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Abstract

Previous research at AFIT has resulted in the development of a DGPS-aided

INS-based precision landing system (PLS) capable of meeting the FAA precision

requirements for instrument landings. The susceptibility of DGPS transmissions to

interference/jamming and spoofing must be addressed before DGPS may be safely

used as a major component of such a safety-of-flight critical navigational device.

This thesis applies multiple model adaptive estimation (MMAE) techniques to the

problem of detecting and identifying interference/jamming and spoofing failures in

the DGPS signal. Such an MMAE is composed of a bank of parallel filters, each

hypothesizing a different failure status, along with an evaluation of the current prob-

ability of each hypothesis being correct, to form a probability-weighted average out-

put. Performance for a representative selection of navigation component cases is

examined.

For interference/jamming failures represented as increased measurement noise

variance, results show that, because of the good FDI performance using MMAE, the

blended navigation performance is essentially that of a single extended Kalman filter

artificially informed of the actual interference noise variance. Standard MMAE is

completely unable to detect spoofing failures (modelled as a bias or ramp offset signal

directly added to the measurement). This thesis shows the development of a moving-

bank pseudo-residual MMAE (PRMMAE) to detect and identify spoofing failures.

Using the PRMMAE algorithm, spoofing failures are very effectively detected and

isolated; the resulting navigation performance is equivalent to that of an extended

Kalman filter operating in a no-fail environment.

xi



MMAE DETECTION OF INTERFERENCE/JAMMING AND

SPOOFING IN A DGPS-AIDED INERTIAL SYSTEM

1. Introduction

1.1 Background

Aircraft are often required by necessity or bad luck to fly under adverse weather

conditions. The purposes of military air operations are often best accomplished

under such low-visibility conditions. Precise, safe landings are required even when

lack of visibility would make landing by a human pilot impossible. The availability

and integrity of a precision landing system is critical for safety of flight during low

visibility conditions.

The Instrument Landing System (ILS) currently in use works on a relatively

simple localizer/glide slope method. Guidance to the runway is provided by highly

directional radio signals. The localizer provides the information needed for lateral

guidance on the approach path. The glide slope signal provides the needed vertical

guidance. Figure 1.1 shows a representation of the localizer and glide slope radiation

patterns. The carrier frequencies used in the ILS are about 110MHz and 330MHz

for the localizer and glide slope signals, respectively. The frequencies indicated on

the diagram describe the modulation frequencies used. The effect of the ILS signals

just described is to create a virtual funnel which will guide an approaching airplane

to the runway, as is depicted in Figure 1.2.

The FAA has established clear precision requirements for instrument landings.

These requirements constitute the performance constraints for the current ILS as

well as for the replacement GPS-based precision landing system (PLS) examined in

this thesis. The FAA requirements are shown in Category III required navigational
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Glideslope (as enfo thsi)

Local izer (as seen from above)

Figure 1.1 Localizer/ Glideslope Method

Figure 1.2 Funnel Approach

precision (at the 200 foot "decision height") is roughly depicted by the ellipse (two-

sigma values) shown in Table 1.1. Figure 1.3. The accuracies listed under Category

III represent the required precision for a zero visibility landing, wherein the pilot does

not make visual contact with the runway until after touchdown. Conceivably, this

precision would also make completely autonomous landings possible for unmanned

vehicles or if the pilot became incapacitated. The localizer/glide slope ILS currently

in use is capable of providing Category III accuracy. See Table 1.1.

The current ILS has two major drawbacks which have motivated the desire

for an operationally certified GPS-based precision landing system (PLS). First, the

1-2



Vertical Accuracy Horizontal Accuracy
Category I ±4.1m ±17.1m
Category II ±1.7m ±5.2m
Category III ±0.6m +4.1m

Table 1.1 Precision Landing System Two-Sigma Accuracies [3]

<0
L 0.6m

4.1m

Figure 1.3 Category III Precision (Two Standard Deviations)

current ILS has a very limited area of usefulness (see Figure 1.2). The area of

guidance is restricted to a straight path extended for several miles from the end of

the runway. It would greatly contribute to the safety and efficiency of air operations

if controllers were able to know the precise locations and courses of all airplanes in

the controlled area. The current ILS has no capacity to contribute, in this manner,

to the safety, guidance, or regulation of typical traffic patterns of aircraft in various

stages of landing or taking off around an airfield. The second major drawback of the

current ILS is the maintenance cost of the aging system. The Microwave Landing

System (MLS) was originally thought to be the replacement for the current ILS.

The MLS however, works on the same directional radiation principles and so has the

same limited coverage drawback of the current ILS. Recently the MLS replacement

plan has been permanently discarded due to the high cost of the upgrade and the

good potential of a GPS-based system for precision landings [33, 37,46].

The global positioning system (GPS) has been demonstrated to provide very

precise position measurements, especially when combined with other sensors [18,36].

Figure 1.4 [34] shows the two-sigma accuracy capability of various GPS implemen-
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tations which use the standard positioning service (SPS) Li GPS transmission. The

GPS accuracy ellipse shown does not reflect the scheduled removal of selective avail-

ability (SA). SA is a random dither imposed on the GPS signals in order to degrade

the SPS precision available to non-authorized (non-U.S. military) users. Differential

GPS (DGPS) provides increased navigation precision using two closely located GPS

receivers. One of the receivers must be at a known location so that the GPS solution

errors may be isolated. The error corrections are then transmitted to the second

receiver, which corrects its own navigation solution. It can be seen that, although

neither basic GPS nor DGPS gives the degree of accuracy required for precision

landings, the accuracy of carrier phase GPS (CPGPS) is more than sufficient for

aircraft landings. At the time of this writing, receiver technology has not yet made

CPGPS available during all phases of flight, especially during highly dynamic flight.

However, for the benign flight patterns typical in the area of airfields, the accuracy

of CPGPS could be fully utilized with current technology.

The GPS has several inherent strengths and weaknesses which directly influ-

ence its application to the PLS problem. The continual, global availability (inter-

mittent at very high latitudes) of the GPS signal, along with the accuracy available

from CPGPS, make a GPS-based ILS appear to be an improvement (in positioning)

from the current ILS. A GPS-based PLS would overcome all of the major limitations

of the current ILS, while exceeding its current performance specifications. It can be

seen in Figure 1.4 that GPS alone (the outer ellipse) and even differential GPS do not

meet the accuracy requirements for a PLS (the central ellipse), especially in the ver-

tical direction. This vertical weakness of GPS leads to the desire to include a radar

altimeter in the integrated PLS system. A ground-based pseudolite will also help

with the vertical precision problem. A pseudolite improves the navigation solution

by providing GPS satellite-like signals from a known position (surveyed, eliminating

satellite position uncertainty) below the user's horizon.

1-4



10 "
curr.-nt ILS (Cat III) 4.1. F

Figure 1.4 GPS Accuracies (Two Standard Deviations)

A significant weakness of GPS, with respect to the PLS application, is the

susceptibility of the very low power GPS signal to interference. For military applica-

tions this interference could originate from enemy interference/jamming or spoofing.

Benign interference such as that from unregulated electronic devices would proba-

bly have the greatest effect on civil aviation, although interference from low-wattage

jammers placed by terrorists is a viable concern. The susceptibility of the GPS signal

to external interference strongly motivates the use of a GPS-aided INS-based PLS,

rather than a standalone GPS-based PLS. The navigation solution of a low-quality

INS drifts at a rate of about four nautical miles per hour or 400 feet per minute.

While this rate of drift makes the INS unsuitable for a PLS, it does give an accurate

enough solution for an aircraft to navigate safely away from the landing area when

a GPS failure is detected. This work will consider integration of low-, medium-, and

1-5



high-quality INSs as discussed in Section 1.4. The low-quality INS is used here to

illustrate the drift problem.

The accuracy potential of GPS as a primary sensor in a precision landing

system is evident. However, possible interference of the GPS signal, as well as

possible system failures from other sources, remain a major concern. Whatever the

source of the interference, the navigation solution provided by any GPS receiver

under interference conditions would be unreliable. The dependability of the GPS

signal as a safety-of-flight-critical sensor in a precision landing system remains to be

adequately addressed.

1.2 Problem Definition

The purpose of this thesis is to develop an effective method of receiver au-

tonomous integrity monitoring (RAIM) for GPS-aided INS-based PLS. The RAIM

scheme to be developed in this work will accurately indicate the integrity of the

GPS (and overall system) navigation solution during interference/jamming or spoof-

ing conditions.

1.3 Summary of Current Knowledge

Recent research in the area of GPS-based PLS conducted by the FAA and

other researchers has focused on developing and verifying a GPS-based navigation

architecture [3,10, 33, 37,46] which can provide the necessary navigational accuracy

for precision landings. The work of Gray [10] (using standard GPS) and Britton [3]

(using DGPS) at AFIT has shown that an integrated GPS-aided INS-based PLS

meets FAA requirements for Category I and II precision approaches. Paielli, Russell,

and others [33] have demonstrated the increased accuracy potential which may be

obtained by using carrier phase GPS measurements.

Much research effort has focused on developing a working RAIM method for

GPS. Comparatively little work has focused on integrity monitoring for a GPS-aided
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INS-based navigation system. Vasquez [41, 42] has applied generalized likelihood

ratio and chi-square testing schemes to the problem of interference/jamming and

spoofing detection for the GPS signal in a GPS-aided INS-based system.

1.4 Assumptions

The integrated system to be used will include a ground-based pseudolite which

will provide GPS-like transmissions from a surveyed location near the runway [10].

The main advantage of a ground-based pseudolite is the improvement it makes in

the geometry of the GPS problem. GPS satellites are located strictly above the

user's horizon. The pseudolite provides a range measurement from beneath (below

the horizon) the user. In this research, it will be assumed that differential GPS,

pseudolite, radar altimeter, baro altimeter, and INS navigation signals will all be

available. The benefits (to failure identification) of the pseudolite and radar altimeter

will be analyzed by conducting some performance simulations without one or both

of these measurements. Three different accuracies of INSs will be used, a high-

quality INS as might be used by the military, a medium-quality INS like those

used in commercial transportation, and a low-quality INS which may be inexpensive

enough to be used in small private aircraft. Radar altimeter measurements are

assumed to be reflected from the WGS-84 reference ellipsoid (no terrain effects will

be modeled) when the aircraft is at less than 3000 feet AGL (above ground level).

A radar altimeter is considered to be a reasonable part of such a PLS because of

its common availability on military aircraft and commercial airliners, as well as the

non-prohibitive cost of incorporating it into small civil aviation vehicles.

1.5 Literature Review

This section reviews the current literature relative to the GPS-aided INS-based

Precision Landing System (PLS). It also reviews the literature pertaining to several

of the most viable techniques of failure detection and identification. The algorithm

1-7



discussions presented in this section are general and quite terse; a detailed technical

description of each algorithm is taken up in Chapter 2.

1.5.1 Basis of a GPS-aided INS-based PLS. Much recent research has

focused on developing and flight testing a GPS-based PLS to replace the current

ILS (and recently cancelled MLS) system [3, 10, 12, 33]. To ensure safety of flight,

aircraft require an internal, independent navigation reference system that may be

used when the GPS signal is unhealthy or jammed. Where the cost is justified,

inertial navigation systems (INSs) are used to provide this independent, internal

navigation reference. Military and large commercial aircraft use INSs. The cost

of lower-quality INSs (and of GPS systems) has become realistic for civil aviation

applications. Additional navigation devices may be required to aid the INS during

lengthy GPS outages.

INSs provide very accurate (relative) navigation over short periods of time but

drift substantially (accumulate position bias) over time. The GPS provides accu-

rate navigation information over long periods (no drifting trend) but can easily be

lost for short times during periods of highly dynamic aircraft maneuvering or GPS

signal interference. Integration of INS and GPS navigation data with other navi-

gation aids provides increased navigation accuracy during benign flight and allows

reliable navigation in the face of aircraft dynamics or intermittent GPS interfer-

ence/jamming [10, 12, 36]. The standard navigation system on military aircraft is

based on an INS aided by GPS and other navigation aids. A GPS user can only

receive signals from satellites located above the horizon (ideally, transmitters would

be available from below the horizon as well, as is the case when pseudolites are

present in the local area); there is no sensitivity to the cardinal direction (azimuth)

to the satellite. This geometry makes the GPS navigation solution least precise in

the vertical direction. To help overcome this weakness, altitude sensors are standard

navigation aids for systems using GPS. An integrated system consisting of (at least)

GPS, an INS, and barometric altimeter is common on military aircraft. A radar
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altimeter is also generally present on military and commercial aircraft although it is

not typically a part of the integrated navigation system. For this work a radar al-

timeter, when present, will be modelled as a part of the integrated navigation system.

The integration of the radar altimeter was first done by Gray [10] and Britton [3]

to improve the vertical-channel navigational precision during approach and landing

maneuvers.

Where an integrated navigation system is in place, especially in military appli-

cations, it is desired to develop a PLS based on the entire available set of navigation

components. Past AFIT theses have focused on the development of a GPS-aided

INS-based landing system. This research has shown that a differential GPS-aided

INS-based PLS provides Category I and II landing precision [3, 10]. The reliabil-

ity of this landing configuration, especially in possibly jammed or spoofed areas of

operation, remains to be fully investigated.

1.5.2 Integrity Monitoring. This work focuses on the problem of detect-

ing radio frequency (rf) interference which would corrupt local GPS signals and the

resulting navigation solution. Civilian GPS users will most often face benign in-

terference from rf sources such as microwave or television transmitters. Military

GPS users must anticipate malignant interference/jamming or spoofing from enemy

sources. The signal fault identification process is referred to as Fault Detection and

Identification (FDI). This section reviews the literature pertaining to four techniques

of FDI, which have been or could be applied to the current integrity monitoring prob-

lem. Kalman filtering will be used in all of the cases examined to provide integration

of the INS with other systems. The measurement residual signals generated by the

Kalman filters will be used to perform the FDI functions [13-15,20,25]. See May-

beck [21-23] for a thorough presentation of Kalman filter theory and applications.

1.5.2.1 Integrated Navigation and FDI Concepts. Real-world naviga-

tion sensors cannot produce an exact navigation solution; they give a measurement,
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corrupted by noise, of the unknown navigation parameters. Modern integrated nav-

igation is implemented by using Kalman filters to combine measurements optimally

from multiple information sources, based upon the known (or determined) relative

precision of each source. Conceptually, Kalman filters estimate the system state,

propagate that estimate forward to the next measurement sample time using an

assumed system model, then update that state estimate using actual measurement

information. The difference, at each update time, between the filter's state predic-

tion (based on propagating its system model) and the measurement actually taken,

is called the measurement residual. The measurement residual is a reliable indicator

of how well the filter's assumed system model matches the actual system. When

the filter model disagrees with the real world, the characteristics of the residuals can

provide information about how real system differs from the filter's model.

The fundamental objective of FDI is to examine the available information in

such a way that system failures can be detected and identified. Navigation sensor

failures are identifiable as discrepancies in the solutions provided by different infor-

mation sources [44], either as directly viewed from the sensor, or as observed in the

character of the measurement residual of the integration Kalman filter. The PLS

under examination here, consisting of (at least) GPS, an INS, barometric altimeter,

and radar altimeter, is well-suited to FDI techniques based on multiple, redundant

information sources. The solution to the current problem will involve checking the

received GPS navigation data against the internal INS navigation solution, which is

not subject to external interference. It is desired to incorporate the received GPS

signals when they are currently valid, because the GPS solution accuracy greatly

contributes to the precision required for ILS-like aiding.

Each FDI algorithm examined differs in function and complexity. Of the al-

gorithms discussed, chi-square testing only detects the existence of failures in the

system, while the other three FDI methods perform some degree of fault identifica-

tion and recovery [22,26,40,44].
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1.5.2.2 Redundancy (The Voting Method). Perhaps the simplest

and most reliable failure detection technique is the use of duplicate hardware for

voting [41,42,44]. Simple voting requires three redundant information sources. The

outputs of each identical element are compared, allowing them to vote on what

information is valid. If two elements agree on the aircraft position and the third

provides a different solution, the deviant element is declared to have failed.

The voting method for triply redundant devices has two restrictive weaknesses.

Once any single element has failed and is removed from the redundant triad, the sys-

tem can detect, but is unable to isolate, a second failure. If a second failure occurs,

the system cannot determine which element is in error and both remaining elements

should be taken off line in order to maintain the integrity of the system's naviga-

tion solution. A second weakness of the voting method is the additional expense,

space, weight, and computational ability required for redundant hardware [26,40,44].

The requirement for these additional resources typically makes the voting method

unacceptable for avionics applications.

1.5.2.3 Chi-Square Testing. The chi-square testing algorithm [40,

44] assumes the use of a Kalman filter to combine information from the available

navigation sensors. This method is based on monitoring the measurement residuals of

the Kalman filter. The filter's residuals and their filter-computed residual covariance

are monitored. Measurement residuals for a filter having the correct model of the real

world should display four well-defined characteristics. Residuals should be white,

Gaussian, zero mean, and have covariance HP-HT + R (or closely approximate

those properties) [6, 13, 21, 22, 40]. Gaussian-ness, zero-mean-ness, and covariance

HP-HT + R are exploited in the test conducted in this fault detection method. The

chi-square test declares a failure when the tested properties of the filter residuals are

inconsistent with those expected from a filter having the correct model. For instance,

one can run a hypothesis test (to some confidence level) that 95% of a residual's

scalar component lies between 0± twice the filter-computed standard deviation for
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that residual component. The chi-square test is easy to implement and runs quickly

but provides only a binary fail/no-fail indication of system operation. It is not useful

for failure identification [41,42, 44].

1.5.2.4 Generalized Likelihood Ratio Testing. Like chi-square testing,

Generalized Likelihood Ratio testing (GLR) uses the measurement residuals of the

navigation system's Kalman filter [40-42,44,45]. The GLR algorithm attempts to

detect and isolate failures by knowing the effect that each failure has on the character

of the filter residuals. Maximum Likelihood Estimation (MLE) is used to determine

which condition is most probable, given the current character of the filter residuals.

In general, to implement the GLR method, the designer is required to provide a

signature failure matrix which provides the algorithm with the description of how

different failures modify the filter residuals [44]. Uncertain parameters such as failure

magnitudes may also be estimated by modelling their effects in the signature failure

matrix.

Van Trees [40] shows the development of multiple GLR testing. In multiple

GLR testing, the system Kalman filter is designed based on the no-fail condition.

Matching filters are designed based on the expected failure conditions (including

no-fail). Each matching filter generates a GLR using MLE. Based on the GLRs,

central testing logic determines which matching filter best matches the real world.

Once a failure is detected, a corrective signal can be fed back to the Kalman filter

for adaptation to the failure. Further detail on GLR's is presented by Willsky and

Jones [44,45]. See Vasquez [41,42] for an example of multiple GLR testing applied

to a navigation problem.

1.5.2.5 MMAE. The MMAE technique uses multiple Kalman filters

running in parallel to model the dynamics of the system (in this case the PLS) under

different conditions of failed or no-fail operation [1,20,22]. A separate Kalman filter

is designed for each failure condition and, during operation, the residuals are used
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to determine how well each filter models the current system state. The MMAE

technique is similar to multiple GLR testing in many ways, but differs in its structure

and decision making methods. Multiple GLR testing uses a variety of matching

filters to model failure characteristics of the residuals of a single Kalman filter. In

the MMAE algorithm, a probability of model accuracy ranging from zero to one

is computed for each elemental filter within the MMAE structure. Each separate

filter's state estimates are scaled by the computed probabilities that each filter has

the correct model of the real world. These scaled state estimates are then added

together to produce a probability-weighted blending of the state estimates. This

blending technique has particular advantages when the real world system is not

exactly described by any one filter model, but exists in the parameter space between

discrete filter models. In such a situation the filter residuals of more than one of the

modeled conditions look reasonably valid. The weighted state estimates provided by

the MMAE algorithm are used to construct the navigation solution and to provide

system feedback. A major strength of the MMAE technique lies in its capacity for

rapid and valid adaptation. Multiple filters are running in parallel, making multiple

sets of residuals available at all times with which to decide which filter model looks

best (according to the "good" residual qualities [21,22] described in Section 1.5.2.3).

For robust operation, the bank of Kalman filters must be specified in such

a way that it spans the entire failure space of the application of interest. Rigor-

ous general convergence proofs for MMAE do not exist [7, 9,43], but some limited

proofs have been established [4,5,22,24] and experience has shown that, as long as

the failure condition of the system remains within the span of the filter bank, the

MMAE technique is robust to that condition and will respond to it very quickly and

accurately.

1.5.3 Literature Review Conclusion. If it is to be used in actual opera-

tion, the proposed GPS-aided INS-based PLS will require rapid and accurate fault

detection and identification to establish the integrity of the PLS aid at all times.
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The error detection techniques presented in Section 1.5.2 are representative of the

methods available to accomplish the required fault detection.

The redundancy technique is not feasible for this application. Multiple GPS

receivers on a single aircraft would probably not be restrictive on the basis of size,

weight, or computational loading, but each receiver would be subject to the same

failure environment, e.g. interference/jamming or spoofing, and so nothing would

be gained by this redundancy.

Because of its speed and simplicity, chi-square testing has been widely used to

detect failures. However, chi-square testing alone has no ability to isolate failures

and so does not have much applicability to the integrity monitoring problem under

examination, if used alone. This testing method has been effectively used when

combined with another test to perform the identification function.

Multiple GLR testing and MMAE are both well suited to the FDI problem.

Both of these techniques are flexible enough to be applied to the complex GPS-aided

INS-based problem. This work uses the MMAE technique to perform the failure

detection and identification. Vasquez [41,42] has used a combination of chi-square

and GLR testing to detect and isolate failures in a GPS-aided INS-based navigation

system. Performance comparisons will be made, as appropriate, between the MMAE

FDI and GLR/chi-square FDI algorithms.

1.6 Scope

This work will be limited to the development of a multiple model adaptive

estimation (MMAE) architecture to provide the integrity monitoring previously de-

scribed. Comparison will also be made to the generalized likelihood ratio and chi-

square testing algorithms developed by Vasquez. The failure modes to be addressed

will be limited to the onset of interference/jamming and spoofing. Filters based

on ramp failures will not be included in the working MMAE filter bank. When a

ramp occurs, the elemental filter with the hypothesized constant parameter value
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that most closely matches the current ramp value will receive the highest probabil-

ity weighting. The ramp should be detectable as a growing trend in the MMAE's

blended estimate of the affected parameter (and a gradual shift in the computed

probabilities of each hypothesized parameter being correct).

1.7 Methodology Overview

The research consisted first of studying the stochastic and dynamics modeling

of the GPS-aided INS-based navigation system, primarily as represented in the theses

of Gray [10], Britton [3], and Negast [30]. The model development work accomplished

in these previous AFIT theses was duplicated and then confirmed. Once the model

had been successfully duplicated, the research effort focused on failure detection

within the augmented system. The failure detection analysis of the multiple model

architecture used was accomplished using Multiple Model Simulation for Optimal

Filter Evaluation (MMSOFE [32]). MMSOFE allows for the simultaneous testing of

multiple extended (or linear) Kalman filter (EKF) models in an MMAE architecture.

MMSOFE is based on the MSOFE [28] program designed for the testing of single

Kalman filters. MSOFE was written in FORTRAN 77 [39] and its use involves

significant modification of up to 14 user-definable modules.

Comparison to the work of Vasquez is performed. Vasquez used general-

ized likelihood ratio (GLR) and chi-square testing schemes to detect and estimate

interference/jamming- and spoofing-induced failures in a GPS-aided INS-based sys-

tem. GLR techniques are based on residual monitoring and can be very effective.

The failure detection and identification results of Vasquez' work are compared to

those generated using the MMAE-based FDI methods.
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1.8 Overview of Thesis

Chapter 2 presents the theory used in this research. Kalman filter theory is

introduced, along with the basics of several FDI algorithms, including MMAE, GLR,

and chi-square testing.

Chapter 3 describes the navigation system's parameters and operation through

an overall system description. Models for each of the PLS components, including

the INS (with barometric altimeter), GPS, DGPS, pseudolite, and radar altimeter,

are defined in detail. The failure models used to represent interference/jamming

and spoofing failures are developed, along with a description of the MMAE-based

methods that are used to detect those failures.

Results of the work done are shown in Chapter 4, including an analysis of the

FDI (and navigation guidance) performance observed. Chapter 5 summarizes the

research through conclusions and recommendations.
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2. Theory

2.1 Overview

This chapter presents the fundamental theory of the Kalman filter, and the

sampled-data Kalman filter equations used in this work are developed. The ex-

tended Kalman filter (EKF), a well-established ad hoc method based on the Kalman

filter, is used in estimation problems involving nonlinear dynamics and/or nonlinear

measurement models. The equations defining (EKF) are presented in this chapter,

along with a more detailed discussion of the MMAE, GLR, and chi-square failure

detection methods introduced in Chapter 1.

2.2 The Extended Kalman Filter

The EKF allows for nonlinear, time-varying system dynamics and/or measure-

ment vectors, as are found in this GPS/INS navigation problem. In simple linearized

Kalman filtering (LKF), the dynamics and/or measurement equations are linearized

through first-order perturbation techniques about a fixed nominal trajectory. The

LKF is the conceptual basis for the EKF. During operation the EKF is continually

relinearized about the most recent state estimate trajectory rather than about a

fixed nominal trajectory.

For the sampled data Kalman filter, let the system model be expressed as a

state equation of the form

il(t) = f [x(t), t] + G(t)w(t) (2.1)

where the state dynamics vector f[x(t), t] is a (possibly) nonlinear function of the

state vector x(t) and time t. Let w(t) be a white Gaussian noise with mean

E[w(t)] = 0 (2.2)
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and noise strength Q(t) defined by

E[w(t)wT (t + )] = Q(t4'r) (2.3)

The discrete-time measurements, z(ti), are modeled as a (possibly) nonlinear

vector of functions of the state vector and time, h[x(ti), ti], plus additive white

Gaussian noise:

z(ti) = h[x(ti),ti] +v(ti) (2.4)

where h[x(ti), ti] is the nonlinear observation vector and v(ti) is a zero-mean discrete-

time white Gaussian noise, independent of the dynamics driving noise w(t) and

having covariance R(tLi) defined by

E[v(ti)v T(t)] = R(t) for t = tj(2.5)
0 for ti = tj

The LKF is based on perturbation states about a nominal state trajectory x,(t)

satisfying xn(t 0 ) x,,, and

5c(t) = f[x"(t),t] (2.6)

using the same f[.,.] as in Equation (2.1). The nominal, noise-free measurements are

also based on the nominal states and are defined as

z'(ti) = h[x,(ti),ti] (2.7)

The perturbation states are found by subtracting the nominal states in Equation (2.6)

from the original states in Equation (2.1):

[k(t) -. (t)] = f[x(t),t]-f[x (t),t]+G(t)w(t) (2.8)
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Equation (2.8) is approximated to first order through a truncated Taylor series ex-

pansion (letting 6x(t) be a first-order approximation to [x(t)- x,(t)]):

Sx(t) = F[t;x(t)]bx,(t) + G(t)w(t) (2.9)

where bx(t) are the perturbation states. The definitions for G(t) and w(t) are

unchanged, and the new linearized dynamics matrix F[t; x,(t)] is found by taking

partial derivatives of f[x(t), t] with respect to x(t) and evaluated at the nominal

values for the trajectory x (t):

= f[x(t),t] (2.10)F[t;x (t)]= = ()
49X x = x (t)

The discrete-time perturbation measurements are similarly approximated to first

order from the measurement difference equation

bz(ti) -_ z(ti)-z"(ti) = h[x(ti),ti]-h[x,,(ti),ti]+v(ti) (2.11)

yielding the perturbation form (letting bz(ti) be a first-order approximation to
[z (t)]-

Sz(ti) = H[ti; x(ti)]bx'(ti) + v(ti) (2.12)

The same partial derivative methods used to derive the linearized state dynamics

matrix F[t; x (t)] are used again to derive the linearized observation matrix:

_ Oh[x(ti),ti] (2.13)
H[t';9x(t )]

Because the LKF generates error state estimates, x(t), they must be added to the

nominal states to provide whole state estimates R(t) in the form

5(t) = x'(t) + Sx(t) (2.14)
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If the nominal and the "true" trajectories differ too greatly, a linearized Kalman

filter will yield erroneous state estimates because the condition for neglecting higher

order terms of the Taylor series expansion is violated. The EKF will be formed by

linearizing about the most recent state estimate R rather than about the nominal

trajectory x,,, as is done in the LKF. The following sampled data EKF equations use

the notation t ti to represent the value of a given variable at time t, conditioned on the

measurements taken through time ti. Also, ti- represents the value after propagation

but prior to the measurement update at sample time ti, and ti+ corresponds to the

value after the measurement update. The state estimates R(tlti) and covariance

values P(tlti) are propagated from ti to ti+l by solving the following differential

equations:

t f[(tlt2 ),t] (2.15)

P)(tlti) = F[t;R2(tlti)]P(tlti) +P(tlti)F T[t- 5Z(t It,)] + G(t)Q(t)GT(t) (2.16)

where
F[t;f(tlti)] = af[x(t),t] (2.17)

ax tt= (lti)

and initial conditions are given by:

-(tilti) = R(tj + ) (2.18)

P(tilti) = P(tj+) (2.19)

The discrete-time measurements are processed in the EKF through the update equa-

tions:

K(ti) = P(ti-)HT[t,; R(ti-)]{H[ti; (ti-)]P(ti-)HT [t,; 9(t,-)] + R(ti)} - ' (2.20)

5 -(ti
+ ) = R(ti-) + K(ti) {zi - h[5Z(ti-), ti} (2.21)

P(t++ ) = P(ti-)- K(ti)H[ti;R(ti-)]P(t-) (2.22)
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where

P(t-) P(t lt -1 ) and R(t-) = (tiiil) (2.23)

as produced by the most recent propagation cycle. The variable zi represents the

actual realization of the measurement z(ti), H[ti; 5(t-)] is given by:

H[t-;i(ti) Oh[x(ti), ti] (2.24)
ax = 2((i-)

and K(ti) is the discrete-time Kalman filter gain. Recall from the previous page that,

for the EKF, the measurement and dynamics vectors are calculated about the last

state estimate R(t-) and the state trajectory x(tlti), rather than about the nominal.

Before proceeding to a discussion of failure detection and identification (FDI)

techniques, the reader should make note of Equation (2.21). The term {zi - h[R(ti-), ti]}

on the right hand side of Equation (2.21) is called the measurement residual. At

each sample time ti, the residual is the difference between the actual measurement of

the real world z(ti) and the filter's best prediction of what the measurement should

have been before it arrived, h[R(t-), ti]. The filter's prediction is based on its model

of the system, so the characteristics of the measurement residual are an indication

of how well the filter's model currently matches the real world. The residuals from

a filter (the kh filter of a number of possible filters) having the correct model will

be (for a linear KF, or to first order for an EKF) white, Gaussian, zero-mean, and

have covariance [Hk(ti)Pk(ti-)HkT (ti) + Rk(ti)]. This information contained in the

residual is the basis of the FDI techniques discussed in the next section.

2.3 Failure Detection

The MMAE and the GLR/chi-square methods of FDI [22, 40] are residual-

based techniques built upon the Kalman filter just developed in Section 2.2. The

basic ideas upon which these FDI methods are based were discussed in Section 1.5.2.

This section presents a theoretical discussion of the MMAE, GLR, and chi-square
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algorithms. See VanTrees [40] for a more complete development of the GLR and chi-

square methods. Maybeck [22] presents a clear and rigorous development of MMAE

theory.

2.3.1 Multiple Model Adaptive Estimation. Multiple Model Adaptive Esti-

mation (MMAE) can provide simultaneous state and parameter estimation. MMAE

is composed of multiple "elemental" Kalman filters running in parallel, each using

an identical deterministic input and measurement environment. Each of the individ-

ual elemental filters may model a different set of system parameter values based on

known possible operating conditions, or may model some possible failure condition

such as greatly increased measurement noise covariance R(ti), which might represent

the effects of GPS interference/jamming. The magnitude of a failure can also be esti-

mated by using multiple elemental filters with different assumed failure magnitudes.

The residuals from each filter are used to calculate the conditional probabilities that

each of the filters has the most correct model. Uncertain parameters are estimated

in this way because specific parameter values are associated with each filter. The

conditional probabilities, also referred to as hypothesis conditional probabilities, will

be used as weights for blending the state estimates from the elemental filters to

produce the final blended MMAE state estimates. See Figure 2.1 for a graphical

representation of the MMAE algorithm.

The conditional probability pk(ti) for the kth elemental filter, k = 1, 2,... , K

is determined by:

fz(t)aZ(t?.l)(Zi ak, Z i-l)pk(ti-1) (2.25)ptJ .=1= fz(ti) la,Z(t,-1) (zi Iaj, Zi-I)PJ (ti-1)

where, for this development, the ak parameters may represent measurement bias

magnitudes and/or measurement noise covariance values. The numerator of Equa-

tion (2.25) is the product of two terms. The first, pk(ti-1), is merely the most recent

value of the conditional probability for the kth elemental filter, making this equation
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iterative. All K numerator terms for the K elemental filters at ti_ 1 must be available
before the denominator and consequently the kth conditional probability at the Cur-

rent time, ti, can be calculated. The first numerator term is the probability density

function of the current measurements, conditioned on both the assumed parameter

values and the observed past measurements. This probability density function is

computed by:

{.} = M-lreA tive Estimation

where m is the measurement vector dimension, and the filter residual is given (for

linear filters)by:

rk(t ) = [z(ti) - Hk(ti) (tj-)] (2.27)
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and

rk(ti) {[z(ti) - hk[Rk(tT), (ti)]} (2.28)

for the more general extended Kalman filters, and where the residual covariance is

computed by the kth elemental filter as:

Ak(ti) = [Hk(t)Pk(t-)HkT (t4) + Rk(ti)] (2.29)

The kth filter residual, rk(ti), is dependent upon the current measurement, z(ti), the

measurement matrix, Hk(ti) (or the measurement function hk(', ti) for an EKF), and

the state estimate prior to the ith measurement, R(tj-). The kth elemental filter's

state estimation error covariance matrix before the ith measurement, Pk(ti-), the

measurement matrix, and the observation noise covariance matrix, Rk(ti), are used

to construct the residual covariance for each filter. The Kalman filter equations and

notation were discussed in Section 2.2.

If the residuals in the kth filter display a mean of zero and the correspond-

ing filter-computed residual covariance Ak(ti), the exponential term {-} in Equa-

tion (2.26) is approximately equal to -, where m is the dimension of z(ti) and2'

r(ti). However, if the residuals are much bigger than anticipated due to the wrong

parameter hypothesis, the exponential term {.} in Equation 2.26 is a much larger

negative number (Ak' is positive definite), so Pk decreases exponentially. The de-

nominator of Equation (2.25) represents the sum of the numerator terms from each

elemental filter computed at time ti. This scales the numerator to ensure that the

sum of the Pk's is always one. However, a difficulty arises if the conditional probabil-

ity of a state estimate were to become zero. In this case the conditional probability,

Pk, becomes identically equal to zero for all time thereafter. Once equal to zero,

the iterative form of Equation (2.25) locks that Pk at a zero value for all subsequent

calculations, even if that filter begins to produce good state estimates. To avoid this
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problem, a lower bound (threshold) should be set on each Pk to prevent such a zero

lock-in condition [22].

The state estimates from each filter, Rk, are then scaled by the corresponding

weighting factor Pk. These weighted state estimates are summed for all K filters,

resulting in the Bayesian blended state vector estimate:

K

-(ti
+ )  E Rk(ti + ) " Pk(ti) (2.30)

k=1

The covariance, P(ti+), of the blended solution is given by [22]:

KP(ti + )  E _pk(ti){ Pk(ti+) + [k(ti+) - - (ti+)][Rk(ti+)-- R(ti+)]T} (2.31)
k=1

The parameter estimates, iik, are calculated by scaling the assumed parameter values

from each elemental filter by the corresponding weighting factor, pk, in the same

manner as for the state estimates. The weighted estimates of all K filters are summed

according to the relationship:

K

Z(ti) E ak Pk(t4) (2.32)
k=1

This Bayesian form of adaptive estimation is depicted in Figure 2.1.

As may be inferred from the preceding presentation, failure detection and iden-

tification using MMAE becomes virtually automatic once the estimator has been

developed. FDI is accomplished by observing the conditional probabilities, Pk, of

the elemental filters. The filter with the highest probability pk is based on the model

which most closely matches the real world (truth model in the case of simulations).

Most likely the true parameter value will not exactly match that modeled in any one

of the elemental filters, so the unknown parameters will be estimated via blending

in a manner similar to the MMAE state estimation.
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This thesis research is directly concerned with detecting and isolating failures

in the form of GPS interference/jamming or spoofing. Several Kalman filters are

used which differ only by the assumed measurement noise variance or measurement

signal bias magnitude. Measurement signal biases model measurement jumps and/or

ramps (through the MMAE blending just discussed) as might result from intentional

spoofing. Increased measurement noise variance would model interference/jamming-

type real world measurement noise. Nominally, for the case of measurement signal

biases, two filters with different positive bias magnitudes, a matched set with neg-

ative magnitudes, and one filter with a zero bias magnitude can be assumed (i.e.,

K = 5, where K is the number of elemental Kalman filters). Using variances of mea-

surement noise instead of biases in another set of elemental filters could similarly

model interference/jamming noise. As was stated in Section 1.6, there is no need to

include elemental filters based on a ramp failure of an assumed slope and/or time of

onset. When a ramp occurs, the elemental filter with the bias value that most closely

matches the current ramp value will receive the highest probability weighting. The

ramp should be observed as a growing trend in the MMAE's blended estimate of the

measurement bias.

2.3.2 Moving-Bank MMAE. The MMAE algorithm propagates multiple

filters forward in time, continually selecting the filter, or weighted combination of

filters, that has the best model of the real world. Often, the possible parameter

space is so large that completely discretizing it requires many more filter hypothe-

ses than can realistically be run in parallel. In this case, a small group of filters,

whose parameter assumptions are in the close neighborhood of the current parame-

ter estimate, are chosen to be active at one given time. If the estimated parameter

moves significantly, the bank of active filters is moved to be centered around the new

parameter estimate. This algorithm is called a moving-bank MMAE.
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2.3.3 Generalized Likelihood Ratio Testing. The primary goal of GLR is to

define a likelihood function l(ti, 0) that, when compared to a threshold, will identify

the onset of a failure such as interference/jamming or spoofing. The GLR algorithm

is depicted in Figure 2.2. Multiple hypotheses are established with a Kalman filter

FDI Block
----------------------------------------- 1

Matching Filters

[Snor - Klmn Residukls .. [ Fail?
Filer f[ H1 - TestFite

Figure 2.2 Multiple GLR Testing

based on hypothesis -to (no failure) and matching filters based on hypothesis 1 'k (the

kth failure has occurred). The matching filters do not provide state estimation but

are designed for failure detection by assuming failures in the system to be modelled

as some variation in the actual measurement beyond those variations caused by the

dynamics of the system. Each matching filter is designed to inject the kind of residual

modification that would actually be experienced in the system Kalman filter if that

failure (modelled by 1-k) had actually occurred. The failure vector d(ti) is m-by-1

where m is the number of measurements. Non-failed elements are indicated in d(ti)

as zeros, while l's in the failure vector correspond to a measurement device assumed

to be induced with a failure. The arguments of the likelihood function introduced

above are ti and 0. As may be seen in Figure 2.3, the variable ti represents the time

of failure onset, while to represents the current time, and to-N the time of the trailing

edge, termed the "beginning", of the GLR search window. As the search window
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Failure

Search Window
................... . ....... j ..........

tON ti  to

time

Figure 2.3 GLR Search Window

proceeds forward in time, the failure function n(ti, 0) is either 1 or 0 depending on

whether the detected failure is currently before or after the 0 index value in the GLR

algorithm's search window. In general, 0 takes on each index value within the search

window at each time step, so that the failure may be detected at the earliest possible

time after its onset. In order to simplify the GLR algorithm, 0 is permanently set to

N, so the onset of a failure will not be detected until it reaches the beginning of the

search window. Riggins [35] showed that this simplification gives up comparatively

little identification performance while significantly reducing the computational load

required for implementation.

Under nominal conditions, the Kalman filter residuals r°(ti) are:

r0 (ti) = z- h[R(ti-),t] (2.33)

and the residuals can be expressed for each hypothesis (matching filter) as

Ho : r(ti) = r°(ti) 7 -k : r(ti) = r(ti) + m(ti, 8)v (2.34)

For a Kalman filter successfully tracking the true states, the nominal no-failure resid-

ual r°(ti) will appear as zero-mean white Gaussian noise of covariance

[Hk(ti)Pk(ti-)H(ti) + Rk(ti)]. When a failure is induced on the measurements, a

signal m(ti, 0)v will also be present in the residuals, where v is the unknown mag-

nitude and m(ti, 0) will be presented momentarily. The goal of the GLR algorithm

is to identify this signal by recognizing variations in the residuals from their nor-
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mal unfailed values. The GLR tests are particularly good at detecting jumps in the

residuals, with the key being how closely the matching filters model actual failures.

The GLR algorithm is a function of overall system dynamics and behavior (O, H,

and Kalman filter gain K); this is shown mathematically below. The failure residual

offset m(ti, 0) is found through

m(ti, 9) = H(ti)y(ti, 9) + d(ti)n(ti, 9) (2.35)

where the recursive failure quantity y(ti+l, 0) is given by

y(ti+1,0) = 4 (ti+l,ti)[I- K(ti)H(ti)]y(ti, O) - O(ti+l,ti)K(ti)d(ti)n(ti, O) (2.36)

and (ti+l, ti) is the state transition matrix for the dynamic system model's prop-

agation from sample time ti to time ti+l. If the failure is assumed to occur at the

beginning of the GLR search window (i.e. n(ti, 0) = 1 for all ti), the above equations

can be simplified to

m(ti) = H(ti)y(ti) + d(ti) (2.37)

y(ti+1 ,O) = O(ti+l,ti)[I- K(ti)H(t)]y(ti, O) - (ti+,ti)K(ti)d(ti) (2.38)

The consequence of this simplification is a delay in detecting a failure because it is not

realized until it reaches the beginning of the GLR search window. The combination of

the Kalman filter outputs and the matching filter model will determine the magnitude

of the likelihood function defined as:

l(ti, O) = ST(ti, O)C-(ti, O)S(t,, 9) (2.39)

where

S(ti, 0) = -mT(tj,O)A-1 (tj)r(tj) (2.40)
j=1
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C(t,, 0) = mT(tj,O)A-'(tj)m(tj, 9) (2.41)
j=i

given

A(tj) = H(tj)P(tj-)H(tj) + R(tj) (2.42)

and the maximum likelihood estimate of the unknown magnitude of the failure, v,

is found by

i;(ti, 9) = S(ti, 9) (2.43)c(tio)

The residual covariance A(tj) and the residuals are combined with Equations (2.35)

and (2.36) or Equations (2.37) and (2.38) to give a linear combination of the residuals

S(ti, 9) and a deterministic value C(ti, 9) defined in Equations (2.40) and (2.41)

above. Finally, a decision rule based on a threshold, c, would be

l(ti, 9) > e = Declare FAILURE (2.44)

l(ti, 9) < e =c Declare NO FAILURE

2.3.4 Chi-Square Testing. A chi-square test is based on the Kalman filter

residuals r(tj) which are zero-mean and white with known residual covariance A(tj)

(under nominal, hypothesized conditions). The chi-square random variable X(tk) is

given by
k

X(tk) = 1 rT(tj)A-l(tj)r(tj) (2.45)
j=k-N+l

with N being the size of a sliding detection window. Notice that the system dynamics

are not included in Equation (2.45) and that only one failure hypothesis is available.

This agrees with the discussion in Section 1.5.2.3 which stated that the chi-square

test is very simple and can only be used to detect, not identify, failures. A detection

rule based on an established threshold e would be

X(tk) > e * Declare FAILURE (2.46)

X(tk) < e => Declare NO FAILURE
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2.4 Summary

This chapter provides the theoretical basis for the remaining chapters. MMAE

will be used for FDI in this work. The GLR and chi-square algorithms are discussed

here because they will be used as a benchmark in comparing the MMAE FDI re-

sults to those achieved by Vasquez [41,42] using more traditional GLR/chi-square

FDI. The theoretical developments of this chapter closely follow those presented by

Vasquez [41,42] and Nielsen [31].
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3. Methodology

3.1 Overview

This chapter introduces the computer software and simulation techniques used

in pursuing this research effort. An overall description of the integrated system is

given, followed by detailed state and measurement models for each of the navigation

subsystems used. The specific multiple model filter structure used to detect failures

is shown. Finally, the simulation approach and research goals are reviewed prior to

the presentation of the results in Chapter 4.

3.2 Overall System Description

The main elements of the PLS being tested for failures are the INS and the

GPS or DGPS. The barometric altimeter, radar altimeter, and ground-based pseu-

dolite also provide measurements to the Kalman filter. The following measurements

are available: four satellite vehicle (SV) pseudoranges, altitude from the baromet-

ric altimeter, one surveyed-point (pseudolite) range measurement (optionally), and

height above ground level from the radar altimeter (optionally). The truth model

used to represent the real world consists of 62 states, while the Kalman filter model

is made up of 13 states.

A block diagram representing the system PLS configuration is shown in Fig-

ure 3.1. The true aircraft position is generated by the trajectory profile generator

PROFGEN [27] and provided to each navigation system. The GPS satellite vehicle

(SV) positions are given by actual satellite data recorded on 4 May 1991 and are

combined with the true aircraft position to obtain true ranges, which are modified

with noise to provide pseudoranges measurements for use by the GPS. Each navi-

gation system generates perturbations from the true range and the final difference

measurements are then formed by subtracting the GPS measured ranges from their

corresponding INS-calculated ranges. The EKF equations propagate the PLS error
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Radar Output
Altimeter

Figure 3.1 Overall PLS Block Diagram

states and use the measurements to calibrate its state estimates. Finally, these state

estimates are used to correct the INS-indicated position at each sample time.

3.3 PLS Component Model Descriptions

The truth model consists of 39 INS states, 30 GPS or 22 DGPS states, and a

single pseudolite state (optionally). The filter model consists of 11 INS states and

two GPS or DGPS states. The following sections will provide the details of these

models and the bases for their selection.

3.3.1 INS Models.

3.3.1.1 The INS Truth Model. This section presents the truth model

used for the INS. The INS is a strapped-down wander azimuth system based on
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the Litton LN-93. The manufacturer, Litton developed a 93-state error model [16]

describing the error characteristics of the LN-93. The error states 6x used in the full

model may be separated into 6 categories.

bX=1X (3.1)

where 6x is a 93 x 1 column vector and

6x, represents the "general" error vector containing 13 position, velocity, attitude,

and vertical channel errors; the first nine states are those of the standard Pinson

model of INS error characteristics.

bx 2 consists of 16 gyro, accelerometer, and baro-altimeter exponentially time-correlated

errors, and "trend" states. These states are modeled as first order Gauss-

Markov processes in the truth model.

bx 3 represents gyro bias errors. These 18 states are modeled as random constants

in the truth model.

bx 4 is composed of accelerometer bias error states. These 22 states are modeled in

the same manner as the gyro bias states.

bx5 depicts accelerometer and initial thermal transients. The 6 thermal transient

states are first-order Gauss-Markov processes in the truth model.

6X6 models gyro compliance errors. These 18 error states are modeled as biases in

the truth model.
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The truth model state space differential equation is given by

5c1 Fi1  F 12 F 13 F 14 F 15 F 16  6X1  w,

5X2  0 F 22  0 0 0 0 6x 2  W2

5 3  0 0 0 0 0 0 X3  0S+, (3.2)

5 4  0 0 0 0 0 0 6x 4  0

6 
5  0 0 0 0 F 55  0 6x 5  0

65 6  0 0 0 0 0 0 6X 6  0

A full description of the submatrices for this error model differential equation is given

in Appendix B. This 93-state error model is a highly accurate LN-93 representation,

but the high dimensionality of the state equation makes the model prohibitively

CPU-intensive (computationally, and in terms of storage) for projects examining a

large number of problem variations. The work of Negast at AFIT addressed the

reduction of the INS error-state model [30] while preserving enough fidelity to be

considered a viable truth model.

The reduced-order model to be used as the truth model in this research is

defined in Equation (3.3):

651 F(red)11 F(red)12 F(red)13 F(red)14 6 Xl W,

65x 2  0 F(red) 22  0 0 6X 2  W2

5 3  0 0 0 0 6x 3  0

6
X 4  0 0 0 0 6X 4  0

This model was shown by Negast [30] to be sufficient to represent the 93-state model

accurately. Note that the submatrix indices used in representing the 39-state model

are not identical to those used in outlining the 93-state INS error model. The

relationship between the two models is given in Tables A.5 and A.6 of Appendix A.
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3.3.1.2 The INS Filter Design Model. The INS filter design model is

the model which would be used by the EKF operating on an aircraft using the PLS

described here. The limited computational power available and the requirement for

real-time processing motivates making the dimension of the filter model as small as

possible. The INS filter model is comprised of 11 states (the first nine being the

standard Pinson error model states): 6 misalignment errors, 3 velocity biases, and

2 states for barometric stabilization. Table A.9 shows the 11 INS states used in the

filter model.

3.3.1.3 The INS Measurement Model. The only measurement model

associated with INS is that for barometric altimeter aiding. The altimeter aiding is

used to compensate for the instability inherent in the vertical channel of the INS.

The altimeter output AltBar0 is modeled as the sum of the true altitude ht, the total

error in the barometric altimeter hB, and a random measurement noise v. Similarly,

the INS calculated altitude AltINS is the sum of the true altitude and the INS error

in vehicle altitude above the reference ellipsoid, 6h. A difference measurement is

used to eliminate the unknown true altitude, ht, resulting in Equation (3.4):

z = AltINs - AltBaro

= [ht + 6h] - [ht + 6hB -v] (3.4)
= 8h -6hs+ v

INS error in vehicle altitude above the reference ellipsoid, 6h, and total barometric

altimeter correlated error, 6hB, are states 10 and 11 in the 11- and 39-state INS

models.

3.3.2 The Radar Altimeter Model. The measurement equation of the radar

altimeter is based on the difference between the INS-predicted altitude AltINS and
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the radar altimeter predicted altitude AltRalt:

6z A1iNs - AltR.lt

[ht + h]-[ht-v] (3.5)

= h+v

The errors in the radar altimeter are modeled as white noise with no time-correlated

component. This may be a rather crude model, but should be sufficient to demon-

strate performance trends. Note that no additional states are required with the

addition of this radar altimeter model.

The radar altimeter measurement noise covariance RRalt is a function of aircraft

altitude above ground level (AGL) and will be the same in the truth and filter models.

The radar altimeter noise covariance from [11] is altitude-dependent and is given by

RRalt = {[0.01]2 * [AGLt]2} + 0.25 ft 2  (3.6)

3.3.3 GPS Models. The GPS (also DGPS) generates user position based

on "known" ranges to satellites at "known" positions. The satellites themselves

transmit their position in space (in the form of ephemeris data) as accurately as

it is known and the exact time (also a best estimate) at which the transmission is

sent. The actual range information is calculated based on knowledge of the satellite

position and the finite propagation speed of the electromagnetic radiation emitted

from the satellite.

3.3.3.1 The GPS Truth Model. The GPS model used in this work

was developed by past researchers at AFIT [10,30,41,42]. The dynamics and mea-

surement equations for the full 30-state truth model are presented in this section

and a tabular listing of the states is shown in Table A.7 of Appendix A.
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Five types of error sources are modeled in the GPS truth state equations. Two

of the five error sources are insignificant when differential corrections are applied

(DGPS). The first error type, user clock error, is common to all SV's. The remaining

four error types are unique to each SV. The first two states represent user clock errors

and are modeled as:

X-Uclkb [0 1~ XUclkb (3.7){ Uclkd, 0 0 XUclkdr

where
XUclkb = range equivalent of user clock bias

XUclkdr = velocity equivalent of user clock drift

The initial state estimates and covariances for these states were chosen to be consis-

tent with previous AFIT research [3,10,30,41,42] and are:

{ XUclk (to) (3.8)
iXUclkd, (N) 0 o

and

PUclkbUclkd(to) 9..0X 1014 ft x 10 ft 2 /SeC2 ] (3.9)

Because these error sources are a function of the user equipment, they are common

to all the SV's. Recall that each of the remaining error types is specific to each SV,

denoted by a subscript j.

The second error type is the code loop error 6R,13. The code loop is part of the

user equipment shared by all the SV's, but its error magnitude is relative to each

SV. The work of Negast [30] shows that this error source may be disregarded in the

DGPS model. The third GPS error type is the result of atmospheric interference

with the EM signals broadcast by each SV, specifically, ionospheric and tropospheric

delay, 6Ro,, and 6Rtrop,. The code loop error, tropospheric delay, and ionospheric
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delay are all modeled as first-order Markov processes with time constants shown

in Equation (3.10). All three are driven by zero-mean white Gaussian noise with

strength shown in Equation (3.13). The fourth error source is due to inaccuracies

of the clocks on board the individual SV's, 6Rsclk3 . Like code loop error, this error

source is also removed when differential corrections are applied. The final GPS error

source is based on line-of-sight errors between the SV's and the receiver, 6x,, , 5ys1 ,

and bz, . The DGPS models for these states are shown later in Equations (3.24) -

(3.27). Note that, if DGPS were used exclusively in this research, the states for code

loop error and satellite clock error could be removed completely. The modifications

required for DGPS are summarized in Section 3.3.3.4.

"Rci -1 0 0 0 0 0 0 WRcj wI

6"Rtropj! 0 500 0 0 0 0 0 Rtropj  Wtrop

6"Rion 0 0 0 0000 6Rjonj Wion

"RsIkj|= 0 0 0 0 0 0 0 6Rsclkj + 0

"xsj 0 0 0 0 0 0 0 bx'j 0

kysj 0 0 0 0 0 0 0 bys1  0

5zs 0 0 0 0 0 0 0 bz~j 0

(3.10)

with initial covariances given by

0.25 ft 2  0 0 0 0 0 0

0 1.0 ft 2  0 0 0 0 0

0 0 1.0 ft 2  0 0 0 0

PGPS = 0 0 0 25 ft 2  0 0 0 (3.11)

0 0 0 0 25 ft 2  0 0

0 0 0 0 0 25 ft 2  0

0 0 0 0 0 0 25 ft 2
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and noise means and covariances given by

E[wGps(t)] = 0 (3.12)

0.5 0 0 0 0 0 0

0 0.004 0 0 0 0 0

0 0 0.004 0 0 0 0
E[WGps(t)wTps(t+7)] 0 0 0 0 0 0 0 ft 2/sec.(r) (3.13)

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

The full 30-state GPS dynamics matrix is not shown explicitly but may be easily

constructed by augmenting Equation (3.7) and four copies (one for each SV) of

Equation (3.10).

3.3.3.2 The GPS Filter Design Model. Research has shown [26, 30]

that the two user clock error states provide a sufficient filter model for GPS. The

primary argument is that the errors modeled for the 28 other GPS (20 other DGPS)

states (assuming four SV's) are small when compared to the user clock errors which

are common to all SV's. By increasing the dynamics driving noise and re-tuning the

filter, the overall performance of the integrated navigation system can be maintained.

The GPS filter model is given by Equation (3.7) plus noise:

I XUclk 1 0 1i XUclkb I f+ Wclkb (314
X UclkdJ 0 0 XUclkdr WClkdJ

Because simulations were only performed using DGPS, and not GPS, no experimentally-

determined Q tuning values for GPS are shown.
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3.3.3.3 The GPS Measurement Model. The pseudorange measure-

ments available to the GPS receiver are the sum of the true range, several error

sources, and a random noise:

RGps, = Rt, + 6Rp, + t6Rtropj + 6Rionj + bRsclkj + 6Ruclk - vj (3.15)

or, after differential corrections are applied:

RGPS - Rtj + 6Rtropj + 6Rion, + 6Ruclk - Vj (3.16)

where

RGPS, = GPS pseudorange measurement, from SVj to user

Rtj = true range, from SVj to user

6Rcloopj = range error due to code loop error

bRtropj = range error due to tropospheric delay

6Rio,,j = range error due to ionospheric delay

bRsc1kj = range error due to SVj clock error

bRuclk = range error due to user clock error

v3  = zero - mean white Gaussian measurement noise

Because Rt is not available to the filter, a substitution will be make to eliminate this

term. First, the satellite position vector Xs and the user position vector Xu are

defined as:
Xu Xs

XU = I , = s (3.17)

Zu Zs

where the superscript e denotes coordinates in the earth-centered earth-fixed (ECEF)

frame. The pseudorange from the user to the satellites calculated by the INS, RINS,

is the difference between the PLS-calculated user position, XU, and the satellite
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position given by the ephemeris data, Xs:

XU XS

RINS X - XS = - (3.18)

zU zS

An equivalent form of Equation (3.18) is:

RINS = /(xu - xs)2 + (Yu - Ys) 2 + (zu - zs)2  (3.19)

With perturbations representing errors in Xu and XS, Equation (3.19) can be written

in terms of the true range and a truncated first-order Taylor series:

RINS = Rt + aRiNs(Xs,XU) (X "xs

aX s I(XsXu)nom *(3.20)

+ aRINS(XS) (Xs,X)nom X

The solution for RINS is found by substituting Equation (3.19) into Equation (3.20)

and evaluating the partial derivatives to get:

RINS Rt - Ixu - y-u ] . (3.21

+ [ . S __ U ] . b x S + [ Y s -Y u ] .y s + [ _ 
2S

IRINSIJ [IRINSI s + 11INS11- z

Finally, the truth model GPS pseudorange difference measurement is given as:

bZ :RINS - RGps

- _ [2_= ]. 5zu -Ys-U . byu - [ -x:- • zu
- [RINs.]J u- 3 INs [pRINsI (3.22)

[ - :- ]• 5 s [s-Y ] . 5ys + [-"----u I 6zs
] [ INsI I 6x +INsl s [R ± sl

- Rcloop - 6Rtop - bRion - 6RSck - bRuclk + V

The user position errors in Equation (3.22) can be derived from the first three (posi-

tion error) states of the filter or truth model using an orthogonal transformation [2].
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The filter design measurement model for the GPS measurement does not con-

tain terms for the errors due to code loop variations, atmospheric delays, satellite

clock deviations, or errors in ephemeris-given satellite position. The filter GPS mea-

surement model can be written as:

6z = - -RNs " [Y Yu 1 y [s - z] - .- R ±czk + V (3.23)
IRNS -z?~u ~ IRINS I [ IRINSI J

3.3.3.4 The DGPS Truth Model. Differential GPS (DGPS) is mod-

elled very similarly to GPS. The justifications for the differences were given above

in Sections 3.3.3.1 and 3.3.3.3 at the points during the GPS development where the

differences were relevant. This section will present the mathematical specifics of

DGPS as they differ from those of GPS. A tabular listing of the 22 DGPS states is

shown in Table A.8 of Appendix A.

The error sources for DGPS are identical to those for GPS, with the noted

exceptions that the code loop and satellite clock errors may be disregarded when

using differential corrections. The differential equation for the DGPS error states

becomes:

6'Rtrop 5ool 0 0 0 0 bRtropj wtOP

650ionj 1500 0Rionj Wion

x 0 0 0 00 x ±i + 0 (3.24)

6yj 0 0 0 0 0 6Ysj 0

6zj 0 0 0 0 0 6z8 J 0
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with initial covariances (note the differences from Equation (3.11)) given by

1.0 ft 2  0 0 0 0

0 1.0 ft 2  0 0 0

PDGPS = 0 0 .35 ft 2  0 0 (3.25)

0 0 0 .35 ft' 0

0 0 0 0 .35 ft 2

and noise means and strengths (note the differences between Equation (3.13)) given

by

E[WDGps(t)] = 0 (3.26)

0.001 0 0 0 0

0 0.0004 0 0 0

E[WDcps(t)wTGPs(t + r)] 0 0 0 0 0 ft 2 /sec • (T) (3.27)

0 0 000

0 0 000

3.3.3.5 The DGPS Filter Design Model. The filter design model for

DGPS is identical to that for GPS. The only difference lies in the gains used to

tune the filter when using DGPS. The filter Q values used to tune the filters in this

research may be found in Appendix C.

3.3.3.6 The DGPS Measurement Model. After differential corrections

are applied, the measurement equation is

RDGPSj = Rtj + +Rtropj SRonj + 6RUclk - Vi (3.28)

as noted in Section 3.3.3.3. After noting the removal of the code loop and satellite

clock error sources in Equation (3.15), leaving Equation (3.28), the remainder of the

DGPS measurement model development is identical to that for GPS.
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3.3.4 The Pseudolite Model. Pseudolite measurements are treated as mea-

surements from a 5 th GPS satellite, with the following three exceptions in the truth

model.

9 Transmissions from a pseudolite do not pass through the ionosphere, so there

is no ionospheric delay error term for a pseudolite measurement. The tropo-

spheric delay error term is still included.

9 The pseudolite is assumed to be located at a surveyed position, so there is no

uncertainty in the "SV" position for a pseudolite measurement.

9 There is assumed to be no bias or drift errors in the "satellite" clock for a

pseudolite measurement.

As may be inferred from the list above, as far as the filter is concerned, there is no

difference between a satellite measurement and the pseudolite measurement.

3.4 Failure Models

This section discusses the methods used to model failures in the MMSOFE

simulations. For each failure type to be simulated, the corresponding MMAE-based

FDI methods used to detect that failures are also discussed.

3.4.1 Simulation Failure Models. Seven variations of three different failure

types are modeled in simulation. The seven failure cases are presented with actual

values in Table 3.1. (The contents of Table 3.1 will be discussed in detail later in

this section.) A short description of each failure type follows:

1. Interference/Jamming - Interference is modeled as a sudden increase in the

measurement noise associated with all four SV's, resulting in lower carrier-

to-noise ratios, C/No, in the GPS receiver. This failure is induced in all SV

measurements because interference/jamming is assumed to occur at the re-

ceiver, which will affect all four (five, if the pseudolite is included) channels
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simultaneously. The interference noise, Rint, is added to the truth model mea-

surements only. Specific magnitudes of interference will not be considered as in

previous work at AFIT [41,42]; rather, real-world interference will be allowed

to take on selected values within the interference parameter space spanned by

the MMAE filter bank. Emphasis will be placed on determining (demonstrat-

ing) the capability of MMAE to detect and identify interference failures of

unspecified magnitude quickly.

GPS jamming is used to refer to the total loss of useful GPS transmissions

due to very large rf interference. A GPS jamming failure is well-modelled

(and much more easily modelled) via very large measurement noise. When

the MMAE algorithm detects very large real-world measurement noise R then

the corresponding measurements will be very lightly weighted by the elemental

Kalman filters; the effect is essentially the same as if those measurements were

never received, hence the use of the term "interference/jamming" throughout

this report.

2. Spoofing - Spoofing is modeled as a bias added to the measurements associated

with all GPS SV's. The addition of the bias (if it is undetected) has the effect of

placing a bias on the position solution of the GPS system. Specific magnitudes

of spoofing failures will not be calculated to produce some effective aircraft

position error, according to a single strategy of spoofing, as the emphasis of

this work is an assessment of the FDI capabilities of MMAE. Instead, a range of

possible spoof magnitudes will be investigated to exercise the MMAE algorithm

fully. Two models of spoofing bias addition are used and will be discussed

shortly.

In this research, spoofing is modelled as a uniform bias addition to each of

GPS (and pseudolite) pseudorange. Spoofing failures modelled in this way

result in (mainly) vertical changes in the user's GPS navigation solution (see

Figure 3.2). A better model (more representative of probable malignant spoof-
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ing techniques) of spoofing would be the addition of calculated biases, specific

to each SV, designed to yield a desired net change in the user's navigation

solution; such a real-world spoof would probably be designed to produce a

horizontal shift in the navigation solution so that unaffected sensors (baro and

radar altimeters) could not be used to eliminate the error over several measure-

ment updates. Although not an entirely accurate model of probable real-world

spoofing changes, the uniform bias model is much more easily implemented in

software and does correctly yields cohesive changes in the user's GPS naviga-

tion solution which effectively test the spoofing FDI performance of the MMAE

algorithm.

Line of constant range to SV2 Line of constant range to SVl
(plane wave approx.) - (plane wave approx.)

...plus a spoof bias ... p usa oof bias

0 0
SV1 :' SV2

User
Spoof-causedvertical
ositon error

Figure 3.2 Uniform-bias spoofing model: vertical effect

(a) Spoofing Model A - A bias is added suddenly in time to the measure-

ments associated with each SV, with the net effect being a jump in the

GPS-derived aircraft position. More sophisticated spoofers may have a

fairly accurate estimation of the GPS measurements being received by

the aircraft and can discretely add a small, "undetectable" step bias to

these measurements. A less subtle spoofer would have to use a larger bias
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to ensure effectiveness in corrupting the measurements while running the

risk of being detected.

(b) Spoofing Model B - A more intelligent (and considerably more difficult

to detect) spoofing failure is modeled as a steadily increasing (ramp) bias

value added to each SV pseudo-measurement. Smaller ramp rates are

more difficult to detect than large rates because a slow change may be

hidden in the noise expected by the elemental filters. A range of ramp

rates will be used with the purpose of determining the detection and iso-

lation capabilities of MMAE. Ramp spoofing will be termed "intelligent"

for the remainder of this report.

Table 3.1 summarizes the different failures that are simulated in this research. These

failures are induced on each of the PLS hardware configurations under test.

Table 3.1 Failure Types and Models [41,42]

Fail Type Description Fail Method

0 No Failure N/A R = R0
1 Interference Jump in Increase R from

Measurement Noise R0 to R0 x Magni,,
2 Step Step Bias on each Add bias=MagnSPf

Spoofing Pseudorange to each GPS measurement
3 Ramp Ramp Bias on each Add bias=Magn.Pf x (t - to)

Spoofing Pseudorange to each GPS measurement

3.4.2 MMAE Failure Models. A bank of three elemental filters in an

MMAE structure is used to detect and isolate interference failures. One filter is

tuned for operation when no interference failure has occurred (i.e. measurement

noise R = R0 ). The two remaining elemental filters are each tuned for best operation

with increased levels of measurement noise R. An increase in measurement noise

by a factor of 2000 (i.e. measurement noise R = Rox2000) is assumed to be the

highest level of real-world interference that will be encountered. The third elemental
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filter models this highest assumed level of interference; it is tuned for best operation

when R = R0 x2000. It is hypothesized that the interference elemental filters will

operate most effectively when the levels of their respective interference assumptions

are separated by approximately an order of magnitude. This hypothesis will be

verified experimentally. Based on this hypothesis, the second elemental filter is

tuned for R = R0 x200.

MMAE-based FDI is accomplished via the information contained in the residu-

als of the elemental filters. The residuals produced by a filter with an accurate model

of the real world are zero-mean, white, Gaussian, and have covariance HP-HT + R.

For this discussion, we will term these residual characteristics "good". If the residu-

als of any elemental filter have good characteristics, then that filter's hypothesis of

the real world is assumed to be correct. For example, if the R = R0 x200 interference

filter, filter two, displays good residuals, then the probability of model correctness

flows to filter two and the MMAE algorithm detects a real world interference level

200 times R0 . If the level of jamming seen by the filter lies between, for example,

the 200xR 0 and 2000xR 0 levels of interference modeled by elemental filters two and

three, then the residuals of those two filters will both display some good character-

istics. In this case the probability of having the correct model will be shared by

models two and three, and the level of real world interference is isolated by blend-

ing the measurement noise hypotheses of these two filters based on the computed

probability of each being correct.

Five elemental filters are used to detect and isolate spoofing failures of both

step and ramp types. As with interference failures, the first elemental filter is tuned

for best operation with no failure induced. The second elemental filter is tuned for

best operation given a small measurement bias added to the SV pseudoranges. A

third elemental filter is tuned based on a much larger measurement bias added to

the SV pseudoranges. The final two elemental filters model correspondingly small

and large measurement biases of a negative magnitude. The choice of this spoofing
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filter bank configuration is made based on the same order-of-magnitude separation

arguments used to hypothesize the configuration of the interference MMAE filter

bank. In each case, the effectiveness of the proposed filter bank configurations will

be evaluated experimentally and changed as required for best FDI performance.

For step-type spoofing failures, MMAE-based FDI is conceptually done in ex-

actly the same way jamming failures are detected and isolated (although the next

chapter will show the need for, and implementation of, a moving-bank "pseudo-

residual" MMAE to handle spoofs, rather than a standard MMAE). Probability

flows to the failure models (or model, in the case of an exact hypothesis match) that

most closely match the real world spoofing condition. The level of real world spoof-

ing is estimated by blending the spoofing hypotheses of the elemental filters based

on the computed probability associated with each filter. Because of the blending

capability of MMAE, there is no need to hypothesize ramp bias failures. As the

value of the ramp increases, the hypothesis probability should gradually flow from

one model to the next. The resulting blended estimate of the magnitude of the real

world spoofing failure will follow the growth of the actual ramp failure.

The final steps of this research will involve identification of jamming or spoof-

ing failures using all of the eight elemental filters described above (one nominal,

three jamming strengths, and four spoofing biases). These simulations will establish

the performance of MMAE FDI under the operational-like assumption that either

jamming or spoofing is possible. The greatest difficulty for the FDI algorithm un-

der this assumption will be disambiguating between the failure types. Performance

analyses will argue for a two-tiered algorithm, one seeking spoofs and the second

seeking interference/jamming, rather than a single MMAE attempting to detect all

failure modes simultaneously.
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3.5 Simulation Software

Multimode Simulation for Optimal Filter Evaluation (MSOFE) is a general-

purpose, multimode simulation program for designing integrated systems that em-

ploy optimal (Kalman) filtering techniques and for evaluating their performance [29].

The general-purpose construction of MSOFE allows its application to a wide variety

of user-specific problems with a minimal amount of new software development. The

United States Air Force uses MSOFE for the validation of all systems that use op-

timal filtering techniques. MSOFE provides Monte Carlo and covariance simulation

modes.

Multiple Model Simulation for Optimal Filter Evaluation (MMSOFE) was de-

veloped by Nielsen [31, 32] at the Air Force Institute of Technology to support the

analysis of systems using a multiple model adaptive filter structure. MMSOFE is

written as an extension to MSOFE and is based on the same core code. The MM-

SOFE program propagates multiple filters forward in parallel while performing the

hypothesis probability and blending calculations required for MMAE and other mul-

tiple model algorithms. The Monte Carlo simulation mode of MMSOFE is used in

all phases of the work.

3.6 Summary

This chapter has presented the models used for simulating the PLS, includ-

ing the navigation component models and the failure implementation and detection

models. The failure detection and simulation methods used in this research have also

been discussed. Results and analysis of these simulations are presented in Chapter 4.
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3. Results and Analysis

4.1 Introduction

This section reviews the failure models and navigation component configura-

tions used in this research, along with a brief discussion of why each is of interest. A

standard MMAE algorithm will be used subsequently to address detection of jam-

ming/interference (increased measurement noise), whereas a moving-bank MMAE

will be shown to be more appropriate to detect and compensate for the onset of

spoofing (measurement bias).

4.1.1 Failure Models. Jamming is the total loss of GPS satellite trans-

missions due to heavy rf interference. With the loss of GPS signals, navigation is

totally dependent on the remaining sensors, and for this study, almost entirely based

on the onboard INS. No INS currently in production, or even realistically foreseen,

has error characteristics small enough to be the sole primary sensor in a PLS. While

it would be of interest to observe the inflight (not landing) navigation performance

of an MMAE filter bank specifically modelling this failure, that extension is beyond

the scope of this work. The problem of jamming was briefly considered to confirm

the above presumptions. These results are presented in Section 4.2.2.

RF interference not strong enough to cause total loss of the GPS transmissions

is modelled as increased measurement noise. Interference models low-power jamming

from hostile sources, as well as navigation in areas of abnormally high rf activity, as

in the immediate area of television or radio microwave relay stations. Additionally,

as antenna and signal processing technology improves, devices which now result in a

total loss of GPS transmissions may, in the future, only have the effect of increasing

the measurement noise associated with the GPS receiver. It is anticipated that the

MMAE algorithm will do a good job of detection and isolation against this failure

type.
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Spoofing of a GPS receiver occurs when a hostile source presents GPS-like

transmissions to the receiver which are slightly stronger than the real GPS signals

and which will give an incorrect navigation solution. Intelligent spoofers would be

able to present GPS-like signals giving a navigation solution with very little initial

offset from the real GPS navigation solution. Once the receiver accepts these false

signals they are "walked off" the real solution. This is modelled as a ramp offset

from the true GPS solution. Less intelligent spoofers would present signals with a

very large, easily identifiable step offset. The onset of unintelligent spoofing will be

seen as a large spike in the measurement residuals within the elemental filters of the

MMAE (or within a single non-adaptive Kalman filter if one were used rather than

an MMAE algorithm). Identification is easily done based on that spike. Intelligent

spoofing is potentially much more difficult to detect. For ramp offsets which grow

slowly enough to be hidden in the noise, there are no means available for detection.

Realistically speaking, intelligent spoofing would be tremendously difficult to

implement. Prior to, and over the duration of, the spoof, the spoofer would have to

know the position of the aircraft with very nearly the same precision as the aircraft's

onboard filters. This is required so that the spoofer could maintain a slowly growing

offset in the false GPS solution. It is expected that the MMAE algorithm will

effectively detect and isolate spoofing with a step onset or a ramp onset with a slope

large enough to be distinguished from the noise.

4.1.2 Navigation Component Configurations. The four navigation com-

ponent configurations used are shown in Table 4.1. Case one represents the best

configuration available. Cases two and three show, respectively, the effect on FDI

performance of eliminating the pseudolite and radar altimeter sensors. Case four

shows the effect of a much lower quality INS, which might be representative of INS's

available to civil aviation groups.
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Table 4.1 Navigation Component Cases

Case II INS Type [ GPS Type Altimeter Aiding

1 0.4nm/hr DGPS and Baro and
Pseudolite Radar Alt

2 0.4nm/hr DGPS Baro and
Radar Alt

3 0.4nm/hr DGPS Baro

4 4.Onm/hr DGPS Baro

4.2 FDI and Navigation Results

4.2.1 Summary Plots. Two types of plot summaries will be used to display

the simulation results of this study. Each simulation was performed over the interval

3810 to 3910 seconds, which represents the final 100 seconds before touchdown in

the flight profile used in this study. A lower bound probability value of 0.01 was used

in all cases shown. The value of 0.01 was experimentally determined; smaller lower

bounds slowed the response of the pk'S to onsets of their corresponding failures (see

Section 2.3.1). Larger lower bound values did not provide any improvement in the

Pk response time and reduced the total probability available for assignment to the

filter with the currently correct failure hypothesis.

Figure 4.1 is representative of the first type of summary plot. The first subplot

shows the magnitude time history of the induced failure, indicated by dark x's. The

second trace on the first subplot shows the MMAE filter bank's blended estimate of

the real-world failure magnitude. The y-axis of this first subplot is the magnitude of

the total variance multiplier (times the no-failure noise variance) present/detected

at any time during the simulation. Recall that interference is modelled as a large

increase in the measurement noise variance. The remaining subplots show the 15-

run mean of the probability (pk) time histories for each of the elemental filters. The

15-run standard deviation of each of the Pk's is also shown. The y-axis labels of
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these probability plots describe the failure assumptions of that elemental filter. The

reader should note that, as is expected, the blended estimate of the failure magnitude

visually corresponds to the sum of the plotted Pk values times their respective failure

assumptions as indicated in the y-axis labels.

Figure 4.2 is representative of the second type of summary plot. Three subplots

will always be included, showing the latitude, longitude, and altitude errors (in feet)

of the MMAE blended navigation solution. The solid trace represents the blended

filter-predicted sigma bound for that variable. The dotted line shows the actual

15-run mean of the same variable and the dashed line shows the 15-run mean ± one

standard deviation.

4.2.2 Jamming. Total GPS failure is modelled in this work by zeroing the

H (measurement) matrix entries corresponding to the GPS measurements. Better

performance might be realized if the MMAE bank were to include a filter only mod-

elling INS and altimeter states, as opposed to the current model including the GPS

states and using the zero H matrix entries. This extension was not a primary focus

of this work because DGPS jamming is well modelled (and more easily simulated)

as very strong interference. When a filter assumes a very large noise variance R

associated with some measurements, then those measurements are essentially dis-

carded by the filter when it calculates its state updates. Telling the filter (via large

R values) not to use some measurements has the same effect as not including those

measurements at all.

4.2.3 Interference. MMAE FDI was, as expected, effective against interfer-

ence failures. However, as can be seen in Figure 4.1, the filter bank has some difficulty

in blending its two noise hypotheses. With the aid of hindsight, it could have been

expected that the MMAE algorithm would be prone to bouncing from hypothesis to

hypothesis without much blending, and to have a tendency to choose the model with

the larger assumed noise level. As the real world noise level becomes even slightly
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greater than that assumed by one filter, that filter's residuals very quickly look bad

(i.e., its [r'(ti)A '(ti)rk(ti)] becomes a large value) because the measurements are

consistently violating its assumptions. Although the measurement noise variance

is much less than it expects, the filter assuming a larger noise value sees measure-

ments that do consistently fall within its expected variance (its [r T(ti)ATl(ti)rk(ti)]

is considerably smaller). Probability quickly flows to the filter with the larger noise

variance assumption. The state estimation provided by the three-filter (assuming lx,

200x, and 2000x the original tuned R values) interference bank is shown in Figure 4.2.

The 2000x variance level was chosen as the upper-bound of possible real-world in-

terference. It was hypothesized that the elemental filters should be separated by

approximately an order of magnitude to prevent ambiguity. The 200x variance filter

was selected on this basis. Filters with still smaller noise variances hypotheses (20x

for example) were not included because noise variances smaller than about 100x have

virtually no effect on the navigation system's performance. A larger upper bound

on the assumed real-world noise variance might just have easily been used, resulting

in a different set of elemental filters. It is supposed that the FDI performance of the

MMAE algorithm, as shown in the simulation results, would not differ dramatically

with such a change. As can be seen in Figures 4.1 and 4.2, the estimation perfor-

mance of this filter bank is quite good, and very effectively increases the filter bank's

predicted bounds on the state estimation error standard deviations and so prevents

the unacceptable performance or filter divergence that might otherwise result.

Figures 4.3 and 4.4 show the performance of a single Kalman filter subjected to

interference and spoofing failures, respectively. The unacceptable performance seen

in these figures (note the scale changes from Figure 4.2) provides both a benchmark

for performance and a strong motivation for adaptive filtering via MMAE techniques.

Figure 4.5 shows an attempt to achieve better estimation blending by including

two more elemental filters with interference assumptions in the same range spanned

by the original three filters, with the elemental filters now assuming lx, 100x, 300x,
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1600x, and 2000x the original tuned R values. The values of these noise variance

assumptions were chosen somewhat arbitrarily, with the purpose of testing the ear-

lier hypothesis that an order of magnitude should separate the variance assumptions

of the elemental filters. As might be expected (again with the aid of hindsight) the

filters close together at the upper end of the interference range tend to confuse each

other as their assumed noise variances differ by only twenty percent. Additional

blending can be seen at low interference values, where the elemental filter's R values

are still separated by substantial percentages, however, as is seen in the figure, that

this blending takes place does not guarantee that better estimation performance is

realized in the low true R range. The probability plot summary of this bank is

included only to justify the selection of the three-filter interference bank for final

implementation and so the state estimation of the five-filter interference bank is not

shown. These results suggest the use of an MMAE filter bank spanning the interfer-

ence range of interest and composed of elemental filters separated by approximately

an order of magnitude in their parameter assumptions.

4.2.4 Spoofing. A five-filter (zero measurement bias, ±15 foot bias, and

±240 foot bias) MMAE bank was used for measurement bias detection. Assumed

bias values of ±15 feet were included to allow the bank to fine tune its bias estimation.

Filters separated by 15 feet are close enough in parameter space to provide clear

blending and are far enough away to avoid ambiguity between the filter models.

The bias assumption of the ±240 foot bias filter pair was determined as follows. It

was found experimentally that an elemental filter was able to detect actual biases

within 150 feet of its own assumed bias, while biases further removed than 150 feet

resulted in zero (lower bound probability) pk values for those elemental filters. It

was decided that, for good blending, one half of this detection range should overlap

the detection range of the next closest filter, e.g., the 225 foot bias assumption

difference between the two positive filters at 15 feet and 240 feet is obtained as

150 feet(range) + 150 feet(range) - 75 feet(overlap). These filter assignments are,
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of course, problem-specific. The reader will note that each of the elemental filters

hypothesizes a constant bias offset. Ramp spoof offsets are estimated over time by

blending the constant bias hypotheses of the same elemental filters.

The following paragraph discusses the summary plots of two spoofing simula-

tions in order to motivate (1) the development of a modified MMAE algorithm to

detect measurement offset failures, and (2) the use of moving-bank MMAE in con-

junction with this modification. The questions raised in the next paragraph will be

answered in Section 4.2.4.1, which develops the theory of the MMAE modification

mentioned above. Throughout the remainder of this report, this modified MMAE

algorithm will be referred to as "pseudo-residual" MMAE (PRMMAE) for reasons

discussed in Section 4.2.4.1.

Figure 4.6 shows the spoofing detection performance of the presumedly stan-

dard MMAE algorithm (it was later realized that the MMAE algorithm actually

implemented in the MMSOFE software was a non-moving-bank pseudo-residual

MMAE, to be described in the next section). In order to observe the detection

behavior of the algorithm clearly, each real-world spoofing level change was chosen

to match exactly the spoofing level modelled by one of the elemental filters. The

no-spoof filter correctly acquires the GPS satellites and initializes the state estima-

tion. At the onset of the first spoofing block, the probability of the elemental filter

assuming the negative of the real world spoof value spikes for one sample period

(see Section 4.2.4.1). After this one sample period of useful information from the

MMAE filter bank, the probabilities of all of the elemental filters become equal (see

Section 4.2.4.1), suggesting that some kind of re-centering of the filter bank at the

initial time when information is available may prove useful. Good state estimation is

not recovered even when the real world bias is removed. While searching for a means

of improving the meager detection performance shown in Figure 4.6, it was discovered

that the the MMAE algorithm had been incorrectly implemented with respect to the

addition of measurement biases ("pseudo-residuals" versus true residuals were used
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to form [r'A-'rk] for the MMAE's probability calculations; see Section 4.2.4.1).

Figure 4.7 shows the detection performance of the corrected (see Section 4.2.4.1)

MMAE algorithm. This performance clearly shows that correct MMAE is unable to

detect measurement bias offsets. The total probability is equally divided among the

five elemental filters because all of the filters have indistinguishable residuals. The

"ELFI"-"ELF5" labels seen in Figure 4.7 were used early in this research to denote

ELemental Filters one through five, and correspond to bias offset assumptions of 0,

+350, -350, +700, and -700 feet, respectively. State estimation performance plots

are not included for Figures 4.6 and 4.7 because these cases are included only to

motivate the development of the pseudo-residual MMAE (PRMMAE) algorithm.

4.2.-4.1 Pseudo-Residual MMAE Theory. The incorrect MMAE al-

gorithm produces good, potentially exploitable information for one sample period

while the correct MMAE algorithm does not. The mathematical reasons for this

unexpected result follow.

At all times

ztru = Htruxtr + Vtrue + btr (4.1)

Let us assume two filter models, (1) assuming no measurement bias, i.e., that

btrue = 0, and (2) assuming a positive measurement bias, i.e., that btrue = b, where

b, will, at least initially, be the bias actually simulated in the real world. These two

filters will have, as their best prediction i of the measurement before it arrives

(1) z1 = Hx1  (4.2)

(2) i 2 = HR2 + bi

which will produce the following update equations used to generate :i+ at each sample

period:

(1) R = R- + K [Z tru - (4.3)

(2) 5+ = R + K 2 [ztru - i 2]

4-15



or

(1) R+ = R- + Kl[Ztrue- HR-] (4.4)

(2) R+ = R- + K 2 [z,, - (Hc- + bl)]

After allowing both filters to run to steady state, each filter will modify its state

estimates so that the residual is zero-mean, i.e. E[ztu - i] = 0. In fact, it was

observed that the filter's primarily altered their user clock bias state to yield such

zero-mean residuals. This has the following effect:

(1) E[H I] = u(bt = 0) =HtruXtrue (45)

(2) E[H -]- Ztrue(btrue = 0) - bi = HtrueXtrue - bl

At the onset of a spoof, btru, becomes non-zero, btrue = b, for example. At the next

measurement update, the true residuals are (discounting noise)

(1) [ztu - i] = [(HtrueXrue + b1) - H ] (4.6)

(2) [ZtTue - 2 21 = [(HtrueXtrue + b1 ) - (HR- + bl)]

and the pseudo-residuals, namely [Ztrue - H:k] for all k, are (discounting noise)

(1) [Ztrue - H9l] [(HtueXtrue + b1) - HR] (7)

(2) [ztue - HR] [(Htruextrue + bi) - HR]

The true residuals, using E[H -] from Equation (4.5), become

(1) [HtruXtrue + bl - HtrueXtrue] = b(4.8)

(2) [HtrueXtrue + bl - ((HtrueXtrue - b1) + b1 )] = bi

and the pseudo-residuals, using E[H k ] from Equation (4.5), become

(1) [Htrxtru + bl - HtrueXtrue] = b ()

(2) [HtrueXtrue + bl - (HtrueXtrue - bl)] = 2b,
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In writing Equations (4.1) to (4.9), it is assumed that true residuals are used

to update the elemental filters; what is subject to consideration here is whether the

true residuals or the pseudo-residuals are more useful in forming [r k f

MMAE's probability computations. As may be seen from Equation (4.8), the true

residuals from each elemental filter do not reveal the real world measurement bias

and are indistinguishable from one another (see Figure 4.6). It may be deduced

from Equation (4.9) that the filter assuming the negative of the actual bias will

show nearly zero-mean pseudo-residuals at the measurement update immediately

following the spoof onset (recall Figure 4.6). Hence, good identification may be

achieved by using the pseudo-residuals to form [r T A rk]. In the above discussion,

had a filter assumed a bias of -bl, then in steady state its HR- would have become

HtrueXtrue + bl. The pseudo-residuals of such a filter would be roughly zero-mean

at the measurement update following the spoof onset. The information provided by

this zero-mean measurement pseudo-residual is used to isolate the actual bias. The

true residuals must be used (as in a single Kalman filter or regular MMAE) to update

the elemental filters.

4.2.4.2 Pseudo-Residual MMAE Performance. Examination of Fig-

ure 4.6 in the light of the previous section suggests that good, reliable information

does exist with which to identify the onset of a spoof (isolation is also possible if an

individual filter happens to assume exact value of bias offset that is applied), but it

is only visible for a single measurement update. The moving-bank MMAE algorithm

introduced here is useful in exploiting this information. The reader should note that,

up until this point, we have limited our discussion to a fixed-bank MMAE.

To get around the quirk of only having the decision information available for

one update cycle, one only has to accept the single sample period of information

as an identification of the spoof, subsequently estimate the spoof, then go back

and reprocess the last measurement assuming that the estimated spoof is present in

the real world (the entire filter bank is moved to the neighborhood of the estimated
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spoof). Filter bank movement is accomplished by subtracting bestimated from the true

measurements before they enter the MMAE algorithm, rather than adding besiimated

to each filter's zk, since it is computationally more efficient. This process is repeated

for that single update time until the new spoof bias value is completely identified and

the bank is recentered. After this correction, each of the elemental filters in the bank

steps forward into the next propagation cycle without knowing it ever experienced a

spoof. This process can be observed in the Pk plots of simulations involving spoofing

elemental filters. In the first, third, and fifth subplots of Figure 4.10 (to be seen

and described in detail later in this section, associated with ramp rather than step

spoofs, but called out here because it clearly shows the desired phenomenon), for

example, it can be seen that when the real-world spoof bias changes by +15 feet/sec

(the first spoofing ramp), the pk associated with the -15 foot bias elemental filter

spikes for one second. The bank is moved based on this spike, and in the next second

the probability returns to the no-bias elemental filter. Throughout the simulation

depicted in Figure 4.10 (and each spoofing simulation), it may be seen that the Pk

value corresponding to the no-bias elemental filter displays such downward spikes

each time a change in the real-world spoof bias value is detected. These downward

spikes depict the information given by the first measurement update which caused

the MMAE filter bank to be moved; in reality, due to the measurement reprocessing

described above, the no-bias elemental filter's pk value never moves from its near-

unity value.

Figure 4.8 shows the detection and isolation performance of the PRMMAE al-

gorithm in the moving-bank configuration. The reader should note several aspects of

Figure 4.8 which are consistent with the description of the moving-bank PRMMAE

algorithm's operation as described so far. It can be seen that the probability rests

consistently (excepting the downward spikes mentioned above) on the no-bias ele-

mental filter (fourth sub-plot), while the real-world and declared spoof values range

over 2000 feet (first sub-plot). This is a clear indication that the no-fail filter is con-
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sistently recentered on the real-world spoof value. Each time the real-world spoof

value jumps by a value modelled in one of the elemental filters, the probability spikes

on the filter assuming the negative of the spoof jump value (sub-plots five-eight). The

third sub-plot (measurement count) shows the number of measurement updates that

were taken to identify the new spoof offset value fully at each sample period before

the following propagation cycle was entered.

Figure 4.8 and the corresponding state estimation error plots of Figure 4.9

indicate that spoofing jumps are identified accurately regardless of whether their

value is exactly modelled in the bank of elemental filters. The PRMMAE algorithm

itself is unable to identify spoofing values greatly different from those modelled in

its bank. The difficulty here is that the MMAE residual information term, rTA-lr,

becomes very large when the spoof offset is numerically greater than 150 (feet)

displaced from the bias assumption of a modelled filter. Because -1/2 times this

large term appears in an exponential, the MMAE conditional hypothesis calculation

value goes to zero and the MMAE algorithm cannot make a decision about which

direction to move the bank in the possible failure space. The first proposed solution

to this problem was to attempt to move the existing bank throughout the possible
"spoof offset" parameter space, doing measurement updates at each assumed bias

offset, until the new spoof was encountered. As it turns out, this is not necessary.

Even though the MMAE calculations using the rTA-lr term become useless, the

individual measurement residuals associated with the DGPS measurements in each

elemental filter allow simple isolation of the spoof magnitude. These residuals are

zero-mean up until the addition of the spoof. When the spoof occurs, it shows up

directly on the residuals. Estimation is a matter of simply reading the number. It

can be seen in Figure 4.8 (sub-plots 1, 5-8) that large changes in the real-world spoof

value correspond to probability values of 0.2 = 1/(1filters) for each filter. When

all filters in the bank have equally bad residuals, the probability is equally divided
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between the filters and the individual residual terms are examined for the spoof offset

as described above.

Identification of spoofing as described in the previous paragraph is accom-

plished equally well with only two symmetrical bias-assuming filters displaced about

a filter assuming no bias offset, and not the four symmetrical filters that were used

earlier in this research. The three-filter spoofing bank is used to identify the spoof

onset and to fine-tune the spoof estimation once the first guess is made. Based on

the experience gained during this research, and given the methods finally used to

detect measurement bias failures, it may be possible to identify the spoof with only

one filter. In fact, Vasquez' [41,42] GLR methods of spoof identification, on first

inspection, appear to be mathematically quite similar to the methods used in this

research but using a single Kalman filter. Bank movement and fine-tuning the spoof

isolation are only easily performed via MMAE blending using the no-bias and two

symmetrical-bias filters.

Figure 4.10 shows the FDI performance of the moving-bank PRMMAE algo-

rithm in the face of ramped (intelligent) spoofing offsets. The first ten real-world

spoofing ramp segments (sub-plot one) have slopes of 30, 24, 20, 16, 12, 10, 8, 6, 4,

and 2 feet per second, respectively. It can be seen that no significant identification

error occurs until the 8 ft/sec spoofing segment (note the dotted mean±oa trajectories

on the first subplot). The smaller spoofing ramps do cause considerable confusion to

the algorithm, although the state estimation still does not go too far awry, as seen

in Figure 4.11. It can be concluded that, given the navigation component configu-

ration of case one, spoofing steps and spoofing ramps as small as 10 ft/sec can be

identified with no significant error. The FDI performance of cases 2-4 is discussed in

Section 4.2.6. The blended navigation solution provided by the PRMMAE algorithm

is quite good and is shown in Figures 4.9 and 4.11. Comparison of these results with

those of a single non-adaptive Kalman filter (refer to Figure 4.4) shows the dramatic
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improvement in performance given by the moving-bank PRMMAE algorithm used

in this research.

An important consideration is inherent throughout the above discussion. The

elemental filters of the MMAE must be allowed to initialize with no measurement

bias present in the real world. What is actually detected and tracked is the offset of

the measurement bias from what was present during initialization. This assumption

is reasonable because GPS initialization will presumably be done before take-off from

a friendly air base. Any attempted spoofing there would be detected by surveyed

receivers at the station, and shortly removed.

4.2.5 Detection of Both Spoofing and Interference in a Single MMAE. Fig-

ure 4.12 shows the FDI performance of a filter bank containing some elemental filters

assuming interference and some assuming spoofing offsets. Figure 4.13 shows the cor-

responding state estimation error. The five modelled filters assume (1) zero bias, no

interference (lx original measurement noise variance), (2) zero bias, interference rep-

resented by 200x original R, (3) zero bias, interference modelled by 2000x original R,

(4) +15 feet bias, no interference, and (5) -15 feet bias, no interference. The inclu-

sion of the spoofing filters is not expected to, and in fact does not, detract from the

MMAE's performance against interference because increased random measurement

noise looks nothing like the uniform measurement bias shown by a spoof. Detection

of interference is accomplished with no degradation of performance versus the case

when no spoofing filters were present. However, using only a single sample period

test, there is no possible way for the algorithm to distinguish between the onset of

a constant measurement bias and a large measurement noise value superimposed on

the unbiased measurement. In an MMAE filter bank containing both interference

and spoof elemental filters, the spoof elemental filters do not accept probability, at

each sample time, for instances of random interference or small spoof steps because

the interference elemental filters are pre-disposed to declare failures. The increased

measurement noise R assumption of the interference elemental filters causes their
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A matrices to be much larger than the A matrices associated with the spoofing

elemental filters (A = HPHT + R). As a result, the elemental filter probability cal-

culation exponential {--r TA r} is a negative scalar number of smaller magnitude

for interference filters, because of their larger A matrices, than for spoofing filters

assuming correct bias offsets, even when the spoofing filters have somewhat smaller

residuals r. The interference elemental filters have a tendency to declare failures

in this case because they are (incorrectly) more heavily weighted than the spoofing

elemental filters.

As might be supposed, identification in this case (spoof and interference el-

emental filters) is possible if the measurement bias added is of greater magnitude

than is consistent with a modelled noise variance increase. The magnitudes of the

first nine spoofing steps (sub-plot one) are 9000, 8000, 7000, 6000, 5000, 4000, 3000,

2000, and 1000 feet, respectively (offsets are bigger for this test because smaller spoof

offsets, as in the earlier simulations, were misidentified as noise). Spoofing identi-

fication is done correctly until the 2000 foot spoofing change. Generally speaking,

interference and spoofing cannot be distinguished by combining, into a single MMAE

algorithm, the methods used in this research to identify interference and spoofing

separately.

Future researchers may find great success identifying both interference and

spoofing using only filters with spoofing assumptions and extending the detection

test period over two or more sample periods. If the residual deviations and estimated

spoof value display a constant bias, then spoofing may be identified. If residual

deviations and estimated spoof value instead display substantial sample-to-sample

changes, then increased measurement noise variance may be assumed and estimated

(over the course of several sample periods used to build an estimate of the noise

strength). This conjecture of spoofing bank behavior when subjected to interference

failures was not verified in this research due to a shortcoming of the simulation tool

MMSOFE. MMSOFE assigns a new random noise realization each time a single
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measurement is reprocessed, making it impossible for the spoof filters to recenter on

the original noise-corrupted measurement. Note that this noise realization concern

does imply that MMSOFE was also incorrectly assigning a new measurement noise

realization each time the PRMMAE algorithm recentered the filter bank against a

real-world spoof; recentering in this case was done correctly however because the

magnitude of the spoof bias b dominated relatively small magnitudes of the incon-

sistent measurement noise realizations.

One can envision a hierarchical MMAE structure that initially looks only for

spoofs (using a moving-bank PRMMAE algorithm structure), but if the estimated

spoof exhibits large sample-to-sample changes, the elemental filters in the MMAE

could be redefined to look for interference instead (via a non-moving-bank standard

MMAE algorithm structure). After the noise variance is estimated, the MMAE el-

emental filters can be returned to look for spoofs only (and the algorithm returned

to a moving-bank PRMMAE form), but now with each elemental filter being tuned

for the correctly estimated measurement noise variance. The greatest difficulty in

this method will be the (possibly) required storage of the state estimation during the

several sample periods required to isolate the nature of the failure. Once the failure

type and magnitude is identified, the MMAE state estimates might be reprocessed

over that period of time. This storage and reprocessing may or may not be necessary.

That will need to be determined via trial and error to see whether good estimation

is maintained with the simpler method of performing sample-to-sample estimation

and not reprocessing. For example, it may be acceptable to use the state estimates

produced by an MMAE looking only for spoof offsets (with its moving-bank struc-

ture) even if the decision is made, over a few sample periods, that interference more

accurately models the current real-world failure. Once the failure is isolated, it may

be required to reprocess all of the propagation and update cycles that were used to

isolate the failure, using the newly declared bank definition. Alternatively, a parallel

set of MMAE's, one searching for spoofs and the other for interference, could be
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employed; again the filter seeking only spoofs would be used as the primary algo-

rithm, but if the decision is made to declare an interference rather than a spoofing

failure, the alternate MMAE might be usable without delay for any reprocessing of

the propagation and update cycles.

The use of a jamming/spoofing sequence (described shortly) presents a very dif-

ficult challenge for any detection algorithm. A hostile enemy employing this method

would heavily jam the area, causing the loss of the GPS satellite signals. The en-

emy would next introduce spoofed GPS-like signals, then remove the jamming so

that the GPS receiver re-acquires the spoofing signals rather than the actual GPS

signals. The MMAE FDI algorithm (or any other algorithm) does not maintain

good state estimation during the jamming portion of this failure. When the jam-

ming is removed, the filter's state estimation is so far off that it has no choice but

to acquire whatever GPS or GPS-like signal is present in the real world. MMAE

fails at detecting the spoofing signal following the jamming phase. The best that

can be hoped for against such a failure is that, following the removal of jamming,

spoofing values greater than the possible drift of the onboard INS will be detected.

Although the MMAE FDI would have difficulty detecting the initial offset due to

spoof once the jamming were removed, it could compensate for step or ramp spoof

offsets thereafter, relative to that initial offset. This failure sequence was not tested

during this research. The inclusion of an elemental filter only modelling INS and

altimeter states, i.e., not including DGPS states rather than assuming zero H matrix

entries corresponding to the DGPS measurements, may give useful information in

the face of this failure sequence. Using this filter, at re-acquisition, any spoofing

signals with an offset larger than the possible INS drift, would be rejected and the

spoof identified.

4.2.6 Performance Comparisons: Navigation Cases 2-4. This section

shows the failure detection and isolation performance available using a navigation

component suite of lower quality (and less cost) than that used earlier in this chap-
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ter to demonstrate the performance of the MMAE and PRMMAE algorithms (see

Table 4.1). Unlike the plots presented previously in this chapter, which are grouped

to show the FDI and corresponding navigation performance or a given failure case,

the plots of this section will be organized to emphasize the changes, first, of FDI

performance, and second, of navigation performance, with the range of navigation

suites given in Table 4.1. Case 2 depicts the effect of removing pseudolites, case

3 the further impact of removing the radar altimeter, and case 4 the compounded

impact of using a lower-precision INS. The FDI performance of each navigation case

against interference and spoofing step failure types are examined.

Figures 4.14 through 4.17 show the interference FDI performance of navigation

component cases one through four. Note that the speed and accuracy of detection

and isolation of interference are nearly identical for each of the four cases.

Figures 4.18 through 4.21 show the spoofing FDI performance of navigation

component cases one through four. It can be seen in these four plots that spoofing

detection occurs in one second independent of the navigation suite used. The degree

of misidentification of the spoofing magnitude shown in the second subplot of Fig-

ures 4.18 through 4.21 suggests that estimation of the magnitude of spoofing failures

is also independent of the navigation components used.

Figures 4.22 through 4.25 show the navigation performance of navigation cases

one through four in the presence of interference failures. Examination of these figures

reveals an expected degradation of the navigation performance from navigation case

one to two, two to three, and three to four. Comparison of Figure 4.23 (navigation

case two) with Figure 4.22 (navigation case one) shows the effect on navigation

performance of removing the ground-based pseudolite from the navigation suite.

Comparison of Figure 4.24 (navigation case three) with Figure 4.23 (navigation case

two) shows the effect on navigation performance of removing the radar altimeter. It

can be seen that this change has a fairly substantial impact on the precision of the

aircraft altitude estimates, as anticipated. Comparison of Figure 4.25 (navigation
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case four) with Figure 4.24 (navigation case three) shows the effect on navigation

performance of using a navigation suite with a much less precise INS. Because of the

consistently good FDI performances for these four cases, the navigation performance

for each case is essentially that of a single extended Kalman filter correctly designed

and tuned for the navigation system components and artificially informed of the

actual interference noise variance.

Figures 4.26 through 4.29 show the navigation performance of navigation cases

one through four when subjected to spoofing step failures. Similar observations may

be made about the relative navigation precision offered by the different navigation

suites.

4.2.7 Comparison to GLR/Chi-Square FDI. The FDI performance of the

MMAE techniques used in this work compare very favorably with the GLR/chi-

square techniques applied to a similar problem. Due to time constraints, direct

comparisons of MMAE and GLR/chi-square using the detection problems of this

work were not made; however, several conclusions may be drawn based on the similar

FDI study performed by Vasquez [41, 42]. Vasquez' study was similar (dis-similar)

in the following ways: Vasquez used

1. essentially the same INS as that used for navigation component case 1 of this

study

2. GPS rather than DGPS

3. no radar altimeter and no pseudolites

4. a six-transponder range range-rate velocity aiding system

The GLR/chi-square scheme used by Vasquez [41,42] on a GPS-aided inertial

navigation system is effective at detecting interference failures, but this identification

comes after a (sometimes large) delay. In Vasquez' [41, 42] work, identification of

the onset of interference required a delay of 2 seconds. The MMAE algorithm used
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in this work identifies and estimates the magnitudes of interference failures with a

one sample period delay (one second). Identification of the interference magnitude

is not attempted using the GLR/chi-square FDI methods. A much longer delay,

46 seconds in one case, is required for the GLR/chi-square algorithm to return to

a nominal no-fail declaration from a large interference. MMAE's also suffer from a

longer delay in returning to the nominal condition from a large failure, compared

to the time required to move either from a nominal condition to a failure condition

or from one failure condition to another. The first sub-plot of Figure 4.1 shows, for

example, that ten seconds are required for the MMAE algorithm implemented in

this research to return from a failed to a no-fail declaration. Nevertheless, this is far

less than the 46 second delay of the GLR/chi-square alternative.

Spoofing type failures (step and ramp) were detected/identified less effectively

by the GLR/chi-square detection scheme than were interference failures. Vasquez' [41,

42] simulations showed that spoofing step failures with magnitudes as low as 50 feet

were detected and identified (accurate state tracking regained) in about 20 seconds.

This report shows that the PRMMAE algorithm detects and identifies spoofing steps

as small as 15 feet with a one second delay. The largest (ramp) spoofing failure sim-

ulated by Vasquez was 2 feet/sec and required a minimum of 250 seconds (chi-square

test) to detect this failure. The smallest spoofing ramp that was effectively detected

and identified by PRMMAE techniques (in one second) was about 8 feet/sec; how-

ever, it can seen by close examination of Figure 4.10 that a spoofing ramp of 2

feet/sec is detected within about 5 seconds even though reliable isolation at this low

magnitude is prevented by system noise.

It may be concluded that GLR/chi-square failure testing has a significant as-

sociated delay when compared to MMAE failure testing, especially in the face of

spoofing (bias-like) failures. The selection of one or the other of these FDI schemes

for application to a particular problem should be made while fully taking into con-

sideration this performance difference.
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4.3 Conclusions

This chapter shows the development of moving-bank pseudo-residual MMAE

identified as PRMMAE, a new technique for the identification of measurement offset

(bias or ramp "spoof") failures. PRMMAE (for spoofs) and standard MMAE (for

interference) are used to detect and compensate for interference and spoofing failures

in the GPS portion of a navigation configuration. State estimation before, during,

and after these failures is maintained. These results show that a precision landing

system (PLS) based on these navigation components can reliably detect degradation

of the navigation solution due to external rf sources, and can preserve the quality of

navigation so that flight and some categories of instrument landings may safely be

continued.
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5. Conclusions and Recommendations

Chapter 4 presented and analyzed the results obtained using MMAE and the

newly developed moving-bank pseudo-residual MMAE (PRMMAE) to detect and

isolate interference and spoofing failures in a DGPS-aided inertial system. This

chapter briefly summarizes and extends the conclusions suggested by the simulation

results and analysis discussed at length in Chapter 4.

5.1 Introduction

Much recent research and FAA interest has been directed toward the develop-

ment of a system to aid landing navigation to replace the aging instrument land-

ing system (ILS) now in use. It is widely assumed that the replacement for the

ILS will be based on the global positioning system (GPS). Previous research at

AFIT has resulted in the development of a DGPS-aided (and radar altimeter-aided)

INS-based precision landing system (PLS) capable of meeting the FAA precision

requirements for instrument landings. The susceptibility of DGPS transmissions to

interference/jamming and spoofing must be addressed before DGPS may be safely

used as a major component of such a safety-of-flight critical navigational device.

This thesis applies multiple model adaptive estimation (MMAE) techniques to

the problem of detecting and identifying interference/jamming or spoofing failures

in the DGPS signal. Interference/jamming failures are modelled as significantly

increased measurement noise associated with the DGPS pseudorange measurements.

Spoofing failures are modelled as constant- (or ramped-) offset values added directly

to the DGPS pseudorange measurements.

5.2 FDI Conclusions

The poor navigation performance of a non-adaptive Kalman filter subjected to

interference/jamming or spoofing motivated the investigation of MMAE as a means
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Figure 5.1 MMAE and Non-Adaptive Kalman Filter Navigation Performance Com-
parison, Interference/Jamming Failures

of failure detection and identification. MMAE is very effective at detecting and

isolating interference/jamming failures. The navigation performance achieved us-

ing MMAE is greatly improved from the non-adaptive case. The left-hand side of

Figure 5.1 shows the detection, identification, and resulting blended navigation per-

formance of the MMAE filter bank subjected to a jamming signal. The right-hand

side of Figure 5.1 shows the performance of a single non-adaptive Kalman filter with

the same jamming signal applied. (Note the scale differences of the two altitude

error subplots). Because of the good FDI performance of the MMAE algorithm (see

Figure 5.1, first subplot, left-hand side), the navigation performance is essentially

that of a single extended Kalman filter correctly designed and tuned for the navi-

gation system components and artificially informed of the actual interference noise
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variance. Figure 5.1 pertains to the case of a high-precision INS aided by both DGPS

(with pseudolite) and a radar altimeter, but the conclusion remains valid even as

pseudolite and radar altimeter measurements are removed, and the high-precision

INS is replaced with an inexpensive INS with accuracy degraded by an order of

magnitude.

When subjected to spoofing (measurement bias) failures, both the non-adaptive

Kalman filter and a standard MMAE algorithm (designed to seek spoofing) yield ex-

tremely poor navigation solutions. This thesis shows the development of a moving-

bank pseudo-residual MMAE (PRMMAE) algorithm to detect and identify spoofing

failures in the DGPS measurements. The PRMMAE algorithm uses the pseudo-

residuals, rather than the conventional residuals, to form [rTA-lr] for use in the

MMAE hypothesis probability calculations. Moving-bank PRMMAE is very effec-

tive at detecting and identifying spoof bias and ramp failures; the resulting naviga-

tion performance is equivalent to that of a single extended Kalman filter operating

in a no-fail environment. Figure 5.2 shows the navigation performance of the PRM-

MAE algorithm compared to that of a non-adaptive extended Kalman filter when

subjected to a sequence of spoofing bias failures (topmost subplots).

Detection and isolation of bias-like (or, even worse, ramp-like) failures on the

measurement signal is a difficult task for any FDI algorithm, including MMAE. Per-

haps the most significant result of this research is the development and verification of

the moving-bank PRMMAE algorithm (see Section 4.2.4.1) to detect and isolate such

bias-like or ramp-like failures. It is hypothesized that moving-bank PRMMAE will

prove to be a useful and generally applicable tool for the detection and identification

of signal bias-like or ramp-like failures.

Sections 4.2.3 and 4.2.4 show the FDI effectiveness of standard MMAE and

moving-bank PRMMAE against DGPS interference and spoofing failures, respec-

tively. It may be generally observed, based on the results of these sections, that

detection of interference or spoofing failures (by two separate algorithms or, presum-
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Figure 5.2 MMAE and Non-Adaptive Kalman Filter Navigation Performance Com-
parison, Spoofing Step Failures

ably, by two algorithms invoked in a hierarchical form, but not by a single filter bank:

see Section 4.2.5) is accomplished in a single sample period (one second). Identifica-

tion of correct parameter values associated with these failures, in general, requires

between one and three seconds. This performance is exceptional when compared to

a GLR/chi-square algorithm, (arguably) the next best FDI alternative in terms of

effectiveness (see Section 4.2.7).
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5.3 Navigation Conclusions

Detection and identification of interference/jamming and spoofing failures is ac-

complished very effectively using MMAE and moving-bank PRMMAE, as discussed

in the previous section. The resulting navigation performance of the integrated sys-

tem with these failures induced is only slightly degraded from that attained with no

failures, rather than unacceptably degraded as is the case for a single non-adaptive

extended Kalman filter as conventionally used for an integration filter for opera-

tional aided inertial navigation systems (compare Figure 4.2 to 4.3 and Figure 4.9

to 4.4). Table 5.1 shows a listing of the navigation component cases tested; these

! Case 1 INS Type I GPS Type I Altimeter Aiding

1 0.4nm/hr DGPS and Baro and
Pseudolite Radar Alt

2 0.4nm/hr DGPS Baro and

Radar Alt
3 0.4nm/hr DGPS Baro

4 4.Onm/hr DGPS Baro

Table 5.1 Navigation Component Cases

cases were selected to demonstrate the FDI and navigation performance impact of

eliminating (or degrading) the individual navigation sensors, with the hope of ex-

tending the results of this research to potential medium- and low-cost commercial or

civilian aviation applications. As was hoped, the failure-induced degradation of nav-

igation performance in the integrated system, based on the MMAE and moving-bank

PRMMAE, for all navigation component cases and failures tested, is not substantial

enough to prevent sufficiently accurate navigation to achieve mission requirements

in other (not landing) phases of flight.

It is assumed that commercial and civilian aircraft will be much more likely

to face interference/jamming GPS failures (due to the low cost of implementing an
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interference device) than spoofing failures. Of particular note, then, is the FDI per-

formance of each navigation component case against interference/jamming failures.

Section 4.2.3 shows that the interference/jamming FDI performance of navigation

component case four of Table 5.1 is essentially identical to that of navigation compo-

nent case one. Spoofing identification is also accomplished very effectively by all four

navigation component cases (see Section 4.2.4). As was desired, the FDI and navi-

gation performance of these cases is good enough, and the cost of these lower-quality

navigation components is low enough, to warrant investigating the application of the

PLS to commercial and civil aviation as well as to military aircraft.

5.4 Recommendations for Future Research

Future researchers may find good results by pursuing:

e Hierarchical structure to accomplish FDI of jamming/interference and spoofing

simultaneously.

The results of Chapter 4 show that a composite MMAE filter bank (some ele-

mental filters looking for spoof- and some for interference-type failures) cannot

disambiguate between interference/jamming and spoofing failures. One can en-

vision a hierarchical MMAE structure that initially looks only for spoofs (using

a moving-bank PRMMAE algorithm structure), but if the estimated spoof ex-

hibits large sample-to-sample changes, the elemental filters in the MMAE could

be redefined to look for interference instead (via a non-moving-bank standard

MMAE algorithm structure). After the noise variance is estimated, the MMAE

elemental filters can be returned to look for spoofs only (and the algorithm re-

turned to a moving-bank PRMMAE form), but now with each elemental filter

being tuned for the correctly estimated measurement noise variance.

* Use of dither signals to enhance navigation performance of the integrated sys-

tem.
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Much research has demonstrated the usefulness of applying a known dither

signal to improve the identifiability of a system [8,19,38]. The application of

such a dither signal has the effect of "shaking" up the modes of the system

that might otherwise be difficult to observe and use for identification purposes.

While the FDI and navigation performance results obtained in this research

are quite good, no attempt was made to apply a dither signal (or even to corre-

late the dynamics of the flight profile used) to achieve improved performance.

Adding purposeful input dithers to enhance failure identifiability may warrant

further investigation, particularly in phases of flight prior to final approach,

flare, and landing.
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Appendix A. Error Model State Definitions

This appendix contains a tabular listing of the 93 Litton INS, 39 reduced-order

INS truth model, 30 GPS, 22 DGPS, and 13 simulation filter error states. Note that

the INS model is shown with 41 states. This is because the two barometric aiding

states are included as states 10 and 11 of this model. The 71-state (72-state when the

pseudolite is included) PLS truth model states are defined in the right-most column

of Tables A.5 through A.8.

A.1 Litton LN-93 Error-States

Tables A.1 through A.4 list the LN-93 error model (93 states) as defined in the

Litton CDRL [16]. Note that the Litton document contains several errors which are

corrected in these tables [30].

A.2 Reduced Order INS Truth Model States

Tables A.5 and A.6 list the 39 INS states (plus two barometric aiding states)

used in all the full-order models in this thesis. This reduced order model was devel-

oped and verified by Negast [30]. States 12 and 13 of the PLS are defined later in

Tables A.7 and A.8.

A.3 GPS Error States

Table A.7 lists the GPS error states. A total of 30 states are included to model

the error characteristics of 4 space vehicles (7 states each) plus two states for user

equipment error sources [30].
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A.4 DGPS Error States

Table A.8 lists the DGPS error states developed by Negast [30]. A total of 22

states are included to model the error characteristics of 4 space vehicles (5 states

each) plus user equipment (two states) error sources.

A.5 Simulation Filter States

Table A.9 lists the 13 states used in the PLS filter model.
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Table A.1 Litton 93-state INS Model: INS States 1 --* 29

State State Definition
Number Symbol D

1 60. X-component of vector angle from true to computer frame
2 80Y Y-component of vector angle from true to computer frame

3 60, Z-component of vector angle from true to computer frame

4 0,, X-component of vector angle from true to platform frame
5 Oy Y-component of vector angle from true to platform frame

6 0, Z-component of vector angle from true to platform frame
7 6V8  X-component of error in computed velocity
8 6 Vy Y-component of error in computed velocity

9 bV Z-component of error in computed velocity
10 bh Error in vehicle altitude above reference ellipsoid

11 6hL Error in lagged inertial altitude
12 6S 3  Error in vertical channel aiding state

13 6S 4  Error in vertical channel aiding state
14 bxo X-component of gyro correlated drift rate
15 byC  Y-component of gyro correlated drift rate

16 b, Z-component of gyro correlated drift rate
17 V,. X-component of accelerometer and

velocity quantizer correlated noise
18 VyC Y-component of accelerometer and

velocity quantizer correlated noise
19 Vc Z-component of accelerometer and

velocity quantizer correlated noise

20 6gx X-component of gravity vector errors
21 &gy Y-component of gravity vector errors
22 6g, Z-component of gravity vector errors
23 bhB Total baro-altimeter correlated error
24 bxt X-component of gyro trend
25 by, Y-component of gyro trend
26 bzt Z-component of gyro trend
27 Vxt X-component of accelerometer trend
28 Vy, Y-component of accelerometer trend
29 Vz, Z-component of accelerometer trend
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Table A.2 Litton 93-state INS Model: INS States 30 --+ 47

State State Definition
Number Symbol

30 b. X-component of gyro drift rate repeatability
31 by Y-component of gyro drift rate repeatability

32 b Z-component of gyro drift rate repeatability
33 Sg X-component of gyro scale factor error

34 Sgy Y-component of gyro scale factor error

35 Sg_ Z-component of gyro scale factor error
36 xi X gyro misalignment about Y-axis

37 X2 Y gyro misalignment about X-axis
38 X3 Z gyro misalignment about X-axis

39 Vl X gyro misalignment about Z-axis
40 V2  Y gyro misalignment about Z-axis
41 V3 Z gyro misalignment about Y-axis
42 D., X gyro scale factor nonlinearity
43 Dyyy Y gyro scale factor nonlinearity
44 D. Z gyro scale factor nonlinearity
45 SQb, b3 X gyro scale factor asymmetry error

46 SQb, Y gyro scale factor asymmetry error
47 SQb Z gyro scale factor asymmetry error
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Table A.3 Litton 93-state INS Model: INS States 48 --+ 69

State State Definition
Number Symbol

48 Vb X-component of accelerometer bias repeatability
49 V6Y Y-component of accelerometer bias repeatability

50 Vb Z-component of accelerometer bias repeatability
51 SA X-component of accelerometer and velocity

quantizer scale factor error
52 SA, Y-component of accelerometer and velocity

quantizer scale factor error

53 SA Z-component of accelerometer and velocity
quantizer scale factor error

54 SQA X-component of accelerometer and velocity
quantizer scale factor asymmetry

55 SQAy Y-component of accelerometer and velocity
quantizer scale factor asymmetry

56 SQA Z-component of accelerometer and velocity
quantizer scale factor asymmetry

57 f Coefficient of error proportional to square
of measured acceleration

58 fyy Coefficient of error proportional to square
of measured acceleration

59 fz Coefficient of error proportional to square
of measured acceleration

60 fy Coefficient of error proportional to products of acceleration
along and orthogonal to accelerometer sensitive axis

61 fz Coefficient of error proportional to products of acceleration
along and orthogonal to accelerometer sensitive axis

62 fy Coefficient of error proportional to products of acceleration
along and orthogonal to accelerometer sensitive axis

63 fjz Coefficient of error proportional to products of acceleration
along and orthogonal to accelerometer sensitive axis

64 fz. Coefficient of error proportional to products of acceleration
along and orthogonal to accelerometer sensitive axis

65 fz Coefficient of error proportional to products of acceleration
along and orthogonal to accelerometer sensitive axis

66 /ul X accelerometer misalignment about Z-axis
67 P12 Y accelerometer misalignment about Z-axis

68 /3 Z accelerometer misalignment about Y-axis
69 0 3  Z-accelerometer misalignment about X-axis
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Table A.4 Litton 93-state INS Model: INS States 70 -- 93

State State Definition
Number Symbol

70 Vxq X-component of accelerometer bias
thermal transient

71 VYq Y-component of accelerometer bias
thermal transient

72 Vzq Z-component of accelerometer bias
thermal transient

73 bXq X-component of initial gyro drift rate
bias thermal transient

74 byq Y-component of initial gyro drift rate
bias thermal transient

75 bzq Z-component of initial gyro drift rate
bias thermal transient

76 F. w  X gyro compliance term
77 Fvy X gyro compliance term
78 F~ Y X gyro compliance term

79 Fxzy X gyro compliance term
80 Fx,, X gyro compliance term
81 Fxzx X gyro compliance term
82 F,,. Y gyro compliance term
83 Fv, Y gyro compliance term
84 FvzY Y gyro compliance term
85 Fyxz Y gyro compliance term
86 Fyx Y gyro compliance term
87 Fyxy Y gyro compliance term
88 Fzxy Z gyro compliance term
89 Fz Z gyro compliance term
90 F2,z Z gyro compliance term
91 Fzyx Z gyro compliance term
92 FYY Z gyro compliance term
93 FzY Z gyro compliance term
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Table A.5 Reduced-Order INS System Model: INS States 1 --+ 20

State State Definition LN-93 PLS
Number Symbol State State

1 60. X-component of vector angle from true to computer frame 1 1
2 S0Y Y-component of vector angle from true to computer frame 2 2
3 60, Z-component of vector angle from true to computer frame 3 3
4 0. X-component of vector angle from true to platform frame 4 4
5 oy Y-component of vector angle from true to platform frame 5 5
6 0, Z-component of vector angle from true to platform frame 6 6
7 6V. X-component of error in computed velocity 7 7

8 6V Y-component of error in computed velocity 8 8
9 6V Z-component of error in computed velocity 9 9

10 6h Error in vehicle altitude above reference ellipsoid 10 10
11 bhB Total baro-altimeter correlated error 23 11
12 6hL Error in lagged inertial altitude 11 14
13 6S 3  Error in vertical channel aiding state 12 15
14 6S 4  Error in vertical channel aiding state 13 16
15 V. X-component of accelerometer and 17 17

velocity quantizer correlated noise

16 VVC  Y-component of accelerometer and 18 18
velocity quantizer correlated noise

17 VzC Z-component of accelerometer and 19 19
velocity quantizer correlated noise

18 6g, X-component of gravity vector errors 20 20
19 6gy Y-component of gravity vector errors 21 21
20 bgz Z-component of gravity vector errors 22 22
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Table A.6 Reduced-Order INS System Model: INS States 21 --+ 41

State State Definition LN-93 PLS
Number Symbol State State

21 b, X-component of gyro drift rate repeatability 30 23

22 by Y-component of gyro drift rate repeatability 31 24

23 b, Z-component of gyro drift rate repeatability 32 25

24 Sgf, X-component of gyro scale factor error 33 26
25 S9? Y-component of gyro scale factor error 34 27

26 Sgz Z-component of gyro scale factor error 35 28
27 Vb6 X-component of accelerometer bias repeatability 48 29
28 Vby Y-component of accelerometer bias repeatability 49 30

29 Vb6 Z-component of accelerometer bias repeatability 50 31
30 SA X-component of accelerometer and velocity 51 32

quantizer scale factor error

31 SA, Y-component of accelerometer and velocity 52 33
quantizer scale factor error

32 SA Z-component of accelerometer and velocity 53 34
quantizer scale factor error

33 SQA X-component of accelerometer and velocity 54 35
quantizer scale factor asymmetry

34 SQAz Y-component of accelerometer and velocity 55 36
quantizer scale factor asymmetry

35 SQA Z-component of accelerometer and velocity 56 37
quantizer scale factor asymmetry

36 Pi1 X accelerometer misalignment about Z-axis 66 38
37 [P2  Y accelerometer misalignment about Z-axis 67 39

38 jP3 Z accelerometer misalignment about Y-axis 68 40
39 ol X-accelerometer misalignment about Y-axis 41
40 92 Y-accelerometer misalignment about X-axis 42
41 o3 Z-accelerometer misalignment about X-axis 69 43
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Table A.7 GPS Error States

State State Definition PLS
Number Symbol State

1 6Rclk, User clock bias 12
2 8D,1k, User clock drift 13
3 6R,,0 op, SV 1 code loop error 44

4 &Rtropi SV 1 tropospheric error 45
5 bRi,,, SV 1 ionospheric error 46

6 6Rck. SV 1 clock error 47
7 bx,,, SV 1 x-component of position error 48
8 by.v SV 1 y-component of position error 49
9 bz,, 1  SV 1 z-component of position error 50

10 5Rc 0oo2 SV 2 code loop error 51
11 Rtrop2  SV 2 tropospheric error 52
12 bRio,2  SV 2 ionospheric error 53
13 Rclks 2  SV 2 clock error 54
14 6xSV2 SV 2 x-component of position error 55
15 6 YSV2  SV 2 y-component of position error 56
16 6zsv2 SV 2 z-component of position error 57
17 bR,10o 3  SV 3 code loop error 58
18 Rtop3  SV 3 tropospheric error 59
19 SRio 3  SV 3 ionospheric error 60
20 6Rlk-, SV 3 clock error 61
21 6xV,3 SV 3 x-component of position error 62
22 6YSV3  SV 3 y-component of position error 63
23 6zSV 3  SV 3 z-component of position error 64
24 bRc0Loo4  SV 4 code loop error 65
25 bRtop4  SV 4 tropospheric error 66
26 6Rio, SV 4 ionospheric error 67
27 6Rolk 4  SV 4 clock error 68
28 x SV4 SV 4 x-component of position error 69
29 6ySV SV 4 y-component of position error 70
30 6zSV4 SV 4 z-component of position error 71

A-9



Table A.8 DGPS Error States

State State Definition PLS
Number Symbol State

1 bRulk, User clock bias 12
2 6Duolk, User clock drift 13
3 Rtopl SV 1 tropospheric error 45
4 6Rionl SV 1 ionospheric error 46
5 bx, 1  SV 1 x-component of position error 48
6 bysvi SV 1 y-component of position error 49
7 bz 1  SV 1 z-component of position error 50
8 5RtoP2  SV 2 tropospheric error 52
9 Rio, 2  SV 2 ionospheric error 53

10 6xSV2 SV 2 x-component of position error 55
11 ySV2  SV 2 y-component of position error 56

12 6z 2  SV 2 z-component of position error 57
13 6Rtrop3  SV 3 tropospheric error 59
14 6Rio 3  SV 3 ionospheric error 60
15 6xSV3  SV 3 x-component of position error 62
16 6YSV 3  SV 3 y-component of position error 63
17 6z. SV 3 z-component of position error 64
18 5Rtop, SV 4 tropospheric error 66
19 bRion4 SV 4 ionospheric error 67
20 6xSV4  SV 4 x-component of position error 69
21 6Ysv 4  SV 4 y-component of position error 70
22 6zV4  SV 4 z-component of position error 71
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Table A.9 Simulation Filter States:

State State Dfinition
Number Symbol

1 60, X-component of vector angle from true to computer frame
2 60Y Y-component of vector angle from true to computer frame
3 60, Z-component of vector angle from true to computer frame

4 0,, X-component of vector angle from true to platform frame
5 Oy Y-component of vector angle from true to platform frame

6 0, Z-component of vector angle from true to platform frame
7 bV X-component of error in computed velocity
8 SVy Y-component of error in computed velocity
9 6V, Z-component of error in computed velocity
10 6h Error in vehicle altitude above reference ellipsoid
11 6hB Total baro-altimeter correlated error

12 S R k, GPS User clock bias
13 6DUdk, GPS User clock drift
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Appendix B. Dynamics and Noise Matrices

B.1 Model Dynamics Matrices [16,41,42]

The LN-93 error-state dynamics matrix F as provided by Litton is a 93-by-93

array that contains a large number of elements that are identically zero. Litton

partitions the F matrix into thirty-six subarrays [16] reflecting the logical divisions

of error sources discussed in Chapter 3.

The non-zero elements of the Litton model are included in Tables B.1 through B.8.

The dynamics submatrices for the 41-state INS model may be constructed as needed

from the LN-93 dynamics submatrices and the full- to reduced-order state relations

given in Tables A.1 through A.4. The reader should note that Negast's [30] revised

baro-altimeter model states are not included in this set of original F matrix elements

extracted from the Litton document [16].

A notational convention is to label elements of the Ct , sensor-to-true, matrix

as Cij where i is the row and j is the column in the transformation matrix.

The dynamics matrices for the GPS and DGPS truth models are included in

the body of Chapter 3.

B.2 Process Noise Matrices

The Litton document [16] includes a 93-by-93 process noise matrix Q for the

LN-93 error model. Like the F matrix, the Q matrix is partitioned into subarrays

which correspond to the error-state subvectors discussed in Chapter 3. The vast

majority of the elements in the process noise matrix are identically zero. The non-

zero elements of Q are shown in Tables B.9 and B.10.

The process noise matrices for the GPS and DGPS models are included in the

body of Chapter 3, while the Q noise strengths used to tune the 13-state DGPS filter

model for each of the four navigation component cases is given in Appendix C.
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Table B.1 Elements of the Dynamics Submatrix F11

I Element Term Element [ Term

(1,3) -py (1,8) -CRY

(2,3) PX (2,7) cRX

(3,1) py (3,2) -pX

(4,2) -Qz (4,3) QY
(4,5) Wiz (4,6) -winy

(4,8) -CRY (5,1) Q_
(5,3) -Q (5,4) -Win,

(5,6) Wi, (5,7) CRX

(6,1) -Q (6,2) QX

(6,4) Win_ , (6,5) -Win,

(7,1) -2VyQy - 2VzQ (7,2) 2V

(7,3) 2V~Q (7,5) -Az
(7,6) AY (7,7) -VCRX
(7,8) 2Q, (7,9) -py- 2QY

(8,1) 2VxQY (8,2) -2V x - 2V~z
(8,3) 2vzQY (8,4) A,

(8,6) -Ax (8,7) -2Q,
(8,8) VCRy (8,9) p, + 2Q
(9,1) 2V Q, (9,2) 2VQ,
(9,3) -2Vy y - 2VQ (9,4) -AY

(9,5) Ax (9,7) py + My + VCRx
(9,8) -px - 29, + VyCRy (9,10) 2go/a

(9,11) -k 2  (9,12) -1
(9,13) k2 (10,9) 1

(10,11) -]9 (10,13) ki - 1
(11,10) 1 (11,11) -1
(12,11) k3  (12,13) -k 3

(13,10)_ k4 (13,11) -k4

(13,13) k4- 1

Pr,y = Components of angular rate, nav reference frame to earth-fixed frame
QXYZ = Components of angular rate, earth-fixed frame to inertial frame
Winx,y,z = Components of angular rate, nav reference frame to inertial frame
VY, = Components of vehicle velocity vector in earth-fixed coordinates
A,,'z = Components of specific force in the sensor reference frame
kl, 2,3,4  = Vertical channel gains. See LN-93 documentation [17] for equations
CRX,RY = Components of earth spheroid inverse radii of curvature
go = Equatorial gravity magnitude (32.08744ft/sec 2 )
a = Equatorial radius of the earth (6378388m)
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Table B.2 Elements of the Dynamics Submatrix F 12

I Element [Term Element Term Elementi Term

(4,14) Cll (4,15) C12 (4,16) C13
(4,24) C11t (4,25) C12t (4,26) C1 3t

(5,14) C21 (5,15) C22 (5,16) C23

(5,24) C 21t (5,25) C22t (5,26) C 23t

(6,14) C31 (6,15) C32 (6,16) 033

(6,24) C31t (6,25) C 32t (6,26) C33t
(7,17) Cll (7,18) C12 (7,19) C13

(7,20) 1 (7,27) Cllt (7,28) C 12 t

(7,29) C13t (8,17) 021 (8,18) C22

(8,19) C23 (8,21) 1 (8,27) C21 t

(8,28) C 22t (8,29) C23t (9,17) C31
(9,18) C32 (9,19) C33 (9,22) 1

(9,23) k2 (9,27) C 3 1t (9,28) C 3 2t

(9,29) C33t (10,23) kI  (12,23) -k 3

(13,23) k4 /6001

Note: For the above element definitions to = 0

C = Coordinate transformation matrix, body frame to nav reference frame
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Table B.3 Elements of the Dynamics Submatrix F 13

[[Element Term Element Term Element Term

(4,30) Cll (4,31) C12 (4,32) C13

(4,33) Cll Oinuw (4,34) C12Oin, (4,35) C 13LLin

(4,36) Clin (4,37) -C 12wLi (4,38) C13_O__ _

(4,39) -C 1 1 Oiny (4,40) C_2wi (4,41) -C13wi%
(4,42) CllO2n (443 C12L~v 4,44 C13W n,

(4,45) 05C1 1 J inw,1 (4,46) 0.5C12 Oin,1 (4,47) 0.5C13Owin I

(5,30) C21 (5,31) C22 (5,32) 023

(5,33) C 2 1wLin% (5,34) C 22 Ldiny (5,35) C23_inz

(5,36) C 21 w(in (5,37) -C 22wUi (5,38) C23w ,n
(5,39) -C21 Iwin (5,40) C22wLi, (5,41) -C 23win,
(5,42) C 21wLz? (5,43) C 2 2w ( ,? (5,44) C2____ _z

(5,45) 0.5C2 1 Piw I (5,46) 0.5C22 Iwj 1 (5,47) 0.5C23IWr 1
(6,30) C31 (6,31) C32 (6,32) 033
(6,33) C31Wjin (6,34) C3 2 w'iny (6,35) C33Ldin z

(6,36) C 3 1 Win (6,37) -C 2wL.i (6,38) C3 3 win

(6,39) -C 3 1wdiny (6,40) C_2_O___ (6,41) -C 33 Oin,

(6,42) 6 3 1wj)nx (6,43) v32 .c? . (6,44) C____

(6,45) 0.5C3,1 Wi, (6,46) 0.5C3 11 (6,47) 0.5C33 JWI
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Table BA Elements of the Dynamics Submatrix F 14

Element Term Element Term Element Term

(7,48) Cll (7,49) C12 (7,50) C13

(7,51) Clldx (7,52) C12AyB (7,53) C1 3 A z '

(7,54) Cl11AB (7,55) C12JABI (7,56) C131A B1

(7,57) C1 1Ax 2  (7,58) C1 2AY2  (7,59) C13AZ' 2

(7,60) C1 1ABAB (7,61) CiiABAB (7,62) C ABABCAx AV C1 x Az 12 A

(7,63) C2ABAB (7,64) C13 ABAz (7,65) C13ABA ,

(7,66) CjjAB (7,67) ZC12A74 (7,68)

(7,69) C13AB (8,48) C21 (8,49) C22

(8,50) C23 (8,51) C21A B  (8,52)

(8,53) C23AZ' (8,54) C21IAxI (8,55) C221AyI
(8,56) C23 IAz'I (8,57) C21AX (8,58) C22AB2

(8,59) C23 AB'2  (8,60) B B (8,61) C21 AB AzC21 Ax AY CA Az

(8,62) C22AB B (8,63) C2B2 A (8,64) C AA A z C23ABAB
(8,65) 023 Az (8,66) C2IA" (8,67) -C 22A,
(8,68) C23AB (8,69) C23A- (9,48) C31
(9,49) C32 (9,50) C33 (9,51) C31A B

(9,52) C3 2 A B  (9,53) C3 3A B ' (9,54) C3 1 A B I

(9,58) C32 IABA (59 B (9,60) C 31ABAB

(9,61) C3AYAI (9,62) C32AA (9,63) C3 AB

(9,64) C33 A A (9,65) (9,66)
(9,67) -C 32A 1 (9,68) ___A L (9,69) C33AI

AB = Components of acceleration in the body frame
A z = Specific force component (includes gravity)
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Table B.5 Elements of the Dynamics Submatrix F1 5

Element Term Element Term Element I Term

(4,73) Cll (4,74) C12 (4,75) C 1 3

(5,73) C21 (5,74) C22 (5,75) C23

(6,73) C31 (6,74) C32 (6,75) 033
(7,70) Cu (7,71) C12 (7,72) C13

(8,70) C21 (8,71) C22 (8,72) 023

(9,70) C31 (9,71) 032 (9,72) C33

Table B.6 Elements of the Dynamics Submatrix F16

i[ Element Term ]Element Term Element Term

(4,76) Clni in (4,77) Clln Bwiny (4,78) CllA winx
(4,79) C11A n (4,80) C11A n (4,81) l in

(4,82) C12A"zwin (4,83) C 1 2A"wLi, (4,84) C 12 A Bw.%
(4,85) C12ABinz  (4,86) C12Awoin (4,87) Cx xLI~nx 12nA Win,

(4,88) Y7 in, (4,89) CAx (4,90) CClA Ciy13A Winx (4,0) win-
(4,91) C13Ad7Lj (4,92) C13A:win (4,93) C13Awi

(5,76) C21A"wi, (5,77) C21Aiwy (5,78) c21n"Win(5,79) C21A Win, (5,80) C21A! Winz (5,81) C21A w ,

(5,82) C2 2 A"winx (5,83) C2 2ABwi (5,84) C Afw

(5,85) C22A"Lw7in (5,86) C22Axwi (5,87) C22A~win,

(5,88) C23Awin, (5,89) C23Axwi, (5,90) C23ABw ,

(5,91) C23ALwin, (5,92) C23 ABwL, (5,93) C23A±Lw)i,

(6,76) C31A wi (6,77) C3,d-wi (6,78) C31Ain,
(6,79) C31AwJ (6,80) C31A'i7 (6,81) C31A_n_
(6,82) C32AfWinx (6,83) C32AfW (6,84) C32A"w%

(6,85) C32A-wBn (6,86) C32AX (6,87) C
(6,88) C33 Auwiny (6,89) C 33A'wi% (6,90) C33A___

(6,91) C33A8winx (6,92) C3 3 AIw',L (6,93) C33 A win
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Table B.7 Elements of the Dynamics Submatrix F 22

Element [Term 1Element Term i ElementI Term

(14,14) -#b, (15,15) -b C (16,16) -b

(17,17) -v c (18,18) -- fOv (19,19) --Pv,
(20,20) -f6g. (21,21) -- 6/3l (22,22) -sgz
(23,23) -8hc

I3bxo .... = Gyro inverse correlation time constants (5 min)
Iv~. .... = Accelerometer inverse correlation time constants (5 min)
/3Sgx.,Yz = Gravity vector error inverse correlation time constants (V/20NM)
3~shc = Barometer inverse correlation time (10 min)

Table B.8 Elements of the Dynamics Submatrix F55

Element Term Element Term Element Term

(70,70) - 1(71,71) -/3V 11 (72,72) 1 -Pv
(73,73) -Ob. (74,74) -#by, (75,75) -#b,

q~ = Accelerometer bias thermal transient inverse time constants (1 min)
/b.,qYzq = Gyro drift rate bias thermal transient inverse time constants (1 min)
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Table B.9 Non-zero Elements of Process Noise Submatrix Q1,

Element I Term 1 Element I Term

Table B.10 Non-zero Elements of Process Noise Submatrix Q22

Element Term UElement [Term]

(14,14) L 2q b~a (15,15) 2 flb,,

(6,6) 20b b (17,17) 2a2

(18,18) 2#v o U2 (18,18) 20vu
(20,20) 20sq a ,a (21,21) 208.9,o .q,

(22,22) 2(23,23) 2Pho0h

= PSD value of gyro drift rate white noise (6.25e-10 )

'nbx,?),z SC

0 , 2 _- PSD value of accelerometer white noise (1.037e-71 2

= Variances of gyro drift correlated noise (3.086e-13 )
bxc,yc,zc SC

a 2  -- Variances of accelerometer correlated noise (4.147e-9 !t)
vxc,?Jc,Zc S

U
2  = Variances of gravity vector error component correlated noise (1.93e-6deg 2)
,5gx,y,z

8cY - Variance of barometer correlated noise (10000ft 2 )
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Appendix C. Filter Tuning Values

This appendix contains a listing of the dynamics driving noise strength val-

ues used to tune the Kalman filters for each navigation component case shown in

Table C.1. "Tuning", or purposeful addition of dynamics driving noise, is done to

account for the modelling inadequacies introduced by using a small number of states

(13 in this study) to represent a high-order truth model (95 or 96 states in this

study), which in turn uses (usually much smaller) values of dynamics driving noise

strengths to account for its reduction from the infinite-state real-world model. The

95-state truth model developed by Litton for the LN-93 INS [17] is accompanied by

the dynamics driving noise strength values shown in the variable definitions below

Table B.10.

For the 13 states in the filter model used in this application (see Table A.9),

tuning was accomplished by experimentally adjusting the Q values shown in Ta-

ble C.2 for each of the four navigation component cases. The 13 Q rows of Table C.2

correspond directly to the 13 states of the filter model as defined in Table A.9.

Table C.1 Navigation Component Cases

Case INS Type [ GPS Type] Altimeter Aiding
1 0.4nm/hr DGPS and Baro and

Pseudolite Radar Alt
2 0.4nm/hr DGPS Baro and

Radar Alt
3 0.4nm/hr DGPS Baro

4 4.Onm/hr DGPS Baro
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Table C.2 Tuning Values for Filter States

fNay Case 1 Nay Case 2] Nay Case 3 TNay Case4
[State No.1 Values] Values] Values jValues

1 1.2e-16 4.0e-15 4.0e-16 1.2e-23
2 1.5e-16 3.0e-15 3.Oe-16 1.5e-23
3 0.0 0.0 0.0 0.0
4 3.8 1e- 12 1.43e-12 1.43e-12 5.71e-9
5 5.33e-12 3.81e-12 3.81e-12 5.71e-9
6 1.62e-11 2.38e-12 2.38e-12 3.43e-10
7 1.03e-8 1.29e-5 1.29e-5 5.15e-5
8 1.03e-14 1.29e-5 1.29e-5 1.03e-8
9 3.4e-3 2.78e-3 2.78e-3 2.98e-3

10 16.0 15.0 15.0 24.0
11 6.67e3 6.67e3 6.67e3 3.33e4
12 0.2 7.5 7.5 0.2
13 5.0e-15 5.0e-10 5.0e-10 5.0e-16
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