.005	0.02
108	0.4895	0.1112	0.1671	0.0428	0.0113	0.0166	0.0897	0.0367	0.0041	0.031
109	0.4801	0.1142	0.1003	0.0376	0.0275	0.0363	0.0568	0.0636	0.0429	0.0407
110	0.5328	0.1048	0.1129	0.0373	0.0082	0.0084	0.0733	0.0235	0.0392	0.0596
111	0.42	0.1743	0.2	0.0369	0	0	0.02	0.1388	0	0.01
112	0.5203	0.0969	0.098	0.0356	0.0097	0.0077	0.1019	0.0523	0.0199	0.0577
113	0.5329	0.074	0.0626	0.0596	0.0035	0.0012	0.1229	0.0286	0.0443	0.0704

2. Classification Tables for PNL 1st Order Models

	Glass #	ActVio I VISC	Viol	Act Viol	Act Viol	Viol	PNL 1st Viol	Viol	PNL 1st Viol	Act Glass	PRED GLASS	DIFFER
1			ELEC	PCT	MCC	VISC	ELEC	PCT	MCC	-	_	•
3	-		1		1				<u>!</u>		-	
4 0 1 1 1 0		0	1	1	1	0	1	1	1			
5 0 0 1 1 0 1 1 0	3	1	1	1	1	•	1	1	1	-	•	
6	4	0	1	7	1	0	1	1	1			
7 0 1 1 1 0	5	0	0	1	1	0	1	1	1			
7 0 1 1 1 0	6	0	0	1	1	0	1	1	1	0		0
9 0 1 1 1 0 0 1 1 1 0 0 0 0		0	1	1	1	0	1	1	1	0	0	0
10	8	0	0	1	1	0	1	1	1	0	0	0
11	9	0	1	1	0	0	1 .	1	0	0	0	0
111 0 1 1 1 0 0 0 0 0 0 1 1 1 0	10	1	1	0	0	1	1	1	0	0	0	0
12 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td></td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td>		0	1	1	1	0	1	1	1	0	0	0
13 0 1 0 1 0 1 1 1 0 0 0 0 1			1	1	0	1	1	1	0	0	0	0
14 1			1	0	1	0	1	1	1	0	0	0
15			1		1	1	1	1	1	1	1	0
16 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td>			1	1	1	1	1	1	1	1	1	0
17 1 0 0 2 1 1 1 1 1 1 1 1 1 1 0 0 2 1			0	1	1	0	1	1	1	0	0	0
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td>				1	1	1	1	1	1	1	1	0
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0		1	1	1 .	1	1	1	1	1	1	1	0
20 1 1 1 1 1 1 1 1 1 0		i	1	1	1	1	1	1	1	1	1	0
21 1 1 1 1 1 1 1 1 0 22 1 1 1 1 1 1 1 1 0 23 1 1 1 1 1 1 1 1 1 0 24 1 1 1 1 1 1 1 1 1 0 25 1 1 1 1 1 1 1 1 1 0 26 1 1 1 1 1 1 1 1 1 0 0 27 1 1 1 1 1 1 1 1 1 0 0 28 1 1 1 1 1 1 1 1 1 0 0 30 1 1 1 1 1 1 1 1 1 0 0 31 1 1 1 1 1 1 <t< td=""><td></td><td>ì</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>]</td><td>1</td><td>1</td><td>0</td></t<>		ì	1	1	1	1	1	1]	1	1	0
22 1 1 1 1 1 1 1 1 0 23 1 1 1 1 1 1 1 1 1 0 24 1 1 1 1 1 1 1 1 1 0 25 1 1 1 1 1 1 1 1 1 0 26 1 1 1 1 1 1 1 1 1 0 27 1 1 1 1 1 1 1 1 1 0 28 1 1 1 1 1 1 1 1 1 0 29 1 1 1 1 1 1 1 1 1 1 1 0 0 30 1 1 1 1 1 1 1 1 1 1 1 0 0 3 1 1 1 1 1		i	1	1	1	1	1	1	1	1	1	0
23 1 1 1 1 1 1 1 1 1 0 24 1 1 1 1 1 1 1 1 1 0 25 1 1 1 1 1 1 1 1 1 0 26 1 1 1 1 1 1 1 1 1 0 27 1 1 1 1 1 1 1 1 1 0 28 1 1 1 1 1 1 1 1 1 0 29 1 1 1 1 1 1 1 1 1 0 30 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		i	ĺ	1	1	1	1	1	1	1	1	0
24 1 1 1 1 1 1 1 1 1 0 25 1 1 1 1 1 1 1 1 1 0 26 1 1 1 1 1 1 1 1 1 0 27 1 1 1 1 1 1 1 1 1 0 28 1 1 1 1 1 1 1 1 0 29 1 1 1 1 1 1 1 1 0 30 1 1 1 1 1 1 1 0 31 1 1 1 1 1 1 1 1 0 32 1 1 1 1 1 1 1 1 1 1 0 34 1 1 1 1 1 1 1 1 1 0 0		i	-	1	1	1	1	1	1	1	1	0
25 1 1 1 1 1 1 1 1 0 26 1 1 1 1 1 1 1 1 0 27 1 1 1 1 1 1 1 1 0 28 1 1 1 1 1 1 1 1 0 29 1 1 1 1 1 1 1 1 0 30 1 1 1 1 1 1 1 1 0 31 1 1 1 1 1 1 1 1 0 32 1 1 1 1 1 1 1 1 1 0 33 1 1 1 1 1 1 1 1 1 0 34 1 1 1 1 1 1 1 1 1 0 0 35 1 1		i	i	i	1	1	1	1	1	1	1	0
26 1 1 1 1 1 1 1 1 1 0 27 1 1 1 1 1 1 1 1 1 0 28 1 1 1 1 1 1 1 1 1 0 29 1 1 1 1 1 1 1 1 1 0 30 1 1 1 1 1 1 1 1 0 31 1 1 1 1 1 1 1 1 0 0 32 1 1 1 1 1 1 1 1 1 0 0 33 1 1 1 1 1 1 1 1 1 0 0 34 1 1 1 1 1 1 1 1 1 0 0 35 1 1 1 1 1 1 <t< td=""><td></td><td>1</td><td>i</td><td>i</td><td>ì</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>0</td></t<>		1	i	i	ì	1	1	1	1	1	1	0
27 1 1 1 1 1 1 1 1 1 0 28 1 1 1 1 1 1 1 1 1 0 29 1 1 1 1 1 1 1 1 1 0 30 1 1 1 1 1 1 1 1 1 0 31 1 1 1 1 1 1 1 1 0 0 31 1 1 1 1 1 1 1 0		i	i	1	i	1	1	1	1	1	1	0
28 1 1 1 1 1 1 1 1 0 29 1 1 1 1 1 1 1 1 1 0 30 1 1 1 1 1 1 1 1 1 0 31 1 1 1 1 1 1 1 1 1 0 32 1 1 1 1 1 1 1 1 1 0 0 33 1 1 1 1 1 1 1 1 0		i 1	i	i	1	1	1	1	1	1	1	0
29 1 1 1 1 1 1 1 1 0 30 1 1 1 1 1 1 1 1 0 31 1 1 1 1 1 1 1 1 0 32 1 1 1 1 1 1 1 1 1 0 33 1 1 1 1 1 1 1 1 0		i	i	1	1	1	1	1	1	1	1	0
30 1 1 1 1 1 1 1 1 1 0 31 1 1 1 1 1 1 1 1 1 0 32 1 1 1 1 1 1 1 1 1 1 0 33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 34 1 <t< td=""><td></td><td>i</td><td>i</td><td>ì</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>0</td></t<>		i	i	ì	1	1	1	1	1	1	1	0
31 1 1 1 1 1 1 1 1 0 32 1 1 1 1 1 1 1 1 1 0 33 1 1 1 1 1 1 1 1 1 1 0 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 35 1 1 1 1 1 1 1 1 1 1 1 1 0			1	i	1	1	1	1	1	1	1	0
32 1 1 1 1 1 1 1 1 0 33 1 1 1 1 1 1 1 1 1 0 34 1 1 1 1 1 1 1 1 1 1 0 35 1 1 1 1 1 1 1 1 1 0 0 36 1 1 1 1 1 1 1 1 1 0		1	i	1	1	1	1	1	1	1	1	0
33 1 1 1 1 1 1 1 1 1 0 34 1 <td></td> <td>ĺ</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td>		ĺ	1	1	1	1	1	1	1	1	1	0
34 1 1 1 1 1 1 1 1 1 1 0 35 1 1 1 1 1 1 1 1 1 1 0 36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0<		i	1	1	1	1	1	1	1	1	1	0
35 1 1 1 1 1 1 1 1 1 0 36 1 <td></td> <td>1</td> <td></td>		1	1	1	1	1	1	1	1	1	1	
36 1 1 1 1 1 1 1 1 1 0	35				1	1	1	1	1	1	1	
37 0 1 1 1 0 1					1	1	1	1	1	1	1	0
38 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0	37			1	1	0	1	1	1	0	0	0
39 1 1 0 1 1 1 1 1 0 1 1 40 1 1 1 1 1 1 1 1 1 1 0 41 0 1 1 1 0 0 0 0 0 42 0 1 1 0 0 1 1 0 0 0 43 0 1 1 0 0 1 1 0 0 0 44 0 1 1 1 0 0 1 1 1 0 0 45 0 1 1 1 0 0 0 0	38			1	1		1	1	1		1	0
40 1 1 1 1 1 1 1 1 1 0 41 0 1 1 1 1 1 1 0 0 0 42 0 1 1 0 0 1 1 0 0 0 43 0 1 1 0 0 1 1 0 0 0 44 0 1 1 1 0 0 1 1 1 0 0 45 0 1 1 1 0 0 0 0	39			0	1	1	1	1	1	0		1
41 0 1 1 1 0 0 0 42 0 1 1 0 0 0 0 0 43 0 1 1 0 0 0 0 0 0 44 0 1 1 1 0 0 0 0 45 0 1 1 1 0 0 0 0	40				1	1	1	1	1			0
42 0 1 1 0 0 0 0 43 0 1 1 0 0 0 0 44 0 1 1 1 0 0 0 45 0 1 1 0 1 1 1 0 0						0	1	1				0
43 0 1 1 0 0 0 0 44 0 1 1 0 0 0 0 45 0 1 1 0 1 1 1 0 0	42						1	1				0
44 0 1 1 1 0 1 1 1 0 0 0 45 0 1 1 1 0 1 1 1 0 0	43			1			1	1				0
45 0 1 1 1 0 0 1 1 1 0 0 0				1			1	1				
				1	1	0	1	1				
	46				0		1	1	0	0	0	0

47	0	3	3	1	0	1	1	0	0	0	0
47	0	1	1	1		1					
48	0	1 .	1	0	1]	1	1	0]]
49		1	0	1	1]	1	1	0	1	1
	1				•		-				
50	1	1	1	1.	1	1	1	1	1	1	0
51	0	1	1	0	1	1	1	0	0	0	0
		•									
52	1	1	1	1	1	1	1	1	1	1	0
53	0	1	1	1	0	1	1	1	0	0	0
	Ö		1	1	0	1	1	1	0	0	0
54]									
55	0	1	1	1	0	1	1	1	0	0	0
56	0	1	0	1	1	1	1	1	0	1	1
		i	1	i	ĺ	j	1	1	1	1	0
57	1	•					-			-	
58	1	1	1	1	1	1	1	1	1]	0
59	1	1	1	1	1	1	1	1	1	1	0
		i	i	i	ĺ	1	1	1	1	1	0
60	1						-			•	
61	1	1	1]	1	1	1	1	1	1	0
62	1	1	1	1	1	1	1]	1	1	0
			i	i	i	j	i	1	ĺ	1	Ō
63	1	1					•				
64	1	1	1	1	1	1	1	1	1	1	0
65	1	1	1]	1	1	1	1	1	1	0
	1	i	i	i	1	1	1	1	1	1	0
66	•				•	-	1				
67	1	1	1	1	1]	ļ	1	1	1	0
68	1	1	1	1	1	1	1]	1	1	0
69	1	1	1	1	1	1	. 1]	1	1	0
70	i	i	i	i	1	1	1	1	1	1	0
	•	•			i	i	,	i	1	i	Ö
71]	1	1	1		-	i -				
72	1	1	1	1	1	1	İ	1	1	1	0
73	0	1	1	1	1	1	1	1	0	1	1
74	0	.]	1	1	0	1	1	1	0	0	0
75	1	1 -	1	1	1	1	1	1	1	1	0
							;	i	Ö	Ö	Ö
76	0	1	1	1	0	1	<u> </u>				
77	1	1	1	1	0	1	1	1	1	0	1
78	1	1	1	1	1	1	1	1	1	1	0
79	i	i	1	1	1	1	1	1	1	1	0
					•	•	,				
80	1	1	1	1	1	1	1	1	1	1	0
81	1	1]	1	1	1	1	1	1 .	1	0
82	1	1	1	1	1	1	1	1	1	1	0
83	Ö	i	i	i	i	i	i	j	0	1	1
			•		•						
84	0	1	1	1	1	1	1	1	0	1	1
85	0	1	1	1	1	1]	1	0	1	1
86	1	1	1	1	1	1]	1	1	1	0
87	1	1	1	1	1	1	1	1	1	1	0
											Ö
88	1	1	1	1	1	1	1	1	1	1	
89	1	1	1	1	1	1	1	1	1	1	0
90	1	1	1	1	1	1	1	1	1	1	0
91	Ö	i	Ö	i	Ö	i	i	0	Ö	Ö	Ō
92	0	1	0	0	0	0	1	1	0	0	0
93	0	0	1	0	0	1	1	1	0	0	0
94	Ö	1	1	Ō	0	0	j	1	0	0	0
						0	1	· i	0	0	0
95	0	0	1	0	0						
96	0	1	0	0	0	0	0	0	0	0	0
97	0	1	0	0	0	0	1	0	0	0	0

98	1	1	1	1	1	1	1	1	1	1	0
99	0	1	1	1	0	1	1	1	0	0	0
100	0	1	1	1	0	1	1	1	0	0	0
101	1	1	1	1	1	1	1	1	1	1	0
102	1	1	1	0	1	1	1	0	0	0	0
103	1	1	1	0	1	1	1	0	0	0	0
104	0	1	. 0	0	0	1	1	1	0	0	0
105	0	1	0	0	0	1	0	0	0	0	0
106	0	1	0	0	0	1	0	0	0	. 0	0
107	0	1	1	0	0	1	0	0	0	0	0
108	0	1	0	0	1	1	1	0	0	0	0
109	1	1	1	1	1	1	1	1	ì	1	0
110	1	1	1	1	1	1	1	1	, 1	1	0
111	0	1	1	0	1	1	1	0	0	0	0
112	1	1	1	1	0	1	1	1	1	0	1
113	1	1	1	1	1	1	1	1	1	1	0

3. Classification Tables for PNL 2nd Order Models

Glass #	ActVio I VISC	Act Viol ELEC	Act Viol PCT	Act Viol MCC	PNL 2nd Viol	PNL 2nd Viol ELEC	PNL 2nd Viol	PNL 2nd Viol	Act Glass	PRED GLASS	DIFFER
# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31			Viol	Viol	2nd	Viol	2nd	2nd			000000000000000000000000000000000000000
32 33 34 35]]]]]]]]]]]	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1]]]	1 1 1	0 0 0 0
36 37 38 39 40 41 42 43 44 45	1 0 1 1 1 0 0 0	1 1 1 1 1 1 1 1 1 1 1	1 1 1 0 1 1 1 1	1 1 1 1 1 0 0	1 0 1 0 0 0 0	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 0 0	1 0 1 0 1 0 0 0	1 0 1 1 0 0 0 0	0 0 0 1 1 0 0 0

	,	_	,	0	1	^	1	0	0	0	^
46	1	0	1	0	1	0]	0	0	0	0
47	0	1	1	1	0	1	1	0	0	0	0
48	0	1	1	0	0	1	1	1	0	0	0
49	1	i	Ó	ì	1	1	1	1	0	1	1
		7			i	1	i	i	1	i	Ö
50	1	<u> </u>]	1							
51	0	1	1	0	0	1	1	1	0	0	0
52	1	1]	1	1	1	1	1	1	1	0
53	0	1	1	1	0	1	1	0	0	0	0
54	Ö	i	1	j	Ö	1	1	1	Ō	0	0
		7	•	•			i	Ö	Ö	0	0
55	0]	1	1	0	1					
56	0	1	0	1	0	1	1	1	0	0	0
57	1	1	Ì	1	1	1	1	1	1	1	0
58	1	1	1	1	1	1	1	1	1	1	0
59	1	1	1	1	1	1	1	1	1	1	0
60	1	i	i	i	i	i	i	i	i	. 1	Ö
		•		•					,]	
61	. 1	1	1	1	1	1	1]	1		0
62	1	1	1	. 1	1	1	. 1	1	1	1	0
63	1	1	1	1	1	1	1	1	1	1	0
64	1	1	1	1	1	1	1	1	1	1	0
65	i	i	1	1	1	1	1	1	1	1	0
	i	i	i	' 1	i	i	i	i	j	i	Ö
66		•	•	1		•				i	
67	1	1	1]]	1	1	1]		0
68	1	1	1	1	1	1	1	1	1	1	0
69	1	1	1	1	0	1	1	1	1	0	1
70	1	1	1	1	1	1	1	1	1	1	0
71	1	1	1	1	1	1	1	1	1	1	0
72	i	i	i	1	1	1	1	1	1	1	0
73	Ó	i	j	1	Ö	i	i	i	Ö	Ö	0
		•	•	•		•	1	i	0	0	0
74	0]]	1	0	1					
75	1	1	1	1	1	1	1	1	1	1	0
76	0	1	1	1	0	1	1	1	0	0	0
77	1	1	1	1	0	1	1	1	1	0	1
78	1	1	7	1]	1	1	1	1	1	0
79	i	1	i	i	1	1	1	1	1	1	0
80	i	;]	, 1	1	i	1	i	1	i	i	0
	-	!	•	,	· ·		•	•	•	•	
81	1	ı	1]]	1	1	1	1]	0
82	1	1	1	1	1 .	1	1	l	1	1	0
83	0	1	1	1	1	1	1	1	0	1	1
84	0	1	1	1	0	1	1	1	0	0	0
85	0	1	1	1	1	1	1	1	0	1	1
86	ĵ	i	i	1	i	i	1	1	1	1	0
00		1	,	1		i	i	i	i	i	0
87	1	!	1	1	1			•			
88	1	l	1	1]	1	1	1	1	1	0
89	1	1	1	1	0	1	1	1	1	0	1
90	1	1	1	1	1	1	1	1	1]	0
91	0	1	0	1	0	1	1	0	0	0	0
92	Ö	i	Ö	Ö	ĺ	i	i	1	Ō	1	ĺ
				0		j	i	7	0	Ó	Ö
93	0	0	1		0			1			
94	0	1	1	0	0	0	. 1	1	0	0	0
95	. 0	0	1	0	0	0	1	1	0	0	0
96	0	1	0	0	0	1	0	0	0	0	0

97	0	1	0	0	0	1	1	0	0	0	0
98	1	1	1	1	1	1	1	1	1	1	0
99	0	1	1	1	0	1	1	1	0	0	0
100	0	1	1	1	0	1	1	1	0	0	0
101	1	1	1	1	1	1	1	1	1	1	0
102	Ţ	1	1	0	1	1	1	0 -	0	0	0
103	1	1	1	0	1	1	1	0	0	0	0
104	0	1	0	0	0	1	1	0	0	0	0
105	0	1	0	0	0	1	0	0	0	0	0
106	0	1	0	0	0	1	0	0	0	0	0
107	0	1	1	0	0	1	1	0	0	0	0
108	0	1	0	0	0	1	1	0	0	0	0
109	1	1	1	1	1	1	1	1	1	1	0
110	1	1	1	1	1	1	1	1	1	1	0
111	0	1	1	0	0	1	1	1	0	0	0
112	1	1	1	1	1	1	1	1	1	1	0
113	1	1	1	1	1	1	1	1	1	1	0

4. Classification Tables for Revised 1st Order Models

Glass	Act	Act	Act PCT	Act MCC	R 1st VISC	R 1st ELEC	R 1st PCT	R 1st MCC	Act Glass	PRED GLASS	DIFFER
# 1	VISC 1	ELEC 1	1	1	7130]	1	1]	1	0
2	Ó	i	i	i	Ö	i	i	i	0	ò	Ö
3	ì	1	1	1	1	1	1	1	1	1	0
4	Ó	1	1	1	0	1	1	1	0	0	0
5	0	0	1	1	0	.1	1	1	0	0	0
6	0	0	1	ī	0	1	1	1	0	0	0
7	0	1	1]	0]]]	0	0	0
8	0	0	1	1	0	l		1	0	0	0
9	0]]	0	0	1	0	0 0	0 0	0 0	0 0
10 11	1 0	i I	0 1	0 1	1 0	1	1	1	0	0	0
12	1	1	1	Ö	1	i	1	0	0	0	0
13	Ó	i	Ó	1	Ö	j	, 1	1	0	Ö	Ö
14	1	i	1	i	1	i	i	i	1	1	Ō
15	i	i	1	1	1	1	1	1	1	1	0
16	0	0	1	1	0	1	1	1	0	0	0
17	1	1	1	1	1	1	1	1	1	1	0
18	1	1	1	1	1	1	1	1	1]	0
19	1	1	1	1	1	1]	1]]	0
20]]]	!	l 1	l		1	1	1	0
21]	1	1	1	1	1	1	1	1	1	0 0
22 23	1	1	1	1	1	1	1	1	1	' 1	0
24	1	i	1	, 1	i	i	1	i	i	i	Ö
25	i	i	1	i	i	i	i	i	1	i	Ö
26	i	j	1	1	1	1	1 .	1	1	1	0
27	1	1	1	1	1	1	1	1	1	1	0
28	1	1	1	1	1	1	7	1	1	1	0
29	1	1	1	1	1]	1]	1	1	0
30	1]]	1]]]	1	1	l 1	0
31	1	1]	1	ı	1	1	1	1	 	0 0
32 33	1	1	1]]	1	1	ı T	1	1	1	0
34	i	1	i	'n	i	1	ì	i	1	i	0
35	i	i	i	i	i	i	i	i	i	i	Ō
36	. 1	ì	1	1	1	1	1	1	1	1	0
37	0	1	1	1	. 0	1	1	1	0	0	0
38	1	1	1	1	1	1	1	1	1	1	0
39	1	1	0	1	1	1	1	1	0	1	1
40	1	1	1	1	1	1	1	1	1	1	0
41	0	1]	1	0	1]	0	0	0	0
42	0]]	0 0	0 0]]	1 1	0 0	0 0	0 0	0 0
43 44	0 0]]	1	1	0	1	1	1	0	0	0
45	0	1	i	1	0	i	i	i	0	0	Ö
46	1	Ö	i	Ö	1	i	i	Ö		Ö	Ö
47	0	1	1	1	0	1	1	1	0	0	. 0

48 49 50 51 52 53 54 55	0 1 1 0 1 0]]]]]]	1 0 1 1 1 1	0 1 1 0 1 1	1 1 1 1 0 0	1 1 1 1 1 1]]]]]]	1 1 1 1 1 1	0 0 1 0 1 0 0	1 1 1 1 0 0	1 0 1 0 0 0
56 57 58 59	0 1 1 1	1 1 1	0 1 1 1]]]	1 1 1	1 1 1	1 1 1	1 1 1	0 1 1	1 1 1	1 0 0 0
60 61 62 63]]]]]]]	1 1 1]]]	1 1 1]]]]	1 1 1	1 1 1	1 1 1 1	1 1 1	0 0 0
64 65 66 67 68]]]]]]]]	1 1 1 1]]]]	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	0 0 0 0
69 70 71 72]]]] .]]]]	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1]]]	1 1 1	1 1 1	0 0 0 0
73 74 75 76 77	0 0 1 0 1]]]]	1 1 1 1	1 1 1 1	1 0 1 0 0	1 1 1 1	1 1 1 1	1 1 1 1	0 0 1 0 1	1 0 1 0 0	1 0 0 0 1
78 79 80 81	;]]]	;]]]]	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1 1) 1 1 1	1 1 1 1	0 0 0 0
82 83 84 85 86	1 0 0 0 1	1 1 1 1	1 1 1 1]]]]	1 1 1 1	1 1 1 1]]]]	` 1 1 1 1	1 0 0 0	1 1 1 1	0 1 1 0
87 88 89 90 91	1 1 1 1 0]]]]	1 1 1 1 0]]]]	1 1 1 1 0	1 1 1 1	1 1 1 1 0	1 1 1 1 0	1 1 1 1 0	1 1 1 1 0	0 0 0 0
92 93 94 95 96	0 0 0 0	1 0 1 0	0 1 1 1 0	0 0 0 0	0 0 0 0	1 0 0 0	1 1 1 0	0 1 1 1 0	0 0 0 0	0 0 0 0	0 0 0
97 98	0	1	0	0 1	0 1	0 1	. 1	0	0 1	0 1	0 0

99	0	1	1	1	0	1	1	1	0	0	0
100	0	1	1	1	0	1	1	1	0	0	0
101	1	1	1	1	1	` 1	1	1	1	1	0
102	1	1	1	0	1	1	1	0	0	0	0
103	1	1	1	0	1	1	1	0	0	0	0
104	0	1	0	0	0	1	1	1	0	0	0
105	0	1	0	0	0	1	0	0	0	0	0
106	0	1	0	0	0	1	0	. 0	0	0	0
107	0	1	1	0	0	1	0	0	0	0	0
108	0	1	0	0	1	1	1	0	0	0	0
109	1	1	1	1	1	1	1	1	1	1	0
110	1	1	1	1	1	1	1	1	1	1	0
111	0]	1	0	1	1	1	1	0	1	1
112	1	1	1	1	0	1	1	1	1	0	1
113	1	1	1	1	1	1	1	1	1	1	0

5. Classification Tables for Combs 2nd Order Models

Glass #		Act ELEC	Act PCT	Act MCC	R 2nd VISC	R 2nd ELEC	R 2nd PCT	R 2nd MCC	Act Glass	PRED GLASS	DIFFER
1	1	1	1	1	1	1	1	1	1	1	0
2	0	1]]	0]]] 1	0 1	0	0 0
3 4	1 0]]	1	1	1 0	ı]	1	,]	0	0	0
5	0	0	1	1	0	0	1	1	0	0	0
6 7	0	0] 1]	0 0	0 1]] 1	0 0	0 0	0 0
, 8	0 0	1 0	1	1	0	Ó]	1	0	0	0
9	0	1	1	0	0	1	0	0	0	0	0
10 11	1]	0 1	0 1	1 0] 1	0	0	0 0	0 0	0 0
12	0 1	1	י ן	0	1	ì	1	Ó	0	0	0
13	0	1	0	1	0	1	1	0	0	0	0
14 15]]	1] 1	1]]]]	1]]	 	1	0
16	Ó	0	i	j	Ö	Ö	i	i	Ö	0	Ö
17	1]	1]]	1]]]	1	0
18 19]]	1	!]	1	l 1	1 1	1	 	1)]	0
20	i	i ·	i	i	i	i	i	j	1	i	Ō
21	1]	1]]]]	l 1]]	0
22 23]]	1	1	1	1	1]]	1	0 0
24	i	1.	1	1	1	1	1	1.	1	1	0
25 26]]	1]]] 1	1] 1]] 1]	0 0
20 27	1	1	1	1	1	1	1	i	i	i	0
28	1	1	1	1 .	1	1	1	1]	1	0
29 30	1	1	1	1	1	1	1 1	1	 	1	0 0
31	i	i	i	i	i	1	1	i	i	i	Ö
32	1	1	1]]	1]]]]	0
33 34	1	1	1	J.	1	1	1	1	1	1	0 0
35	i	i	i	i	1	1	1	1	1	1	0
36	1]]]	1]]	1	1	1	0 0
37 38	0 1	1]]	1	0 1	1 1]]] .]	0 1	0 1	0
39	1	1	0	1	1	1	1	1	0	1	1
40 41	1 0	1 1]]]]	0 0	1 1]]]]	1 0	0 0	1 0
42	0	1	1	Ó	0	1	1	Ó	0	0	0
43	0	1	1	0	0	1	1	0	0	0	0
44 45	0 0]]]]	1 1	0 0	1 1]]]]	0 0	0 0	0 0
46	1	0	i	Ó	1	0	1	Ó	0	0	0
47	0	1	1	1	0	1	1	1	0	0	0

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 87 87 87 87 87 87 87 87 87				O					0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1	1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1	
81 82 83 84 85 86 87 88 89 90 91	1 0 0 0 1 1 1 1 0	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 0	1 1 1 1 1 1 1 1 1	1 1 0 1 1 1 1 0 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 0	1 0 0 0 1 1 1 1 0	1 1 0 1 1 1 1 0 1	0 0 1 0 1 0 0 0
93 94 95 96 97 98	0 0 0 0 0	0 1 0 1 1	1 1 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 1 1	1 1 0 0	1 1 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0

99	0	1	1	1	0	1	1	1	0	0	0
100	0	1	1	1	0	1	1	1	0	0	0
101	1	1	1.	1	1	1	1	1	1	1	0
102	1	1	1	0	1	1	1	0	0	0	0
103	1	1	٦.	0	1	1	1	0	0	0	0
104	0	1	0	0	0	1	1	0	0	0	0
105	0	1	0	0	0	1	0	0	0	0	0
106	0	1	0	0	0	1	0	0	0	0	0
107	0	1	1	0	0	1	1	0	0	0	0
108	0	1	0	0	0	1	1	0	0	0	0
109	1	1	1	1	1	1	1	7	1	1	0
110	1	1	1	1	1	1	1	1	1	1	0
111	0	1	1	0	0	1	1	1	0	0	0
112	1	1	1	1	1	1	1	1	1	1	0
113	1	1	1	1	1	1	1	1	1	1	0

6. Classification Tables for NN/Combs ELEC Models

Glass #	Act VISC	Act ELEC	Act PCT	Act MCC	NN VISC	R 2nd ELEC	NN PCT	NN MC	Act Glass	PRED GLASS	DIFFER
# 1 2 3 4 5 6 7 8 9	VISC 1 0 0 0 0 0 0 1	1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PCI 1 1 1 1 1 1 1 1 1 0	MCC 1 1 1 1 1 1 1 0 0	1 0 1 0 0 0 0 0 0 1	1 1 1 0 0 1 0	PCI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C 1 1 1 1 1 0 0	1 0 1 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0
11 12 13 14 15 16 17 18 19 20	0 1 0 1 1 1 1 1 1	1 1 1 0 1 1 1 1 1 1 1 1	1 1 0 1 1 1 1	1 0 1 1 1 1	0 1 0 1 1 0 1 1 1 1 1	1 1 1 1 0 1	1 0 1 1 1 1 1	1 0 1 1 1 1	0 0 0 1 1 0 1 1	0 0 0 1 1 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0
21 22 23 24 25 26 27 28 29 30		1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0
31 32 33 34 35 36 37 38 39 40 41	1 1 1 1 1 0 1 1 1		1 1 1 1 1 1 1 0		1 1 1 1 1 0 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1		1 1 1 1 1 0 1 0	1 1 1 1 1 0 1 1 1	0 0 0 0 0 0 0
42 43 44 45 46	0 0 0 0 0	1 1 1 1 0	 	0 0 1 1 0	0 0 0 0 0	1 1 1 1 0	1 1 1 1	0 0 1 1 0	0 0 0 0	0 0 0 0	0 0 0 0

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 77 78 78 80 80 80 80 80 80 80 80 80 80 80 80 80									000101000011111111111001011110001111000	0 0 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1	001000000000000000000000000000000000000	
88	1]]	1	0	1	1	1	1	0	1	
89	1]]	1	0	1	1	1	1	0	1	
90	1]]	1	0	1	1	1	1	0	1	

98	1	1	1	1	1	1	1	1	1	1	0
99	0	1	1	1	0	1	1	1	0	0	0
100	0	1	1	1	0	1	1	1	0	0	0
101	1	1	1	1	1	1	1	1	1	1	0
102	1	1	1	0	1	1	1	0	0	0	0
103	1	1	1	0	1	1	1	0	0	0	0
104	0	1	0	0	0	1	0	0	0	0	0
105	0	1	0	0	0	1	0	0	0	0	0
106	0	1	0	0	0	1	0	0	0	0	0
107	0	1	1	0	0	1	1	0	0	0	0
108	0	1	0	0	0	1	0	0	0	0	0
109	1	1	1	1	1	1	1	1	1	1	0
110	1	1	1	Ţ	1	1	1	1	1	1	0,
111	0	1	1	0	0	1	1	0	0	0	0
112	1	.1	1	1	0	1	1	1	1	0	1
113	1	1	1	1	1	1	1	1	1	1	0

APPENDIX K--Neural Network Hidden and Output Layer Weights

This Appendix displays the hidden layer weights and output layer weights for each neural network model. These weights are used to calculate predicted property values for the constraints of the neural network NLP.

A paragraph is included that describes how these weights are extracted from SNNAP.

1. Spreadsheet of NN Weights for Viscosity

a. Hidden Layer

	Input										
Hidden	Node 1	2	3	4	5	6	7	8	9	10	bias
Node	•	-	ŭ	·	•	-	•				
1	-0.0016	0.043045	-0.07237	-0.06956	-0.03889	0.030404	-0.01909	0.007561	0.068668	0.030328	-0.26663
2	-0.034	0.185582	-0.41124	0.464455	-0.13165	0.419068	0.423362	-0.04554	0.029228	-0.79274	-0.22928
3	0.050392	-0.01416	-0.02937	0.057311		0.006153				-0.08236	-0.18924
4	0.027706	-0.08797	-0.02184	0.120132	-0.02238	0.04681	-0.12831	0.1316	-0.13866	0.02519	-0.31243
5	-0.02983	-0.35556	0.797347	0.30638	0.20495	0.581285	-0.96557	-0.13487	0.099185	-0.16516	-0.69528
6	-0.13959	0.098758	0.151678	0.02082	0.001084	0.005641	-0.05719	-0.1534	0.03984	-0.01767	-0.16013
7	0.021367	-0.02965	-0.13161	0.010222	0.037423	0.049512	-0.12466	0.130443	-0.11252	0.084164	-0.31248
8	0.090443	-0.01378	-0.00735	0.017884		0.073677		0.16247	-0.02325	-0.00858	-0.2116
9	0.052911	-0.00453	-0.02547	0.082929		0.033317		0.149727	0.025005	-0.00026	-0.20033
10	1.110895	0.305538	-0.4173	-0.73715	-0.24323		-0.62565			-0.53592	0.275241
11	-0.18755	0.246714	0.114599	0.312339		0.033843				-0.27421	-0.08629
12	-0.06893	0.007477	0.357956	0.167644		0.097786			-0.02026	-0.00732	-0.12786
13	0.235217	0.960401	-0.07529	0.039553	0.746256	-0.43404		-0.04058	-0.17564	-0.4919	-0.0106
14	0.324482	0.072588	-0.59778	-1.19275	-0.1662	0.699244	0.727072	0.358233	0.229253	-1.03069	-2.29023
15	0.093547	0.036964	-0.16167	-0.22193	0.076424	-0.05275	-0.01958	0.050314	0.205831	-0.00351	-0.45024
16	-0.04678	-0.03821	0.212138	-0.13775	-0.12072	-0.07894	0.09795	-0.04962	0.106409	0.069939	-0.19416
17	0.280329	-0.0345	-0.14425	-0.18053	-0.05515	0.092795	-0.08784	0.173135	0.167816	-0.00947	-0.26275
18	0.167094	0.134257	-0.28045	-0.31169	-0.0184	-0.28619	-0.0406	0.324994	0.108651	-0.0981	-0.42304
19	-0.25825	-0.11715	-0.30094	-0.75792	-0.02834	-0.6451	0.164723	1.195709	0.095988	-0.18351	0.406891
20	0.326789	0.612589	-0.52154	-0.04206	0.01735	-0.09012	-0.39951	-0.33882	0.391356	-0.13149	-0.12911
21	0.508955	-0.65604	-0.06743	-0.4145	-0.01614	-0.04035	-0.24866	0.274802	0.109164	0.368612	-0.68448
22	0.083853	-0.11295	-1.24997	-1.40719	-0.40185	0.033724	-0.40759	1.304017	0.913646	0.931617	-1.91824
23	0.394276	-0.1932	-0.15666	-0.37022	-0.11966	-0.39508	-0.0373	0.333823	-0.13812	0.180211	-0.46206
24	0.037923	0.058738	0.052979	0.081378	0.101642	-0.07365	-0.07192	-0.04487	-0.00167	-0.05458	-0.14546
25	0.048681	-0.19928	-0.03044	-0.16863	0.024774	0.065576	0.004168	-0.05399	0.15672	-0.04255	-0.23109
26	0.128467	-0.16903	-0.17257	-0.05813	0.041316	-0.0131	-0.11383	0.110454	-0.08029	0.071728	-0.22593
27	0.009831	0.651083	0.623645	0.029401	-0.12586	0.809677	-1.12287	-0.69692	-0.10762	0.31028	-0.24675
28	0.150269	0.00478	-0.1114	-0.1856	0.023495	-0.15022	-0.00949	0.185916	0.05162	-0.05706	-0.34265
29	1.098796	-0.10059	-0.6674	-0.09446	-0.19825	0.242163	-0.03648	-0.6199	0.470757	-0.35986	-0.60837
30	0.177535	-0.20698	-0.21724	-0.20629	-0.14031	-0.01867	-0.08271	0.303998	-0.14056	0.128639	-0.28847
31	0.066641	0.036044	-0.11696	-0.03649	-0.04135	0.004828	-0.09266	-0.03382	-0.04908	-0.11663	-0.22107
32	-0.1156	0.127155	-0.00431	-0.01151	0.063265	-0.08223	-0.18546	-0.04116	-0.11424	-0.0366	-0.25382
33	0.012933	0.182962	-0.26089	-0.19094	0.12667	-0.15753	-0.01052	0.062477	0.058856	-0.06819	-0.4667
34	-0.04626	0.080859	-0.02623	0.028235	0.090417	0.089603	-0.00096	0.043387	-0.06874	0.000105	-0.13084
35	-0.02502	0.079702	0.138335	0.035672	-0.00163	0.073787	-0.03612	-0.15945	-0.0775	-0.09138	-0.22915

b. Output Layer--wt from hidden node I to output node

1	2	3	4	5	6	7	8	9	10
-0.03063	-0.65283	0.042615	0.15686	1.08501	-0.16989	0.13712	0.071737	0.076551	1.098515
			. 1	3					
11	12	13	14	15	16	17	18	19	20
-0.26494	-0.33456	-1.00748	1.53423	0.074969	-0.33317	0.110877	0.22384	1.050316	0.615628
21	22	23	24	25	26	27	28	29	30
0.484152	1.397268	0.365283	-0.03255	-0.12285	0.150066	-0.93194	0.035986	0.768905	0.267874
31	32	33	34	35	bid	as			
0.022862	-0.04966	0.193499	0.016658	-0.11815	-0.20)744			

2. Spreadsheet of NN Weights for PCT

	Input Node				e.	,	7	0	0	10	bias
Hidden	1	2	3	4	5	6	7	8	9	10	bias
Node 1	0.035302	-0.15184	-0.22611	-0.27628	-0.12714	-0.02152	-0.12997	0.45578	-0.00961	-0.11777	0.007351
2	0.185074	0.213204	-0.07246	-0.15998	0.22961	-0.10181	0.009275	-0.0147	-0.04205	-0.29543	-0.24503
3	-0.01156	-0.08122	0.036804	0.139756	-0.10089	-0.07734	-0.07902	-0.06066	0.014429	0.128527	-0.2095
4	-0.01652	0.016856	-0.07898	-0.00092	-0.00895	0.051266	-0.03565	0.071754	0.093716	-0.01563	-0.26522
5	-0.38838	-0.00906	0.138566	0.188798	0.045422	-0.03549	0.013744	-0.11398	0.11692	0.218495	-0.16436
6	0.455706	0.142578	-0.33845	-0.27634	0.150203	-0.04739	-0.02806	0.325225	-0.13964	-0.60973	-0.10812
7	-0.20006	-0.3809	0.247764	0.174788	-0.085	0.160526	-0.05419	0.137381	0.116784	0.352565	-0.20213
8	-0.02604	0.193626	0.086715	-0.16679	0.210622	0.01078	-0.10012	-0.02205	-0.17843	-0.10994	-0.16186
9	0.126399	-0.07419	-0.01117	-0.08831	-0.03493	-0.09203	-0.04204	0.037317	0.067607	0.047325	-0.2558
10	-0.39067	1.58286	2.081791	0.494184	-0.95243	1.401137	-0.15688	-2.66637	-0.71743	0.141492	-0.17997
11	-0.03682	-0.01972	-0.01229	-0.04325	-0.00468	-0.02263	-0.08567	-0.04983	-0.0891	-0.0675	-0.19471
12	-0.03043	-0.0467	-0.02467	0.084022	0.032101	-0.12749	0.057278	0.035485	0.044829	0.0221	-0.27648
13	-0.04889	0.012453	0.115957	-0.21619	0.043805	0.070165	-0.03738	0.009229	-0.07779	-0.07332	-0.30041
14	-0.14707	0.104867	-0.00404	-0.06014	-0.00914	-0.19493	0.015586	0.078167	0.150939	0.174139	-0.15118
15	0.222465	-0.07017	-0.02643	-0.2109	-0.07703	0.066935	-0.14661	0.242116	-0.02992	-0.10156	-0.231
16	-0.5209	-1.16993	-1.32892	-0.51921	1.362588	0.774172	0.33924	0.656426	0.901507	0.531806	
17	-0.11509	0.104543	0.048724	0.073425	-0.03387	-0.18524	0.024581	-0.07975	0.081217	0.138019	-0.1456
18	0.155964	0.266138	-0.13145	-0.29238	0.175123	-0.23925	0.040557	-0.08926	-0.04716	-0.40348	-0.29222
19	0.131292	0.08447	0.009355	-0.09751	0.045043	0.085037	-0.02904	0.084724	0.047325	-0.18474	-0.27864
20	-0.12495	0.103669	0.192599	-0.10974	0.257203	0.085321	-0.1425	-0.1045	-0.16506	-0.10029	-0.22342
21	-0.81636	-0.28933	-0.62712	-0.01561	0.505243	-0.44245	-1.05143	2.079795	0.465518	-0.08106	0.958363
22	0.936408	-0.06297	-0.12987	0.131703	-0.31592	0.247248	-0.10305	0.050601	-0.26719	-1.05039	-0.37991
23	-0.05945	0.529423	0.655306	0.304478	-0.67413	-0.60356	-0.62756	0.629553	-0.3359	-0.74615	-0.06635
24	0.084112	-0.0296	-0.14753	-0.33246	0.051596	0.178757	-0.15928	0.104232	-0.008	-0.15601	-0.05426
25	-0.16803	0.421936	0.364225	0.214605	-0.12741	-0.10994	-0.15771	-0.10951	-0.00949	0.014454	-0.37287
26	-0.20082	0.17204	0.162475	0.037939	0.036038	-0.05799	0.017141	0.043275	0.106123	-0.01797	-0.2441
27	-0.04054	0.000613	0.03914	-0.0617	-0.11748	-0.04105	0.057714	0.108244	0.013049	0.012323	-0.25528
28	0.08091	-0.04686	-0.06595	-0.0474	-0.06491	0.071205	-0.04561	-0.00437	-0.08136	0.025056	-0.21274
29	-0.25077	0.017263	-0.03846	0.093846	0.001982	-0.26173	0.078651	0.129728	0.171293	0.17387	-0.1958
30	0.104699	0.055277	-0.08581	-0.27494	0.136598	0.081061	0.001672	0.0882	0.038754	-0.04502	-0.09041
31	0.032054	0.065166	-0.01443	-0.0781	0.194474	-0.02114	-0.03036	-0.0373	0.007734	-0.09295	-0.15412
32	-0.05684	-0.15814	-0.18026	-0.22855	0.131014	0.003588	-0.19628	0.695142	0.058675	-0.24638	0.117243
33	0.646236	0.172487	0.314346	0.783874	1.112659	1.262713	-0.66883	-2.2751	-0.01311	0.397517	-2.05428
34	-0.94359	0.754	0.024892	0.614339	0.750264	-0.1837	0.67007	-0.39755	-0.15696	-0.53072	-0.10549
35	-0.35321	0.776008	0.332089	0.243547	-0.37445	-0.04653	-0.17199	-0.26812	0.116695	-0.57231	-0.55291

b. Output Layer--wt from hidden node I to output node

1	2	3	4	5	6	7	8	9	10
0.146372	-0.26336	0.137265	0.077453	0.068985	-0.35836	0.37308	-0.27781	0.136515	1.685482
11	12	13	14	15	16	17	18	19	20
-0.03186	0.104607	-0.13241	0.141278	0.042165	-1.34952	0.082881	-0.3565	-0.05199	-0.34845
21	22	23	24	25	26	27	28	29	30
-1.3915	-0.87123	0.920359	-0.05917	-0.11745	-0.04791	0.111872	0.06028	0.213698	-0.03047
31	32	33	34	35	bid	as			
-0.12195	-0.00357	2.333948	0.863901	0.429925	0.094	425			

3. Spreadsheet of NN Weights for MCC

	Input Node										
Hidden	1	2	3	4	5	6	7	8	9	10	bias
Node	,	_									
1	-0.25697	-0.08956	0.50101	-0.30732	0.153468	0.237438	-0.19955	0.071305	-0.20317	-0.02518	-0.56464
2	0.147596	0.047658	0.108092	-0.25436	0.228946	-0.13507	0.7216	-0.24854	-0.50097	-0.52867	-0.1713
3	-0.06815	0.284566	0.412812	0.289055	0.16876	-0.23177	-0.18427	-0.53201	-0.05272	0.095307	-0.75203
4	-0.20763	0.058358	0.386027	-0.08269	0.250971	0.035651	-0.03957	0.065552	0.066451	-0.1138	-0.61855
5	0.802981	2.180977	0.738231	-0.55415	0.343137	0.431733	0.074078	-2.33253	-1.41398	-0.33221	-2.97201
6	-0.06395	-0.16894	0.251068	0.338232	0.026701	0.090112	-0.1035	-0.07415	-0.10347	-0.11811	-0.6343
7	-0.02179	0.292996	0.411444	0.258044	0.304978	-0.22756	-0.28554	-0.5453	-0.03677	0.072808	-0.73128
8	-0.22396	0.070467	0.354832	-0.05887	-0.01576	0.047473	-0.10869	0.069424	-0.11475	-0.24615	-0.54103
9	-1.34574	-0.18224	0.511715	-0.6516	-0.26586	0.362178	0.747896	0.869781	-0.22571	0.16155	-1.00658
10	-0.12828	0.033463	0.285681	0.17272	0.037341	0.111977	0.121204	0.048697	-0.02007	-0.35536	-0.63995
11	0.118002	-0.10053	0.230612	0.053411	0.368573	-0.09516	0.140155	-0.22752	-0.02875	-0.14462	-0.44576
12	-0.06556	-0.02396	0.196156	-0.07569	0.274899	0.02826	-0.12383	-0.04951	-0.01558	-0.28564	-0.51198
13	-0.69895	0.017711	1.507572	-0.34447	0.265247	0.154931	-0.12182	-0.12386	-0.08297	-0.78512	-0.67531
14	-0.80136	-0.38599	1.178177	-0.25066	0.69594	-0.01656	-0.48013	-0.17228	0.37465	-0.05774	-0.51347
15	0.157878	-0.74523	0.779935	0.346521	0.274205	0.628914	-0.34176	-0.21389	-0.16506	-0.38748	-1.02949
16	-0.07218	0.461163	0.463209	-0.36176	-0.64486	0.163882	-0.17935	0.539141	-0.596	-0.16188	-0.80542
17	-0.07043	-0.10434	0.180405	-0.02353	0.276633	-0.04392	-0.08672	0.034002	-0.02271	-0.26989	-0.51558
18	-0.3708	0.193059	2.207142	0.443713	-0.82106	0.548607	-1.21511	-0.43992	-0.94725	0.398841	-2.25333
19	-0.16432	-0.09332	0.321368	0.186438	0.22568	-0.01443	-0.17149	-0.01491	0.079026	-0.02072	-0.58114
20	-0.06089	-0.24409	0.33094	-0.10608	0.448384	-0.05028	-0.08055	0.271527	0.002479	-0.43233	-0.34507
21	-0.15683	-0.05892	0.143746	0.011529	0.039094	-0.09506	0.062129	-0.21449	-0.02603	-0.1238	-0.62418
22	0.157281	-1.34722	1.454541	1.152132	0.227814	0.946377	-0.8153	-0.20275	-0.95988	0.288275	0.044773
23	-0.08141	-0.27994	0.676558	-0.51454	0.112589	0.547958	-0.39809	-0.05344	-0.17332	0.024519	-0.85244
24	0.096033	-0.49132	0.43379	0.447816	0.043401	-0.03318	-0.52433	-0.05948	0.000297	-0.10288	-0.91478
25	-0.06911	0.007105	0.285143	-0.14527	0.364526	-0.03323	-0.30431	0.162405	0.024833	-0.4179	-0.53906
26	-0.38684	-0.36674	-0.28848	0.604447	-1.34114	0.0197	0.224318	0.126117	1.818512	0.176822	1.476715
27	-0.55377	0.405297	0.285617	-0.01149	0.792881	0.130623	0.145984	-1.36864	0.778558	0.570934	-0.67294
28	-0.20536	-0.05112	0.267596	-0.02919	0.39725	-0.01717	-0.15052	0.301678	-0.10126	-0.2948	-0.46388
29	-0.20916	-0.16067	0.374761	-0.22289	0.558435	-0.0119	-0.33447	0.678705	-0.10571	-0.60712	-0.50466
30	-0.40206	-0.28281	0.463522	0.106518	-0.18735	-0.04946	0.171237	0.282189	0.01766	-0.16007	-0.56698
31	-0.07205	0.014196	0.168044	0.008218	0.223047	-0.12112	-0.10311	-0.28714	-0.00616	-0.15351	-0.52333
32	-0.37334	0.035047	0.269073	0.023681	0.234762	0.066529	0.087218	-0.0367	0.02449	-0.4028	-0.64572
33	-0.16451	-0.02046	0.305497	-0.22737	0.445883	-0.02877	-0.43276	0.344299	-0.03858	-0.53503	-0.57749
34	-0.46855	-0.33833	0.241372	0.510312	0.325309	-0.39875	-0.13242	0.011898	0.262377	-0.02183	-0.73457
35	-0.35884	-0.12185	0.589688	-0.29524	0.193872	-0.12248	-0.40655	0.166594	0.056932	0.126291	-0.60836

b. Output Layer--wt from hidden node I to output node

1 -0.31732 11	2 0.593869 12	3 0.555732 13	4 -0.05493 14	5 1.653657 15	6 -0.14322 16	7 0.608999 17	8 -0.11585 18	9 1.523363 19	10 -0.14013 20
0.321084	0.15398	-0.9675	-0.87472	-0.92601	-1.0809	0.174892	2.035383	-0.07978	0.380733
	4								
21	22	23	24	25	.26	27	28	29	30
0.168219	1.29841	-0.69242	-0.66227	0.345934	1.245485	1.42322	0.284222	0.69748	0.317505
	4								
31	32	33	34	35	b	ias			
0.280807	-0.20867	0.537707	-0.51458	-0.40429	-0.1	1806			

4. Example of Spreadsheet Code for NN/Combs ELEC NLP

				~ . ~ .		FE0.001	410001	70.00	OTUEDO!
SIO2I	B2O3I	NA2OI	LI2OI	CAOI	MGOI	FE2O3I	AL2O31	ZRO2I	OTHERSI
48.95	11.12	16.71	4.28	1.13	1.66	8.97	3.67	0.41	3.1
SIO2A	B2O3A	NA2OA	LI2OA	CAOA	MGOA	NA2CO3A	H3BO3A	BORAX	TOTAL
8.106137965 7	0	0	0	3.598541245	0	0	0	0	=SUM(A3:J3)+S UM(A5:I5)
C1	C2	C3	C4	C5	C6	C7	C8	C9	
0.0497	0.0435	0.3392	1.378	0.02998	0.0473	0.01608	0.01868	0.01002	
SIO2	B2O3	NA2O	LI2O	CAO	MGO	FE2O3	AL2O3	ZRO2	OTHERS
1	=(B3+2*I 5+0.5*H 5)/J5	=(C3+l5+G5)/ J5	=(D3+D5)/ J5	=(E3+E5)/J5	=(F3+F5)/J 5	=G3/J5	=H3/J5	=13/J5	0.0407
	0)/30								
OBJ FN =A7*A5+B7* B5+C7*C5+D 7*D5+E7*E5+ F7*F5+G7*G 5+H7*H5+I7*I		ELEC =EXP(0.38257 +1.13355*B9+ 14.5157*C9+3 3.4372*D9- 94.309*C9*D9 +16.3778*E9* G9+14.2337*B 9*G9+27.914* F9*19+5.5687* A9*J9+0.0999 76*D9*19)	LNVISC ='C:\EXCE L\THESIS\ WVISC.XLS' ISR\$4	VISC =EXP(D12)	LNPCT ='C:\EXCE L\THESIS\ WPCT.XLS'! \$R\$4	PCT =EXP(F12)	LNMCC ='C:\EXCE L\THESIS\ WMCC.XL S'I\$R\$4	MCC =EXP(H12)	

How to Extract Weights from SNNAP:

- 1. Go to Network menu of SNNAP.
- 2. Click on "Text Save."
- 3. Save the file to a file name such as weights.txt.
- 4. Open the file in MicroSoft Excel as a space-delimited file. Eliminate all excess spaces between column cells.
- 5. Identify the hidden layer weights in the middle of the file. Eliminate all rows above these.
- 6. Identify the output layer weights towards the bottom of the file. Eliminate all rows below them and all rows between the output layer weights and the hidden layer weights.
- 7. The hidden layer and output layer weights are now extracted.

Bibliography

- 1. United States Environmental Protection Agency. <u>Treatment Technologies</u>. Rockville: Government Institutes, 1990.
- 2. Pacific Northwest Laboratory. <u>Annual Report on the Characterization of High-Level Waste Glass</u>. PNL-2625; UC-70. Springfield: NTIS, 1978.
- 3. Piepel, Greg; Trish Redgate, Pavel Hrma, and Stacey Hartley. "Mixture Experiment Design and Property Modeling in a Multi-Year Nuclear Waste Glass Study." <u>American Statistical Association</u>, 1995 Proceedings of the Section on Physical and Engineering Sciences. 173-178. Alexandria: ASA, 1995.
- 4. Munz, R.J. and G.Q. Chen. "Vitrification of Simulated Medium and High-Level Canadian Nuclear Waste in a Continuous Transferred Arc Plasma Melter." <u>Journal of Nuclear Material Management</u>, 24.1 : 32-38 (1995).
- 5. Pacific Northwest Laboratory. <u>Vitrification Development Plan for U.S. Department of Energy Mixed Wastes</u>. DOE/MWIP-11. Richland: 1993.
- Muller, Isabelle S.; Hao Gan, Andrew C. Buechele, Shan-Tao Lai, and Ian L. Pegg.
 <u>Development of the Vitrification Compositional Envelope to Support Complex-Wide Application of MAWS Technology, Phase I Final Report.</u>

 Washington: Vitreous State Laboratory, 1995.
- 7. Pegg, Ian L. "The Minimum Additive Waste Stabilization (MAWS) Demonstration Program at the Fernald Site." <u>Proceedings, APCA annual meeting, 13.87</u>: 1-14 (1994).
- 8. Skapura, David M. <u>Building Neural Networks</u>. New York: ACM Press, 1995.
- 9. Burke, Laura Ignizio. "Introduction to Artificial Neural Systems for Pattern Recognition." <u>ComputersOperations Research</u>, 18.2: 211-220 (1991).
- 10. Steppe, Jean M.; Kenneth W. Bauer, Jr., and Steven K. Rogers. "Integrated Feature and Architecture Selection." <u>IEEE Transactions on Neural Networks, 7.4</u>: 1007-1014 (1996).
- Pacific Northwest Laboratory. <u>Property/Composition Relationships for Hanford High-Level Waste Glasses Melting at 1150° C</u>. PNL-10359 Vol 1; UC-70. Springfield: NTIS, 1994.
- 12. Lippmann, Richard. "An Introduction to Computing with Neural Nets." <u>IEEE ASSP Magazine</u>: 4-18 (April 1987).
- 13. Himmelblau, David M. <u>Applied Nonlinear Programming</u>. New York: McGraw-Hill Inc., 1972.

- 14. Redgate, P.E.; G.F. Piepel, and P.R. Hrma. "Second-Order Model Selection in Mixture Experiments." 1992 Joint Statistical Meetings. Boston, 9-13 August 1992.
- 16. Argonne National Laboratory. <u>Effect of Glass Composition on Waste Form Durability: A Critical Review</u>. ANL-94/28. Argonne: Chemical Technology Division, 1994.
- 17. Pacific Northwest Laboratory. <u>Development of Glass Formulation Containing High-Level Nuclear Wastes</u>. PNL-2481; UC-70. Springfield: NTIS, 1978.
- 18. Pacific Northwest Laboratory. <u>First-Order Study of Property/Composition</u>
 <u>Relationships for Hanford Waste Vitrification Plant Glasses</u>. PNL-8502;
 UC-721. Springfield: NTIS, 1993.
- 19. Belue, Lisa M. <u>Selecting Optimal Experiments for Feedforward Multilayer Perceptrons</u>. PhD dissertation. Air Force Institute of Technology, Wright-Patterson Air Force Base OH, 1995 (AFIT/DS/ENS/95-1).
- 20. McCormick, Garth P. <u>Nonlinear Programming Theory, Algorithms, and Applications</u>. New York: John Wiley & Sons, Inc., 1983.
- 21. Montgomery, Douglas C. and Elizabeth A. Peck. <u>Introduction to Linear</u> Regression Analysis. New York: John Wiley & Sons, Inc., 1982.
- 22. Devore, Jay L. <u>Probability and Statistics for Engineering and the Sciences</u>, 3rd ed. Pacific Grove: Brooks/Cole Publishing Company, 1991.
- 23. Jackson, Jack A.; Thomas P. White, Jack M. Kloeber, Ronald J. Toland,, Joseph P. Cain, and Dorian Y. Buitrago. <u>Comparative Life-Cycle Cost Analysis for Low-Level, Mixed Waste Remediation Alternatives</u>. AFIT Technical Report 95-01. Wright-Patterson AFB: Department of Operational Sciences, 1995.
- 24. Frontline Systems Inc. "Makers of the Solver for Microsoft Excel, Nonlinear Programming," December 1, 1996.
- 25. Lasdon, L.S.; A.D. Waren, A. Jain, and M. Ratner. "Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming" <u>ACM Transactions on Mathematical Software</u>, 4.1: 34-50 (March 1978).
- 26. Wiggins, Vince L., Kevin M. Borden, Kathryn L. Turner, and Jeff Grobman. <u>Users Manual.</u>

Statistical Neural Network Analysis Package (SNNAP). San Antonio: Metrica, Inc., 1995.

<u>Vita</u>

First Lieutenant Todd E. Combs

He graduated from Red Hook Central High School, Red Hook, NY, in 1990. He then attended the United States Military Academy, West Point, graduating in 1994 with a Bachelor of Science degree in Operations Research. His first tour of duty was at Wright-Laboratory, Wright-Patterson AFB, OH, where he was responsible for managing the \$2.5M Solid Propellant Halon Replacement Program. Upon completion of his AFIT studies, he will be assigned to the Air Force Wargaming Center at Maxwell AFB, Alabama.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blan	k) 2. REPORT DATE March97	3. REPORT TYPE AND DATES COVERED Master's Thesis						
4. TITLE AND SUBTITLE		5. FUNI	DING NUMBERS					
Statistical Modeling and Op	Vitrification							
6. AUTHOR(S)								
Todd E. Combs, First Lieut								
7. PERFORMING ORGANIZATION N.	1	ORMING ORGANIZATION ORT NUMBER						
Air Force Institute of Techi 2950 P Street AFIT/GOA Wright-Patterson AFB, Oh		in nomber						
9. SPONSORING / MONITORING AGI	NCY NAME(S) AND ADDRESS(ES) 10. SPO	NSORING/MONITORING NCY REPORT NUMBER					
Department of Energy/EM- Subsurface Contaminant F	50 ocus Area		NET NET GAY INCOME.					
11. SUPPLEMENTARY NOTES	· · · · · · · · · · · · · · · · · · ·							
12a. DISTRIBUTION / AVAILABILITY	STATEMENT	12b. DIS	TRIBUTION CODE					
Approved for Public Releas	se; Distribution is Unlimited							
13. ABSTRACT (Maximum 200 words)								
This thesis describes the development of a methodology to minimize the cost of vitrifying nuclear waste. Pacific Northwest Laboratory (PNL) regression models are used as baseline equations for modeling glass properties such as viscosity, electrical conductivity, and two types of durability. Revised PNL regression models are developed that eliminate insignificant variables from the original models. The Revised PNL regression model for electrical conductivity is shown to better predict electrical conductivity than the original PNL regression model. Neural networks are developed for viscosity and the two types of durability, PCT-B and MCC-1 B. The neural network models are shown to outperform every PNL and Revised PNL regression model in terms of predicting property values for viscosity, PCT-B, and MCC-1 B. The combined Neural Network/Revised PNL 2nd order electrical conductivity models are shown to be the best classifiers of nuclear waste glass, i.e. they have the highest probability of classifying a vitrified waste form as glass when it actually did produce glass in the laboratory. Finally, five nonlinear programs are developed with constraints containing 1) the PNL original 1st order models, 2) the PNL original 2nd order models, 3) the Revised PNL 1st order models, 4) the Revised PNL 2nd order models, and 5) the Neural Network/Revised PNL 2nd order electrical conductivity models. The Neural Network/Revised PNL 2nd order electrical conductivity models. The Neural Network/Revised PNL 2nd order electrical conductivity nonlinear program is shown to minimize the total expected cost of vitrifying nuclear waste glass. This nonlinear program allows DOE to minimize its risk and cost of high-level nuclear waste vitrification.								
14. SUBJECT TERMS		15. NUMBER OF PAGES						
Nuclear Waste Vitrification Mathematical Programmin	Networks,	16. PRICE CODE						
17. SECURITY CLASSIFICATION OF REPORT Unclassified	13. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT UL					