Air Force Institute of Technology AFIT Scholar

Theses and Dissertations

Student Graduate Works

12-1996

Environmental Attitudes and Behaviors: An Examination of the Antecedents of Behavior among Air Force Members at Work

Mark S. Laudenslager

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Industrial and Organizational Psychology Commons

Recommended Citation

Laudenslager, Mark S., "Environmental Attitudes and Behaviors: An Examination of the Antecedents of Behavior among Air Force Members at Work" (1996). *Theses and Dissertations*. 5906. https://scholar.afit.edu/etd/5906

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact AFIT.ENWL.Repository@us.af.mil.

ENVIRONMENTAL ATTITUDES AND BEHAVIORS: AN EXAMINATION OF THE ANTECEDENTS OF BEHAVIOR AMONG AIR FORCE MEMBERS AT WOR

202

3970520

THESIS

Mark S. Laudenslager, 1st Lt, USAF

AFIT/GEE/ENV/96D-11

MATHEMPHON STATEMENT N

Anonovos na gueija islossi Chemomos Unimined

DEPARTMENT OF THE AIR FORCE DTIC QUALITY INSPECTED &

Wright-Patterson Air Force Base, Ohio

AFIT/GEE/ENV/96D-11

ENVIRONMENTAL ATTITUDES AND BEHAVIORS: AN EXAMINATION OF THE ANTECEDENTS OF BEHAVIOR AMONG AIR FORCE MEMBERS AT WORK

THESIS

Mark S. Laudenslager, 1st Lt, USAF

AFIT/GEE/ENV/96D-11

Approved for public release; distribution unlimited

Æ

The contents of this thesis are technically accurate, and no sensitive items, detrimental ideas, or deleterious information are contained therein. Furthermore, the views expressed in this thesis are those of the author and do not reflect the official policy or views of the U.S. Air Force, Department of Defense, or the U.S. Government.

ENVIRONMENTAL ATTITUDES AND BEHAVIORS: AN EXAMINATION OF THE ANTECEDENTS OF BEHAVIOR AMONG AIR FORCE MEMBERS AT WORK

THESIS

Mark S. Laudenslager, First Lieutenant, USAF, B.E.E.

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air Education and Training Command

In Partial Fulfillment of the Requirement for the

Degree of Master of Science in Environmental and Engineering Management

GUY SHANE, Ph.D. Committee Member

efter 10 DANIEL REYNOLD Committee Member

SPEVEN T. LOFGREN, Lt Col, USAF, Ph.D. Committee Chairman

AFIT/GEE/ENV/96D-11

ENVIRONMENTAL ATTITUDES AND BEHAVIORS: AN EXAMINATION OF THE ANTECEDENTS OF BEHAVIOR AMONG AIR FORCE MEMBERS AT WORK

THESIS

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air Education and Training Command In Partial Fulfillment of the Requirement for the Degree of Master of Science in Environmental and Engineering Management

Mark S. Laudenslager, B.E.E.

First Lieutenant, USAF

December 1996

Approved for public release; distribution unlimited

ACKNOWLEDGMENTS

First and foremost, I would like to thank my wife, Kari. She has sacrificed a lot to be with me, and has shown tremendous patience in helping forward my career. Her love and support, as well as her proofreading skills, aided my thesis efforts greatly.

Without question, I owe a great deal of thanks to my advisor, Lt Col Steven Lofgren. Lt Col Lofgren provided the framework and structure I needed to get off the ground and to really dive into this project. His motivation and drive were tremendous. Through Lt Col Lofgren's persistence and constant support, I was able to produce a quality product.

The expertise of Dr. Guy Shane in the area of psychology and survey development was an invaluable asset. Through Dr. Shane's expertise and diligence in these fields of study, I was able to better understand the intricacies of human behavior and survey development.

Dr. Dan Reynolds provided significant insight into the statistical analysis of this thesis. His devotion and commitment to my work, as well as all of his students, is inspirational. Through Dr. Reynolds statistical expertise and advice, I was able to perform the statistical techniques competently.

Finally, I would like to thank the anonymous members of the Air Force that participated in my research effort. Again, thanks to all those who contributed to my research efforts. I owe a great debt to all of you!

Mark S. Laudenslager

ii

TABLE OF CONTENTS

Acknowledgmentsi
List of Figuresv
List of Tables vi
Abstract vii
I. Introduction
Background Information
II. Literature Review
Environmental Attitudes
Theory of Reasoned Action (TRA)
Predicting Behavior from Intention
Summary and Conclusion of the Theory of Reasoned Action
Summary of Combinatory Approaches
Organizational Perspective
III. Methodology
Questionnaire Development

First Iteration (Pre-Pilot Test)	
Second Iteration (Pilot Test)	3-9
Statistical Analysis of Questionnaire	
Constructs Measured, Reliability, and Validity	3-10
Reliability	
Factor Analysis	
Validity	
Statistics Used to Analyze Environmental Behaviors and Demographic Var	riables 3-19
Environmental Behaviors	
Demographic Variables of Gender Age and Education	
Demographie Valables of Gender, Fige, and Dadeason	
IV. Analysis	4-1
Third Iteration (Main Study)	
Descriptive Statistics	4-1
Descriptive Statistics	4_3
T Test	Λ_11
1-1 est	/ 13
Analysis of Variance (ANOVA)	
V. Conclusions	5-1
Theory of Planned Behavior (TPB)	
Organizational Theory of Planned Behavior (OTPB)	
Demographic Variables of Gender, Age, and Education	
Limitations of Study	5-6
Future Research	5-6
Questionnaire Development	5-6
Demographia Predictors	
	,
Summary	,
Appendix A: Survey Package	A-1
Appendix B: Second Iteration (Pilot Test) Data	B-1
Appendix C: Third Iteration (Main Study) Data	C-1
Appendix D: Survey Development	D-1
Appendix E: Statistical Analysis Software (SAS [©]) Code	E-1
Second Iteration (Pilot Test) SAS [©] Code Descriptive Statistics Reliability Third Iteration (Main Study) SAS [©] Code	E-1 E-1 E-3 E-6

Descriptive Statistics	E-6
Reliability	E-8
Factor Analysis	E-11
Regression (Hierarchical)	E-13
Regression (Sten-Wise #1)	E-16
Regression (Step-Wise #7)	
T Tost	E-21
Analysis of Variance (ANOVA)	E-23
Appendix F: Statistical Analysis Software (SAS [©]) Output	F-1
Second Iteration (Pilot Test) SAS [©] Output	F-1
Descriptive Statistics and Reliability	F-1
Third Iteration (Main Study) SAS [©] Output	F-8
Descriptive Statistics and Reliability	F-8
Factor Analysis	F-15
Regression (Hierarchical)	F-19
Regression (Sten-Wise #1)	F-28
Regression (Step-Wise #2)	F-32
T-Test	F-34
Analysis of Variance (ANOVA)	F-36
Appendix G: Raw Data	G-1
Appendix H: Attitude/Behavior Theory Development	H-1
Attitudes and Personality Traits Involved in Understanding Behavior.	H-1
Consistency in Understanding Behavior	H-2
The Use of Aggregation in Understanding Behavior	H-2
The Presence of Moderating Variables in Behavioral Analysis	H-3
Approaches Involved in the Attitude-Behavior Relationship	H-3
Conditioning and Modeling Approaches	H-4
Message-Learning Approach	H-7
Judgmental Approaches	H-8
Motivational Approaches	H-11
Attributional Approaches	H-18
Self-Persuasion Approach	
Combinatory Approach	
Combinatory Approacht	
Appendix I: Breakdown of Questions in Survey	I-1
Bibliography	Bib-1
Vita	Vit-1

ĺ

LIST OF FIGURES

FIGURE	PAGE
2.1 Theory of Reasoned Action (TRA)	
2.2 Theory of Planned Behavior (TPB)	
3.1 Organizational Theory of Planned Behavior (OTPB)	
4.1 T-Test Results for Behavior	
4.2 T-Test Results for Intention	

LIST OF TABLES

TA	BLE PA	AGE
2.1	Legislation / Policies Supporting Three Environmental Behaviors	2-61
3.1	Subscale Reliability for Third Iteration (Main Study)	3-12
3.2	Subscale Reliability Averages for Third Iteration (Main Study)	3-13
3.3	Varimax Rotated Factor Loadings	3-16
3.4	Variance Explained by Each Factor	3-18
4.1	Descriptive Statistics for Third Iteration (Main Study)	4-2
4.2	Hierarchical Regression	4-4
4.3	Step-Wise Regression 1	4-7
4.4	Step-Wise Regression 2	4-9
4.5	ANOVA Results for Education-Behavior Relationship	4-14
4.6	ANOVA Results for Age-Behavior Relationship	4-16
4.7	ANOVA Results for Education-Intention Relationship	4-17
4.8	ANOVA Results for Age-Intention Relationship	4-18

ABSTRACT

A questionnaire was randomly distributed to members of the United States Air Force at Wright-Patterson AFB, OH, with 307 returned. The survey was designed to test the Theory of Planned Behavior (TPB) model developed by Icek Ajzen, and the Organizational Theory of Planned Behavior (OTPB) model explored in this research effort. Validation and measurement of the TPB in relation to an organizational setting was accomplished, with the Organizational Theory of Planned Behavior (OTPB) developed. The behaviors and intentions individuals have towards recycling, energy conservation, and carpooling were examined, with the demographic variables of gender, age, and education also investigated. Regression analysis revealed that the TPB is supported by this research, while the OTPB is not well supported. However, the organizational commitment component of the OTPB does account for significant variance, and seems to support a portion of the OTPB. The demographic variables of gender, age, and education provide useful insight into the organization. Women show a greater tendency to carpool to work than men, and are more likely to participate in the behavior. Also, having some college education influences energy conservation behavior, energy conservation intention, and carpooling behavior at work. It was also shown that those who are older have a greater tendency to conserve energy at work, and are more likely to participate in the behavior.

viii

ENVIRONMENTAL ATTITUDES AND BEHAVIORS: AN EXAMINATION OF THE ANTECEDENTS OF BEHAVIOR AMONG AIR FORCE MEMBERS AT WORK

I. INTRODUCTION

Background Information

There has been much written about the rapid deterioration of the world's ecosystems, with a clear need to "achieve a balance between preserving the environmental integrity of fragile ecological systems and maintaining sustainable economic growth" (Stone, Barnes, and Montgomery, 1995: 595). Because the Department of Defense has a significant impact on the environment, it has become one of the nation's leaders in preserving environmental quality. With the growing concern for the environment developing in the early 1970s, there has been a great deal of legislation written. Among the most prominent legislation is the National Environmental Policy Act, which set the direction for all environmental efforts in the United States. All federal agencies are required to consider the environment in their decision-making process, and involve the public so that a balance can be struck between the needs of man and the needs of the environment.

There is growing evidence that individuals are becoming more personally responsible in terms of their habits and life styles, with environmental responsibility reaching unprecedented levels today (Stone, Barnes, and Montgomery, 1995). The presence of an acceptable attitude towards the environment is necessary in order to

achieve environmentally responsible behavior. Dunlap and Van Liere (1978) have proposed a new environmental paradigm, consisting of an attitude and certain behavior that would be engaged in by the environmentally concerned individual. This new paradigm replaced an older one that was based on humans dominating the environment, the Dominant Social Paradigm (DSP). The New Environmental Paradigm (NEP) suggested that man should live in harmony with nature and limits should be placed on economic growth. Because individuals are having more of an effect on the environment today than ever before, it is necessary to closely examine those aspects that are the most influential.

The general attitudes, gender, age, and education of individuals play a major role in influencing environmentally responsible attitudes and behaviors (Rockland and Fletcher, 1994; Schwartz and Miller, 1991; Abbott and Harris, 1985; Gutteling and Wiegman, 1993; Honnold, 1984). The general attitude of the public is concerned with protecting the environment and promoting economic growth. "Polls show respondents overwhelmingly support the environment and the regulations designed to protect it" (Line, 1995: 17). However, many are not willing to act on those beliefs. "Most say that individuals can do little, if anything, to help improve the environment" (Schwartz and Miller, 1991: 26). It is clear, however, that the environment is important to most, and that behavior is only slowly aligning with general attitudes.

Variation in attitudes concerning the environment vary by gender, education, and age. "Van Liere and Dunlap report that the empirical evidence on the relationship

between a person's sex and concern for the environment is mixed...however, women more so than men tend to support policies that regulate and protect the environment" (Steger and Witt, 1989: 627). There is a positive association of environmental knowledge and attitude with education, with environmental concern being inversely related to age (Arcury, 1990). The more a person knows about the environment and the issues that it presents, the more his or her attitude will be influenced towards protecting it. Also, the younger a person is, the more he or she is accepting of new ideas and views, not holding to the traditional dominant social order. Thus, those under forty have been shown to be more environmentally responsible than those over forty (Abbott and Harris, 1985).

The attitudes and behaviors of individuals in the workplace have moved toward increasing environmental responsibility since the first Earth Day in 1970. Regulatory pressures have been the primary influence on businesses, with the public playing an increasing role as well. Because individual and societal values with respect to environmental responsibility have increased since the 1970s, organizations that do not adopt environmental values will find their culture incongruent with their employees. This will influence morale, loyalty, and productivity (Hoffman, 1993). It is important to note that organizations are increasingly integrating environmental thinking at all levels in the decision-making process, with environmental commitment constituting a crucial element in an organization's performance and survival.

Achieving and demonstrating sound environmental performance is an increasing concern among organizations, especially in the context of increasingly stringent

legislation. The successful management of an organization requires management adaptation to significant forces that compel the organization to change. Implementation of an Environmental Management System (EMS) is a rapidly growing force that is affecting many businesses worldwide, and the International Organization for Standardization (ISO) has established the ISO 14000 standard to address this concern. The ISO 14000 standard is a series of standards which will help organizations develop and implement environmental management systems so that they may manage their impacts upon the environment. According to the ISO standard, an EMS is a part of an organization's overall management structure which addresses the immediate and longterm impact that its operations, services, and products have on the environment. Also, the EMS provides order and consistency in organizational practices to anticipate and meet growing performance expectations through continuous improvement. Having in place an ISO standard, specifically ISO 14001, will facilitate environmentally acceptable behaviors among individuals in the workplace, and further promote awareness programs.

The Air Force has taken steps to facilitate environmental awareness at the workplace, and has addressed four key areas of the environment: restoration, compliance, conservation, and pollution prevention. Budgets for restoration, compliance, conservation, and pollution prevention have all increased since the Air Force got involved in the environmental business, with the resource commitment ensuring that the Air Force complies with all federal, state, and local regulations (Allen, 1994). The Air Force has stressed programs aimed at the work place, with a focus on influencing attitudes and

behaviors (Air Combat Command, 1995). It is the individual who will have the greatest impact on mission-related activities, thus it is necessary to have strong environmental leadership at every level within an organization. Understanding the behavior of Air Force members in the areas of the environment is complicated, with behaviors not always corresponding to attitudes (Holt, 1995). Thus, the Air Force needs to focus on influencing the behavior of its workers rather than influencing their attitudes in order to achieve its mission and provide for a sustainable future.

There has been a great deal of research in the past 20 years on "environmentally responsible" and "socially conscious" behaviors, but little work relating attitudes and behaviors in an organizational context. Work has focused on identifying the demographic and personality characteristics of those most likely to engage in these behaviors. The most enduring avenue of research in this area, however, has been to examine how cognitive and psychosocial variables influence environmental behavior (Gooch, 1995; Hamid and Cheng, 1995; Lee, De Young and Marans, 1995; Scott and Willits, 1994; Ungar, 1994). Because of the growing support for the notion that conservation behavior is likely to be overdetermined (having multiple antecedents) and that specific conservation behaviors have distinctly different antecedents, the theory of reasoned action and the theory of planned behavior (Azjen and Fishbein, 1980; Azjen, 1985, 1991). The theory of planned behavior is a general model in which the theory of reasoned action determines

behavior by prior intentions, which themselves are affected by an individual's attitude toward the behavior and his or her subjective norm. The theory is designed to deal with behaviors over which people have a high degree of volitional control. The theory of planned behavior, however, explicitly recognizes the possibility that many behaviors may not be under complete control, and the concept of perceived behavioral control is added in the model prior to intentions (Ajzen, 1991). However, when behavioral control approaches its maximum and issues of control are not among an individual's important considerations, then the theory of planned behavior reduces to the theory of reasoned action. In those instances, neither intentions nor actions will be affected by beliefs about behavioral control, and the only remaining dispositions of interest are attitude toward the behavior and subjective norm (Ajzen, 1988). In this research study, the Theory of Planned Behavior (TPB) is used to better understand why Air Force members behave the way they do in relation to specific environmental behaviors (recycling, energy conservation, and carpools), and to see if prediction of these environmental behaviors is possible within an organizational context.

Research Objectives

The purpose of this research study was to develop a survey instrument based on the Theory of Planned Behavior (TPB) model developed by Icek Ajzen. Validation and measurement of the TPB in relation to an organizational setting was accomplished, with the Organizational Theory of Planned Behavior (OTPB) developed. A survey was developed from questions in the literature and from questions devised by this researcher to assess individual environmental behaviors at work, and to see how the antecedents of behavior predict the willingness of a person to act. In general, surveys addressing the environment are designed to measure environmental concern by determining opinions held by people, while environmental commitment itself is difficult to measure with behavioral scales. It is, however, generally believed that behavioral changes are required in order to solve environmental problems. Research generally shows that many individuals hold pro-environmental attitudes; however, only a few engage in ecologically responsible behavior (Dunlap and Van Liere, 1981; Gigliotti, 1992; Line, 1995; Holt, 1995).

This research study provides an opportunity for those in the position of setting policy to develop and target programs that will influence the behavior of Air Force members with respect to the environment. Also, an understanding of why Air Force members behave the way they do, specifically towards the environmental behaviors of recycling, energy conservation, and carpooling, is shown . Further, by examining the demographic variables, conclusions will be drawn on exactly which Air Force members show the most responsible behavior towards the environment. It should be noted that environmental problems cannot always be solved with the development of new technology or methods. "Understanding what Air Force members know, think, feel, and do regarding the environment, nature, and pollution is an important first step. This

information is critical in order to follow up with relevant and effective environmental programs" (Holt, 1995: 1-7).

II. LITERATURE REVIEW

The purpose of this chapter is to examine individual and organizational environmental attitudes and behaviors, with a focus on why people behave the way they do in relation to the environment. Public attitudes toward the environment have steadily increased since the late 1960s, with environmental concern maturing dramatically in the late 1960s, reaching a peak with the first Earth Day in 1970. Concern declined considerably in the early 1970s, but saw a gradually increase for the remainder of the decade. The 1980s saw a significant and steady increase in both public awareness of the seriousness of environmental problems and in support for environmental protection, even though President Reagan's administration curtailed many government environmental programs. Public concern for environmental quality reached unprecedented levels on Earth Day in 1990, and interest is still quite high (Fischer and Schot, 1993). The supportive nature of public opinion provides a valuable resource for the environmental movement, with the future of the movement depending heavily on the degree to which environmentalists can effectively mobilize that support. The environmental movement has been extremely successful in attracting and maintaining, for two decades, the public's attention to and endorsement of its cause. However, there are many varying attitudes and behaviors in the public, especially among United States Air Force personnel. Attitudes do not always correspond to behaviors; thus, it is imperative that the USAF look at programs that influence behavioral changes rather than just attitude changes (Holt, 1993).

Areas of investigation in this study include environmental attitudes, general attitudebehavioral theories, organizational perspectives, and the Department of Defense (DoD) focus in relation to the environment. This study provides insight into why people, especially Air Force members, behave the way they do.

Environmental Attitudes

Attitudes that people have towards the environment have steadily increased since the first Earth Day in 1970. By examining the general attitudes and measurements, the Dominant Social Paradigm (DSP) and New Environmental Paradigm (NEP), and demographic characteristics, a better understanding of the attitude-behavioral relationship will be shown.

General Attitudes and Measurements. The general attitude of the public concerning the environment is one centered around protecting the environment and fostering economic growth. The public remains committed to the "core value" of a clean environment, but their attitudes have evolved and become more complex over time. A large majority of the public believes that there is no inherent conflict between protecting the environment and fostering economic growth, and that technology holds the key to solving environmental problems. "Polls show respondents overwhelmingly support the environment and the regulations designed to protect it" (Line, 1995: 17). President Clinton wrote that "you don't have to sacrifice environmental protection to get economic growth. The choice between jobs and environment is a false one: We can have both"

(Rockland and Fletcher, 1994: 39). This view is how most people view the environment/economy relationship. A survey by Times Mirror Magazines has found that for three consecutive years most respondents believe that environmental protection and economic development go hand in hand. Almost everyone believes we can find a balance that allows us to enjoy economic progress while making sure our rivers, lakes, mountains, and wildlife are protected (Rockland and Fletcher, 1994: 39). And what if the public is faced with a choice between the environment and the economy? The "environment will win, hands down: 6 out of 10 Americans say that environmental protection is more important than economic development" (Rockland and Fletcher, 1994: 39). American attitudes concerning how the environment should be used can be classified in two main categories: Conservationists believe that through sound management we can both protect and enjoy the use of natural resources; preservationists believe that the only way to protect the environment is to put it off limits to the public. The poll conducted by Times Mirror Magazine shows that roughly 72 percent of respondents take a conservationist stance, with only 20 percent agreeing with the preservationist position (Rockland and Fletcher, 1994: 40). The survey also shows that most respondents believe water pollution is the greatest problem facing the environment, and that the federal government should be putting more money toward environmental programs. Most respondents support stricter environmental regulations and an increase in federal funding of environmental efforts. Most respondents do not believe, however, that environmental protection is an optional indulgence that can be cut back with the rise and fall of economic cycles (Rockland and

Fletcher, 1994: 40). One in five Americans vote with respect to the environment when they go to the polls, enough to carry most elections. Overall, the American public is seeking sound, pragmatic solutions to environmental problems that balance environmental and economic concerns. "In this new, positive way of living, environmental protection is no longer seen as a hindrance to economic development but rather as a forerunner of the next industrial revolution" (Rockland and Fletcher, 1994: 40).

The size of the gap between environmental attitudes and behavior varies widely. In the Roper Organization's report on the environment, a clustering technique is used to divide Americans into five behavioral segments, based primarily on whether or not they engage in a list of "environmentally friendly" practices (Schwartz and Miller, 1991: 29). The first of the environmental consumer groups are known as the "True-Blue Greens," accounting for 11 percent of the adult population. Members of this group are unique because their behavior reflects their very strong environmental concerns, and they are the leaders of the "green movement" among the general population. The "True-Blue Greens" also tend to earn more and have more education than most Americans. The "Greenback Greens" are the next group, accounting for 11 percent of the adult population. They are the group most willing to pay more money for environmentally safe products, but will not give up their free time or desire for convenience. The "Sprouts" are a key group that hold ambivalent views about environmental regulations, making up 26 percent of the adults. They are also less certain about which side to take when confronted with the trade-off

between protecting the environment and encouraging economic development, but they are also more inclined to adjust their lifestyles than any other group except the "True-Blues." The "Sprouts" are a key segment because their political and social views closely reflect those of most Americans, and they usually are the "swing" group in elections. The "Grousers" are the fourth environmental consumer group identified by Roper, holding 24 percent of the adult populations views. The "Grousers" are indifferent to the environment, rationalizing those indifferences. They see consumer indifference as the mainstream attitude, and exhibit a lower level of commitment than the national average. The "Basic Browns" are the fifth and largest of the environmental consumer groups, accounting for 28 percent of adults. They are characterized by a virtual absence of any pro-environmental activities, but unlike the "Grousers," they do not rationalize their behavior or point to the shortcomings of other people. The "Basic Browns" are the group least likely to support government environmental regulations, and are the most socially and economically disadvantaged group (Schwartz and Miller, 1991: 29 - 34). In the study by the Roper Organization, "the greenest consumers, the True-Blues and the Greenbacks, have a median household income of almost \$32,000, or 40 percent higher than the average household income of an environmentally 'indifferent' person. Solid majorities of the most environmentally active Americans have been to college, while majorities of the least active groups have not" (Schwartz and Miller, 1991: 34). Deep public concern about environmental problems has been reached, but voters have been largely unwilling to take the next step and approve sweeping changes. "The attitudinal shifts of the 1980s

should gradually change environmental behavior in the 1990s...setting the stage for the 'greening of America' " (Schwartz and Miller, 1991: 35).

Human activities that interact with Earth's natural systems are driven by three fundamental factors that relate to the general attitudes expressed by the public: the number of human beings and their distribution around the globe; human needs and desires, which provide individuals and societies with motivations to act; and the cultural, social, economic, and political structures that shape and mediate their behavior (Gigliotti, 1992: 16). The second factor concerning human needs and desires is analyzed by Gigliotti, resulting in some interesting conclusions. It appears that environmental education has succeeded largely in increasing concern about the environment and about pollution problems caused by industry, while the message of the individual's role in environmental problems is just beginning to be sounded. It is not surprising then that the public is not necessarily ready to make personal sacrifices. A general trend toward making personal sacrifices is not likely to develop (Gigliotti, 1992: 23). Instead, when specific lifestyle changes or personal sacrifices are needed, the educational message must be specific - explaining the nature of the problem, the relationship of individual actions to the problem, and the specific individual response needed. Also of interest, people who believe that technology and growth will solve environmental problems are less likely to make personal sacrifices (Gigliotti, 1992: 23). A belief in growth and technology may be an impediment for some people to accept the new target of environmental effort, namely changing personal lifestyles. The implication for environmental education is that, before

people will be ready to make personal sacrifices for environmental reasons, the connections between today's lifestyles and environmental problems must be better understood.

Different societies have different attitudes concerning the environment, with the West stressing individualism and the East stressing collectivism. There appears, however, to exist a common faith among industrial countries in progress, in the necessity and advantages of growth, and in societal adaptation as a solution to problems in the biophysical world (Gooch, 1995: 514). Dunlap and Van Liere found that demographic variables only have a limited use in explaining environmental concern, and that even the most successful predictors are only modestly correlated (Dunlap & Van Liere, 1980: 192). Inhabitants of the Baltic States studied in Gooch's survey expressed great concern for local environmental problems while at the same time reporting relatively low support for global problems.

Majorities typically see environmental problems as serious, and the upward trend in such attitudes over the past decade is unmistakable. Most see environmental quality as deteriorating and likely to continue to deteriorate. Not only are environmental problems seen as more serious today, but they are increasingly viewed as representing a threat to human well-being (Dunlap and Scarce, 1991: 651). Support for government action on behalf of environmental quality has risen substantially, particularly in the last few years. A large majority believes that government is "spending too little" on the environment, and majorities say that government regulations have "not gone far enough" and that there

is "too little" government regulation in the area of environmental protection (Dunlap and Scarce, 1991: 652 - 660). Public support for government action on specific types of environmental problems is also strong, especially since the public sees government as having primary responsibility for environmental protection. There is an increasing preference for environmental quality over economic growth. This trend has grown so markedly over the past decade that environmental protection is now endorsed by large majorities and economic growth by only small minorities (Dunlap and Scarce, 1991: 661 - 665). A similar trend is apparent in support of environmental protection "regardless of the cost." An increase in the public's expressed willingness to pay higher prices for goods and services, to the point of absorbing the costs of environmental protection, has clearly become the majority position. In summary of Dunlap and Scarce's research, the trends indicate that public concern for environmental quality has reached all-time highs. While questions about the strength of environmental concern remain unclear, growing majorities see environmental problems as serious, worsening, and an increasing threat to human well-being; strong and growing majorities support government action to protect environmental quality; and majorities generally side with environmental protection over economic growth as well as indicate a personal willingness to pay the costs of such protection.

According to research conducted by Robert Rohrschneider, attitudes of Europeans toward environmental protection is consistently favorable (Rohrschneider, 1988: 347 -367). His findings indicate that citizens hold favorable attitudes toward environmental

protection because their value priorities have changed, and because they are worried about the true state of ecological problems. Self-interests of the Europeans have become less important as sources of opinions than they have been in the past. In similar research, Liisa Uusitalo found high environmental concern and environmentally favorable attitudes do not automatically lead to environmentally beneficial behavior (Uusitalo, 1990: 211 - 226). Despite desiring the collective good, environmental quality, each individual often tries to shun personal sacrifices and wishes that others will bring about the collective good. Also, a person's activity in favor of environmental protection is usually increased if he or she can also attain some private side-benefits from the activity in addition to contributing to the collective goal. This is illustrated by the observation that those who suffer from environmental hazards are more willing to do something and to support collective measures.

The most comprehensive study conducted on environmental attitudes and behaviors was undertaken by the Gallup International Institute. They conducted a survey representing the findings from 24 major nations around the world, accounting for approximately 40 percent of the world's population (Dunlap et al, 1993). Their findings are based on representative national samples of 1000 or more citizens interviewed in person, in the home, by affiliates of Gallup International. Results of the survey indicate a deep concern over environmental problems, a willingness among both poor and rich nations to give priority to environmental protection over economic growth, a majority endorsement of the win-win paradigm, a deep concern about the loss of plant and animal

species, an acceptance of responsibility for environmental problems in general, developing countries willingness to help other developing countries, a belief that individual citizen efforts can contribute significantly to a healthier planet, and the citizens of the world are more deeply concerned and ready to take action on the environment than are their leaders (Dunlap et al, 1993). Overall, the Health of the Planet Survey demonstrates that environmental awareness and concern have spread throughout the world, reaching people in the poorer, developing nations as well as in the wealthier, industrialized nations. Clearly, citizens in all nations appear receptive to the goal of strengthening environmental efforts around the world.

General attitudes of the public concerning the environment were addressed internationally by Louis Harris and Humphrey Taylor (1990) in their article "Attitudes to Environment." Among other things, the survey measured: awareness and perceptions of environmental issues; levels of concern about environmental issues; perceptions of causes of pollution and environmental degradation; attitudes to global and regional interdependence; and attitudes to possible policies for addressing environmental problems (Harris and Taylor, 1990: 33). There was deep and widespread concern about the quality of the environment among all nations, with most countries rating the environment in their countries as only fair or poor. Most believed that the environment would become worse over the next half century, with water pollution bringing the most concern. Almost all of the countries believed that their governments were spending too little to protect the environment or prevent pollution, and that protecting the environment should be done in

cooperation with other countries. Stronger action by international organizations, such as the United Nations, was called for, since most felt that individual governments were not doing enough. A willingness to pay higher taxes was expressed, but only if the extra revenue were spent to protect the environment. Other important findings include: man, not nature, was almost universally seen as the cause of environmental problems; industrial activity and government failure or inertia were seen as the most important causes of environmental degradation; most people, although pessimistic, were not fatalistic; the attitudes of the leaders were, on the whole, fairly close to those of the public; and women were generally somewhat more aware of, or more concerned about, environmental degradation than men (Harris and Taylor, 1990: 36). The environment is a global political issue which governments cannot afford to neglect. "In most countries, political survival now demands sensitivity to public opinion on environmental matters" (Harris and Taylor, 1990: 37). The general attitudes of the public everywhere are aroused and are demanding more from their governments.

Dominant Social Paradigm (DSP) and New Environmental Paradigm (NEP).

An examination of the Dominant Social Paradigm (DSP) and New Environmental Paradigm (NEP) provide the necessary theories involved in understanding the shift in environmental attitudes in the late 1960s, and the reason why environmental concern still remains a high priority today. The DSP constitutes a worldview in which humans dominate the environment. Nature is viewed as a resource that can be controlled, a belief predominantly held by the Judeo-Christians that humans were given dominion over the earth. In addition, the DSP assumes that a free market is the best form of political economy for allocating scarce resources. Devotion to the market economy is paired with the belief in the need for ever-expanding growth, with growth sustained by an availability of resources. Faith in science and technology is an underlying belief in the paradigm that all shortages of natural resources can be overcome. Scientific management will guide the DSP, relying on division of labor and quantification to further its goals. "The ordering of society in the context of a worldview managed by science is believed to be best accomplished in a centralized manner, whereby power and authority are greatly concentrated at the top" (Abbott and Harris, 1985 - 1986: 220).

A major theme in the literature on environmental problems in the United States is that such problems stem from our society's traditional values, beliefs, and ideologies. Research by Riley Dunlap and Kent Van Liere (1984) examined the empirical linkage between commitment to the DSP and concern for protecting environmental quality. The key dimensions of the DSP were confirmed using factor analysis, with the results of the bivariate and multivariate analyses indicating not only that commitment to the DSP is negatively related to environmental concern, but that commitment to the DSP appears to be a major factor influencing environmental concern (Dunlap and Van Liere, 1984: 1015). DSP as a whole is negatively related to concern for environmental protection, with some of its dimensions appearing to be more important than others in influencing environmental concern. Overall, the results of the study by Dunlap and Van Liere "strongly support the hypothesis that commitment to the dominant social paradigm leads to lower levels of concern for environmental protection, as the DSP was found to explain considerable variation in several indicators of environmental concern" (Dunlap and Van Liere, 1984: 1023). The results substantiate the claim that traditional American values and beliefs pose barriers to the development of a strong pro-environmental orientation, an important claim that has heretofore lacked a solid empirical foundation. While the DSP promotes the use of nature for the good of man, the NEP favors a harmonious relationship with nature.

According to the Kuhnian theory of paradigmatic change, the dominant paradigm will remain until enough evidence is discovered that does not fit into its context. The transition to a more ecologically sound worldview which contradicts the values outlined in the DSP has occurred (Geller and Lasley, 1985: 9). The New Environmental Paradigm (NEP) recognizes the position of humans within nature, the concept of scarce resources, and the rejection of the commitment to economic growth. More emphasis is placed on nonmaterial measures of well-being, such as community, participation in that which effects our lives, and human skills (Abbott and Harris, 1985 - 1986: 221). Unlike those values espoused by people with the dominant view, these beliefs are seen to be best pursued in decentralized social and political communities.

In an attempt to empirically examine the paradigmatic shifts, Dunlap and Van Liere (1978) developed the New Environmental Paradigm scale. The purpose of the effort by Dunlap and Van Liere was to "report a preliminary effort to determine the extent to which the public accepts the content of the NEP and, in doing so, to develop an

instrument to measure the New Environmental Paradigm" (Dunlap and Van Liere, 1978: 11). It was determined that the general public tends to accept the content of the emerging environmental paradigm much more than what had been expected. Dunlap and Van Liere state that "research on the relationship of the NEP to other attitudes and actual behavior is quite important, especially since we fear some may draw overly optimistic conclusions about the future of public commitment to environmental quality given the surprising degree of public endorsement of the NEP" found in their study (Dunlap and Van Liere, 1978: 16). It is interesting to note that the two authors believe it would be naive to expect individuals who endorse the NEP to consistently engage in behaviors congruent with this new world view. This is very insightful, especially since it has been shown that attitudes and behavior do not consistently mesh (Holt, 1995). The multi-dimensions of the scale developed by Dunlap and Van Liere (1978) were confirmed by Noe and Snow (1990), as well as by Geller and Lasley (1985), but differences may occur when comparing various populations. Unlike other scales in the social sciences, the NEP scale has had limited exposure and testing. Only through repeated testing across various populations will confusion and contradictory findings about the scale be cleared, and the greater goal of assessing paradigmatic shifts begin. The NEP scale still represents an advanced tool for measuring environmental concern when compared with the techniques available only a decade ago.

Demographic Characteristics. The attitudes of the public concerning the environment vary by gender, education, and age. "Research has demonstrated that

perceptions of risk are influenced by the qualities of a hazard - whether exposure to it is voluntary or controllable, whether its adverse consequences can be catastrophic, whether its benefits are distributed fairly among those who bear the risks, and so on" (Flynn et al, 1994: 1101). Men tend to judge risks as smaller and less problematic than do women. Perceptions of risk are higher for women for most hazards as well. A study by Abbott and Harris found that the differences between men and women were not "statistically significant" (Abbott and Harris, 1985 - 1986: 226). The lack of difference in attitudes between the genders was related to the changing role of women in Western society. As women have become more accepted in previously male-dominated occupations, their frame of reference has become more similar to that of men. It is stated that "positions as contributors and consumers in modern society, or as part of our Western culture, could be a more important influence on environmental attitudes than other differences in socialization and experience between men and women" (Abbott and Harris, 1985 - 1986: 226). Because Abbott and Harris's views were expressed almost ten years ago, the notion that women are more concerned about the environment than men today is a more widely accepted view.

In general, not much research has been conducted to investigate the relation between demographic characteristics and reactions to environmental hazards. However, it has been consistently found that women react differently to environmental hazards than men (Gutteling and Wiegman, 1993: 433). Women assess environmental hazards as more unacceptable and threatening, and report more feelings of insecurity than men.
Gender attitudes are related to formal education. Formal education can be of importance for the reaction to environmental hazards because these hazards are very complex and difficult to understand, and reacting to them may very well be based on the subjects' level of formal education. At present, little is known about the relation between formal education and reactions to environmental hazards (Gutteling and Wiegman, 1993: 435 -440). Insight into the relation between gender and formal education and reactions to environmental hazards is rather fragmentary, which to a great extent is caused by the fact that most studies have concentrated on one particular type of hazard. People who have less to gain from technological developments (i.e., the lower educated persons) have a less positive attitude (Gutteling and Wiegman, 1993: 446 - 447).

Van Liere and Dunlap report that the empirical evidence on the relationship between a person's sex and concern for the environment is mixed - some studies report modest correlations between being female and environmentalism while others conclude that differences based on sex are not relevant. In contrast, Milbrath concludes that studies using gender as a variable show that women are more environmentally oriented than men. Similarly, national opinion surveys show that women more than men tend to support policies that regulate and protect the environment (Steger et al, 1989: 627 - 635). Women, to a much greater degree than men, fear the continued use of nuclear power. This includes an unwillingness to build more nuclear power plants and a willingness to close down existing plants. The low support expressed is due to concerns for safety, and an even greater uncertainty for the further development of the technology (Brody, 1984:

209 - 228). Women also, more than men, are likely to perceive higher risks to health and the environment from pollutants. There are a number of ways to explain women's high perceptions of risk and their protective stance toward the environment (Steger et al, 1989: 630 - 643). One is that women have been socialized to be more compassionate, nurturing, and protective than men. Generally, the evidence on gender and environmentalism, although not conclusive, leads to the expectation that women are more likely than men to support the "spaceship earth" ideas of the New Environmental Paradigm. It seems likely that women will be inclined to express attitudes consistent with a general disposition to be protective and nurturing toward both humans and other living things. The sex of the individual has an effect on the pro-environmental measures of protective orientations, perceptions of risk, support for the NEP, and support for a moratorium on acid rain causes. Women's socialization patterns produce attitudes and beliefs that are easily aligned with those expressed by environmentalists. In contrast, men's environmentalism may be more directly linked to policy-relevant knowledge, but this knowledge may not provide as strong a motivation to support environmental causes as does women's socialization.

Two lines of argument are commonly presented to explain sex-role differences in attitudes toward the environment (Arcury et al, 1987: 463 - 466). The first is based on the proposition that Western society views the environment as a resource to be conquered and developed by science and technology for the primary use of human industry. The second states that the male market mentality is geared toward economic growth no matter

what the environmental costs. Thus, women, being traditionally excluded from the marketplace, accept the goals of economic growth but less confidently view the harmful toll on the environment in the process. The traditional view held is that women are more concerned about the environment due to their socialization to the roles of mother and nurturer, and men are less concerned due to the emphasis on the scientific and technological in their socialization (Arcury et al, 1987). However, women tend not to be more concerned about acid rain, and men tend to be more knowledgeable about acid rain (Arcury et al, 1987). The results of the study provide for "no support for the theories of sex differences in attitude toward environmental issues based on sex role socialization that predict women are more concerned about the strength of sex role socialization theories cannot be completely evaluated by a single test.

"Women have stronger beliefs than men about consequences for self, others, and the biosphere, but there is no gender difference in the strength of value orientations" (Stern et al, 1993: 322 - 325). Empirical research on gender and environmental concern does not report consistent findings. In some studies, women appear more concerned about the environment, whereas in others the gender relationship disappears or is reversed. Mohai's (1992) recent review suggests that women express more concern than men in local environmental issues and that the difference is smaller for national issues. He also notes that women are less likely than men to take political action to protect the environment. Women tend to see environmental quality as more likely than men, taking into account consequences for personal well-being, social welfare, and the health of the biosphere. When these gender-differentiated belief systems are taken into account, there is no remaining direct effect of gender on either political action or willingness to pay. Gender differences in environmentalism are the result of gender differences in beliefs about the effects of environmental problems (Stern et al, 1993: 340 - 345). Women are apparently more accepting of messages that link environmental conditions to potential harm to themselves, others, and other species or the biosphere than are men. Women tend to see a world of inherent interconnections, whereas men tend to see a world of clearly separate subjects and objects, with events abstracted from their contexts.

According to Paul Mohai (1992), the magnitude of the differences in concern for the environment is not great between the sexes. Even though women indicate somewhat greater concern, rates of environmental activism for women are substantially lower than for men. No firm conclusions can be drawn about the effects of gender on concern about general environmental issues. What information exists tends to show that even though women may be somewhat more concerned about the environment than men, they are less politically active on these issues. Why women's concerns about the environment should not translate proportionately into activism is unknown (Mohai, 1992: 1 - 10). Whether women, in reality, are more concerned about the environment than men has not been determined conclusively by empirical studies. The clearest and strongest evidence for gender differences has come from studies examining concerns about local environmental issues such as nuclear power and acid rain, with women tending to express greater

concern than men. Results of Mohai's study indicate that women are somewhat more concerned about the environment than men. However, the differences are modest. Although family nurturer and economic provider explanations have been offered to account for gender differences in concern, little evidence to support these explanations exists. Also, even though women may be somewhat more concerned about the environment than men, they are substantially less likely to be environmentally active. No explanation of this gap currently exists.

A great deal of theoretical uncertainty exists regarding gender differences in environmental concern. Several researchers have found women to be more concerned than men (Brody, 1984; Mohai, 1992; Van Liere & Dunlay, 1980), while some have found men to be more concerned than women (Arcury, Scollay, & Johnson, 1987). In a study conducted by MacDonald and Hara (1994), the two found that males were slightly more likely than females to express environmental concern, leading to further uncertainty already in the literature.

People generally seem to have a positive feeling toward the environment, but often do not know much about specific topics or issues, nor do they often practice positive behaviors concerning environmental preservation, protection, and conservation. Research conducted by Thomas Arcury indicates that there is a positive association of environmental knowledge and attitude with education and urban residence (Arcury, 1990: 300). Environmental concern is found to be inversely associated with age. Environmental knowledge, on the other hand, is associated with gender, with males being

more knowledgeable; the association of concern to gender and income has been inconsistent (Arcury, 1990: 300 - 304). Attention to environmental content, levels of environmental awareness, environmental knowledge, environmental concern, and subsequent behaviors have been shown to be positively intercorrelated (Ostman and Parker, 1987: 4). Education appears to have good utility as a predictor of environmental knowledge and subsequent behavior, while education and age are not related (Ostman and Parker, 1987: 8). According to Abbott and Harris (1985 - 1986: 225), "education does not correlate with scoring on the NEP scale." It is the focus and basis of the education rather than the level of education one attains that plays a role in the adoption of values. The lack of a relationship between environmental values and education could be attributed to the different types of education followed at the advanced level (Abbott and Harris, 1985 - 1986: 225). It was also found that data did not substantiate the concept that those with more money are more likely to be concerned with higher order needs, which might promote development of NEP values. Instead, environmentalism may be viewed as an important consideration at all levels of need. "At the lower levels, environmental quality is important for food, air, and water. At higher levels, the environment can be seen as an aesthetic good" (Abbott and Harris, 1985 - 1986: 225). Thus, environmentalism is not just an elite concern, but a concern expressed by all levels of society.

"Acceptance of the NEP among generational age groups was significantly higher for those under the age of forty than for those over that age" (Abbott and Harris, 1985 -

1986: 226). Those over forty hold similar NEP values to their younger counterparts, except where social structure is concerned. The general environmental values are embraced by young and old alike, but the degree to which they accept values that have traditionally ordered community relationships varies (Abbott and Harris, 1985 - 1986: 227). Those under forty do not reject the values of their elders; rather, they exhibit less conviction than their elders to values that order their lives. This degree of acceptance might cause some to attribute differences to the aging process. "In this view, the young in a society are not yet fully integrated into the dominant social order, and thus do not accept as strongly the values of their elders. However, they develop more traditional values as they age" (Abbott and Harris, 1985 - 1986: 227). It appears that the younger people are more accepting of the concepts embraced by "radical" environmentalists, while older people prefer the ideas of "traditional" environmentalists.

"Over the period 1973 - 1980, environmental concern declined in all age groups" (Honnold, 1984: 4 - 9). It was shown by Julie Honnold (1984) that aging and cohort effects operate in the same direction, with younger age groups showing higher environmental concern. The decreased levels of environmental concern in almost all age groups during the 1970s were the result of period effects rather than socio-biological aging processes or shared historical experiences. It is interesting to note that as young adults assume positions of social responsibility, their environmental concern diminishes (Honnold, 1984: 8 - 9). For the 1990s, this concern appears to remain unchanged, following the pattern of greatest concern in the youngest citizens (Arcury, 1990).

General Attitude-Behavioral Theories

The study of attitudes and behaviors crosses many academic disciplines, and is of particular interest because of its relevance to and pervasiveness in our daily lives (Appendix H). In order to better understand attitudes and behaviors, it is important to know the operational definitions of the two. There is widespread agreement among social psychologists that the term attitude refers to a general and enduring positive or negative feeling about some person, object, or issue (Petty and Cacioppo, 1981). Attitudes serve as convenient summaries of beliefs, which is the information a person has about other people, objects, and issues. Behavior is defined as being all of those activities of an individual which can be noted by another person, with or without the aid of instruments (Edwards, 1968). Behaviors may also have positive, negative, or no evaluative implications for the target of the behavior. The kinds of behaviors a person is likely to engage in can be predicted semi-accurately by knowing his or her attitudes, thus it is important to understand the relationship between attitudes and behavior, and the various theories developed. According to Sheldon Ungar (1994), the environment is a domain in which attitudes do not predict behaviors very well. The results are not the result of poor methodology, rather the environment is a synthetic macrocategory that does not fulfill any of the three criteria that are necessary for strong associations between attitudes and behaviors (Ungar, 1994). Attitude-behavior models misconceive the social-structural basis of most environmental impacts and should be replaced with a more macro approach that focuses on collective actions.

Much of the empirical research done in environmental sociology focuses on the study of environmental attitudes (Ungar, 1994). This research can have a twofold significance: at the individual level, attitudes are conventionally regarded as a means of predicting or changing environmental behaviors; at the collective level, attitudes are aggregated into public opinion, which as part of the process of democratic discourse is supposed to influence public policy toward the environment (Ungar, 1994). With the amount of research devoted to environmental attitudes and attitude change, one might expect that these would be modestly if not strongly related to behavior. The evidence, however, indicates that this is not the case, with only a small part of the data collected on environmental attitudes including related measures of environmental behavior. While direct evidence on behavior change is limited, the available data does not appear to be consistent with expressed attitudes or behavioral intentions. In their review of United States polls, Dunlap and Scarce (1991) observed that while there has been some change in personal behavior, there are few "substantial" changes in lifestyle.

Turning to studies that directly measure Attitude-Behavioral correlations in the environmental realm, most report correlations that are weak or at best modest (Ungar, 1994). The A-B gap is best stated by the fact "most people say they are willing to do a great deal to help curb pollution problems and are fairly emotional about it, but in fact, they actually do very little and know even less" (Ungar, 1994: 288).

The three criteria that must be met in order to find high A-B correlations are: the use of sophisticated measurement models for attitudes, such as multi-item indexes; the

adequacy of the behavioral criterion, with the A-B measure stipulating a need for high specificity and conceptual congruency and the A-B consistency increased when both variables are measured at the same level of specificity; and include "other variables" that affect the A-B relationship, such as behavioral intentions and attitudes toward the act (Ungar, 1994).

Attitudes help predict behavior, and express important aspects of an individual's personality (Petty and Cacioppo, 1981). There are four functions that attitudes might serve for a person: ego-defensive function, which are attitudes held because they help people protect themselves from unfaltering truths; value-expressive function, which occurs when holding a certain attitude allows the person to express an important value; knowledge function, which allows people to better understand events and people around them; and utilitarian function, which are attitudes that help people to gain rewards and avoid punishments (Petty and Cacioppo, 1981). Different people may hold the same attitudes, but the attitudes may serve very different purposes.

Because attitudes serve a number of useful functions, it is important to develop techniques to measure those attitudes so that the determinants of attitude (and attitude change) can be determined. The procedures for measuring attitudes can be divided into two major categories: direct and indirect (Petty and Cacioppo, 1981). Direc*t* procedures measure attitudes by having a person provide a self-report of his or her attitude. Indirect procedures, on the other hand, attempt to measure a person's attitude without him or her knowing it. The types of direct measures include the Thurstone Scale, Likert Scale,

Semantic Differential, and the One-Item Rating Scale (Petty and Cacioppo, 1981). All of these scales make the assumption that people are perfectly willing and able to tell you about their attitudes. The various types of indirect measures include Disguised Self-Reports, Behavioral Indicators of Attitudes, and Physiological Indicators of Attitudes (Petty and Cacioppo, 1981). It is important to note that when reliability and validity checks are made on the various direct and indirect procedures, the indirect procedures are often found to be inferior to the direct attitude scales (Petty and Cacioppo, 1981). Most researchers therefore prefer the direct techniques, especially since greater precision and sensitivity can be accomplished.

There is a need to achieve a balance between preserving the environmental integrity of fragile ecological systems and maintaining sustainable economic growth. Environmental responsibility is thus needed, and according to Stone, Barnes and Montgomery, environmental responsibility is a "state in which a person expresses an intention to take action directed toward remediation of environmental problems, acting not as an individual concerned with his or her own economic interests, but through a citizen consumer concept of societal-environmental well-being. Further, this action will be characterized by awareness of environmental problems, knowledge of remedial alternatives best suited for alleviation of the problem, skill in pursuing his or her chosen action, and possession of a genuine desire to act after having weighed his or her own locus of control and determining that these actions can be meaningful in alleviation of the problem" (Stone, Barnes, and Montgomery, 1995: 601).

Conservation behavior has grown in recent years, with the notion that behavior is likely to be overdetermined (having multiple antecedents) and that specific behaviors may have distinctly different antecedents (Cook and Berrenberg, 1981; Oskamp et al, 1991). It has been documented that an increasing amount of waste materials has been recycled since the mid-1970s, and that a conservation behavior that is highly repetitive will be adopted based on past experience with that behavior (Macey and Brown, 1983). The effect that prior behavioral experience has on subsequent behavior, even when the subsequent behavior is in a new setting, is strong (Lee, De Young, and Marans, 1995: 399). Past behavior was found by Hamid and Cheng to have a direct, independent, and significant effect on both behavioral intentions and on actual behavior, with the results of their study indicating that past behavior predicts best what people intend to do (Hamid and Cheng, 1995: 694). However, there are constraints, known as behavioral specificity, that the prior experience must be with the same behavior as that being predicted or changed. Programs attempting to increase participation are advised to assess employees' prior experiences, and one can determine the behaviors with which employees are most familiar through the use of surveys, interviews, and focus groups (Lee, De Young, and Marans, 1995: 399). The initial focus of a new office-based program should be directed at those behaviors with the greatest familiarity to the employees.

There has been extensive research on the use of monetary incentives as reinforcers of recycling behavior, but there is no clear consensus on the durability of the technique. Monetary reinforcers are generally reliable at initiating conservation behavior (Geller,

Winett, and Everett, 1982), although some studies report contrary results (McClelland and Canter, 1981). It has been found recently that organizations should be cautious against using economic motivations to encourage conservation behavior in the office setting (Lee, De Young, and Marans, 1995: 400). Economic motivation is not among the powerful predictors of office-based behavior, and it seems that it works against promoting conservation behavior in such a setting by reducing an individual's commitment to such behavior and diminishing the intrinsic satisfaction (Lee, De Young, and Marans, 1995: 400).

There has been a wide range of noneconomic motivational predictors of conservation behavior as well, stressing a preservation of natural resources and a sense of direct personal fulfillment and satisfaction (Vining and Ebreo, 1990; Vining, Linn, and Burdge, 1992). People derive noncontingent enjoyment in carrying out many ordinary repetitive behaviors, including some that involve resource conservation (De Young, 1985-1986, 1986; De Young and Kaplan, 1985-1986). Convenience is also an important factor influencing behavior. An organization must provide the essential infrastructure before such behavior can become commonplace, but beyond the bare essentials, an organization can encourage a high level of participation by the careful design and management of its physical setting (Marans, Lee, Guagnano, and De Young, 1992; Marans and Lee, 1993).

Organizational commitment, a social norm, and individual commitment, a personal norm, both act to increase office-based conservation behavior (Lee, De Young,

and Marans, 1995: 399). However, organizational commitment need not affect individual commitment to change behavior, it seems able to directly modify behavior (Lee, De Young, and Marans, 1995: 399). This is important because organizations have an enormous influence in setting the level of organizational commitment; less so in altering individual commitment. Organizations must focus their energies on creating a coherent and strong policy supporting conservation behavior if they want to increase such behavior.

The theories of social psychologists are important in this study because of their longstanding contribution to the analysis of the relationship between attitudes and behavior.

LaPiere's now-famous 1934 study raised the possibility that there was virtually no agreement between attitudes and behavior. Schuman and Johnson (1976) point out that research since LaPiere has shown, instead, that varying levels of congruence between attitudes and behavior are found depending on the behavior studied and the features associated with it. (Wall, 1995: 469)

Various studies aimed at explaining the attitude-behavior relationship have found that the relationship could be improved if attitudes and behavior were measured at the same level of specificity, if strength of attitudes were considered, and if behavioral intentions, situational factors, and reference groups were included in models explaining behavior (Ajzen and Fishbein, 1980; Wall, 1995).

The trend in recent attitude-behavior research has been to conceive behavioral intentions (BI) as a mediator between attitudes (A) and behavior (B). Five hypotheses were proposed by Kim and Hunter (1993) on the attitude-behavior relationship: A-BI

correlation is higher than A-B correlation, BI-B correlation is higher than A-B correlation, A-BI correlation is higher than BI-B correlation, the variation in BI-B correlations is greater than that of A-BI, and attitudinal relevance affects the magnitude of the A-BI correlation. A series of meta-analyses, integrating the findings of 92 A-BI correlations (N=16,785) and 47 B-BI correlations (N=10,203) were performed by Kim and Hunter (1993), with the results consistent with all five proposed hypotheses.

Theory of Reasoned Action (TRA). The theory of reasoned action, introduced in 1967 by Martin Fishbein and refined by Ajzen and Fishbein in 1980, is based on the assumption that human beings are usually quite rational and make systematic use of the information available to them. Human social behavior is viewed as not being controlled by unconscious motives, overpowering desires, or thoughtlessness. Rather, people engage in a given behavior only after they have considered the implications of their actions (Ajzen and Fishbein, 1980).

Prediction and understanding behavior is the ultimate goal of the theory of reasoned action. The first step toward this goal is to identify and measure the behavior of interest. Once the behavior has been defined, it is then necessary to ask what determines the behavior. A person's intention to perform (or to not perform) a behavior is the immediate determinant of the action. According to the theory of reasoned action, a person's intention is a function of two basic determinants, one personal in nature and the other reflecting social influence (Ajzen and Fishbein, 1980). The personal factor is the individual's positive or negative evaluation of performing the behavior; this factor is termed attitude toward the behavior. The second determinant of intention is the person's perception of the social pressures put on him or her to perform or not perform the behavior in question; this factor, since it deals with perceived prescriptions, is termed subjective norm. Generally speaking, individuals will intend to perform a behavior when they evaluate it positively and when they believe that others think they should perform it (Ajzen and Fishbein, 1980).

According to the theory, attitudes are a function of beliefs. The beliefs that underlie a person's attitude toward the behavior are termed behavioral beliefs. Subjective norms are also a function of beliefs, but beliefs of a different kind, namely the person's beliefs that specific individuals or groups think he or she should or should not perform the behavior. These beliefs underlying the person's subjective norm are termed normative beliefs (Ajzen and Fishbein, 1980).

A summary of the theory of reasoned action, as described above, can be seen in Figure 1.1. Through a series of intervening constructs it traces the causes of behavior back to the person's beliefs. Each successive step in this sequence from behavior to beliefs provides a more comprehensive account of the causes underlying the behavior (Ajzen and Fishbein, 1980).

FIGURE 2.1 Theory of Reasoned Action (TRA)

It is interesting to note that factors such as attitudes and demographic characteristics are sometimes related to the behavior of interest, but they do not constitute an integral part of the theory. They are, however, considered external variables that may influence the beliefs a person holds or the relative importance he or she attaches to attitudinal and normative considerations. These external variables could be represented as a box to the left of the behavioral and normative beliefs, with arrows going into each of the belief boxes.

<u>Historical Perspectives Concerning the TRA</u>. There are a number of concepts that comprise the theory of reasoned action. Although knowledge of a person's attitude can tell us little as to whether he or she will perform some particular behavior, it can tell us something about his or her overall pattern of behavior. In the late 1950s, a multicomponent view of attitude was adopted almost universally. Attitudes were viewed as complex systems comprising the person's beliefs about the object, his or her feelings toward the object, and his or her action tendencies with respect to the object. There was a general consensus for a strong relationship between attitude and behavior (Ajzen and Fishbein, 1980).

Interest in the relationships among beliefs, feelings, and behavioral tendencies led to the development of various theories of attitude organization and change. Collectively known as consistency theories, they assume that individuals strive toward consistency among their beliefs, attitudes, and behaviors. Most of these theories grew out of the work of Fritz Heider in 1944 and 1958, but the theory that attracted most of the attention was Leon Festinger's theory of cognitive dissonance in 1957. According to the theory, inconsistency between two cognitive elements (beliefs, attitudes, or behavior) gives rise to dissonance. Although consistency theories have contributed to our understanding of attitude organization and change, they have done little to explain the observed inconsistencies between attitude and behavior (Ajzen and Fishbein, 1980).

Donald Campbell, in 1963, analyzed the nature of attitudes and other behavioral dispositions, recognizing that attitudes should be related to global patterns of behavior with respect to an object but not necessarily to any given action (Ajzen and Fishbein, 1980). In his work, Campbell concluded that in many studies, the reported failure of attitudes to predict behavior represented pseudo-inconsistencies that have little bearing on the attitude-behavior relation. The negative findings reflect inconsistencies among different indicants or expressions of an underlying attitude but not the absence of a relation between the underlying attitude and the pattern of a person's behavior (Ajzen and Fishbein, 1980).

Prior to the 1970s, most investigators worked on the assumption that attitudes explain and predict behavior. The investigators devoted much of their effort to descriptive attitude surveys or to controlled experiments dealing with attitude formation and change, with investigations directed at the attitude-behavior relation few and far between. However, by the 1970s, the low empirical relation between attitude and behavior could no longer be neglected. Some investigators, such as Abelson in 1972, simply concluded that attitudes cannot predict behavior, while others, such as Schuman and Johnson in 1976, have suggested that certain behaviors are so dependent on the situational context as to be virtually unpredictable from measures of attitude (Ajzen and Fishbein, 1980). For the most part, however, attitudes continued to be regarded as primary determinants of a person's responses to an object, but at the same time there was a recognition that there is no one-to-one correspondence between attitude and any given behavior. The reliance on other factors to explain observed attitude-behavior inconsistencies is commonly known as the other variables approach. According to this view, attitude is only one of a number of factors that influence behavior, and other variables must also be taken into account. The variables suggested are conflicting attitudes, competing motives, verbal/intellectual/social abilities, individual differences, alternative behaviors available, and expected or actual consequences of the behavior. It is

important to note that the addition of other variables, even if found to improve prediction of behavior, does little to advance our understanding of the attitude-behavior relation itself (Ajzen and Fishbein, 1980).

In conclusion, most investigations concerned with attitude formation and change make no distinctions among belief, feelings, and intentions. Virtually all verbal responses, and sometimes overt actions, are considered to be indicants of a person's attitude, and measures of these variables are often used interchangeably. There is a general agreement that attitude, no matter how assessed, is only one of many factors that influence behavior, and in order to predict behavior accurately we have to take additional variables into account, either as independent contributors to behavior or as moderators of the attitude-behavior relationship. There is consensus today that attitudes toward an object can predict only the overall pattern of behavior (Drescher, 1992; Evans and Taylor, 1995; Vanlandingham et al, 1995; Kurland, 1996); they are of little value if we are interested in predicting and understanding some particular action with respect to the object. To predict a single behavior we have to assess the person's attitude toward the behavior and not his or her attitude toward the target at which the behavior is directed (Ajzen and Fishbein, 1980).

Defining and Measuring Behavior. The criterion of behavior is comprised of four elements: the action, the target at which the action is directed, the context in which it occurs, and the time at which it is performed. Each of these elements can be very specific or more general. The behavioral criterion becomes more general when

different actions of an individual are observed. It is also possible to broaden it by observing one or more actions with respect to different targets, in different contexts, and at different points in time. The nature of the behavioral criterion is defined by the kinds of observations that are made, with all behavioral criteria viewed as measures of one or more single acts. Generally speaking, we can refer to a single action criterion, a behavioral category criterion or a multiple-choice criterion (Ajzen and Fishbein, 1980).

Predicting Behavior from Intention. From a theoretical point of view, intentions determine behaviors. However, this should not be taken to mean that a measure of intention will always be an accurate predictor of behavior. Two factors will influence the strength of the observed relationship between intention and behavior: the degree of correspondence between the measure of intention and the behavioral criterion and the degree to which the intention remains stable over time (Ajzen and Fishbein, 1980).

To predict a behavioral criterion from intention, it is essential to ensure that the measure of intention corresponds to the measure of behavior. In a similar fashion to behaviors, intentions can be viewed as consisting of action, target, context, and time elements. Intention and behavior correspond to the extent that their elements are identical. It is important to ensure that there is a high degree of correspondence between intention and behavior, whether the criterion is a single action or a behavioral category. Lack of correspondence on any of the four elements (action, target, context, and time) can reduce the accuracy of prediction (Ajzen and Fishbein, 1980). A measure of intention will not always be a good predictor of behavior. Intentions can change over time and a measure of intention taken some time prior to observation of the behavior may differ from the intention at the time that the behavior is observed. Generally speaking, therefore, the longer the time interval, the less accurate the prediction of behavior from intention, that is, the lower the observed relation is between intention and behavior. Intentions that are not stable have to be measured immediately prior to observation of the behavior. When this cannot be done, the measure of intention should be taken as close in time as possible to the behavior. Further, it is sometimes possible to improve prediction by measuring conditional intentions, which take into account extraneous events foreseen by the investigator that might produce changes in intentions. Long-range prediction from intentions will usually be accurate at the aggregate level, even when the measure of intention does not permit accurate prediction of individual behavior (Ajzen and Fishbein, 1980).

It has been noted that although intentions are assumed to be the immediate antecedents of actions, the observed relation between intention and behavior depends on two factors: the measure of intention corresponding to the behavioral criterion (in action, target, context, and time) and the measure of intention will predict behavior only if the intention does not change before the behavior is observed. These considerations apply whether the criterion is a single action, a choice between multiple alternatives, a behavioral category, or an index based on repeated observations. An investigator can ensure high correspondence between intention and behavior by obtaining an appropriate

measure of intention. The intention's stability, however, is not under his or her control. Although it is possible to measure intentions to achieve the outcome, the predictive validity of intentions depends on the extent to which they lead to the performance of behaviors that control the outcome (Ajzen and Fishbein, 1980).

Determinants of Behavioral Intentions. Although different kinds of behavioral criteria can be assessed, they can all ultimately be reduced to one or more single actions. It follows that in order to understand a person's behavior, it is necessary to consider the factors that determine these single actions. A person's intention to perform a given behavior is the immediate determinant of that behavior. According to the theory of reasoned action, the two major factors that determine a person's behavioral intentions include a attitudinal component (personal) and a normative component (social) (Ajzen and Fishbein, 1980).

The attitudinal component refers to the person's attitude toward performing the behavior under consideration. To assess a person's attitude toward a behavior, we could use any of the standard scaling procedures, resulting in a single score which represents a given person's general evaluation or overall feeling of favorableness or unfavorableness toward the behavior in question. Generally, with other things equal, the more favorable a person's attitude is toward a behavior, the more he or she should intend to perform that behavior; the more unfavorable his or her attitude, the more he or she should intend not to perform the behavior (Ajzen and Fishbein, 1980).

The subjective component (subjective norm) deals with the influence of the social environment on intentions and behavior. It refers to the person's perception that most people who are important to him or her think he or she should or should not perform the behavior in question. According to the theory of reasoned action, the more a person perceives that others who are important to him or her think he or she should perform a behavior, the more he or she will intend to do so. That is, other things constant, people are viewed as intending to perform those behaviors they believe are important that others think they should perform (Ajzen and Fishbein, 1980).

It is important to note that for some behaviors, normative considerations (the perceived prescriptions of importance to others) are more important in determining behavioral intentions than are attitudinal considerations (the person's favorable or unfavorable evaluation of his or her performing the behavior). For other behaviors the reverse may be true. In fact, variations in any of the four elements defining the behavior (action, target, context, and time) may influence the relative importance of the attitudinal and normative components. Assuming the appropriate measures are obtained, the attitudinal and normative components should always predict the intention, with their ability to predict the behavior depending upon the strength of the intention-behavior relation. The effects of attitude and subjective norm on behavior are thus mediated by the behavioral intention (Ajzen and Fishbein, 1980).

<u>Determinants of the Attitudinal and Normative Components</u>. If our only purpose is to predict behavior, it is sufficient to measure corresponding behavioral

intentions. For many purposes, it may be sufficient to explain intentions and behavior by reference to attitudes and subjective norms. A deeper understanding of the factors influencing behavior then requires that we look for the determinants of the attitudinal and normative components. A person's attitude toward a behavior is determined by his or her salient beliefs that performing the behavior leads to certain outcomes and by his or her evaluations of those outcomes. In a similar manner, a person's subjective norm is determined by his or her beliefs that specific salient referents think he or she should or should not perform a given behavior and by his or her motivations to comply with those referents. Attitude toward a behavior and subjective norm are both considered to be a function of the weighted sum of the appropriate beliefs. It is essential to ensure correspondence between measures of belief on one hand and measures of attitude and subjective norm on the other. It is important to note that only salient beliefs serve as determinants of attitudes and subjective norms.

Summary and Conclusion of the Theory of Reasoned Action. The theory of reasoned action represents different levels of explanation for people's behavior. At the most global level, a person's behavior is assumed to be determined by his or her intentions. At the next level, the intentions are themselves determined by attitudes toward the behavior and subjective norms. The third level views attitudes and subjective norms in terms of beliefs about the consequences of performing the behavior and about the normative expectations of relevant referents. Finally, a person's behavior is explained by reference to his or her beliefs. Since a person's beliefs represent the information he or

she has about the world, it follows that a person's behavior is ultimately determined by this information (Ajzen and Fishbein, 1980).

As we move from behavior to intention, from intention to attitude toward the behavior and subjective norm, and from these two components to the underlying beliefs, we can gain increasing understanding of the factors determining the behavior under consideration. According to the theory of reasoned action, intention is the immediate determinant of behavior allowing us to predict behavior. Knowing the intention's determinants will not improve the accuracy of our prediction, but provides for better understanding with a causal chain linking beliefs to behavior (Ajzen and Fishbein, 1980).

Behavior involves a choice between two or more alternatives. To completely understand behavior, it is therefore necessary to identify the beliefs related to the performance of each behavioral alternative. The solution of specific problems often requires formulating questions in terms of a single intention and the corresponding behavior. Once this is done, the theory of reasoned action can be used to understand the behavior in question and to suggest ways of changing it (Ajzen and Fishbein, 1980).

Theory of Planned Behavior (TPB). Following the Theory of Reasoned Action, the Theory of Planned Behavior developed. There are many factors that can disrupt the intention-behavior relation. Although volitional control is more likely to present a problem for some behaviors than for others, personal deficiencies and external obstacles can interfere with the performance of any behavior. A conceptual framework that

addresses the problem of incomplete volitional control is Ajzen's theory of planned behavior (Ajzen, 1988). This theory is an extension of the theory of reasoned action, but in contrast, this theory postulates three, rather than two, conceptually independent determinants of intentions. The first two, attitude toward the behavior and subjective norm, are the same. The third antecedent of intention is the degree of perceived behavioral control. This factor refers to the perceived ease or difficulty of performing the behavior and it is assumed to reflect past experience as well as anticipated impediments and obstacles. In general, the more favorable the attitude and subjective norm with respect to behavior, and the greater the perceived behavioral control, the stronger should be the individual's intention to perform the behavior under consideration. It is important to note that this theory does not deal directly with the amount of control a person actually has in a given situation, rather it considers the effects of perceived behavioral control on achievement of behavioral goals. The theory of planned behavior is shown graphically in Figure 1.2 (Ajzen, 1988).

FIGURE 2.2 Theory of Planned Behavior (TPB)

Two important features of the theory of planned behavior are shown in Figure 1.2. First, the theory assumes that perceived behavioral control has motivational implications for intentions. People who believe that they have neither the resources nor the opportunities to perform a certain behavior are unlikely to form strong behavioral intentions to engage in it even if they hold favorable attitudes toward the behavior and believe that others of importance would approve of their performing the behavior. An expected association between perceived behavioral control and intention that is not mediated by attitude and subjective norm is formed. This is represented in Figure 1.2 by the arrow linking perceived behavioral control to intention. The second feature is the possibility of a direct link between perceived behavioral control and behavior. Perceived behavioral control can influence behavior indirectly, via intentions, and it can also be used to predict behavior directly because it may be considered a partial substitute for a measure of actual control. The dashed line in Figure 1.2 linking perceived behavioral control to behavior represents this second feature of interest (Ajzen, 1988).

The theory of planned behavior postulates that behavior is a function of salient information, or beliefs, relevant to the behavior. A great many beliefs about a given behavior can be held by a person, but attention can be made only to a relatively small number at any given moment. It is these salient beliefs that are considered to be the prevailing determinants of a person's intentions and actions. There are three salient beliefs: behavioral beliefs which are assumed to influence attitudes toward the behavior, normative beliefs which constitute the underlying determinants of subjective norms, and control beliefs which provide the basis for perceptions of behavioral control.

The expectancy-value model of attitudes, as developed by Ajzen and Fishbein (1980), is a cognitive or information-processing approach used by most contemporary social psychologists to analyze attitude formation. According to the model, attitudes develop reasonably from the beliefs people hold about the object of the attitude. From the equation:

$A \propto \sum_{I=1 \text{ to } n} b_i e_i$

the strength of each salient belief (b) is combined in a multiplicative fashion with the subjective evaluation (e) of the belief's attribute, and the resulting products are summed

over the n salient beliefs. A person's attitude (A) is directly proportional (∞) to this summative belief index. From the equation:

$$SN \propto \sum_{I=1 \text{ to } n} n_i m_i$$

the strength of each normative belief (n) is multiplied by the person's motivation to comply (m) with the referent in question, and the subjective norm (SN) is directly proportional to the sum of the resulting products across the n salient referents. From the equation:

PBC
$$\propto \sum_{I=1 \text{ to } n} c_i p_i$$

each control belief (c) is multiplied by the perceived power (p) of the particular control factor to facilitate or inhibit performance of the behavior, and the resulting products are summed across the n salient control beliefs to produce the perception of behavior control (PBC). The underlying foundation of beliefs (salient beliefs of behavioral, normative, and control) provides the detailed descriptions needed to gain substantive information about a behavior's determinants. It is at the level of beliefs that we can learn about the unique factors that induce one person to engage in the behavior of interest and to prompt another to follow a different course of action (Ajzen, 1991: 192-198).

Like the theory of reasoned action, the theory of planned behavior deals with the antecedents of attitudes, subjective norms, and perceived behavioral control, antecedents which in the final analysis determine intentions and actions. The theory of planned behavior is a general model in which the theory of reasoned action represents a special case. The theory of reasoned action is designed to deal with behaviors over which people

have a high degree of volitional control, and it is assumed that most behaviors of interest in the domains of personality and social psychology fall into the volitional category. The theory of planned behavior, however, explicitly recognizes the possibility that many behaviors may not be under complete control, and the concept of perceived behavioral control is added to handle behaviors of this kind. When the behavioral control approaches its maximum and issues of control are not among an individual's important considerations, however, then the theory of planned behavior reduces to the theory of reasoned action. In those instances, neither intentions nor actions will be affected appreciably by beliefs about behavioral control and the only remaining dispositions of interest are attitude toward the behavior and subjective norm (Ajzen, 1988).

Other Factors Predicting Behavior. Attitudes can be used to predict behavior with considerable success under the appropriate conditions, but there are other variables that can substantially improve prediction. Snyder (1979) found that people low in the personality trait of self-monitoring typically show greater attitude-behavior consistency than people who are high in the trait. Ajzen and Fishbein (1975) have argued that norms, or what other people think about the behavior, are also important considerations for predicting an individual's behavior. Triandis (1980) argues that habit is the most important factor to consider in predicting behavior. All of these factors are important in the understanding of why people behave the way they do, and lead to further development of the theories involved.

Summary of Combinatory Approaches. The combinatory approaches discussed presented an approach to persuasion that focuses on the role of information in changing peoples' attitudes and on how people combine the information they receive into an overall impression. Common to all of the theories is the view that an attitude is based on the information or beliefs that a person has about the attitude object. The probabilistic theories emphasized the interrelationships among a person's beliefs and how the change in one belief could lead to a change in others. The theory of information integration allows description of a wide range of attitudinal phenomena with the fundamental principle that an attitude is best represented as a weighted average of information about an attitude object. The theory of reasoned action views an attitude as a weighted sum of the information that a person had about an attitude object; and it further indicates that a person's behaviors are based on a consideration of one's own attitude and one's perceptions of the views important to others. The theory of planned behavior is an extension of the theory of reasoned action, with the inclusion of a component that measures perceived behavioral control.

Conclusion of General Attitude-Behavioral Theories. The different approaches discussed in understanding attitude change in relation to behavior emphasize different variables and different processes, but all of them contribute to the understanding of how and why people's attitudes change. Although the various theoretical approaches to persuasion and attitude understanding differ in many ways, they indicate that there are only two fundamentally different "routes" to changing a person's attitudes. One route, which is called the central route, emphasizes the information that a person has about the person, object, or issue under consideration; and the other, which is called the peripheral route, emphasizes just about anything (e.g., consequences of adopting a certain attitude) (Petty and Cacioppo, 1981). The route responsible for persuasion is an important determinant of how enduring the attitude change will be, and changes induced via the central route tend to be more permanent than changes induced via the peripheral route. The theory of planned behavior, which is an extension of the theory of reasoned action, provides a solid framework for understanding and predicting why people behave the way they do, and furthers the comprehension in this body of knowledge.

It must be noted that the classical views of organizations either ignore the individual or they make oversimplified assumptions about him or her. A result of this oversight is the breach between theory and practice in organizations, between the way organizations should work and the way they do work (Tannenbaum, 1966). The Hawthorne (Tannenbaum, 1966) research scientifically documented this important human aspect of organization and made it patently clear that psychological or social psychological principles of behavior were at work. The research also showed that organization theory would somehow have to take these principles into account. The particular motives relevant to the adjustment of organization members include: need for affiliation, ego-relevant motives, power motives, curiosity, security, emotion, and economic motivation (Tannenbaum, 1966). People are driven to express their unique personalities, to gain approval, to achieve status, to experience sentiment or emotion, to

acquire wealth, to give and receive affection, to enhance their egos, to actualize their potentialities, to avoid insecurity, and to satisfy other basic motives -- all of which are interrelated in complex ways (Tannenbaum, 1966). These motives help define a person's self-interest. However, the formal work organization is not ordinarily designed with the members' self-interest in mind. The organization has quite another purpose -- and herein lies a conflict of serious proportions.

Understanding attitudes of workers is important in influencing their behaviors. An attitude is an individual's feeling or opinion about an abstract concept, a material element, or an individual. In effect, it is how a person feels about events, activities, and other people. Attitudes are learned over time, and are influenced by past experiences, environmental stimuli, and present and future expectations (Frunzi and Halloran, 1991). The theory of planned behavior (TPB) is used in this research to understand and predict active duty Air Force members' concerns regarding the environmental behaviors of recycling, energy conservation, and carpooling. This brings further support to the TPB, and provides more understanding towards the influence of attitudes on behavior, and why people behave the way they do.

Organizational Perspective

The attitudes of organizations concerning the environment have steadily increased over the years. Because of staggering pollution levels and the diversity of environmental concerns, a wide range of pressures is bearing down on firms from many sides. There are regulatory, credibility, market, and financial pressures whose intensities vary by country, industry, sector, and firm. It is clear, however, that firms need to respond in order to ensure further use of scarce resources, public and political legitimacy, profitability, and financial assurance (Fischer and Schot, 1993: 4 - 5). The varied responses of firms to mounting pressures can be categorized in two phases: 1970 to 1985 and 1985 to 1992. "The overall picture in the period from 1970 to 1985 is one of firms resisting adaptation to growing regulatory and public pressures" (Fischer and Schot, 1993: 6). The dominant pattern was a lack of willingness to internalize environmental issues. The mid-1980s brought an embracement of environmental issues without innovation. Several accidents were catalysts for intensified public hostility and distrust, with new regulations and business actions developing. Firms started defining environmental problems as their own responsibility, and as issues that could no longer be ignored. The overall pattern of change in the 1985 - 1992 period can be summarized in three trends: a clear institutionalization of environmental concern within firms, a perception of environmental problems as theirs to solve, and movement beyond a compliance-oriented approach to an innovative approach (Fischer and Schot, 1993: 12). These trends will continue and deepen in the coming decade. During the two phases described, "firms took a wide range of actions that included articulating more firmly their environmental policy statements, creating environmental staff functions, initiating to some extent performance measurement, and developing new technologies and new codes of conduct" (Fischer and

Schot, 1993: 5). These actions were part of a more fundamental pattern of dealing with environmental issues that could be labeled as environmental strategy.

Fischer and Schot (1993) discuss ten significant trends in the "greening" of business that are of importance: the fundamental rethinking of traditional notions of disposability, risk, responsibility, and the right to pollute; the spread of holistic full cost and impact analysis; greater environmental accountability; increased collaborative partnerships between corporations and environmental organizations; increased adoption and formalization of environmental policies; growing chief executive officer and board involvement in corporate environmental stewardship; growing pressure for environmental responsibility coming from company employees, labor unions, and prospective recruits; increased external pressure for environmental performance via tightening of environmental regulations and strengthening of "green" consumerism assisted by product-labeling programs; increased propensity of maverick companies deciding to turn environmental improvement and resource efficiency to their competitive advantage; and expansion of actual and potential legal liability for environmental damage. Examining these trends help us see the new environmental attitudes forming, and allow for a description of the corporate greening process where emphasis is on a choice of an environmental strategy, reform in management systems, organizational change, cultural change, and institutional change (Rasanen et al, 1995: 9). The greening process should incorporate top-down and bottom-up processes of change, where the upper management and the workers can consolidate their ideas. The diversity in the ways of solving
environmental problems are "influenced by the nature of the firm, business sector, and nation state, not to forget the most distinctive aspect of greening, namely the impact of the specific and varying natural conditions in which firms operate" (Rasanen et al, 1995: 16). Environmental problems will be solved first within the existing rules of the game, and then through deeper institutional changes.

A prevailing pattern in industry is transforming or reframing an environmental problem and forced legislated change into a technological problem. Also, the notion of collaboration as a standard solution to tackle environmental problems rather than competing to finding the most apt solution is common (Ostlund, 1994: 32). The focus of the change process is not market driven but of technical specifications and norms tying over competitive boundaries. Mobilization and coordination is made in networking activities that worked to diffuse and legitimize chosen solutions among network members as well as in the political community (Ostlund, 1994: 32). Organizations face increasing demands to measure their environmental performance, which is necessary in order to achieve sustainable development, to reassure financial stakeholders that their investments are not at risk, to satisfy the demands of regulators and other non-financial stakeholders, and to provide information for customers and employees (James, 1994: 59). The enormous complexity of environmental problems, as well as ambiguity and uncertainty regarding what organizational responses and solutions to adopt, is perhaps the largest challenge facing industry today. The challenge remains the "integration of more holistic environmental standards into strategic network behavior to ensure a future sustainable

development, rather than piecemeal technological changes in individual organizations" (Ostlund, 1994: 33).

A dependable system of environmental performance measurement is rooted in the following realities: business activity has an ecological, social, and economic impact; business is increasingly held liable for environmental costs; environmental management is good business; as lower levels of management become increasingly empowered, a reliable environmental reporting and performance measurement system is needed; and, allocation of scarce resources requires persuasive evidence of the relative benefits of doing so (Eckel et al, 1992: 16). A System for Environmental Performance Measurement (SEPM) will be expected to provide the disclosure of environmental obligations and contingencies, the disclosure of environmental risks inherent in the organization's operations, the disclosure of financial risks to the organization, and the separate disclosure of environmental expenditures (Eckel et al, 1992: 16). Environmental performance measures are developed as part of a dynamic planning and control process consisting of developing corporate environmental policy, developing consistent performance measures, designing systems to collect and report information, and implementing the on-going monitoring program (Eckel et al, 1992: 17). The installation of a measurement system is often an evolutionary, rather than revolutionary process, and is designed specifically for each organization. The environmental performance indicators (EPIs) adopted in practice include both accounting and non-financial measures; more specifically, it is possible to classify the indicators as prevention costs and investments,

operating environmental costs, contingent environmental liabilities, physical indicators, or compliance (Azzone and Manzini, 1994: 3). It must be pointed out that no single environmental performance indicator is completely satisfactory on its own; hence, the EPI system of a firm should be designed in an integrated way, taking advantage of the peculiarities of each class of EPI (Azzone and Manzini, 1994: 6). A measure of the environmental performance of a firm is important to assure the effectiveness of strategies aimed at improving the image of the firm towards green consumers and of programs focused on the improvement of corporate efficiency through a reduction of environmental related costs; thus, the introduction of a formal system of environmental performance indicators is an effective policy for a growing number of firms (Azzone and Manzini, 1994: 9).

Individual and societal values with respect to environmental protection have increased significantly, and companies that do not materially adopt environmental values into their corporate value systems will find their culture to be incongruent with the personal values of their employees. Under such circumstances, these employees will face the choice of three sub-optimal options: dissatisfied compliance with the corporate values, resolution to change the corporate values, resignation from the organization (Hoffman, 1993: 10). Those companies able to achieve a congruent fit between individual and organizational values will benefit from higher worker satisfaction, longer tenure, and greater loyalty (Hoffman, 1993: 10). It is important to recognize that "fit" is not a static concept, and that besides managing larger shifts in organizational strategy, the

task of leadership is to strive continually to maximize this fit by maintaining alignments among the various organizational components (Rothenberg et al, 1992: 10).

Environmental thinking is increasingly being integrated into all levels of the organizational decision-making process. Management is beginning to focus not only on end-of-pipe solutions to minimize waste, but also developing programs to reduce the amount of waste being produced. According to Zeffane, there are four factors representing the overall degree of "Corporate Environmental Commitment." These factors are the degree to which environmental audits are emphasized as an environmental evaluation tool (Audit), the existence and role of a clear and well disseminated environmental policy (Policy), consideration of environmental impacts in assessing future corporate activities including investments and projects (Future Activities), and incorporation of environmental issues in corporate appraisal systems (Appraisal Systems) (Zeffane et al, 1994: 17). In the study, Zeffane (1994) found internal consistency within each of the four factors revealing significant reliability of all factors, and the use of the four-factor method will allow firms to assess their environmental commitment (EC) better.

Any definition of EC requires both behavioral and attitudinal attributes. Organizations need to consider both social and economic performance to create a responsible workplace. In particular, businesses attempting to be responsible should invest in commitment rather than compliance to specific environmental regulations (Zeffane et al, 1994: 18). Organizational efficiency and effectiveness are increased by positive organizational commitment by contributing to resource transformations,

innovativeness, and adaptability (Zeffane et al, 1994: 18). At the same time, it will result in the organizations complying with societal values and norms. Thus, shifting the object or actors in the notion of commitment from individuals to organizations will result in the same positive corporate traits at the organizational level.

Organizational commitment for the environment "can be accurately understood as a collection of multiple commitments to various groups that comprise the organization" (Hunt and Morgan, 1994: 1569). There are several constituency-specific commitments that contribute to global organizational commitment, specifically, commitment to top management and commitment to supervisor. It was found by Hunt and Morgan (1994) that organizations benefit from employees' developing constituency-specific commitments and that managers should not fear the development of such commitments.

The concept of EC will bring about an increased realization that organizations' subscriptions to desirable environmental considerations will constitute crucial elements of organizational performance and survival (Zeffane et al, 1994: 18). Commitment to the environment requires that companies do more than simply design and follow a rigorous environmental management system; it requires that firms have structures, practices and policies in place that allow specific environmental objectives to be achieved. Furthermore, being environmentally committed requires that the corporation make all stakeholders aware of the firms' environmentally committed position (Zeffane et al, 1994: 25). Using the constructs (factors) uncovered in Zeffane's study will allow for a

thorough evaluation of EC, and the degree to which environmental concerns are entrenched into the corporate culture.

"Green management" implies the commitment of all members of the corporation. The concept involves: viewing the organization completely rather than as a collection; managing for the long-term success of the organization; a commitment to being the best; committing to quality in all activities of the organization; listening closely to the customer; sustaining enthusiasm and finding solutions through a commitment to employees; and remembering that the organization is part of the community (Taylor, 1992: 670). Through the effective use of green management, the rewards of cost reductions and improved efficiencies, new market outlets, enhanced corporate image, opportunities to sell new products and services, an improved competitive position, a more dedicated and motivated workforce, and the ability to set the agenda for the industry and public policy become realized (Taylor, 1992: 674). Green management provides the link for effectively overcoming any future obstacles, and it makes good business sense because it embodies the principles of good business.

Department of Defense (DoD) Focus

The Department of Defense (DoD) has taken the lead among federal agencies in trying to manage the environment, with the Department of the Air Force leading the other services. According to Secretary of the Air Force Shelia Widnall, "we have an obligation to the American people to practice and promote positive resource stewardship. We cannot, and must not, train in ways that harm rare plants and animals, or destroy sensitive ecosystems" (Widnall, 1995a: 1). Secretary Widnall goes on to say that:

We need to consider more than just the recreational and consumptive elements of our natural resources...we now realize...that the environment of our installations is composed of more than just game animals and endangered species. We must take into consideration the variety and variability of the natural communities on our lands...and we must integrate this with our military training mission. (Widnall, 1995a: 1)

The Air Force has long recognized the importance of being good caretakers of the environment, and as Secretary Widnall states, the Air Force is "minimizing the use of hazardous materials, broadening recycling programs, and even incorporating environmental concerns into aircraft design" (Widnall, 1995b: 2). The Air Force's conservation efforts are focused on eliminating environmentally unfriendly material, but if it can't be eliminated, "it should be recycled or reused. If it can't be recycled or reused, it should be treated to reduce its toxicity. And if treatment won't work, it should - as a last resort - be disposed of in an environmentally sound manner" (Widnall and Fogleman, 1995: 2). The behaviors of interest to the government, and particularily the United States Air Force, include recycling, energy conservation, and carpooling at work. These three behaviors were selected because of the concern expressed by the government to become better stewards of the environment.

The Executive Office, under President William J. Clinton, has pushed for more environmentally responsible behavior within the federal government, and has targeted the three behaviors that are addressed above. President Clinton states that "the Nation's interest is served when the federal government can make more efficient use of natural

resources by maximizing recycling and preventing waste wherever possible" (White House, 1993f: 1). The federal government is being pushed by the current administration to further its role as an "enlightened, environmentally conscious and concerned consumer" (White House, 1993f: 1). Because of this, behaviors affecting recycling, energy conservation, and carpooling are becoming more of a concern, and good environmental stewardship is being supported through the issuance of Executive Orders (EOs), Air Force Instructions (AFIs), and other policies (Table 2.1).

Support for environmentally friendly behaviors (recycling, energy conservation, and carpooling) has been demonstrated by the President's Council on Sustainable Development, established under Executive Order (EO) 12852 (White House, 1993d). This council advises the President on matters involving economic growth that will benefit present and future generations without detrimentally affecting the resources or biological systems of the planet. Through this EO, positive behaviors affecting the environment are promoted.

Influencing recycling behavior has strong support throughout the government, and it is the most visible and easily influenced behavior. According to EO 12873:

Consistent with the demands of efficiency and cost effectiveness, the head of each Executive Agency shall incorporate waste prevention and recycling in the agency's daily operations and work to increase and expand markets for recovered materials through greater federal government preference and demand for such products. (White House, 1993f: 1)

The Air Force has addressed recycling with Air Force Instruction (AFI) 32-7080, which states the Air Force must reduce the amount of material going to landfills by 50 percent

before 1997 (Department of the Air Force, 1994a). This has promoted greater recycling efforts by the Air Force, and has brought the need to better reuse materials than directing those materials for disposal in landfills (Baumer, 1996). Air Force Policy Directive (AFPD) 23-5 also addresses recycling, and provides a policy for the "reutilization and disposal of material in the Air Force" (Department of the Air Force, 1993c: 1). From this policy directive, the "Air Force will meet Federal recycling and pollution prevention objectives by ensuring cost-effective recycling and reuse of material to reduce the volume of material disposed as scrap or waste, and maximize recycling and recovery opportunities" (Department of the Air Force, 1993c: 2). Recycling is a big part of the government's efforts to influence behaviors in an environmentally friendly way, but energy conservation is playing an increasing role as well.

Energy conservation has received substantial attention lately, especially since new advances in technology can reduce the use of energy greatly. Executive Order 12845 states that the "federal government should set an example in the energy efficient operation of its facilities," and promotes energy efficiency in the use of computer equipment (White House, 1993c: 1). Also, according to Executive Order 12902, "each (federal) agency shall develop and implement a program with the intent of reducing energy consumption by 30 percent by the year 2005, based on energy consumption pergross-square-foot of its building use, to the extent that these measures are cost-effective. The 30 percent reductions shall be measured relative to the agency's 1985 energy use. Each agency's implementation program shall be designed to speed the introduction of

LEGISLATION	ENVIRONMENTAL BEHAVIOR
Executive Order 12844	- Carpooling
Executive Order 12845	- Energy Conservation
Executive Order 12852	CarpoolingRecyclingEnergy Conservation
Executive Order 12856	- Recycling
Executive Order 12873	- Recycling
Executive Order 12902	- Energy Conservation
Regional Public Transportation Authority	- Carpooling Promoted
Air Force Instruction (AFI) 32-7080	- Recycling
Air Force Material Command (AFMC) Environmental Protection Goals (Stewart, 1996)	RecyclingEnergy Conservation
Air Force Policy Directive (AFPD) 23-5	- Recycling
Air Force Policy Directive (AFPD) 32-71	RecyclingEnergy ConservationCarpooling
Air Force Policy Directive (AFPD) 32-73	RecyclingEnergy Conservation
Air Force Pamplet (AFPAM) 36-2241	RecyclingEnergy ConservationCarpooling

TABLE 2.1 Legislation / Policies Supporting Three Environmental Behaviors

cost-effective, energy efficient technologies into federal facilities, and to meet the goals and requirements of this order" (White House, 1994g: 3). Further, "each agency shall develop and implement a program for its industrial facilities in the aggregate with the intent of increasing energy efficiency by at least 20 percent by the year 2005 as compared to the 1990 benchmark," and "agencies shall purchase energy-efficient products in accordance with the guidelines issued by the Office of Management and Budget (OMB), in consultation with the Defense Logistics Agency (DLA), Department of Energy (DOE), and General Services Administration (GSA), under section 161 of the Energy Policy Act of 1992" (White House, 1994g: 3). By issuing policies to conserve energy at the workplace, the government is taking big strides in influencing worker behaviors, which also will affect the purchase and use decisions these workers make as well.

Transportation to and from work by carpooling of employees is an area of concern in which the government has had little success in promoting environmentally friendly behavior. The government has issued some legislation and policies, but the effect these directives have seems questionable. Executive Order 12844 calls for each federal agency to "adopt aggressive plans to substantially exceed the alternative fueled vehicle purchase requirements," and to promote responsible awareness among employees in regards to carpooling and using public transportation (White House, 1993b: 1). One case where there seems to be success in the awareness of environmentally friendly transportation to and from work has been from Luke Air Force Base. According to Brigadier General Stephen B. Plummer, 58th Fighter Wing Commander, Luke AFB, "we fly, fight, and share the ride for a free and clean America" (Kuhn, 1995: 25). Luke AFB is typical of bases everywhere that struggle to educate drivers and comply with ever tougher environmental regulations. General Plummer is a strong advocate of carpooling, especially since the base is under a mandate by the state of Arizona to reduce singleoccupancy rate by 5 percent each year. Many bases throughout the Air Force are coming under the mandates of the community to reduce air pollution, thus carpooling and using public transportation are becoming increasingly important. There are federal funds available through the Regional Public Transportation Authority to assist and promote carpooling, showing the importance the government places on clean air.

Air Force Material Command (AFMC) leads the Air Force in environmental initiatives and research in the protection of the planet. The command has five major programs for protecting the environment: assess consequences of each major action, comply with all federal, state, and local laws, reduce or eliminate hazardous materials, clean up past practices, and protect the current resources (Stewart, 1996). "AFMC's (and the Air Force) environmental protection strategy of the future focuses on pollution prevention" (Stewart, 1996: 2). The strategy comprises four steps: eliminate or reduce hazardous or pollutant materials, recycle or reuse pollutants that can't be eliminated, treat pollutants that can't be recycled, and dispose of materials safely if they cannot be eliminated or recycled (Stewart, 1996). AFMC's environmental protection goals and its vision for the future involves "quality people working in a quality environment to produce quality systems for America's Air Force" (Stewart, 1996: 2).

Protecting the environment is a corporate stewardship responsibility. It is everyone's business. By examining the environmental behaviors of recycling, energy conservation, and carpooling at work, behaviors of Air Force members may be further understood in order to influence them in an environmentally responsible manner.

Conclusion and Summary of Literature Review

Environmental attitudes have steadily increased from the 1960s to the present. By examining the environmental attitudes, general attitude-behavioral theories, organizational perspectives, and the Department of Defense (DoD) focus in relation to the environment, attitudes and behaviors of individuals and organizations can be understood and controlled. The environmental attitudes of the public concerning the environment are centered around the NEP, with many still embracing the outdated DSP. The DSP and NEP help show the shift in environmental attitudes in the late 1960s, and the reason why the environment remains a top priority today. Differences in attitudes based on gender, education, and age were examined. Overall, women, the well educated, and the younger generations have a general tendency to favor the environment; however, most people feel that there needs to be some kind of protection for the environment. The development of general attitude-behavioral theories has helped identify why people act in a particular manner, and through an examination of past research it has been shown that several theoretical approaches exist that have helped enlighten the psychological processes involved. The theory of reasoned action is one framework, and an important one, that is based on the assumption that human beings are usually quite rational and make systematic use of the information available to them. Human social behavior is viewed as not being controlled by unconscious motives, overpowering desires, or thoughtlessness. Rather, people engage in a given behavior only after they have considered the implications of their actions. The theory of planned behavior is another theoretical

framework that is an extension of the theory of reasoned action, but in contrast, this theory postulates three, rather than two, conceptually independent determinants of intentions. The first two, attitude toward the behavior and subjective norm, are the same. The third antecedent of intention is the degree of perceived behavioral control. This factor refers to the perceived ease or difficulty of performing the behavior and it is assumed to reflect past experience as well as anticipated impediments and obstacles. In general, the more favorable the attitude and subjective norm with respect to behavior, and the greater the perceived behavioral control, the stronger should be the individual's intention to perform the behavior under consideration. Along with the two theoretical frameworks, consistency, aggregation, and the effect of moderating variables are discussed. Organizational perspectives concerning the environment have followed the public's attitudes, but at a slower pace. Business was initially slow in stepping on the bandwagon, but has shifted lately to a more proactive stance. Because of the pressures from government and the public, business has reformed its practices, leaning towards a pro-environmental attitude. The Department of Defense (DoD) focus, specifically the Department of the Air Force, is concerned with many environmental matters, and has focused some of its efforts with three environmental behaviors: recycling, energy conservation, and carpooling efforts. Because of this concern, these behaviors were the focus of this research.

The environment is drastically changing because of man's presence, and it is up to man to guarantee the safety of the environment for future generations. By examining the

attitudes and behaviors concerning the environment, it can be seen that society is facing up to the challenges the environment poses, and is making the needed changes in order to protect if for future generations.

In order to better understand why people behave the way they do, the Theory of Planned Behavior (TPB) was examined in detail. An organization's influence on individual behavior at work was also investigated. From the extensive review of the literature, the Organizational Theory of Planned Behavior (OTPB) was developed based on the TPB, as well as from the literature addressing organizational influence. The OTPB provides the framework for measuring behavior at work, in an organizational setting.

III. METHODOLOGY

This research effort consisted of developing a questionnaire to measure environmentally responsible behavior for the direct predictor variables of the Theory of Planned Behavior (TPB) in relation to the criterion variables of recycling, energy conservation, and carpooling at work. The TPB assumes people are usually quite rational and make systematic use of the information available to them, and addresses the antecedents to behavior: attitude toward the behavior, subjective norm, and perceived behavioral control. According to the TPB, other variables, such as demographics, are not important in the explanation of behavior; however, for purposes of generalizability, basic demographic data were gathered (Ajzen and Fishbein, 1975, 1980). Additional components were added to the TPB model to address behaviors at work, forming the Organizational Theory of Planned Behavior (OTPB). The OTPB included an individual's economic motivation, awareness programs, the organizational commitment, and resource-facilitating conditions at work. Assessment of the questionnaire was conducted through a limited study at Wright-Patterson Air Force Base, Ohio. The data collected was used to explain and predict why Air Force members behave, or do not behave, in an environmentally responsible manner at work, and the extent which demographic variables play a role in the attitudes and behavior developed.

Questionnaire Development

A 69-item questionnaire was developed by the author to predict environmental behaviors and measure demographic information. Guidelines established by Ajzen and Fishbein (1980) and Ajzen (1991) aided in the development of the TPB survey questions, and the additional components that form the OTPB were addressed throughout the literature (Geller et al, 1982; McClelland and Canter, 1981; Arcury, 1990; Marans et al, 1992; Oskamp et al, 1991; Vining and Ebreo, 1992) supported the development of the OTPB survey questions. A complete copy of the questionnaire is provided in Appendix A, and the methods used in the development of the questionnaire can be found in Appendix D. The development of the questionnaire is presented below in two separate sections. First, environmental behaviors are discussed in relation to the criterion variables of recycling, energy conservation, and carpooling. Second, generalizations concerning the collection of the demographic variables are discussed.

Environmental Behaviors. The Organizational Theory of Planned Behavior (OTPB) was used to assess environmental behaviors in the work environment, a modification of the Theory of Planned Behavior (TPB). The components that make up the OTPB are shown in Figure 3.1, with the addition of economic motivation, awareness programs, resource-facilitating conditions, and organizational commitment. These additional components will help in the prediction and understanding of attitudes and perceived behavioral control within an organizational framework.

There has been extensive research on the use of monetary incentives as reinforcers of behavior, but there is no clear consensus on the durability of economic motivation (Lee et al, 1995). Monetary reinforcers generally are reliable at initiating conservation behavior (Geller et al, 1982), although there have been findings to the contrary (McClelland and Canter, 1981).

The development and implementation of organizational environmental awareness programs at work help promote environmentally responsible behavior (Arcury, 1990; De Young, 1985 - 1986; Hoffman, 1993; Hunt and Morgan, 1994). Through awareness programs, organizations can have a significant impact on employee behaviors, especially with respect to the behaviors of recycling, energy conservation, and carpooling to work.

The resource-facilitating conditions at work play an essential role in the influence of employee behavior. There must be an infrastructure in place to serve the recycling, energy conservation, and carpooling needs of the employees if a high level of participation is to take place (Marans et al, 1992; Marans and Lee, 1993). The main issue here is one of convenience, with prior research indicating the facilitating conditions as barriers to behavioral control.

Finally, the commitment of the organization plays a key role in the influence of individual behavior. Without adequate information or concern by the organization, behavioral influence over employees will be minimal (Oskamp et al, 1991; Vining and Ebreo, 1992).

Prediction and understanding behavior is the ultimate goal of the TPB. The first step toward this goal is to identify and measure the behavior of interest. Once the behavior has been defined, it is then necessary to ask what determines the behavior. A person's intention to perform (or to not perform) a behavior is the immediate determinant of the action. According to the TPB, a person's intention is a function of three basic determinants: one personal in nature, another reflecting social influence, and one based on volitional control (Ajzen, 1988). The personal factor is the individual's positive or negative evaluation of performing the behavior; this factor is termed attitude toward the behavior. The second determinant of intention is the person's perception of the social pressures put on him or her to perform or not perform the behavior in question; this factor, since it deals with perceived prescriptions, is termed subjective norm. The third and final determinant of intention is the degree of perceived behavioral control. This factor refers to the perceived ease or difficulty of performing the behavior and it is assumed to reflect past experience as well as anticipated impediments and obstacles. It is important to note that this theory does not deal directly with the amount of control a person actually has in a given situation, rather it considers the effects of perceived behavioral control on achievement of behavioral goals. In general, the more favorable the attitude, subjective norm, and perceived behavioral control with respect to behavior, the stronger should be the individual's intention to perform the behavior under consideration. Individuals will perform a behavior when they evaluate it positively and when they believe that others think they should perform it (Ajzen and Fishbein, 1980).

The predictors of environmental behaviors were accomplished using the TPB format, and 57 items were used to measure three behaviors at work: recycling, energy conservation, and carpooling decisions. These three behaviors were addressed in each component of the OTPB, which included the behavior of interest, intentions, attitude toward the behavior, subjective norm, perceived behavioral control, behavioral beliefs, normative beliefs, control beliefs, and the additional items of economic motivation, awareness programs, resource-facilitating conditions, and organizational commitment.

The simplicity of the model derives from its assumption that all other sources of influence on behavior are moderated by the three predictor variables (attitude, subjective norm, and perceived behavioral control). Thus, one could accurately predict whether or not an Air Force member will behave in an environmentally responsible manner (recycle, conserve energy, carpool) at work through knowledge of that person's intent. One could predict intent through knowledge of that individual's attitude towards recycling, energy conservation, and carpooling at work, the subjective norm the Air Force member holds, and how much control the person believes he or she has over the behaviors. Behavioral beliefs and normative beliefs were measured as well, consistent with past operationalizations of the TPB (Randall, 1994).

The three behaviors of recycling, energy conservation, and carpooling at work were selected because of the concern expressed by the federal government, as well as the United States Air Force, to become a better steward of the environment. "We have an obligation to the American people to practice and promote positive resource stewardship. We cannot, and must not, train in ways that harm rare plants and animals, or destroy sensitive ecosystems" (Widnall, 1995a: 1).

The portion of the survey addressing environmental behavior through the use of TPB and the three criterion variables was introduced to the respondents in the following manner: "We would like to get your opinion on a variety of items that relate to behavior. Please read the list and use the following scale to indicate how often that you make an effort to do each of the items." Each of the items was accompanied by the following

scale of five responses: (1) Never, (2) Seldom, (3) Occasionally, (4) Most of the Time, and (5) Always. Also, the following scale of five responses was used: (1) Strongly Disagree, (2) Disagree, (3) Neutral, (4) Agree, and (5) Strongly Agree. The Likert Scale was used to measure responses, with each item of the questionnaire developed from the TPB and from this researchers investigation of the literature (Ajzen and Fishbein, 1980; Lee et al, 1995; Arcury, 1990; De Young, 1985 - 1986; Hoffman, 1993; Hunt and Morgan, 1994; Marans et al, 1992; Marans and Lee, 1993; Oskamp et al, 1991; Vining and Ebreo, 1992). Respondents assigned scores on an automated scoring sheet such that a one meant the respondent "Never" acted in the manner specified (or "Strongly Disagree" with the question), a two meant the respondent acted in the manner specified "Seldom" (or "Disagree" with the question), and so on. A clear picture of the breakdown of the questions corresponding to the individual components of the OTPB is shown below in Appendix I.

Demographics. There has been a great deal of effort and research done to measure the correlation between environmental concern and demographic variables (e.g. Van Liere and Dunlap, 1981; Scott and Willits, 1994). In this research study, the demographic variables of gender, education, and age are addressed to examine if a relationship exists with responsible environmental behavior and intention. In general, the literature suggests that women, the well educated, and the young express the greatest environmental concern (Abbott and Harris, 1985; Gutteling and Wiegman, 1993; Steger et al, 1989; Arcury et al, 1987; Mohai, 1992; Ostman and Parker, 1987; Honnold, 1984).

Questionnaire Deployment

Once the questionnaire was developed with environmental behaviors and demographics investigated, a pre-pilot test (first iteration) was done in order to assess the structure, readability, and general concerns in the questionnaire. Next, a small pilot test (second iteration) was conducted among a sample of students at the Air Force Institute of Technology (AFIT). From here, a main study (third iteration) among active duty Air Force members stationed at Wright-Patterson Air Force Base was accomplished. The study was conducted in accordance with the techniques devised and tested by Dillman (1978) and Air University (1993). Air Force members were administered the questionnaire in controlled classroom settings, at their homes, and at their place of work. The selection of participants was completely random. Air Force members queried ranged from E1 through O6, and from a variety of military career fields.

The use of first term airmen were discounted because, in many instances, they have not made a firm commitment to the Air Force; therefore, their values and beliefs probably do not coincide with those held by the general Air Force public. General officers were not queried because they may not have the same values and beliefs that are typically held by other officers (Marumoto, 1988), and the Air Force Personnel Center (AFPC) at Randolph Air Force Base, Texas, does not believe that general officers should be queried due to the inconvenience.

First Iteration (Pre-Pilot Test). In order to make the questionnaire easier to understand and administer, a pre-pilot test was conducted. This pre-pilot test's purpose

was to assess the general readability of the questionnaire, with a focus on correct grammar usage. Ten individuals were asked to comment on the questionnaire, and to provide answers to the questions in order that the statistical programs could be written. Results and comments from the pre-pilot test aided greatly in improving the survey, and making it more "user-friendly."

Second Iteration (Pilot Test). A second iteration was conducted to determine the statistical reliability of the items in the Organizational Theory of Planned Behavior (OTPB) questionnaire, with the reliability estimated using Cronbach's Alpha in order to assess the internal consistency of the items measuring each variable. Also, descriptive statistics were analyzed in order to see how the responses were distributed (see Appendix B). A sample of 26 active duty Air Force members assigned to the Air Force Institute of Technology (AFIT) at Wright-Patterson AFB, OH were used in the pilot test.

Statistical Analysis of Questionnaire

"The field of statistical analysis is concerned with the collection, organization, and interpretation of data according to well-defined procedures" (Kachigan, 1991: 1). The use of statistics in questionnaire analysis is paramount, and provides useful insights into the responses of the sampled population. The overall objective of statistical analysis is to make observations of the world, convert those observations to numbers, manipulate and organize the results, and then interpret and translate the results back to a world that is now hopefully more orderly and understandable than prior to the data analysis (Kachigan, 1991). This process of drawing conclusions and understanding more about the sources of our data is the goal of statistical analysis in its broadest sense.

Constructs Measured, Reliability, and Validity. Evaluation of the items used in the questionnaire was conducted in order to determine the constructs measured by the questionnaire, the reliability of the items, and the validity of the items. The Statistical Analysis System (SAS[©]) software, Version 6.08, was used to accomplish all of the statistical calculations used throughout this study.

Reliability. The internal consistency of the items (reliability) in the questionnaire were estimated in order to determine if the items within each factor warranted continued use in the study. Cronbach's alpha was calculated in order to estimate the reliability of the items. From previous research, Cronbach's alpha ranged from .76 to .93 for components of the Theory of Planned Behavior (TPB) (Randall, 1994; Wankel et al, 1994).

Reliability is a major application of correlation analysis, and essentially means reproducibility of measurements made on a set of objects. If measurements on a set of objects cannot be replicated, we must conclude that the scores are extremely unstable or that the score obtained by each object was a matter of chance. "The reliability of our measurements should be the first question asked of any data analysis, for if the raw data have no meaning, what possible meaning could the summary statistics have" (Kachigan, 1991: 140).

The reliability estimates for the factors in the pilot questionnaire are shown in Appendix F. Reliability's were not a concern in the pre-pilot test, due to the fact that the pre-pilot test was concerned with grammar and general readability only. For the pilot test, each of the subscales had sufficient levels of reliability to warrant further use during the main study.

The reliability estimates for the factors of the third iteration (main study) are shown in Table 3.1. Each of the subscales had sufficient levels of reliability to provide for a consistency among the responses, and to provide the needed correlation with what is being measured.

The energy conservation subjective norm questions had the greatest reliability (Cronbach's Alpha) of .94552, and the recycling resource facilitating conditions questions had the least reliability (Cronbach's Alpha) of .48430. Averaging the subscale items together for recycling, energy conservation, and carpooling, the subjective norm questions produced the highest correlation of .93318, and the normative belief questions produced the lowest correlation of .61340. Refer to Table 3.2 below for a breakdown of the averages for each subscale. Note that the averages were made simply by summing the reliability items for all the behaviors concerning each subscale, then dividing by the total number of behaviors (three). For a complete breakdown of the SAS[®] output for the reliability analysis, refer to Appendix F.

FACTOR	SUBSCALE	CRONBACH'S ALPHA
RecAtt1	Recycling Attitude	.90537
RecAtt2		
EnAtt1	Energy Conservation Attitude	.88231
EnAtt2		
CarAtt1	Carpooling Attitude	.90272
CarAtt2		
RecSN1	Recycling Subjective Norm	.93934
RecSN2		
EnSN1	Energy Conservation Subjective Norm	.94552
EnSN2		
CarSN1	Carpooling Subjective Norm	.91466
CarSN2		
RecBC1	Recycling Perceived Behavioral Control	.78221
RecBC2		
EnBC1	Energy Conservation Perceived Behavioral Control	.80183
EnBC2		
CarBC1	Carpooling Perceived Behavioral Control	.87262
CarBC2	1 5	
RecBB1	Recycling Behavioral Belief	.88162
RecBB2		
EnBB1	Energy Conservation Behavioral Belief	.92773
EnBB2		
CarBB1	Carpooling Behavioral Belief	.82364
CarBB2		
RecNB1	Recycling Normative Belief	.56248
RecNB2		
EnNB1	Energy Conservation Normative Belief	.63852
EnNB2		
CarNB1	Carpooling Normative Belief	.63919
CarNB2		
RecOC1	Recycling Organizational Commitment	.83737
RecOC2		
RecOC3		000/0
EnOC1	Energy Conservation Organizational Commitment	.92260
EnOC2		
EnOC3		02227
CarOC1	Carpooling Organizational Commitment	.93327
CarOC2		
CarOC3		
		49420
RecRFC1	Recycling Resource Facilitating Conditions	.48430
RecRFC2		67720
EnRFC1	Energy Conservation Resource Facilitating	.07730
EnRFC2	Conditions	86663
CarRFC1	Carpooling Resource Facilitating Conditions	.00000
CarRFC2		

TABLE 3.1Subscale Reliability for Third Iteration (Main Study)

SUBSCALE	AVERAGE CRONBACH'S ALPHA
Attitude	.89680
Subjective Norm	.93317
Perceived Behavioral Control	.81889
Behavioral Belief	.87766
Normative Belief	.61340
Organizational Commitment	.89775
Resource Facilitating Conditions	.67608

 TABLE 3.2

 Subscale Reliability Averages for Third Iteration (Main Study)

Factor Analysis. To determine the dimensionality and construct validity of the survey instrument, confirmatory factor analysis was used. Confirmatory factor analysis was used because the survey is building off a model already developed and supported in the literature -- the Theory of Planned Behavior. Orthogonal rotation (Varimax) was used in conjunction with factor analysis because the technique redefines the factors, creating very distinctive factors and leads to either very high (close to 1.0) or very low (near 0) factor loadings. More meaningful conclusions can be drawn from the results, and clear definitions of the behaviors that are being measured by the questionnaire can be derived by redefining the factors using this technique (Kachigan, 1991). The twelve demographic questions and fifty-seven behavioral items were factor analyzed independently.

Factor analysis "is a family of procedures for removing the redundancy from a set of correlated variables and representing the variables with a smaller set of 'derived' variables, or factors" (Kachigan, 1991: 237). Applications of factor analysis include identification of factors underlying a large set of variables, screening of variables for inclusion in subsequent statistical investigations, providing a summary of the data so as to extract as few or as many factors as desired from a set of variables, providing for a technique in selection of a small group of representative, though uncorrelated variables from among a larger set in order to solve a variety of practical problems (sampling), and to cluster objects or people (Kachigan, 1991).

In a factor matrix, cell entries are called factor loadings, and vary in value from -1.00 to +1.00. The factor loadings represent the degree to which each of the variables correlates with each of the factors, and are nothing more than the correlation coefficients between the original variables and the newly derived factors (Kachigan, 1991: 243). The factor loadings reveal the extent to which each of the variables contributes to the meaning of each of the factors. Those variables with high factor loadings provide the meaning and interpretation of the factor, while those with low factor loadings will not contribute to the meaning of the factor, but rather will tend to contribute to the meaning of one of the other factors by virtue of their high loadings on those factors (Kachigan, 1991).

Results of the factor analysis using the principal components method are shown in Appendix F and below in Table 3.3 (for the main study only). The loadings for each item on each of the factors is identified in the following discussion.

The factor loading data suggests that the fifty-seven items in the questionnaire measure eleven distinct components. This result is consistent with other studies examining the Theory of Planned Behavior (TPB) (Randall, 1994; Ajzen, 1991). Also, the addition of the economic motivation, awareness programs, organizational

commitment, and resource facilitating condition components that form the Organizational Theory of Planned Behavior (OTPB) are also supported by the factor loading data (Appendix F). The factor loadings rotated with a varimax orthogonal rotation are shown in Table 3.3. Because of the small sample size (307) in this study, the results of the factor analysis are not conclusive. However, grouping of the 57-items with the eleven factors can be made on a subjective basis. Factor 1 is represented by the behavioral belief component, factor 2 by the behavior and awareness program items, factor 3 by the subjective norm items, factor 4 by the organizational commitment items, factor 5 by the attitude items, factor 6 by the perceived behavioral control items, factor 7 by the normative belief items, factor 8 by the resource facilitating conditions, factor 9 by the intentions, factor 10 by the carpooling perceived behavioral control items and carpooling resource facilitating condition items, and factor 11 is represented by the economic motivation items. The variance explained by each factor is shown in Table 3.4.

FACTORIFACTORIFACTORIFACTORIFACTORIFACTORIFACTORIFACTORIRUBERI301315854CARBERI3-26179-RUTNI461115-343RUTNI141115-343RUTNI141115-343RUTNI141115-343RUTNI60-777146RUTNI60-102321390RUTNI60-10232310RUTNI26-0-12722RUTNI143180-223RUTNI143180-223RUTNI141283469RUTNI13-1283469RUTNI141380-223RUTNI13-1283469RUTNI141283469RUTNI13-1277757RUTNI14127377RUTNI14127377RUTNI1513-677RUTNI1420641810RUTNI1410 <th>·</th> <th></th> <th>VARIM</th> <th>AX ROTAT</th> <th>ED FACTO</th> <th>R PATTER</th> <th>N*</th>	·		VARIM	AX ROTAT	ED FACTO	R PATTER	N*
FACTOR1 FACTOR3 FACTOR3 FACTOR4 FACTOR4 FACTOR4 FACTOR5 FACTOR4 FACTOR5 FACTOR4 RECEBHI 30 13 15 8 5 4 CAREEKI 3 -2 6 1 79* -7 RECINT1 46* 44* 12 -26 4 16 ENINT1 34 11 15 -3 4 3 CARINT1 8 16 -7 78* -5 RECATT2 74* 18 11 -11 8 17 BUATT2 66* -7 21 10 18 10 CRART12 24 2 4 8 69* 4 RECSN1 14 28 83* -7 0 -1 ENSN1 1 12 83<* 4 6 -9 SUSSN1 1 9 82.* 4 9 -9 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
RECEBH1 36 54 17 -18 3 20 ENBEH1 30 13 15 8 5 4 RECENT1 46 44 12 -26 4 3 RECINT1 46 44 12 -26 4 3 CARINT1 8 1 6 -7 78 * -5 RECATT1 73 17 7 -14 6 14 3 9 ENATT2 74 18 11 -11 8 10 10 18 10 10 18 10 10 18 10 10 18 10 10 18 10 10 18 10 11 12 13 10 12 13 10 12 13 10 12 13 10 12 13 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 13 11 11		FACTOR1	FACTOR2	FACTOR3	FACTOR4	FACTOR5	FACTOR6
RCLBAIL 30 34 17 -18 3 40 RCREH1 30 -13 15 8 5 4 CAREBH1 30 -22 6 1 79 -7 RECINT1 46 44 412 -26 4 16 RINT1 34 11 15 -3 4 3 3 CARINT1 8 1 -11 8 17 RECATT2 74 18 11 -11 8 17 BNAT2 60 -7 78 -7 10 18 10 CRART1 25 -7 21 10 18 10 CRART12 24 2 4 8 69 4 RECSN1 14 28 83 -7 0 -1 ENSN1 12 28 33 4 6 -9 ENSN1 1 12 23 -9 -7 7 75 * RECB1 30		26	F4 +	17	10	2	20
DMBAL 3 -2 6 1 7 + RECINT1 46 44 12 -26 4 16 BNINT1 34 11 15 -3 4 3 CARINT1 8 1 6 -7 78 * -5 RECATT1 73 * 18 11 -11 8 17 ENATT2 60 * -7 21 10 18 10 CRART1 24 2 4 8 69 * 2 CRART1 25 0 -1 2 72 * 2 CRART1 25 0 -1 2 72 * 2 CRART1 25 0 -1 18 10 -1 13 10 -1 13 10 -1 13 13 13 13 14 13 13 14 13 13 13 14 13 13 14 13 13 15 13 15	RECBERI	30	12	15	-19	5	20
CARDENII 3 46 * 44 * 12 -26 4 16 ENINTI 34 11 15 -3 4 3 CRRINTI 8 1 6 -7 78 * -5 RECATTI 73 * 17 7 -14 6 14 RECATT2 74 * 18 11 -11 8 17 ENATT1 65 * -10 23 2 13 9 ENNT2 60 * -7 21 10 18 10 CRRATT1 25 0 -1 2 72 * 2 CRRATT2 24 2 4 6 69 * 4 RECSN1 14 31 80 * -2 2 -3 RECSN2 14 28 83 * -7 0 -1 ENSN2 1 9 82 * 4 9 -9 CRRSN2 1 9 82 * 4 9 -9 CRRSN2 1 9 82 * 4 9 -9 ENSN2 1 9 82 * 4 9 -9 CRRSN2 1 9 82 * 4 9 -9 ENSN2 1 9 82 * 4 9 -9 CRRSN2 8 -13 36 34 42 * 13 CRRSN2 8 -13 36 34 42 * 13 CRRSN2 8 -13 36 34 42 * 11 RECBC1 9 5 -9 -7 7 75 * RECBC2 12 23 -2 -12 1 75 * ENBC2 8 -7 3 7 4 81 * 3 CRRSC 14 -1 9 42 * 48 3 * 2 RECSN1 15 13 -6 -9 -3 20 CRRSC 15 13 -6 -9 -3 20 CRRSC 16 * 7 -1 -9 3 4 ENSC2 8 -7 3 7 4 81 * ENSC2 8 -7 3 7 -1 -9 -7 7 7 RECBC1 15 13 -6 -9 -3 20 CRREC1 15 13 -6 -9 -7 7 7 RECBC2 12 20 32 -2 CRREC1 15 13 -6 -9 -7 7 7 RECBC2 12 20 7 11 -0 4 -17 13 RECBB1 80 * 7 -1 -9 3 4 ENSE2 8 -10 -3 -6 33 4 ENSE2 5 12 34 4 -6 -7 CRREC1 19 5 12 34 -6 -7 CRREC1 19 5 -2 -7 CREED1 9 52 * 48 * -8 -3 ENSL 14 20 64 * 18 10 4 ENSE2 5 12 34 4 -6 ENSE2 9 20 32 3 -8 ENSL 14 20 62 18 -1 RECCB1 8 7 -5 12 -16 -2 CREEN1 -36 -6 -3 20 12 1 CREEN1 -36 -6 -3 20 12 1 CREEN1 -38 74 * 13 0 -5 RECCC1 -1 74 * 7 30 -1 RECCB1 8 74 * 13 0 -5 RECCC1 -2 RECAP1 8 74 * 18 54 * 3 RECCE1 -2 -2 RECAP1 8 74 * 18 54 * 3 RECCE1 -2 -2 RECAP1 8 74 * 18 54 * 3 RECCE1 -1 74 * 7 ENCC2 -8 47 * 18 54 * 3 RECCE1 -1 74 * 7 ENCC2 -8 47 * 18 54 * 3 RECCE1 -2 -1 ENCC1 -2 -1 CRECE1 -2 -2 ENCC1 -2 -1 RECCPC1 8 7 -2 ENCC2 -5 RECAP1 8 7 -6 RECCPC1 8 7 -2 ENCC3 -12 45 * 26 55 * 6 -10 CRECC1 -8 7 -2 ENCC3 -12 45 * 26 55 * 6 -10 CRECC1 -8 7 -2 ENCC3 -12 45 * 26 55 * 6 -10 CRECC1 -8 7 -2 ENCC3 -12 45 * 26 55 * 6 -10 CRECC1 -8 7 -2 ENCC3 -12 45 * 26 55 * 6 -10 CRECC1 -8 7 -2 ENCC3 -12 45 * 26 55 * 6 -10 CRECC1 -8 7 -2 ENCC3 -12 45 * 26 55 * 1 -6 CRECC1 -8 7 -2 ENCC3 -	ENDERI	50	-3	15	7		-7
RGUN11 48 11 15 -3 4 3 CARINT1 6 1 6 -7 78 * -5 RECATT 73 * 18 11 -11 8 17 ENATT2 60 * -7 21 10 18 10 CARATT2 24 * 8 69 * 4 RECN1 14 31 80 * -2 2 -3 RECN1 1 12 83 * 4 6 -9 -3 RECN2 14 28 83 * -7 7 75 * RECN1 9 5 -9 -7 7 75 * RECN2 8 -7	CARBERT	3	-2	10	-26	,5	16
DMINI, 3* 1.1 1.13 -3 -3 -3 -3 -3 RRCATTI 73 1.7 7 -1.4 6 1.4 RRCATTI 73 1.8 1.1 -1.1 8 1.7 ENATT2 60 -7 21 10 1.8 10 CARATT1 25 0 -1 2 72 2 2 CARATT2 24 2 4 8 69 4 4 RCSN1 1.4 28 83 -7 0 -1 1.5 ENSN1 1.1 12 83 4 6 -9 -9 CARSN1 3.12 40 * 38 4.3 1.3 1.3 CARSN2 8 -13 36 34 4.2 * 1.1 RCCC1 2 -10 -5 -3 -8 3 * RCC2 2 -10 -5 -3 -7 7 * RCC2 7 1.7	RECINII	40 ~	44 "	15	-20		3
CARNIL 5 17 7 -14 6 14 RECATT2 74 * 18 11 -11 8 17 ENATT 65 * -10 2 13 9 ENATT2 60 * -7 21 10 18 10 CARAT1 25 0 * -7 21 10 72 * 2 CARAT12 24 2 4 8 69 * 4 RECSN1 14 31 80 * -2 2 73 RECSN1 1 12 83 * 4 6 -9 ENSN2 14 28 83 * -7 0 -1 ENSN1 1 12 83 * 4 6 -9 ENSN1 1 12 83 * 4 6 -9 CARSN1 3 -12 40 * 38 43 * 13 CARSN1 3 -12 40 * 38 43 * 13 CARSN2 8 -13 7 7 6 * RECC2 12 2 3 -2 -12 1 7 7 7 5 * RECC2 8 -7 3 7 4 81 * ENBC1 2 -10 -5 -3 -8 83 * ENBC1 2 -10 -5 -3 -8 83 * ENBC2 8 -7 3 7 4 81 * ENBC2 8 -7 1 7 7 RECB2 85 * 4 -1 19 3 4 ENBEL 80 * -10 11 9 4 -5 ENBEL 80 * -10 11 9 4 -5 ENBEL 80 * -10 -3 -6 33 4 RECB1 19 52 * 48 * -8 -3 -1 RECB2 58 * -10 -3 -6 33 4 RECB1 19 52 * 48 * -8 -3 -1 ENBEL 80 * -10 -3 -6 33 4 RECM1 19 52 * 48 * -8 -3 -1 ENBEL 14 20 64 * 18 10 4 ENNE1 14 -2 17 22 21 5 5 RECM1 -3 8 -9 -3 16 7 -2 RECB2 58 * -10 -3 -6 33 4 RECM1 19 52 * 48 * -8 -3 -1 CARBEL 14 -2 17 36 34 11 CARBEL 14 -2 17 36 34 11 CARBEL 14 -2 17 36 34 11 CARBEL 14 -12 17 36 34 11 CARBEL 14 -2 55 * 18 49 * 4 7 ENCC2 -8 47 * 18 58 * 3 -7 ENCC2 -8 47 * 18 58 * 3 -7 ENCC2 -8 47 * 18 58 * 3 -7 ENCC2 -5 -8 -7 -2 2 -3 -2 ENRPC1 -1 -1 -5 CARCC1 -6 14 1 81 * -1 -2 CARCC1 -6 14 1 81 * -1 -6 CARCC1 -6 14 7 -2 17 -2 ENCC2 -5 -8 -7 -2 2 -3 -2 ENRPC2 -5 -8 -7 -2 2 -3 -2 ENRPC2 -5 -8 -7 -2 2 -3 -2 ENRPC2	ENINII CADINEI		1	15 6	-3		-5
RECATI2 74 18 11 -11 8 17 ENATTZ 65 * -10 23 2 13 9 ENATTZ 60 * -10 23 2 13 9 CARATT2 260 -1 2 72 * 2 CARATT2 24 2 4 8 63 * -2 2 -3 RECSN1 14 28 83 * -7 0 -1 ENSN1 1 12 283 * 4 9 -9 CARSN1 3 -12 36 34 42 * 13 CARSN2 8 -13 36 34 42 * 13 RECBC1 2 -10 -5 -3 -8 83 * ENBC2 13 -6 -9 -3 20 CARSC1 15 13 -6 -17 13 RECB2 13 -5 8 3	CARINII	8 72 +	17	7	- 1 4	/8 ···	- 5
RARATI2 74 13 14 14 15 14 16 14 16 16 ENATTI 260 * -7 21 10 18 10 CARATT12 24 2 4 8 69 4 RECSN1 14 21 80 * -7 0 -1 ENSN2 14 28 80 * -7 0 -1 ENSN1 1 12 83 * 4 6 -9 ENSN2 1 3 -12 40 38 43 * 11 RECBC1 9 5 -9 -7 7 75 * RECBC2 12 23 -2 -12 1 75 * RECBC2 8 -7 3 7 -4 81 * RECBE1 80 * 7 11 -10 -4 -17 13 RECBE1 80 * -10 11 9 4 -	RECALL	73 *	10	11	-11	8	17
ENATI2 60 * -77 21 10 18 10 CARATT2 24 2 4 2 4 8 63 RECSN1 14 31 80 * -2 2 72 * 2 CARATT2 24 2 4 4 9 -3 RECSN2 14 28 63 * -77 0 -1 ENSN1 1 12 83 * 4 6 -9 ENSN2 1 9 62 * 4 9 -9 CARSN1 3 -12 40 * 38 43 * 13 CARSN2 8 -13 36 34 42 * 11 RECBC1 9 5 -9 -7 7 75 * ENBC1 2 -10 -5 -3 -8 83 * ENBC2 12 23 -2 -12 1 75 * ENBC2 8 -7 3 7 -4 81 * CAREC1 15 13 -6 -9 -3 20 CAREC1 15 13 -6 -9 -3 20 CAREC1 15 13 -6 -9 -7 7 RECEB2 85 * 4 -1 9 3 4 ENEB2 83 * -5 8 3 8 -2 CAREC1 15 -10 -3 -6 33 4 ENBE1 80 * -10 11 9 4 -5 ENBE2 83 * -5 8 3 8 -2 CAREC1 19 5 -9 3 -7 RECEB2 85 * 4 -1 9 3 4 ENBE1 80 * -10 11 9 4 -5 ENBE2 83 * -5 8 3 8 -2 CAREC1 19 5 -2 8 -3 -2 CAREC2 9 2 7 11 -10 -4 -17 RECEB2 85 * 4 -1 9 3 4 ENBE1 80 * -10 13 9 4 -5 ENBE2 83 * -5 8 3 8 -2 CAREC2 19 22 * 48 * -8 -3 -1 RECEB2 9 20 4 32 -7 CAREC2 9 2 0 64 * 18 10 4 ENNE1 14 20 64 * 18 10 4 ENNE1 14 -2 17 36 34 11 CAREC1 9 5 12 3 -6 -3 20 12 RECME1 19 52 * 48 * -8 -3 -1 RECEME1 14 -12 17 36 34 11 CAREC1 25 12 34 4 -6 -7 CAREC1 -3 -6 -7 CAREC1 -3 -6 -7 CAREC1 9 0 -3 2 2 2 2 5 5 RECME2 9 2 0 4 8 2 3 -8 -3 ENNE1 14 -12 17 36 34 11 CAREC1 9 0 -3 2 2 2 2 6 7 -2 ENEM1 -36 -6 -3 20 12 1 CAREC1 -1 74 * 73 30 -1 4 ENCAP1 -2 59 * 8 19 0 0 CAREC1 -1 74 * 73 30 -1 4 RECCNE1 9 33 -5 1 RECCAP1 8 74 * 13 0 -5 4 ENCAP1 -2 59 * 8 19 0 CAREC1 -1 74 * 73 30 -1 4 RECCC1 -1 74 * 73 30 -1 4 RECCC1 -1 74 * 73 30 -1 4 RECCC1 -2 RECAP1 8 74 * 13 0 -5 4 ENCAP1 -2 59 * 8 19 0 CAREC1 -2 -8 47 * 18 58 * 3 -7 ENCC3 -6 67 * 34 36 2 -8 ENCC1 -10 55 * 18 49 * 4 -7 ENCC3 -6 67 * 34 36 2 -8 ENCC1 -10 55 * 18 49 * 4 -7 ENCC3 -6 67 * 34 36 2 -8 ENCC1 -10 75 * 18 49 * 4 -7 ENCC3 -6 67 * 34 36 7 -2 ENCC1 -1 74 * 7 30 -1 RECCRC1 8 7 -6 -14 -21 1 RECRC1 8 7 -6 -14 -21 -1 RECRC2 6 -7 -7 -2 2 -3 -2 ENREC1 8 7 -6 -14 -21 -1 RECRC2 6 -7 -7 -2 2 -3 -2 ENREC2 -5 -8 6 6 8 -3 -3 -6 ENREC2 -5 -8 6 6 8 -3 -3 -6 ENREC2 -5 -8 6 6 8 -3 -3 -6 ENREC2 -5 -8 6 6 8	ENATE1	/4 * CE *	-10	23	2	13	9
LARTI1 25 0 -1 2 72 * 2 CARATT2 24 2 4 8 69 * 4 RECSN1 14 28 83 * -7 0 -1 ENSN1 1 12 83 * -7 0 -1 ENSN1 1 12 83 * 4 9 -9 CARSN1 3 -12 40 * 38 43 * 13 CARSN1 3 -12 40 * 38 43 * 13 CARSN2 8 -13 36 -9 -7 7 75 * ENEC1 2 -10 -5 -3 -8 83 * * ENBC2 8 -7 3 7 -4 81 * * CARBC1 15 13 -6 -9 -3 20 CARBC2 7 11 -10 -4 -17 13 RECBE1 80 * -10 11 9 4 -5 ES ES ES 10		60 *	-7	21	10	18	10
CARATT2 24 2 4 8 69 * 4 RECSN1 14 31 80 * -2 2 -3 RECSN2 14 28 83 * 4 6 -9 ENSN2 1 9 82 * 4 9 -9 CARSN1 3 -12 40 * 38 43 * 13 CARSN2 8 -13 36 34 42 * 11 RECSN2 8 -13 36 34 42 * 11 RECSN2 8 -13 36 34 42 * 11 RECSC1 9 5 -9 -7 7 7 5 * RECBC2 12 23 -2 -12 1 75 * ENBC1 2 -10 -5 -3 -8 83 * ENNEC1 15 13 -6 -9 -3 20 CARSC1 15 13 -6 -9 -3 20 CARSC1 15 13 -6 -9 -3 20 CARSC1 15 13 -6 -9 -7 7 RECBE1 80 * 7 -1 -9 3 4 ENBE1 80 * 7 -1 -9 3 4 ENBE2 85 * 4 -1 -9 3 4 ENBE2 83 * -5 8 3 8 -2 CARB2 58 * -10 -3 -6 33 4 RECBC1 19 52 * 48 * -8 -3 -1 RECBE1 9 52 * 48 * -8 -3 -1 RECBE1 9 52 * 48 * -8 -3 -1 RECBE2 58 * -10 -3 -6 33 4 RECNE1 19 52 * 48 * -8 -3 -1 RECRE2 19 55 * 4 -1 -9 3 -7 CARB2 58 * -10 -3 -6 33 4 RECNE1 19 52 * 48 * -8 -3 -1 RECBE2 58 * -10 -3 -6 33 4 RECNE1 19 52 * 48 * -8 -3 -1 RECBE2 58 * -10 -3 -6 33 4 RECNE1 19 52 * 48 * -8 -3 -1 RECBE2 58 * -10 -3 -6 33 4 RECNE1 19 52 * 48 * -8 -3 -1 RECME2 5 12 34 4 * 46 -7 CARB2 10 -3 22 22 15 5 RECRE 10 -3 20 12 1 CARB1 14 -12 17 36 34 11 CARNE1 14 -12 17 36 36 4 11 CARNE1 14 -12 17 36 36 6 2 -8 ENOC1 -1 0 55 * 18 49 * 4 -7 ENOC3 -6 67 * 34 36 2 -8 ENOC1 -1 0 55 * 18 49 * 4 -7 ENOC3 -12 45 * 26 56 * 6 -10 CAROC1 -8 41 8 0 83 * 1 -8 RECNC1 -1 0 55 * 18 49 * 4 -7 ENOC3 -12 45 * 26 56 * 6 -10 CAROC1 -1 0 55 * 18 49 * 4 -7 ENOC3 -12 45 * 26 56 * 6 -10 CAROC1 -1 0 55 * 18 49 * 4 -7 ENOC3 -12 45 * 26 56 * 6 -10 CAROC1 -1 0 55 * 18 49 * 4 -7 ENOC3 -12 45 * 26 56 * 6 -10 CAROC2 -5 19 -6 85 * 1 -6 -2 CAROC2 -5 19 -6 85 * 1 -6 -2 CAROC2 -5 19 -6 85 * 1 -6	CARATTI	25	,	-1	2	72 *	2
CARCONIA 14 31 80 * -2 2 -3 RECONI 14 28 63 * -7 0 -1 RNSNI 1 12 80 * -2 2 -3 RECONI 3 -12 40 * 38 43 * 13 -7 CARENI 3 -12 40 * 38 43 * 13 -7 CARENI 3 -12 40 * 38 43 * 13 -7 CARENI 3 -12 36 34 42 * 11 RECEC1 9 5 -9 -7 7 75 * RECED2 12 23 -2 -12 17 * 75 * RECED2 8 -7 3 7 -4 81 * CAREC1 15 13 -6 -9 -3 20 CARED2 8 7 -1 -9 -7 7 7 RECEB2 80 * -10 11 9 4 -5 2 22 -7 CARBD1 61 * -6 -6 2	CARATT2	23	2	4	8	69 *	4
RECSN2 14 28 83 * - 0 -1 ENSN1 1 12 63 * 4 6 -9 ENSN2 1 9 63 * 4 6 -9 CARSN1 3 -12 40 * 38 43 * 13 CARSN2 8 -13 36 34 42 * 11 RECEC1 9 5 -9 -7 7 75 * RECEC2 12 23 -2 -12 1 75 * RECEB1 80 * 7 3 7 -4 81 * CAREC1 15 13 -6 -9 -3 20 C CAREC1 13 8 -2 C 33 4 -5 8 3 8 -2 C 34 4 -5 E ENBE2 83 * -5 8 3 8 -2 C CARED1 8 -2 C <td>PECSN1</td> <td>14</td> <td>31</td> <td>80 *</td> <td>-2</td> <td>2</td> <td>-3</td>	PECSN1	14	31	80 *	-2	2	-3
RENN1 1 12 83 * 4 6 -9 ENNN1 3 -12 40 * 4 9 -9 CARSN1 3 -12 40 * 4 42 * 11 RCCBC1 9 5 -9 -7 7 75 * RCCBC2 12 23 -2 -12 1 75 * RCCBC1 15 13 -6 -9 -3 20 CARBC2 7 11 -10 -4 -17 13 RCCB1 80 * 7 -4 81 * RCCB2 85 * 4 -1 -9 3 4 ENNE2 80 * -10 11 9 4 -5 ENNE2 83 * -5 8 3 8 -2 CARBB1 61 * -6 -3 -6 33 4 RCNB1 19 52 48 *	RECONT	14	28	83 *	-7	0	-1
ENSN2 1 9 82 * 4 9 -9 CARSN1 3 -12 40 * 38 43 * 13 CARSN2 8 -12 240 * 38 442 * 11 RECBC1 9 5 -9 -7 7 75 * RECBC2 12 23 -2 -12 1 75 * ENEC1 2 -10 -5 -3 -8 83 * ENEC2 8 -7 3 7 -4 81 * CARBC1 15 13 -6 -9 -3 20 CARBC2 7 11 -10 -4 -17 13 RECBB1 80 * 7 -1 19 3 4 ENNE1 80 * 10 11 9 4 -5 ENNE2 83 * -10 13 3 4 -2 CARBB1 61 *	RECONZ ENCN1	±= 1	12	83 *	4	6	-9
CARSNI 3 -12 40 * 38 43 * 13 CARSNZ 8 -13 36 34 42 * 11 RECBC1 9 5 -9 -7 7 75 * RECBC2 12 23 -2 -12 1 75 * ENNC1 2 -10 -5 -3 -8 83 * ENNC1 2 -10 -5 -3 -8 83 * ENNC1 15 13 -6 -9 -3 20 CARBC1 15 13 -6 -9 -7 7 RECBL 80 * 7 -1 -9 -7 7 RECBL 80 * 7 -1 -9 -7 7 RECBL 80 * -10 11 9 4 -5 ENBE2 83 * -5 8 3 8 -2 CARBE1 61 * -6 -6 2 32 -7 CARBE1 61 * -6 -6 2 32 -7 CARBE1 61 * -6 -6 3 4 RECNB1 19 52 * 48 * -8 -3 -1 RECNB1 19 52 * 48 * -8 -3 ENNE1 14 20 64 * 18 10 4 ENNE2 5 12 34 4 -6 -7 CARBE2 10 -3 -2 32 18 ENNE1 14 20 64 * 18 10 4 ENNE2 5 12 34 4 -6 -7 CARBE2 10 -3 22 22 15 5 RECEMI -38 -9 -3 16 7 -2 ENEMI -38 -9 -3 16 7 -2 RECMI -38 7 -5 12 -16 -2 RECMI -38 7 -5 12 -16 -2 RECMI -38 -9 -3 16 7 -2 RECMI -38 -9 -3 16 7 -2 RECMI -38 7 -5 12 -16 -2 RECMI -38 -9 -3 16 7 -2 RECMI -38 7 -5 12 -16 -2 RECMI -28 7 -15 12 -16 -2 RECMI -38 7 -5 12 -16 -2 RECMI -28 7 -15 12 -16 -2 RECMI -28 7 -10 -17 -2 RECMI -28 7 -12 -16 -2 RECMI -28 7 -12 -12 -16 RECMI -28 7 -12 -12 -17 RECMI -20 7 -12 -2 -3 -2 -3 -2 RECMI -10 7 -12 -2 -3 -2 -3 -2 RECMI -10 7 -12 -2 -3 -3 -29 -1	ENSN2			82 *	-	9	-9
CARNEL 1 1 3 36 34 42 * 11 RECBC1 9 5 -9 -7 7 7 75 * RECBC2 12 23 -2 -12 1 75 * ENEC1 2 -10 -5 -3 -8 83 * ENEC2 8 -7 3 7 -4 81 * CARNEC1 15 13 -6 9 -3 20 CARBC2 7 11 -10 -4 -17 13 RECBE1 80 * 7 -1 9 3 4 ENBE1 80 * -10 11 9 4 -5 ENBE2 85 * 4 -1 9 3 4 ENBE1 80 * -10 11 9 4 -5 ENBE2 61 * -6 -6 2 32 -7 CAREE1 61 * -6 -6 2 32 -7 CAREE2 58 * -10 -3 -6 33 4 RECNE1 19 52 * 48 * -8 -3 -1 RECNE1 9 20 32 3 -8 3 ENNE1 14 20 64 * 18 10 4 ENNE1 14 -12 17 36 34 11 CARNE2 10 -3 22 25 5 RECME1 9 20 32 3 -8 3 ENNE1 14 -12 17 36 34 11 CARNE2 10 -3 22 26 12 RECME1 -38 -9 -3 16 7 -2 ENEM1 -36 -6 -3 20 12 1 RECME1 -38 -9 -3 16 7 -2 ENEM1 -36 -6 -3 20 12 1 CAREM1 -2 17 36 34 11 CARNE2 10 -3 22 26 12 RECME1 -38 -9 -3 16 7 -2 ENEM1 -36 -6 -3 20 12 1 CAREM1 -2 59 * 8 19 0 0 CAREM1 -2 59 * 8 19 0 CAREM1 -2 59 * 18 49 * 4 -7 ENCC1 -1 74 * 7 30 -1 4 RECCC2 -2 70 * 19 33 -5 1 RECCM1 -10 55 * 18 49 * 4 -7 ENCC1 -1 74 * 7 30 -1 4 RECCC2 -2 RECAPI 8 74 * 13 0 -5 4 ENCC1 -1 74 * 7 30 -1 4 RECCC2 -2 RECAPI 8 74 * 13 0 -5 4 ENCC1 -1 74 * 7 30 -1 4 RECCC2 -2 RECAPI 8 74 * 13 0 -5 4 ENCC1 -1 74 * 7 30 -1 4 RECCC2 -2 RECAPI 8 74 * 13 0 -5 4 ENCC1 -1 74 * 7 30 -1 4 RECCC2 -2 RECAPI 8 74 * 13 0 -5 4 ENCC1 -1 74 * 7 30 -1 4 RECCC2 -2 RECAPI 8 74 * 13 0 -5 4 ENCC1 -1 74 * 7 30 -1 4 RECCC2 -2 RECAPI 8 74 * 18 58 * 3 -7 ENCC2 -8 RECEM1 8 14 1 81 * -1 -2 CARCC2 -5 19 -6 R5 * -1 -6 CARCC2 -5 19 -6 R5 * -1 -6 CARCC2 -5 19 -6 R5 * -1 -6 CARCC2 -5 RECAPI -1 -9 -6 ENRC2 -5 -8 -6 8 -3 -2 ENRC2 -5 -8 -6 8 -3 -2 ENRC2 -5 -8 -6 -7 CARCC2 -5 -8 -6 -7 CARCC2 -5 -8 -7 ENCC3 -6 R -7 CARCC2 -5 -8 -7 ENCC3 -6 R -7 CARCC2 -5 -8 -7 ENCC3 -6 R -7 ENCC3 -6 R -7 ENCC3 -6 R -7 ENCC3 -6 R -7 CARCC2 -5 -8 -7 ENCC3 -6 R -7 CARCC2 -5 -8 -7 ENCC3 -6 R -7 ENCC3 -7	CARGNI	3	-12	40 *	38	43 *	13
RECEC195-9-7775*RECCC21223-2-12175*ENEC28-737-481*CAREC11513-6-9-320CAREC2711-10-4-1713RECEB180*7-1-9-77RECEB285*4-1-934ENBE180*-101194-5ENBE283*-5838-2CAREB161*-6-6232-7CAREB158*-10-3-6334RECNE11952*48*-8-3-1RECNE11952*48*-8-3-1RECNE2920323-8334ENNE1142064*18104ENNE2512344-6-7CARNE114-1217363411CARNE1142064*18104ENNE1142064*18104ENNE1142064*18106RECEM1-38-9-3167 <td< td=""><td>CARSN2</td><td>8</td><td>-13</td><td>36</td><td>34</td><td>42 *</td><td>11</td></td<>	CARSN2	8	-13	36	34	42 *	11
RECEC2 12 23 -2 -12 1 75 * ENEC1 2 -10 -5 -3 -8 83 * ENEC2 8 -7 3 7 -4 81 * CAREC1 15 13 -6 -9 -3 20 CAREC2 7 11 -10 -4 -17 13 RECBB2 85 * 4 -1 -9 -7 7 RECBB2 85 * 4 -1 -9 3 4 ENBE2 83 * -10 11 9 4 -5 ENBE1 80 * -10 11 9 4 -5 CARB2 58 * -10 -3 8 -2 -2 CARB2 58 * -10 -3 8 -3 -1 RECNB2 9 20 32 3 -6 -7 -2 CARB1 14 20 64 <t< td=""><td>RECEC1</td><td>9</td><td></td><td>- 9</td><td>- 7</td><td> 7</td><td> 75 *</td></t<>	RECEC1	9		- 9	- 7	7	 75 *
ENECL 2 -10 -5 -3 -8 83 * ENEC 2 8 -7 3 7 -4 81 * CAREC1 15 13 -6 -9 -3 20 CAREC2 7 11 -10 -4 -17 13 RECEB1 80 * 7 -1 -9 3 4 ENEB1 80 * -10 11 9 4 -5 ENEB2 83 * -5 8 3 8 -2 CARBE1 61 * -6 -6 2 32 77 CARBE1 58 * -10 -3 -6 33 4 RECNE1 19 52 * 48 * -8 -3 -1 RECNE2 9 20 32 3 -8 3 ENNE1 14 20 64 * 18 10 4 ENNE2 10 -3 22 2 15 5 RECEM1 -36 -6 -3 20 12 1 CARNE2 10 -3 22 2 15 5 RECEM1 -36 -6 -3 20 12 1 CARNE1 14 -12 17 36 34 11 CARNE1 14 -12 17 36 34 11 CARNE2 10 -3 22 22 15 5 RECCM1 -38 47 * 13 0 -5 1 RECCM1 -28 7 * 5 12 -16 -2 RECM1 -28 7 * 13 0 -5 1 RECCC1 -1 -1 74 * 7 30 -1 4 RECM2 -2 -8 47 * 18 58 * 3 -7 ENOC2 -8 47 * 18 58 * 3 -7 ENOC3 -12 45 * 26 56 * 6 -10 CARCC1 -8 14 1 81 * -1 -2 CARCC2 -5 19 -6 85 * -1 -6 RECM2 -2 -8 -8 -6 8 -3 -6 RECM2 -2 -8 -4 RECRC1 15 16 -23 -3 29 -1	RECECS	12	23	-2	-12	1	75 *
ENBC2 8 -7 3 7 -4 81 * CARBC1 15 13 -6 -9 -3 20 CARBC2 7 11 -10 -4 -17 13 RECEB1 80 * 7 -1 -9 -7 7 RECEB2 85 * 4 -1 -9 3 4 ENBE1 80 * -10 11 9 4 -5 ENBE2 83 * -5 8 3 8 -2 CARBB1 61 * -6 -6 2 32 -7 CARBB1 61 * -6 -6 2 32 -7 CARBB2 9 20 32 3 -8 3 ENNE1 19 52 * 48 * -8 -3 -1 RECNB1 9 52 * 48 * -8 -3 -1 RECNB2 9 20 64 * 18 10 4 ENNE1 14 -12 17 36 34 11 CARNE1 38 -9 -3 16 7 -2 ENEM1 -36 -6 -3 20 12 1 RECRE1 8 74 * 13 0 -5 4 ENNE1 -2 59 * 8 19 0 0 CAREM1 -28 7 -5 12 -16 -2 RECAP1 8 74 * 13 0 -5 4 ENNE 8 74 * 13 0 -5 4 ENNE 9 -2 59 * 8 19 0 0 CARAP1 -4 8 -3 61 * 4 5 RECC2 -2 70 * 19 33 -5 1 RECC2 -5 19 -6 85 * -1 -6 CARCC1 -8 47 * 18 58 * 3 -7 ENOC3 -12 45 * 26 56 * 6 -10 CARCC1 -8 14 1 81 * -1 -2 CARCC2 -5 19 -6 85 * -1 -6 CARCC1 7 -2 2 -3 -2 ENRFC1 7 -6 4 1 -9 -6 RECC2 -2 70 -7 -2 2 -3 -2 ENRFC1 7 -6 4 1 -9 -6 RECRC1 8 7 -6 -14 -9 -6 ENRFC2 6 -7 -2 2 -3 -2 ENRFC1 7 -6 4 1 -9 -6 ENRFC2 15 16 -23 1 28 -4 CARFC2 15 16 -23 -3 29 -1	ENBC1	2	-10	-5	-3	-8	83 *
CAREC1 15 13 -6 -9 -3 20 CAREC2 7 11 -10 -4 -17 13 RECEB1 80 * 7 -1 9 7 7 RECEB2 85 * 4 -1 -9 3 4 ENBB1 80 * -10 11 9 4 -5 ENBB2 83 * -5 8 3 8 -2 CAREB1 61 * -6 -6 2 32 -7 CAREB1 61 * -6 -6 2 32 -7 CAREB2 58 * -10 -3 -6 33 4 RECNE1 9 20 32 3 -8 3 ENNB1 14 20 64 * 18 10 4 ENNB2 5 12 34 4 -6 -7 CARNE1 14 -12 17 36 34 11 CARNE1 -38 -9 -3 16 7 -2 ENNM1 -36 -6 -3 20 12 1 CAREM1 -38 7 -5 12 -16 -2 RECAN -36 -6 -3 20 12 1 CAREM1 -28 7 -5 12 -16 -2 RECAN + 36 -6 -3 61 * 4 5 RECC2 -2 70 * 19 33 -5 1 RECC2 -2 70 * 19 33 -5 1 RECC2 -2 70 * 19 33 -5 1 RECC2 -5 19 -6 85 * -1 -6 CARC1 -10 55 * 18 49 * 4 -7 ENOC3 -12 45 * 26 56 * 6 -10 CARC1 -10 55 * 18 49 * 4 -7 ENOC3 -12 45 * 26 56 * 6 -10 CARC1 -10 55 * 18 49 * 4 -7 ENOC3 -12 45 * 26 56 * 6 -10 CARC1 -10 55 * 18 49 * 4 -7 ENOC3 -12 45 * 26 56 * 6 -10 CARC1 -8 47 * 18 58 * 3 -7 ENOC3 -12 45 * 26 56 * 6 -10 CARC1 -8 14 1 81 * -1 -2 CARC2 -5 19 -6 85 * -1 -6 CARC2 -5 19 -6 85 * -1 -6 ENRC2 -5 19 -6 85 * -1 -	ENBC2	8	-7	3	7	-4	81 *
CARBC2 7 11 -10 -4 -17 13 RECBB1 80 * 7 -1 -9 -7 7 RECBB2 85 * 4 -1 -9 3 4 ENBB1 80 * -10 11 9 4 -5 ENBB2 83 * -6 2 32 -7 CARBE1 61 * -6 -3 -6 33 4 RECNE1 19 52 * 48 * 8 -3 -1 RECNE2 5 12 34 4 -6 -7 -7 CARBE3 58 * 10 -3 22 15 5 RECNB2 5 12 34 4 -6 -7 CARBE3 5 12 36 4 11 -2 RECNB2 10 -3 22 15 5 5 RECME1 -36 -6 -3 20 12 <	CARBC1	15	13	-6	-9	-3	20
RECBB1 80 * 7 -1 -9 -7 7 RECB2 85 * 4 -1 -9 3 4 ENEB1 80 * -10 11 9 4 -5 ENEB2 83 * -5 8 3 8 -2 CARBE1 61 * -6 -6 2 32 7 CARBE2 58 * -10 -3 -6 33 4 RECNB1 19 52 * 48 -8 -3 -1 RECNB2 9 20 32 3 -8 3 3 ENNB1 14 20 64 * 18 10 4 ENNB2 5 12 34 4 -6 -7 CARNB1 14 -12 17 36 34 11 CARNB2 10 -3 22 22 15 5 RECM1 -38 -9 -3 16 7<	CARBC2	7	11	-10	-4	-17	13
RECEB2 85 * 4 -1 -9 3 4 ENBE1 80 * -10 11 9 4 -5 ENBE2 83 * -5 8 3 8 -2 CARBE1 61 * -6 -6 2 32 -7 CARB2 58 * -10 -3 -6 33 4 RECNB1 19 52 * 48 * -8 -3 -1 RECNB2 9 20 32 3 -8 3 ENNE1 14 20 64 * 18 10 4 ENNE2 5 12 34 4 -6 -7 CARNB1 14 -12 17 36 34 11 CARNB1 14 -12 17 36 34 11 CARNB1 14 -12 17 36 34 16 7 -2 ENCEM1 -28 7 -5 12 -16 -2 18 16 4 5	RECBB1	80 *	7	-1	-9	-7	7
ENBE1 80 * -10 11 9 4 -5 ENBE2 83 * -5 8 3 8 -2 CARBB1 61 * -6 -6 2 32 -7 CARBB1 19 52 * 48 * -8 -3 -1 RECNB1 19 52 * 48 * -8 -3 -1 RECNB2 9 20 32 3 -8 3 4 ENNB1 14 20 64 * 18 10 4 ENNB1 14 -12 17 36 34 11 CARNB1 14 -12 17 36 34 11 CAREM1 -28 74 13 0 12	RECBB2	85 *	4	-1	-9	3	4
ENBE2 83 * -5 8 3 8 -2 CARBB1 61 * -6 -6 2 32 -7 CARBB2 58 * -10 -3 -6 33 4 RECNB1 19 52 * 48 * -8 -3 -1 RECNB2 9 20 32 3 -8 3 3 14 ENNB1 14 20 64 * 18 10 4 ENNB2 5 12 34 4 -6 -7 CARNB1 14 -12 17 36 34 11 CARNB2 10 -3 22 22 15 5 RECEM1 -38 -9 -3 16 7 -2 16 -2 ENEM1 -36 -6 -3 20 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>ENBB1</td><td>80 *</td><td>-10</td><td>11</td><td>9</td><td>4</td><td>- 5</td></t<>	ENBB1	80 *	-10	11	9	4	- 5
CARBB1 61 * -6 2 32 -7 CARBB2 58 * -10 -3 -6 33 4 RECNB1 19 52 * 48 * -8 -3 -1 RECNB2 9 20 32 3 -8 3 ENNB1 14 20 64 * 18 10 4 ENNB2 5 12 34 4 -6 -7 CARNB1 14 -12 17 36 34 11 CARNB1 14 -12 17 36 34 11 CARNB1 -38 -9 -3 16 7 -2 ENEM1 -38 -9 -3 16 7 -2 ENEM1 -28 7 -5 12 -16 -2 RECCB1 8 74 * 13 0 -5 4 ENAP1 -2 59 * 8 19 0 0 CARAP1 -4 8 -3	ENBB2	83 *	~ 5	8	3	8	-2
CARBB2 58 * -10 -3 -6 33 4 RECNB1 19 52 * 48 * -8 -3 -1 RECNB2 9 20 32 3 -8 3 ENNB1 14 20 64 * 18 10 4 ENNB2 5 12 34 4 -6 -7 CARNB1 14 -12 17 36 34 11 CARNB1 14 -12 17 36 34 11 CARNB1 14 -12 17 36 34 11 CARNB1 -3 -6 -3 20 12 1 CAREM1 -36 -6 -3 20 12 1 CAREM1 -28 7 -5 12 -16 -2 RECAP1 8 74 * 13 0 -5 4 RECOC1 -1 74 * 7 30 -1 4 RECOC2 -2 70 <td>CARBB1</td> <td>61 *</td> <td>-6</td> <td>- 6</td> <td>2</td> <td>32</td> <td>-7</td>	CARBB1	61 *	-6	- 6	2	32	-7
RECNB1 19 52 * 48 * -8 -3 -1 RECNB2 9 20 32 3 -8 3 ENNB1 14 20 64 * 18 10 4 ENNB2 5 12 34 4 -6 -7 CARNB1 14 -12 17 36 34 11 CARNB2 10 -3 22 22 15 5 RECEM1 -38 -9 -3 16 7 -2 ENEM1 -36 -6 -3 20 12 1 CAREM1 -28 7 -5 12 -16 -2 RECAP1 8 74 * 13 0 -5 4 ENAP1 -2 59 * 8 19 0 0 CARAP1 4 8 -3 61 * 4 5 RECOC1 -1 74 * 7 30 -1 4	CARBB2	58 *	-10	-3	-6	33	4
RECNB2 9 20 32 3 -8 3 ENNE1 14 20 64 * 18 10 4 ENNE2 5 12 34 4 -6 -7 CARNE1 14 -12 17 36 34 11 CARNE2 10 -3 22 22 15 5 RECEM1 -38 -9 -3 16 7 -2 ENNE1 -36 -6 -3 20 12 1 CAREM1 -28 7 -5 12 -16 -2 RECAP1 8 7 -5 12 -16 -2 RECAP1 8 7 30 -1 4 5 RECOC1 -1 74 * 7 30 -1 4 RECOC2 -2 70 * 19 33 -5 1 RECOC3 -6 67 * 34 36 2 -8 ENOC1 -10 55 * 18 49 *	RECNB1	19	52 *	48 *	- 8	-3	-1
ENNB1 14 20 64 * 18 10 4 ENNB2 5 12 34 4 -6 -7 CARNB1 14 -12 17 36 34 11 CARNB2 10 -3 22 22 15 5 RECEM1 -38 -9 -3 16 7 -2 ENEM1 -36 -6 -3 20 12 1 CAREM1 -28 7 -5 12 -16 -2 RECAP1 8 74 * 13 0 -5 4 ENAP1 -2 59 * 8 19 0 0 CARAP1 -4 8 -3 61 * 4 5 RECOC1 -1 74 * 7 30 -1 4 RECOC2 -2 70 * 19 33 -5 1 RECOC3 -6 67 * 34 36 2 -8	RECNB2	9	20	32	3	- 8	3
ENNB2 5 12 34 4 6 -7 CARNB1 14 -12 17 36 34 11 CARNB2 10 -3 22 22 15 5 RECEM1 -38 -9 -3 16 7 -2 ENEM1 -36 -6 -3 20 12 1 CAREM1 -28 7 -5 12 -16 -2 RECAP1 8 74 * 13 0 -5 4 ENAP1 -2 59 * 8 19 0 0 CARAP1 -4 8 -3 61 * 4 5 RECOC1 -1 74 * 7 30 -1 4 RECOC2 -2 70 * 19 33 -5 1 RECOC3 -6 67 * 34 36 2 -8 ENOC1 -10 55 * 18 49 * 4	ENNB1	14	20	64 *	18	10	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ENNB2	5	12	34	4	-6	-7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CARNB1	14	-12	17	36	34	11
RECEM1 -38 -9 -3 16 7 -2 ENEM1 -36 -6 -3 20 12 1 CAREM1 -28 7 -5 12 -16 -2 RECAP1 8 74 13 0 -5 4 ENAP1 -2 59 * 8 19 0 0 CARAP1 -2 59 * 8 19 0 0 CARAP1 -2 59 * 8 19 0 0 CARAP1 -2 70 * 19 33 -5 1 RECOC1 -1 74 * 7 30 -1 4 RECOC2 -2 70 * 19 33 -5 1 RECOC3 -6 67 * 34 36 2 -8 ENOC1 -10 55 * 18 49 * 4 -7 ENOC2 -8 14 1 81 *	CARNB2	10	- 3	22	22	15	5
ENEM1 -36 -6 -3 20 12 1 CAREM1 -28 7 -5 12 -16 -2 RECAP1 8 74 * 13 0 -5 4 ENAP1 -2 59 * 8 19 0 0 CARAP1 -4 8 -3 61 * 4 5 RECOC1 -1 74 * 7 30 -1 4 RECOC2 -2 70 * 19 33 -5 1 RECOC3 -6 67 * 34 36 2 -8 ENOC1 -10 55 * 18 49 * 4 -7 ENOC2 -8 47 * 18 58 * 3 -7 ENOC3 -12 45 * 26 56 6 -10 CAROC1 -8 14 1 81 * 1 -2 CAROC2 -5 19	RECEM1	-38	- 9	-3	16	7	-2
CAREM1 -28 7 -5 12 -16 -2 RECAP1 8 74 * 13 0 -5 4 ENAP1 -2 59 * 8 19 0 0 CARAP1 -4 8 -3 61 * 4 5 RECOC1 -1 74 * 7 30 -1 4 RECOC2 -2 70 * 19 33 -5 1 RECOC3 -6 67 * 34 36 2 -8 ENOC1 -10 55 * 18 49 * 4 -7 ENOC2 -8 47 * 18 58 3 -7 ENOC3 -12 45 * 26 56 6 -10 CAROC1 -8 14 1 81 * 1 -2 CAROC2 -5 19 -6 85 * 1 -8 RECRFC1 8 7<	ENEM1	-36	-6	-3	20	12	1
RECAP1 8 74 13 0 -5 4 ENAP1 -2 59 * 8 19 0 0 CARAP1 -4 8 -3 61 * 4 5 RECOC1 -1 74 * 7 30 -1 4 RECOC2 -2 70 * 19 33 -5 1 RECOC3 -6 67 * 34 36 2 -8 ENOC1 -10 55 * 18 49 * 4 -7 ENOC2 -8 47 * 18 58 * 3 -7 ENOC3 -12 45 * 26 56 6 -10 CAROC1 -8 14 1 81 * 1 -2 CAROC2 -5 19 -6 85 * 1 -8 RECRFC1 8 7 6 -14 -21 1 1 RECRFC2 6 <td>CAREM1</td> <td>-28</td> <td>7</td> <td>-5</td> <td>12</td> <td>- 76</td> <td>-2</td>	CAREM1	-28	7	-5	12	- 76	-2
ENAP1 -2 59 * 8 19 0 0 CARAP1 -4 8 -3 61 * 4 5 RECOC1 -1 74 * 7 30 -1 4 RECOC2 -2 70 * 19 33 -5 1 RECOC3 -6 67 * 34 36 2 -8 ENOC1 -10 55 * 18 49 * 4 -7 ENOC2 -8 47 * 18 58 * 3 -7 ENOC3 -12 45 * 26 56 * 6 -10 CAROC1 -8 14 1 81 * -1 -2 CAROC1 -8 14 1 81 * -1 -2 CAROC2 -5 19 -6 85 * 1 -6 CAROC3 -4 18 0 83 * 1 -8 RECRFC1 8 7 6 -14 -21 1 RECRFC2 6 -7 -2	RECAP1	8	/4 ×	т <u>з</u>	0	-5	4 0
CARAP1 -4 -3 -3 -1 -4 -3 RECOC1 -1 74 * 7 30 -1 4 RECOC2 -2 70 * 19 33 -5 1 RECOC3 -6 67 * 34 36 2 -8 ENOC1 -10 55 * 18 49 * 4 -7 ENOC2 -8 47 * 18 58 * 3 -7 ENOC3 -12 45 * 26 56 6 -10 CAROC1 -8 14 1 81 * 1 -2 CAROC2 -5 19 -6 85 * 1 -6 CAROC3 -4 18 0 83 * 1 -8 RECRFC1 8 7 6 -14 -21 1 1 RECRFC1 7 -6 4 1 -9 -6 ENRFC1 7 <td< td=""><td>ENAP1</td><td>-2</td><td>59 ×</td><td>8</td><td>19 61 +</td><td>U A</td><td>5</td></td<>	ENAP1	-2	59 ×	8	19 61 +	U A	5
RECOCI -1 74 7 30 -1 4 RECOC2 -2 70 * 19 33 -5 1 RECOC3 -6 67 * 34 36 2 -8 ENOC1 -10 55 * 18 49 * 4 -7 ENOC2 -8 47 * 18 58 * 3 -7 ENOC3 -12 45 * 26 56 6 -10 CAROC1 -8 14 1 81 * 1 -2 CAROC2 -5 19 -6 85 * 1 -6 CAROC3 -4 18 0 83 1 -8 RECRFC1 8 7 6 -14 -21 1 RECRFC2 6 -7 -2 2 -3 -2 ENRFC1 7 -6 4 1 -9 -6 ENRFC2 -5 -8 -6 8 <t< td=""><td>CAKAPI</td><td>- 4</td><td>0 7/ +</td><td>- 3</td><td>30</td><td>-1</td><td>4</td></t<>	CAKAPI	- 4	0 7/ +	- 3	30	-1	4
RECOC2 -2 70 1.5 3.5 -5 1 RECOC3 -6 67 * 34 36 2 -8 ENOC1 -10 55 * 18 49 * 4 -7 ENOC2 -8 47 * 18 58 * 3 -7 ENOC3 -12 45 * 26 56 6 -10 CAROC1 -8 14 1 81 * -1 -2 CAROC2 -5 19 -6 85 * 1 -6 CAROC3 -4 18 0 83 * 1 -8 RECRFC1 8 7 6 -14 -21 1 RECRFC1 8 7 -6 4 1 -9 -6 ENRFC1 7 -6 4 1 -9 -6 -23 -3 -2 ENRFC1 15 16 -23 1 28 -4 CARRFC2	RECOCI	- <u>-</u>	/4 ° 70 *	10	22	-5	- 1
ENOC1 -10 55 18 49 2 -7 ENOC2 -8 47 18 58 3 -7 ENOC3 -12 45 26 56 6 -10 CAROC1 -8 14 1 81 * -1 -2 CAROC2 -5 19 -6 85 * 1 -8 RECRFC1 8 7 6 -14 -21 1 RECRFC1 8 7 6 -14 -21 1 RECRFC1 8 7 6 -14 -21 1 RECRFC1 7 -6 4 1 -9 -6 ENRFC1 7 -6 4 1 -9 -6 ENRFC2 -5 -8 -6 8 -3 -6 CARRFC1 15 16 -23 1 28 -4 CARRFC2 15 11 -23 -3 29 -1	RECUCZ	-2	67 *	34	36	2	- 8
ENOC1 -10 35 10 45 47 10 45 47 10 45 47 10 45 47 10	RECUCS ENOCI	-0	0/ " 55 *	18	49 *	4	-7
ENOC2 -12 45 * 26 56 * 6 -10 CAROC1 -8 14 1 81 * -1 -2 CAROC2 -5 19 -6 85 * 1 -6 CAROC3 -4 18 0 83 * 1 -8 RECRFC1 8 7 6 -14 -21 1 RECRFC2 6 -7 -2 2 -3 -2 ENRFC1 7 -6 4 1 -9 -6 ENRFC2 -5 -8 -6 8 -3 -6 CARRFC1 15 16 -23 1 28 -4 CARRFC2 15 11 -23 -3 29 -1	ENUCI	- 10	47 *	18	58 *	3	- 7
CAROC1 -8 14 1 81 * -1 -2 CAROC2 -5 19 -6 85 * -1 -6 CAROC3 -4 18 0 83 * 1 -8 RECRFC1 8 7 6 -14 -21 1 RECRFC2 6 -7 -2 2 -3 -2 ENRFC1 7 -6 4 1 -9 -6 ENRFC2 -5 -8 -6 8 -3 -6 CARRFC1 15 16 -23 1 28 -4 CARRFC2 15 11 -23 -3 29 -1	FNOCZ	-12	45 *	2.6	56 *	-	-10
CAROC2 -5 19 -6 85 * -1 -6 CAROC3 -4 18 0 83 * 1 -8 RECRFC1 8 7 6 -14 -21 1 RECRFC2 6 -7 -2 2 -3 -2 ENRFC1 7 -6 4 1 -9 -6 ENRFC2 -5 -8 -6 8 -3 -6 CARRFC1 15 16 -23 1 28 -4 CARRFC2 15 11 -23 -3 29 -1	CAROCI	- 8	14	1	81 *	-1	-2
CAROC3 -4 18 0 83 * 1 -8 RECRFC1 8 7 6 -14 -21 1 RECRFC2 6 -7 -2 2 -3 -2 ENRFC1 7 -6 4 1 -9 -6 ENRFC2 -5 -8 -6 8 -3 -6 CARRFC1 15 16 -23 1 28 -4 CARRFC2 15 11 -23 -3 29 -1	CAROC2	-5	19	-6	85 *	-1	-6
RECRFC1 8 7 6 -14 -21 1 RECRFC2 6 -7 -2 2 -3 -2 ENRFC1 7 -6 4 1 -9 -6 ENRFC2 -5 -8 -6 8 -3 -6 CARFC1 15 16 -23 1 28 -4 CARFC2 15 11 -23 -3 29 -1	CAROC3	-4	18	0	83 *	1	- 8
RECRFC2 6 -7 -2 2 -3 -2 ENRFC1 7 -6 4 1 -9 -6 ENRFC2 -5 -8 -6 8 -3 -6 CARFC1 15 16 -23 1 28 -4 CARFC2 15 11 -23 -3 29 -1	RECREC1	- 8	7	6	-14	-21	1
ENRFC17-641-9-6ENRFC2-5-8-68-3-6CARFC11516-23128-4CARFC21511-23-329-1	RECRFC2	6	-7	-2	2	-3	-2
ENRFC2-5-8-68-3-6CARRFC11516-23128-4CARRFC21511-23-329-1	ENRFC1	7	-6	4	1	-9	- 6
CARRFC11516-23128-4CARRFC21511-23-329-1	ENRFC2	- 5	- 8	-6	8	-3	-6
CARRFC2 15 11 -23 -3 29 -1	CARRFC1	15	16	-23	1	28	-4
	CARRFC2	15	11	-23	- 3	29	-1

* Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 40 have been flagged by an '*'.

TABLE 3.3

Varimax Rotated Factor Loadings

	V.	VARIMAX ROTATED FACTOR PATTERN*			
	FACTOR7	FACTOR8	FACTOR9	FACTOR10	FACTOR11
RECREF	11 -27	-13	22	-6	21
ENBEH1	3	-12	74 *	5	12
CARBEH	9	-12	13	11	0
PECTN	-22	-4	38	~6	17
RECINI PNINTI	-3	- 8	74 *	-3	5
CADINI		-15	6	2	2
DECIM	LL -0	-10	11	-6	-7
RECALL	-0	12	16	-12	2
RECALL	.2 -13	1.5	30	-5	- 1
ENATTI			20	-10	2
ENATT2	2 -6	/	39	-10	2
CARATI	1 17	-9	4	-29	1
CARATI	12 12	-6	-4	~29	-1
RECSNI	_ 2	- 3	-6	-8	/
RECSN2	2 4	- 3	0	-6	-2
ENSN1	14	3	25	1	-14
ENSN2	17	1	28	-1	-15
CARSNI	L 6	1	-28	-26	16
CARSN2	2 0	-2	-32	-27	12
RECBCI	- L -4	1	2	17	-3
RECBCZ	- - -	6	11	24	-5
FNBC1	 	-5	-5	- 3	5
ENDCI	-5	-13	1	-1	2
CADECZ	. 2	4	4	76 *	8
CARBUI		4	0	, o 77 *	5
CARBCZ	2 6	4	. 0	6	-12
RECBBI	L 4	-1	5	6	-14
RECBB2	2 7	1	5	9	-14
ENBB1	15	-6	9	13	-18
ENBB2	14	-5	9	12	-21
CARBBI	L 19	9	-18	1	-4
CARBB2	2 17	2	-19	- 3	-15
RECNBI	L 10	7	- 9	7	20
RECNB2	2 75 *	- 4	-6	8	13
ENNB1	31	2	7	5	10
ENNB2	80 *	1	11	9	5
CARNB	18	5	-27	-17	41 *
CARNES	2 64 *	- 4	-14	- 8	29
DECEMI	- 01 1 11	- 1		5	75 *
RECEN-	 1/	- 2	с Г	- 7	75 *
ENEMI	1 E	<u>с</u> Л	- 9	9	62 *
CAREM.		- 7	2	-2	
RECAP.	L 0	- ,	21	2 Q	- 8
ENAPl	20	10	ې ۲ د	- 1 2	12
CARAP	17	- 18	У -	-12	ст СТ
RECOC	L 4	-13	-1	4	0
RECOC2	2 9	1	-9	2	- /
RECOC	3 1	3	0	5	-5
ENOC1	10	0	24	19	-10
ENOC2	7	4	27	21	-15
ENOC3	9	5	30	18	-13
CAROC	1 2	-4	-4	-6	17
CAROC	2 1	7	-6	- 5	13
CAROC	3 - 5	9	- 8	-4	10
RECEF	 	64 *	-9	5	- 9
סדרסדי	 	78 *	-1	-9	13
END PC.	1 -4	79 *	- 5	7	- 5
ENKFC.		, , 82 *	1	-1	7
ENRFU	~ U ~1 En 4	, <u>51</u>	<u>ب</u>	-49 *	- 3
CARRE		- 21	0	-43 *	Q
CARRF	48 *	· ∠∪	ð	-40 "	- 2

* Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 40 have been flagged by an '*'.

TABLE 3.3 (continued) Varimax Rotated Factor Loadings

VARIANCE EXPLAINED BY EACH FACTOR

FACTOR1FACTOR2FACTOR3FACTOR4FACTOR5FACTOR66.5939984.6188434.5934074.5140553.3622812.797270FACTOR7FACTOR8FACTOR9FACTOR10FACTOR112.7544232.6408982.6042882.3426772.339559

TABLE 3.4 Variance Explained by Each Factor

Validity. Content validity implies that the items reflect the domain that is being measured, and it is not determined using statistical techniques; instead, it is determined through a review of the literature and review of previous research in the area being studied (Emory, 1980). The use of factor analysis contributes to this effort by revealing which items are highly correlated with specific behaviors.

Based on the research done by Icek Ajzen (1991) with the Theory of Planned Behavior, the behavioral items in the questionnaire were assumed to have strong validity. From Ajzen's investigations of the use of his TPB in predicting behavior, it was found that many studies correlated strongly (Chapman et al, 1995; Randall, 1994; Wankel et al, 1994). The combinations of intentions and perceived behavioral control permitted significant prediction of behavior in each of the studies examined by Ajzen, with an average correlation among the studies of .51 (Ajzen, 1991). It was concluded then that the 69-items in the environmental behavior scale would adequately assess the extent of an individual's environmental behavior.

Statistics Used to Analyze Environmental Behaviors and Demographic

Variables. The use of statistical techniques to analyze environmental behaviors and the role of the demographic variables of gender, age, and education will help paint a better picture of how Air Force members feel and behave with respect to the environment. Below is a discussion of each of these items, and the statistical methods used in the evaluation of the data.

Environmental Behaviors. Descriptive statistics (means, standard deviations, correlation coefficients) were used to analyze the extent to which Air Force members participated in environmentally friendly behaviors based on the antecedents of behavior. Also, composite scores for each subscale (as determined by factor analysis) were calculated by summing the scores of relevant items. A high composite score for a particular subscale demonstrated a pro-environmental behavior, while a low composite score indicated a lack of participation. The correlation coefficient, represented with the letter r. measures the degree of association between two variables, and can range from -1.00 to +1.00. A correlation coefficient of r = +1.00 signifies a perfect positive linear relationship, with the paired values on the respective variables being exactly equal in terms of standardized z scores. A correlation coefficient of r = -1.00 indicates a perfect negative or inverse linear relationship between two variables. In this case, an object's standardized score on each variable would be identical in absolute value and differ in sign only (Kachigan, 1991). Rarely, if ever, though, will two variables have perfect correlations of -1.00 or +1.00.

There are certain key assumptions for the use of correlation coefficients. First, the correlation coefficient r is only appropriate for measuring the degree of relationship between variables which are linearly related. Second, the variables measured must be random variables that are measured on either an interval or ratio scale. And the third major assumption for the use of the correlation coefficient is that the two variables have a joint normal distribution (Kachigan, 1991).

"Whereas correlation analysis provides us with a summary coefficient of the extent of relationship between two variables, **regression analysis** provides us with an equation describing the nature of the relationship between two variables. In addition, regression analysis supplies variance measures which allow us to assess the accuracy with which the regression equation can predict values on the criterion variable, making it more than just a curve-fitting technique" (Kachigan, 1991: 160). The overall objectives of regression analysis is to determine whether or not a relationship exists between two variables, to describe the nature of the relationship in the form of a mathematical equation, to assess the degree of accuracy of description or prediction achieved by the regression equation, and in the case of multiple regression, to assess the relative importance of the various predictor variables in their contribution to variation in the criterion variable (Kachigan, 1991).

The relationships between components of the Organizational Theory of Planned Behavior (OTPB) model were examined using hierarchical regression and step-wise regression. Survey assessed intention was regressed on attitude, subjective norm, and

perceived behavioral control toward recycling, energy conservation, and carpooling. As recommended by Ajzen (1991), attitude and subjective norm were entered in the first stage, followed by perceived behavioral control. To predict attitude, attitude was regressed on behavioral belief and economic motivation. To predict subjective norm, subjective norm was regressed on normative belief. To predict perceived behavioral control, perceived behavioral control was regressed on resource-facilitating conditions. Also, prediction of behavioral beliefs was regressed on awareness programs and prediction of normative beliefs was regressed on organizational commitment.

Demographic Variables of Gender, Age, and Education. The relationship that the demographic variables of gender, age, and education have on a person's attitude and behavior were examined using descriptive statistics. Ajzen and Fishbein (1975) claimed that little information can be obtained by the consideration of the demographic variables. However, for purposes of generalizability, basic demographic data was gathered (e.g., gender, age, and education).

A difference of means test was calculated to assess the relationship between a member's gender to the intention and behavior of the member to recycle, conserve energy, and carpool to work. Also, an analysis of variance (ANOVA) was conducted to identify and measure the various sources of variation within the collected data. A single-factor, one-way, ANOVA was done to identify the relationships between the criterion variables (environmental behaviors and intentions - recycling, energy conservation, and carpooling) to the predictor variables (demographic variables of education and age).
IV. ANALYSIS

The purpose of the analysis section is to discuss the results of the third iteration (main study) conducted at Wright-Patterson AFB, OH. A new model that focuses on the organization is developed from a review of the literature and the use of the TPB. This new model is called the Organizational Theory of Planned Behavior (OTPB). The third iteration, the main study, was conducted in order to assess the Organizational Theory of Planned Behavior (OTPB), and its ability to predict intentions and behavior. For the complete breakdown of the statistical code used in the analysis (SAS[®]), as well as the output of that code and the raw data, please refer to Appendix E, Appendix F, and Appendix G.

Third Iteration (Main Study)

A sample of 307 active duty Air Force members assigned to Wright-Patterson AFB, OH were used in the main study. Statistical analysis was conducted which produced reliability and factor analysis (see Chapter 3), descriptive statistics (N, Mean, Standard Deviation), regression, t-test, and ANOVA results.

Descriptive Statistics. Descriptive statistics are presented in Table 4.1, and include the number of samples (N), mean, standard deviation, and sum. From the descriptive statistics, we can see how the respondents averaged on their responses to the questions. Respondents tended to agree among the factors for each subscale. However,

the mean of responses to carpooling questions differed from the mean of responses to the recycling and energy conservation questions. Again, this was expected due to the apparent lack of emphasis on carpooling today.

FACTOR	SUBSCALE	N	MEAN	Std Dev	MEAN
					Scale
					Sum
RecAtt1	Recycling Attitude	307	4.5114	0.6333	4.9
RecAtt2		307	4.4235	0.6930	
EnAtt1	Energy Conservation Attitude	307	4.3844	0.6382	4.6
EnAtt2		307	4.2801	0.7092	
CarAtt1	Carpooling Attitude	307	2.7622	1.2650	5.5
CarAtt2		307	2.8469	1.2806	
RecSN1	Recycling Subjective Norm	307	3.2932	0.9032	6.6
RecSN2		307	3.3355	0.8602	
EnSN1	Energy Conservation Subjective Norm	307	3.3681	0.8734	6.7
EnSN2		307	3.3518	0.8856	
CarSN1	Carpooling Subjective Norm	307	2.5114	0.8869	5.0
CarSN2		307	2.5016	0.9016	
			2.0055	1.10(4	
RecBC1	Recycling Perceived Behavioral Control	307	3.9055	1.1264	1.1
RecBC2		307	3.8730	1.1261	
EnBC1	Energy Conservation Perceived Behavioral	307	3.6710	1.1257	7.1
EnBC2	Control	307	3.5961	1.1113	
CarBC1	Carpooling Perceived Behavioral Control	307	4.2541	1.0003	8.3
CarBC2		307	4.1270	1.1462	
RecBB1	Recycling Behavioral Belief	307	4.3062	0.7567	8.7
RecBB2		307	4.4625	0.6962	
EnBB1	Energy Conservation Behavioral Belief	307	4.3094	0.7445	8.7
EnBB2		307	4.4039	0.6858	

TABLE 4.1Descriptive Statistics for Third Iteration (Main Study)

FACTOR	CTOR SUBSCALE		MEAN	Std Dev	MEAN Scale
					Sum
CarBB1	Carpooling Behavioral Belief	307	3.8176	1.0783	7.7
CarBB2		307	3.9446	0.9869	
RecNB1	Recycling Normative Belief	307	3.3257	0.8621	6.1
RecNB2		307	2.7850	1.0095	
EnNB1	Energy Conservation Normative Belief	307	3.2150	0.7958	6.0
EnNB2		307	2.7980	0.9726	
CarNB1	Carpooling Normative Belief	307	2.984	0.8180	5.3
CarNB2		307	2.4072	0.9184	
RecOC1	Recycling Organizational Commitment	307	3.2704	1.1210	9.7
RecOC2		307	3.2280	0.9902	
RecOC3		307	3.2215	0.9851	
EnOC1	Energy Conservation Organizational	307	3.0847	1.0062	9.2
EnOC2	Commitment	307	3.0684	0.9316	
EnOC3		307	3.0977	0.9550	
CarOC1	Carpooling Organizational Commitment	307	2.2769	0.9692	5.1
CarOC2		307	2.3550	0.9468	
CarOC3		307	2.4072	0.9602	
RecRFC1	Recycling Resource Facilitating Conditions	307	4.2443	0.9123	7.5
RecRFC2		307	3.3322	1.1828	
EnRFC1	Energy Conservation Resource Facilitating	307	3.7687	1.0171	6.9
EnRFC2	Conditions	307	3.1954	1.1059	
CarRFC1	Carpooling Resource Facilitating Conditions	307	3.0293	1.3657	6.1
CarRFC2		307	3.1661	1.3939	

TABLE 4.1 (continued)Descriptive Statistics for Third Iteration (Main Study)

Regression. Regression is accomplished using hierarchical and step-wise methods to test the hypothesized relationships between constructs in the Theory of Planned Behavior (TPB) and the added components that make-up the Organizational Theory of Planned Behavior (OTPB). Appendix E has the complete statistical code (SAS[©]) used in the analysis, and Appendix F has the complete output for the regression methods.

The hierarchical regression outputs are shown in Table 4.2. The results support the TPB, with the environmental behaviors of recycling, energy conservation, and

	BETA	R Square	Adjusted R Square
Predicting Behavior (Dep) from			
Intention (Independent Variable)			
Recycling Intention	0.7649	0.5851	0.5837
Energy Conservation Intention	0.7067	0.4996	0.4980
Carpooling Intention	0.7563	0.5719	0.5705
Predicting Intention from Attitude (Att),			
Subjective Norm (SN), and Perceived			
Behavioral Control (BC)			
Recycling Attitude	0.4861	0.3690	0.3628
Recycling Subjective Norm	0.1599		
Recycling Perceived Behavioral Control	0.1795		
Prormy Concernation Attitude	0.4674	0 2880	0.2833
Energy Conservation Subjective Norm	0.1684		
Energy Conservation Perceived Behavioral	*		
Control			
Carpooling Attitude	0.4288	0.2216	0.2139
Carpooling Perceived Behavioral Control	0.0548		
Carpooling Subjective Norm	-0.0544		
Dredicting Attitude (Att) from			
Petersianal Policif (PP) and Economic			
Benavioral Bellej (BB) and Economic			
Motivation (EM)	0.6015	0.4422	0.4385
Recycling Benavioral Beller	-0.1295	0.4422	0.4505
Recycling Economic Motivation	-0.1275		
Energy Conservation Behavioral Belief	0.5566	0.3098	0.3075
Energy Conservation Economic Motivation	*		
Carpooling Behavioral Belief	0.3776	0.1872	0.1819
Carpooling Economic Motivation	-0.1376		

* Variable did not meet the 0.5000 significance level for entry into the model. ** p < .05

TABLE 4.2 Hierarchical Regression

	BETA	R Square	Adjusted R Square
Predicting Subjective Norm (SN) from			
Normative Belief (NB)			
Recycling Normative Belief	0.5065	0.2565	0.2541
Energy Concernation Normative Belief	0 5487	0 3011	0.2988
Energy Conservation Normative Bener	0.5407	0.5011	012500
Carpooling Normative Belief	0.5737	0.3291	0.3269
Predicting Perceived Behavioral Control (BC) from Resource Facilitating Conditions (RFC)			
Recycling Resource Facilitating Conditions	*	*	*
	0.10(7	0.0387	0.0255
Carpooling Resource Facilitating Conditions	-0.1965	0.0380	0.0333
Predicting Behavioral Belief (BB) from Awareness Programs (AP)		0.0001 (0.0052
Recycling Awareness Programs	0.0918	0.0084 (not significant)	0.0052
Energy Conservation Awareness Programs	*	*	*
Carpooling Awareness Programs	*	*	*
Predicting Normative Beliefs (NB) from Organizational Commitment (OC)			
Recycling Organizational Commitment	0.4295	0.1845	0.1818
Energy Conservation Organizational Commitment	0.3672	0.1349	0.1320
		0.0020	0.0800
Carpooling Organizational Commitment	0.2881	0.0830	0.0800

* Variable did not meet the 0.5000 significance level for entry into the model. ** p < .05

TABLE 4.2 (continued) Hierarchical Regression

carpooling predicted from intention. The intentions account for 59%, 50%, and 57% of the variance respectfully. Predicting intentions from attitude, subjective norm, and perceived behavioral control also supports the TPB, with variances of 37% for recycling, 29% for energy conservation, and 22% for carpooling. The regression analysis also reveals that, of the three correlates of intention, attitude towards the behavior has the strongest relationship among the three behaviors (recycling beta = .4861, energy conservation beta = .4674, and carpooling beta = .4288).

The OTPB suggests attitude will be predicted by behavioral belief and economic motivation. In this study, behavioral belief and economic motivation account for 44% of the variance in recycling attitude, 31% of the variance in energy conservation attitude, and 19% of the variance in carpooling attitude. From the betas, it is seen that the behavioral beliefs have the strongest relationship (recycling beta = .6015, energy conservation beta = .5566, and carpooling beta = .3776). Prediction of subjective norm from normative beliefs also supports the TPB. Normative beliefs account for 26% of the variance in recycling subjective norm, 30% of the variance in energy conservation subjective norm. The beta values of .5065, .5487, and .5737 for recycling, energy conservation, and carpooling further support the model.

The Organizational Theory of Planned Behavior (OTPB) is not well supported from the hierarchical regression. Predicting perceived behavioral control from resource facilitating conditions and predicting behavioral beliefs from awareness programs showed little to no success (see Table 4.2). However, prediction of normative beliefs from organizational commitment **did** support the OTPB. Organizational commitment accounts for 19% of the variance in recycling normative beliefs, 14% of the variance in energy conservation normative beliefs, and 8% of the variance in carpooling normative beliefs. Betas for the three are .4295, .3672, and .2881 respectively.

Step-wise regression is used to further support hierarchical regression. The results of the step-wise regression can be seen in Table 4.3, and are almost identical to the hierarchical regression output. Thus, the step-wise regression method further supports the claims made under the hierarchical regression model.

	BETA	R Square	Adjusted R
			Square
Predicting Behavior (Dep) from			
Intention (Independent Variable)			
Recycling Intention	0.7649	0.5851	0.5837
			0.4000
Energy Conservation Intention	0.7069	0.4996	0.4980
Carpooling Intention	0.7563	0.5719	0.5705
Predicting Intention from Attitude (Att),			
Subjective Norm (SN), and Perceived			
Behavioral Control (BC)			
Recycling Attitude	0.4861	0.3690	0.3628
Recycling Subjective Norm	0.1599		
Recycling Perceived Behavioral Control	0.1795		
Energy Conservation Attitude	0.4699	0.2883	0.2813
Energy Conservation Subjective Norm	0.1656		
Energy Conservation Perceived Behavioral	-0.0179		
Control			
Compositing Attitude	0.4200	0.2216	0.2130
Carpooling Perceived Behavioral Control	0.4288	0.2210	0.2139
Carpooling Subjective Norm	-0.0544		
	-0.0044		
Predicting Attitude (Att) from			
Behavioral Belief (BB) and Economic			
Motivation (EM)			
Recycling Behavioral Belief	0.6015	0.4422	0.4385
Recycling Economic Motivation	-0.1295		
Energy Conservation Behavioral Belief	0.5582	0.3098	0.3052
Energy Conservation Economic Motivation	0.0048		
	0.277(0.1972	0.1910
Carpooling Behavioral Belief	0.37/0	0.18/2	0.1019
Carpooling Economic Motivation	-0.13/0		1

* p < .05

TABLE 4.3 Step-Wise Regression 1

	BETA	R Square	Adjusted R	
			Square	
Predicting Subjective Norm (SN) from				
Normative Belief (NB)	0.5065	0.2565	0.2541	
Kecyching Normative Bener	0.3003	0.2303	0.25 11	
Energy Conservation Normative Belief	0.5487	0.3011	0.2988	
Compoling Normative Paliaf	0 5737	0 3201	0 3269	
Carpooning Normative Bener	0.3737	0.3271	0.5205	
Predicting Perceived Behavioral Control				
(BC) from Resource Facilitating				
Conditions (RFC)				
Recycling Resource Facilitating Conditions	0.0151	0.0002 (not	-0.0030	
		significanty		
Energy Conservation Resource Facilitating	-0.1117	0.0125 (not	0.0092	
Conditions		significant)		
Carpooling Resource Facilitating Conditions	-0 1965	0.0386	0.0355	
Predicting Behavioral Belief (BB) from				
Awareness Programs (AP)				
Recycling Awareness Programs	0.0918	0.0084 (not	0.0052	
		significant)		
Energy Conservation Awareness Programs	0.0356	0.0013 (not	-0.0020	
		significant)		
Carpooling Awareness Programs	0.0020	0.0000 (not	-0.0033	
our pooring the ansat tog		significant)		
Predicting Normative Beliefs (NB) from				
Organizational Commitment (OC) Recycling Organizational Commitment	0.4295	0.1845	0.1818	
Recycling organizational Committeent				
Energy Conservation Organizational Commitment	0.3672	0.1349	0.1320	
Comparing Organizational Commitmant	0.2881	0.0830	0.0800	
	0.2001	0.0050	0.0000	
		<u> </u>		

* p < .05

TABLE 4.3 (continued)Step-Wise Regression 1

A second step-wise regression step (Table 4.4) is accomplished that further strengthens the TPB. Predicting behavior (the predictor variable) from intention, attitude, subjective norm, perceived behavioral control, behavioral beliefs, normative beliefs, economic motivation, awareness programs, organizational commitment, and resource facilitating conditions (the criterion variables) is done in one step. An R-Square of .6315 for recycling, which is all of the criterion variables accounting for 63% of the variance in the behavior, results. Also, all of the criterion variables account for 57% of the variance

	BETA	R Square	Adjusted R
			Square
Predicting Behavior (Dep) from Intention,			
Att, SN, BC, BB, NB, EM, AP, OC, and			
RFC (Independent Variables)			
Recycling Intention	0.6763	0.6315	0.6190
Recycling Attitude	0.0094		
Recycling Subjective Norm	0.0692		
Recycling Perceived Behavioral Control	0.0673		
Recycling Behavioral Beliefs	0.0269		
Recycling Normative Beliefs	-0.0191		
Recycling Economic Motivation	0.0092		
Recycling Awareness Programs	0.0480		
Recycling Organizational Commitment	0.1459		
Recycling Resource Facilitating Conditions	-0.0478		
Energy Conservation Intention	0.6130	0.5674	0.5528
Energy Conservation Attitude	0.0076		
Energy Conservation Subjective Norm	0.0256		
Energy Conservation Perceived Behavioral Control	0.0528		
Energy Conservation Behavioral Beliefs	0.1756		
Energy Conservation Normative Beliefs	0.0007		
Energy Conservation Economic Motivation	0.1299		
Energy Conservation Awareness Programs	0.0861		
Energy Conservation Organizational Commitment	0.0974		
Energy Conservation Resource Facilitating	-0.0535		
Conditions			
Carpooling Intention	0.7227	0.5841	0.5701
Carpooling Attitude	0.0780		
Carpooling Subjective Norm	0.0617		
Carpooling Perceived Behavioral Control	0.0584		
Carpooling Behavioral Beliefs	-0.0055		
Carpooling Normative Beliefs	-0.0345		
Carpooling Economic Motivation	0.0120		
Carpooling Awareness Programs	-0.0038		
Carpooling Organizational Commitment	0.0470		
Carpooling Resource Facilitating Conditions	0.0100		

* p < .05

TABLE 4.4Step-Wise Regression 2

	BETA	R Square	Adjusted R
			Square
Predicting Intention (Dep) from Att, SN,			
BC, BB, NB, EM, AP, OC, and RFC			
(Independent Variables)			
Recycling Attitude	0.4703	0.4089	0.3910
Recycling Subjective Norm	0.0982		
Recycling Perceived Behavioral Control	0.1515		
Recycling Behavioral Beliefs	0.0276		
Recycling Normative Beliefs	0.0049		
Recycling Economic Motivation	0.0130		
Recycling Awareness Programs	0.2109		
Recycling Organizational Commitment	-0.0296		
Recycling Resource Facilitating Conditions	-0.0730		
Energy Conservation Subjective Norm	0.0963		
Energy Conservation Perceived Behavioral Control	-0.0129		
Energy Conservation Behavioral Beliefs	0.0099		
Energy Conservation Normative Beliefs	0.0122		
Energy Conservation Economic Motivation	-0.0529		
Energy Conservation Awareness Programs	0.1509		
Energy Conservation Organizational Commitment	0.0453		
Energy Conservation Resource Facilitating	-0.0886		
Conditions			
Carpooling Attitude	0.4445	0.2318	0.2085
Carpooling Subjective Norm	0.0859		
Carpooling Perceived Behavioral Control	-0.0654		
Carpooling Behavioral Beliefs	0.0587		
Carpooling Normative Beliefs	-0.0468		
Carpooling Economic Motivation	0.0313		
Carpooling Awareness Programs	0.0029		
Carpooling Organizational Commitment	-0.0335		
Carpooling Resource Facilitating Conditions	-0.0784		

* p < .05

TABLE 4.4 (continued)Step-Wise Regression 2

in energy conservation behavior and 41% of the variance in carpooling behavior. The beta values provide the needed evidence that behavior is predicted by intention (see Table 4.4). A beta value of .6763 for recycling intention, .6130 for energy conservation intention, and .7227 for carpooling intention are well above the next highest beta value, which varies for the three behaviors.

The second step-wise regression also supports the prediction of intention (predictor variable) from attitude, subjective norm, perceived behavioral control, behavioral beliefs, normative beliefs, economic motivation, awareness programs, organizational commitment, and resource facilitating conditions (the criterion variables). All of the criterion variables account for 41% of the variance in recycling intention, 33% of the variance in energy conservation intention, and 23% of the variance in carpooling intention. The beta values support attitude as having the strongest relationship to intention, with a beta value for recycling attitude of .4703, .4526 for energy conservation attitude, and .4445 for carpooling attitude.

From the hierarchical and step-wise regression methods, it has been shown that the Theory of Planned Behavior (TPB) is well supported by this research. This result is consistent with other studies examining the Theory of Planned Behavior (TPB) (Randall, 1994; Ajzen, 1991). The Organizational Theory of Planned Behavior (OTPB) has been shown to demonstrate some deficiencies, but the prediction of normative beliefs from organizational commitment looks promising.

T-Test. A further understanding of the relationship of environmental behaviors and intentions between men and women is accomplished using the T-Test. From Figure 4.1 and 4.2, it is clear that women show a greater behavior and intention to carpool to work than men. Because the Prob>F` of 0.0000 and the Prob>|T| of .0315 for carpooling behavior is less than the Pvalue of .05, there is a significant difference between men's and

	I	-TEST R	esults	for	Behavioral	Items		
Variable: REC	BEH1				Variable: El	NBEH1		
Variances	<u> </u>	DF	Prob> T		<u>Variances</u>	<u>T</u>	DF	Prob> T
Unequal Equal	0.9549 1.1942	53.6 305.0	0.3439 0.2333		Unequal Equal	0.7003	305.0	0.4398
For H0: Variances are equal, F' = 1.91 DF = (45,260) Prob>F' = 0.0019 Variable: CARBEH1 For H0: Variances are equal, F' = 1.33 DF = (45,260) Prob>F' = 0.1816								
		Varian	ces	т	DF	Prob> T		
		Unequa:	l -2	2.2128	3 50.4	0.0315		
		Equal	- 3	3.2026	305.0	0.0015		
		For H0: DF = (45	Variances ,260)	are Prob	equal, F' = > F' = 0.0(3.02)00		

FIGURE 4.1 T-Test Results for Behavior

women's scores. Also, because the Prob>F` of 0.0142 and the Prob>|T| of .0360 for carpooling intention is less than the Pvalue of .05, there is a significant difference between men's and women's scores. Refer to Figures 4.1 and 4.2 for further information on the demographic distribution.

		T-TEST	Results	for	Intention	Items		
Variable:	<i>RECINT1</i>				Variable: EN	IINTI		
Variances	T	DF	Prob> T		Variances	<u>T</u>	DF	Prob> T
Unequal	-0.2044	58.9	0.8387		Unequal	-0.0701	56.8	0.9444
Equal	-0.2185	305.0	0.8272		Equal	-0.0789	305.0	0.93/1
For H0: Va DF = (45,3	ariances are 260) Prob	e equal, : >>F' = 0.:	F' = 1.21 3674 Variab	le:	For H0: Vari DF = (45,260 CARINT1	ances are	equal, >F' = 0.	F' = 1.41 1086
		Varia	nces	Ť	DF I	rob> T		
		Unequa	al -2	.1500) 54.8	0.0360		
		Equal	- 2	.5736	305.0	0.0105		
		For H0: DF = (4	Variances 5,260)	are Prob	equal, F' = >>F' = 0.01	1.68 . 42		

FIGURE 4.2 T-Test Results for Intention

Analysis of Variance (ANOVA). A further understanding of the relationship of environmental behaviors and intentions to education and age is accomplished with the Analysis of Variance (ANOVA) statistical technique (refer to Appendix E for the SAS[®] ANOVA code used and refer to Appendix F for all of the SAS[®] ANOVA outputs). Use of the ANOVA allows a determination whether there is a difference between respondents' education and age levels with respect to their environmental behavior and intention. Results were analyzed using a one-way ANOVA, between-groups design. The relation education has to the environmental behaviors of recycling, energy conservation, and carpooling is shown in Table 4.5. For recycling, since the P Value is much greater than the alpha of 0.05, <u>do not reject</u> the null that there is no difference between subjects education level with respect to their mean recycling behavior. There is no statistically significant variance. For energy conservation, since the P Value is less than the alpha of 0.05, and F Value is large, <u>reject</u> the null that there is no difference between subjects education level with respect to their mean energy conservation behavior. There is statistically significant variance, thus Tukey's HSD (Honestly Significant Difference) Test is conducted. And for carpooling, since the P Value is less than the alpha of 0.05, and F Value is large, <u>reject</u> the null that there is no difference between subjects education level with respect to their mean carpooling behavior. There is statistically significant variance, thus Tukey's HSD (Honestly Significant Difference) and F Value is large, <u>reject</u> the null that there is no difference between subjects education level with respect to their mean carpooling behavior. There is statistically significant variance, thus Tukey's HSD (Honestly Significant Difference) Test is conducted.

Environmental Behavior	F Value	$\Pr > F (P Value)$
Recycling	0.62	0.6856
Energy Conservation	3.62	0.0034
Carpooling	2.57	0.0270

TABLE 4.5ANOVA Results for Education-Behavior Relationship

It appears that education level has no effect on recycling behavior, but does affect energy conservation and carpooling behavior. Those individuals with an associate degree or some college education participate more frequently in energy conservation than individuals with high school, bachelors, some graduate, or graduate educations. The cut-off from the Tukey HSD test reveals that there is a clear separation of groups between the

4.0256 mean level for some college education and the 3.5889 mean level for some graduate education. Also, individuals with some college education participate more frequently in carpooling than those with high school, associate, bachelors, some graduate, or graduate educations. The cut-off from the Tukey HSD test reveals that there is a clear separation of groups between the 1.8974 mean level for some college education and the 1.5294 mean level for an associate education.

The relation age has to the environmental behaviors of recycling, energy conservation, and carpooling is shown in Table 4.6. For recycling, since the P Value is much greater than the alpha of 0.05, do not reject the null that there is no difference between subjects age level with respect to their mean recycling behavior. There is no statistically significant variance. For energy conservation, since the P Value is less than the alpha of 0.05, and F Value is large, reject the null that there is no difference between subjects age level with respect to their mean energy conservation behavior. There is statistically significant variance, thus Tukey's HSD (Honestly Significant Difference) Test is conducted. And for carpooling, since the P Value is much greater than the alpha of 0.05, do not reject the null that there is no difference between subjects age level with respect to their mean carpooling behavior. There is no statistically significant variance. It appears that age level has no effect on recycling and carpooling behaviors, but does affect energy conservation behavior. Those individuals who are older appear to participate more frequently in energy conservation than other individuals of lesser years. The cut-off from the Tukey HSD test reveals that there is a separation of groups, but the exact separation is unclear. It is clear from the mean distribution, however, that those older seem to participate in energy conservation behavior more often than those younger.

Environmental Behavior	F Value	$\Pr > F (P Value)$
Recycling	1.67	0.1738
Energy Conservation	3.04	0.0291
Carpooling	1.38	0.2498

TABLE 4.6 ANOVA Results for Age-Behavior Relationship

The relation education has to the environmental intentions of recycling, energy conservation, and carpooling is shown in Table 4.7. For recycling, since the P Value is much greater than the alpha of 0.05, <u>do not reject</u> the null that there is no difference between subjects education level with respect to their mean recycling intention. There is no statistically significant variance. For energy conservation, since the P Value is greater than the alpha of 0.05, <u>do not reject</u> the null that there is no difference between subjects education level with respect to their mean energy conservation. There is no statistically significant variance, but because of the close Pvalue with the alpha, Tukey's HSD (Honestly Significant Difference) Test is conducted. And for carpooling, since the P Value is much greater than the alpha of 0.05, <u>do not reject</u> the null that there is no difference between subjects education level with respect to their mean energy conservation intention. There is no statistically Significant Difference) Test is conducted. And for carpooling, since the P Value is much greater than the alpha of 0.05, <u>do not reject</u> the null that there is no difference between subjects education level with respect to their mean carpooling intention. There is no

Environmental Behavior	F Value	Pr > F (P Value)
Recycling	1.67	0.1416
Energy Conservation	1.98	0.0810
Carpooling	1.60	0.1601

TABLE 4.7 ANOVA Results for Education-Intention Relationship

It appears that education level has no effect on recycling and carpooling intentions, but does affect energy conservation intention. Those individuals who have an associate degree appear to have a greater intention to participate more frequently in energy conservation than those with other forms of education. Although the ANOVA test did not reject the null that there is no difference between subjects education level with respect to their mean energy conservation intention, the Tukey HSD test did show that there was a distinct break-out among respondents. The cut-off from the Tukey HSD test reveals that there is a separation of groups between those with an associate degree at a mean value of 4.4706 and those with other educational backgrounds at a mean value of 4.1026.

The relation age has to the environmental intentions of recycling, energy conservation, and carpooling is shown in Table 4.8. For recycling, since the P Value is much greater than the alpha of 0.05, <u>do not reject</u> the null that there is no difference between subjects age level with respect to their mean recycling intention. There is no statistically significant variance. For energy conservation, since the P Value is less than

the alpha of 0.05, and F Value is large, <u>reject</u> the null that there is no difference between subjects age level with respect to their mean energy conservation intention. There is statistically significant variance, thus Tukey's HSD (Honestly Significant Difference) Test is conducted. And for carpooling, since the P Value is much greater than the alpha of 0.05, <u>do not reject</u> the null that there is no difference between subjects age level with respect to their mean carpooling intention. There is no statistically significant variance.

Environmental Behavior	F Value	Pr > F (P Value)
Recycling	1.10	0.3512
Energy Conservation	3.74	0.0115
Carpooling	0.12	0.9499

TABLE 4.8 ANOVA Results for Age-Intention Relationship

It appears that age level has no effect on recycling and carpooling intentions, but does affect energy conservation intention. Those individuals who are older than 46 years appear to have a greater intention to participate more frequently in energy conservation than those younger. The cut-off from the Tukey HSD test reveals that there is a separation of groups at a mean value of 4.4444 for those over 46 years of age and a mean value of 4.1034 for those younger.

V. CONCLUSIONS

The goal of this research project was to develop a survey instrument based on the Theory of Planned Behavior (TPB) developed by Icek Ajzen. A survey was developed from questions in the literature and from questions devised by this researcher to assess the individual environmental behaviors of recycling, energy conservation, and carpooling efforts at work, and how the antecedents of behavior predict the willingness of a person to act. The information collected was used to determine if the TPB is supported, and whether the additional components added to the model support the Organizational Theory of Planned Behavior (OTPB). Also, the demographic variables of gender, age, and education were analyzed to draw general conclusions about the makeup of the respondents, and whether demographics play a role in predicting behavior. The following section discusses the conclusions drawn from the data collected from Air Force members at Wright-Patterson AFB, limitations of the study, and recommendations for future research.

Theory of Planned Behavior (TPB)

The Theory of Planned Behavior (TPB) is well supported by this research effort. The environmental behaviors of recycling, energy conservation, and carpooling of Air Force members at work accurately supports the constructs in the TPB. Through the use of the Statistical Analysis Software (SAS[©]), statistics were generated that resemble other research efforts (Randall, 1994; Ajzen, 1991).

Regression was used to describe the nature of the relationship between two variables. In addition, regression analysis supplies variance measures which allow us to assess the accuracy with which the regression equation can predict values on the criterion variable. Analysis was accomplished using the hierarchical and step-wise regression methods, producing virtually identical results. Predicting behavior from intention accounted for the greatest variance among the three behaviors of recycling, energy conservation, and carpooling. Predicting intention from attitude, subjective norm, and perceived behavioral control accounted for a significant variance, with attitude having the strongest relationship with intention, as expected. Further, prediction of the subjective norm from normative beliefs accounted for significant variance. Prediction of attitude from behavioral beliefs and economic motivation provided for significant variance, but because economic motivation was an added component to the TPB, it provided for no relationship to attitude towards the behavior. The strongest relationship was accounted for from the TPB behavioral beliefs construct.

Overall, the TPB is well supported by this research effort. With the use of regression techniques provided by SAS[®], prediction of the components in the TPB is accomplished. Behavior and intentions of Air Force members **are** influenced by attitude, subjective norm, perceived behavioral control, behavioral beliefs, and normative beliefs towards the behavior in question (recycling, energy conservation, carpooling).

Organizational Theory of Planned Behavior (OTPB)

Although the TPB is supported by this research effort, the Organizational Theory of Planned Behavior (OTPB), for the most part, is not. The components that were added to the TPB to establish an organizational framework were economic motivation, awareness programs, organizational commitment, and resource facilitating conditions. Although these constructs are important in an organizational context, their particular influence on the TPB components is not clear. Results from the hierarchical and stepwise regression techniques used in SAS[®] produced inconclusive results. Prediction of perceived behavioral control from resource facilitating conditions and prediction of behavioral beliefs from awareness programs with the regression procedure in SAS° did not predict significant variance. Although the influence of these two OTPB items were negligible, the influence of organizational commitment on normative beliefs did predict variance. Prediction of normative beliefs, a component of the TPB, from organizational commitment, a component of the OTPB, with the regression procedure in SAS° resulted in variances of 19%, 14%, and 8% for the behaviors of recycling, energy conservation, and carpooling respectively. The OTPB components were further supported by the strong relationship exhibited by the standardized beta values of .4295 for recycling, .3672 for energy conservation, and .2881 for carpooling.

In general, the OTPB is not well supported by this research effort. However, the components that make up the OTPB are well supported in the literature as important factors in an organizational setting. The exact nature of the influence of the OTPB

constructs on the TPB constructs is not clear, with the exception of the organizational commitment construct's influence on normative beliefs. The negative results of the OTPB constructs are probably due to the small sample in relation to the number of variables, and the inadequate placement of the items of the OTPB in relation to the constructs of the TPB.

Demographic Variables of Gender, Age, and Education

The relationship of the demographic variables of gender, age, and education provides an insight into important characteristics of society that influence behaviors and intentions of individuals at work. Through the use of a statistical technique called the T-Test, it is shown that women show a greater tendency to carpool to work than men, and are more likely to participate in the behavior. Because women show a greater tendency to carpool to work than men, programs within the Air Force should try and understand this and promote a greater awareness among men. Overall, however, carpooling scores for both men and women were quite low. The Air Force definitely needs to improve its programs to include carpooling efforts, as was further exhibited by the frequency tables for the carpooling scores (Appendix C).

The relationship that education and age have on predicting environmental behaviors and intentions (recycling, energy conservation, and carpooling) at work was examined using a statistical technique called an analysis of variance (ANOVA). It was shown that education has an affect on energy conservation and carpooling behavior at

work. Those with an associate degree or some college education participated in energy conservation more readily than those with other forms of education (high school, bachelors, some graduate, graduate). Those with some college education also show a tendency to participate in carpooling more readily than those who have other formal educational backgrounds. Overall, it appears that having some form of college education does promote better environmental behavior at work, especially with energy conservation and carpooling behaviors.

The age of an individual influences his or her energy conservation behavior at work, with those who are older participating more readily in the behavior. Although recycling and carpooling behaviors did not show a statistically significant difference between age groups, there is a tendency by those who are older to participate more readily in an environmentally friendly behavior at work.

The education level and age of an individual influences his or her intentions to conserve energy at work. Those individuals with an associate degree and who are older show intentions towards participating in energy conservation. Although recycling and carpooling intentions did not show a statistically significant difference between education and age groups, there appears to be a tendency (intention) by those who are older to participate more readily in an environmentally friendly behavior at work.

Limitations of Study

As with any research effort, there are inherent conditions that place limitations on the study. First, the Theory of Planned Behavior (TPB) is a relatively new model, developed by Icek Ajzen in 1991, that has yet to be fully tested. This research provided data that furthers the knowledge concerning the TPB, and supports the model.

Second, the added components on the TPB that make up the Organizational Theory of Planned Behavior (OTPB) have proven to be inadequate. However, the organizational commitment construct seems to predict the normative beliefs construct. Further refinement of the OTPB is needed to address the other constructs, and which of those constructs influence the TPB.

Third, a larger sample size is needed to provide a better representation of the Air Force, and lend greater credibility to the study. An increase in the sample size will provide the statistical power to account for the large number of variables in the study.

Future Research

Future research is needed to further understand the extent to which Air Force members support environmental issues and participate in environmentally responsible behaviors.

Questionnaire Development. There is a need for future research that expands upon this survey instrument. One possible avenue for expansion is to address only one of the environmental behaviors (such as recycling), and write many questions under each construct in the model so as to assure the reliability and measurement within the model itself. Then an in-depth analysis can be accomplished that focuses only on one behavior.

Addressing other environmental behaviors (such as composting or biking to work) may provide additional insight into human behavior, and could lead to a further strengthening of the TPB for other behaviors.

Assessing the added components that make up the OTPB is needed. This research effort found that only organizational commitment had any kind of effect on the TPB model. Additional components may need to be addressed, as well as deletion of the present components.

A further study of the TPB comparing Air Force members to the general public is needed. There might be significant differences in the results, although research to date does not support such differences (Holt, 1995). Programs that are specifically aimed at the Air Force may be suitable for the general public, while conversely, programs aimed at the general public may be suitable for the Air Force.

Demographic Predictors. A common theme in the literature is to analyze the relationship of demographic variables to environmental attitudes and behaviors (Scott and Willitis, 1994; Noe and Snow, 1990; Van Liere and Dunlap, 1981). Because the demographic variables of grade, time-in-service, age, gender, family income, level of education, and location of residence were collected, further research into demographic predictors is needed. A complete listing of the demographic items is shown in Appendix A, with the frequency counts of the responses shown in Appendix C.

Summary Summary

The Theory of Planned Behavior (TPB), as developed by Icek Ajzen in 1991, attempts to predict the behavior and intention of individuals in regards to their attitude, subjective norm, perceived behavioral control, behavioral beliefs, and normative beliefs. Because this theory is relatively new, support from the academic community is needed for further validation. The research conducted in this report supports the TPB, and provides additional data that lends credibility to the theory. The influence of an organization on the TPB was also accomplished, but with mixed results. Of the four constructs added to the TPB model to form the Organizational Theory of Planned Behavior (OTPB), only organizational commitment had a significant variance and relationship to a component of the TPB (normative beliefs).

The demographic variables of gender, age, and education were examined in this report, and yielded interesting results. Women show a greater behavior and intention to carpool to work than men, having some college education influences energy conservation behavior and carpooling behavior at work, having some college education influences energy conservation intention at work, and those who are older show a greater behavior and intention to conserve energy at work.

In closing, this research supports the TPB, and provides insight into the organizations influence on the theory as well. Further examination of an organizations influence on the TPB is required in order to develop an acceptable OTPB model.

APPENDIX A

SURVEY PACKAGE

AIR FORCE INSTITUTE OF TECHNOLOGY

ENVIRONMENTAL ATTITUDES & BEHAVIORS: An Examination of the Antecedents of Behavior Among Air Force Members at Work

INSTRUCTIONS

All items are to be answered by filling in the appropriate spaces on the machine scored response sheet provided. For your responses to be included in this research study, return the response sheet along with any comments you may have. If there is an item on the questionnaire which you do not understand or do not wish to answer, please skip over it.

Please use a soft-lead (No. 2) pencil, and observe the following:

- 1. <u>Make heavy black marks</u> that fill in the space (of the response you select).
- 2. Erase cleanly any responses you wish to change.
- 3. Make no stray markings of any kind on the questionnaire.
- 4. Do not staple, fold, or tear response sheet.
- 5. <u>Do NOT write your name</u> anywhere on the response sheet so that your responses will be anonymous.

Each response block on the scan sheet has 10 spaces (numbered 1 through 10). The questionnaire items normally require a response from 1 - 5 only, therefore, you will rarely need to fill in a space numbered 6, 7, 8, 9, or 10. Respond to questionnaire items marking the appropriate response from those below the instructions given in each section. The following example is shown:

<u>SCALE</u>:

STRONGLY				STRONGLY
DISAGREE	DISAGREE	NEUTRAL	AGREE	AGREE
1	2	3	4	5

SAMPLE ITEM:

I like the idea of recycling at work.

SAMPLE RESPONSE:

If you are "Neutral" to this question, you would blacken in the block on the scan sheet as follows:

1	2	3	4	5
0	0	۲	0	0

First, we would like to ask some questions about yourself. This **background information** will help us interpret the results.

- 1. What is your pay-grade?
 - 1 E1 E3
 - 2 E4 E6
 - 3 E7 E9
 - 4 01 03
 - 5 04 06
- 2. Which organization are you assigned to?
 - 1 Air Combat Command (ACC)
 - 2 Air Education and Training Command (AETC)
 - 3 Air Force Material Command (AFMC)
 - 4 Air Force Space Command (AFSPAC)
 - 5 Air Force Special Operations Command (AFSOC)
 - 6 Air Mobility Command (AMC)
 - 7 Pacific Air Forces (PACAF)
 - 8 United States Air Forces in Europe (USAFE)
 - 9 Field Operating Agency / Direct Reporting Unit
 - 10 OTHER
- 3. How long have you been in the Air Force?
 - 1 1 5 Years
 - 2 6 10 Years
 - 3 11 15 Years
 - 4 16 20 Years
 - 5 21 25 Years
 - 6 Over 25
- 4. What is your age?
 - 1 18 25 Years
 - 2 26 35 Years
 - 3 36 45 Years
 - 4 46 55 Years
 - 5 Over 55

- 5. What is your gender?
 - 1 Male
 - 2 Female
- 6. What is your gross annual FAMILY income (all family members including yourself)?
 - 1 \$0 \$14,999
 - 2 \$15,000 \$29,999
 - 3 \$30,000 \$44,999
 - 4 \$45,000 \$59,999
 - 5 \$60,000 \$74,999
 - 6 Over \$75,000
- 7. Do you live on-base?
 - 1 Yes
 - 2 No
- 8. If you live on-base, what type of on-base housing do you occupy?
 - 1 Military Family Housing
 - 2 Unaccompanied Personnel Housing
 - 3 Temporary Lodging Facility
 - 4 Other
 - 5 Not Applicable
- 9. If you live off-base, do you own or rent your housing?
 - 1 Own
 - 2 Rent
 - 3 Other
 - 4 Not Applicable

- 10. If you live off-base, what type of housing do you occupy?
 - 1 Single Family Detached
 - 2 Townhouse / Condominium
 - 3 Apartment
 - 4 Mobile Home
 - 5 Other
 - 6 Not Applicable
- 11. What is the highest educational level, credential, or degree that you have completed?
 - 1 High School Diploma or Equivalent
 - 2 Some College
 - 3 Completed Associate's Degree
 - 4 Completed Bachelor's Degree
 - 5 Some Graduate Work
 - 6 Completed Graduate Degree
- 12. Have you ever attended an environmental training class sponsored by the Air Force?
 - 1 Yes
 - 2 No
 - 3 Don't Know

Now, we would like to ask you specific questions regarding your behavior in relation to recycling, energy conservation, and carpooling efforts at work. Please read the questions and use the following scale to indicate how often that you make an effort to do each of the items.

			MOST OF	
NEVER	SELDOM	OCCASIONALLY	THE TIME	ALWAYS
1	2	3	4	5
		l		

- 13. I recycle at work.
- 14. I conserve energy at work.
- 15. I carpool to work.
- 16. I intend to recycle at work.
- 17. I intend to conserve energy at work.
- 18. I intend to carpool to work.

Finally, we would like you to think within an organizational setting to answer the questions in regards to the behaviors of recycling, energy conservation, and carpooling. Note that some questions are repetitive. This was done on purpose. Please read the questions and use the following scale to indicate your level of agreement or disagreement.

STRONGLY				STRONGLY
DISAGREE	DISAGREE	NEUTRAL	AGREE	AGREE
1	2	3	4	5
		l		

- 19. I like the idea of recycling at work.
- 20. I have a positive attitude toward recycling at work.
- 21. I like the idea of conserving energy at work.
- 22. I have a positive attitude toward conserving energy at work.
- 23. I like the idea of carpooling to work.
- 24. I have a positive attitude towards carpooling to work.
- 25. People who influence my decisions at work think I should recycle at work.
- 26. People who are important to me at work think I should recycle at work.
- 27. People who influence my decisions at work think I should conserve energy at work.
- 28. People who are important to me at work think I should conserve energy at work.
- 29. People who influence my decisions at work think I should carpool to work.
- 30. People who are important to me at work think I should carpool to work.
- 31. Whether or not I recycle at work is entirely up to me.
- 32. I have complete control over the amount of recycling that I do at work.
- 33. Whether or not I conserve energy at work is entirely up to me.
- 34. I have complete control over the energy conservation that I do at work.
- 35. Whether or not I carpool to work is entirely up to me.
- 36. I have complete control whether or not I carpool to work.

STRONGLY				STRONGLY
DISAGREE	DISAGREE	NEUTRAL	AGREE	AGREE
1	2	3	4	5

- 37. My recycling at work will help the environment.
- 38. Helping the environment by recycling at work is good.
- 39. My conserving energy at work will help the environment.
- 40. Helping the environment by conserving energy at work is good.
- 41. My carpooling to work will help the environment.
- 42. Helping the environment by carpooling to work is good.
- 43. My co-workers think I should recycle at work.
- 44. With respect to recycling at work, I want to do what my co-workers think I should do.
- 45. My co-workers think I should conserve energy at work.
- 46. With respect to conserving energy at work, I want to do what my co-workers think I should do.
- 47. My co-workers think I should carpool to work.
- 48. With respect to carpooling to work, I want to do what my co-workers think I should do.
- 49. Recycling at work is worthwhile only if I get paid to do so.
- 50. Conserving energy at work is worthwhile only if I get paid to do so.
- 51. Carpooling to work is worthwhile only if I get paid to do so.
- 52. My organization has programs that promote recycling.
- 53. My organization has programs that promote energy conservation.
- 54. My organization has programs that promote carpooling.
- 55. There is adequate information about recycling at my place of work.
- 56. There is adequate concern for recycling among my co-workers.

STRONGLY				STRONGLY
DISAGREE	DISAGREE	NEUTRAL	AGREE	AGREE
1	2	3	4	5
Ī				

57. There is adequate concern for recycling among my supervisors.

58. There is adequate information about energy conservation at my place of work.

59. There is adequate concern for conserving energy among my co-workers.

60. There is adequate concern for conserving energy among my supervisors.

61. There is adequate information about carpooling at my place of work.

62. There is adequate concern for carpooling efforts among my co-workers.

63. There is adequate concern for carpooling efforts among my supervisors.

64. Having convenient access to a recycling container at work is an important part of my decision whether to engage in the behavior.

65. Having the time to recycle at work is an important part of my decision whether to engage in the behavior.

66. Having the convenient ability to conserve energy at work is an important part of my decision whether to engage in the behavior.

67. Having the time to conserve energy at work is an important part of my decision whether to engage in the behavior.

68. Having convenient access to a carpool group at work is an important part of my decision whether to engage in the behavior.

69. Having the time to carpool to work is an important part of my decision whether to engage in the behavior.
APPENDIX B

SECOND ITERATION (PILOT TEST) DATA

This appendix contains the frequency response tables for the demographic

variables and the environmental behavioral items for the pilot test. The total cummulative frequency varies from item to item due to missing data. Respondents were instructed to skip over items which they did not understand or did not wish to answer.

[ITEM	PERCENT RESPONSE
1	What is your pay-grade?	
	E1 - E3	0.0
	E4 - E6	0.0
	E7 - E9	0.0
	01 - 03	96.2
	04 - 06	3.8
2	Which organization are you assigned to?	
	Air Combat Command (ACC)	26.1
	Air Education and Training Command (AETC)	43.5
	Air Force Material Command (AFMC)	13.0
	Air Force Space Command (AFSPAC)	8.7
	Air Force Special Operations Command (AFSOC)	0.0
	Air Mobility Command (AMC)	0.0
	Pacific Air Forces (PACAF)	8.7
	United States Air Forces in Europe (USAFE)	0.0
	Field Operating Agency/Direct Reporting Unit	0.0
	OTHER	0.0
3	How long have you been in the Air Force?	
	1 - 5 Years	65.4
	6 - 10 Years	26.9
	11 - 15 Years	7.7
	16 - 20 Years	0.0
	21 - 25 Years	0.0
	Over 25	0.0
4	What is your age?	
	18 - 25 Years	34.6
	26 - 35 Years	61.5
	36 - 45 Years	0.0
	46 - 55 Years	3.8
	Over 55	0.0
5	What is your gender	
	Male	92.3
	Female	7.7

Frequency Table for the Demographic Variables

6	What is your gross annual FAMILY income (all family members including yourself)?	
	\$0 - \$14,999	0.0
	\$15,000 - \$29,999	19.2
	\$30,000 - \$44,999	50.0
	\$45,000 - \$59,999	15.4
	\$60,000 - \$74,999	15.4
	Over \$75,000	0.0
7	Do you live on-base?	
	Yes	34.6
-	No	65.4
8	If you live on-base what type of on-base housing do you occupy?	
	Military Family Housing	36.0
	Unaccompanied Personnel Housing	0.0
	Temporary Lodging Facility	0.0
	Other	0.0
	Not Applicable	64.0
9	If you live off-base do you own or rent your housing?	
	Own	17.4
	Rent	56.5
	Other	0.0
<u> </u>	Not Applicable	26.1
<u> </u>		
10	If you live off-base, what type of housing do you occupy?	
<u> </u>	Single Family Detached	33.3
	Townhouse/Condominium	12.5
	Apartment	25.0
	Mobile Home	0.0
	Other	0.0
	Not Applicable	29.2
<u> </u>		
11	What is the highest educational level, credential, or degree that you have completed?	
	High School Diploma or Equivalent	0.0
<u> </u>	Some College	0.0
	Completed Associate's Degree	0.0
	Completed Bachelor's Degree	61.5
	Some Graduate Work	34.6
	Completed Graduate Degree	3.8
12	Have you ever attended an environmental training class sponsored by the Air	
L	Force?	50.0
Ļ	Yes	50.0
	No	42.3
	Don't Know	7.7

Frequency Table for the Environmental Behavioral Items

	ITEM	PERCENT RESPONSE				
		Never	Seldom	Occasionally	Most of the time	Always
	BEHAVIOR				T	
13	I recycle at work.	0.0	0.0	15.4	53.8	30.8
14	I conserve energy at work.	0.0	3.8	2 6.9	57.7	11.5
15	I carpool to work.	73.1	23.1	3.8	0.0	0.0

		Never	Seldom	Occasionally	Most of	Always
					the time	
	INTENTION				1	50.0
16	I intend to recycle at work.	0.0	0.0	3.8	46.2	34.6
18	Lintend to conserve energy at work.	46.2	34.6	11.5	3.8	3.8
		Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree
	ATTITUDE					
19	I like the idea of recycling at work.	0.0	0.0	3.8	30.8	65.4
20	I have a positive attitude toward recycling at work	0.0	3.8	15.4	30.8	50.0
21	I like the idea of conserving energy at work.	0.0	0.0	3.8	38.5	57.7
22	I have a positive attitude toward conserving energy at work.	0.0	0.0	7.7	30.8	61.5
23	I like the idea of carpooling to work.	7.7	38.5	34.6	11.5	7.7
24	I have a positive attitude towards carpooling to work.	15.4	30.8	34.6	11.5	7.7
	SUBJECTIVE NORM	· · · · · · · · · · · · · · · · · · ·		<u></u>		
- 25	People who influence my desigions at work	0.0	11.5	46.2	30.8	11.5
23	think I should recycle at work.	0.0	11.5	40.2	50.0	11.5
26	People who are important to me at work think I should recycle at work.	3.8	11.5	38.5	34.6	11.5
27	People who influence my decisions at work think I should conserve energy at work.	4.0	8.0	40.0	40.0	8.0
28	People who are important to me at work think I should conserve energy at work.	3.8	11.5	38.5	38.5	7.7
29	People who influence my decisions at work think I should carpool to work.	38.5	23.1	30.8	7.7	0.0
30	People who are important to me at work think I should carpool to work.	38.5	23.1	30.8	7.7	0.0
	BEHAVIORAL CONTROL					
31	Whether or not I recycle at work is entirely up to me.	3.8	3.8	19.2	34.6	38.5
32	I have complete control over the amount of recycling that I do at work.	7.7	3.8	19.2	34.6	34.6
33	Whether or not I conserve energy at work is entirely up to me.	3.8	19. 2	19.2	30.8	26.9
34	I have complete control over the energy conservation that I do at work.	0.0	23.1	19.2	42.3	15.4
35	Whether or not I carpool to work is entirely up to me.	3.8	11.5	0.0	15.4	69.2
36	I have complete control over my use of carpools to work.	7.7	7.7	15.4	15.4	53.8
	DELLAVIADAL DELLEES					
27	DERAVIORAL BELIEFS	2.0		10.0		52.0
51	wy recycling at work will help the environment.	3.8	0.0	19.2	23.1	53.8
38	Helping the environment by recycling at work is good.	0.0	0.0	15.4	15.4	69.2
39	My conserving energy at work will help the environment.	0.0	3.8	11.5	30.8	53.8
40	Helping the environment by conserving energy at work is good.	0.0	0.0	11.5	26.9	61.5
41	My carpooling to work will help the environment.	3.8	7.7	19.2	34.6	34.6
42	Helping the environment by carpooling to work is good.	3.8	7.7	19.2	30.8	38.5

		Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree
	NORMATIVE BELIEFS					
43	My co-workers think I should recycle at work.	3.8	7.7	38.5	38.5	11.5
44	With respect to recycling at work, I want to do what my co-workers think I should do.	15.4	15.4	50.0	15.4	3.8
45	My co-workers think I should conserve energy at work	7.7	3.8	57.7	19.2	11.5
46	With respect to conserving energy at work, I want to do what my co-workers think I should do.	11.5	15.4	57.7	11.5	3.8
47	My co-workers think I should carpool to work.	19.2	42.3	38.5	0.0	0.0
48	With respect to carpooling to work, I want to do what my co-workers think I should do.	30.8	23.1	46.2	0.0	0.0
	ECONOMIC MOTIVATION					
49	Recycling at work is worthwhile only if I get paid to do so	53.8	42.3	3.8	0.0	0.0
50	Conserving energy at work is worthwhile only if I get paid to do so.	53.8	42.3	3.8	0.0	0.0
51	Carpooling to work is worthwhile only if I get paid to do so.	38.5	34.6	7.7	15.4	3.8
	AWARENESS PROGRAMS					
52	My organization has programs that promote	0.0	7.7	7.7	46.2	38.5
53	My organization has programs that promote	0.0	7.7	23.1	46.2	23.1
54	My organization has programs that promote carpooling.	53.8	30.8	7.7	7.7	0.0
	ORGANIZATIONAL COMMITMENT					
55	There is adequate information about recycling	0.0	15.4	30.8	46.2	7.7
56	There is adequate concern for recycling among my co-workers.	0.0	19.2	30.8	46.2	3.8
57	There is adequate concern for recycling among my supervisors.	0.0	11.5	42.3	42.3	3.8
58	There is adequate information about energy conservation at my place of work.	0.0	23.1	53.8	15.4	7.7
59	There is adequate concern for energy conservation among my co-workers.	0.0	23.1	50.0	23.1	3.8
60	There is adequate concern for conserving energy among my supervisors.	0.0	19.2	53.8	15.4	11.5
61	There is adequate information about carpooling at my place of work.	42.3	30.8	19.2	7.7	0.0
62	There is adequate concern for carpooling efforts among my co-workers.	38.5	42.3	15.4	3.8	0.0
63	There is adequate concern for carpooling efforts among my supervisors.	34.6	46.2	15.4	3.8	0.0
L						
	RESOURCE-FACILITATING CONDITIONS					
64	I have convenient access to a recycling container at work.	3.8	3.8	3.8	65.4	23.1
65	Having the time to recycle at work is an important part of my decision whether to engage in the behavior.	3.8	11.5	26.9	46.2	11.5
66	It is convenient for me to conserve energy at work.	3.8	7.7	42.3	42.3	3.8

I

		Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree
67	Having the time to conserve energy at work is an important part of my decision whether to engage in the behavior.	3.8	19.2	38.5	30.8	7.7
68	I have convenient access to a carpool group at work.	46.2	26.9	11.5	7.7	7.7
69	Having the time to carpool to work is an important part of my decision whether to engage in the behavior.	24.0	12.0	12.0	24.0	28.0

APPENDIX C

THIRD ITERATION (MAIN STUDY) DATA

This appendix contains the frequency response tables for the demographic

variables and the environmental behavioral items for the main study. The total

cummulative frequency varies from item to item due to missing data. Respondents were

instructed to skip over items which they did not understand or did not wish to answer.

	ITEM	PERCENT RESPONSE
1	What is your pay-grade?	
	E1 - E3	2.9
	E4 - E6	14.0
	E7 - E9	9.4
	01 - 03	61.2
	04 - 06	12.4
2	Which organization are you assigned to?	
	Air Combat Command (ACC)	5.8
	Air Education and Training Command (AETC)	21.9
	Air Force Material Command (AFMC)	63.7
	Air Force Space Command (AFSPAC)	1.7
	Air Force Special Operations Command (AFSOC)	0.3
	Air Mobility Command (AMC)	2.1
	Pacific Air Forces (PACAF)	2.7
	United States Air Forces in Europe (USAFE)	1.0
	Field Operating Agency/Direct Reporting Unit	0.7
	OTHER	0.0
3	How long have you been in the Air Force?	
	1 - 5 Years	34.0
	6 - 10 Years	25.2
	11 - 15 Years	20.9
	16 - 20 Years	13.4
	21 - 25 Years	4.9
	Over 25	1.6
4	What is your age?	
-	18 - 25 Years	17.6
	26 - 35 Years	60.6
	36 - 45 Years	18.9
	46 - 55 Years	2.9
	Over 55	0.0
5	What is your gender	
	Male	85.0
	Female	15.0

Frequency Table for the Demographic Variables

6	What is your gross annual FAMILY income (all family members including	
	yourself)?	1.6
	\$0 - \$14,999	1.0
	\$15,000 - \$29,999	18.3
	\$30,000 - \$44,999	37.3
	\$45,000 - \$59,999	25.2
	\$60,000 - \$74,999	11.1
	Over \$75,000	6.5
7	Do you live on-base?	
··	Ves	34.2
	No	65.8
8	If you live on-base, what type of on-base housing do you occupy?	22.0
	Military Family Housing	32.8
	Unaccompanied Personnel Housing	2.7
	Temporary Lodging Facility	0.0
	Other	0.3
	Not Applicable	64.2
0	If you live off-base, do you own or rent your housing?	
	A you not on base, do you own of rent your notioning.	30.7
	Bont	36.0
	Other	0.3
	Net Applicable	33.0
	Not Applicable	55.0
10	If you live off-base, what type of housing do you occupy?	
	Single Family Detached	42.4
	Townhouse/Condominium	10.5
	Anartment	12.2
	Mohile Home	1.0
	Other	1.6
	Not Applicable	32.2
11	What is the highest educational level, credential, or degree that you have completed?	
	High School Diploma or Equivalent	4.2
	Some College	12.7
	Completed Associate's Degree	5.5
	Completed Bachelor's Degree	17.9
	Some Graduate Work	29.3
	Completed Graduate Degree	30.3
	· · · · · · · · · · · · · · · · · · ·	
12	Have you ever attended an environmental training class sponsored by the Air	
	Force?	22.0
	Yes	33.9
	No	59.6
	Don't Know	6.5

Frequency Table for the Environmental Behavioral Items

	ITEM	PERCENT RESPONSE				
		Never	Seldom	Occasionally	Most of the time	Always
	BEHAVIOR					
13	I recycle at work.	3.3	6.8	18.2	51.5	20.2
14	I conserve energy at work.	1.3	8.5	26.1	51.8	12.4
15	I carpool to work.	71.0	16.9	7.2	3.6	1.3

		Never	Seldom	Occasionally	Most of	Always
					the time	
16	INTENTION	2.0	2.2	10.5	29.1	38.1
10	I intend to recycle at work.	1.0	4.6	23.8	43.3	27.3
18	I intend to carpool to work.	57.3	23.1	11.7	3.9	3.9
		······································				
		Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree
	ATTITUDE					
19	I like the idea of recycling at work.	0.0	0.7	5.5	35.8	58.0
20	I have a positive attitude toward recycling at work.	0.3	0.7	7.8	38.8	52.4
21	I like the idea of conserving energy at work.	0.0	0.3	7.5	45.6	46.6
22	I have a positive attitude toward conserving energy at work.	0.3	0.3	12.1	45.6	41.7
23	I like the idea of carpooling to work.	18.6	26.7	26.7	16.0	12.1
24	I have a positive attitude towards carpooling	18.6	22.5	27.0	19.5	12.4
	to work.					
	SUBJECTIVE NORM					
25	People who influence my decisions at work	3.9	8.8	51.1	26.4	9.8
	think I should recycle at work.	2.0	75	52.1	28.0	0 /
26	People who are important to me at work think I should recycle at work.	2.9	1.5	52.1	20.0	9.4
27	People who influence my decisions at work	2.9	7.8	48.5	30.9	9.8
28	think I should conserve energy at work.	3.6	7.5	48.5	30.9	9.4
20	think I should conserve energy at work.	2.0				
29	People who influence my decisions at work think I should carpool to work.	16.9	23.5	52.4	5.9	1.3
30	People who are important to me at work think I should carpool to work.	18.2	21.8	52.8	5.9	1.3
	BEHAVIORAL CONTROL	10	10.7	6.9	44.0	22.6
31	up to me.	4.9	10.7	0.8	44.0	<u>0</u> .cc
32	I have complete control over the amount of recycling that I do at work.	3.6	13.4	8.8	40.7	33.6
33	Whether or not I conserve energy at work is entirely up to me	3.9	16.6	11.7	44.0	23.8
34	I have complete control over the energy	3.3	17.9	16.6	40.4	21.8
35	Conservation that I do at work. Whether or not I carpool to work is entirely	2.9	5.9	5.2	34.9	51.1
26	up to me.	2.0	10.1	62	29.0	50.8
30	carpools to work.	3.9	10.1	0.2	25.0	
	REHAVIORAL RELIFES					
37	My recycling at work will help the	0.7	2.6	6.2	46.6	44.0
38	environment. Helping the environment by recycling at	0.3	1.6	4.9	37.8	55.4
- 20	work is good.	0.2	26	7.2	45.6	44.3
39	My conserving energy at work will help the environment.	0.3	2.0	1.2	40.0	40.5
40	Helping the environment by conserving energy at work is good.	0.3	1.3	5.5	43.3	49.5
41	My carpooling to work will help the	5.5	5.5	18.9	41.7	28.3
42	Helping the environment by carpooling to work is good.	2.3	5.9	20.2	38.4	33.2

		Strongly	Disagree	Neutral	Agree	Strongly
	NORMATIVE DELIEFS	Disagree				Agree
12	NORMATIVE BELIEFS	3.3	7.8	50.5	30.0	85
45	work.	J.J	7.0	50.5	50.0	0.0
44	With respect to recycling at work, I want to do what my co-workers think I should do.	13.7	19.2	45.6	17.9	3.6
45	My co-workers think I should conserve energy at work.	2.9	9.8	54.7	28.0	4.6
46	With respect to conserving energy at work, I want to do what my co-workers think I should do.	13.0	17.3	49.5	17.3	2.9
47	My co-workers think I should carpool to work.	13.4	29.6	52.1	3.6	1.3
48	With respect to carpooling to work, I want to do what my co-workers think I should do.	21.8	22.8	49.2	5.2	1.0
	ECONOMIC MOTIVATION					
49	Recycling at work is worthwhile only if I get naid to do so.	53.1	34.5	6.8	3.3	2.3
50	Conserving energy at work is worthwhile only if I get paid to do so.	53.4	35.5	6.8	2.3	2.0
51	Carpooling to work is worthwhile only if I get paid to do so.	41.4	33.9	14.3	6.2	4.2
	AWADENESS DDOCDAMS					
52	My organization has programs that promote	3.6	10.1	10.7	58.3	17.3
53	recycling. My organization has programs that promote	2.9	15.6	22.5	49.2	9.8
54	My organization has programs that promote	27.4	44.0	20.2	7.2	1.3
	ORGANIZATIONAL					
	COMMITMENT				10.5	10.4
55	There is adequate information about recycling at my place of work.	7.8	18.9	22.1	40.7	10.4
56	There is adequate concern for recycling among my co-workers.	5.5	17.3	32.2	38.8	6.2
57	There is adequate concern for recycling among my supervisors.	4.2	18.9	35.5	33.2	8.1
58	There is adequate information about energy conservation at my place of work.	5.5	24.8	30.6	33.9	5.2
59	There is adequate concern for energy conservation among my co-workers.	4.2	23.8	36.5	31.9	3.6
60	There is adequate concern for conserving energy among my supervisors.	4.9	21.8	36.5	32.2	4.6
61	There is adequate information about carpooling at my place of work.	23.8	36.5	29.3	9.1	1.3
62	There is adequate concern for carpooling efforts among my co-workers.	21.5	32.6	35.5	9.8	0.7
63	There is adequate concern for carpooling efforts among my supervisors.	20.5	30.0	39.4	8.5	1.6
	RESOURCE-FACILITATING					
	CONDITIONS	1.6	52	6.8	30.7	46.6
04	container at work.	1.0	3.2	10.0	22.0	17.0
65	Having the time to recycle at work is an important part of my decision whether to engage in the behavior.	5.9	23.5	19.9	33.2	17.6
66	It is convenient for me to conserve energy at work.	2.9	9.8	18.9	44.3	24.1

		Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree
67	Having the time to conserve energy aat work is an important part of my decision to engage in the behavior.	5.5	23.8	29.0	29.0	12.7
68	I have convenient access to a carpool group at work.	18.6	19.5	18.6	27.0	16.3
69	Having the time to carpool to work is an important part of my decision whether to engage in the behavior.	17.9	15.6	18.9	27.0	20.5

APPENDIX D SURVEY DEVELOPMENT

This appendix contains information on how a survey is developed. The process of sending a questionnaire to prospective respondents, getting them to complete the questionnaire in an honest manner, and returning it can be viewed as a special case of "social exchange." The theory of social exchange asserts that the actions of individuals are motivated by the return these actions are expected to bring (Dillman, 1978: 12). Social exchange is different from the more familiar economic exchange in which money serves as a precise measure of worth of one's actions. Social exchange is a broader concept in which future obligations are created that are unspecified, the nature of the return cannot be bargained, and the range of goods, services, and experiences exchanged is quite diverse (Dillman, 1978: 12). It is assumed that people engage in activities because of the rewards they hope to reap, that all activities incur certain costs, and people attempt to keep costs below the rewards they expect to receive. As a result, whether a given behavior occurs is a function of the ratio between the perceived costs of doing that activity and the rewards one expects the other party to provide at a later time (Dillman, 1978: 12). Thus "there are three things that must be done to maximize survey response: minimize the costs of responding, maximize the rewards for doing so, and establish trust that those rewards will be delivered" (Dillman, 1978: 12).

The first step in writing a question is to identify exactly what kind of information is desired from survey respondents (Dillman, 1978: 80). Questions are usually classified as

requesting attitudes, what people say they want; beliefs, what people think is true; behaviors, what people do; and/or attributes, what people are (Dillman, 1978: 80). It is crucial to understand the differences among these types of information. Otherwise, efforts to write questions may inadvertently measure information that is not needed.

The second important step in writing questions is to determine question structure (Dillman, 1978: 86). Our basis for distinguishing among question structures is the nature of response behavior asked of the respondent. With this as our criterion, there are four basic types of question structures: open-ended, those questions that have no answer choice; closed-ended with ordered choices, questions with answer choices provided, each with a single dimension of some thought or behavior; close-ended with unordered response choices, questions with answer choices provided, but no single dimension underlies them; and partially close-ended, questions that provide answer choices, but the respondents have the option of creating their own responses (Dillman, 1978: 86 - 87). Virtually all questions that might be asked in a survey fit into one of these categories, with each question structure requiring respondents to engage in a different kind of response behavior having certain advantages and disadvantages (Dillman, 1978: 87).

The third decision researchers face in writing questions is how to word them (Dillman, 1978: 95). The wrong choice of words can create any number of problems - from excessive vagueness to too much precision, from being misunderstood to not being understood at all, from being too objectionable to being too uninteresting. "The rules, admonitions, and principles for how to word questions enumerated in various books and articles present a mind boggling array of generally good but often conflicting and

confusing directions about how to do it" (Dillman, 1978: 96). According to guidelines from Air University, questionnaires should: keep the language simple, keep the questions short, keep the number of questions short, limit each question to one idea or concept, not ask leading questions, use subjective terms such as good, fair, and bad sparingly, if at all, allow for all possible answers, avoid emotional or morally charged questions, obtain exact information with minimal confusion, include a few questions that can serve as checks on the accuracy and consistency of the answers as a whole, organize questions by placing demographic questions together, and be pretested (pilot tested) in order to uncover any weaknesses (Air University, 1993: 31 - 33). It must be noted that a list of admonitions, no matter how well intended, cannot be considered as absolute principles that must be adhered to without exception.

Three questions that researchers must ask about every survey question have been posed: Will it obtain the desired *kind* of information? Is the question *structured* in an appropriate way? Is the precise *wording* satisfactory? The writing is not complete if there is a negative answer to any of these questions. The question cannot produce the information the researcher wants unless all three are answered affirmatively (Dillman, 1978: 118).

It is a slow and painstaking process to arrange the questions in a questionnaire. The problem is that several goals must be met satisfactorily and simultaneously. First, the end result must be aesthetically pleasing to motivate the respondents to complete it. Second, the structure of precisely worded questions must be preserved. And third, the

pages must be constructed in a way that keeps respondents from skipping individual items or whole sections (Dillman, 1978: 133). Adhering strictly to a number of principles of page construction, all three goals can be accomplished. In formulating the pages to achieve all three goals, the questionnaire should: use lower case letters for questions and upper case letters for answers, identify answer categories on the left with numbers, establish a vertical flow for the response categories, provide directions for how to answer, have questions fit each page, and use transitions for continuity (Dillman, 1978: 133 - 150).

Other important considerations that must be considered when designing a questionnaire include the intensity scale, cover letter and instructions, and front and back covers. The intensity scale is a measure of the strength a respondent feels on a particular topic. Such a scale is used to obtain quantitative information about the survey subject. The most common and easily used intensity (or scaled) question involves the use of the Likert-type answer scale (Air University, 1993: 34). This scale allows the respondent to choose one of several (usually five) degrees of feeling about a statement, ranging from strong agreement to strong disagreement. The "questions" are in the form of statements, with the "answers" given scores (or weights) ranging from one to the number of available answers (Air University, 1993: 35).

The cover letter and instructions for a questionnaire aid the respondent in completing the questionnaire in a timely and correct manner. The cover letter provides background information on the purpose of the study, and why an individual should complete the survey. Confidentiality must be stressed, as well as the appreciation on part of the surveyor for the participation of the respondent. A point of contact should also be

listed on the cover letter to answer any questions or comments the respondents may have. While the cover letter presents the purpose and reason for a particular study, the instructions provide the means to completing the study. The instructions should give all the pertinent information that is needed to complete the survey in the correct manner. A sample item and response should also be given to illustrate the correct way in which to fill out the response sheet.

The questionnaire covers are likely to be examined before any other part of the questionnaire. Therefore, the front and back cover need to be designed to create a positive first impression. The front cover receives the greatest attention, and needs to contain the study title, a graphic illustration to attract the respondents, and the name and address of the study sponsor (Dillman, 1978: 150). The back cover is deceptively simple, and should consist of an invitation to make additional comments, a thank you, and plenty of white space (Dillman, 1978: 153). It must be noted that the back cover should not compete for attention with the front cover, or detract from it in any way.

APPENDIX E

STATISTICAL ANALYSIS SOFTWARE (SAS[©]) CODE

This appendix contains information on the Statistical Analysis Software (SAS[®]) code used in the evaluation of the data obtained. During the first iteration (Pre-Pilot Test), there was no need for statistical analysis; rather comments and general feedback were the primary concern. The second iteration (Pilot Test), however, required some initial statistical analysis. The code written in SAS[®] analyzed the reliability and descriptive statistics of the data. The third iteration (Main Study), used even more statistical tools, including descriptive statistics (N, Mean, Standard Deviation), realiability, factor analysis, regression, t-test, and analysis of variance (ANOVA) calculations.

Second Iteration (Pilot Test) SAS[©] Code

Descriptive Statistics

```
/* THESIS Statistical Analysis - DESCRIPTIVE STATISTICS
   "Environmental Attitudes and Behaviors: An Examination
   of the Antecedents of Behavior Among Air Force Members at Work"
  Lt Mark S. Laudenslager
  GEE96D Advisor: Lt Col Steven Lofgren
*/
/* DEFINING Variables
       pay = Member Pay-Grade
       org = Assigned Organization
       time = Member Time in Service
       age = Age of Member
       sex = Gender of Member
       income = Total Family Income of Member
       base = Member Live On or Off Base
       onbase = Type of Onbase Housing Occupied
       offbase = Member Rent or Own Housing Offbase
       offtype = Type of Offbase Housing Occupied
       educ = Highest Education Level Reached by Member
       envtng = Member Environmental Training
       RecBeh1 = Recycling Behavior
       EnBeh1 = Energy Conservation Behavior
       CarBeh1 = Carpooling Behavior
```

```
RecInt1 = Recycling Intention
       EnInt1 = Energy Conservation Intention
       CarInt1 = Carpooling Intention
        RecAtt(1-2) = Recycling Attitude
       EnAtt(1-2) = Energy Conservation Attitude
       CarAtt(1-2) = Carpooling Attitude
        RecSN(1-2) = Recycling Subjective Norm
        EnSN(1-2) = Energy Conservation Subjective Norm
       CarSN(1-2) = Carpooling Subjective Norm
        RecBC(1-2) = Recycling Perceived Behavioral Control
        EnBC(1-2) = Energy Conservation Perceived Behavioral Control
       CarBC(1-2) = Carpooling Perceived Behavioral Control
        RecBB(1-2) = Recycling Behavioral Belief
       EnBB(1-2) = Energy Conservation Behavioral Belief
       CarBB(1-2) = Carpooling Behavioral Belief
        RecNB(1-2) = Recycling Normative Belief
        EnNB(1-2) = Energy Conservation Normative Belief
       CarNB(1-2) = Carpooling Normative Belief
        RecEM1 = Recycling Economic Motivation
        EnEM1 = Energy Conservation Economic Motivation
       CarEM1 = Carpooling Economic Motivation
        RecAP1 = Recycling Awareness Program
        EnAP1 = Energy Conservation Awareness Program
       CarAP1 = Carpooling Awareness Program
        RecOC(1-3) = Recycling Organizational Commitment
       EnOC(1-3) = Energy Conservation Organizational Commitment
       CarOC(1-3) = Carpooling Organizational Commitment
       RecRFC(1-2) = Recycling Resource-Facilitating Condition
       EnRFC(1-2) = Energy Conservation Resource-Facilitating Condition
       CarRFC(1-2) = Carpooling Resource-Facilitating Condition
data mark;
  infile 'pilot.dat' missover;
input
  pay 41 org 42 time 43 age 44 sex 45 income 46 base 47
  onbase 48 offbase 49 offtype 50 educ 51 envtng 52 RecBeh1 53
  EnBehl 54 CarBehl 55 RecIntl 56 EnIntl 57 CarIntl 58
  RecAtt1 59 RecAtt2 60 EnAtt1 61 EnAtt2 62 CarAtt1 63
  CarAtt2 64 RecSN1 65 RecSN2 66 EnSN1 67 EnSN2 68
 CarSN1 69 CarSN2 70 RecBC1 71 RecBC2 72 EnBC1 73
EnBC2 74 CarBC1 75 CarBC2 76 RecBB1 77 RecBB2 78
  EnBB1 79 EnBB2 80 CarBB1 81 CarBB2 82 RecNB1 83
  RecNB2 84 EnNB1 85 EnNB2 86 CarNB1 87 CarNB2 88
 RecEM1 89 EnEM1 90 CarEM1 91 RecAP1 92 EnAP1 93
  CarAP1 94 RecOC1 95 RecOC2 96 RecOC3 97 EnOC1 98
  EnOC2 99 EnOC3 100 CarOC1 101 CarOC2 102 CarOC3 103
 RecRFC1 104 RecRFC2 105 EnRFC1 106 EnRFC2 107
  CarRFC1 108 CarRFC2 109;
/* Reformatting Data (SUMMATION) for Each Block in Model */
data sum;
  set mark;
/* SUMMATION */
RecAtt=RecAtt1+RecATT2;
EnAtt=EnAtt1+EnAtt2:
CarAtt=CarAtt1+CarAtt2;
```

*/

```
RecSN=RecSn1+RecSN2;
EnSN=EnSN1+EnSN2;
CarSN=CarSN1+CarSN2;
RecBC=RecBC1+RecBC2;
EnBC=EnBC1+EnBC2;
CarBC=CarBC1+CarBC2;
RecBB=RecBB1+RecBB2;
EnBB=EnBB1+EnBB2;
CarBB=CarBB1+CarBB2;
RecNB=RecNB1+RecNB2;
EnNB=EnNB1+EnNB2;
CarNB=CarNB1+CarNB2;
RecOC=RecOC1+RecOC2+RecOC3;
EnOC=EnOC1+EnOC2+EnOC3;
CarOC=CarOC1+CarOC2+CarOC3;
RecRFC=RecRFC1+RecRFC2;
EnRFC=EnRFC1+EnRFC2;
CarRFC=CarRFC1+CarRFC2;
/* FREQUENCY TABLES */
proc freq;
  tables pay org time age sex income base onbase;
proc freq;
 tables offbase offtype educ envtng;
proc freq;
  tables RecBeh1 EnBeh1 CarBeh1 RecInt1 EnInt1 CarInt1;
proc freq;
 tables RecAtt1 RecAtt2 EnAtt1 EnAtt2 CarAtt1 CarAtt2;
proc freq;
 tables RecSN1 RecSN2 EnSN1 EnSN2 CarSN1 CarSN2;
proc freq;
  tables RecBC1 RecBC2 EnBC1 EnBC2 CarBC1 CarBC2;
proc freq;
 tables RecBB1 RecBB2 EnBB1 EnBB2 CarBB1 CarBB2;
proc freq;
  tables RecNB1 RecNB2 EnNB1 EnNB2 CarNB1 CarNB2;
proc freq;
  tables RecEM1 EnEM1 CarEM1 RecAP1 EnAP1 CarAP1;
proc freq;
 tables RecOC1 RecOC2 RecOC3 EnOC1 EnOC2 EnOC3 CarOC1 CarOC2 CarOC3;
proc freq;
  tables RecRFC1 RecRFC2 EnRFC1 EnRFC2 CarRFC1 CarRFC2;
run;
```

Reliability

```
/* THESIS Statistical Analysis - RELIABILITY
   "Environmental Attitudes and Behaviors: An Examination
   of the Antecedents of Behavior Among Air Force Members
   at Work"
   Lt Mark S. Laudenslager
   GEE96D Advisor: Lt Col Steven Lofgren
*/
/* DEFINING Variables
      pay = Member Pay-Grade
      org = Assigned Organization
      time = Member Time in Service
      age = Age of Member
      sex = Gender of Member
```

income = Total Family Income of Member base = Member Live On or Off Base onbase = Type of Onbase Housing Occupied offbase = Member Rent or Own Housing Offbase offtype = Type of Offbase Housing Occupied educ = Highest Education Level Reached by Member envtng = Member Environmental Training RecBeh1 = Recycling Behavior EnBeh1 = Energy Conservation Behavior CarBeh1 = Carpooling Behavior RecInt1 = Recycling Intention EnInt1 = Energy Conservation Intention CarInt1 = Carpooling Intention RecAtt(1-2) = Recycling Attitude EnAtt(1-2) = Energy Conservation Attitude CarAtt(1-2) = Carpooling AttitudeRecSN(1-2) = Recycling Subjective Norm EnSN(1-2) = Energy Conservation Subjective Norm CarSN(1-2) = Carpooling Subjective Norm RecBC(1-2) = Recycling Perceived Behavioral Control EnBC(1-2) = Energy Conservation Perceived Behavioral Control CarBC(1-2) = Carpooling Perceived Behavioral ControlRecBB(1-2) = Recycling Behavioral Belief EnBB(1-2) = Energy Conservation Behavioral Belief CarBB(1-2) = Carpooling Behavioral Belief RecNB(1-2) = Recycling Normative Belief EnNB(1-2) = Energy Conservation Normative Belief CarNB(1-2) = Carpooling Normative Belief RecEM1 = Recycling Economic Motivation EnEM1 = Energy Conservation Economic Motivation CarEM1 = Carpooling Economic Motivation RecAP1 = Recycling Awareness Program EnAP1 = Energy Conservation Awareness Program CarAP1 = Carpooling Awareness Program RecOC(1-3) = Recycling Organizational CommitmentEnOC(1-3) = Energy Conservation Organizational Commitment CarOC(1-3) = Carpooling Organizational Commitment RecRFC(1-2) = Recycling Resource-Facilitating Condition EnRFC(1-2) = Energy Conservation Resource-Facilitating Condition CarRFC(1-2) = Carpooling Resource-Facilitating Condition data mark; infile 'pilot.dat' missover; input pay 41 org 42 time 43 age 44 sex 45 income 46 base 47 onbase 48 offbase 49 offtype 50 educ 51 envtng 52 RecBeh1 53 EnBeh1 54 CarBeh1 55 RecInt1 56 EnInt1 57 CarInt1 58 RecAtt1 59 RecAtt2 60 EnAtt1 61 EnAtt2 62 CarAtt1 63 CarAtt2 64 RecSN1 65 RecSN2 66 EnSN1 67 EnSN2 68 CarSN1 69 CarSN2 70 RecBC1 71 RecBC2 72 EnBC1 73 EnBC2 74 CarBC1 75 CarBC2 76 RecBB1 77 RecBB2 78 EnBB1 79 EnBB2 80 CarBB1 81 CarBB2 82 RecNB1 83 RecNB2 84 EnNB1 85 EnNB2 86 CarNB1 87 CarNB2 88 RecEM1 89 EnEM1 90 CarEM1 91 RecAP1 92 EnAP1 93 CarAP1 94 RecOC1 95 RecOC2 96 RecOC3 97 EnOC1 98 EnOC2 99 EnOC3 100 CarOC1 101 CarOC2 102 CarOC3 103 RecRFC1 104 RecRFC2 105 EnRFC1 106 EnRFC2 107

*/

CarRFC1 108 CarRFC2 109;

E-4

```
/* Reformatting Data (SUMMATION) for Each Block in Model */
data sum;
  set mark;
/* SUMMATION */
RecAtt=RecAtt1+RecATT2;
EnAtt=EnAtt1+EnAtt2;
CarAtt=CarAtt1+CarAtt2;
RecSN=RecSn1+RecSN2;
EnSN=EnSN1+EnSN2;
CarSN=CarSN1+CarSN2;
RecBC=RecBC1+RecBC2;
EnBC=EnBC1+EnBC2;
CarBC=CarBC1+CarBC2;
RecBB=RecBB1+RecBB2;
EnBB=EnBB1+EnBB2;
CarBB=CarBB1+CarBB2;
RecNB=RecNB1+RecNB2;
EnNB=EnNB1+EnNB2;
CarNB=CarNB1+CarNB2;
RecOC=RecOC1+RecOC2+RecOC3;
EnOC=EnOC1+EnOC2+EnOC3;
CarOC=CarOC1+CarOC2+CarOC3;
RecRFC=RecRFC1+RecRFC2;
EnRFC=EnRFC1+EnRFC2;
CarRFC=CarRFC1+CarRFC2;
/* Generating a Matrix of Pearson Product Moment
    Correlations Among the Questionnaire Items */
/* CORRELATIONS (Reliability) Among Individual
    Questions (Components of the OTBP) */
proc corr data=mark alpha nomiss;
  var RecAtt1 RecAtt2;
proc corr data=mark alpha nomiss;
  var EnAtt1 EnAtt2;
proc corr data=mark alpha nomiss;
  var CarAtt1 CarAtt2;
proc corr data=mark alpha nomiss;
 var RecSN1 RecSN2;
proc corr data=mark alpha nomiss;
  var EnSN1 EnSN2;
proc corr data=mark alpha nomiss;
 var CarSN1 CarSN2;
proc corr data=mark alpha nomiss;
 var RecBC1 RecBC2;
proc corr data=mark alpha nomiss;
 var EnBC1 EnBC2;
proc corr data=mark alpha nomiss;
  var CarBC1 CarBC2;
proc corr data=mark alpha nomiss;
  var RecBB1 RecBB2;
proc corr data=mark alpha nomiss;
 var EnBB1 EnBB2;
proc corr data=mark alpha nomiss;
  var CarBB1 CarBB2;
proc corr data=mark alpha nomiss;
```

```
var RecNB1 RecNB2;
proc corr data=mark alpha nomiss;
 var EnNB1 EnNB2;
proc corr data=mark alpha nomiss;
  var CarNB1 CarNB2;
proc corr data=mark alpha nomiss;
 var RecOC1 RecOC2 RecOC3;
proc corr data=mark alpha nomiss;
 var EnOC1 EnOC2 EnOC3;
proc corr data=mark alpha nomiss;
 var CarOC1 CarOC2 CarOC3;
proc corr data=mark alpha nomiss;
 var RecRFC1 RecRFC2;
proc corr data=mark alpha nomiss;
 var EnRFC1 EnRFC2;
proc corr data=mark alpha nomiss;
 var CarRFC1 CarRFC2;
/* CORRELATIONS (Reliability) Among Multi-Item
    Scale Variables (Summation Items) */
/* Recycling Components */
proc corr data=sum alpha nomiss;
 var RecAtt RecSn RecBB RecNB RecOC RecRFC;
/* Energy Conservation Components */
proc corr data=sum alpha nomiss;
 var EnAtt EnSN EnBC EnBB EnNB EnOC EnRFC;
/* Carpooling Components */
```

```
proc corr data=sum alpha nomiss;
  var CarAtt CarSN CarBC CarBB CarNB CarOC CarRFC;
run;
```

Third Iteration (Main Study) SAS[©] Code

Descriptive Statistics

```
/* THESIS Statistical Analysis - DESCRIPTIVE STATISTICS
   "Environmental Attitudes and Behaviors: An Examination
   of the Antecedents of Behavior Among Air Force Members
    at Work"
  Lt Mark S. Laudenslager
  GEE96D Advisor: Lt Col Steven Lofgren
*/
/* DEFINING Variables
       pay = Member Pay-Grade
       org = Assigned Organization
       time = Member Time in Service
       age = Age of Member
       sex = Gender of Member
       income = Total Family Income of Member
       base = Member Live On or Off Base
       onbase = Type of Onbase Housing Occupied
       offbase = Member Rent or Own Housing Offbase
       offtype = Type of Offbase Housing Occupied
       educ = Highest Education Level Reached by Member
       envtng = Member Environmental Training
       RecBeh1 = Recycling Behavior
```

```
EnBeh1 = Energy Conservation Behavior
       CarBeh1 = Carpooling Behavior
       RecInt1 = Recycling Intention
       EnInt1 = Energy Conservation Intention
       CarInt1 = Carpooling Intention
       RecAtt(1-2) = Recycling Attitude
       EnAtt(1-2) = Energy Conservation Attitude
       CarAtt(1-2) = Carpooling Attitude
       RecSN(1-2) = Recycling Subjective Norm
       EnSN(1-2) = Energy Conservation Subjective Norm
       CarSN(1-2) = Carpooling Subjective Norm
       RecBC(1-2) = Recycling Perceived Behavioral Control
       EnBC(1-2) = Energy Conservation Perceived Behavioral Control
       CarBC(1-2) = Carpooling Perceived Behavioral Control
       RecBB(1-2) = Recycling Behavioral Belief
       EnBB(1-2) = Energy Conservation Behavioral Belief
       CarBB(1-2) = Carpooling Behavioral Belief
       RecNB(1-2) = Recycling Normative Belief
       EnNB(1-2) = Energy Conservation Normative Belief
       CarNB(1-2) = Carpooling Normative Belief
       RecEM1 = Recycling Economic Motivation
       EnEM1 = Energy Conservation Economic Motivation
       CarEM1 = Carpooling Economic Motivation
       RecAP1 = Recycling Awareness Program
       EnAP1 = Energy Conservation Awareness Program
       CarAP1 = Carpooling Awareness Program
       RecOC(1-3) = Recycling Organizational Commitment
       EnOC(1-3) = Energy Conservation Organizational Commitment
       CarOC(1-3) = Carpooling Organizational Commitment
       RecRFC(1-2) = Recycling Resource-Facilitating Condition
       EnRFC(1-2) = Energy Conservation Resource-Facilitating Condition
       CarRFC(1-2) = Carpooling Resource-Facilitating Condition
*/
data mark;
 infile 'study.dat' missover;
input
 pay 41 org 42 time 43 age 44 sex 45 income 46 base 47
 onbase 48 offbase 49 offtype 50 educ 51 envtng 52 RecBeh1 53
 EnBeh1 54 CarBeh1 55 RecInt1 56 EnInt1 57 CarInt1 58
 RecAtt1 59 RecAtt2 60 EnAtt1 61 EnAtt2 62 CarAtt1 63
 CarAtt2 64 RecSN1 65 RecSN2 66 EnSN1 67 EnSN2 68
 CarSN1 69 CarSN2 70 RecBC1 71 RecBC2 72 EnBC1 73
EnBC2 74 CarBC1 75 CarBC2 76 RecBB1 77 RecBB2 78
 EnBB1 79 EnBB2 80 CarBB1 81 CarBB2 82 RecNB1 83
 RecNB2 84 EnNB1 85 EnNB2 86 CarNB1 87 CarNB2 88
 RecEM1 89 EnEM1 90 CarEM1 91 RecAP1 92 EnAP1 93
 CarAP1 94 RecOC1 95 RecOC2 96 RecOC3 97 EnOC1 98
 EnOC2 99 EnOC3 100 CarOC1 101 CarOC2 102 CarOC3 103
 RecRFC1 104 RecRFC2 105 EnRFC1 106 EnRFC2 107
 CarRFC1 108 CarRFC2 109;
/* Reformatting Data (SUMMATION) for Each Block in Model */
data sum:
 set mark;
/* SUMMATION */
RecAtt=RecAtt1+RecATT2;
```

```
EnAtt=EnAtt1+EnAtt2;
CarAtt=CarAtt1+CarAtt2;
RecSN=RecSn1+RecSN2;
EnSN=EnSN1+EnSN2;
CarSN=CarSN1+CarSN2;
RecBC=RecBC1+RecBC2;
EnBC=EnBC1+EnBC2;
CarBC=CarBC1+CarBC2;
RecBB=RecBB1+RecBB2;
EnBB=EnBB1+EnBB2;
CarBB=CarBB1+CarBB2;
RecNB=RecNB1+RecNB2;
EnNB=EnNB1+EnNB2;
CarNB=CarNB1+CarNB2;
RecOC=RecOC1+RecOC2+RecOC3;
EnOC=EnOC1+EnOC2+EnOC3;
CarOC=CarOC1+CarOC2+CarOC3;
RecRFC=RecRFC1+RecRFC2;
EnRFC=EnRFC1+EnRFC2;
CarRFC=CarRFC1+CarRFC2;
/* FREQUENCY TABLES */
proc freq;
 tables pay org time age sex income base onbase;
proc freq;
  tables offbase offtype educ envtng;
proc freq;
  tables RecBeh1 EnBeh1 CarBeh1 RecInt1 EnInt1 CarInt1;
proc freq;
  tables RecAtt1 RecAtt2 EnAtt1 EnAtt2 CarAtt1 CarAtt2;
proc freq;
  tables RecSN1 RecSN2 EnSN1 EnSN2 CarSN1 CarSN2;
proc freq;
 tables RecBC1 RecBC2 EnBC1 EnBC2 CarBC1 CarBC2;
proc freq;
  tables RecBB1 RecBB2 EnBB1 EnBB2 CarBB1 CarBB2;
proc freq;
 tables RecNB1 RecNB2 EnNB1 EnNB2 CarNB1 CarNB2;
proc freq;
  tables RecEM1 EnEM1 CarEM1 RecAP1 EnAP1 CarAP1;
proc freq;
 tables RecOC1 RecOC2 RecOC3 EnOC1 EnOC2 EnOC3 CarOC1 CarOC2 CarOC3;
proc freq;
 tables RecRFC1 RecRFC2 EnRFC1 EnRFC2 CarRFC1 CarRFC2;
```

run;

Reliability

```
/* THESIS Statistical Analysis - RELIABILITY
   "Environmental Attitudes and Behaviors: An Examination
   of the Antecedents of Behavior Among Air Force Members
   at Work"
   Lt Mark S. Laudenslager
   GEE96D Advisor: Lt Col Steven Lofgren
 */
/* DEFINING Variables
      pay = Member Pay-Grade
      org = Assigned Organization
```

```
time = Member Time in Service
        age = Age of Member
        sex = Gender of Member
        income = Total Family Income of Member
        base = Member Live On or Off Base
        onbase = Type of Onbase Housing Occupied
        offbase = Member Rent or Own Housing Offbase
        offtype = Type of Offbase Housing Occupied
        educ = Highest Education Level Reached by Member
        envtng = Member Environmental Training
        RecBeh1 = Recycling Behavior
        EnBeh1 = Energy Conservation Behavior
        CarBeh1 = Carpooling Behavior
        RecInt1 = Recycling Intention
        EnInt1 = Energy Conservation Intention
        CarInt1 = Carpooling Intention
        \operatorname{RecAtt}(1-2) = \operatorname{Recycling} \operatorname{Attitude}
        EnAtt(1-2) = Energy Conservation Attitude
        CarAtt(1-2) = Carpooling Attitude
        RecSN(1-2) = Recycling Subjective Norm
        EnSN(1-2) = Energy Conservation Subjective Norm
        CarSN(1-2) = Carpooling Subjective Norm
        RecBC(1-2) = Recycling Perceived Behavioral Control
        EnBC(1-2) = Energy Conservation Perceived Behavioral Control
        CarBC(1-2) = Carpooling Perceived Behavioral Control
        RecBB(1-2) = Recycling Behavioral Belief
        EnBB(1-2) = Energy Conservation Behavioral Belief
        CarBB(1-2) = Carpooling Behavioral Belief
        RecNB(1-2) = Recycling Normative Belief
        EnNB(1-2) = Energy Conservation Normative Belief
CarNB(1-2) = Carpooling Normative Belief
        RecEM1 = Recycling Economic Motivation
        EnEM1 = Energy Conservation Economic Motivation
        CarEM1 = Carpooling Economic Motivation
        RecAP1 = Recycling Awareness Program
        EnAP1 = Energy Conservation Awareness Program
        CarAP1 = Carpooling Awareness Program
        RecOC(1-3) = Recycling Organizational Commitment
        EnOC(1-3) = Energy Conservation Organizational Commitment
        CarOC(1-3) = Carpooling Organizational Commitment
        RecRFC(1-2) = Recycling Resource-Facilitating Condition
        EnRFC(1-2) = Energy Conservation Resource-Facilitating Condition
        CarRFC(1-2) = Carpooling Resource-Facilitating Condition
data mark;
  infile 'study.dat' missover;
input
  pay 41 org 42 time 43 age 44 sex 45 income 46 base 47
  onbase 48 offbase 49 offtype 50 educ 51 envtng 52 RecBeh1 53
  EnBehl 54 CarBehl 55 RecIntl 56 EnIntl 57 CarIntl 58
  RecAtt1 59 RecAtt2 60 EnAtt1 61 EnAtt2 62 CarAtt1 63
 CarAtt2 64 RecSN1 65 RecSN2 66 EnSN1 67 EnSN2 68
CarSN1 69 CarSN2 70 RecBC1 71 RecBC2 72 EnBC1 73
  EnBC2 74 CarBC1 75 CarBC2 76 RecBB1 77 RecBB2 78
  EnBB1 79 EnBB2 80 CarBB1 81 CarBB2 82 RecNB1 83
  RecNB2 84 EnNB1 85 EnNB2 86 CarNB1 87 CarNB2 88
  RecEM1 89 EnEM1 90 CarEM1 91 RecAP1 92 EnAP1 93
  CarAP1 94 RecOC1 95 RecOC2 96 RecOC3 97 EnOC1 98
```

EnOC2 99 EnOC3 100 CarOC1 101 CarOC2 102 CarOC3 103

*/

RecRFC1 104 RecRFC2 105 EnRFC1 106 EnRFC2 107 CarRFC1 108 CarRFC2 109; /* Reformatting Data (SUMMATION) for Each Block in Model */ data sum; set mark; /* SUMMATION */ RecAtt=RecAtt1+RecATT2; EnAtt=EnAtt1+EnAtt2; CarAtt=CarAtt1+CarAtt2; RecSN=RecSn1+RecSN2; EnSN=EnSN1+EnSN2; CarSN=CarSN1+CarSN2; RecBC=RecBC1+RecBC2; EnBC=EnBC1+EnBC2; CarBC=CarBC1+CarBC2; RecBB=RecBB1+RecBB2; EnBB=EnBB1+EnBB2; CarBB=CarBB1+CarBB2; RecNB=RecNB1+RecNB2; EnNB=EnNB1+EnNB2; CarNB=CarNB1+CarNB2; RecOC=RecOC1+RecOC2+RecOC3; EnOC=EnOC1+EnOC2+EnOC3; CarOC=CarOC1+CarOC2+CarOC3; RecRFC=RecRFC1+RecRFC2; EnRFC=EnRFC1+EnRFC2; CarRFC=CarRFC1+CarRFC2; /* Generating a Matrix of Pearson Product Moment Correlations Among the Questionnaire Items */ /* CORRELATIONS (Reliability) Among Individual Questions (Components of the OTBP) */ proc corr data=mark alpha nomiss; var RecAtt1 RecAtt2; proc corr data=mark alpha nomiss; var EnAtt1 EnAtt2; proc corr data=mark alpha nomiss; var CarAtt1 CarAtt2; proc corr data=mark alpha nomiss; var RecSN1 RecSN2; proc corr data=mark alpha nomiss; var EnSN1 EnSN2; proc corr data=mark alpha nomiss; var CarSN1 CarSN2; proc corr data=mark alpha nomiss; var RecBC1 RecBC2; proc corr data=mark alpha nomiss; var EnBC1 EnBC2; proc corr data=mark alpha nomiss; var CarBC1 CarBC2; proc corr data=mark alpha nomiss; var RecBB1 RecBB2; proc corr data=mark alpha nomiss; var EnBB1 EnBB2; proc corr data=mark alpha nomiss;

E-10

var CarBB1 CarBB2;

proc corr data=mark alpha nomiss; var RecNB1 RecNB2; proc corr data=mark alpha nomiss; var EnNB1 EnNB2; proc corr data=mark alpha nomiss; var CarNB1 CarNB2; proc corr data=mark alpha nomiss; var RecOC1 RecOC2 RecOC3; proc corr data=mark alpha nomiss; var EnOC1 EnOC2 EnOC3; proc corr data=mark alpha nomiss; var CarOC1 CarOC2 CarOC3; proc corr data=mark alpha nomiss; var RecRFC1 RecRFC2; proc corr data=mark alpha nomiss; var EnRFC1 EnRFC2; proc corr data=mark alpha nomiss; var CarRFC1 CarRFC2; /* CORRELATIONS (Reliability) Among Multi-Item Scale Variables (Summation Items) */ /* Recycling Components */

proc corr data=sum alpha nomiss; var RecAtt RecSn RecBB RecNB RecOC RecRFC;

/* Energy Conservation Components */

proc corr data=sum alpha nomiss; var EnAtt EnSN EnBC EnBB EnNB EnOC EnRFC;

/* Carpooling Components */

proc corr data=sum alpha nomiss; var CarAtt CarSN CarBC CarBB CarNB CarOC CarRFC;

run;

Factor Analysis

```
/* THESIS Statistical Analysis - FACTOR ANALYSIS
   "Environmental Attitudes and Behaviors: An Examination
   of the Antecedents of Behavior Among Air Force Members
   at Work"
  Lt Mark S. Laudenslager
  GEE96D Advisor: Lt Col Steven Lofgren
*/
/* DEFINING Variables
       pay = Member Pay-Grade
       org = Assigned Organization
       time = Member Time in Service
       age = Age of Member
       sex = Gender of Member
       income = Total Family Income of Member
       base = Member Live On or Off Base
       onbase = Type of Onbase Housing Occupied
       offbase = Member Rent or Own Housing Offbase
       offtype = Type of Offbase Housing Occupied
       educ = Highest Education Level Reached by Member
       envtng = Member Environmental Training
```

```
RecBeh1 = Recycling Behavior
```

EnBeh1 = Energy Conservation Behavior CarBeh1 = Carpooling Behavior RecInt1 = Recycling Intention EnInt1 = Energy Conservation Intention CarInt1 = Carpooling Intention RecAtt(1-2) = Recycling Attitude EnAtt(1-2) = Energy Conservation Attitude CarAtt(1-2) = Carpooling Attitude RecSN(1-2) = Recycling Subjective Norm EnSN(1-2) = Energy Conservation Subjective Norm CarSN(1-2) = Carpooling Subjective Norm RecBC(1-2) = Recycling Perceived Behavioral Control EnBC(1-2) = Energy Conservation Perceived Behavioral Control CarBC(1-2) = Carpooling Perceived Behavioral Control RecBB(1-2) = Recycling Behavioral Belief EnBB(1-2) = Energy Conservation Behavioral Belief CarBB(1-2) = Carpooling Behavioral Belief RecNB(1-2) = Recycling Normative Belief EnNB(1-2) = Energy Conservation Normative Belief CarNB(1-2) = Carpooling Normative Belief RecEM1 = Recycling Economic Motivation EnEM1 = Energy Conservation Economic Motivation CarEM1 = Carpooling Economic Motivation RecAP1 = Recycling Awareness Program EnAP1 = Energy Conservation Awareness Program CarAP1 = Carpooling Awareness Program RecOC(1-3) = Recycling Organizational Commitment EnOC(1-3) = Energy Conservation Organizational Commitment CarOC(1-3) = Carpooling Organizational Commitment RecRFC(1-2) = Recycling Resource-Facilitating Condition EnRFC(1-2) = Energy Conservation Resource-Facilitating Condition CarRFC(1-2) = Carpooling Resource-Facilitating Condition */ data mark; infile 'study.dat' missover; input pay 41 org 42 time 43 age 44 sex 45 income 46 base 47 onbase 48 offbase 49 offtype 50 educ 51 envtng 52 RecBeh1 53 EnBeh1 54 CarBeh1 55 RecInt1 56 EnInt1 57 CarInt1 58 RecAtt1 59 RecAtt2 60 EnAtt1 61 EnAtt2 62 CarAtt1 63 CarAtt2 64 RecSN1 65 RecSN2 66 EnSN1 67 EnSN2 68 CarSN1 69 CarSN2 70 RecBC1 71 RecBC2 72 EnBC1 73 EnBC2 74 CarBC1 75 CarBC2 76 RecBB1 77 RecBB2 78 EnBB1 79 EnBB2 80 CarBB1 81 CarBB2 82 RecNB1 83 RecNB2 84 EnNB1 85 EnNB2 86 CarNB1 87 CarNB2 88 RecEM1 89 EnEM1 90 CarEM1 91 RecAP1 92 EnAP1 93 CarAP1 94 RecOC1 95 RecOC2 96 RecOC3 97 EnOC1 98 EnOC2 99 EnOC3 100 CarOC1 101 CarOC2 102 CarOC3 103 RecRFC1 104 RecRFC2 105 EnRFC1 106 EnRFC2 107 CarRFC1 108 CarRFC2 109; /* Reformatting Data (SUMMATION) for Each Block in Model */ data sum; set mark; /* SUMMATION */ RecAtt=RecAtt1+RecATT2;

```
EnAtt=EnAtt1+EnAtt2;
CarAtt=CarAtt1+CarAtt2;
```

RecSN=RecSn1+RecSN2; EnSN=EnSN1+EnSN2; CarSN=CarSN1+CarSN2;

RecBC=RecBC1+RecBC2; EnBC=EnBC1+EnBC2; CarBC=CarBC1+CarBC2;

RecBB=RecBB1+RecBB2; EnBB=EnBB1+EnBB2; CarBB=CarBB1+CarBB2;

RecNB=RecNB1+RecNB2; EnNB=EnNB1+EnNB2; CarNB=CarNB1+CarNB2;

RecOC=RecOC1+RecOC2+RecOC3; EnOC=EnOC1+EnOC2+EnOC3; CarOC=CarOC1+CarOC2+CarOC3;

RecRFC=RecRFC1+RecRFC2; EnRFC=EnRFC1+EnRFC2; CarRFC=CarRFC1+CarRFC2;

/* FACTOR ANALYSIS */

```
proc factor rotate=varimax scree flag=.40 nfact=11;
var RecBehl EnBehl CarBehl RecIntl EnIntl CarIntl
RecAtt1 RecAtt2 EnAtt1 EnAtt2 CarAtt1 CarAtt2
RecSN1 RecSN2 EnSN1 EnSN2 CarSN1 CarSN2
RecBC1 RecBC2 EnBC1 EnBC2 CarBC1 CarBC2
RecBB1 RecBB2 EnBB1 EnBB2 CarBB1 CarBB2
RecNB1 RecNB2 EnNB1 EnNB2 CarNB1 CarNB2
RecEM1 EnEM1 CarEM1 RecAP1 EnAP1 CarAP1
RecOC1 RecOC2 RecOC3 EnOC1 EnOC2 EnOC3 CarOC1 CarOC2 CarOC3
RecRFC1 RecRFC2 EnRFC1 EnRFC2 CarRFC1 CarRFC2;
```

```
run;
```

Regression (Hierarchical)

```
/* THESIS Statistical Analysis - REGRESSION
   "Environmental Attitudes and Behaviors: An Examination
   of the Antecedents of Behavior Among Air Force Members
   at Work"
   Lt Mark S. Laudenslager
  GEE96D Advisor: Lt Col Steven Lofgren
*/
/* DEFINING Variables
       pay = Member Pay-Grade
       org = Assigned Organization
       time = Member Time in Service
       age = Age of Member
       sex = Gender of Member
       income = Total Family Income of Member
       base = Member Live On or Off Base
       onbase = Type of Onbase Housing Occupied
       offbase = Member Rent or Own Housing Offbase
       offtype = Type of Offbase Housing Occupied
       educ = Highest Education Level Reached by Member
       envtng = Member Environmental Training
       RecBeh1 = Recycling Behavior
       EnBeh1 = Energy Conservation Behavior
```

CarBeh1 = Carpooling Behavior RecInt1 = Recycling Intention EnInt1 = Energy Conservation Intention CarInt1 = Carpooling Intention RecAtt(1-2) = Recycling Attitude EnAtt(1-2) = Energy Conservation Attitude CarAtt(1-2) = Carpooling Attitude RecSN(1-2) = Recycling Subjective Norm EnSN(1-2) = Energy Conservation Subjective Norm CarSN(1-2) = Carpooling Subjective Norm RecBC(1-2) = Recycling Perceived Behavioral Control EnBC(1-2) = Energy Conservation Perceived Behavioral Control CarBC(1-2) = Carpooling Perceived Behavioral Control RecBB(1-2) = Recycling Behavioral Belief EnBB(1-2) = Energy Conservation Behavioral Belief CarBB(1-2) = Carpooling Behavioral Belief RecNB(1-2) = Recycling Normative Belief EnNB(1-2) = Energy Conservation Normative Belief CarNB(1-2) = Carpooling Normative Belief RecEM1 = Recycling Economic Motivation EnEM1 = Energy Conservation Economic Motivation CarEM1 = Carpooling Economic Motivation RecAP1 = Recycling Awareness Program EnAP1 = Energy Conservation Awareness Program CarAP1 = Carpooling Awareness Program RecOC(1-3) = Recycling Organizational Commitment EnOC(1-3) = Energy Conservation Organizational Commitment CarOC(1-3) = Carpooling Organizational Commitment RecRFC(1-2) = Recycling Resource-Facilitating Condition EnRFC(1-2) = Energy Conservation Resource-Facilitating Condition CarRFC(1-2) = Carpooling Resource-Facilitating Condition */ data mark; infile 'study.dat' missover; input pay 41 org 42 time 43 age 44 sex 45 income 46 base 47 onbase 48 offbase 49 offtype 50 educ 51 envtng 52 RecBehl 53 EnBehl 54 CarBehl 55 RecIntl 56 EnIntl 57 CarIntl 58 RecAtt1 59 RecAtt2 60 EnAtt1 61 EnAtt2 62 CarAtt1 63 CarAtt2 64 RecSN1 65 RecSN2 66 EnSN1 67 EnSN2 68 CarSN1 69 CarSN2 70 RecBC1 71 RecBC2 72 EnBC1 73 EnBC2 74 CarBC1 75 CarBC2 76 RecBB1 77 RecBB2 78 EnBB1 79 EnBB2 80 CarBB1 81 CarBB2 82 RecNB1 83 RecNB2 84 EnNB1 85 EnNB2 86 CarNB1 87 CarNB2 88 RecEM1 89 EnEM1 90 CarEM1 91 RecAP1 92 EnAP1 93 CarAP1 94 RecOC1 95 RecOC2 96 RecOC3 97 EnOC1 98 EnOC2 99 EnOC3 100 CarOC1 101 CarOC2 102 CarOC3 103 RecRFC1 104 RecRFC2 105 EnRFC1 106 EnRFC2 107 CarRFC1 108 CarRFC2 109; /* Reformatting Data (SUMMATION) for Each Block in Model */ data sum; set mark; /* SUMMATION */ RecAtt=RecAtt1+RecATT2; EnAtt=EnAtt1+EnAtt2;

```
CarAtt=CarAtt1+CarAtt2;
```

```
RecSN=RecSn1+RecSN2;
EnSN=EnSN1+EnSN2;
CarSN=CarSN1+CarSN2;
```

RecBC=RecBC1+RecBC2; EnBC=EnBC1+EnBC2; CarBC=CarBC1+CarBC2;

RecBB=RecBB1+RecBB2; EnBB=EnBB1+EnBB2; CarBB=CarBB1+CarBB2;

RecNB=RecNB1+RecNB2; EnNB=EnNB1+EnNB2; CarNB=CarNB1+CarNB2;

RecOC=RecOC1+RecOC2+RecOC3; EnOC=EnOC1+EnOC2+EnOC3; CarOC=CarOC1+CarOC2+CarOC3;

```
RecRFC=RecRFC1+RecRFC2;
EnRFC=EnRFC1+EnRFC2;
CarRFC=CarRFC1+CarRFC2;
```

```
/* HIERARCHICAL REGRESSION (Theory Building) */
```

```
/* Predicting Behavior (dep variable) from the Predictor
Variable (indep variable) - Intention */
```

```
proc reg;
  model RecBeh1=RecInt1 / selection=forward stb;
proc reg;
  model EnBeh1=EnInt1 / selection=forward stb;
proc reg;
  model CarBeh1=CarInt1 / selection=forward stb;
```

/* Predicting Intention (dep variable - criterion) from the Predictor Variables (indep variables) - Attitude, Subjective Norm, and Behavioral Control */

proc reg;

```
model RecInt1=RecAtt RecSN RecBC / selection=forward stb;
proc reg;
model EnInt1=EnAtt EnSn EnBC / selection=forward stb;
```

- model CarIntl=CarAtt CarSN CarBC / selection=forward stb;
- /* Predicting Attitude (dep variable) from the Predictor
- Variables (indep variables) Behavioral Beliefs and Economic Motivation */

```
proc reg;
model RecAtt=RecBB RecEM1 / selection=forward stb;
proc reg;
model EnAtt=EnBB EnEM1 / selection=forward stb;
proc reg;
model CarAtt=CarBB CarEM1 / selection=forward stb;
```

/* Predicting Subjective Norm (dep variable) from the Predictor Variable (indep variable) - Normative Belief */

```
proc reg;
model RecSN=RecNB / selection=forward stb;
proc reg;
model EnSN=EnNB / selection=forward stb;
proc reg;
```

```
/* Predicting Perceived Behavioral Control (dep variable)
   from the Predictor Variable (indep variable) -
   Resource Facilitating Conditions */
proc reg;
 model RecBC=RecRFC / selection=forward stb;
proc reg;
 model EnBC=EnRFC / selection=forward stb;
proc reg;
 model CarBC=CarRFC / selection=forward stb;
/* Predicting Behavioral Beliefs (dep variable) from the
   Predictor Variable (indep variable) - Awareness Programs */
proc reg;
 model RecBB=RecAP1 / selection=forward stb;
proc reg;
 model EnBB=EnAP1 / selection=forward stb;
proc reg;
 model CarBB=CarAP1 / selection=forward stb;
/* Predicting Normative Beliefs (dep variable) from the
   Predictor Variable (indep variable) - Organizational
   Commitment */
proc reg;
 model RecNB=RecOC / selection=forward stb;
proc rea;
 model EnNB=EnOC / selection=forward stb;
proc reg;
 model CarNB=CarOC / selection=forward stb;
```

model CarSN=CarNB / selection=forward stb;

```
run;
```

Regression (Step-Wise #1)

```
/* THESIS Statistical Analysis - REGRESSION
   "Environmental Attitudes and Behaviors: An Examination
   of the Antecedents of Behavior Among Air Force Members
   at Work"
   Lt Mark S. Laudenslager
  GEE96D Advisor: Lt Col Steven Lofgren
*/
/* DEFINING Variables
       pay = Member Pay-Grade
       org = Assigned Organization
       time = Member Time in Service
       age = Age of Member
       sex = Gender of Member
       income = Total Family Income of Member
       base = Member Live On or Off Base
       onbase = Type of Onbase Housing Occupied
       offbase = Member Rent or Own Housing Offbase
       offtype = Type of Offbase Housing Occupied
       educ = Highest Education Level Reached by Member
       envtng = Member Environmental Training
       RecBeh1 = Recycling Behavior
       EnBeh1 = Energy Conservation Behavior
       CarBeh1 = Carpooling Behavior
       RecInt1 = Recycling Intention
       EnInt1 = Energy Conservation Intention
```

CarInt1 = Carpooling Intention RecAtt(1-2) = Recycling Attitude EnAtt(1-2) = Energy Conservation Attitude CarAtt(1-2) = Carpooling Attitude RecSN(1-2) = Recycling Subjective Norm EnSN(1-2) = Energy Conservation Subjective Norm CarSN(1-2) = Carpooling Subjective NormRecBC(1-2) = Recycling Perceived Behavioral Control EnBC(1-2) = Energy Conservation Perceived Behavioral Control CarBC(1-2) = Carpooling Perceived Behavioral ControlRecBB(1-2) = Recycling Behavioral Belief EnBB(1-2) = Energy Conservation Behavioral Belief CarBB(1-2) = Carpooling Behavioral Belief RecNB(1-2) = Recycling Normative Belief EnNB(1-2) = Energy Conservation Normative Belief CarNB(1-2) = Carpooling Normative Belief RecEM1 = Recycling Economic Motivation EnEM1 = Energy Conservation Economic Motivation CarEM1 = Carpooling Economic Motivation RecAP1 = Recycling Awareness Program EnAP1 = Energy Conservation Awareness Program CarAP1 = Carpooling Awareness Program RecOC(1-3) = Recycling Organizational CommitmentEnOC(1-3) = Energy Conservation Organizational Commitment CarOC(1-3) = Carpooling Organizational Commitment RecRFC(1-2) = Recycling Resource-Facilitating Condition EnRFC(1-2) = Energy Conservation Resource-Facilitating Condition CarRFC(1-2) = Carpooling Resource-Facilitating Condition */ data mark; infile 'study.dat' missover; input pay 41 org 42 time 43 age 44 sex 45 income 46 base 47 onbase 48 offbase 49 offtype 50 educ 51 envtng 52 RecBeh1 53 EnBeh1 54 CarBeh1 55 RecInt1 56 EnInt1 57 CarInt1 58 RecAtt1 59 RecAtt2 60 EnAtt1 61 EnAtt2 62 CarAtt1 63 CarAtt2 64 RecSN1 65 RecSN2 66 EnSN1 67 EnSN2 68 CarSN1 69 CarSN2 70 RecBC1 71 RecBC2 72 EnBC1 73 EnBC2 74 CarBC1 75 CarBC2 76 RecBB1 77 RecBB2 78 EnBB1 79 EnBB2 80 CarBB1 81 CarBB2 82 RecNB1 83 RecNB2 84 EnNB1 85 EnNB2 86 CarNB1 87 CarNB2 88 RecEM1 89 EnEM1 90 CarEM1 91 RecAP1 92 EnAP1 93 CarAP1 94 RecOC1 95 RecOC2 96 RecOC3 97 EnOC1 98 EnOC2 99 EnOC3 100 CarOC1 101 CarOC2 102 CarOC3 103 RecRFC1 104 RecRFC2 105 EnRFC1 106 EnRFC2 107 CarRFC1 108 CarRFC2 109; /* Reformatting Data (SUMMATION) for Each Block in Model */ data sum; set mark; /* SUMMATION */ RecAtt=RecAtt1+RecATT2; EnAtt=EnAtt1+EnAtt2; CarAtt=CarAtt1+CarAtt2; RecSN=RecSn1+RecSN2; EnSN=EnSN1+EnSN2;

```
CarSN=CarSN1+CarSN2;
```

```
RecBC=RecBC1+RecBC2;
EnBC=EnBC1+EnBC2;
CarBC=CarBC1+CarBC2;
```

RecBB=RecBB1+RecBB2; EnBB=EnBB1+EnBB2; CarBB=CarBB1+CarBB2;

RecNB=RecNB1+RecNB2; EnNB=EnNB1+EnNB2; CarNB=CarNB1+CarNB2;

RecOC=RecOC1+RecOC2+RecOC3; EnOC=EnOC1+EnOC2+EnOC3; CarOC=CarOC1+CarOC2+CarOC3;

RecRFC=RecRFC1+RecRFC2; EnRFC=EnRFC1+EnRFC2; CarRFC=CarRFC1+CarRFC2;

```
/* STEP-WISE REGRESSION (Theory Building) */
```

/* Predicting Behavior (dep variable) from the Predictor Variable (indep variable) - Intention */

```
proc reg;
  model RecBeh1=RecInt1 / stb;
proc reg;
  model EnBeh1=EnInt1 / stb;
proc reg;
  model CarBeh1=CarInt1 / stb;
```

```
/* Predicting Intention (dep variable - criterion) from the
Predictor Variables (indep variables) - Attitude,
Subjective Norm, and Behavioral Control */
```

```
proc reg;
  model RecInt1=RecAtt RecSN RecBC / stb;
proc reg;
  model EnInt1=EnAtt EnSn EnBC / stb;
proc reg;
  model CarInt1=CarAtt CarSN CarBC / stb;
```

```
/* Predicting Attitude (dep variable) from the Predictor
```

```
/* Fredicting Attitude (dep variable) from the Fredictor
Variables (indep variables) ~ Behavioral Beliefs and
Economic Motivation */
```

```
proc reg;
  model RecAtt=RecBB RecEM1 / stb;
proc reg;
  model EnAtt=EnBB EnEM1 / stb;
proc reg;
  model CarAtt=CarBB CarEM1 / stb;
```

```
/* Predicting Subjective Norm (dep variable) from the Predictor
Variable (indep variable) - Normative Belief */
proc reg;
model RecSN=RecNB / stb;
proc reg;
model EnSN=EnNB / stb;
proc reg;
```

```
model CarSN=CarNB / stb;
```

/* Predicting Perceived Behavioral Control (dep variable)

```
from the Predictor Variable (indep variable) -
   Resource Facilitating Conditions */
proc reg;
  model RecBC=RecRFC / stb;
proc reg;
  model EnBC=EnRFC / stb;
proc reg;
  model CarBC=CarRFC / stb;
/* Predicting Behavioral Beliefs (dep variable) from the
   Predictor Variable (indep variable) - Awareness Programs */
proc reg;
 model RecBB=RecAP1 / stb;
proc reg;
  model EnBB=EnAP1 / stb;
proc reg;
  model CarBB=CarAP1 / stb;
/* Predicting Normative Beliefs (dep variable) from the
   Predictor Variable (indep variable) - Organizational
   Commitment */
proc reg;
 model RecNB=RecOC / stb;
proc reg;
 model EnNB=EnOC / stb;
proc reg;
 model CarNB=CarOC / stb;
```

```
run;
```

Regression (Step-Wise #2)

```
/* THESIS Statistical Analysis - REGRESSION
   "Environmental Attitudes and Behaviors: An Examination
    of the Antecedents of Behavior Among Air Force Members
    at Work"
   Lt Mark S. Laudenslager
  GEE96D Advisor: Lt Col Steven Lofgren
*/
/* DEFINING Variables
       pay = Member Pay-Grade
       org = Assigned Organization
       time = Member Time in Service
       age = Age of Member
       sex = Gender of Member
       income = Total Family Income of Member
       base = Member Live On or Off Base
       onbase = Type of Onbase Housing Occupied
       offbase = Member Rent or Own Housing Offbase
       offtype = Type of Offbase Housing Occupied
       educ = Highest Education Level Reached by Member
       envtng = Member Environmental Training
       RecBeh1 = Recycling Behavior
       EnBeh1 = Energy Conservation Behavior
       CarBeh1 = Carpooling Behavior
       RecInt1 = Recycling Intention
       EnInt1 = Energy Conservation Intention
       CarInt1 = Carpooling Intention
       RecAtt(1-2) = Recycling Attitude
       EnAtt(1-2) = Energy Conservation Attitude
```

CarAtt(1-2) = Carpooling Attitude RecSN(1-2) = Recycling Subjective Norm EnSN(1-2) = Energy Conservation Subjective Norm CarSN(1-2) = Carpooling Subjective Norm RecBC(1-2) = Recycling Perceived Behavioral Control EnBC(1-2) = Energy Conservation Perceived Behavioral Control CarBC(1-2) = Carpooling Perceived Behavioral Control RecBB(1-2) = Recycling Behavioral Belief EnBB(1-2) = Energy Conservation Behavioral Belief CarBB(1-2) = Carpooling Behavioral Belief RecNB(1-2) = Recycling Normative Belief EnNB(1-2) = Energy Conservation Normative Belief CarNB(1-2) = Carpooling Normative Belief RecEM1 = Recycling Economic Motivation EnEM1 = Energy Conservation Economic Motivation CarEM1 = Carpooling Economic Motivation RecAP1 = Recycling Awareness Program EnAP1 = Energy Conservation Awareness Program CarAP1 = Carpooling Awareness Program RecOC(1-3) = Recycling Organizational Commitment EnOC(1-3) = Energy Conservation Organizational Commitment CarOC(1-3) = Carpooling Organizational Commitment RecRFC(1-2) = Recycling Resource-Facilitating Condition EnRFC(1-2) = Energy Conservation Resource-Facilitating Condition CarRFC(1-2) = Carpooling Resource-Facilitating Condition */ data mark; infile 'study.dat' missover; input pay 41 org 42 time 43 age 44 sex 45 income 46 base 47 onbase 48 offbase 49 offtype 50 educ 51 envtng 52 RecBehl 53 EnBeh1 54 CarBeh1 55 RecInt1 56 EnInt1 57 CarInt1 58 RecAtt1 59 RecAtt2 60 EnAtt1 61 EnAtt2 62 CarAtt1 63 CarAtt2 64 RecSN1 65 RecSN2 66 EnSN1 67 EnSN2 68 CarSN1 69 CarSN2 70 RecBC1 71 RecBC2 72 EnBC1 73 EnBC2 74 CarBC1 75 CarBC2 76 RecBB1 77 RecBB2 78 EnBB1 79 EnBB2 80 CarBB1 81 CarBB2 82 RecNB1 83 RecNB2 84 EnNB1 85 EnNB2 86 CarNB1 87 CarNB2 88 RecEM1 89 EnEM1 90 CarEM1 91 RecAP1 92 EnAP1 93 CarAP1 94 RecOC1 95 RecOC2 96 RecOC3 97 EnOC1 98 EnOC2 99 EnOC3 100 CarOC1 101 CarOC2 102 CarOC3 103 RecRFC1 104 RecRFC2 105 EnRFC1 106 EnRFC2 107 CarRFC1 108 CarRFC2 109; /* Reformatting Data (SUMMATION) for Each Block in Model */ data sum; set mark; /* SUMMATION */ RecAtt=RecAtt1+RecATT2: EnAtt=EnAtt1+EnAtt2; CarAtt=CarAtt1+CarAtt2; RecSN=RecSn1+RecSN2; EnSN=EnSN1+EnSN2; CarSN=CarSN1+CarSN2; RecBC=RecBC1+RecBC2; EnBC=EnBC1+EnBC2;

```
CarBC=CarBC1+CarBC2;
```

RecBB=RecBB1+RecBB2; EnBB=EnBB1+EnBB2; CarBB=CarBB1+CarBB2;

RecNB=RecNB1+RecNB2; EnNB=EnNB1+EnNB2; CarNB=CarNB1+CarNB2;

RecOC=RecOC1+RecOC2+RecOC3; EnOC=EnOC1+EnOC2+EnOC3; CarOC=CarOC1+CarOC2+CarOC3;

RecRFC=RecRFC1+RecRFC2; EnRFC=EnRFC1+EnRFC2; CarRFC=CarRFC1+CarRFC2;

/* STEP-WISE REGRESSION (Theory Building) */

/* Predicting Behavior (dep variable) from Predictor Variables (indep variable) - Intention, Attitude, Subjective Norm, Perceived Behavioral Control, Behavioral Beliefs, Normative Beliefs, Economic Motivation, Awareness Programs, Organizational Commitment, and Resource Facilitating Conditions */

proc reg; model RecBeh1=RecInt1 RecAtt RecSN RecBC RecBB

RecNB RecEM1 RecAP1 RecOC RecRFC / stb; proc reg;

- model EnBeh1=EnInt1 EnAtt EnSN EnBC EnBB EnNB EnEM1 EnAP1 EnOC EnRFC / stb; proc reg;
- model CarBeh1=CarInt1 CarAtt CarSN CarBC CarBB CarNB CarEM1 CarAP1 CarOC CarRFC / stb;
- /* Predicting Intention (dep variable criterion) from the Predictor Variables (indep variables) - Attitude, Subjective Norm, Perceived Behavioral Control, Behavioral Beliefs, Normative Beliefs, Economic Motivation, Awareness Programs, Organizational Commitment, and Resource Facilitating Conditions */

```
run;
```

<u>T-Test</u>

```
/* THESIS Statistical Analysis - T TEST
   "Environmental Attitudes and Behaviors: An Examination
   of the Antecedents of Behavior Among Air Force Members
   at Work"
   Lt Mark S. Laudenslager
   GEE96D Advisor: Lt Col Steven Lofgren
   */
/* DEFINING Variables
        pay = Member Pay-Grade
```
```
org = Assigned Organization
        time = Member Time in Service
        age = Age of Member
        sex = Gender of Member
        income = Total Family Income of Member
       base = Member Live On or Off Base
       onbase = Type of Onbase Housing Occupied
        offbase = Member Rent or Own Housing Offbase
        offtype = Type of Offbase Housing Occupied
        educ = Highest Education Level Reached by Member
        envtng = Member Environmental Training
        RecBeh1 = Recycling Behavior
        EnBeh1 = Energy Conservation Behavior
       CarBeh1 = Carpooling Behavior
       RecInt1 = Recycling Intention
       EnInt1 = Energy Conservation Intention
       CarInt1 = Carpooling Intention
       \operatorname{RecAtt}(1-2) = \operatorname{Recycling} \operatorname{Attitude}
       EnAtt(1-2) = Energy Conservation Attitude
       CarAtt(1-2) = Carpooling Attitude
       RecSN(1-2) = Recycling Subjective Norm
       EnSN(1-2) = Energy Conservation Subjective Norm
        CarSN(1-2) = Carpooling Subjective Norm
       RecBC(1-2) = Recycling Perceived Behavioral Control
       EnBC(1-2) = Energy Conservation Perceived Behavioral Control
       CarBC(1-2) = Carpooling Perceived Behavioral Control
       RecBB(1-2) = Recycling Behavioral Belief
       EnBB(1-2) = Energy Conservation Behavioral Belief
       CarBB(1-2) = Carpooling Behavioral Belief
       RecNB(1-2) = Recycling Normative Belief
       EnNB(1-2) = Energy Conservation Normative Belief
       CarNB(1-2) = Carpooling Normative Belief
       RecEM1 = Recycling Economic Motivation
       EnEM1 = Energy Conservation Economic Motivation
       CarEM1 = Carpooling Economic Motivation
       RecAP1 = Recycling Awareness Program
       EnAP1 = Energy Conservation Awareness Program
       CarAP1 = Carpooling Awareness Program
       RecOC(1-3) = Recycling Organizational Commitment
       EnOC(1-3) = Energy Conservation Organizational Commitment
       CarOC(1-3) = Carpooling Organizational Commitment
       RecRFC(1-2) = Recycling Resource-Facilitating Condition
       EnRFC(1-2) = Energy Conservation Resource-Facilitating Condition
       CarRFC(1-2) = Carpooling Resource-Facilitating Condition
data mark;
  infile 'study.dat' missover;
input
  pay 41 org 42 time 43 age 44 sex 45 income 46 base 47
  onbase 48 offbase 49 offtype 50 educ 51 envtng 52 RecBeh1 53
  EnBeh1 54 CarBeh1 55 RecInt1 56 EnInt1 57 CarInt1 58
  RecAtt1 59 RecAtt2 60 EnAtt1 61 EnAtt2 62 CarAtt1 63
  CarAtt2 64 RecSN1 65 RecSN2 66 EnSN1 67 EnSN2 68
```

CarSN1 69 CarSN2 70 RecBC1 71 RecBC2 72 EnBC1 73 EnBC2 74 CarBC1 75 CarBC2 76 RecBB1 77 RecBB2 78 EnBB1 79 EnBB2 80 CarBB1 81 CarBB2 82 RecNB1 83 RecNB2 84 EnNB1 85 EnNB2 86 CarNB1 87 CarNB2 88 RecEM1 89 EnEM1 90 CarEM1 91 RecAP1 92 EnAP1 93

CarAP1 94 RecOC1 95 RecOC2 96 RecOC3 97 EnOC1 98

*/

```
EnOC2 99 EnOC3 100 CarOC1 101 CarOC2 102 CarOC3 103
 RecRFC1 104 RecRFC2 105 EnRFC1 106 EnRFC2 107
 CarRFC1 108 CarRFC2 109;
/* Reformatting Data (SUMMATION) for Each Block in Model */
data sum;
 set mark;
/* SUMMATION */
RecAtt=RecAtt1+RecATT2;
EnAtt=EnAtt1+EnAtt2;
CarAtt=CarAtt1+CarAtt2;
RecSN=RecSn1+RecSN2;
EnSN=EnSN1+EnSN2;
CarSN=CarSN1+CarSN2;
RecBC=RecBC1+RecBC2;
EnBC=EnBC1+EnBC2;
CarBC=CarBC1+CarBC2;
RecBB=RecBB1+RecBB2;
EnBB=EnBB1+EnBB2;
CarBB=CarBB1+CarBB2;
RecNB=RecNB1+RecNB2;
EnNB=EnNB1+EnNB2;
CarNB=CarNB1+CarNB2;
RecOC=RecOC1+RecOC2+RecOC3;
EnOC=EnOC1+EnOC2+EnOC3;
CarOC=CarOC1+CarOC2+CarOC3;
RecRFC=RecRFC1+RecRFC2;
EnRFC=EnRFC1+EnRFC2;
CarRFC=CarRFC1+CarRFC2;
/* T-TEST to Assess the Relationship Between Sex and Intention and Behavior */
proc ttest;
 class sex;
 var RecInt1 EnInt1 CarInt1 RecBeh1 EnBeh1 CarBeh1;
run:
Analysis of Variance (ANOVA)
```

```
/* THESIS Statistical Analysis - ANOVA
   "Environmental Attitudes and Behaviors: An Examination
   of the Antecedents of Behavior Among Air Force Members
   at Work"
   Lt Mark S. Laudenslager
  GEE96D Advisor: Lt Col Steven Lofgren
*/
/* DEFINING Variables
       pay = Member Pay-Grade
       org = Assigned Organization
       time = Member Time in Service
       age = Age of Member
       sex = Gender of Member
       income = Total Family Income of Member
       base = Member Live On or Off Base
       onbase = Type of Onbase Housing Occupied
        offbase = Member Rent or Own Housing Offbase
```

offtype = Type of Offbase Housing Occupied educ = Highest Education Level Reached by Member envtng = Member Environmental Training RecBeh1 = Recycling Behavior EnBeh1 = Energy Conservation Behavior CarBeh1 = Carpooling Behavior RecInt1 = Recycling Intention EnInt1 = Energy Conservation Intention CarInt1 = Carpooling Intention RecAtt(1-2) = Recycling Attitude EnAtt(1-2) = Energy Conservation Attitude CarAtt(1-2) = Carpooling Attitude RecSN(1-2) = Recycling Subjective Norm EnSN(1-2) = Energy Conservation Subjective Norm CarSN(1-2) = Carpooling Subjective Norm RecBC(1-2) = Recycling Perceived Behavioral Control EnBC(1-2) = Energy Conservation Perceived Behavioral Control CarBC(1-2) = Carpooling Perceived Behavioral Control RecBB(1-2) = Recycling Behavioral Belief EnBB(1-2) = Energy Conservation Behavioral Belief CarBB(1-2) = Carpooling Behavioral Belief RecNB(1-2) = Recycling Normative Belief EnNB(1-2) = Energy Conservation Normative Belief CarNB(1-2) = Carpooling Normative Belief RecEM1 = Recycling Economic Motivation EnEM1 = Energy Conservation Economic Motivation CarEM1 = Carpooling Economic Motivation RecAP1 = Recycling Awareness Program EnAP1 = Energy Conservation Awareness Program CarAP1 = Carpooling Awareness Program RecOC(1-3) = Recycling Organizational CommitmentEnOC(1-3) = Energy Conservation Organizational Commitment CarOC(1-3) = Carpooling Organizational Commitment RecRFC(1-2) = Recycling Resource-Facilitating Condition EnRFC(1-2) = Energy Conservation Resource-Facilitating Condition CarRFC(1-2) = Carpooling Resource-Facilitating Condition */ data mark: infile 'study.dat' missover; input pay 41 org 42 time 43 age 44 sex 45 income 46 base 47 onbase 48 offbase 49 offtype 50 educ 51 envtng 52 RecBeh1 53 EnBeh1 54 CarBeh1 55 RecInt1 56 EnInt1 57 CarInt1 58 RecAtt1 59 RecAtt2 60 EnAtt1 61 EnAtt2 62 CarAtt1 63 CarAtt2 64 RecSN1 65 RecSN2 66 EnSN1 67 EnSN2 68 CarSN1 69 CarSN2 70 RecBC1 71 RecBC2 72 EnBC1 73 EnBC2 74 CarBC1 75 CarBC2 76 RecBB1 77 RecBB2 78 EnBB1 79 EnBB2 80 CarBB1 81 CarBB2 82 RecNB1 83 RecNB2 84 EnNB1 85 EnNB2 86 CarNB1 87 CarNB2 88 RecEM1 89 EnEM1 90 CarEM1 91 RecAP1 92 EnAP1 93 CarAP1 94 RecOC1 95 RecOC2 96 RecOC3 97 EnOC1 98 EnOC2 99 EnOC3 100 CarOC1 101 CarOC2 102 CarOC3 103 RecRFC1 104 RecRFC2 105 EnRFC1 106 EnRFC2 107 CarRFC1 108 CarRFC2 109; /* An ANOVA Table and Tukey Multiple Comparison of

 An ANOVA Table and Tukey Multiple Comparison of the Means for EDUCATION and AGE (Independent Variable - Predictor) in Relation to the Environmental (Recycling, Energy Conservation, Carpooling) BEHAVIOR

```
and INTENTION (Dependent Variable - Criterion) is
   accomplished. A check of the overall F value...and
   the null that mu1=mu2=mu3=mu4 is done */
/* BEHAVIOR INVESTIGATION (Education) */
/*
   ANOVA for EDUCATION Relation to RECYCLING
    BEHAVIOR */
proc glm;
 class educ;
model RecBeh1=educ;
means educ / alpha=.05 tukey lines;
/* ANOVA for EDUCATION Relation to
     ENERGY CONSERVATION BEHAVIOR */
proc glm;
 class educ;
model EnBeh1=educ;
means educ / alpha=.05 tukey lines;
/*
   ANOVA for EDUCATION Relation to
    CARPOOLING BEHAVIOR */
proc glm;
 class educ;
model CarBeh1=educ;
 means educ / alpha=.05 tukey lines;
/* BEHAVIOR INVESTIGATION (Age) */
/*
   ANOVA for AGE Relation to RECYCLING
    BEHAVIOR */
proc glm;
 class age;
model RecBeh1=age;
means age / alpha=.05 tukey lines;
/*
   ANOVA for AGE Relation to ENERGY
    CONSERVATION BEHAVIOR */
proc glm;
class age;
model EnBeh1=age;
means age / alpha=.05 tukey lines;
/* ANOVA for AGE Relation to CARPOOLING
    BEHAVIOR */
proc glm;
class age;
model CarBeh1=age;
means age / alpha=.05 tukey lines;
/* INTENTION INVESTIGATION (Education) */
/*
   ANOVA for EDUCATION Relation to RECYCLING
    INTENTION */
proc glm;
class educ;
model RecInt1=educ;
means educ / alpha=.05 tukey lines;
/* ANOVA for EDUCATION Relation to
    ENERGY CONSERVATION INTENTION */
proc glm;
class educ;
model EnInt1=educ;
means educ / alpha=.05 tukey lines;
```

/* ANOVA for EDUCATION Relation to

```
CARPOOLING INTENTION */
proc glm;
 class educ;
 model CarInt1=educ;
 means educ / alpha=.05 tukey lines;
/* INTENTION INVESTIGATION (Age) */
/* ANOVA for AGE Relation to RECYCLING
    INTENTION */
proc glm;
class age;
model RecInt1=age;
 means age / alpha=.05 tukey lines;
/* ANOVA for AGE Relation to ENERGY
CONSERVATION INTENTION */
proc glm;
 class age;
 model EnInt1=age;
means age / alpha=.05 tukey lines;
/* ANOVA for AGE Relation to CARPOOLING
    INTENTION */
proc glm;
 class age;
model CarInt1=age;
means age / alpha=.05 tukey lines;
run;
```

APPENDIX F

STATISTICAL ANALYSIS SOFTWARE (SAS[©]) OUTPUT

This appendix contains information on the Statistical Analysis Software $(SAS^{\textcircled{o}})$ output obtained in the analysis of the data. During the first iteration (Pre-Pilot Test), there was no need for statistical analysis; rather comments and general feedback were the primary concern. The second iteration (Pilot Test), however, required some initial statistical analysis, resulting in output. The output analyzed the reliability and descriptive statistics of the data. The third iteration (Main Study), used even more statistical tools, producing output that included descriptive statistics (N, Mean, Standard Deviation), realiability, factor analysis, regression, t-test, and analysis of variance (ANOVA) calculations.

Second Iteration (Pilot Test) SAS[©] Output

Descriptive Statistics and Reliability

The SAS System	m			1 16:05 t	Wednesday,	July 3, 1996				RECATT1	RE	CATT2	
		Corre	lation Ana	lysis				RECATT1		1.00000 0.0	0.0	61615 .0008	
	2	'VAR' Vari	ables: RE	CATTI RECA	FT2		1	RECATT2	:	0.61615	1.0	00000 .0	
Variable RECATT1 RECATT2	N 26 26	Mean 4.6154 4.2692 Th	Std Dev 0.5711 0.8744	Sum 120.0000 111.0000	Minimum 3.0000 2.0000	Maximum 5.0000 5.0000		2	Ti Corre 'VAR' Vari Simp	ne SAS Syst elation Ana lables: EN ple Statist	em 16:05 t lysis ATT1 ENAT ics	Wednesday, T2	4 July 3, 1996
		Corre	lation Ana	16:05 ¥ lysis	Wednesday,	July 3, 1996	Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
Correlation Analysis Cronbach Coefficient Alpha for RAW variables : 0.721371 for STANDARDIZED variables: 0.762488							ENATT1 ENATT2	26 26	4.5385 4.5385 Th	0.5818 0.6469 Ne SAS System	118.0000 118.0000 em 16:05 P	3.0000 3.0000 Wednesday,	5.0000 5.0000 5 July 3, 1996
	Rav	Variable:	5		Std. Varia	bles			Corre Cronbach	lation Ana Coefficie	lysis nt Alpha		
Deleted Variable	Correlatic with Tota	on al	Alpha	Correla with I	ation Total	Alpha		for for	RAW varia STANDARDI	bles ZED variab	: 0.9442 les: 0.9470	206 206	
RECATT1 RECATT2	0.61614 0.61614	16 16	•	0.61 0.61	6146 6146			Ra	w Variable	5		Std. Varia	bles
		The	e SAS Syste	em 16:05 W	lednesday,	3 July 3, 1996	Deleted Variable	Correlati with Tot	on al	Alpha	Correla with 1	tion Total	Alpha
Pearson Cor	rrelation Co	Corre: efficients	lation Ana: 5 / Prob >	lysis R under H	Io: Rho=0 /	N = 26	ENATT1 ENATT2	0.8993 0.8993	46 46 46		0.89	9346 99346	

		The SAS System	,	6	RECSN1	0.891622		0.89	1622	•
		-	16:05 Wednesday,	, July 3, 1996	RECSN2	0.891622	The SAS System	0.89 1	1622	• 12
	С	orrelation Analys	is					16:05 W	ednesday,	July 3, 1996
Pearson Co	prrelation Coeffic	eients / Prob > R	under Ho: Rho=0	/ N = 26			Correlation Analy	vsis		
		ENATT1	ENATT2		Pearson (Correlation Coe	fficients / Prob >	R under H	o: Rho=0 /	N = 26
	ENATT1	1.00000 0.0	0.89935 0.0001				RECSN1	RE	CSN2	
	ENATT2	0.89935	1.00000			RECSN1	1.00000 0.0	0.8	9162 0001	
		The SAS System	16:05 Wednesday,	7 July 3, 1996,		RECSN2	0.89162 0.0001 The SAS System	1.0 0.	0000 0	13
	с	orrelation Analys	is					16:05 W	ednesday,	July 3, 1996
	2 'VAR'	Variables: CARAT	T1 CARATT2				Correlation Analy	vsis		
		Simple Statistics				2 'V.	AR' Variables: ENSN	II ENSN2		
Variable	N Me	an Std Dev	Sum Minimur	n Maximum			Simple Statistic	:5		
CARATT1	26 2.73	08 1.0414	71.0000 1.0000	5.0000	Variable	N	Mean Std Dev	Sum	Minimum	Maximum
CARATT2	26 2.65	38 1.1293 The SAS System	69.0000 1.0000	0 5.0000	ENSN1	25	3.4000 0.9129	85.0000	1.0000	5.0000
		ine bio ojocom	16:05 Wednesday,	, July 3, 1996	ENSN2	25	3.3200 0.9452 The SAS System	83.0000	1.0000	5.0000 14
	с	orrelation Analys	is					16:05 W	ednesday,	July 3, 1996
	Cron	bach Coefficient	Alpha				Correlation Analy	vsis		
	for RAW v	ariables ARDIZED variables	: 0.844880 : 0.846479			I	Cronbach Coefficient	Alpha		
	Raw Vari	ables	Std. Var	iables		for R for S	AW variables TANDARDIZED variable	: 0.9772 s: 0.9775	95 97	
Deleted	Correlation		Correlation			Raw	Variables		Std. Varia	bles
Variable	with Total	Alpha	with Total	Alpha	Deleted	Correlation		Correla	tion	
CARATT1 CARATT2	0.733823 0.733823		0.733823 0.733823	•	Variable	with Total	Alpha	with T	otal	Alpha
		The SAS System	16:05 Wednesday,	9 July 3, 1996,	ENSN1 ENSN2	0.956176 0.956176	The SAS System	0.95 0.95	6176 6176	15
	c	orrelation Analys	is				ine one opeca	16:05 W	ednesday,	July 3, 1996
Pearson Co	orrelation Coeffic	ients / Prob > R	under Ho: Rho=0	/ N = 26			Correlation Analy	sis		
		CARATT1	CARATT2		Pearson C	Correlation Coe	fficients / Prob >	R! under H	o: Rho=0 /	N = 25
	CARATT1	1.00000 0.0	0.73382 0.0001				ENSN1	EN	SN2	
	CARATT2	0.73382	1.00000			ENSN1	1.00000 0.0	0.95	618 001	
		The SAS System	16:05 Wednesday,	10 July 3, 1996		ENSN2	0.95618 0.0001	1.00	000	
	C	orrelation Analys	is	-			The SAS System	16:05 W	ednesday,	16 July 3, 1996
	2 'VAR'	Variables: RECSN	1 RECSN2				Correlation Analy	sis		
	:	Simple Statistics				2 'W	AR' Variables: CARS	N1 CARSN	2	
Variable	N Mei	an Std Dev	Sum Minimun	n Maximum			Simple Statistic	5		
RECSN1	26 3.42	31 0.8566	89.0000 2.0000	5.0000	Variable	N	Mean Std Dev	Sum	Minimum	Maximum
RECSN2	26 3.38	46 0.9829 The SAS System	88.0000 1.0000 16:05 Wednesday,	5.0000 11 July 3, 1996	CARSN1 CARSN2	26 26	2.0769 1.0168 2.0769 1.0168	54.0000 54.0000	1.0000	4.0000
	C	orrelation Analys	is	-			The SAS System	16:05 W	ednesday, i	17 July 3, 1996
	Cron	bach Coefficient .	Alpha				Correlation Analy	sis	_	
	for RAW variables : 0.938011					(Cronbach Coefficient	Alpha		
	for STAND	ARDIZED variables	: 0.942706			for Ri for Si	AW variables FANDARDIZED variable	: 1.0000 s: 1.0000	00 00	
	Raw Vari	ables	Std. Vari	lables						
Deleted Variable	Correlation with Total	Alpha	Correlation with Total	Alpha	Deleted	Raw V Correlation	Variables	Correla	Std. Varial tion	bles
					• • • • •					

Variable	with Total	Alpha	with Total	Alpha	Deleted	Correlation		Correlation	
CARSN1	1.000000		1.000000	•	Variable	with Total	Alpha	with Total	Alpha
CARSNZ	1.000000	The SAS System	16:05 Wednesday,	18, July 3, 1996	ENBC1 ENBC2	0.596101 0.596101		0.596101 0.596101	
		Correlation Analys:	ls				The SAS System	16:05 Wednesday,	24, July 3, 1996
Pearson Co	rrelation Coe	fficients / Prob > R	under Ho: Rho=0	/ N = 26			Correlation Analysi	is	
		CARSN1	CARSN2		Pearson C	Correlation Coef	ficients / Prob > R	under Ho: Rho=0	/ N = 26
	CARSN1	1.00000	1.00000				ENBC1	ENBC2	
		0.0	0.0001			ENBC1	1.00000	0.59610	
	CARSN2	1.00000 0.0001	0.0	10		ENDC2	0.59610	1 00000	
		The SAS System	16:05 Wednesday,	, July 3, 1996		ENDOZ	0.0013 The SIS System	0.0	25
		Correlation Analys:	is				The bab bystom	16:05 Wednesday,	, July 3, 1996
	2 'V	AR' Variables: RECBC	RECBC2				Correlation Analysi	is	
		Simple Statistics				2 'V#	R' Variables: CARBC1	L CARBC2	
Variable	N	Mean Std Dev	Sum Minimu	m Maximum			Simple Statistics		
RECBC1	26	4.0000 1.0583 10	1.000	0 5.0000	Variable	N	Mean Std Dev	Sum Minimur	n Maximum
RECBC2	26 .	3.8462 1.1897 16 The SAS System	16:05 Wednesday,	0 5.0000 20 , July 3, 1996	CARBC1 CARBC2	26 4 26 4	1.3462 1.1981 11 1.0000 1.3266 10 The SAS System	L3.0000 1.0000 04.0000 1.0000	0 5.0000 0 5.0000 26
		Correlation Analys:	ls					16:05 Wednesday,	, July 3, 1996
	(Cronbach Coefficient A	lpha				Correlation Analysi	15	
	for Ri for S'	AW variables FANDARDIZED variables	: 0.612795 : 0.615703		r.	(ronbach Coefficient A	11pna	
	Raw '	Variables	Std. Var:	iables		for RA for SI	W Variables ANDARDIZED variables:	: 0.733235	
Deleted	Correlation		Correlation			Raw N	Variables	Std. Vari	iables
Variable	with Total	Alpha	with Total	Alpha	Deleted	Correlation	*]] _	Correlation	Dimbo
RECBC1 RECBC2	0.444776	The CAS Sustem	0.444776		CAPBC1	0 578825	Атрпа	0 578825	Aipila
		ine SAS System	16:05 Wednesday,	, July 3, 1996	CARBC2	0.578825	The SAS System	0.578825	. 27
		Correlation Analys:	s				110 010 0/000	16:05 Wednesday,	, July 3, 1996
Pearson Co	rrelation Coe	fficients / Prob > R	under Ho: Rho=0	/ N = 26			Correlation Analysi	ls	
		RECBC1	RECBC2		Pearson C	Correlation Coef	ficients / Prob > R	under Ho: Rho=0	/ N = 26
	RECBC1	1.00000 0.0	0.44478 0.0228				CARBC1	CARBC2	
	RECBC2	0.44478	1.00000			CARBC1	1.00000 0.0	0.57883 0.0019	
		The SAS System	16:05 Wednesday	22 July 3, 1996		CARBC2	0.57883	1.00000	
		Correlation Analysi	.5				The SAS System	16:05 Wednesday,	28 July 3, 1996
	2 'V	AR' Variables: ENBC1	ENBC2				Correlation Analysi	is	
						2 'VA	R' Variables: RECBB1	L RECBB2	
		Simple Statistics							
Variable	N	Mean Std Dev	Sum Minimum	n Maximum			Simple Statistics		
ENBC1 ENBC2	26 3 26 3	3.5769 1.2058 9 3.5000 1.0296 9	93.0000 1.0000 91.0000 2.0000	5.0000 5.0000	Variable	N	Mean Std Dev	Sum Minimum	n Maximum
		The SAS System	16:05 Wednesday,	23 July 3, 1996	RECBB1 RECBB2	26 4 26 4	.2308 1.0318 11 .5385 0.7606 11 The SAS System	.0.0000 1.0000 .8.0000 3.0000	5.0000 5.0000 29
		Correlation Analysi	S				-	16:05 Wednesday,	July 3, 1996
	C	Cronbach Coefficient A	lpha				Correlation Analysi	.5	
	for RA for S	AW variables : FANDARDIZED variables:	0.741140 0.746946			C	ronbach Coefficient A	lpha	
						for RA for SI	W variables : ANDARDIZED variables:	0.766744	
	Raw V	Jariables	Std. Vari	lables					

	Raw Va	riables	Std. Var:	iables		for	STANDARDIZED variabl	es: 0.884401	
Deleted Variable	Correlation with Total	Alpha	Correlation with Total	Alpha		Raw	Variables	Std. Va	ariables
RECBB1	0.650865		0.650865	•	Deleted Variable	Correlatio with Tota	n 1 Alpha	Correlation with Total	Alpha
RECBBZ	0.050805	The SAS System	16:05 Wednesday,	30, July 3, 1996	CARBB1 CARBB2	0.79276 0.79276		0.792760 0.792760	•
		Correlation Analys	is				The SAS Syste	m 16:05 Wednesd	ay, July 3, 1996
Pearson C	Correlation Coeff	icients / Prob > R	under Ho: Rho=0	/ N = 26			Correlation Anal	ysis	
		RECBB1	RECBB2		Pearson C	Correlation Co	efficients / Prob >	R under Ho: Rho	=0 / N = 26
	RECBB1	1.00000	0.65087				CARBB1	CARBB2	
	RECBB2	0.65087	1.00000			CARBB1	1.00000 0.0	0.79276 0.0001	
		The SAS System	0.0 16:05 Wednesday,	31 , July 3, 1996		CARBB2	0.79276 0.0001 The SAS Syste	1.00000 0.0	31
		Correlation Analys	is				The SAS Syste	16:05 Wednesd	ay, July 3, 1996
	2 'VAR	Variables: ENBB1	ENBB2				Correlation Anal	ysis	
		Simple Statistics				2 '	VAR' Variables: REC	NB1 RECNB2	
Variable	N I	fean Std Dev	Sum Minimum	n Maximum			Simple Statisti	cs	
ENBB1	26 4.	3462 0.8458 1	13.0000 2.0000	5.0000	Variable	N	Mean Std Dev	Sum Minir	num Maximum
ENBB2	26 4.	5000 0.7071 1 The SAS System	17.0000 3.0000 16:05 Wednesday,	0 5.0000 32 , July 3, 1996	RECNB1 RECNB2	26 26	3.4615 0.9479 2.7692 1.0318	90.0000 1.00 72.0000 1.00	000 5.0000 000 5.0000
		Correlation Analys	is				The SAS Syste	m 16:05 Wednesda	38 ay, July 3, 1996
	Cre	onbach Coefficient	Alpha				Correlation Anal	ysis	
	for RAW	variables	: 0.861671				Cronbach Coefficien	t Alpha	
	for STAL	NDARDIZED Variables	: 0.869505			for for	RAW variables STANDARDIZED variabl	: 0.751468 es: 0.753155	
	Raw Va	riables	Std. Vari	lables		D	fr	653 T	
Variable	with Total	Alpha	with Total	Alpha	Deleted	Correlatio	variables	Correlation	irlables
ENBB1 ENBB2	0.769136 0.769136	•	0.769136 0.769136		Variable	with Tota	l Alpha	with Total	Alpha
		The SAS System	16:05 Wednesday,	33 July 3, 1996	RECNB1 RECNB2	0.60404 0.60404	8 .	0.604048 0.604048	:
		Correlation Analys	is				The SAS System	m 16:05 Wednesda	39 ay, July 3, 1996
Pearson C	orrelation Coeffi	icients / Prob > R	under Ho: Rho=0	/ N = 26			Correlation Anal	ysis	
		ENBB1	ENBB2		Pearson C	orrelation Co	efficients / Prob >	R under Ho: Rho=	=0 / N = 26
	ENBB1	1.00000	0.76914 0.0001				RECNB1	RECNB2	
	ENBB2	0.76914	1.00000			RECNB1	1.00000 0.0	0.60405 0.0011	
		The SAS System	16:05 Wednesday,	34 July 3, 1996		RECNB2	0.60405 0.0011	1.00000 0.0	
		Correlation Analys	is				The SAS System	m 16:05 Wednesda	40 y, July 3, 1996
	2 'VAR'	Variables: CARBB	CARBB2				Correlation Anal	ysis	
		Simple Statistics				2 ''	VAR' Variables: ENNI	B1 ENNB2	
Variable	N M	lean Std Dev	Sum Minimum	a Maximum			Simple Statistic	cs	
CARBB1	26 3.8		01.0000 1.0000	5.0000	Variable	N	Mean Std Dev	Sum Minim	um Maximum
5. 6. 6. 62	20 3.5	The SAS System	16:05 Wednesday,	35 July 3, 1996	ENNB1 ENNB2	26 26	3.2308 0.9923 2.8077 0.9389	84.0000 1.00 73.0000 1.00	100 5.0000 100 5.0000
		Correlation Analys:	İs				ine SAS System	16:05 Wednesda	41 y, July 3, 1996
	Cro	onbach Coefficient A	Alpha				Correlation Anal	ysis	
	for RAW	variables	0.884312				Cronbach Coefficient	t Alpha	

.

	_				1		Corre	elation Anal	ysis		
	for F for S	RAW variables STANDARDIZED variable:	: 0.721139 5: 0.721843				Cronbach	n Coefficien	t Alpha		
	Raw	Variables	Std. Var	riables		f f	or RAW varia or STANDARD	ables [ZED variabl	: 0.553 es: 0.564	580 316	
Deleted Variable	Correlation with Tota	n 1 Alpha	Correlation with Total	Alpha			Raw Variable	25		Std. Varia	bles
ENNB1 ENNB2	0.564753	3. 3.	0.564753 0.564753	-	Deleted Variable	Correla with T	tion otal	Alpha	Correl with	ation Total	Alpha
		The SAS System	16:05 Wednesday	42 7, July 3, 1996	RECOC1 RECOC2 RECOC2	0.13	5106 2058 8796	0.793628 0.156522 0.270814	0.1	 32879 55807 91817	0.796898 0.157796 0.270844
D		Correlation Analys	sis	1 / N - 26	RECOCI	0.40	T	ne SAS System	m 16-05	Wodnosdau	48 .Tuly 3 1996
Pearson C	orrelation Coe	Filicients / Prob > (ENNES	7 N - 20			Corr	lation Anal	10.05	weattesday,	oury 5, 1990
	ENND 1	1 00000	0 56475		Pearson	Correlation	Coefficient	s / Prob >	IRi under	Ho: Rho=0 /	N = 26
	ENNOL	0.0	0.0026		1 curson (Sorreiueron	RECOC1		RECOC2	REC	:0C3
	ENNB2	0.56475 0.0026 The SAS System	1.00000	43	REC	0001	1.00000	0	.15663 0.4448	0.08	566 774
		Correlation Analy:	16:05 Wednesday	, July 3, 1996	REC	0002	0.15663 0.4448	1	.00000 0.0	0.66	1237 1002
	2 '1	VAR' Variables: CARN	31 CARNB2		REG	2003	0.08566 0.6774	0 SAS System	.66237 0.0002	1.00 0.0	1000 1 49
		Simple Statistic:	3					ie bilo bysee.	16:05	Wednesday,	July 3, 1996
Variable	N	Mean Std Dev	Sum Minimu	m Maximum			Corre	elation Anal	ysis		
CARNB1 CARNB2	26 26	2.1923 0.7494 2.1538 0.8806 The SAS System	57.0000 1.000 56.0000 1.000	00 3.0000 00 3.0000 44		3 'V	AR' Variable	es: ENOC1	ENOC2	ENOC3	
			16:05 Wednesday	7, July 3, 1996			Símp	le Statisti	c5 -		
		Correlation Analys	sis		Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
	for H for S	Cronbach Coefficient RAW variables STANDARDIZED variable:	Alpha : 0.543168 5: 0.548311		ENOC1 ENOC2 ENOC3	26 26 26	3.0769 3.0769 3.1923 Th	0.8449 0.7961 0.8953 Me SAS System	80.0000 80.0000 83.0000	2.0000 2.0000 2.0000	5.0000 5.0000 5.0000 50
								_	16:05	Nednesday,	July 3, 1996
	Raw	Variables	Std. Var	iables			Corre	lation Anal	ysis		
Deleted Variable	Correlatior with Total	n L Alpha	Correlation with Total	Alpha		_	Cronbach	Coefficien	t Alpha		
CARNB1 CARNB2	0.377706	5 . 5 . The SAS System	0.377706 0.377706			f	or RAW Varia or STANDARDI	bles ZED variable	: 0.906 es: 0.907	505	
		The one bystom	16:05 Wednesday	, July 3, 1996			Raw Variable	s		Std. Varia	bles
Pearson C	orrelation Coe	Correlation Analys	sis 1 under Ho: Rho=0	/ N = 26	Deleted Variable	Correla with T	tion otal	Alpha	Correl with	ation Potal	Alpha
		CARNB1	CARNB2		ENOC1 ENOC2 ENOC3	0.77 0.81 0.86	6249 1413 2006	0.897815 0.871060 0.825737	0.7 0.8 0.8	74278 09677 52833	0.901215 0.871885 0.826593
	CARNBI	0.0	0.0571				Tr.	le SAS System	n 16:05 N	Vednesday,	July 3, 1996
	CARNB2	0.37771	1.00000				Corre	lation Analy	ysis		
		The SAS System	16:05 Wednesday	46 July 3, 1996	Pearson (Correlation	Coefficient	s / Prob >	R under	Ho: Rho=0 /	N = 26
		Correlation Analys	sis	,, .,			ENOC1	1	ENOC2	ENO	С3
	3 'VAR'	Variables: RECOC1	RECOC2 RECOC3		ENC	001	1.00000 0.0	0.1	70444 .0001	0.772	87 01
		Simple Statistics	5		ENC	0C2	0.70444 0.0001	1.0	00000 .0	0.8203	19 01
Variable	N	Mean Std Dev	Sum Minimu	m Maximum	ENC	0C3	0.77287 0.0001	0.8	32019 .0001	1.0000	00
RECOC1 RECOC2 RECOC3	26 26 26	3.4615 0.8593 3.3462 0.8458 3.3846 0.7524	90.0000 2.000 87.0000 2.000 88.0000 2.000	0 5.0000 0 5.0000 0 5.0000			Th	e SAS Syster	n 16:05 F	Vednesday, V	52 July 3, 1996
		The SAS System	16:05 Wednesday	47 , July 3, 1996			Corre	Lation Analy	/sis		
					1	3 'V.	AR' Variable	s: CAROC1	CAROC2	CAROC3	

		Simpl	e Statistic						The	0.6607 SAS System	0. n 16:05 k	0 Jednesdav.	58 July 3, 1996
Variablo	N	Mean	Std Day	Sum	Minimum	Maximum			Correl	ation Anal			•••••
CAROC1 CAROC2	26 26	1.9231 1.8462	0.9767 0.8339	50.0000 48.0000	1.0000 1.0000	4.0000 4.0000	-	2	'VAR' Varia	bles: ENR	FC1 ENRFC	:2	
CAROC3	26	1.8846 The	0.8162 SAS System	49.0000	1.0000	4.0000 53			Simpl	e Statisti	cs		
				16:05 1	Wednesday, G	July 3, 1996	Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
		Correl	ation Analys	sis			ENRFC1	26	3.3462	0.8458	87.0000	1.0000	5.0000
	for	Cronbach RAW variab	Coefficient les	Alpha : 0.970	195		ENRFC2	26	3.1923 The	0.9806 SAS System	83.0000 n 16:05 ¥	1.0000 Nednesday,	5.0000 59 July 3, 1996
	for	STANDARDIZ	ED variables	s: 0.974	508				Correl	ation Analy	ysis		
	Ra	w Variables			Std. Variak	oles			Cronbach	Coefficient	t Alpha		
Deleted Variable	Correlati with Tot	on al	Alpha	Correl with	ation Total	Alpha		for for	RAW variab STANDARDIZ	les ED variable	: 0.8428 es: 0.8482	187 203	
CAROC1 CAROC2 CAROC2	0.9114 0.9689	12 98 57	0.985673 0.934750	0.9	11270 71701 51516	0.985789 0.942731		Rat	W Variables			Std. Varia	bles
CHILOUS	0.9401	The	SAS System	16:05 1	Wednesday, d	54 July 3, 1996	Deleted Variable	Correlation with Tota	on al	Alpha	Correla with 1	tion otal	Alpha
		Correl	ation Analys	sis			ENRFC1 ENRFC2	0.7364	17 17	•	0.73	6417 6417	:
Pearson C	Correlation C	oefficients	/ Prob > F	R under 1	Ho: Rho=0 /	N = 26			The	SAS System	n 16:05 W	lednesday,	60 July 3, 1996
		CAROC1	CF	AROC2	CARC	003			Correl	ation Analy	ysis		
CAR	OC1	1.00000 0.0	0.9	91806 .0001	0.891	L67)01	Pearson (Correlation Co	pefficients	/ Prob >	R under H	Io: Rho=0 /	N = 26
CAR	002	0.91806	1.0	00000	0.971	198				ENRFC1	EN	RFC2	
CAR	CAROC2 0.91806 1.00000 0.97198 0.0001 0.0 0.0001 CAROC3 0.89167 0.97198 1.00000							ENRFC1		1.00000	0.7	3642 0001	
		0.0001 The	0. SAS System	.0001 16:05 %	0.0 Wednesday, 3	55 July 3, 1996		ENRFC2	m1 -	0.73642 0.0001	1.0	0000 0	61
		Correl	ation Analys	sis					Ine	SAS SYSCE	16:05 W	lednesday,	July 3, 1996
	2	'VAR' Varia	bles: RECRE	CI RECRI	FC2				Correl	ation Analy	ysis		
		Simpl	e Statistics					2	'VAR' Varia	bles: CARH	RFC1 CARRE	rC2	
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	-		Simpl	e Statistic	s		
RECRFC1	26	4.0000	0.8944 1	.04.0000	1.0000	5.0000	Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
RECRFC2	26	3.5000 The	0.9899 SAS System	91.0000 16:05 V	1.0000 Wednesday, J	5.0000 56 July 3, 1996	CARRFC1 CARRFC2	25 25	1.9200 3.2000	1.1518 1.5811	48.0000 80.0000	1.0000 1.0000	5.0000
		Correl	ation Analys	is					1116	SAS System	16:05 W	ednesday,	July 3, 1996
		Cronbach	Coefficient	Alpha					Correl	ation Analy	ysis		
	for	RAW variab	les ED variables	:1975	531				Cronbach	Coefficient	: Alpha		
	for STANDARDIZED variables:198650 Raw Variables Std. Variables							for for	RAW variab STANDARDIZ	les ED variable	: 0.4517 es: 0.4692	87 85	
Deleted	eleted Correlation Correlation							Rav	Variables			Std. Varia	bles
RECREC1	ECRFC1 -0.090351 -0.090351						Deleted Variable	Correlation with Tota	n	Alpha	Correla with T	tion	Almha
RECRFC2	-0.0903	51 The	SAS System	-0.09	90351	57	CARRFC1	0.30657	/9		0.30	6579	
		Co1	ation Anal	10:00 W	reunesday, J	штА э' таар	CARRFUZ	0.3065	The	SAS System	U.30	8160	63
Pearson C	orrelation Co	correl. pefficients	/ Prob > R	under H	io: Rho=0 /	N = 26			Correl	ation Analy	16:05 W vsis	eanesdây,	апт д 3, 199 6
		1	RECRFC1	REC	CRFC2		Pearson C	Correlation Co	efficients	/ Prob >	R under H	o: Rho=0 /	N = 25
	RECRFC1		1.00000 0.0	-0.0 0.)9035 .6607					CARRFC1	CAR	RFC2	
	RECRFC2	RECRFC1 1.00000 -0.09035 0.0 0.6607 RECRFC2 -0.09035 1.00000						CARRFC1		1.00000 0.0	0.3 0.	0658 1361	

							1			Correla	tion Ana	lysis		
	CARRE	7C2	0.30658 0.1361		1.00000		7 .	AR' Varia	bles: ENA	TT ENSN	ENB	C ENBB	ENNB	ENOC
			The SAS Sy	stem 16:(5 Wednesday.	64 July 3, 1996			ENR	FC				
		6								simple	Statist	ice		
			pretation A	nalysis	-			b 1-	N	Maan	Chil Dave	C	Minimum	Maximum
6 'VAR	' Variables:	RECATT	RECSN	RECBB RE	CNB RECO	C RECRFC	Varia ENATT	able.	N 25	Mean 9 0400	1.2069	226.0000	6.0000	10.0000
		5	Simple Stati	stics			ENSN		25	6.7200	1.8376	168.0000	2.0000	10.0000
Variable	N	Mea	an Std De	v Si	m Minimur	n Maximum	ENBC		25	8.8000	1.4720	220.0000	5.0000	10.0000
RECATT	26	8.884	16 1.306	2 231.000	6.000	10.0000	ENNB ENOC		25 25	6.0400 9.4800	1.7436 2.2752	151.0000 237.0000	2.0000 6.0000	10.0000 15.0000
RECSN	26	6.807	17 1.789	3 177.000			ENRFO	2	25	6.4400 The	1.6603 SAS Syste	161.0000 em	2.0000	10.0000 70
RECNB	26	6.230	1.773	3 162.000	0 2.000	10.0000					,	16:05 W	ednesday,	July 3, 1996
RECRFC	26	7.500	1.789	8 195.000	0 4.000	10.0000				Correla	tion Ana	lysis		
			The SAS Sy	stem 16:(5 Wednesday,	65 July 3, 1996				Cronbach C	oefficie	nt Alpha		
		Cc	orrelation A	nalvsis					for R	AW variabl	es	: 0.4901	08	
		Croph	ach Coeffic	ient Alpha					for S	TANDARDIZE	D variab	les: 0.5200	42	
		CIOIN	udahlaa		20960				Dave	Variables			Std Varia	bles
	f	for STANDA	ARDIZED vari	ables: 0.5	35653				Row .	Valiables		6) -	blu. Valia	1105
							Delete Variab	ed C ble	orrelation with Total		Alpha	with T	otal	Alpha
		Raw Varia	ables		Std. Var:	lables	ENATT		0.321096	0	.431434	0.35	5158	0.437814
Deleted Variable	Correla with T	ation Cotal	Alph	Cori a wit	elation h Total	Alpha	ENSN ENBC		0.185267	0	.474198	0.22	5326 0594	0.493498 0.535533
DECART			0 16179		227650	0 462385	ENBB		0.177240	0 The	.474036	0.22	0918	0.495318
RECSN	0.54	7413	0.34147	6 (.555133	0.346503				1110	5110 0950	16:05 W	ednesday,	July 3, 1996
RECBB	0.18	51228	0.39574	2 (1 (.476615	0.390053	}			Correla	tion Ana	lysis		
	0.461228 0.395741 0.476615 0 The SAS System 16:05 Wednesday, July						·		Raw	Variables			Std. Varia	bles
		Co	orrelation A	nalysis			Delete	d C	orrelation			Correla	tion	
		Raw Varia	bles		Std. Vari	ables	Variab)le	with Total		Alpha	with T	otal	Alpha
Deleted	Correla	tion		Corr	elation		ENNB		0.647686	0	.245009	0.65	9789 1035	0.290543 0.527525
Variable	with 1	otal	Alph	a wit	h Total	Alpha	ENRFC		0.164752	0	.480354	0.12	0839	0.535438
RECOC	0.05	0203	0.61174	B C	.060686	0.589625				1116	ana ayace	16:05 W	ednesday,	July 3, 1996
RECRFC	0.16	1621	0.54236 The SAS Sy	stem (.118985	0.564625				Correla	tion Anal	lysis		
				16:0	5 Wednesday,	July 3, 1996	Pear	son Corre	lation Coet	fficients	/ Prob >	R under H	o: Rho=0 /	N = 25
		Co	rrelation A	nalysis				ENATT	ENSN	ENBC	ENE	B ENNB	ENOC	ENRFC
Pearson	Correlation	Coeffici	ents / Prob	> (R) unde	r Ho: Rho=0	/ N = 26	ENATT	1.00000	0.30586	0.26385	0.4268	6 0.31601	-0.12867	-0.09232
	RECATT	RECSN	RECBB	RECN	B RECO	C RECRFC		0.0	0.1370	0.2025	0.033	0.1238	0.5399	0.6607
RECATT	1.00000 0.0	0.26396 0.1926	0.60609 0.0010	0.4436 0.023	8 -0.1099 2 0.592	-0.25263 9 0.2131	ENSN	0.30586 0.1370	1.00000 0.0	-0.13583 0.5174	0.3173 0.122	0.49783 0.0113	0.03349 0.8737	-0.29936 0.1460
RECSN	0.26396	1.00000	0.23071	0.4683	8 0.1369	0.36006	ENBC	0.26385	-0.13583	1.00000	-0.2923	0.14562	0.08133	0.33435
	0.1926	0.0	0.2568	0.015	8 0.504	7 0.0708		0.2025	0.5174	0.0	0.150	62 0.4873	0.6991	0.1023
RECBB	0.60609 0.0010	0.23071 0.2568	1.00000 0.0	0.1849 0.365	5 -0.1759 7 0.390	-0.25028 0 0.2175	ENBB	0.42686 0.0333	0.31733 0.1222	-0.29235 0.1562	1.0000 0.0	0.32795	0.04230 0.8409	-0.11593 0.5810
RECNB	0.44368	0.46838	0.18495	1.0000	0 0.0106	0.17722				tue .	SAS SYSLE	16:05 W	ednesday,	July 3, 1996
	0.0232	0.0156	The SAS Sys	stem	0.956	68				Correla	tion Anal	ysis		
				16:0	5 Wednesday,	July 3, 1996	Pear	son Corre	lation Coef	ficients ,	/ Prob >	R under He	o: Rho=0 /	N = 25
		Co	rrelation An	nalysis				ENATT	ENSN	ENBC	ENE	B ENNB	ENOC	ENRFC
Pearson	Correlation	Coeffici	ents / Prob	> R unde	r Ho: Rho=0	/ N = 26	ENNB	0.31601	0.49783	0.14562	0.3279	5 1.00000	0.21553	0.35350
	RECATT	RECSN	RECBB	RECN	B RECC	C RECRFC		0.1238	0.0113	0.4873	0.109	5 0.0	0.3008	0.0830
RECOC -	-0.10993 0.5929	0.13695 0.5047	-0.17593 0.3900	0.0106 0.958	7 1.0000 8 0.0	0 0.32493 0.1053	ENOC	-0.12867 0.5399	0.03349 0.8737	0.08133 0.6991	0.0423 0.840	0 0.21553 9 0.3008	1.00000 0.0	0.21751 0.2963
RECRFC -	-0.25263 0.2131	0.36006 0.0708	-0.25028 0.2175	0.1772	2 0.3249 4 0.105	3 1.00000 3 0.0	ENRFC	-0.09232 0.6607	-0.29936 0.1460	0.33435 0.1023	-0.1159	0.35350 00.0830	0.21751 0.2963	1.00000 0.0
			rne SAS Sys	scem 16:0	5 Wednesday,	69 July 3, 1996				The S	SAS Syste	m 16:05 W	ednesday,	74 July 3, 1996

	Correlation Analysis								Cor	relation		Alpha	Correlati	on	Alnha
7 'VAR'	Variables:	CARATT	CARSN	CARBC	CARBB	CARNB	CAROC		e wi						
		CARRFC						CARNB		0.440037	0.1	58517	0.4443	01	0.144605
								CAROC		0.303050	0.1	41416	0.3219	36	0.226030
								CARRFC		0.166850	0.2	57311	0.1310	21	0.341250
			Simple Sta	tistics	5						The SA	AS System			77
			•										16:05 Wed	nesday, Ju	ly 3, 1996
Variable	N	Me	an Std	Dev	Sum	Minimum	Maximum				Correlati	on Analvsi	.5		
CADATT	25	5 36	00 20	591 .	134 0000	2 0000	10.0000								
CARGI	25	4 16	00 2.0	753	104.0000	2.0000	8,0000	Pears	on Correla	ation Coeff	icients /	Prob > R	under Ho:	Rho=0 / N	= 25
CAPBC	25	8 28	00 2.2	642	207.0000	2.0000	10.0000								
CARBB	25	7 80	00 2.1	602	195.0000	2,0000	10.0000		CARATT	CARSN	CARBC	CARBB	CARNB	CAROC	CARRFC
CARNE	25	4.32	00 1.3	760	108.0000	2.0000	6.0000								
CAROC	25	5.76	00 2.5	541	144.0000	3.0000	12,0000	CARATT	1.00000	0.20047	-0.19232	0.34471	0.26647	-0.00666	-0.20095
CARREC	25	5.12	00 2.2	234	128.0000	2.0000	10,0000		0.0	0.3366	0.3570	0.0915	0.1979	0.9748	0.3354
			The SAS	System			75								
					16:05 W	ednesday,	July 3, 1996	CARSN	0.20047	1.00000	-0.32916	-0.01115	0.44826	0.13332	0.12209
						1.			0.3366	0.0	0.1081	0.9578	0.0246	0.5252	0.5610
		C	orrelation	Analy	sis									0.00014	0.05006
								CARBC	-0.19232	-0.32916	1.00000	0.03748	-0.15032	0.06254	0.05926
		Cron	bach Coeff	icient	Alpha				0.3570	0.1081	0.0	0.8588	0.4/32	0.7005	0.7704
		or PAW W	ariables		· 0 3132	05		CARBB	0.34471	-0.01115	0.03748	1.00000	0.16260	-0.15255	-0.11625
		or STAND	ARDIZED va	riable	s: 0.3615	17			0.0915	0.9578	0.8588	0.0	0.4374	0.4666	0.5800
	-	.01 01100	action to								The SA	S System			78
												-	16:05 Wed	nesday, Ju	ly 3, 1996
		Raw Vari	ables			Std. Vari	ables				Corrolati	on Analysi	-		
D-1-4-4	C	* * * * *			Corrola	tion					COLLEIGUEI	.on Idialy01			
Variable	with 1	lotal	Al	pha	with T	otal	Alpha	Pears	on Correla	ation Coeff	icients /	Prob > R	under Ho:	Rho=0 / N	= 25
CARATT	0.10	3954	0.297	370	0.14	2742	0.334574		CARATT	CARSN	CARBC	CARBB	CARNB	CAROC	CARRFC
CARSN	0.14	6577	0.271	587	0.19	9153	0.301727								
CARBC	-0.14	0382	0.446	918	-0.16	0729	0.491902	CARNB	0.26647	0.44826	-0.15032	0.16260	1.00000	0.37845	0.05502
CARBB	0.05	6948	0.327	175	0.09	0242	0.364089		0.1979	0.0246	0.4732	0.4374	0.0	0.0621	0.7939
			The SAS	System			76								
					16:05 W	ednesday,	July 3, 1996	CAROC	-0.00666	0.13332	0.06254	-0.15255	0.37845	1.00000	0.46020
									0.9748	0.5252	0.7665	0.4666	0.0621	0.0	0.0206
	Correlation Analysis							******		0 10000	0.05006	0 11/05	0.05500	0 46000	1 00000
								CARRFC	-0.20095	0.12209	0.05926	-0.11625	0.05502	0.46020	1.00000
		Raw Vari	ables		:	Std. Vari	ables		0.3354	0.5610	0.//84	0.5800	0.7939	0.0206	0.0
								l							

Third Iteration (Main Study) SAS[©] Output

Descriptive Statistics and Reliability

The SAS System	1		531			1								
,				13:12 Tu	uesday, Augu	st 13, 1996	RECATT1	0.830459		•	0.83	0459		,
							RECATT2	0.830459		•	0.83	0459		
		Correl	lation Analys	is					The	e SAS System	10.10		D	533
	2	WART Maria	bloc: BECAT	m1 DECAT	100						13:12 Tu	esday,	August 1	.3, 1996
	2	VAR Valle	DIES. REORI	II RECAI	. 1 2				Correl	ation Analys	is			
		Simpl	e Statistics				Pearson Co	rrelation Coeff	ficients	/ Prob > R	under Ho	: Rho=0	/ N = 3	107
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum				RECATT1	REC	ATT2		
RECATT1	307	4.5114	0.6333	1385	2,0000	5.0000		RECATT1		1.00000	0.8	3046		
RECATT2	307	4.4235	0.6930	1358	1.0000	5.0000				0.0	0.	0001		
		The	e SAS System			532								
				13:12 Tu	iesday, Augu	st 13, 1996		RECATT2		0.83046	1.0	0000		
		~ `							_1	0.0001	0.	0		
		Correl	ation Analys	15					The	a SAS System	10.10			534
		Crophach	Coefficient	Alpha							13:12 iu	esday, .	August I	.5, 1990
		Of OHDGON	CONTINUES	Arbua					Correl	ation Analys	is			
	for	RAW variak	les	: 0.9053	67				001101	deron maryo	+0			
	for	STANDARDIZ	ED variables	: 0.9073	878			2 'VF	AR' Varia	ables: ENATT	1 ENATT	2		
Raw Variables Std. Variables						les			Simpl	le Statistics				
Deleted	Correlatio	on		Correla	tion		Variable	N	Mean	Std Dev	Sum	Minim	um Ma	ximum
Variable	with Tota	al	Alpha	with 1	Total	Alpha								

ENATT1 ENATT2	307 307	4.3844	0.6382	1346 1314	2.0000	5.0000	Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
		The	SAS System	m 13:12 Tu	esday, August	535 : 13, 1996	RECSN1 RECSN2	307 307	3.2932 3.3355 The	0.9032 0.8602 SAS System	1011 1024	1.0000 1.0000	5.0000 5.0000 541
		Correla	ation Analy	ysis					me	brib bybeem	13:12 Tu	esday, Augu	st 13, 1996
		Cronbach (Coefficient	t Alpha					Correl	ation Analys	is		
	for	RAW variab STANDARDIZI	les ED variable	: 0.8823	05				Cronbach	Coefficient A	Alpha		
						_		for for	RAW variab STANDARDIZ	les ED variables	: 0.9393 : 0.9399	43 34	
D 1 4 4	Ka	w variables		A	Std. Variable	:5		D				6 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1
Deleted Variable	with Tot	on al	Alpha	Correla with T	tion otal	Alpha	Deleted	Rav	/ Variables		Correla	std. variap	les
ENATT1 ENATT2	0.7937	89 89	•	0.79	3789 3789	•	Variable	with Tota	1 1	Alpha	with T	otal	Alpha
DIATIE	0.7557	The	SAS System	m 13.12 mu	ordan Anourt	536	RECSN1	0.88661	5	•	0.88	6675	
		Correla	ation Analy	vsis	esuay, August	. 13, 1990	RECONZ	0.0000	The	SAS System	13:12 Tu	esdav, Augu	542 st 13, 1996
Pearson Cor	relation Co	efficients ,	/ Prob > I	R under Ho	: Rho=0 / N =	: 307			Correl	ation Analys:	is		,
			ENATT1	EN	ATT2		Pearson Co	rrelation Coe	fficients	/ Prob > R	under Ho	: Rho=0 / N	= 307
	ENATT1	:	1.00000	0.7	9379					RECSN1	RE	CSN2	
	ENA 770		0.0	U. 1 0	0001			RECSN1		1.00000	0.8	8668	
	ENA112	The	0.0001	0.	0	537		DECENO		0.0	1.0	0000	
		Ine	ana aysten	13:12 Tu	esday, August	: 13, 1996		RECONZ	The	0.0001 SAS System	0.	0	543
		Correla	ation Analy	ysis						bild bybeem	13:12 Tu	esday, Augu	st 13, 1996
	2 'VAR' Variables: CARATT1 CARATT2								Correl	ation Analys:	is		
		Simple	e Statistic	cs				2 '	VAR' Varia	bles: ENSN1	ENSN2		
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum			Simpl	e Statistics			
CARATT1	307	2.7622	1.2650	848.0000	1.0000	5.0000	Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
CARATTZ	307	2.8469 The	SAS System	8/4.0000 n 13·12 ຫມ	1.0000 esdav. August	5.0000 538	ENSN1 ENSN2	307 307	3.3681	0.8734	1034	1.0000	5.0000
		Correla	ation Analy	vsis	estay, August	15, 1556	ENGNE	507	The	SAS System	13:12 Tu	esdav, Augus	544 544 543, 1996
		Cronbach (- Coefficient	t Alpha					Correla	ation Analysi	is		·
	for	RAW variabl	Les	: 0.9027	18				Cronbach (Coefficient A	Alpha		
	for	STANDARDIZE	ED variable	es: 0.9027	55			for	RAW variab	les :	0.9455	19	
	Rav	Variables			Std. Variable	s		for	STANDARDIZI	ED variables:	0.9455	68	
Deleted	Correlation	on	Alpha	Correla	tion	Almha		Raw	Variables			Std. Variab	les
CARATT1	0.82274	17		0.82	2747		Deleted Variable	Correlatic with Tota	n 1	Alpha	Correla with T	tion otal	Alpha
CARATT2	0.82274	17 The	SAS System	0.82	2747	. 539	 ENSN1	0.89675	6		0.89	6756	
			,	13:12 Tu	esday, August	13, 1996	ENSN2	0.89675	6 The	SAS System	0.89	6756	. 545
		Correla	ation Analy	vsis							13:12 Tu	esday, Augus	it 13, 1996
Pearson Cor.	relation Coe	efficients /	Prob > R	R under Ho	: Rho=0 / N =	307			Correla	ation Analysi	s		
		c	ARATT1	CAR	ATT2		Pearson Co	rrelation Coe	fficients ,	/ Prob > R	under Ho	: Rho=0 / N	= 307
	CARATT1	1	00000	0.8	2275 0001					ENSN1	EN	SN2	
	CARATT2	с	.82275	1.0	0000			ENSN1	1.	.00000 D.0	0.89	676 001	
		The	0.0001 SAS System	0. 1	0	540		ENSN2	0.	89676	1.00	000	
				13:12 Tu	esaay, August	13, 1996			(The	SAS System	0.0		546
	÷ •	Correla	tion Analy	/sis	~						13:12 Tu	esday, Augus	t 13, 1996.
	2	VAR' Variab	oies: RECS	SNI RECSN	2				Correla	ation Analysi	.5		
		Simple	e Statistic	25				2 '	VAR' Variat	oles: CARSN1	. CARSN	2	

		Simpl	e Statistics	5			ŀ						
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum			Simpl	e Statistics			
CARSN1	307	2.5114	0.8869 7	71.0000	1.0000	5.0000	Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
CARSNZ	307	2.5016 The	SAS System	12.12 1	1.0000	5.0000 547	ENBC1	307	3.6710	1.1257	1127	1.0000	5.0000
		G		13:12 10	lesday, Augu	St 13, 1990	ENBCZ	307	3.5901 The	SAS System	13.12 50	I.0000	553 set 13 1996
		Correi	ation Analys	115 Almha					Corrol	ation Analys	13.12 IU	soudy, huge	30 13, 1990
	£	Cronpach	Coefficient	Alpha	60				Crophach	Confficient	Alpha		
	for	STANDARDIZ	ED variables	: 0.9140 s: 0.9147	29			for	PAN wariah	las	 0 8018 	22	
	Dorr	Variables			etd Variah	105		for	STANDARDIZ	ED variables	: 0.8018	73	
Deleted	Correlatio	variabies		Correla	tion	163		Bas	w Variables			Std. Variak	les
Variable	with Tota	1	Alpha	with I	otal	Alpha	Deleted	Correlatio	on		Correlat	tion	
CARSN1 CARSN2	0.84285	7 7		0.84	2857 2857	•	Variable	with Tota	al	Alpha	with To	otal	Alpha
		The	SAS System	13:12 Tu	esday, Augu	548 st 13, 1996	ENBC1 ENBC2	0.6692 [°] 0.6692 [°]	72 72	•	0.66	9272 9272	•
		Correl	ation Analys	is			1		The	SAS System	13:12 Tue	esday, Augu	554 st 13, 1996
Pearson Cor	relation Coe	fficients	- / Prob > R	under Ho	: Rho=0 / N	= 307			Correl	ation Analys	is		
			CARSN1	CA	RSN2		Pearson Co	rrelation Coe	efficients	/ Prob > R	under Ho:	: Rho=0 / N	1 = 307
	CARSN1		1.00000	0.8	4286					ENBC1	ENI	3C2	
			0.0	0.	0001			ENBC1	1	.00000	0.669	927	
	CARSN2		0.84286 0.0001	1.0	0000					0.0	0.00	001	
		The	SAS System	13:12 Tu	esday, Augu	549 st 13, 1996		ENBC2	0	0.0001	1.000	000	
		Correl	ation Analys	is					The	SAS System	13:12 Tue	esday, Augu	st 13, 1996
	2 1	VAR' Varia	bles: RECBC	1 RECBC	2				Correl	ation Analys	is		
		Simpl	a Statistics					2	'VAR' Varia	bles: CARBC	1 CARBC2	2	
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum			Simpl	e Statistics			
RECBC1	307	3.9055	1.1264	1199	1.0000	5.0000	Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
RECBC2	307	3.8730 The	1.1261 SAS System	1189	1.0000	5.0000	CARBC1	307	4.2541	1.0003	1306	1.0000	5.0000
			-	13:12 Tu	esday, Augu	st 13, 1996	CARBC2	307	4.1270 The	1.1462 SAS System	1267	1.0000	5.0000 556
		Correl	ation Analys	is							13:12 Tue	esday, Augu	st 13, 1996
		Cronbach	Coefficient	Alpha					Correl	ation Analys	is		
	for for	RAW variab STANDARDIZ	les ED variables	: 0.7822 : 0.7822	06 06				Cronbach	Coefficient .	Alpha		
	D	TT			0			for	STANDARDIZ	les ED variables	: 0.87263 : 0.87710	57	
Delated	Raw	variables		Commolo	sta, variap	les		Der	. Namiahlar		,	the Venich	1
Variable	with Tota	1	Alpha	with T	otal	Alpha	Deleted	Correlatio	v variabies		Correlat	ion	162
RECBC1 RECBC2	0.64231	3	•	0.64	2313	•	Variable	with Tota	11 	Alpha	with To	otal	Alpha
1.00001	0101201	The	SAS System	13:12 Tu	esdav. Augu	551 st 13, 1996	CARBC1 CARBC2	0.78120	9	•	0.781	209	·
		Correla	ation Analys	is	oousj , nugu			01/0120	The	SAS System	13:12 Tue	asdav. Augu	557 st 13, 1996
Pearson Cor	relation Coe	fficients	/ Prob > [R]	under Ho	: Rho=0 / N	= 307			Correl	ation Analys	is		
			RECBC1	RE	CBC2		Pearson Co	rrelation Coe	fficients	/ Prob > R	under Ho:	Rho=0 / N	= 307
	RECBC1	:	1.00000	0.6	4231					CARBC1	CAF	RBC2	
			0.0	0.	0001			CARBC1		1.00000	0.78	121	
	RECBC2		0.64231 0.0001	1.0 0.	0000 0					0.0	0.0	0001	
		The	SAS System	13:12 Tu	esday, Augu:	552 st 13, 1996		CARBC2	:	0.78121 0.0001	1.00	0000	
		Correla	ation Analys	is					The	SAS System	13:12 Tue	sday, Augu	558 st 13, 1996
	2 ''	VAR' Varia	bles: ENBC1	ENBC2					Correl	ation Analys	is		

	2 'VA	R' Variables: RECBB	1 RECBE	32				Corre	ation Analys	is		
							2	'VAR' Varia	bles: CARBE	1 CARBE	2	
		Simple Statistics	•									
Variable	N	Mean Std Dev	Sum	Minimum	Maximum			Simpl	e Statistics.			
RECBB1 RECBB2	307 4 307 4	.3062 0.7567 .4625 0.6962	1322 1370	1.0000 1.0000	5.0000 5.0000	Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
		The SAS System	13:12 Tu	iesday, Augus	559 st 13, 1996	CARBB1 CARBB2	307 307	3.8176 3.9446	1.0783 0.9869	1172 1211	1.0000 1.0000	5.0000 5.0000
		Correlation Analys	is					The	SAS System	13:12 Tu	esday, Aug	565 1st 13, 1996
	с	ronbach Coefficient	Alpha					Correl	ation Analys	is		
	for RA for ST	W variables ANDARDIZED variables	: 0.8816 : 0.8833	515 325			for	Cronbach RAW varial	Coefficient	Alpha : 0.8236	543	
	Raw V	ariables		Std. Variabl	les		for	STANDARDI	ED variables	0.8255	39	
Deleted	Correlation	D Jack -	Correla	ation	Timbo		Rat	w Variables	3		Std. Varial	oles
RECBB1	0.791032	Alpna	0.79	91032	Alpna	Deleted Variable	Correlatio with Tota	on al	Alpha	Correla with T	tion otal	Alpha
RECBBZ	0.791032	The SAS System	12.12 m.		560	CARBB1	0.70290	09	•	0.70	2909	•
		Courselation Realize	13:12 IC	tesday, Augus	56 13, 1990	CARBBZ	0.7025	The	SAS System	13.12 11	losdav Num	566 1st 13 1996
Deersen Co	malation Cooff	correlation Analys	under Ve	Pho-0 (N	- 307			Corre	ation Analys	10.12 10	leouay, nug	.50 15, 1550
Pearson Co.	rielation Coell	DECBB1	under no	CBB2	- 507	Pearson Co	rrelation Coe	efficients	/ Prob > R!	under Ho	: Rho=0 / 1	N = 307
	RECBB1	1.00000	0.7	79103		routoon oo			CARBB1	CA	RBB2	
	100001	0.0	0.	.0001			CARBB1		1.00000	0.7	0291	
	RECBB2	0.79103 0.0001	1.0)0000 .0					0.0	0.	0001	
		The SAS System	13:12 Tu	iesday, Augus	561 st 13, 1996		CARBB2	The	0.70291 0.0001 SAS System	1.0	0000 0	567
		Correlation Analys	is						-	13:12 Tu	lesday, Augi	ust 13, 1996
	2 'VA	R' Variables: ENBB1	ENBB2	2				Correl	ation Analys	is		
		Simple Statistics					2	'VAR' Varia	bles: RECNB	1 RECNB	2	
Variable	N	Mean Std Dev	Sum	Minimum	Maximum	ļ		Simpl	e Statistics			
ENBB1	307 4	.3094 0.7445	1323	1.0000	5.0000	Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
ENBB2	307 4	.4039 0.6858 The SAS System	1352 13:12 Tu	1.0000 wesday, Augus	5.0000 562 st 13, 1996	RECNB1 RECNB2	307 307	3.3257 2.7850	0.8621 1.0095 8	1021 55.0000	1.0000 1.0000	5.0000 5.0000
		Correlation Analys	is					1116	SAS System	13:12 Tu	esday, Augu	1st 13, 1996
	C	ronbach Coefficient .	Alpha					Correl	ation Analys	is		
	for RAN	V variables	: 0.9277	32				Cronbach	Coefficient	Alpha		
	Raw Va	ariables	. 0.5254	Std. Variabl	les		for for	RAW variak STANDARDIZ	les ED variables	: 0.5624 : 0.5675	82 08	
Deleted	Correlation	D) -	Correla	tion	Marka		Rav	v Variables			Std. Variak	les
ENBB1	0.868124	Alpna	0.86	8124	Alpna •	Deleted Variable	Correlatic with Tota	on al	Alpha	Correla with T	tion otal	Alpha
ENBB2	0.868124	The SAS System	0.86 13:12 Tu	88124 Nesday, Augus	563 st 13, 1996	RECNB1 RECNB2	0.39616 0.39616	58 58	·	0.39	6168 6168	:
		Correlation Analys	is					The	SAS System	13:12 Tu	esday, Augu	569 Ist 13, 1996
Pearson Cor	relation Coeffi	icients / Prob > R	under Ho	: Rho=0 / N	= 307			Correl	ation Analys	is		
		ENBB1	EN	IBB2		Pearson Cor	rrelation Coe	efficients	/ Prob > R	under Ho	: Rho=0 / M	I ≈ 307
	ENBB1	1.00000	0.86 0.0	812 001					RECNB1	RE	CNB2	
	ENBB2	0.86812 0.0001	1.00	000			RECNB1		1.00000 0.0	0.3 0.	9617 0001	
		The SAS System	13:12 Tu	lesday, Augus	564 st 13, 1996		RECNB2		0.39617 0.0001	1.0 0.	0000 0	

		The	SAS Syst	em 13:12 T	uesday, Augu	570 st 13, 1996		CARNB2	(The	0.47286 0.0001 SAS Syste	1. 0	00000 .0	576
		Correla	ation Ana	lysis							13:12 T	uesday, Aug	gust 13, 1996
	2 '	VAR' Varia)	bles: ENN	NB1 ENNB	2				Correla	tion Ana	lysis		
		Simple	e Statist:	ics				3 'VAR	Variables	RECOC1	RECOC2	RECOC3	
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum			Simple	Statist:	ics		
ENNB1 ENNB2	307 307	3.2150 2.7980	0.7958 0.9726	987.0000 859.0000	1.0000	5.0000 5.0000	Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
·		The	SAS Syste	em 13:12 Ti lysis	uesday, Augu	571 st 13, 1996	RECOC1 RECOC2 RECOC3	307 307 307	3.2704 3.2280 3.2215 The	1.1210 0.9902 0.9851 SAS System	1004 991.0000 989.0000	1.0000 1.0000 1.0000	5.0000 5.0000 5.0000 577
		Cropbach (nt Almha							13:12 T	uesday, Aug	gust 13, 1996
	for	DAW wariah		• 0 639	520				Correla	tion Ana	lysis		
	for	STANDARDIZI	ED variab	les: 0.647	239				Cronbach (Coefficier	nt Alpha		
	Raw	/ Variables			Std. Variab	les		for for	RAW variabl STANDARDIZE	.es D variab:	: 0.837 Les: 0.841	369 631	
Deleted Variable	Correlatic with Tota	n 1	Alpha	Correl with	ation Total	Alpha		Rav	/ Variables			Std. Varia	ables
ENNB1 ENNB2	0.47845 0.47845	57 57	• •	0.4 0.4	78457 78457	•	Deleted Variable	Correlatio with Tota	n 1	Alpha	Correl with	ation Total	Alpha
		Correla	ation Anal	13:12 Ti lysis	uesday, Augu	st 13, 1996	RECOC1 RECOC2 RECOC3	0.63702 0.75329 0.72083	4 () 99 () 17 ()	.845269 .724657 .756121	0.6 0.7 0.7	36969 58073 26657	0.845275 0.728513 0.759736
Pearson Con	rrelation Coe	fficients ,	/ Prob >	R under He	o: Rho=0 / N	= 307			The	SAS Syste	em 13:12 T	uesday, Aug	578 gust 13, 1996
			ENNB1	E	NNB2				Correla	tion Anal	lysis		
	ENNB1	1	.00000	0.4	7846		Pearson Co	rrelation Coe	fficients /	Prob >	R under H	o: Rho=0 /	N = 307
		(0.0	0.1	0001				RECOC1		RECOC2	REC	0003
	ENNB2	0. (The	.47846 0.0001 SAS Syste	1.0 0.0	0	573	REC	:OC1	1.00000 0.0	(0.61256 0.0001	0.57	7296 0001
				13:12 Ti	uesday, Augu	st 13, 1996	REC	:0C2	0.61256	1	.00000	0.73	3201
		Correla	ation Ana:	lysis					0.0001		0.0	0.0	0001
	2 *	VAR' Varial	bles: CAN	RNB1 CARNI	B2		REC	0C3	0.57296 0.0001 The	(SAS Syste	0.73201 0.0001 em	1.00	0000 0 579
		Simple	e Statisti	ics							13:12 T	uesday, Aug	gust 13, 1996
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum			Correla	tion Anal	ysis		
CARNB1 CARNB2	307 307	2.4984 2.4072 The	0.8180 0.9184 SAS Syste	767.0000 739.0000 em	1.0000 1.0000	5.0000 5.0000 574		3 'VAR'	Variables:	ENOC1	ENOC2	ENOC3	
			-	13:12 Tu	uesday, Augu	st 13, 1996			Simple	Statisti	.cs		
		Correla	ation Anal	lysis			Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
	for	Cronbach C RAW variabl	Coefficier Les	nt Alpha : 0.6391	188		ENOC1 ENOC2 ENOC3	307 307 307	3.0847 3.0684 3.0977	1.0062 0.9316 0.9550	947.0000 942.0000 951.0000	1.0000 1.0000 1.0000	5.0000 5.0000 5.0000
	for	STANDARDIZE	ED variabl	les: 0.6421	100				The	SAS Syste	13:12 T	uesday, Aug	580 Just 13, 1996
	Raw	Variables			Std. Variab	les			Correla	tion Anal	ysis		
Deleted Variable	Correlatio with Tota	n 1	Alpha	Correla with 1	ation Fotal	Alpha			Cronbach C	oefficien	it Alpha		
CARNB1 CARNB2	0.47286 0.47286	3	•	0.47	72863 72863	· · · · · · · · · · · · · · · · · · ·		for for	RAW variabl STANDARDIZE	es D variabl	: 0.922 es: 0.923	501 324	
		The	SAS Syste	em 13:12 Tu	lesday, Augu	575 st 13, 1996		Raw	Variables			Std. Varia	ables
		Correla	ation Anal	ysis			Deleted	Correlatio	n		Correla	ation	- • •
Pearson Cor	relation Coe	fficients /	/ Prob >	R under Ho	o: Rho≈0 / N	= 307	Variable	with Tota	1 	Alpha	with '	rotal	Alpha
			CARNB1	Cł	ARNB2		ENOC1 ENOC2 ENOC3	0.79085 0.86726 0.87396	5 0 7 0 7 0	.932646 .869505 .862702	0.7 0.8 0.8	}0799 58877 76186	0.932800 0.870175 0.864157
	CARNB1	1	0.0	0.4	47286 .0001				The	SAS Syste	m 13:12 Ti	ıesday, Aug	581 pust 13, 1996

	Correlation Analys	is			1	Raw	Variables	s	td. Variabl	les
Pearson Correlation Coeff	icients / Prob > R	under Ho:	Rho=0 / N	= 307	Deleted Variable	Correlation with Total	Alpha	Correlat with To	ion tal	Alpha
:	ENOC1 EN	10C2	ENOCE	3	BECREC1	0.330352		0.330	352	
ENOC1 1. 0	00000 0.76 .0 0.0	081 001	0.77019 0.0001	e L	RECRFC2	0.330352	The SAS System	0.330 13:12 Tue	352 sdav. Augus	587 587 st 13, 1996
ENOC2 0.	76081 1.00 .0001 0.0	000	0.87406	5 L			Correlation Analy	sis	ouuj, naga	
ENOC3 0.	77019 0.87 .0001 0.0	406	1.00000)	Pearson Cor	crelation Coef	ficients / Prob > F	under Ho:	Rho=0 / N	# 307
	The SAS System	13:12 Tues	sdav, Augus	582 st 13, 1996			RECRFC1	RECR	FC2	
	Correlation Analys	is	,,			RECRFC1	1.00000 0.0	0.33 0.0	035 001	
3 'VAR' V.	ariables: CAROC1	CAROC2 CA	AROC3			RECRFC2	0.33035 0.0001 The SNS System	1.00 0.0	000	588
	Simple Statistics						The SAS System	13:12 Tue	sday, Augus	st 13, 1996
Variable N	Mean Std Dev	Sum	Minimum	Maximum			Correlation Analy	sis		
CAROC1 307 2 CAROC2 307 2 CAROC3 307 2	.2769 0.9692 6 .3550 0.9468 7 .4072 0.9602 7	99.0000 23.0000	1.0000	5.0000 5.0000 5.0000		2 'V.	AR' Variables: ENRE	C1 ENRFC2		
0A1(005 507 E	The SAS System	12.12	aday Avgus	583			Simple Statistic	s		
	Correlation Analys	is	sday, Augus	36 13, 1990	Variable	N	Mean Std Dev	Sum	Minimum	Maximum
C	ronbach Coefficient	Alpha			ENRFC1 ENRFC2	307 307	3.7687 1.0171 3.1954 1.1059	1157 981.0000	1.0000 1.0000	5.0000 5.0000
for RA for ST	W variables ANDARDIZED variables	: 0.933272 : 0.933557	2				The SAS System	13:12 Tue	sday, Augus	589 st 13, 1996
							Correlation Analy	sis		
Raw V	ariables	St	td. Variabl	les			Cronbach Coefficient	Alpha		
Deleted Correlation Variable with Total	Alpha	Correlati with Tot	ion tal	Alpha		for R for S	AW variables FANDARDIZED variable	: 0.67729 s: 0.67886	4 2	
CAROC1 0.810777 CAROC2 0.918088 CAROC2 0.918086	0.943846 0.858979	0.8110	040 261	0.943895		Raw	Variables	S	td. Variabl	les
CAROCS 0.800809	The SAS System	13:12 Tues	sday, Augus	584 51 584 51 584	Deleted Variable	Correlation with Total	Alpha	Correlat with To	ion tal	Alpha
	Correlation Analys	is			ENRFC1	0.513846	•	0.513	846	•
Pearson Correlation Coeff:	icients / Prob > R	under Ho:	Rho=0 / N	= 307	ENRFC2	0.513846	The SAS System	0.513	846	590
(CAROC1 CA	ROC2	CAROC	:3				13:12 Tue	sday, Augus	st 13, 1996
CAROC1 1	.00000 0.8	2556	0.7528	35			Correlation Analy	sis		
	0.0 0.	0001	0.000)1	Pearson Cor	relation Coef:	ficients / Prob > R	under Ho:	Rho=0 / N	= 307
CAROC2 0	.82556 1.0 0.0001 0.	0000 0	0.8937 0.000	'5)1		x	ENRFC1	ENR	FC2	
CAROC3 0	.75285 0.8 0.0001 0.	9375 0001	1.0000	0		ENRFC1	1.00000 0.0	0.51	385 001	
	The SAS System	13:12 Tues	sday, Augus	585 t 13, 1996		ENRFC2	0.51385 0.0001	1.00	000	
	Correlation Analys	is					The SAS System	13:12 Tue:	sdav. Augus	591 st 13, 1996
2 'VA	R' Variables: RECRF	C1 RECRFC2	2				Correlation Analy	sis	,	
	Simple Statistics					2 'V/	AR' Variables: CARR	FC1 CARRFC	2	
Variable N	Mean Std Dev	Sum	Minimum	Maximum			Simple Statistic	s		
RECRFC1 307 4.	.2443 0.9123	1303	1.0000	5.0000	Variable	N	Mean Std Dev	Sum	Minimum	Maximum
RECRFC2 307 3.	.3322 1.1828 The SAS System	1023 13:12 Tues	1.0000 sday, Augus	5.0000 586 t 13, 1996	CARRFC1 CARRFC2	307 3 307 3	3.0293 1.3657 3.1661 1.3939	930.0000 972.0000	1.0000	5.0000 5.0000
	Correlation Analys	is					The SAS System	13:12 Tue:	sday, Augus	592 st 13, 1996
Ci	ronbach Coefficient	Alpha					Correlation Analy	sis	-	
for RAW	i variables	. 0 404205	-				Trophach Coefficient	7 Junho		
for STA	4 AUTTUNIC2	: 0.404295	2			,	JUIDACH COELLICIEN	Alpha		

		Raw Varia	bles		Std. Variab	les	RECNB	0.19115 0.0008	0.506	46 01 The	0.13184 0.0208 SAS System	1.00000 0.0	0.42950 0.0001	0.04427 0.4396 598
Deleted Variable	Correla with T	tion otal	Alpha	Correla with Te	tion otal	Alpha				_		13:12 Tu	esday, Augu	ist 13, 1996
CARRFC1	0.76	4802		0.76	4802					Correl	ation Analy	sis		
CARRFC2	0.76	4802	The SAS System	0.76 n	4802	593	Pearson	Correlatio	n Coeffi	cients	/ Prob > }	l under Ho	: Rho=0 / 1	1 = 307
				13:12 Tu	esday, Augu	st 13, 1996.		RECATT	REC:	SN	RECBB	RECNB	RECOC	RECRFC
		Co	rrelation Analy	ysis			RECOC	0.05486 0.3381	0.399	40 01	0.00274 0.9618	0.42950 0.0001	1.00000 0.0	-0.06249 0.2750
Pearson	Correlation	Coefficie	nts / Prob > 1	R under Ho	: Rho=0 / N	= 307	RECRFC	0.10586	0.023	05	0.11625	0.04427	-0.06249	1.00000
			CARRFC1	CAR	RFC2			0.0640	0.68	75 The	0.0418 SAS System	0.4396 1	0.2750	0.0 599
	CARRF	°C1	1.00000	0.7	6480 0001							13:12 Tu	esday, Augu	ist 13, 1996
	CARRF	°C2	0.76480	1.0	0000					Correl	ation Analy	vsis		
			0.0001 The SAS System	0. 13:12 Tu	0 esday, Augu	594 st 13, 1996	7 'VAR	' Variables	: ENATT ENRFC	ENS	N ENBC	ENBB	ENNB	ENOC
		Co	rrelation Analy	ysis						Simpl	e Statistic	:5		
6 'VAI	R' Variables:	RECATT	RECSN RECI	BB RECNB	RECOC	RECRFC	Variabl	e	N I	lean	Std Dev	Sum	Minimum	Maximum
							ENATT	30	7 8.	6645	1.2763	2660	5.0000	10.0000
		S	imple Statistic	25			ENSN ENBC	30	7 7.1	2671	2.0437	2063	2.0000	10.0000
Variable	e N	Mea	n Std Dev	Sum	Minimum	Maximum	ENBB ENNB	30 30	17 8. 17 6.1	7134 0130	1.3824 1.5232	2675 1846	2.0000	10.0000
RECATT RECSN	307 307	8.934 6.628	9 1.2689 7 1.7128	2743 2035	3.0000 2.0000	10.0000 10.0000	ENOC ENRFC	30 30	7 9.1 7 6.1	2508 9642	2.6933 1.8476	2840 2138	3.0000 2.0000	15.0000 10.0000
RECBB RECNB	307 307	8.768 6.110	7 1.3751 7 1.5658	2692 1876	2.0000 2.0000	10.0000 10.0000				The	SAS System	13:12 Tu	esday, Augu	600 1st 13, 1996
RECOC RECRFC	307 307	9.719 7.576	9 2.6947 5 1.7159	2984 2326	3.0000 2.0000	15.0000 10.0000				Correl	ation Analy	vsis		
			The SAS System	n 13:12 Tu	esday, Augu	595 st 13, 1996			Cro	onbach	Coefficient	Alpha		
		Co	rrelation Analy	/sis					for RAW	variab	les	: 0.4069	47	
		Cronb	ach Coefficient	: Alpha					for STA	NDARDIZ	ED variable	es: 0.4863	58	
	f	s or RAW va	riables	: 0.5569	08				Raw Va	riables			Std. Variak	oles
	f	or STANDA	RDIZED variable	es: 0,5973	83		Deleted	Corre	lation			Correla	tion	
		Raw Varia	bles	:	Std. Variab	les	Variable	with	Total		Alpha	with T	otal 	Alpha
Deleted	Correla	tion		Correla	tion		ENATT	0.	351266 426819		0.313076	0.40	9028 5310	0.363247
Variable	with T	otal	Alpha	with To	otal 	Alpha	ENBC ENBB	-0. 0.	117295 268572	_	0.531948	-0.08 0.33	2096	0.400942
RECATT	0.35	2867 5970	0.501067	0.42	0864 2181	0.514241 0.500303				The	SAS System	13:12 Tu	esday, Augu	13, 1996
RECBB RECNB	0.27	7893 2245	0.523062	0.35	7325 1229	0.541777				Correl	ation Analy	sis		
			The SAS System	13:12 Tu	esday, Augu	596 st 13, 1996			Raw Va	ciables			Std. Variak	les
		Co	rrelation Analy	vsis			Deleted	Corre	lation		•• •	Correla	tion	1 .21
		Raw Varial	bles	:	Std. Variab	les	variable	With	Total			with 1		Alpha
Deleted Variable	Correla with T	tion otal	Alpha	Correlat with To	tion otal	Alpha	ENNB ENOC ENRFC	0. -0.	470436 205171 048009	The	0.237923 0.369341 0.484502 SAS System	0.45 0.21 ~0.03	6843 6672	0.342249 0.454401 0.560021 602
RECOC	0.28	7044 1550	0.553594	0.270	0204 0056	0.577948					one oferer	13:12 Tu	esday, Augu	st 13, 1996
			The SAS System	1 13:12 Tue	sdav. Augu	597 st 13 1996				Correl	ation Analy	sis		
		Co	rrelation Analy	vsis		,	Pearson	Correlatio	n Coeffic	cients	/ Prob > R	under Ho	: Rho=0 / N	1 = 307
Pearson	Correlation	Coefficie	nts / Prob > F	l under Ho:	: Rho=0 / N	= 307		ENATT	ENSN	ENB	C ENBB	ENNB	ENOC	ENRFC
	RECATT	RECSN	RECBB	RECNB	RECOC	RECRFC	ENATT :	L.00000 0	.26180	0.0996	2 0.55655 4 0.0001	0.20902	0.05023	0.02260
RECATT	1.00000	0.22040	0.65436	0.19115	0.05486	0.10586	ENSN (0.26180 1	.00000 -	-0.1195	1 0.18955	0.54874	0.37653	-0.01557
	0.0	0.0001	0.0001	0.0008	0.3381	0.0640		0.0001	0.0	0.036	4 0.0008	0.0001	0.0001	0.7858
RECSN	0.22040 0.0001	1.00000 0.0	0.15629 0.0061	0.50646 0.0001	0.39940 0.0001	0.02305 0.6875	ENBC (0.09962 -0 0.0814	.11951 0.0364	1.0000 0.0	0 0.03413 0.5514	-0.05256 0.3587	-0.13986 0.0142	-0.11170 0.0506
RECBB	0.65436	0.15629	1.00000	0.13184	0.00274	0.11625	ENBB	0.55655 0	.18955	0.0341	3 1.00000 4 0.0	0.19888	0.04483	-0.02706

Deleted Variable	Co	for ST Raw V prrelation with Total	ANDARDIZE: /ariables	Alpha	S Correlat with To	td. Variab ion tal	les Alpha	CAROC CARRFC	0.03270 0.5682 0.39190 0.0001	0.27326 0.0001 0.17566 0.0020	-0.04392 0.4432 -0.19652 0.0005	-0.08831 0.1226 0.28128 0.0001	0.28811 0.0001 0.25337 0.0001	0.06330 0.2689	0.06330 0.2689 1.00000 0.0
		for SI Raw V	ANDARDIZEI Variables	D Vallables	s	td. Variab	les	CAROC	0.03270 0.5682	0.27326	-0.04392 0.4432	-0.08831 0.1226	0.28811 0.0001	1.00000 0.0	0.06330 0.2689
		for SI	CANDARDIZE	J VALIADIES						010001		0.0001	0.0	0.0001	0.0001
		for RA	W variable	es Durariables	: 0.48912 : 0.52819	:3 16		CARNB	0.34965	0.57370	-0.14489	0.22781	1.00000	0.28811	0.25337
		c	ronbach Co	pefficient	Alpha				CARATT	CARSN	CARBC	CARBB	CARNB	CAROC	CARRFC
			Correla	LION ANALYS	15			Pearson	Correlat	ion Coeffi	cients / P	rob > R	under Ho:	Rho≖0 / N	= 307
			Commola	tion Anal	ic						Correlati	on Analysi	5		,
			The 1	SAS System	13:12 Tue	sday, Augu	st 13, 1996						19.17 IU65	Juay, Augus	13, 1990
CARRFC		307 (5.1954 Th-	2.5923	1902	2.0000	10.0000				The SA	S System	13:12 Tues	dav. Augus	608 st 13, 1996
CAROC		307 7	.0391	2.7017	2161	3.0000	15.0000		0.0001	0.0021	0.4408	0.0	0.0001	0.1226	0.0001
CARBE		307 7 307 4	. 7622	1.4910	2383	2.0000	10.0000	CARBB	0.41166	0.17472	-0.04415	1.00000	0.22781	-0.08831	0.28128
CARBC		307 8	3811	2.0263	2573	2.0000	10.0000		0.0001	0.0001	0.0	0.4408	0.0110	0.4432	0.0005
CARATI		307 5	5.0130	1.7168	1539	2.0000	10.0000	CARBC	-0.25170	-0.22970	1.00000	-0.04415	-0.14489	-0.04392	-0.19652
CADATT		207 5	6001	2 4301	1722	2 0000	10 0000		0.0001	0.0	0.0001	0.0021	0.0001	0.0001	0.0020
Variable		N	Mean	Std Dev	Sum	Minimum	Maximum	CARSN	0.39757	1.00000	-0.22970	0.17472	0.57370	0.27326	0.17566
			Simple	Statistics				CARATT	1.00000 0.0	0.39757 0.0001	-0.25170 0.0001	0.41166 0.0001	0.34965 0.0001	0.03270 0.5682	0.39190 0.0001
/ VIII	varaub	CARF	RFC	0.11.00	UIIOD				CARATT	CARSN	CARBC	CARBB	CARNB	CAROC	CARRFC
7 'VAR'	Variah	les: CARA	TT CARS	N CARBC	CARBB	CARNB	CAROC	Pearson	Correlat	ion Coeffi	cients / F	rob > R	under Ho:	Rho=0 / N	= 307
			Correlat	tion Analys	is						Correlati	on Analysi	5		
			The	SAS System	13:12 Tue	sday, Augu	st 13, 1996						13.12 1465	Judy, Hugu	,, 19, 1990
(0.6932	0.7858	0.0506	0.6367	0.5547	0.6612	0.0				The SA	S System	13·12 Tues	day. Augus	607 t 13, 1996
ENRFC 0	.02260	-0.01557	-0.11170	-0.02706	0.03384	-0.02511	1.00000	CARREC		0.307787	0.4	11763	0.3087	100	0.469257
(0.3805	0.0001	0.0142	0.4338	0.0001	0.0	0.6612	CARNB		0.513306	0.3	67880 10741	0.5248	373 24	0.371984
ENOC 0	.05023	0.37653	-0.13986	0.04483	0.36723	1.00000	-0.02511	Variable	wi	th Total		Alpna 	with Tot	.a.	Alpha
ENNB 0.	.20902 0.0002	0.54874 0.0001	-0.05256 0.3587	0.19888	0.0	0.36723	0.03384	Deleted	Cor	relation			Correlati	lon	., ,
	LINALI		BADG		1 00000	0.00700	0.00004			Raw Va	riables		St	d. Variabl	es
	ርጉ እርጉ ጥጥ	ENCH	ENDC	FNBB	FNNB	ENOC	ENREC				Correlati	on Analysi	.S		
Pearson (Correla	tion Coeff	icients /	Prob > R	under Ho:	Rho=0 / N	= 307								
			Correlat	cion Analys	is						The SA	S System	13·12 Tues	dav Augus	606 t 13, 1996
					13:12 Tue	sday, Augu	st 13, 1996	CARBC	-	0.249157	0.6	28014 23431	-0.2468 0.3066	510	0.671084
			The S	SAS System			603	CARSN		0.436116	0.3	79155	0.4535	541	0.405350

Factor Analysis

The SAS System			66								
-			15:36	Friday, Aud	ust 16, 1996		11	12	13	14	15
						Eigenvalue	1.3869	1.2643	1.2209	1.1004	0.9653
Initial Factor Me	thod: Princip	al Component	s			Difference	0.1225	0.0434	0.1206	0.1351	0.0369
	· · · · · · · · · · · · · · · · · · ·					Proportion	0.0243	0.0222	0.0214	0.0193	0.0169
	Prior Com	munality Est	imates: ONE			Cumulative	0.6870	0.7092	0.7306	0.7500	0.7669
Eigenvalue	as of the Corr	elation Matr	ix: Total =	57 Average	e = 1		16	17	18	19	20
5				-		Eigenvalue	0.9285	0.8911	0.8555	0.8103	0.6833
	1	2	3	4	5	Difference	0.0373	0.0357	0.0452	0.1269	0.0261
Eigenvalue	9,1936	7.2645	4.8421	3,1987	3,0402	Proportion	0.0163	0.0156	0.0150	0.0142	0.0120
Difference	1,9290	2.4225	1.6433	0.1586	0.2752	Cumulative	0.7832	0.7988	0.8138	0.8280	0.8400
Proportion	0.1613	0.1274	0.0849	0.0561	0.0533			The SAS Sv	stem		68
Cumulative	0.1613	0.2887	0.3737	0.4298	0.4831			,	15:36	Friday, Aug	rust 16, 1996
	6	7	8	9	10	Initial Factor Me	thod: Princip	al Component	s		
Eigenvalue	2.7650	2.0654	2.0143	1.9202	1.4709			-			
Difference	0.6996	0.0511	0.0941	0.4493	0.0841		21	22	23	24	25
Proportion	0.0485	0.0362	0.0353	0.0337	0.0258	Eigenvalue	0.6573	0.6195	0.5242	0,5100	0.4611
Cumulative	0.5317	0.5679	0.6032	0.6369	0.6627	Difference	0.0378	0.0952	0.0143	0.0489	0.0303
		The SAS Sy	stem		67	Proportion	0.0115	0.0109	0.0092	0.0089	0.0081
			15:36	Friday, Aug	just 16, 1996	Cumulative	0.8516	0.8624	0.8716	0.8806	0.8887
Initial Factor Me	thod: Princip	al Component	s				26	27	28	29	30

.

Eigenvalue Difference Proportion Cumulative	0.4308 0.0233 0.0076 0.8962	0.407 0.025 0.007 0.903 The SA	6 0.3824 2 0.0245 2 0.0067 4 0.9101 S System	0.3579 0.0260 0.0063 0.9164	0.3318 0.0398 0.0058 0.9222 69	RECATT2 ENATT1 ENATT2 CARATT1	59 * 59 * 58 * 36	-49 * -43 * -36 -20 Th	-6 6 11 61 * 8 SAS Syste	10 3 9 14 em	14 3 5 -18	1 -1 -4 -13	74
			15:3	36 Friday, A	August 16, 1996					15:36	i Friday,	August 16,	, 1996
Initial Factor 1	Method: Prin	cipal Compo	nents			Initial Factor	: Method: P	rincipal Co	omponents				
Figonyalua	31	. 3.	2 33 3 0.2815	34 0 2629	35			Fa	ctor Patte:	rn			
Difference	0.0057	0.004	8 0.0186	0.0128	0.0109		FACTOR1	FACTOR2	FACTOR3	FACTOR4	FACTORS	FACTOR	6
Proportion Cumulative	0.0051 0.9273	0.005	0 0.0049 3 0.9373	0.0046 0.9419	0.0044 0.9463	CARATT2	37	-15	61 *	14	-15	-10	
	20		7 20	20	40	RECSN1	61 *	21	-7 -11	-40 *	-26	18 17	
Eigenvalue	36 0.2391	0.227	9 0.2150	0.2083	0.2003	ENSN1	58 *	23	-7	-50 *	-25	8	
Difference	0.0112	0.012	9 0.0067	0.0079	0.0017	ENSN2	59 *	22	-3	-50 *	-27	7	
Proportion Cumulative	0.0042	0.004	5 0.9582	0.9619	0.9654	CARSN1 CARSN2	26	16	61 *	2	-12	13	
		The SA	S System	C Fuidan	70	RECBC1	9	-23	-19	47 * 42 *	-6 -2	44 * 47 *	
			19:3	o rriday, i	August 10, 1990	ENBC1	-2	-18	-7	44 *	-10	57 *	
Initial Factor	Method: Prin	cipal Compo	nents			ENBC2	10	-15 Th	-8 -8 SAS Sust	49 *	-16	48 *	75
	41	. 4	2 43	44	45	-		111	5 DAG DYSC	15:36	i Friday,	August 16,	, 1996
Eigenvalue	0.1986	0.180	5 0.1710 5 0.0146	0.1564	0.1531	Initial Factor	Method: P	rincipal Co	omponents				
Proportion	0.0035	0.003	2 0.0030	0.0027	0.0027								
Cumulative	0.9689	0.972	0 0.9750	0.9778	0.9805			Fa	ctor Patte:	rn			
D ¹	46	4	7 48	49	50		FACTOR1	FACTOR2	FACTOR3	FACTOR4	FACTOR5	FACTOR	б
Difference	0.1374	0.129	4 0.0205	0.00992	0.0052	CARBC1	11	-10	-44 *	23	10	26	
Proportion	0.0024	0.002	3 0.0021	0.0017	0.0017	CARBC2	0	0	-49 * -11	18	16 21	23	
Cumuiative	0.9629	The SA	S System	0.9890	0.9907	RECBB1 RECBB2	53 ×	-60 *	-4	8	23	-5	
			15:3	6 Friday, A	August 16, 1996	ENBB1 ENBB2	56 * 58 *	-47 * -53 *	6	2	20 19	-10 -10	
Initial Factor H	Method: Prin	cipal Compo	nents			CARBB1	36	-39	35	4	24	-3	
	51	5	2 53	54	55	CARBB2 RECNB1	34 55 *	-47 * 19	34 -20	4 -21	13 -4	0 22	
Eigenvalue	0.0919	0.088	4 0.0810	0.0758	0.0709	RECNB2	42 *	25	7	-23	6	41 *	
Difference Proportion	0.0035	0.007	4 0.0052 6 0.0014	0.0050	0.0037 0.0012	ENNB1	63 *	28 The	6 e SAS Syste	-24 em	-9	26	76
Cumulative	0.9923	0.993	9 0.9953	0.9966	0.9978				-	15:36	Friday,	August 16,	, 1996
	56	5	7			Initial Factor	Method: P	rincipal Co	omponents				
Eigenvalue Difference	0.0671 0.0116	0.055	6					Fac	ctor Patter	rn			
Proportion Cumulative	0.0012 0.9990	0.001	0 0				FACTOR1	FACTOR2	FACTOR3	FACTOR4	FACTOR 5	FACTOR	5
11	factors will	be retained	d by the NFACTO	R criterio	n.	ENNB2	43 *	25	7	-32	9	33	
		The SA	S System		72	CARNB1	23	19	61 *	14	5	30	
			15:3	66 Friday, A	August 16, 1996	RECEM1	-23	24 47 *	22	-6	-9	39	
Initial Factor 1	Method: Prin	cipal Compo	nents			ENEM1	-18	48 *	25	18	-7	36	
	s	cree Plot o:	f Eigenvalues			RECAP1	46 *	26	-33	7	-2	-5	
F I						ENAP1	46 *	36 43 *	-29	10	6 7	-13	
i 10 +						RECOC1	42 *	46 *	-25	24	1	-14	
g 1 e 2						RECOC2	45 *	50 * The	-22 SAS Syste	9 m	12	-9	77
n								1110	, one cyste	15:36	Friday,	August 16,	1996
v 5 + 3 a 4	4					Initial Factor	Method: P:	rincipal Co	mponents				
1	56789	679001						 		_			
e 0 +	012345	23456	789012345678901	23456789012	234567			rac	cor Patter	n			
s+	-++ 5 10 15	++ 20 25	30 35 40	45 50	++ 55 60		FACTOR1	FACTOR2	FACTOR3	FACTOR4	FACTOR5	FACTOR6	5
-			Number			RECOC3	51 *	56 *	-20	-1	4	-14	
		The SAS	5 System 15:3	6 Fridav. A	73 August 16, 1996	ENOC1 ENOC2	47 * 46 *	57 * 57 *	-22 -20	14 16	11 16	-21 -24	
						ENOC3	48 *	60 *	-16	9	12	-23	
Initial Factor N	Method: Prin	cipal Compor	nents			CAROC1 CAROC2	17 18	61 * 61 *	21 21	34 36	22 36	-11 -17	
		Factor	Pattern			CAROC3	19	59 *	20	31	34	-19	
	FACTOR1 F.	ACTOR2 FAC	CTOR3 FACTOR4	FACTOR5	FACTOR6	RECRFC1 RECRFC2	-2	-10	-20	-29	49 * 60 *	18	
BECBEU1	52 *	-12 -3	0.0	-03	1	ENRFC1	-2	-6	~4	-29	62 *	14	
ENBEH1	52 *	-7 -1	19 16	-13	-10	- ENKPCZ	-10	o The	sAS Syste	-22 em	vo *	71	78
CARBEH1 RECINT1	23 54 *	-7 :	39 14 33 15	-33 -15	-20					15:36	Friday,	August 16,	1996
ENINT1	51 *	-19 -2	20 8	-14	-14	Initial Factor	Method: Pr	rincipal Co	mponents				
RECATT1	∠≎ 55 *	-13 4	-9 8	-36 15	-1/			Fac	tor Patter	m			

F-16

								1		Fac	ctor Patte	rn		
	FACTOR1	FACTOR2	FACTOR3	FACTOR4	FACTOR5	FACTOR6			FACTOR7	FACTORS	FACTOR9	FACTOR10	FACTOR11	
CARRFC1	23	-6	45 *	-1	27	-4			incion	11101010	11101010			
CARRFC2	20	-12	42 *	~1	24	- 4		RECOC3	-18	13	11	9	-6	
		The	e SAS Syst	em	P	Durant 1C	79	ENOC1	-1	5	-10	10	22	
				15:30	Friday,	August 10,	1990	ENOC2 ENOC3	5	-1	-8	8	24	
Initial Factor	Method: Pr	incipal Co	mponents					CAROC1	õ	8	-24	-15	-6	
								CAROC2	-2	10	-20	-10	~б	
		Fac	ctor Patte	rn				CAROC3	~4	16	-23	-7	-5	
					m emen 11			RECRFC1	-2	26	12	9	5	
	FACTOR7	FACTOR8	FACTOR9	FACTORIU	FACTORII			ENDEC1	11	32	4	17	13	
PECBEHI	12	23	27	-3	-29			ENRFC2	23	26	14	13	16	
ENBEH1	54 ×	-11	-4	-15	15					The	e SAS Syst	em		84
CARBEH1	15	5	5	50 ×	17							15:36	Friday, A	ugust 16, 1996
RECINT1	26	16	28	-4	-20									
ENINT1	52 *	~5	2	-18	17			Initial Factor	Method: P	rincipal Co	omponents			
DECATTI	9	4 12	12	-40	-14					Fac	ctor Patte	rn		
RECATT2	8	21	7	-8	-16									
ENATT1	28	6	~17	-12	7				FACTOR7	FACTOR8	FACTOR9	FACTOR10	FACTOR11	
ENATT2	30	15	-14	-12	8				-		F2 <i>t</i>	10	11	
CARATT1	2	-3	25	15	10		0.0	CARRFC1	-1	-22	53 *	-1/	11	
		The	e SAS Syst	em 15.36	Friday	August 16	1996	CARRECZ	-2	-23	4.5	-14	10	
				15.50	rrraay,	August 10,	1920	NOTE: Printed	values are	multiplied	i by 100 a	nd rounded	to the ne	arest
Initial Factor	Method: Pr	incipal Co	mponents					integer.	Values g	reater than	n 0.4 have	been flag	ged by an	'*'.
		· ·								The	e SAS Syst	em 15.36	Twidow A	85
		Fac	tor Patte	rn								10.50	riiday, A	ugust 10, 1990
	FACTOR7	FACTOR8	FACTOR9	FACTOR10	FACTOR11			Initial Factor	Method: P:	rincipal Co	omponents			
CADATE?		6	20	15	7				Va	riance exp	lained by	each facto	r	
RECSNI	-11	23	-5	-2	-16				vu.	Lines out	luinea by		-	
RECSN2	-11	21	-7	-4	-6			FAG	CTOR1 FAG	CTOR2 FAG	CTOR3 FA	CTOR4 FA	CTOR5 FA	CTOR6
ENSN1	6	11	-16	-3	24			9.1	93562 7.2	64546 4.8	42055 3.1	98743 3.0	40183 2.7	65008
ENSN2	7	8	-16	-4	26							00010 EXC	TOD 1 1	
CARSNI	-15	29	-14	2	~1			2.0	5384 2.0	14268 1.93	20174 1.4	70915 1.3	86860	
RECBC1	-16	13	6	6	25			210		The	e SAS Syst	em		86
RECBC2	-14	6	15	8	27						-	15:36	Friday, A	ugust 16, 1996
ENBC1	-19	13	3	-21	21									
ENBC2	-17	18	-6	-21	22			Initial Factor	Method: Pi	rincipal Co	omponents			
		Th€	e SAS Syst	em 15:36	Friday	August 16	81 1996	ľ	Final Cor	mmunality F	Istimates:	Total = 3	9.161697	
				10.00	trady,	nuguse re,	1000							
Initial Factor	Method: Pr	incipal Co	mponents					RECBEH1	ENBEH1	CARBEH1	RECINT1	ENINT1	CARINT1	RECATT1
		Fac	tor Patte	rn				0./10231	0./13095	0.08/190	0./44/4/	0./1/4//	0.033040	0.040912
								RECATT2	ENATT1	ENATT2	CARATT1	CARATT2	RECSN1	RECSN2
	FACTOR7	FACTOR8	FACTOR9	FACTOR10	FACTOR11			0.713787	0.667903	0.642615	0.711443	0.650027	0.769757	0.789347
G1 DDC1	F	10	21	F0 *	0			PNONT	ENENO	CARCHI	CADENO	BECEC1	DECECS	ENDOI
CARBCI CARBC2	2	-26	-25	44 ×	-1			0.817787	0.822538	0.697013	0.648092	0.621425	0.721198	0.713526
RECBB1	-7	-10	-12	-7	-18				01022000					
RECBB2	-6	-12	-14	1	-15			ENBC2	CARBC1	CARBC2	RECBB1	RECBB2	ENBB1	ENBB2
ENBB1	-3	-19	-34	-3	-6			0.695828	0.676988	0.670830	0.686105	0.771709	0.751990	0.791254
ENBB2 CADDD1	-6	-19	-27	19	-5					The	e SAS Syst	em 15-36	Friday A	87 uonust 16 1996
CARBB2	-21	-10	-5	14	-15			1				10.00	friday, A	ugust 10, 1990
RECNB1	-7	8	14	12	-29			Initial Factor	Method: Pr	rincipal Co	mponents			
RECNB2	-12	-50 *	6	-6	-3									
ENNB1	1	-3	-12	1	3			CARBBI	CARBB2	RECNB1	RECNB2	ENNB1	ENNB2	CARNE1
		Ine	SAS SYST	em 15-36	Friday	August 16	1996	0.55/144	0.547900	0.6065//	0.749312	0.02/00/	0.807664	0.626032
				10.00	rriddy, s	August 10,	1550	CARNB2	RECEM1	ENEM1	CAREM1	RECAP1	ENAP1	CARAP1
Initial Factor	Method: Pr	incipal Co	mponents					0.646428	0.766375	0.776021	0.528121	0.592628	0.552247	0.490438
		Fac	tor Batta	**				DECOC1	BECOC2	PECOCA	ENOC1	ENOC2	ENOCS	CAROC1
		rac	tor fatte.	L 11				0,656417	0.657626	0.704527	0.701967	0.751492	0.772958	0.721382
	FACTOR7	FACTOR8	FACTOR9	FACTOR10	FACTOR11									
ENNE?	Ō	-56 *	3	-6	10			CAROC2	CAROC3	RECRFC1	RECRFC2	ENRFC1	ENRFC2	CARRFC1
CARNB1	2	10	-10	-0	-19			0.003122	0.139129	0.304144	0.037090	0.032132	0.707113	0.712755
CARNB2	-3	-35	-2	-6	-7			CARRFC2						
RECEM1	49 *	-6	4	8	-23			0.638213						
ENEM1	47 *	-7	4	11	-21									
CAREM1	40	-5	5	-1	-27					Th∈	SAS Syst	em 15.20	Emiden 3	88 1000
ENAP1	-11	-3 -16	24	2	-13							10:30	riiday, A	uyust 10, 1996
CARAP1	3	-10	-13	-23	3			Rotation Method	: Varimax					
RECOC1	-22	-2	22	4	-14									
RECOC2	-29	4	18	3	-9				01	thogonal 7	ransforma	tion Matri:	ĸ	
		The	ana syst	=m 15:36	Fridav.	August 16.	دى 1996		1	2	3	4	5	6
						5/	=	l	-	-	-	-	-	-
Initial Factor	Method: Pr	incipal Co	mponents					1	0.58782	0.44865	0.49556	0.20709	0.22801	0.07383
								4 4	-0.02/03	0.3004/	0.22310	12/06.0	-0.08093	-0.100/2

3	0.05387	-0.42148	-0.02417	0.26655	0.60567	-0.12463	1				15:36	Friday, A	ugust 16,	1996
4 5	0.12214 0.27573	0.14496 0.03857	-0.55908 -0.35317	0.40522 0.33665	0.16503 -0.27583	0.53698 -0.12198	Rotation Metho	od: Varimax						
6	-0.05885	-0.16413	0.28120	+0.19698	-0.13691	0.63312			Rotate	H Factor P	attern			
8	-0.04701	0.01857	0.29950	0.09913	0.09523	0.22950		P1 (80) 1	FACTORS	ERCHOD3	FACTORA	FACTORS	FACTORS	
9 10	-0.20924 -0.07904	0.56659 0.14049	-0.30200 -0.03091	-0.44510 -0.16381	0.21989 0.58701	0.08775 -0.15783		FACTOR1	FACTORZ	FACTORS	FACTOR4	FACTURS	FACTORS	
11	-0.33272	-0.23011	0.05359	0.10615	0.21767	0.34183	ENNB2 CARNB1	5 14	12 12	34 17	4 36	-6 34	-7 11	
		In	ie SAS Syst	em 15:36	Friday, A	o ugust 16, 199	6 CARNB1	10	-3	22	22	15	5	
Potation Math	od: Varimav						RECEM1 ENEM1	-38 -36	-9 -6	-3 -3	16 20	7 12	-2 1	
Rocation Nech	ou. vulimun						CAREM1	-28	7	-5	12	-16	-2	
	0	rthogonal	Transforma	tion Matri	x		ENAP1	-2	74 * 59 *	8	19	-5	4	
	7	8	9	10	11		CARAP1	-4	8	-3	61 * 30	4	5	
1	0.20455	-0.01841	0.25063	-0.01484	-0.04525		RECOC1	-2	70 *	19	33	-5	1	
2	0.14167	-0.01823	-0.04379	0.03564	0.21999				The	e SAS Syst	em 15:36	Friday, A	ugust 16.	94 1996
4	-0.18955	-0.28805	0.08876	0.11629	0.17724									
5	0.19331 0.35212	0.72950	-0.12149	0.06618 0.15744	-0.06916 0.44267		Rotation Metho	od: Varımax						
7	-0.09452	0.19094	0.72911	0.05539	0.56321				Rotate	d Factor P	attern			
8	-0.76639 0.17111	0.40202	-0.10903 0.07867	-0.27376	0.01930			FACTOR1	FACTOR2	FACTOR3	FACTOR4	FACTOR5	FACTOR6	
10	-0.10393	0.21186	-0.20981	0.68985	0.03380		DECOGO	E.	67 +	24	26	2	-8	
11	0.19153	0.21654 Th	0.45393 e SAS Syst	0.05933 em	-0.60401	9	0 ENOC1	-10	55 *	18	49 ×	4	-7	
			-	15:36	Friday, A	ugust 16, 199	6 ENOC2	-8	47 * 15 *	18 26	58 * 56 *	3	-7 -10	
Rotation Meth	od: Varimax						CAROC1	-12	14	1	81 *	-1	-2	
		Potata	d Factor F	attern			CAROC2 CAROC3	~5 ~4	19 18	-6 0	85 * 83 *	-1 1	-6 -8	
		Notace	d ractor r	accern			RECRFC1	8	7	6	-14	-21	1	
	FACTOR1	FACTOR2	FACTOR3	FACTOR4	FACTOR5	FACTOR6	RECRFC2 ENRFC1	6 7	-7 -6	-2 4	2 1	-3 -9	-2 -6	
RECBEH1	36	54 *	17	-18	3	20	ENRFC2	-5	-8	-6	8	-3	-6	05
ENBEH1 CARBEH1	30 3	13 -2	15 6	8 1	5 79 *	4 -7			The	e SAS Syst	em 15:36	Friday, A	ugust 16,	95 1996
RECINT1	46 *	44 *	12	-26	4	16	Detation Math.	de Venimer						
CARINT1	34	11	15 6	-3	78 *	-5	Rotation Metho	Ju: Varimax						
RECATT1 RECATT2	73 * 74 *	17 18	7	-14 -11	6 8	14 17			Rotated	d Factor Pa	attern			
ENATT1	65 *	-10	23	2	13	9		FACTOR1	FACTOR2	FACTOR3	FACTOR4	FACTOR5	FACTOR6	
ENATT2 CARATT1	60 * 25	-7 0	21 -1	10 2	18 72 *	10 2	CARRFC1	15	16	-23	1	28	-4	
		Th	e SAS Syst	em	- • • •	9	CARRFC2	15	11	-23	-3	29	-1	0.6
				15:30	Friday, A	igust 16, 199			1116	e SAS Syste	em 15:36	Friday, A	ugust 16,	1996
Rotation Methe	od: Varimax						Rotation Metho	d: Varimax						
		Rotate	d Factor P	attern					Detete) E				
	FACTOR1	FACTOR2	FACTOR3	FACTOR4	FACTOR5	FACTOR 6			Rotated	a factor Pa	attern			
CARATT2	24	2	4	8	69 *	4		FACTOR7	FACTOR8	FACTOR9	FACTOR10	FACTOR11		
RECSN1	14	31	80 *	-2	2	-3	RECBEH1	-27	-13	22	-6	21		
RECSN2 ENSN1	14 1	28 12	83 * 83 *	-7 4	0	-1 -9	ENBEH1 CARBEH1	3 -9	-12 -12	74 * 13	5 11	12 0		
ENSN2	1	9	82 *	4	9	-9	RECINT1	-22	-4	38	-6	17		
CARSN1 CARSN2	8	-13	36	34	43 *	13	CARINT1	-6	-15	6	-3	2		
RECBC1 RECBC2	9 12	5	-9 -2	-7 -12	7 1	75 * 75 *	RECATT1	-8	11 13	11 16	-6 -12	-7		
ENBC1	2	-10	-5	-3	-8	83 *	ENATT1	0	4	39	-5	-1		
ENBC2	8	-7 Th	3 e SAS Syst	7 em	-4	81 * 92	ENATT2 CARATT1	-6 17	7 -9	39 4	-10 -29	2		
			-	15:36	Friday, Au	ıgust 16, 1990	5		The	e SAS Syste	em 15.20	Duddan to		97
Rotation Metho	od: Varimax										15:50	riiuay, A	igust 10, .	1990
		Rotate	d Factor P	attern			Rotation Metho	d: Varimax						
	ፍልሮምሰው1	FACTOD 2	FACTORS	FACTORA	FACTORS	FACTORS			Rotated	l Factor Pa	attern			
	TACIORI	INCIUKZ	FROTORS	FACIOR4	FACTORS	TACTORD		FACTOR7	FACTOR8	FACTOR9	FACTOR10	FACTOR11		
CARBC1 CARBC2	15 7	13 11	-6 -10	-9 -4	-3 -17	20 13	CARATT2	12	-6	-4	-29	-1		
RECBB1	80 * e⊑ •	7	-1	+9 -0	-7	7	RECSN1	2	-3	-6	-8	7		
ENBB1	80 *	-10	11	-9	5 4	-5	ENSN1	4 14	-3	25	-0 1	-2 -14		
ENBB2 CARBR1	83 * 61 *	-5 -6	8 -6	3	8 32	-2 -7	ENSN2 CARSN1	17 6	1 1	28 -28	-1 -26	-15 16		
CARBB2	58 *	-10	-3	-6	33	4	CARSN2	0	-2	-32	-27	12		
RECNB1 RECNB2	9 19	52 * 20	48 * 32	-8 3	~3 -8	-1 3	RECBC1 RECBC2	-4 6	1 6	2 11	17 24	-3 -5		
ENNB1	14	20	64 *	18	10	4	ENBC1	3	-5	-5	-3	5		
		Th	e SAS Syst	ent		90	ENBC2	-5	-13	T	-1	2		

		The	SAS Syst	em	Friday	Muguet 16 19	98 96 Pot	ation Method	• Varimax						
Rotation Methor	1: Varimax			15.50	, riiday, r	August 10, 19		atton nethoa	. fullman	Rotated	l Factor Pa	attern			
		Potetor	Factor F	attorp					FACTOR7	FACTORS	FACTOR9	FACTOR10	FACTOR11		
		Rocated	(factor f	accern					2110201						
	FACTOR7	FACTOR8	FACTOR9	FACTOR10	FACTOR11			CARRFC1 CARRFC2	50 * 48 *	21 20	6 8	-49 * -43 *	-3 -9		
CARBC1	2	4	4	76 *	8										
CARBC2	6	4	0	77 *	5		NOT	E: Printed v	alues are	multiplied	by 100 an	nd rounded	to the nea	arest	
RECBB1	4	-1	5	6	-12		1	integer.	Values gr	eater than	1 0.4 have	been flag	ged by an	• • •	100
RECBB2	7	1	5	9	-14					The	e SAS Syste	em. 15.26	Eviden A	whet 16	1006
ENBB1	15	~6	9	13	-18							15:30	Friday, A	igust 16, .	1990
ENBB2	14	-5	9	12	-21		D-4		. Wandman						
CARBB1	19	9	-18	1	-4		ROT	ation Method	: varımax						
CARBB2	17	2	-19	-3	-15				17		almost by a	and footo	~		
RECNB1	10	7	-9	/	20		1		var	nance expl	lained by (ach facto.	L		
RECNB2	75 *	-4	-6	8	13				mon1 E10		TTOD 2 EX			TTOPS	
ENNB1	31	2	7	5	10		~	FAC	TORI FAC	TORZ FAC	10R3 PA	10R4 PA	210R3 EAG	22220	
		Th€	a SAS Syst	em			99	6.59	3998 4.61	.8843 4.35	33407 4.5.	14055 5.5	02201 2.7	51210	
				15:36	o Friday, A	August 16, 19	96	P3 0					TOD 1 1		
Rotation Metho	d: Varimax							2.75	4423 2.64	10898 2.60 The	04288 2.3	12677 2.3 m	39559		103
		Rotated	l Factor F	attern							-	15:36	Friday, A	igust 16, 3	1996
	FACTOR7	FACTOR8	FACTOR9	FACTOR10	FACTOR11		Rot	ation Method	: Varimax						
ENNB2	80 *	1	11	9	5				Final Com	munality E	Sstimates:	Total = 3	9.161697		
CARNB1	18	5	-27	-17	41 *										
CARNB2	64 *	-4	-14	-8	29			RECBEH1	ENBÉH1	CARBEH1	RECINT1	ENINT1	CARINT1	RECATT1	
RECEM1	11	1	6	5	75 *			0.710231	0.713095	0.687196	0.744747	0.717477	0.653046	0.646912	
ENEM1	14	2	5	7	75 *										
CAREM1	5	4	9	9	62 *			RECATT2	ENATT1	ENATT2	CARATT1	CARATT2	RECSN1	RECSN2	
RECAP1	8	-7	3	-2	1			0.713787	0.667903	0.642615	0.711443	0.650027	0.769757	0.789347	
ENAP1	20	0	31	9	8										
CARAP1	17	-18	9	-13	13			ENSN1	ENSN2	CARSN1	CARSN2	RECBC1	RECBC2	ENBC1	
RECOC1	4	-13	-1	4	0			0.817787	0.822538	0.697013	0.648092	0.621425	0.721198	0.713526	
RECOC2	9	1	-9	2	~7										
		The	sAS Syst	em		1	00	ENBC2	CARBC1	CARBC2	RECBB1	RECBB2	ENBB1	ENBB2	
				15:36	5 Friday, A	August 16, 19	96	0.695828	0.676988	0.670830	0.686105	0.771709	0.751990	0.791254	
										The	e SAS Syste	em			104
Rotation Method	d: Varimax											15:36	Friday, A	igust 16, 1	1996
		Rotated	l Factor F	attern			Rot	ation Method	: Varimax						
	FACTOR7	FACTOR8	FACTOR9	FACTOR10	FACTOR11			CARBB1	CARBB2	RECNB1	RECNB2	ENNB1	ENNB2	CARNB1	
								0.557144	0.547900	0.606577	0.749312	0.627667	0.807664	0.628032	
RECOC3	1	3	0	5	-5										
ENOC1	10	0	24	19	-10			CARNB2	RECEM1	ENEM1	CAREM1	RECAP1	ENAP1	CARAP1	
ENOC2	7	4	27	21	-15			0.646428	0.766375	0.776021	0.528121	0.592628	0.552247	0.490438	
ENOC3	9	5	30	18	-13										
CAROC1	2	- 4	-4	-6	17			RECOC1	RECOC2	RECOC3	ENOC1	ENOC2	ENOC3	CAROC1	
CAROC2	1	7	-6	-5	13			0.656417	0.657626	0.704527	0.701967	0.751492	0.772958	0.721382	
CAROC3	~5	9	-8	- 4	10										
RECRFC1	-3	64 *	-9	5	-9			CAROC2	CAROC3	RECRFC1	RECRFC2	ENRFC1	ENRFC2	CARRFC1	
RECRFC2	5	78 *	-1	~9	13			0.803122	0.759729	0.504144	0.637696	0.652152	0.707113	0.712735	
ENRFC1	-4	79 *	-5	7	-5										
ENRFC2	6	82 *	1	-1	7			CARRFC2							
		The	SAS Syst	em		1	01	0.638213							
			2	15:36	Friday, A	August 16, 19	96								

Regression (Hierarchical)

The SAS	System		648 13:12 Tuesd	lay, August	: 13, 1996	Bounds	on conditi	on number:	The	1, SAS System	13:12 Tuos	law August	649
	Forward Selection	n Procedure for D	ependent Variable	RECBEH1							13.12 Iues(iay, August	15, 1990
Step 1	Variable RECINT1	Entered R-squa	re = 0.58510214	C(p) = 2	2.00000000				5000 -1-				
	DF	Sum of Squares	Mean Square	F	F Prob>F	NO OU	er variable	met the U	.5000 sig	nificance .	level for en	ry into the	model.
Regressi	on 1	162.54785364	162.54785364	430.12	0.0001	Su	mmary of Fo	rward Sele	ction Pro	cedure for	Dependent Va	ariable RECB	EHI
Error Total	305 306	115.26322128 277.81107492	0.37791220			Step	Variable Entered	Number In	Partial R**2	Model R**2	C(p)	F	Prob>F
	Parameter	Standard	Type II			1	RECINT1	1	0.5851	0.5851	2.0000	430.1207	0.0001
Variable	Estimate	Error	Sum of Squares	Ē	F Prob>F				The	SAS System			650
INTERCORD	0 52007200	0 1 60 40 40 7	4 00012100	11 00							13:12 Tueso	day, August	13, 1996
RECINT1	0.79534276	0.03834945	162.54785364	430.12	0.0009	Model:	MODEL1						
						Depend	lent Variabl	e: RECBEH1					

	Analysis o	f Variance			INTERCE	P 1	1.03	9985 0.15	372316	6.765	0.00(01
	Sum of	Mean			ENINT1	1	0.66	6161 0.03 	817134	1/.452	0.000	51
Source	DF Squares	Square	F Value	Prob>F	Variabl	e DF	Standard Esti:	nate				
Model Error C Total	1 162.54785 305 115.26322 306 277.81107	0.37791	430.121	0.0001	INTERCÉ ENINT1	P 1 1	0.0000 0.7068	0000 5611				
Root MSE Dep Mean	0.61475 R 3.78502 A	-square C di R-sq C).5851).5837					The SAS	System	13:12 Tuesday	, August 1:	656 3, 1996
c.v.	16.24156	5 1			For	ward S	Selection	Procedure fo	r Depende	nt Variable (ARBEH1	
	The SAS	System 13:12	Tuesday, Aug	651 ust 13, 1996	Step 1 Var	iable	CARINT1 E	ntered R-s	quare = 0	.57194140 0	:(p) = 2.00	0000000
	Parameter	Estimates				DI	· ·	Sum of Squar	es M	ean Square	F	Prob>F
Variable DF	Parameter St Estimate	andard T for Error Parame	r H0: eter=0 Prol	b > {T{	Regression Error	1 305	5	134.128642 100.386015	37 13 61	4.12864237 0.32913448	407.52	0.0001
INTERCEP 1 RECINT1 1	0.538878 0.16 0.795343 0.03	040487 834945 2	3.359 20.739	0.0009 0.0001	Variable	Pa	arameter Estimate	234.514657 Standa Err	rd or Sum	Type II of Squares	F	Prob>F
S Variable DF	tandardized Estimate				INTERCEP	0.3	39111995	0.062774	36 1.	2.77699379	38.82	0.0001
INTERCEP 1 RECINT1 1	0.0000000 0.76491969				Bounds on co	0.0 nditic	on number:	0.030791	1, 13	1	407.52	0.0001
	The SAS	System 13:12	Tuesday, Aug	652 ust 13, 1996				The SAS	System	13:12 Tuesday	, August 13	3, 1996
Forward Sel	ection Procedure fo	r Dependent Var	riable ENBEH1		No other var	iable	met the O	.5000 signif	icance le	vel for entry	v into the 1	model.
Step 1 Variable EN	INT1 Entered R-s	quare = 0.49964	1556 C(p) =	2.00000000	Summary	of For	ward Sele	ction Proced	ure for D	ependent Vari	able CARBEI	H1
DF	Sum of Squar	es Mean So	puare	F Prob>F	Vari	able	Number	Partial	Model			
Regression 1 Error 305 Total 306	110.621851 110.778799 221.400651	55 110.6218 92 0.3632 47	35155 304 20918	.57 0.0001	Step Ente	red NT1	In 1	R**2 0.5719	R**2 0.5719	C(p) 2.0000	F 407.5193	Prob>F
Para Variable Est	meter Standa imate Err	rd Typ or Sum of Sau	e II Mares	F Prob>F				The SAS	System	13:12 Tuesday	, August 13	658 3, 1996
INTERCEP 1.039	98536 0.153723 16140 0.039171	16 16.6238	39139 45 25155 204	.77 0.0001	Model: MODEL Dependent Va	1 riable	e: CARBEH1					
Bounds on condition	10140 0.0381/1	1 1	5155 304	.57 0.0001				Analysis o	f Varianc	e		
bounds on condition	The SAS	System 13:12	Tuesday, Augu	653 ust 13, 1996	Sourc	e	DF	Sum of Squares	Ma Squa	ean are FVa	lue I	Prob>F
No other variable me	t the 0.5000 signif	icance level fo	or entry into	the model.	Model Error C Tot	al	1 305 306	134.12864 100.38602 234.51466	134.12 0.32	864 407. 913	519 0	0.0001
Summary of Forwa	rd Selection Proced	ure for Depende	ent Variable H	ENBEH1	R	oot MS ep Mea	SE 0 in 1	.57370 R .47231 A	-square dj R-sq	0.5719 0.5705		
Variable N Step Entered	umber Partial In R**2	R**2 C	(p)	F Prob>F	с	.v.	38	.96607 The SAS	System			659
1 ENINT1	1 0.4996 The SAS	0.4996 2.0 System 13:12	1000 304.50 Tuesday, Augu	679 0.0001 654 1st 13, 1996				Parameter 1	Estimates	13:12 Tuesday	, August 13	3, 1996
Model: MODEL1					Vanishl		Parame	eter St	andard	T for H0:	Duch > 10	T 1
Dependent variable. I	Analysis o	f Variance			INTERCE		0.39	120 0.06	277436	6.231	0.000	01
Courses	Sum of	Mean	E. 11-]	Duch	CARINT1	1	0.62	1585 0.03	079117	20.187	0.000)1
Model	1 110 62195	5quare	F VALUE	Prop>r	Variabl	ə DF	Estir	nate				
Error C Total	305 110.77880 306 221.40065	0.36321	504.500	0.0001	INTERCE CARINT1	? 1 1	0.00000 0.75620	0000 5808				
Root MSE Dep Mean C V	0.60267 R- 3.65472 Ad	-square 0 dj R-sq 0	.4996 .4980					The SAS	System 1	13:12 Tuesday	, August 13	660 3, 1996
G.V.	The SAS	System		655	For	ward S	election H	Procedure for	r Depender	nt Variable R	ECINT1	
		13:12	Tuesday, Augu	ist 13, 1996	Step 1 Var	iable	RECATT Ent	tered R-se	quare = 0	.31793140 C	(p) = 24.53	3694596
	Parameter 1	Estimates				DF		Sum of Squar	es Me	ean Square	F	Prob>F
Variable DF	Parameter Sta Estimate	andard T for Error Parame	HO: ter=0 Prob	o > T	Regression Error	1 305		81.696976 175.267192	90 8: 48 (1.69697690 0.57464653	142.17	0.0001

Total	306		256.9641693	38							Param	eter	Standard	T for H	10:		
	Para	meter	Standa	rd Gui	Type II	F	DrobNE	Vai	riable	DF	Esti	mate	Error	Paramete	er≈0 Pro	< d	T
INTERCEF	e Est	11mate	0.308190	97	1.18794932	2.07	0.1515	IN RÉC	TERCEP CATT	1 1 1	-0.24	9347 0. 1072 0.	32888048 03485066 02508740	-0. 10. 3	.758 .074 .411	0.44	189 001 007
RECATT	0.407	20491	0.034151	55	81.0909/090	142.17	0.0001	· REG	CBC	1	0.08	0581 0.	02113354	3.	.813	0.00	002
Bounds o	on condition	number:	The SAS	l, System	1 13:12 Tues	day, August	661 13, 1996	Va:	riable	DF	Standard Esti	lized mate					
								IN	TERCEP	1 1	0.0000	0000 2673					
Step 2	Variable RE	ICBC Ent	ered R-se	quare =	0.34480094	C(p) = 13.	63389273	REG	CSN CBC	1 1	0.1599 0.1794	3359 8929					
	DF		Sum of Square	95	Mean Square	F	Prob>F					The S	AS Syster	n 13:12 Tu	nesday, Aug	just 1	666 13, 1996
Regressi	lon 2		88.601486	28	44.30074314	79.99	0.0001		Forwa	ard Se	election	Procedure	for Deper	ndent Varia	able ENINTI		
Total	304		256.964169	38	0.00002402			Stop 1	Varia	able F	NATT Ent	ered B	-square =	= 0.261585	- (α) 3	11.	37735903
Variable	Para e Est	ameter imate	Standa: Erre	rd or Sui	Type II n of Squares	F	Prob>F	Scep 1	VULI	DF	JATTI Dire	Sum of Squ	ares	Mean Squa	are	F	Prob>F
INTERCEP	0.111	59357	0.316790	16	0.06872381	0.12	0.7249	Regress	ion	1		65.2072	5552	65.20725	552 108	.05	0.0001
RECATT RECBC	0.378	336981 574220	0.034507	40 50	66.58567231 6.90450937	120.23 12.47	0.0001 0.0005	Error Total		305 306		184.0696 249.2768	1744 7296	0.60350	594		
			The SAS	System	12.12 Tuon	dan Angust	662	Variabl	8	Par	rameter	Stan	dard rror Si	Type m of Squar	II	F	Prob>F
				_	13:12 Tues	day, August	13, 1990	Variabi	e 	с. т.		0 2047	2520	A 06910	100 4	-	0 0000
Bounds o	on condition	number:	1.05933		4.237329			ENATT	þ	0.3	6169309	0.0347	9633	65.20725	552 108	3.05	0.0001
Step 3	Variable RE	ECSN Ent	tered R-s	quare ≈	0.36902756	C(p) = 4.	.00000000	Bounds	on cond	dition	n number:	The S	1, AS System	n 1			667
	DF		Sum of Squar	es	Mean Square	F	Prob>F					ine s		13:12 T	uesday, Aug	just :	13, 1996
Regressi	lon 3		94.826859	45	31.60895315	59.07	0.0001										
Error Total	303 306		162.137309 256.964169	93 38	0.53510663			Step 2	Varia	able H	ENSN Ente	ered R	-square =	= 0.287998	32 C(p) =	= 2.3	13204847
	Para	umeter	Standa	rd	Type II					DF		Sum of Squ	ares	Mean Squa	are	F	Prob>F
Variable	e Est	imate	Err	or Su	m of Squares	F	Prob>F	Regress	ion	2		71.7914	4473	35.89572	236 63	.48	0.0001
INTERCEN RECATT	-0.249 0.351	934721 L07168	0.328880	48 66	0.30759067 54.30124846	0.57 101.48	0.4489 0.0001	Error Total		304 306		177.4854 249.2768	2824 7296	0.58383	365		
RECSN	0.085	556934	0.025087 The SAS	40 System	6.22537317	11.63	0.0007 663			Pa	rameter	Stan	dard	Type	II		
				-	13:12 Tues	day, August	13, 1996	Variabl	e	E	stimate	E	rror Si	um of Squa	res	F	Prob>F
RECBC	0.080	58056	0.021133	54	7.77958555	14.54	0.0002	INTERCE: ENATT	Р	0.4	6509909 3051572	0.3150 0.0354	6440 6134	1.27227	529 2 383 80	2.18	0.1409
Bounds o	on condition	number	1.11830	9, 9	9.714741			ENSN		0.08	8872650	0.0264	2085	6.58418	921 11	.28	0.0009
No other	r variable me	et the (.5000 signif	icance :	level for en	try into the	e model.					The S	AS Syster	n 13:12 Ti	iesday, Aug	just :	668 13, 1996
Sum	mary of Forwa	ard Sele	ection Proced	ure for	Dependent V	ariable RECI	INT1	Bounds	on cond	dition	n number:	1.073	585,	4.294342			
Step	Variable M Entered	lumber In	Partial R**2	Model R**2	C(p)	F	Prob>F	No othe:	r varia	able r	net the O	.5000 sign	ificance	level for	entry into	the	model.
1	RECATT	1	0.3179	0.3179	24.5369	142.1691	0.0001	Sum	mary of	f Forv	ward Sele	ction Proc	edure for	Dependent	. Variable	ENIN	r 1
2 3	RECBC RECSN	2 3	0.0269	0.3448 0.3690	13.6339 4.0000	12.4670 11.6339	0.0005		Varia	ole	Number	Partial	Model				
			The SAS	System	13:12 Tues	day, August	664 13, 1996	Step	Entere	əd	In	R**2	R**2	C (1))	F	Prob>F
Model: M	MODEL1	DECTION					,	1 2	ENATT ENSN		1 2	0.2616 0.0264 The S	0.2616 0.2880	11.377 2.132	74 108.0 20 11.2	472 775	0.0001 0.0009
Dependen	it variable.	RECIRI	Amalucie o	f Varia								1110 0.	io bybtei		uesday, Aug	ust 1	13, 1996
			Anarysis o.	r varra	Mean			Model: Mo	10DEL1	(ph l a	ENTN#1						
S	Source	DF	Squares	S	quare F	Value	Prob>F	Depender	it vari	tabre.	. ENINII		. E. 17				
M	fodel	3	94.82686	31.	50895	59.070	0.0001					Anaiysis	or varia	ince			
E	Irror I Total	303 306	162.13731 256.96417	0.9	53511				Source		DF	Sum o Square	t s S	Mean Square	F Value		Prob>F
	Root MSE	().73151 R·	square	0.369	0		1 1	Model		2	71.7914	4 35.	.89572	61.483		0.0001
	Dep Mean C.V.	17	1.08143 Ad 7.92287	dj R-sq	0.362	В			Error C Total	1	304 306	177.4854 249.2768	30. 7	.58383			
			The SAS	System	13:12 Tues	dav, August	665 13, 1996		Roo Der	ot MSI o Mear	5 0 a 3	.76409	R-square Adi R-se	e 0.2	2880		
			Parameter	Estima+,		2			C.1	v.	19	.46686	J				

				The SAS Sy	stem 13:12 Tues	day, August	670 13, 1996	Step	Variable Entered	e Number In	Partial R**2	Model R**2	C(p)	F	Prob>F
			Parameter	rameter Est	imates lard T for HO:			1 2	CARATT CARBC	1	0.2156	0.2156	2.3630 2.9628	83.8093 1.4003	0.0001
V I E	ariable NTERCEP NATT	DF 1 1	Estimate 0.465099 0.330510	e Er 9 0.31506 5 0.03546	rror Parameter= 5440 1.47 5134 9.32	0 Prob > 6 0.1 0 0.0	T .409)001	3	CARSN	3	0.0025 The	SAS System	4.0000 13:12 Tueso	U.9628 lay, August	675 13, 1996
E	NSN	1	0.08872	7 0.02642 1	:085 3.35	8 0.0	009	Model: 1 Depende:	MODEL1 nt Varial	ole: CARIN	F1				
v	ariable	DF	Estimate	2							Analys	is of Varia	nce		
I E E	NTERCEP NATT NSN	1 1 1	0.00000000) 9 2					Source	DF	Sum Squa	res S	Mean quare F	Value	Prob>F
				The SAS Sy	vstem 13:12 Tues	dav. August	671 13. 1996		Model Error C Total	3 303 306	76.93 270.21 347.15	746 25. 563 0. 309	64582 2 89180	28.757	0.0001
	Forwa	ard Sel	action Prod	edure for I	ependent Variabl	e CARINT1			Root	MSE	0.94435	R-square	0.221	5	
Step 1	Varia	able CA	RATT Entere	ed R-squa	are = 0.21555365	C(p) = 2.	36302250		Dep 1 C.V.	fean	1.73941 54.29140	Adj R-sq	0.2139)	
		DF	Sum	of Squares	Mean Square	F	Prob>F				The	SAS System	13:12 Tueso	lay, August	676 13, 1996
Regres Error Total	sion	1 305 306	27	74.83011662 72.32297784 17.15309446	74.83011662 0.89286222	83.81	0.0001				Parame	ter Estimat	es		
Variab	ا م	Para	neter	Standard	Type II Sum of Squares	F	Prob > F	Va	riable I	Para DF Est	ameter timate	Standard Error	T for H0: Parameter=() Prob >	T
INTERC	EP	0.598	00136	0.13584341	17.30261086 74.83011662	19.38 83.81	0.0001	IN' CAI CAI	TERCEP RATT RSN	1 0.7 1 0.5	754411 L87945 033991	0.33555982 0.02461057 0.03464014	2.248 7.63 0.981	8 0. 7 0. 0.	0253 0001 3273
Bounds	on cond	dition	number:	1,	1			CAI	RBC	1 -0.0	028588	0.02782646	-1.027	0.	3051
				The SAS Sy	stem 13:12 Tues	day, August	672 13, 1996	Va:	riable 1	DF Est	imate				
Step 2	Varia	able CA	RBC Entered	l R-squa	re = 0.21915056	C(p) = 2.	96284730	IN CAJ CAJ	TERCEP RATT RSN	1 0.000 1 0.428 1 0.054	000000 880628 178840				
		DF	Sum	of Squares	Mean Square	F	Prob>F	CAI	RBC	1 -0.05	138652 The	SAS System	13:12 Tueso	lav, August	677 13, 1996
Regres: Error	sion	2 304	27	6.07879394 1.07430053	38.03939697 0.89169178	42.66	0.0001		Forward	d Selection	n Procedur	e for Depend	dent Variable	RECATT	
Total		306	34	17.15309446				Step 1	Variabl	le RECBB Er	ntered	R-square =	0.42819283	C(p) = 8	.61608187
Variab	le	Est:	neter Imate	Standard Error	Sum of Squares	F	Prob>F			DF	Sum of S	quares	Mean Square	F	Prob>F
INTERCI CARATT CARBC	ËP	0.9093 0.196 -0.032	35491 55567 57405	0.29606707 0.02295247 0.02752669	8.41204093 65.45894915 1.24867731	9.43 73.41 1.40	0.0023 0.0001 0.2376	Regress: Error Total	ion 3	1 305 306	210.96 281.72 492.69	935143 2 771698 706840	210.96935143 0.92369743	228.40	0.0001
				The SAS Sy	stem 13:12 Tues	lav, August	673 13. 1996	Variable	9	Parameter Estimate	St	andard Error Sur	Type II of Squares	F	Prob>F
Bounds	on cond	lition 1	umber:	1.06764,	4.270559			INTERCE	p 3	63986849	0.35	463216	97.30718213	105.35	0.0001
Step 3	Varia	ble CAN	SN Entered	R-squa	re = 0.22162401	C(p) ≈ 4.	00000000	Bounds of	on condit	ion number	::	1,	1		
		DF	Sum	of Squares	Mean Square	F	Prob>F				The	SAS System	13:12 Tuesd	lay, August	678 13, 1996
Regres: Error Total	sion	3 303 306	7 27 34	6.93746190 0.21563256 7.15309446	25.64582063 0.89180077	28.76	0.0001	Step 2	Variabl	e RECEM1 E	intered	R-square =	0.44216814	C(p) = 3	.00000000
Variab	le.	Parar	neter	Standard Error	Type II Sum of Squares	F	Prohle			DF	Sum of S	quares	Mean Square	F	Prob>F
INTERCH	5P	0.7544	1105 14520	0.33555982 0.02461057	4.50758601 52.01002117	5.05 58.32	0.0253	Regressi Error Total	lon 3 3	2 104 106	217.85 274.84 492.69	494393 3 212447 706840	.08.92747197 0.90408594	120.48	0.0001
CARSN		0.0335	1001	0.03464014 The SAS Sy	0.85866/97 stem 13:12 Tueso	0.96 lay, August	0.3273 674 13, 1996	Variable	9	Parameter Estimate	St	andard Error Sum	Type II n of Squares	F	Prob>F
CARBC		-0.0285	8815	0.02782646	0.94129122	1.06	0.3051	INTERCE	e 4	.36891683	0.43	918317	89.46762194	98.96 164 35	0.0001
Bounds	on cond	lition r	umber:	1.227316,	10.59538			RECEM1	-(.18042557	0.04	537810	6.88559250	7.62	0.0061
No othe	er varia	ble met	the 0.500	0 significa	nce level for ent	ry into the	model.				The	SAS System	13:12 Tuesd	ay, August	679 13, 1996
Sur	mmary of	Forwar	d Selectio	n Procedure	for Dependent Va	ariable CARI	NT1	Bounds o	on condit	ion number:	. 1.1	99771, 4	.799086		

								1	Source		DF	Sur	n of ares	Me Soua	an Te FV	alue	Prob>F
No ot	her variab	le met th	ne 0.5000 si	gnificance l	evel for ent	ry into th	e model.		Model		1	154.3	9362 3	154.393	162 136	.870	0.0001
S	Summary of	Forward S	Selection Pr	ocedure for	Dependent Va	riable REC.	ATT		Error C Total		305 306	344.04 498.44	1937 1300	1.128	103		
Step	Variabl Entered	e Numbe	er Partial In R**2	Model R**2	C(p)	F	Prob>F		Root	t MSE	1	.06209	R-sq	uare	0.3098		
1	RECBB		1 0.4282	0.4282	8.6161	228.3966	0.0001		Dep C.V.	Mean	8 12	.66450 .25793	Adj I	R-sq	0.3075		
2	RECEM1		2 0.0140 The	0.4422 SAS System	3.0000	7.6161	0.0061 680					The	e SAS Sy:	stem			685
					13:12 Tuesd	lay, August	13, 1996					_			3:12 Tuesda	y, August	13, 1996
Model Deper	: MODEL1 ident Varia	ble: RECA	ATT									Param	eter Est:	imates	m fam UO.		
			Analys	is of Varian	ice			Va	riable	DF	Param Esti	eter mate	Standa Er:	ard ror P	arameter=0	Prob >	T
	Source	,	Sum	of	Mean mare F	Value	Prob>F	IN	TERCEP	1 1	4.18 0.51	7304 3831	0.38746	469 037	10.807 11.699	0. 0.	0001 0001
	Model		2 217.85	494 108.9	12747 12	0.484	0.0001			-	Standard	ized					
	Error C Total	30 30	04 274.84 06 492.69	212 0.9 707	0409			Va IN	riable TERCEP	DF 1	Est1	mate 0000					
	Root Dep	MSE Mean	0.95083 8.93485	R-square Adj R-sq	0.4422 0.4385			EN	BB	1	0.5565	5351 Th	- 525 SV	stem			686
	C.V.		10,04100 The	CAC System			681						o ono og	1	3:12 Tuesda	y, August	13, 1996
			1116	ана зузсеш	13:12 Tuesd	lay, August	13, 1996		Forwa	rd Sel	lection	Procedu	re for D	ependen	nt Variable	CARATT	
			Parame	ter Estimate	:5			Step 1	Varial	ble CA	ARBB Ent	ered	R-squa:	re = 0.	16946699	C(p) = 7	.64440999
	Variable	Pa DF H	arameter Estimate	Standard Error	T for H0: Parameter=0	Prob >	- T			DF		Sum of :	Squares	Me	an Square	E	Prob>F
	INTERCEP RECBB	1 4	4.368917 0.555089	0.43918317 0.04329846	9.948 12.820	0. 0.	0001 0001	Regress Error Total	ion	1 305 306		306.2 1500.8 1807.0	4286529 5159725 9446254	306 4	5.24286529 1.92082491	62.23	0.0001
	RECEM1	1 -(0.180426	0.06537810	-2.760	. 0.	0061	V		Para	ameter	S	tandard	Sum o	Type II	T	ProhaF
	Variable	DF I	ardized Sstimate					TNTEDCE	פ	1 53	197776	0.5	9179479	11 June 0	.00642713	8.33	0.0042
	INTERCEP	1 0.0	0000000					CARBB	Ľ	0.524	486858	0.0	6653291	306	.24286529	62.23	0.0001
	RECEM1	1 -0.3	12948812					Bounds	on cond	ition	number:	The	1, B SAS SV:	stem	1		687
			The	SAS System	13:12 Tuesd	lav, August	682 13, 1996							1	3:12 Tuesda	y, August	13, 1996
	Forwar	d Select:	ion Procedur	e for Depend	lent Variable	ENATT											
Step	1 Variab	le ENBB H	Entered	R-square =	0.30975181	C(p) = 1	.00876665	Step 2	Varia	ble C/	AREM1 En	tered	R-squa:	re = 0.	18723136	C(p) = 3	.00000000
		DF	Sum of S	quares	Mean Square	F	Prob>F			DF		Sum of :	Squares	Me	an Square	F	Prob>F
Regre	ession	1 305 306	154.39 344.04	362228 1 937446 299674	54.39362228 1.12803074	136.87	0.0001	Regress Error Total	ion	2 304 306		338.3 1468.7 1807.0	4475743 4970511 9446254	169 4	.17237872 .83141350	35.02	0.0001
10041		Paramete	er St	andard	Type II			Variabl	Ð	Para Est	ameter timate	St	tandard Error	Sum o	Type II f Squares	F	Prob>F
Varia	ble	Estimat	ce	Error Sum	of Squares	F	Prob>F	INTERCE	P	2.479	909066	0.64	1168116	72	.11414474	14.93	0.0001
INTER ENBB	CEP	4.1873043 0.5138308	35 0.38 37 0.04	746469 1 392037 1	31.74244741 54.39362228	116.79 136.87	0.0001 0.0001	CARBB CAREM1		0.481	145483 655872	0.00	6804305 1892837	241 32	.88991284 .10189214	50.07 6.64	0.0001 0.0104
Bound	ls on condi	tion numb	er: The	1, SAS System	1		683					The	e SAS Sys	stem 1	3:12 Tuesda	v. August	688 13, 1996
				one byerom	13:12 Tuesd	ay, August	13, 1996	Bounds	on condi	ition	number:	1.0)65266,	4.2	61065	<i>,</i> ,,	,
No ot	her variab	le met th	ne 0.5000 si	gnificance l	evel for ent	ry into the	e model.	No othe	r variak	ble me	 et the 0	.5000 si	lgnificar	nce lev	el for entr	y into th	e model.
s	ummary of	Forward S	Selection Pr	ocedure for	Dependent Va	riable ENA	TT	Sum	mary of	Forwa	ard Sele	ction Pr	cocedure	for De	pendent Var	iable CAR	ATT
	Variabl	e Numbe	r Partial	Model					Variabl	le M	Number	Partial	L Mod	del			
Step 1	Entered ENRR	1	in R**2	R**2 0.3098	C(p)	F 136.8700	Prob>F	Step 1	Entered	di .	In 1	R**2	2 R* 5 0.14	**2 695	C(p) 7.6444	F	Prob>F
•			_ the	SAS System	13:12 Tuesd	ay, August	684 13, 1996	2	CAREM1		2	0.0178 The	0.18 SAS Sys	872 stem	3.0000	6.6444	0.0104 689
Model Depen	: MODEL1 dent Varia	ble: ENAI	T					Model: 1	MODEL1	- h ¹ -	(3D3 mm			1	J:1∠ Tuesda	y, August	тэ, тэр
			Analys	is of Varian	ce			neheuge	ic varia	ante:	CARATT	Analw	sis of V	arianco			
								1									

F-23

	Source		DF	Sum of Squares	Sq	Mean uare	F Value	I	Prob>F	It RE	NTERCEP	1 1	3.24	3346 3994	0.340650 0.054006	41 89	9.521 10.258	0. 0.	0001 0001
	Model Error		2 3 304 14	38.34476 68.74971	169.1	7238 3141	35.015	(0.0001	Va	ariable	DF	Standarc Esti	ized mate					
	C Total Root	MSE	306 18 2.19	07.09446 805 R	-square	0.18	72			IN RE	NTERCEP CONB	1 1	0.0000	0000 6070					
	Dep C.V.	Mean	5.60 39.18	912 A 703	dj R-sq	0.18	19							The	SAS Sys	tem 13:	12 Tuesd	ay, August	695 13, 1996
				The SAS	System	13:12 Tue	sday, Au	igust 13	690 3, 1996		Forwa	ard S	election	Procedur	e for De	pendent	Variable	ENSN	
			Р	arameter	Estimate	s				Step 1	Varia	ble	ENNB Ente	red	R-squar	e = 0.30	111230	C(p) = 2	.00000000
		:	Paramete	r St	andard	T for HO	:					DF		Sum of S	quares	Mean	Square	F	Prob>F
v	ariable	DF	Estimat	e	Error	Parameter	=0 Pr	ין < מס: יין אומי	r	Regress	sion	1		270.37	138322	270.3	7138322	131.41	0.0001
I C C	NTERCEP ARBB AREM1	1 1 1	2.47909 0.48145 -0.30655	1 0.64 5 0.06 9 0.11	168116 804305 892837	3.8 7.0 -2.5	63 76 78	0.000	01 01 04	Total		305		627.53 897.90	741156 879479	2.0	5/499/1		
v	ariable	Sta: DF	ndardize Estimat	d e						Variabl	e	Pa E	rameter stimate	St	andard Error	Sum of	Type II Squares	F	Prob>F
I	NTERCEP	1 0	.0000000	0						INTERCE ENNB	IP.	3.0 0.6	0913037 1711646	0.33 0.05	389692 383400	167.1 270.3	0788903 7138322	81.22 131.41	0.0001 0.0001
c	AREM1	1 -0	.1375637	4						Bounds	on cond	litio	n number:	The	1, SAS Sys	tem	1	. ,	696
				The SAS	System	13:12 Tue	sday, Au	igust 13	691 3, 1996							13:	12 Tuesd	ay, August	13, 1996
	Forwar	d Selec	tion Pro	cedure fo	r Depend	ent Variab	le RECSN	I		No othe	er varia	ble :	met the C	.5000 si	gnifican	ce level	for ent:	ry into th	e model.
Step 1	Variab	le RECN	B Entere	d R-s	quare =	0.25650244	C(p) =	= 2.00	0000000	Sun	umary of	For	ward Sele	ction Pr	ocedure	for Depe	ndent Va	riable ENS	N
		DF	Sum	of Squar	es l	Mean Squar	e	F	Prob>F		Variab	le	Number	Partial	Mode	el			
Regres Error Total	sion	1 305 306	2 6 8	30.253970 67.413781 97.667752	87 2. 58 44	30.2539708 2.1882419	7 103 1	15.22	0.0001	Step 1	Entere ENNB	d	In 1	R**2 0.3011	R*1 0.30	*2 11 :	C(p) 2.0000	F 131.4077	Prob>F
Variab	le	Parame Estím	ter ate	Standa Err	rd or Sum	Type I of Square	I	न	Prob>F					The	SAS Sys	tem 13:	12 Tuesda	ay, August	697 13, 1996
INTERC	EP	3.24334	627	0.340650	41 1	98.3645875	- 1 9(0.65	0.0001	Model: Depende	MODEL1 nt Vari	able	: ENSN						
Bounds	on condi	tion nur	mber:	0.034000	1.	1	/ 10.	3.22	0.0001					Analys	is of Va	riance			
				The SAS	System	- 13:12 Tue:	sday, Aug	gust 13	692 3, 1996		Source		DF	Sum Squa	of res	Mean Square	FV	Value	Prob>F
											Model Error		1 305	270.37 627.53	138 2' 741	70.37138 2.05750	13:	.408	0.0001
No oth	er variab: mmarv of 1	le met 1 Forward	selectio	00 signif	icance le	evel for en	ntry into Variable	o the m	nodel.		C Total	+ MS	306 7 1	897.90	879 R=smi	ara	0 3011		
Ch	Variable	e Numb	ber Pa	rtial	Model	S (m)	, at tubic	-			Dep C.V	Mean	n 6 21	.71987 .34563	Adj R-	-sq	0.2988		
step 1	RECNB		1 0.	.2565	R**2 0.2565	2.0000	105.2	F 2233	0.0001					The	SAS Syst	tem 13:1	12 Tuesda	y, August	698 13, 1996
				The SAS	System	13:12 Tue:	sday, Auç	gust 13	693 8, 1996					Parame	ter Estin	nates			
Model: Depend	MODEL1 ent Varial	ole: REC	CSN							Va	riable	DF	Param Esti:	eter mate	Standaı Erro	rd Ti or Para	for H0: ameter=0	Prob >	T
			A	nalysis o	f Variano	ce				IN EN	TERCEP NB	1 1	3.00 0.61	9130 7116	0.3338969 0.0538340	92	9.012 11.463	0.0	0001
	Source		DF	Sum of Squares	M Squ	lean lare l	F Value	P	rob>F	Vo	wish1.	DE	Standard	ized					
	Model Error C. Total		1 23 305 60	30.25397 57.41378	230.25 2.18	5397 1 1824	105.223	0	0.0001	va IN	TERCEP	1 1	0.0000	0000					
	Root	MSE	1.479	927 R-	-square	0.250	65			EIN		T	0,040/	The	SAS Syst	em 10 1	0		699
	C.V.		22.310	527 AC	pe-v fr	0.234	3 T				Farme	rd e	lection	rocedur	a for De-	L:LL T +rebrev	iz idesda Variable	CADEM	73, 1980
				The SAS	System	13:12 Tues	sdav, Aug	aust 13	694 . 1996	Step 1	Varia	ble (CARNE Ent	ared	R-smare	a = 0.320	912932	C(n) = 2	00000000
			Pa	arameter H	Estimates	3		,10				DF		Sum of S	juares	Mean	Square	- (r) 2.	Prob>F
		I	Parameter	r Sta	andard	T for HO:	:			Regress	ion	1		296.85	749296	296.85	5749296	149.63	0.0001
Va	ariable I	DF	Estimate	e	Error	Parameter=	=0 Pro	ob > T	1 i	Error		305		605.09	038977	1.98	3390292		

Total	306	901.94788274				TNTED	ר מחי	7 778	1502 0 11	649698	66 770	0.	0001
Variable	Parameter Estimate	Standard Error	Type II Sum of Squares	F	Prob>F	Handal		Standardi	.zed	049090	00.770		0001
INTERCEP CARNB	1.77244781 0.66059663	0.27684476 0.05400358	81.31950116 296.85749296	40.99 149.63	0.0001	Varia: INTERC	EP 1	Estim 0.00000	1000				
Bounds on cond	lition number:	1,	1						The SAS	System			706
		The SAS Sys	tem 13:12 Tuesda	y, August 1	700 3, 1996	F	rward S	election F	Procedure fo	r Depende	13:12 Tuesd	ay, August	13, 1996
							· · · ·	steetion i		r Depende		a	
No other varia	able met the O	.5000 significan	ce level for entr	y into the	model.	Step 1 Va	riabie i	SNREC Ente	erea K-S	quare = (1.0124/012	C(p) = 2	.00000000
Summary of	Forward Seled	ction Procedure	for Dependent Var	iable CARSN	ſ		DF	5	Sum of Squar	es N	lean Square	F	' Prob>F
Variak Step Entere	ole Number ed In	Partial Mod R**2 R*	lel *2 C(p)	F	Prob>F	Regression Error Total	1 305 306		15.945699 1262.152020 1278.097719	56 3 31 87	L5.94569956 4.13820335	3.65	0.0506
1 CARNB	1	0.3291 0.32	91 2.0000	149.6331	0.0001		Pai	rameter	Standa	rd	Type II	_	
		The SAS Sys	tem 13:12 Tuesda	y, August 1	701 3, 1996	Variable	Es	stimate	Err	or Sum	of Squares	F	Prob>F
Model: MODEL1 Dependent Vari	able: CARSN					INTERCEP ENRFC	-0.12	2752967 2355080	0.453443 0.062940	21 132 43 1	29.48410371 15.94569956	321.27	0.0506
-		Analysis of Va	riance			Bounds on d	condition	n number:	The SAS	1, Svstem	1		707
		Cur of	Moon							-,	13:12 Tuesd	ay, August	13, 1996
Source	DF	Squares	Square FV	alue	Prob>F								**-****
Model	1	296.85749 2	96.85749 149	.633	0.0001	No other va	riable r	net the O.	5000 signif	icance le	evel for ent	ry into th	e model.
Error C Total	305 1. 306	605.09039 901.94788	1.98390			Summary	of Forv	ward Selec	tion Proced	ure for I	Dependent Va	ciable ENB	c
Roc	ot MSE 1. Mean 5.	.40851 R-squ .01303 Adj R	are 0.3291			Var Step Ent	iable ered	Number In	Partial R**2	Model R**2	(a)	F	' Prob>F
C.\	28	.09700				1 FNE	FC	1	0 0125	0 0125	2 0000	3 8533	0.0506
		The SAS Sys	tem 12.12 Turada	u Dumunt 1	702	I Div		1	The SAS	System	12.12 Tuord	August	708
		D	13:12 Tuesda	y, August I	3, 1990	N. J. L. MODT					13.12 Iuesu	iy, August	15, 1990
	_	Parameter Esti	mates			Dependent V	ariable:	ENBC					
Variable	DF Estir	eter Standa nate Err	rd T for HU: or Parameter=0	Prob >	T				Analysis o	f Variano	ce		
INTERCEP CARNB	1 1.772 1 0.660	2448 0.276844 0597 0.054003	76 6.402 58 12.232	0.00	01	Sour	се	DF	Sum of Squares	N Squ	lean Iare F	Value	Prob>F
Variable	Standardi DF Estin	ized				Mode	1	1 305	15.94570 1262.15202	15.94	1570	3.853	0.0506
INTERCEP	1 0.00000	2000				C To	tal	306	1278.09772				
CARNB	1 0.57369	9793	t		703		Root MSE Dep Mear	2. 7.	03426 R- 26710 Ad	-square ij R-sq	0.0125 0.0092		
		The SAS Sys	13:12 Tuesda	y, August 1	3, 1996		C.V.	21.	99270				200
Forwa	rd Selection H	Procedure for Dep	pendent Variable	RECBC					The SAS	System	13:12 Tuesda	y, August	13, 1996
No variable me	t the 0.5000 s	significance lev	el for entry into	the model.	704				Parameter H	Estimates			
			13:12 Tuesda	y, August 1	3, 1996	Variah	LO DE	Parame	ter Sta	andard	T for HO:	Brob >	1.001
Model: MODEL1 Dependent Vari	able: RECBC					INTERC	EP 1	8.127	530 0.453	344321	17.924	0.	0001
		Analysis of Va	riance			ENRFC	1	-0.123	551 0.062	94043	-1.963	0.	0506
Source	DE	Sum of	Mean		Duch	Variab	le DF	Standardi Estim	zed ate				
Source	Dr	aguares	Square r v	alue .	PTOD>T	INTERC	EP 1	0.00000	000				
Model Error C Total	306 306	1274.93811 1274.93811	4.16646		•	ENRFC	1	-0.11169	555 The SAS	System			710
Roo	t MSE 2.	04119 R-squa	are 0.0000								13:12 Tuesda	y, August	13, 1996
Dep C.V	Mean 7. . 26.	77850 Adj R 24145	-sq 0.0000			Fo	rward Se	lection P	rocedure for	Depende	nt Variable	CARBC	
		The SAS Sve	tem		705	Step 1 Va	riable C	ARRFC Ent	ered R-so	quare = 0	.03861843	C(p) = 2	.00000000
			13:12 Tuesda	y, August 1	3, 1996		DF	S	um of Square	es M	ean Square	F	Prob>F
		Parameter Estin	mates			Regression	1		48.5205923	38 4	8.52059238	12,25	0.0005
						Frrer	205		1207 0000310	17	3 06030453		

Variable	Paran Esti	neter imate	Stand Er	iard rror Su	Type II m of Squares	F	Prob>F						13:12 Tu	lesday, i	August 13, 199	€
INTERCEP CARRFC	9.3327 -0.1530	79580 51110	0.29466 0.04388	5065 3 3573	972.89159956 48.52059238	1003.18 12.25	0.0001 0.0005	Model: MODEL1 Dependent Var	iabl	e: RECBB						
Bounds on	condition r	number:		1,	1						Analysi	s of Varia	nce			
			The SA	AS System	13:12 Tuesda	y, August	711 13, 1996	Source	:	DF	Sum Squar	of es So	Mean quare	F Value	e Prob>E	Ŧ
No other w	variable met	the 0.	 5000 signi	ficance	level for entr	y into the	e model.	Model Error C Tota	1	1 305 306	4.877 573.701 578.579	84 4.8 97 1.8 80	37784 38099	2.593	0.1084	I
Summan	ry of Forwar	d Selec	tion Proce	dure for	Dependent Var	iable CAR	вс	Ro	ot M	SE 1	1.37149	R-square	0.0	0084		
Va Step Er	ariable Nu ntered	umber In	Partial R**2	Model R**2	C (p)	F	Prob>F	De C.	p Mea V.	an 8 15	3.76873 5.64071	Adj R-sq	0.0	052		
1 CA	ARRFC	1	0.0386 The SA	0.0386 AS System	2.0000	12.2518	0.0005 712				The	SAS System	13:12 Tu	iesday, <i>l</i>	71 August 13, 199	.7 96
					13:12 Tuesda	y, August	13, 1996				Paramet	er Estimate	25			
Model: MOE Dependent	DEL1 Variable: C	ARBC						Variable	DF	Param Esti	neter Imate	Standard Error	T for H Paramete	10: er=0 I	Prob > T	
			Analysis	of Varia	nce			INTERCEF RECAP1	1 1	8.28 0.12	2212 0 9541 0	.31209465 .08044286	26. 1.	537 610	0.0001 0.1084	
Sou	irce	DF	Sum of Squares	s Si	Mean quare FV	alue	Prob>F	Variable	DF	Standard Esti	lized .mate					
Mod Err C I	iel ror Total	1 305 306	48.52059 1207.88983 1256.41042	48.	52059 12 96029	.252	0.0005	INTERCEP RECAP1	1 1	0.0000 0.0918	00000 1890					
	Root MSE Dep Mean	1.	99005 38111 74446	R-square Adj R-sq	0.0386 0.0355						The	SAS System	13:12 Tu	lesday, A	71 Mugust 13, 199	.8 16
	C.V.	25.	74440					Forw	ard S	Selection	Procedure	for Depend	lent Varia	ble ENBE	1	
			The SA	is system	13:12 Tuesda	y, August	713 13, 1996	No variable m	et tł	he 0.5000	significa	nce level f	or entry	into the	model.	
			Parameter	Estimate	es						The	SAS System	13:12 Tu	esday, A	71 ugust 13, 199	9
Varia	ble DF	Parame Estima	ter S ate	tandard Error	T for H0: Parameter=0	Prob >	T	Model: MODEL1 Dependent Var	iable	e: ENBB						
INTER	CEP 1	9.332	796 0.2	9466065	31.673	0.0	0001				Analysi	s of Varian	ce			
CHINN	St St	andardi	zed	400010	-3,500	0.0	0003	Source		DE	Sum o	of Second	Mean	D II.	Duch	
Varia	ble DF	Estima	ate					Model		Dr	0 000	es 59	uare	r varue	PLODPE	
INTER CARRF	CEP 1 C 1 -	0.000000 0.19651	000 571					Error C Tota	1	306 306	584.775 584.775	24 1.9 24	1103	•	·	
			The SA	S System	13:12 Tuesda	y, August	714 13, 1996	Ro Dej C.	ot MS p Mea V.	SE 1 an 8 15	.38240 .71336 .86530	R-square Adj R-sq	0.0 0.0	000 000		
F	orward Sele	ction Pr	rocedure f	or Depend	ient Variable 1	RECBB					The S	SAS System			72	0
Step 1 V	ariable REC	AP1 Ente	ered R-	square =	0.00843071	C(p) = 2.	00000000					•	13:12 Tu	esday, A	ugust 13, 199	6
	DF	ຣເ	um of Squa	res	Mean Square	F	Prob>F				Paramete	er Estimate	s			
Regression Error Total	1 305 306		4.87783 573.70196 578.57980	903 553 456	4.87783903 1.88099005	2.59	0.1084	Variable	DF	Param Esti:	eter mate	Standard Error	T for H Paramete:	0: r=0 P	rob > T	
Variable	Param Estin	eter mate	Standa Eri	ard ror Sum	Type II n of Squares	F	Prob>F	INTERCEP	1	8.71 Standard	3355 0. ized	.07889774	110.	439	0.0001	
INTERCEP RECAP1	8.2822 0.1295	1161 4123	0.31209 0.080442	465 13 286	24.66635302 4.87783903	704.24 2.59	0.0001 0.1084	Variable INTERCEP	DF 1	Estin 0.0000	mate 0000					
Bounds on	condition n	umber:	The SAS	1, S System	1		715				The S	AS System	13:12 Tu	esdav. A	72: 1001st 13 199	1
					13:12 Tuesday	, August	13, 1996	Forwa	ard S	Selection 1	Procedure	for Depend	ent Varia	ble CARB	-g 10, 199	
No other va	ariable met	the 0.5	000 signii	ficance l	evel for entry	v into the	model.	No variable me	et th	ne 0.5000 :	significar The S	ice level for	or entry :	into the	model. 72	2
Summar	y of Forward	d Select	ion Proces	dure for	Dependent Vari	able RECB	в						13:12 Tue	əsday, A	ugust 13, 1990	5
Va Step En	riable Nur tered	aber P In	artial R**2	Model R**2	C(p)	F	Prob>F	Model: MODEL1 Dependent Vari	able	CARBB						
1 RE0	CAP1	1	0.0084	0.0084	2.0000	2.5932	0.1084				Analysis	of Varian	ce			
			The SAS	5 System			716				Sum o	f 1	fean			

I

Source		DF Sq	uares S	Square F	Value	Prob>F	TNT	FRCEP	1	0.0000	0000				
Model		0 0.	00000		•	•	REC	COC	1	0.4294	9592				
Error C Total	. 3	06 1111.	64169 3. 64169	.63282							The	SAS Syste	em 13:12 Tues	day, August	728 : 13, 1996
Roc Dep	ot MSE Mean	1.90599 7.76221	R-square Adj R-se	e 0.000 q 0.000	0 0			Forwa	ard Se	lection	Procedure	e for Depe	endent Variabl	e ENNB	
C.1	7.	24.55478					Step 1	Varia	able E	NOC Ente	red	R-square	= 0.13485823	C(p) = 2	2.00000000
		Т	he SAS System	n 13:12 Tues	day, Augus	723 st 13, 1996			DF		Sum of Se	quares	Mean Square	E	F Prob>F
		Para	meter Estimat	tes			Regressi	lon	1		95.742	231339	95.74231339	47.54	0.0001
	F	arameter	Standard	T for H0:			Error Total		305 306		614.20 709.94	556935 788274	2.01378875		
Variable	DF 1	Estimate	Error	Parameter=	0 Prob	> [T] 0.0001	Variable	•	Para	ameter timate	Sta	andard Error	Type II Sum of Squares	I	F Prob>F
The state is a	- Stan	dardized					INTERCE		4.09	176983	0.29	017055	400.43278528	198.85	5 0.0001 0.0001
INTERCEP	1 0.	000000000					Bounds c	on cond	dition	number:	0.05	1,	1	1,100	
		т	he SAS System	n		724					The	SAS Syste	em 13:12 Tues	day, August	729 13, 1996 :
			1	13:12 Tues	day, Augus	st 13, 1996									
Forwa	ard Select	ion Proced	ure for Deper	ndent Variabl	e RECNB		No other	varia	able m	et the O	.5000 sid	mificance	e level for en	trv into th	ne model.
Step 1 Varia	able RECOC	Entered	R-square =	= 0.18446675	C(p) =	2.00000000	Cum	. vario	E Form	ard Solo	ation Br	poduro f	or Dopondent V	ariable FNN	JR
	DF	Sum of	Squares	Mean Square		F Prob>F	Sum	Mandala		umbere	Dential	Mode	n pebenaene i	arrapro 2	
Regression	1	138.	39332386	138.39332386	68.9	0.0001	Step	Entere	ed i	In	R**2	R**2	2 C(p)	F	F Prob>F
Error Total	305 306	611. 750.	84120382 23452769	2.00603673			1	ENOC		1	0.1349	0.134	9 2.0000	47.5434	0.0001
	Paramet	er	Standard	Type II							The	SAS Syste	em 13:12 Tues	day, August	; 13, 1996
Variable	Estima	te	Error St	um of Squares		F Prob>F	Model: M	IODEL1							
INTERCEP RECOC	3.684949 0.249571	70 0. 19 0.	30303676 03004736	296.62747612 138.39332386	147.8	0.0001 0.0001	Depender	nt Vari	lable:	ENNB	Apolars	c of Var	19700		
Bounds on conc	dition num	ber:	1,	1		705					Gum	.5 01 VIII.	Meen		
		т	he SAS System	n 13:12 Tues	day, Augus	725 st 13, 1996	9	Source		DF	Squar	ces	Square F	Value	Prob>F
							Μ	lodel		1	95.742	231 9	5.74231	47.543	0.0001
No other varia	able met t	he 0.5000	significance	level for en	try into t	the model.	E C	Total	L	305	614.20: 709.94	788	2.013/9		
Summary of	Forward	Selection	Procedure for	r Dependent V	ariable RE	CNB		Roc Dep	ot MSE Mean	1 6	.41908	R-squan Adj R-:	re 0.134 5q 0.132	9 0	
Step Entere	le Numb d	er Parti In R*	al Model *2 R**2	C(p)		F Prob>F		c.v	/.	23	.60009 The	SAS Syste	מיב		731
1 RECOC		1 0.18 T	45 0.1845 he SAS System	2.0000	68.988	0.0001 726					me	SNS BYSC	13:12 Tues	day, August	: 13, 1996
		-		13:12 Tues	day, Augus	st 13, 1996					Paramet	er Estima	ates		
Model: MODEL1 Dependent Vari	able: REC	NB					Var	iable	DF	Param Esti	eter mate	Standaro Erroi	d T for H0: Parameter=) Prob >	• T
		Anal	ysis of Varia	ance			INT	ERCEP	1	4.09	1770 (.29017055	5 14.10	1 0.	0001
Source		S DF Sq	um of uares S	Mean Square F	Value	Prob>F			-	Standard	ized				0001
Model Error	3	1 138. 05 611.	39332 138. 84120 2.	.39332 .00604	68.988	0.0001	Var INT	ERCEP	DF 1	Estin 0.0000	mate 0000				
C Total	. 3	1 41625	23453 B-001000	0 194	E		ENC	C	1	0.3672	3048	CAC Sucto			720
Dep C.V	Mean	6.11075 23.17795	Adj R-square	u 0.181	8						Ille	SAS SYSCE	13:12 Tueso	day, August	13, 1996
		T	he SAS System	n		727		Forwa	ird Sel	lection 1	Procedure	for Depe	endent Variable	e CARNB	
			-	13:12 Tues	day, Augus	it 13, 1996	Step 1	Varia	ble CA	ROC Ent	ered	R-square	= 0.08300727	C(p) = 2	.00000000
		Para	meter Estimat	es					DF	:	Sum of Sc	luares	Mean Square	F	Prob>F
Variable	P DF	arameter Estimate	Standard Error	T for HO: Parameter=	0 Prob	> T	Regressi Error	on	1 305 306		56.466 623.794	157325 101307	56.46657325 2.04522627	27.61	0.0001
INTERCEP RECOC	1 1	3.684950 0.249571	0.30303676 0.03004736	12.16 8.30	о о 6 о	0.0001	Wend		Para	meter	Sta	indard	Type II	_	n.)-=
	Stan	dardized					variable		Est	imate		Error S	Sum or Squares	F	Prob>F
Variable	DF	Estimate					INTERCEP	,	3.786	531576	0.228	10825	563.49885021	275.52	0.0001

CAROC	0.1	15900095	0.0302	6040	56.46657325	27.61	0.0001	Model		1	56.46657	56.4	6657 27.6	09 0	0.0001
Bounds	on conditio	on number:	The S	1, AS System	1		733	Error C Total		305 6 306 6	23.79401 80.26059	2.0	4523		
					13:12 Tuesday	, August	13, 1996	Root Dep C.V	t MSH Mean	6 1.43 n 4.90 29.15	0011 R-s 0554 Adj 0306	square R-sq	0.0830 0.0800		
No othe	er variable	met the C).5000 sign	ificance :	level for entry	into the	model.				The SAS S	System			735
Sun	nmary of For	rward Sele	ection Proc	edure for	Dependent Vari	able CARN	В						13:12 Tuesday,	August 1	3, 1996
	Variable	Number	Partial	Model		_				F	Parameter Es	stimate	5		
Step	Entered	In	R**2	R**2	C(p)	F.	Prop>F			Paramete	er Star	ndard	T for HO:		
1	CAROC	1	0.0830 The S	0.0830 AS System	2.0000	27.6090	0.0001 734	Variable	DF	Estimat	te l	Error	Parameter=0	Prob >	1.1
					13:12 Tuesday	, August	13, 1996	INTERCEP CAROC	1 1	3.78631 0.15900	0.2281 01 0.0302	10825 26040	16.599 5.254	0.00	01 01
Model: Depende	MODEL1	a: CARNB								Standardize	ed				
								Variable	DF	Estimat	e				
			Analysis	of Varia	nce			INTERCEP	1	0.000000	00				
			Sum o	f	Mean	,	DuchAR	CAROC	1	0.2881098	32				
	Source	DF	Square	S 5	quare F Va	trae	PTOD>F	I							

Regression (Step-Wise #1)

The SAS System		105 15:36 Fri	iday, Augus	t 16, 1996				The SAS System	15:36 Friday,	108 August 16, 1996
Model: MODEL1 Dependent Variable: H	RECBEH1						Pai	rameter Estimate	25	
	Analysis of Va	riance			Variable	DF	Parameter Estimate	Standard Error	T for H0: Parameter=0	Prob > T
Source	Sum of DF Squares	Mean Square 1	7 Value	Prob>F	INTERCEP ENINT1	1 1	1.039985 0.666161	0.15372316 0.03817134	6.765 17.452	0.0001
Model Error C Total	1 162.54785 1 305 115.26322 306 277.81107	62.54785 0.37791	430.121	0.0001	Variable	DF	Standardized Estimate			
Root MSE Dep Mean C V	0.61475 R-squ 3.78502 Adj R 16.24156	are 0.58 -sq 0.58	51 37		INTERCEP ENINT1	1 1	0.70685611	The SAS System		109
	The SAS Sys	tem 15:36 Fr:	iday, Augus	106 t 16, 1996	Model: MODEL1 Dependent Vari	.able	: CARBEH1		15:36 Friday,	August 16, 1996
	Parameter Esti	mates					Ana	alysis of Varian	nce	
Variable DF	Parameter Standa Estimate Err	rd T for H0 or Parameter	=0 Prob	> T	Source		DF :	Sum of Squares Sc	Mean Juare F Val	ue Prob>F
INTERCEP 1 RECINT1 1	0.538878 0.160404 0.795343 0.038349	87 3.33 45 20.73	69 0 39 0	.0009 .0001	Model Error C. Total		$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4.12864 134.1 0.38602 0.3	12864 407.5 32913	19 0.0001
Variable DF	Estimate 0.00000000				Roc Dep	t MS Mea	E 0.573 n 1.472	70 R-square 31 Adj R-sq	0.5719 0.5705	
RECINT1 1	0.76491969 The SAS Sys	tem 15:36 Fr:	iday, Augus	107 t 16, 1996	C.V		38.966	J7 The SAS System	15:36 Friday,	110 August 16, 1996
Model: MODEL1							Pai	rameter Estimate	s	
Dependent Variable: I	ENBEH1 Analysis of Va	riance			Variable	DF	Parameter Estimate	Standard Error	T for H0: Parameter=0	Prob > T
Source	Sum of DF Squares	Mean Square I	7 Value	Prob>F	INTERCEP CARINT1	1 1	0.391120 0.621585	0.06277436 0.03079117	6.231 20.187	0.0001
Model Error	1 110.62185 1 305 110.77880	10.62185 3 0.36321	304.568	0.0001	Variable	DF	Standardized Estimate			
Root MSE	0.60267 R-squ 3.65472 Adj R	are 0.49	96		INTERCEP CARINT1	1 1	0.00000000 0.75626808			
C.V.	16.49012 Adj k							The SAS System	15:36 Friday,	111 August 16, 1996

Model: MODEL1 Dependent Variable	: RECINT1					Roo Dep C.V	t MSE Mean	0.9443 1.7394 54.2914	5 R-square 1 Adj R-sq 0	0.2216 0.2139	
	A	nalysis of Vari	ance						The SAS System		116
6	DE	Sum of	Mean	luo Brobi						15:36 Friday,	August 16, 1996
Source	DF.	Squares	Square r va	ande Prop.				Par	ameter Estimate	S	
Model Error C Total	3 303 1 306 2	94.82686 31 62.13731 0 56.96417	.60895 59 0.53511	.078 0.00	01	Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > [T]
Root MS Dep Mea C.V.	E 0.73 in 4.08 17.92	151 R-squar 143 Adj R-s 287	re 0.3690 sq 0.3628			INTERCEP CARATT CARSN	1 1 1	0.754411 0.187945 0.033991	0.33555982 0.02461057 0.03464014 0.02782646	2.248 7.637 0.981	0.0253 0.0001 0.3273 0.3051
		The SAS Syste	m 15:36 Frida	y, August 16, 1	112 996	Variable	T DF	Standardized Estimate	0.02702040	1.021	0.0001
	Pa	arameter Estima	tes			TNEECED	1	0.0000000			
Variable DF	Paramete: Estimate	r Standard e Error	T for H0: Parameter=0	Prob > T		CARATT CARSN CARBC	1 1 1	0.42880628 0.05478840 -0.05438652			
INTERCEP 1 RECATT 1 RECSN 1 RECBC 1	-0.24934 0.35107 0.08556 0.08058	7 0.32888048 2 0.03485066 9 0.02508740 1 0.02113354	-0.758 10.074 3.411 3.813	0.4489 0.0001 0.0007 0.0002	Mod	del: MODEL1	abler	DECATE	The SAS System	15:36 Friday,	117 August 16, 1996
Wassiah la DR	Standardize	d			Det	pendent vari	abie.	ADONII Dra	lucic of Varian	C P	
Variable Dr	EStimat	e 0						Aila	fysis of varian	Maan	
RECATT 1 RECSN 1	0.4861267	9				Source		DF S	quares Sq	uare F Valu	le Prob>F
RECBC 1	0.1794892	9 The SAS Syste	m 15:36 Frida	y, August 16, 19	113 996	Model Error C Total		2 217 304 274 306 492	.85494 108.9 .84212 0.9 .69707	2747 120.48 0409	34 0.0001
Model: MODEL1 Dependent Variable	: ENINT1					Roo Dep C.V	t MSE Mean	0.9508 8.9348 10.6418	3 R-square 5 Adj R-sq 6	0.4422 0.4385	
	A	nalysis of Vari	ance						The SAS System		118
Source	DF	Sum of Squares	Mean Square F Va	alue Prob	>F			D	Poti	15:36 Friday,	August 16, 1996
Model Error	3 · · · · · · · · · · · · · · · · · · ·	71.86876 23 77.40811 0	.95625 40. .58551	.916 0.000	01	Variable	DF	Parameter Estimate	Standard Error	T for HO:	Prob > 11
Root MS Dep Mea C.V.	E 0.76 n 3.92 19.49	518 R-squar 508 Adj R-s 471	e 0.2883 q 0.2813			INTERCEP RECBB RECEM1	1 1 1	4.368917 0.555089 -0.180426	0.43918317 0.04329846 0.06537810	9.948 12.820 -2.760	0.0001 0.0001 0.0061
		The SAS System	m 15:36 Friday	;, August 16, 19	114 996	Variable	DF	Standardized Estimate			
	Pa	arameter Estima	tes			INTERCEP	1	0.00000000			
Variable DF	Paramete: Estimate	r Standard Error	T for H0: Parameter=0	Prob > T		RECBB RECEM1	1 1	0.60152632 -0.12948812			
INTERCEP 1 ENATT 1 ENSN 1	0.51705 0.332295 0.087252	7 0.34640154 5 0.03584819 2 0.02676807	1.493 9.270 3.260	0.1366 0.0001 0.0012	Mod	del: MODEL1			The SAS System	15:36 Friday,	119 August 16, 1996
ENBC 1	-0.007908	8 0.02176198	-0.363	0.7166	Der	pendent Vari	able:	ENATT			
Variable DF	Standardized Estimate	t e						Ana	lysis of Varian	ce	
INTERCEP 1 ENATT 1	0.0000000	5				Source		DF S	Sum of 1 quares Squ	Mean uare FValu	le Prob>F
ENSN 1 ENBC 1	0.16559586 -0.01790631	5 L The SAS System	m	1	115	Model Error C Total		2 154 304 344 306 498	.40354 77.2 .03945 1.1 .44300	0177 68.21 3171	.7 0.0001
Model: MODEL1 Dependent Variable	: CARINT1		15:36 Friday	7, August 16, 19	196	Roo Dep C.V	t MSE Mean	1.0638 8.6645 12.2779	2 R-square 0 Adj R-sq 0	0.3098 0.3052	
-	Ar	alysis of Varia	ance						The SAS System		120
	10	Sum of	Mean							15:36 Friday,	August 16, 1996
Source	DF	Squares	Square F Va	lue Prob>	F			Para	ameter Estimate:	s	
Model Error C Total	3 7 303 27 306 34	76.93746 25 70.21563 0 17.15309	.64582 28. .89180	757 0.000	01	Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=O	Prob > T

.

II El El	NTERCEP NBB NEM1	1 1 1	4.162548 0.515347 0.007047	0.4696053 0.0468775 0.0752616	2 8 0 10 6 0	8.864 9.993 9.094	0.0001 0.0001 0.9255					Analysi	s of Varia	nce			
			Standardized	l				S	ource		DF	Sum Squar	of res S	Mean quare	F Valu	e	Prob>F
Va II El	ariable NTERCEP NBB	DF 1 1	Estimate 0.00000000 0.55819573	: ;				M E C	odel rror Total		1 305 306	270.371 627.537 897.908	.38 270. 741 2. 879	37138 05750	131.40	8	0.0001
EI	NEM1	1	0.00475410	The SAS Syst	em 15:36	Friday, J	121 August 16, 1996		Roo Dep C.V	t MSE Mean	2 1 n 6 21	.43440 .71987 .34563	R-square Adj R-sq		0.3011 0.2988		
Model: Depende	MODEL1 ent Vari	able:	CARATT				-					The	SAS System	15:3	36 Friday,	August	126 16, 1996
			An	alysis of Var	iance			[Paramet	er Estimat	es			
	Source		DF	Sum of Squares	Mean Square	F Valu	e Prob>F	Var	iable	DF	Param Estin	eter mate	Standard Error	T fo Paran	or HO: neter=0	Prob >	T
	Model Error C Total		2 33 304 146 306 180	8.34476 16 8.74971 7.09446	9.17238 4.83141	35,01	5 0.0001	INT ENN	ERCEP B	1 1	3.00	9130 (7116 ().33389692).05383400		9.012 11.463	0.(0.(0001 0001
	Roo Dep	t MSH Mear	2.198	05 R-squa 12 Adj R-	re 0. sq 0.	1872 1819		Var	iable	DF	Standard. Estii	ized mate					
	c.v	•	39.187	03			100	INT ENN	ERCÉP B	1 1	0.0000	0000 3701					
				ine sas syst	15:36	Friday, i	August 16, 1996					The	SAS System	15:3	36 Friday,	August	127 16, 1996
Vi	ariable	DF	Pa Parameter Estimate	rameter Estim Standar Erro	ates d T for r Paramet	H0: er=0	Prob > T	Model: M Dependen	ODEL1 t Vari	able:	CARSN						
II	NTERCEP	1	2.479091	0.6416811	6 3	8.863	0.0001	1				Analysi	s of Varia	Nee			
Ci	ARBB AREM1	1	-0.306559	0.1189283	7 -2	2.578	0.0104	s	ource		DF	Squar	es S	quare	F Valu	e	Prob>F
Va	ariable	DF	Standardized Estimate	l				M E C	odel rror Total		1 305 306	296.857 605.090 901.947	749 296. 039 1. 788	85749 98390	149.63	3	0.0001
11 C/ C/	NTERCEP ARBB AREM1	1 1 1	0.00000000 0.37761352 -0.13756374						Roo Dep C.V	t MSE Mean	1 1 5 28	.40851 .01303 .09700	R-square Adj R-sq		0.3291 0.3269		
				The SAS Syst	em 15:36	Friday, J	123 August 16, 1996					The	SAS System	15:3	36 Fridav.	August	128 16, 1996
Model: Depende	MODEL1 ent Vari	able:	RECSN									Paramet	er Estimat	es	·· ···,,		,
-			An	alysis of Var	iance						Param	eter	Standard	T fo	or HO:	D b	1.001
	Source		DF	Sum of Squares	Mean Square	F Valu	e Prob>F	Var. INT	lable ERCEP	DF 1	1.77	mate 2448 (Error	Paran	6.402	Prob > 0.0	11) 0001
	Model Error		1 23 305 66	0.25397 23 7.41378	0.25397 2.18824	105.22	3 0.0001	CARI	NB	1	0.660 Standard:	0597 (ized	0.05400358		12.232	0.0	0001
	C Total Roo Dep	t MSE Mear	306 89 1.479 6.628	7.66775 27 R-squa 66 Adj R-	re 0. sq 0.	2565 2541		Var INTI CARI	iable ERCEP NB	DF 1 1	Estir 0.00000 0.57369	nate 0000 9793					
	c.v	•	22.316	27			124					The	SAS System	16.3	6 Friday	Manet	129
			Pa	rameter Estim	15:36	Friday, A	August 16, 1996	Model: Mo Dependen	ODEL1 t Varia	able:	RECBC			10.5	, Tilday,	August	10, 1990
			Parameter	Standard	d T for	н0:						Analysi	s of Varia	nce			
Va	ariable	DF 1	Estimate	Erro: 0 3406504	r Paramet	er=0]	Prob > [T]	c,	00700		D.F.	Sum	of	Mean	F Valu	0	Prohar
RE	ECNB	1	0.553994	0.0540068	9 10	.258	0.0001	Mo	odel		1	0.291	.48 0.1	29148	0.07	0	0.7919
Va	ariable	DF	Standardized Estimate					E: C	rror Total		305 306	1274.646 1274.938	63 4. 11	17917			
IN RI	NTERCEP SCNB	1 1	0.00000000 0.50646070						Root Dep C.V	t MSE Mean	2 7 26	.04430 .77850 .28143	R-square Adj R-sq	-	0.0002		
				The SAS Syst	em 15:36	Friday, A	125 August 16, 1996					The	SAS System	16.7	6 Friday	∆110012÷	130
Model: Depende	MODEL1 ent Vari	able:	ENSN									Paramet	er Estimat	1513	,, riiuay,	August	10, 1230

		Paramete	ar Sta	ndard 1	for HO:				j	Analvsis of	Variance		
Variable	DF	Estimat	ie oto	Error Pa	arameter=0	Prob > T				Sum of	Mean		
INTERCEP	1 1	7.64222	24 0.529 37 0.068	04493 10741	14.445 0.264	0.0001 0.7919	Source		DF	Squares	Square	F Value	Prob>F
Variable	DF	Standardize Estimat	ed Ce				Model Error C Total	L	1 305 306	4.87784 573.70197 578.57980	4.87784 1.88099	2.593	0.1084
INTERCEP RECRFC	1 1	0.0000000	00 27				Roc Dep	ot MSE Mean	1.3 9.7	7149 R-s 6873 Adj	quare R-sq	0.0084 0.0052	
			The SAS	System	15.36 Puidou	131 August 16 1996		/.	12.0	4071 The SAS S	vstem		136
Madal, MODEL 1					15:30 Friday,	, August 10, 1990				Inc bits b	15:3	6 Friday, A	ugust 16, 1996
Dependent Vari	able:	ENBC								Parameter Es	timates		
		1	Analysis of	Variance			Variable	DF	Paramet Estima	er Stan te E	dard Tfc rror Param	er HO: heter=0 P	rob > T
Source		DF	Sum of Squares	Mea Squai	an re FVa	lue Prob>F	INTERCEP	1	8.2822	12 0.3120	9465	26.537	0.0001
Model		1	15.94570	15.945	70 3.1	853 0.0506	RECAP1	1	0.1295	41 0.0804	4286	1.610	0.1084
Error C Total		305 12 306 12	262.15202 278.09772	4.1382	20		Variable	DF	Standardız Estima	ed te			
Roc Dep	t MSE Mear	2.03	3426 R- 5710 Ac	-square lj R-sq	0.0125 0.0092		INTERCEP RECAP1	1 1	0.000000 0.091818	00 90			
0.1	•	27.9	The SAS	System		132				The SAS S	ystem 15:3	6 Friday, A	137 ugust 16, 1996
				1	15:36 Friday	, August 16, 1996	Model: MODEL1						
		3	Parameter H	Istimates			Dependent Var:	iable:	ENBB		·		
Variable	DF	Paramete Estimat	er Sta te	andard 1 Error Pa	I for HO: arameter=0	Prob > T				Analysis of	Variance		
INTERCEP	1	8.1275	30 0.453	344321	17.924	0.0001	Source		DF	Sum of Squares	Mean Square	F Value	Prob>F
ENRFC Variable	T DF	-0.1235: Standardize Estimat	ed te	94043	-1.903	0.0306	Model Error C Total	1	1 305 306	0.74026 584.03498 584.77524	0.74026 1.91487	0.387	0.5346
INTERCEP ENRFC	1 1	0.0000000	00 55				Roc Der	ot MSE p Mean	5 1.3 h 8.7	8379 R-s 1336 Adj	quare R-sq -	0.0013	
			The SAS	System		133	C.\	<i>.</i>	15.8	8123	t.am		120
Model • MODEL1					15.30 Friday,	, August 10, 1990				THE DAD D	15:3	6 Friday, A	ugust 16, 1996
Dependent Vari	able:	CARBC								Parameter Es	timates		
		1	Analysis of	Variance			Variable	DF	Paramet Estima	er Stan te E	dard Tfc rror Param	r HO: leter=0 P	rob > T
Source		DF	Sum of Squares	Mea Squar	an ce FVal	lue Prob>F	INTERCEP ENAP1	1 1	8.5368 0.0508	58 0.2946 30 0.0817	4866 5157	28.973 0.622	0.0001 0.5346
Model Error C Total		1 305 12 306 12	48.52059 207.88983 256.41042	48.5208 3.9602	29 12.7 29	252 0.0005	Variable	DF	Standardiz Estima	ed te			
Roo Dep C.V	t MSE Mear	1.99 8.38 23.74	9005 R- 8111 Ad	square lj R-sq	0.0386 0.0355		INTERCEP ENAP1	1 1	0.000000	00 38			
			The SAS	System		134				The SAS S	ystem 15:3	6 Friday, A	139 ugust 16, 1996
		I	Parameter E	1 stimates	15:36 Friday,	August 16, 1996	Model: MODEL1 Dependent Vari	able:	CARBB				
Variable	DF	Paramete Estimat	er Sta	indard I Error Pa	f for HO: arameter=0	Prob > T			Ĺ	Analysis of	Variance		
INTERCEP	1	9.33279	0.294	66065	31.673	0.0001	Source		DF	Sum of Squares	Square	F Value	Prob>F
Variable	DF	Standardize Estimat	ed ee		0.000	0.0000	Model Error C Total	1	1 305 11 306 11	0.00442 111.63727 111.64169	0.00442 3.64471	0.001	0.9722
INTERCEP CARRFC	1 1	0.0000000 -0.1965157	00 71				Roc Der	ot MSE Mean 7.	1.90 1.7.7 24.5	0911 R-s 6221 Adj 9495	quare R-sq -	0.0000 0.0033	
			The SAS	System 1	15:36 Fridav.	135 August 16, 1996			21.0	The SAS S	ystem		140
Model: MODEL1				-		,,				0	15:3	6 Friday, A	ugust 16, 1996
Dependent Vari	able:	RECBB					l		1	Parameter Es	timates		

F-31
Variable	DF	Parameter Estimate	Stand Er:	ard ror P	T for HO: Parameter=0	Prob 3	> T		Model Error C Total	L	1 305 306	95.7423 614.2059 709.9478	95.7 7 2.0	74231 11379	47.5	43	0.0001
INTERCEP CARAP1	1 1	7.753615 0.004074	0.26993 0.11700	319 366	28.724 0.035	0 0	.0001 .9722		Roc Dep C.V	ot MS Meas	E 1.4 n 6.0 23.6	11908)1303 50009	R-square Adj R-sq	0. 0.	1349 1320		
Variable	DF	tandardized Estimate										The S	AS System	15:36	Friday,	August	144 16. 1996
INTERCEP CARAP1	1 1	0.00000000 0.00199384										Paramete	r Estimate	15		2	
			The SAS Sy	stem	15:36 Friday,	Augus	14 t 16, 199	L 5	Variable	DF	Paramet Estima	te	Standard Error	T for Paramet	HO: cer=0	Prob >] Τ
Model: MODEL1 Dependent Varia	ble: 1	RECNB							INTERCEP ENOC	1 1	4.0917 0.2076	70 0. 585 0.	29017055 03012042	14 6	1.101 5.895	0. 0.	0001 0001
		Ana	alysis of V	ariance	2				Variable	DF	Standardiz Estima	ed te					
Source		DF S	Sum of Squares	Me Squa	an Ire FVal	.ue	Prob>F		INTERCEP ENOC	1	0.000000	000					
Model Error C Total		1 138 305 611 306 750	3.39332 1.84120 0.23453	138.393 2.006	32 68.9 604	88	0.0001		2.100	-		The S	AS System	15:36	Friday,	August	145 16, 1996
Root Dep C.V.	MSE Mean	1.4163 6.1107 23.1779	35 R-sq 75 Adj 1 95	uare R-sq	0.1845 0.1818			Mod Dep	el: MODEL1 endent Vari	able	: CARNB						
			The SAS Sys	stem			14					Analysis	of Varian	ce			
		Bar	compton Est	imator	15:36 Friday,	Augusi	t 16, 199	5	Source		DF	Sum c Square	f s Sc	Mean Juare	F Valu	ıe	Prob>F
Variable	DF	Parameter Estimate	Standa Eri	ard ror P	T for H0: arameter=0	Prob :	> T		Model Error C Total		1 305 306	56.4665 623.7940 680.2605	7 56.4 1 2.0 9	6657 4523	27.60)9	0.0001
INTERCEP RECOC	1 1	3.684950 0.249571	0.303030	676 736	12.160 8.306	0.	.0001 .0001		Roc Dep C.V	ot MSI Mean	E 1.4 n 4.9 29.1	3011 0554 5306	R-square Adj R-sq	0. 0.	0830 0800		
Variable	DF	tandardized Estimate										The S	AS System	15:36	Friday,	August	146 16, 1996
INTERCEP RECOC	1 1	0.00000000 0.42949592										Paramete	r Estimate	s			
			The SAS Sys	stem	15:36 Friday,	August	14: t 16, 199		Variable	DF	Paramet Estima	er te	Standard Error	T for Paramet	H0: er≠0	Prob >	T
Model: MODEL1 Dependent Varia	ble: H	ENNB							INTERCEP CAROC	1 1	3.7863 0.1590	16 0. 01 0.	22810825 03026040	16 5	.599	0.0	0001 0001
		Ana	alysis of Va	ariance					Variable	DF	Standardiz Estima	ed te					
Source		DF S	Sum of Squares	Me Squa	an re FVal	ue	Prob>F		INTERCEP	1 1	0.000000	00 82					

Regression (Step-Wise #2)

The SAS System			1								
			13:2	9 Saturday, Aug	gust 17, 1996			Par	rameter Estimat	es	
Model: MODEL1 Dependent Variable: H	RECBEH1					Variable	DF	Parameter Estimate	Standard Error	T for H0: Parameter=0	Prob > [T]
		Analysi	s of Variance			INTERCEP	1	-0.232674	0.36075221	-0.645	0.5194
						RECINT1	1	0.703203	0.04772056	14.736	0.0001
		Sum	of Mean		1	RECATT	1	0.007045	0.03996419	0.176	0.8602
Source	DF	Squar	es Square	F Value	Prob>F	RECSN	1	0.038499	0.02411154	1.597	0.1114
						RECBC	1	0.031401	0.01752386	1.792	0.0742
Model	10	175.432	31 17.54323	50.721	0.0001	RECBB	1	0.018668	0.03351864	0.557	0.5780
Error	296	102.378	76 0.34587			RECNB	1	-0.011652	0.02638024	-0.442	0.6590
C Total	306	277.811	07		j.	RECEM1	1	0.009635	0.04123650	0.234	0.8154
						RECAP1	1	0.046948	0.04418543	1.063	0.2889
Root MSE	0	.58811	R-square	0.6315		RECOC	1	0.051592	0.01631716	3.162	0.0017
Dep Mean	3	.78502	Adj R-sq	0.6190		RECRFC	1	-0.026552	0.01993052	-1.332	0.1838
c.v.	15	.53786							The SAS System		3
		The	SAS System		2					13:29 Saturday,	August 17, 1996
			13:29	9 Saturday, Aug	rust 17, 1996		:	Standardized			

Variable DF	Estimate								13:29 Saturday,	August 17, 1996
INTERCEP 1	0.0000000						Pai	ameter Estimate	25	
RECINTI 1 RECATT 1 RECSN 1 RECBC 1 RECBB 1	0.67630463 0.00938226 0.06920439 0.06726951 0.02694015				Variable INTERCEP	DF 1	Parameter Estimate -0.108330	Standard Error 0.26042827	T for HO: Parameter=0 -0.416	Prob > T 0.6777
RECNB 1 RECEM1 1	-0.01914763 0.00920833				CARINT1 CARATT	1 1	0.593986 0.028097	0.03514923 0.01851948	16.899 1.517	0.0001 0.1303
RECAP1 1	0.04802285				CARSN	1 1	0.031472	0.02488148	1.265 1.473	0.2069 0.1419
RECRFC 1	-0.04781542				CARBB	1	-0.002552	0.01979016	-0.129	0.8975
	The S	AS System		4	CARNB CAREM1	1 1	0.020231	0.02878174	0.295	0.4824
		13:29	Saturday,	August 17, 1996	CARAP1 CAROC	1 1	-0.003558 0.015233	0.04253659 0.01492385	-0.084 1.021	0.9334 0.3082
Model: MODEL1	END:11				CARRFC	1	0.003360	0.01421418 The SAS System	0.236	0.8133
Dependent Variable.	Bu - lood -								13:29 Saturday,	August 17, 1996
	Analysis	or variance			The set of a labor		Standardized			
Source	DF Square	es Square	F Valu	ie Prob>F	Variable	DF	Estimate			
Model	10 125.6216	4 12.56216	38.82	23 0.0001	INTERCEP CARINT1	1 1	0.00000000 0.72268951			
Error C Total	296 95.7790 306 221.4006	0.32358			CARATT	1 1	0.07799560 0.06171996			
D (Man	0.56004	D	0.5634		CARBC	1	0.05839726			
Dep Mean	3.65472	Adj R-sq	0.5528		CARNB	1	-0.03445564			
c.v.	15.56449				CAREM1 CARAP1	1	-0.00379091			
	The S	AS System 13:29	Saturdav.	5 August 17, 1996	CAROC	1 1	0.04701146			
	Paramete	r Estimates		5 ,				The SAS System		10
	Deremotor	Standard T f	or PO.						13:29 Saturday,	August 17, 1996
Variable DF	Estimate	Error Para	meter=0	Prob > T	Model: MODEL1	ables	DECIMENT			
INTERCEP 1	-0.432370 0.	34869217	-1.240	0.2160	Dependent vari	aore:	RECINII			
ENINTI 1 ENATT 1	0.005050 0.	03469045	13.144 0.146	0.8844			Ana	alysis of variar	ice	
ENSN 1 ENBC 1	0.012734 0. 0.021966 0.	02411861 01644223	0.528 1.336	0.5979 0.1826	Source		DF S	Sum of Squares Sc	Mean Juare FVal	ue Prob>F
ENBB 1 ENNB 1	0.108057 0. 0.000411 0.	03008401 02681967	3.592 0.015	0.0004 0.9878	Model		9 105	5.08191 11.6	57577 22.8	32 0.0001
ENEM1 1 ENAP1 1	0.128352 0.	04130512	3.107	0.0021	Error C Total		297 151 306 256	1.88226 0.5 5.96417	51139	
ENOC 1 ENDEC 1	0.030786 0.	01530030	2.012	0.0451	Pao	+ MCF	0 7151	1 Permare	0 4089	
EARTO 1	The S	AS System	1.575	6.1701 6	Dep	Mean	4.0814	13 Adj R-sq	0.3910	
_		13:29	Saturday,	August 17, 1996	C.v	•	17.5211			
S Variable DF	Standardized Estimate							The SAS System	13:29 Saturday,	August 17, 1996
INTERCEP 1	0.0000000				1					
ENINTI 1 ENATT 1	0.61306641						Par	ameter Estimate	5	
	0.00757762						Par Parameter	rameter Estimate Standard	T for HO:	
ENSN 1 ENBC 1	0.00757762 0.02564411 0.05277685				Variable	DF	Par Parameter Estimate	cameter Estimate Standard Error	T for HO: Parameter=0	Prob > [T]
ENSN 1 ENBC 1 ENBB 1 ENNB 1	0.00757762 0.02564411 0.05277685 0.17561373 0.00073636				Variable INTERCEP BECATT	DF 1	Parameter Estimate -0.382831 0 339657	cameter Estimate Standard Error 0.43809432 0.04441829	T for H0: Parameter=0 -0.874 7.647	Prob > [T] 0.3829 0.0001
ENSN 1 ENBC 1 ENBB 1 ENNB 1 ENEM1 1 ENEM1 1	0.00757762 0.02564411 0.05277685 0.17561373 0.00073636 0.12992691 0.08611135				Variable INTERCEP RECATT RECSN DECCC	DF 1 1 1	Parameter Estimate -0.382831 0.339657 0.052555	cameter Estimate Standard Error 0.43809432 0.04441829 0.02915943 0.02903047	T for H0: Parameter=0 -0.874 7.647 1.802 2.249	Prob > T 0.3829 0.0001 0.0725
ENSN 1 ENBC 1 ENBB 1 ENNB 1 ENEM1 1 ENEM1 1 ENOC 1	0.00757762 0.02564411 0.05277685 0.17561373 0.00073636 0.12992691 0.08611135 0.09747821				Variable INTERCEP RECATT RECSN RECBC RECBB	DF 1 1 1 1	Parameter Estimate -0.382831 0.339657 0.052555 0.068016 0.018378	ameter Estimate Standard Error 0.43809432 0.04441829 0.02915943 0.02093947 0.04074309	T for H0: Parameter=0 -0.874 7.647 1.802 3.248 0.451	Prob > [T] 0.3829 0.0001 0.0725 0.0013 0.6523
ENSN 1 ENBC 1 ENBB 1 ENNB 1 ENEM1 1 ENAP1 1 ENAC 1 ENRFC 1	0.00757762 0.02564411 0.05277685 0.17561373 0.00073636 0.12992691 0.08611135 0.09747821 -0.05352538				Variable INTERCEP RECATT RECSN RECBC RECBB RECNB RECEM1	DF 1 1 1 1 1 1 1	Parameter Estimate -0.382831 0.339657 0.052555 0.068016 0.018378 0.002845 0.013068	Ameter Estimate Standard Error 0.43809432 0.0441829 0.02915943 0.0203947 0.04074309 0.03207666 0.05013584	T for H0: Parameter=0 -0.874 7.647 1.802 3.248 0.451 0.089 0.261	Prob > [T] 0.3829 0.0001 0.0725 0.0013 0.6523 0.9294 0.7945
ENSN 1 ENBC 1 ENBB 1 ENNB 1 ENEM1 1 ENAP1 1 ENOC 1 ENRFC 1	0.00757762 0.02564411 0.05277685 0.17561373 0.00073636 0.12992691 0.08611135 0.09747821 -0.05352538 The S	AS System 13:29	Saturday,	7 August 17, 1996	Variable INTERCEP RECATT RECSN RECBB RECBB RECNB RECEM1 RECAP1 RECOC	DF 1 1 1 1 1 1 1 1 1	Parameter Estimate -0.382831 0.339657 0.052555 0.068016 0.018378 0.002845 0.013068 0.198289 -0.010058	Cameter Estimate Standard Error 0.43809432 0.02915943 0.02093947 0.04074309 0.03207666 0.05013584 0.05248086 0.01983229	T for H0: Parameter=0 -0.874 7.647 1.802 3.248 0.451 0.089 0.261 3.778 -0.507	Prob > [T] 0.3829 0.0001 0.0725 0.0013 0.6523 0.9294 0.7945 0.0002 0.6124
ENSN 1 ENBC 1 ENBB 1 ENNB 1 ENEM1 1 ENAPI 1 ENNC 1 ENRFC 1	0.00757762 0.02564411 0.05277685 0.17561373 0.00073636 0.12992691 0.08611135 0.09747821 -0.05352538 The S	AS System 13:29	Saturday,	7 August 17, 1996	Variable INTERCEP RECATT RECSN RECBC RECBB RECM1 RECEM1 RECAP1 RECCAP1 RECCC RECRFC	DF 1 1 1 1 1 1 1 1 1 1	Parameter Estimate -0.382831 0.339657 0.052555 0.068016 0.018378 0.002845 0.013068 0.198289 -0.010058 -0.038973	Cameter Estimate Standard Error 0.43809432 0.02915943 0.02915943 0.02093947 0.04074309 0.03207666 0.05013584 0.05248086 0.01983229 0.02412881 The SBS System	T for H0: Parameter=0 -0.874 7.647 1.802 3.248 0.451 0.089 0.261 3.778 -0.507 -1.615	Prob > [T] 0.3829 0.0001 0.0725 0.0013 0.6523 0.9294 0.7945 0.0002 0.6124 0.1073
ENSN 1 ENBC 1 ENBB 1 ENNB 1 ENEM1 1 ENAPI 1 ENAPI 1 ENRFC 1 Model: MODEL1 Dependent Variable:	0.00757762 0.0256411 0.05277685 0.17561373 0.00073636 0.12992691 0.08611135 0.09747821 -0.05352538 The S CARBEH1	AS System 13:29	Saturday,	7 August 17, 1996	Variable INTERCEP RECATT RECSN RECBC RECBB RECBM RECEM1 RECAP1 RECAP1 RECOC RECRFC	DF 1 1 1 1 1 1 1 1 1 1	Parameter Estimate -0.382831 0.339657 0.052555 0.068016 0.018378 0.002845 0.013068 0.198289 -0.010058 -0.038973	Ameter Estimate Standard Error 0.43809432 0.02915943 0.02093947 0.04074309 0.03207666 0.05248086 0.01983229 0.02412881 The SAS System	T for H0: Parameter=0 -0.874 7.647 1.802 3.248 0.451 0.089 0.261 3.778 -0.507 -1.615 13:29 Saturday,	Prob > [T] 0.3829 0.0001 0.0725 0.0013 0.6523 0.9294 0.7945 0.0002 0.6124 0.1073 12 August 17, 1996
ENSN 1 ENBC 1 ENBB 1 ENNB 1 ENAPI 1 ENAPI 1 ENAPI 1 ENRFC 1 Model: MODEL1 Dependent Variable:	0.00757762 0.02564411 0.05277685 0.17561373 0.00073636 0.12992691 0.08611135 0.09747821 -0.05352538 The S CARBEH1 Analysis	AS System 13:29 of Variance	Saturday,	7 August 17, 1 9 96	Variable INTERCEP RECATT RECSN RECBB RECCB RECCB RECCM1 RECAP1 RECOC RECRFC	DF 1 1 1 1 1 1 1 1 1	Par Parameter Estimate -0.382831 0.339657 0.052555 0.066016 0.018378 0.002845 0.013068 0.198289 -0.010058 -0.038973 Standardized	Ameter Estimate Standard Error 0.43809432 0.02915943 0.02093947 0.04074309 0.03207666 0.05013584 0.05248086 0.01983229 0.02412881 The SAS System	T for H0: Parameter=0 -0.874 7.647 1.802 3.248 0.451 0.089 0.261 3.778 -0.507 -1.615 13:29 Saturday,	Prob > [T] 0.3829 0.0001 0.0725 0.0013 0.6523 0.9294 0.7945 0.0002 0.6124 0.1073 12 August 17, 1996
ENSN 1 ENBC 1 ENBB 1 ENNB 1 ENEM1 1 ENAPI 1 ENAPI 1 ENRFC 1 Model: MODEL1 Dependent Variable:	0.00757762 0.02564411 0.05277685 0.17561373 0.00073636 0.12992691 0.08611135 0.09747821 -0.05352538 The S CARBEH1 Analysis Sum o	AS System 13:29 of Variance f Mean	Saturday,	7 August 17, 1996	Variable INTERCEP RECATT RECSN RECBC RECBB RECM1 RECAP1 RECCAP1 RECCC RECRFC Variable	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Parameter Estimate -0.382831 0.39657 0.052555 0.068016 0.018378 0.002845 0.013068 0.198289 -0.010058 -0.038973 Standardized Estimate	Standard Error 0.43809432 0.04441829 0.02915943 0.02093947 0.04074309 0.03207666 0.05013584 0.05248086 0.01983229 0.02412881 The SAS System	T for H0: Parameter=0 -0.874 7.647 1.802 3.248 0.451 0.089 0.261 3.778 -0.507 -1.615 13:29 Saturday,	Prob > [T] 0.3829 0.0001 0.0725 0.0013 0.6523 0.9294 0.7945 0.0002 0.6124 0.1073 12 August 17, 1996
ENSN 1 ENBC 1 ENBB 1 ENNB 1 ENEM1 1 ENAPI 1 ENAPI 1 ENRFC 1 Model: MODEL1 Dependent Variable:	0.00757762 0.02564411 0.05277685 0.17561373 0.00073636 0.12992691 0.08611135 0.09747821 -0.05352538 The S CARBEH1 Analysis Sum o DF Square	AS System 13:29 of Variance f Mean s Square	Saturday, F Valu	7 August 17, 1996 Ne Prob≻F	Variable INTERCEP RECATT RECSN RECBC RECBB RECM1 RECAP1 RECAT RECCC RECRFC Variable INTERCEP RECATT	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Parameter Estimate -0.382831 0.339657 0.052555 0.068016 0.018378 0.002845 0.013068 0.198289 -0.010058 -0.038973 Standardized Estimate 0.00000000 0.47032122	Cameter Estimate Standard Error 0.43809432 0.02915943 0.02093947 0.04074309 0.03207666 0.05248086 0.01983229 0.02412881 The SAS System	T for H0: Parameter=0 -0.874 7.647 1.802 3.248 0.451 0.089 0.261 3.778 -0.507 -1.615 13:29 Saturday,	Prob > [T] 0.3829 0.0001 0.0725 0.0013 0.6523 0.9294 0.7945 0.0002 0.6124 0.1073 12 August 17, 1996
ENSN 1 ENBC 1 ENBB 1 ENNB 1 ENNB 1 ENAP1 1 ENAP1 1 ENRFC 1 Model: MODEL1 Dependent Variable: Source Model Error	0.00757762 0.02564411 0.05277685 0.17561373 0.00073636 0.12992691 0.08611135 0.09747821 -0.05352538 The S CARBEH1 Analysis Sum o DF Square 10 136.9881 296 97.5264	AS System 13:29 of Variance f Mean s Square 8 13.69882 8 0.32948	Saturday, F Valu 41.57	7 August 17, 1996 Ne Prob>F 17 0.0001	Variable INTERCEP RECATT RECSN RECBC RECBB RECEM1 RECCM1 RECCC RECRFC Variable INTERCEP RECATT RECSN RECBC	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Par Parameter Estimate -0.382831 0.339657 0.052555 0.068016 0.018378 0.00286 0.013068 0.198289 -0.010058 -0.038973 Standardized Estimate 0.00000000 0.47032122 0.09822791 0.15150245	ameter Estimate Standard Error 0.43809432 0.02415943 0.02915943 0.02093947 0.04074309 0.03207666 0.05013584 0.05248086 0.01983229 0.02412881 The SAS System	T for H0: Parameter=0 -0.874 7.647 1.802 3.248 0.451 0.089 0.261 3.778 -0.507 -1.615 13:29 Saturday,	Prob > [T] 0.3829 0.0001 0.0725 0.0013 0.6523 0.9294 0.7945 0.0002 0.6124 0.1073 12 August 17, 1996
ENSN 1 ENBC 1 ENBB 1 ENNB 1 ENNB 1 ENAP1 1 ENAP1 1 ENAP1 1 ENRFC 1 Model: MODEL1 Dependent Variable: Source Model Error C Total	0.00757762 0.02564411 0.05277685 0.17561373 0.00073636 0.12992691 0.08611135 0.09747821 -0.05352538 The S CARBEH1 Analysis Sum o DF Square 10 136.9881 296 97.5264 306 234.5146	AS System 13:29 of Variance f Mean s Square 8 13.69882 8 0.32948 6	Saturday, F Valu 41.57	7 August 17, 1996 Me Prob>F 17 0.0001	Variable INTERCEP RECATT RECSN RECBC RECBB RECCM1 RECAP1 RECCC RECRFC Variable INTERCEP RECATT RECSN RECBC RECBB RECNB	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Par Parameter Estimate -0.382831 0.339657 0.052555 0.068016 0.018378 0.002845 0.013068 0.198289 -0.010058 -0.038973 Standardized Estimate 0.00000000 0.47032122 0.09822791 0.15150245 0.02757715 0.00486152	Ameter Estimate Standard Error 0.43809432 0.0241529 0.02915943 0.02093947 0.04074309 0.03207666 0.05013584 0.05248086 0.01983229 0.02412881 The SAS System	T for H0: Parameter=0 -0.874 7.647 1.802 3.248 0.451 0.089 0.261 3.778 -0.507 -1.615 13:29 Saturday,	Prob > [T] 0.3829 0.0001 0.0725 0.0013 0.6523 0.9294 0.7945 0.0002 0.6124 0.1073 12 August 17, 1996
ENSN 1 ENBC 1 ENBB 1 ENNB 1 ENNB 1 ENAPI 1 ENA	0.00757762 0.02564411 0.05277685 0.17561373 0.00073636 0.12992691 0.08611135 0.09747821 -0.05352538 The S CARBEH1 Analysis Sum o DF Square 10 136.9881 296 97.5264 306 234.5146 0.57400 1.47231	AS System 13:29 of Variance f Mean s Square 8 13.69882 8 0.32948 6 R-square Adi R-sq	Saturday, F Valu 41.57 0.5841 0.5701	7 August 17, 1996 Ne Prob>F 17 0.0001	Variable INTERCEP RECATT RECSN RECBC RECBB RECM1 RECAPI RECCC RECRFC Variable INTERCEP RECATT RECSN RECBC RECBB RECM1 RECEM1 RECEM1	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Parameter Estimate -0.382831 0.339657 0.052555 0.068016 0.018378 0.002845 0.013068 0.198289 -0.010058 -0.038973 Standardized Estimate 0.0000000 0.47032122 0.09822791 0.15150245 0.0275715 0.00486152 0.21089539	Ameter Estimate Standard Error 0.43809432 0.04441829 0.02915943 0.02093947 0.04074309 0.03207666 0.05013584 0.05248086 0.01983229 0.02412881 The SAS System	T for H0: Parameter=0 -0.874 7.647 1.802 3.248 0.451 0.089 0.261 3.778 -0.507 -1.615 13:29 Saturday,	Prob > [T] 0.3829 0.0001 0.0725 0.0013 0.6523 0.9294 0.7945 0.0002 0.6124 0.1073 12 August 17, 1996
ENSN 1 ENBC 1 ENBB 1 ENNB 1 ENAPI 1 ENAPI 1 ENAPI 1 ENRFC 1 Model: MODEL1 Dependent Variable: Source Model Error C Total Root MSE Dep Mean C.V.	0.00757762 0.02564411 0.05277685 0.17561373 0.00073636 0.12992691 0.08611135 0.09747821 -0.05352538 The S CARBEH1 Analysis Sum o DF Square 10 136.9881 296 97.5264 306 234.5146 0.57400 1.47231 38.98660	AS System 13:29 of Variance f Mean s Square 8 13.69882 8 0.32948 6 R-square Adj R-sq	Saturday, F Valu 41.57 0.5841 0.5701	7 August 17, 1996 Ne Prob>F 7 0.0001	Variable INTERCEP RECATT RECSN RECBC RECBB RECM1 RECAP1 RECAC RECRFC Variable INTERCEP RECATT RECSN RECBC RECBB RECMB RECM1 RECAP1 RECAC	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Parameter Estimate -0.382831 0.339657 0.052555 0.068016 0.018378 0.002845 0.013068 0.198289 -0.010058 -0.038973 Standardized Estimate 0.00000000 0.47032122 0.09822791 0.15150245 0.02757715 0.00486152 0.01298678 0.21089539 -0.02957681	ameter Estimate Standard Error 0.43809432 0.0441829 0.02915943 0.0203947 0.04074309 0.03207666 0.05013584 0.05248086 0.01983229 0.02412881 The SAS System	T for H0: Parameter=0 -0.874 7.647 1.802 3.248 0.451 0.089 0.261 3.778 -0.507 -1.615 13:29 Saturday,	Prob > [T] 0.3829 0.0001 0.0725 0.0013 0.6523 0.9294 0.7945 0.0002 0.6124 0.1073 12 August 17, 1996

			The SAS Syste	em 13:29 Sá	aturday,	August 1	13 7, 1996					The SAS S	ystem 13	3:29 Saturday,	August 1	16 7, 1996
Model: MODEL1 Dependent Vari	iable	: ENINT1						Model: Depend	: MODEL1 dent Vari	able:	CARINT1					
		An	alysis of Vari	ance							Ai	nalysis of V	/ariance	e		
6		22	Sum of	Mean								Sum of	Me	ean		
Source		DE	squares	Square	F Val	ue i	'rob>F		Source		DF	Squares	Squa	are FVal	ue	Prob>F
Model		9 8	1.80407 9	.08934	16.1	19 (0001		Model		9 8	30.46764	8.940	085 9.9	57	0.0001
Error C Total	L	297 16 306 249	7.47280 C 9.27687	.56388				1	Érror C Total		297 21	56.68546 47 15309	0.897	793		
	-								C IOCUI		500 5.	11.13309				
Roc Dep	ot MS o Mea	E 0.7509 n 3.9250	92 R-squar)8 Adj R-s	re 0. g 0.	.3282 .3078				Roc Dep	ot MSE Mean	0.94 ⁻ 1.739	759 R-so 941 Adj	uare R-sq	0.2318 0.2085		
C.V	<i>.</i>	19.1313	33						c.v	' .	54.47	767				
			The SAS Syste	m 13:29 Sa	aturday,	August 17	14 , 1996					The SAS Sy	rstem 13	3:29 Saturday,	August 1	17 7, 1996
		Par	rameter Estima	tes				ļ			Pa	arameter Est	imates			
		Parameter	Standard	T for	но:						Parameter	- Stand	lard	T for HO.		
Variable	DF	Estimate	Error	Paramet	cer=0	Prob > 1	1	v	ariable	DF	Estimate	e Er	ror P	Parameter=0	Prob >	T
INTERCEP	1	0.515619	0.45933278	1	.123	0.262	5	I	NTERCEP	1	0.801841	0.42740	136	1.876	0.06	16
ENATT	1	0.320073	0.04185940	7	.646	0.000	1	C.	ARATT	1	0.194849	0.02840	539	6.859	0.00	01
ENSN	1	0.050746	0.03170236	1	.601	0.110	5	C.	ARSN	1	0.053264	0.04095	900	1.300	0.19	45
ENBC	1	~0.005699	0.02170276	-0).263	0.793	0	C C	ARBC	1	-0.034367	0.02820	820	-1.218	0.22	41
ENNR	1	0.000409	0.035/0192	0	204	0.870	2		ARBB	1	0.032808	0.03261	495	1.006	0.31	53
ENEM1	1	-0.055484	0.05443148	_1	010	0.030	2 0		ARND ADEM1	1	-0.033442	0.04/44	148	-0.705	0.48	14
ENAP1	1	0.140769	0.05376587	2	618	0.300	3		AREMI ADAD1	1	0.030397	0.05413	1023	0.565	0.5/	24
ENOC	1	0.015167	0.02017863	2	.752	0.452	9	C.	AROC	1	-0.013212	0.07022	501	-0.537	0.96	27
ENRFC	1	-0.043289	0.02351745	-1	.841	0.066	7	č	ARREC	1	-0.032195	0.02330	091	-0.337	0.59	20 97
			The SAS Syste	m			15					The SAS Sv	stem	1.0/0	0.10	18
			-	13:29 Sa	iturday,	August 17	, 1996						13	:29 Saturday,	August 1	7, 1996
		Standardized									Standardized					
Variable	DF	Estimate						v	ariable	DF	Estimate					
INTERCEP	1	0.0000000						I	NTERCEP	1	0.00000000					
ENATT	1	0.45260116						Ci	ARATT	1	0.44454952					
ENSN	1	0.09631029						Ci	ARSN	1	0.08585495					
ENBC	1	-0.01290445						Ci	ARBC	1	-0.06538074					
ENBB	1	0.00990766						Ci	ARBB	1	0.05870896					
ENNB ENEM1	1	-0.05293090						C/	ARNB	1	-0.04681326					
ENAP1	1	0 15091713							AREMI	1	0.03132601					
ENOC	1	0.04525922							ARAPI	1	0.0028/841					
ENRFC	1	-0.08861649						C2	ARRFC	1	-0.07835538					
										-						

<u>T-Test</u>

The SAS	System	n		451 13:	12 Tuesday, A	August 13, 1996	1 2	261 46	3.92337 3.93478	165 (261)	0.87808234 1.04141301	0.05435193 0.15354797	1.00000000	7.00000000 5.00000000
			TTEST PR	OCEDURE			Varianc	es	т	DF	Prob> T			
Variable	e: RECI	INT1					Unequal	 -(-(0701	56.8	0.9444			
SEX	N	Mean	Std Dev	Std Error	Minimum	Maximum	D- NO			505.0	0.9371			
1 2	261 46	4.07662835 4.10869565	0.90398143 0.99394301	0.05595505 0.14654890	1.00000000 1.00000000	5.00000000 5.00000000	For HU:	varia	ances are	equal,	, F' = 1.41 The SAS	DF = (45, System 13:	260) Prob> 12 Tuesday, Au	f' = 0.1086 453 igust 13, 1996
Variance	5	T I	F Prob> T								TTEST PR	OCEDURE		
Unequal Equal	-0. -0.	2044 58. 2185 305.	9 0.8387 0 0.8272				Variabl	e: CAR	RINT1					
For HO:	Varian	ices are equa	1, F' = 1.21	DF = (45, 2)	(60) Prob>	F' = 0.3674	SEX	N	M	ean	Std Dev	Std Error	Minimum	Maximum
		•	The SAS	System 13:1	.2 Tuesday, A	452 ugust 13, 1996	1 2	261 46	1.67432	950 1 565 1	L.00636056 L.30346991	0.06229215 0.19218615	1.00000000 1.00000000	5.00000000 5.00000000
			TTEST PR	OCEDURE			Varianc	85	т	DF	Prob> T			
Variable	: ENIN	IT1 Maan	Stal Dara	Chil Dunou	a t		Unequal Equal	-2 -2 -2	2.1500	54.8 305.0	0.0360 0.0105			
		mean	sta Dev	sta Error	Minimum	Maximum	For H0:	Varia	unces are	equal,	F' = 1.68	DF = (45, 2)	260) Prob>1	" = 0.0142

	The SAS	System 13:12	2 Tuesday, Au	454 Igust 13, 1996				The SAS	System 13:	12 Tuesday, Au	459 Igust 13, 1996
	TTEST PR	OCEDURE						TTEST PR	OCEDURE		
Variable: RECBEH1					Variabl	e: REC	BEH1				
SEX N Mean	Std Dev	Std Error	Minimum	Maximum	SEX	N	Mean	Std Dev	Std Error	Minimum	Maximum
1 261 3.81226054 0. 2 46 3.63043478 1.	.89399872 .23573992	0.05533713 0.18219991	1.00000000 1.00000000	5.00000000 5.00000000	1 2	261 46	3.81226054 3.63043478	0.89399872 1.23573992	0.05533713 0.18219991	1.00000000 1.00000000	5.00000000 5.00000000
Variances T DF	Prob> T				Varianc	es	T I	DF Prob> T			
Unequal 0.9549 53.6 Equal 1.1942 305.0	0.3439 0.2333				Unequal Equal	0 1	.9549 53 .1942 305	.6 0.3439 .0 0.2333	9 5		
For HO: Variances are equal,	F' = 1.91 The SAS	DF = (45,2) System 13:1	60) Prob>F 2 Tuesday, Au	r' = 0.0019 455 igust 13, 1996	For HO:	Varia	nces are equa	al, F' = 1.91 The SAS	DF = (45, System 13:	260) Prob>1 12 Tuesday, An	F' = 0.0019 460 ngust 13, 1996
	TTEST PR	OCEDURE						TTEST PR	OCEDURE		
Variable: ENBEH1					Variabl	e: ENB	EH1				
SEX N Mean	Std Dev	Std Error	Minimum	Maximum	SEX	N	Mean	Std Dev	Std Error	Minimum	Maximum
1 261 3.67049808 0. 2 46 3.56521739 0.	.83127066 .95805762	0.05145436 0.14125789	1.00000000 1.00000000	5.0000000 5.0000000	1 2	261 46	3.67049808 3.56521739	0.83127066 0.95805762	0.05145436 0.14125789	1.00000000 1.00000000	5.00000000 5.00000000
Variances T DF	Prob> T				Varianc	es	T I	DF Prob> T			
Unequal 0.7003 57.6 Equal 0.7735 305.0	0.4866 0.4398				Unequal Equal	0 0	.7003 57. .7735 305.	.6 0.4866 .0 0.4398	5		
For HO: Variances are equal,	F' = 1.33 The SAS	DF = (45,2) System	60) Prob>F 2 Tuesday Au	T = 0.1816 456 woust 13 1996	For HO:	Varia	nces are equa	al, F' = 1.33 The SAS	DF = (45, System 13:	260) Prob>1 12 Tuesday, Au	F' = 0.1816 461 roust 13. 1996
	TTEST PR	OCEDURE		·,,				TTEST PR	OCEDURE	1.	- ·
Variable: CARBEH1					Variabl	e: CAR	BEH1				
SEX N Mean	Std Dev	Std Error	Minimum	Maximum	SEX	N	Mean	Std Dev	Std Error	Minimum	Maximum
1 261 1.40613027 0. 2 46 1.84782609 1.	.75689190 .31601066	0.04685043 0.19403519	1.00000000 1.00000000	5.00000000 5.00000000	1 2	261 46	1.40613027 1.84782609	0.75689190 1.31601066	0.04685043 0.19403519	1.00000000 1.00000000	5.00000000 5.00000000
Variances T DF	Prob> T				Varianc	95	T I	OF Prob> T			
Unequal -2.2128 50.4 Equal -3.2026 305.0	0.0315 0.0015				Unequal Equal	-2 -3	.2128 50. .2026 305.	.4 0.0315 .0 0.0015			
For H0: Variances are equal,	F' = 3.02 The SAS	DF = (45,2) System	60) Prob>F	'' = 0.0000 457 must 13, 1996	For HO:	Varia	nces are equa	al, F' = 3.02	DF = (45,3	260) Prob>H	f' = 0.0000
	TTEST PR	DCEDURE	2 1405444y, 114	gust 13, 1990							
Variable: ENINT1											
SEX N Mean	Std Dev	Std Error	Minimum	Maximum							
1 261 3.92337165 0. 2 46 3.93478261 1.	.87808234 .04141301	0.05435193 0.15354797	1.00000000 1.00000000	7.00000000 5.00000000							
Variances T DF	Prob> T										
Unequal -0.0701 56.8 Equal -0.0789 305.0	0.9444 0.9371										
For H0: Variances are equal,	F' = 1.41 The SAS	DF = (45,26 System 13:12	50) Prob>F 2 Tuesday, Au	" = 0.1086 458 gust 13, 1996							
	TTEST PRO	DCEDURE									
Variable: CARINT1											
SEX N Mean	Std Dev	Std Error	Minimum	Maximum							
1 261 1.67432950 1. 2 46 2.10869565 1.	.00636056 .30346991	0.06229215 0.19218615	1.00000000 1.00000000	5.00000000 5.00000000							
Variances T DF	Prob> T										
Unequal -2.1500 54.8 Equal -2.5736 305.0	0.0360 0.0105										
For H0: Variances are equal,	F' = 1.68	DF = (45, 26)	50) Prob>F	" = 0.0142							

	Analysis	s of Varianc	e (ANOVA	N)				A A : A	3.6923 13	1	
								A	3.6727 55	4	
								The SAS Sys	stem 16.10 Fr	iday Angust	6 + 23 1996
The SAS System			1 16:10 Fri	dav ຽນດາເຮ	- 23 1996		Gene	eral Linear Mode	Id.10 FI	Iday, Augus	c 25, 1990
	Gener	al Linear Models	Procedure	day, hugus	20, 1990			Class Level Info	ormation		
	C	lass Level Infor	mation				Cla	ass Levels	Values		
	Clas	s Levels V	/alues				ED	JC 6	123456		
	EDUC	6 1	23456				Number o	of observations :	in data set = 3	07	
	Number of	observations in	n data set = 30	7				The SAS Sy	stem 16:10 Fr	iday, Augus	7 t 23, 1996
		The SAS Syst	em 16:10 Fri	day, Augus	2 t 23, 1996		Gene	eral Linear Mode	ls Procedure		
	Gener	al Linear Models	Procedure			Dependent '	/ariable: ENBEH1	Sum of	Mean		
Dependent Variab	le: RECBEH1					Source	DF	Squares	Square	F Value	Pr > F
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	Model	5	12.54543030	2.50908606	3.62	0.0034
Model	5	2.82613620	0.56522724	0.62	0.6856	Error	301	208.85522117	0.69387117		
Error	301	274.98493872	0.91357122			Corrected	fotal 306	221.40065147			
Corrected Total	306	277.81107492					R-Square	c.v.	Root MSE	El	NBEH1 Mean
	R-Square	c.v.	Root MSE	RE	CBEH1 Mean		0.056664	22.79213	0.832989		3.654723
	0.010173	25.25245	0.955809		3.785016			The SAS Sy:	stem 16:10 Fr	iday, Augus	8 t 23, 1996
		The SAS Syst	em 16:10 Fri	dav. August	3 E 23. 1996		Gene	eral Linear Model	is Procedure	,	,
	Gener	al Linear Models	Procedure		,	Dependent '	/ariable: ENBEH1				
Dependent Variab	le: RECBEH1					Source	DF	Type I SS	Mean Square	F Value	Pr > F
Source	DF	Type I SS	Mean Square	F Value	Pr > F	EDUC	5	12.54543030	2.50908606	3.62	0.0034
EDUC	5	2.82613620	0.56522724	0.62	0.6856	Source	ĎF	Type III SS	Mean Square	F Value	Pr > F
Source	DF	Type III SS	Mean Square	F Value	Pr > F	EDUC	5	12.54543030	2.50908606	3.62	0.0034
EDUC	5	2.82613620	0.56522724	0.62	0.6856						
								The SAS Sys	stem 16:10 Fr	iday, August	9 t 23, 1996
		The SAS Syst	em 16:10 Fri	day, August	4 23, 1996		Gene	eral Linear Model	ls Procedure		
	Gener	al Linear Models	Procedure			:	[ukey's Studentiz	ed Range (HSD)	lest for variab	le: ENBEH1	
Tukey'	s Studentize	d Range (HSD) Te	est for variabl	e: RECBEH1		N	DTE: This test co generally ha	ontrols the type as a higher type	I experimentwi II error rate	se error rat than REGWQ.	te, but
NOTE: T	his test con enerally has	trols the type I a higher type I	experimentwis I error rate t	e error rat han REGWQ.	e, but		Alpha=	0.05 df= 301	MSE= 0.693871		
	Alpha= Critical V Minimum :	0.05 df≈ 301 M alue of Studenti Significant Diff	ISE= 0.913571 .zed Range= 4.0 .erence= 0.7104	56			Uriticai Minimum WARNI Harmoni	Value of Student Significant Dif NG: Cell sizes a c Mean of cell s	fized Range= 4. fference= 0.619 are not equal. sizes= 29.78654	1	
	WARNIN Harmonic	G: Cell sizes ar Mean of cell si	e not equal. zes= 29.78654			Me	ans with the sam	ne letter are not	significantly	different.	
Means w	ith the same	letter are not	significantly	different.				The SAS Sys	tem	iday Dyayat	10
		The SAS Syst	em 16:10 Fri	dav. August	5		Gene	ral Linear Model	.s Procedure	rday, August	L 23, 1990
	Genera	al Linear Models	Procedure				Tukey Group	ing	Mean N 1	EDUC	
	Tukey Groupin	ng	Mean N E	DUC			-	A	1.1765 17	3	
		A 4.	0000 17 3				В	A A 4	.0256 39	2	
		А А З.	8817 93 6				B B	A A 3	8.5889 90	5	
		A A 3.	7667 90 5				B	A A S	8.5806 93	б	
		A A 3.	6923 39 2				B	:	3.5385 13	1	

	B B	3.	4909 55 4									10
									The SAS Syst	em 16:10 Fr:	day, August	23, 1996
		The SAS Syst	em 16:10 Fri	.day, Augus	11 t 23, 1996			Genera C.	al Linear Models lass Level Infor	Procedure mation		
	Genera Cl	l Linear Models ass Level Infor	Procedure mation					Cla	ass Levels	Values		
	Class	s Levels V	alues					AG	s 4	1234		
	EDUC	6 1	23456					Number of	observations in	data set = 30	17	
	Number of	observations in	data set = 30	17					The SAS Syst	.em 16:10 Fr	day. August	17 : 23, 1996
		The SAS Syst	em 16:10 Fri	day. Augus	12 t 23, 1996			Gener	al Linear Models	Procedure		,
	Genera	l Linear Models	Procedure		,	Dependent '	Variable:	RECBEH1				
Dependent Variab	le: CARBEH1					Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	Model		3	4.51523180	1.50507727	1.67	0.1738
Model	5	9.59587388	1.91917478	2.57	0.0270	Error		303	273.29584312	0.90196648		
Error	301	224.91878410	0.74723849			Corrected	Total	306	277.81107492			
Corrected Total	306	234.51465798					Ē	-Square	c.v.	Root MSE	REC	BEH1 Mean
	R-Square	c.v.	Root MSE	CA	RBEH1 Mean		C	0.016253	25.09155	0.949719		3.785016
	0.040918	58.71236	0.864430		1.472313				The SAS Syst	em 16.10 Emi	dour Duquat	18
		The SAS Syst	em 16.10 Emi	dou Duque	+ 22 1996			Gener	l Linear Models	Procedure	.day, August	. 23, 1990
	Genera	l Linear Models	Procedure	uay, Augus	. 23, 1990	Dependent '	Variable:	RECBEH1	ii binear noders	Trocedure		
Dependent Variah	le: CARBEH1	II DINEGI NOGEIS	Troccure			Source	, at 10, 10, 10,	DF	Type I SS	Mean Square	F Value	Pr > F
Source	DF	Type I SS	Mean Square	F Value	Pr > F	AGE		3	4.51523180	1.50507727	1.67	0.1738
EDUC	5	9.59587388	1.91917478	2.57	0.0270	Source		DF	Type III SS	Mean Square	F Value	Pr > F
Source	DF	Type III SS	Mean Square	F Value	Pr > F	AGE		3	4.51523180	1.50507727	1.67	0.1738
EDUC	5	9.59587388	1.91917478	2.57	0.0270							
									The SAS Syst	em 16:10 Fri	day August	19
		The SAS Syst	em 16.10 Fri	day Augus	14			Genera	l Linear Models	Procedure	.day, August	23, 1990
	Genera	l Linear Models	Procedure	uay, Augus	C 23, 1990		Tukev's S	tudentize	l Bange (HSD) Te	st for variabl	e: RECBEH1	
Tukev'	s Studentized	l Range (HSD) Te	st for variabl	e: CARBEH1		N	OTE: This	test cont	rols the type I	experimentwis	e error rat	e, but
NOTE: T	his test cont	rols the type I	experimentwis	e error ra	te, but		gene	rally has	a higher type I	I error rate t	han REGWQ.	
g	enerally has Alpha= 0 Critical Va Minimum S	a higher type I 0.05 df= 301 M lue of Studenti Significant Diff	I error rate t SE= 0.747238 zed Range= 4.0 erence= 0.6425	han REGWQ. 56			c	Alpha= (ritical Va Minimum S WARNIN(Harmonic	0.05 df= 303 M alue of Studenti Significant Diff S: Cell sizes ar Mean of cell si	SE= 0.901966 zed Range= 3.6 erence= 0.6769 e not equal. zes= 26.27303	53	
	Harmonic	Mean of cell si	zes= 29.78654			Me	eans with	the same	letter are not	significantly	different.	
Means w	ith the same	letter are not	significantly	different.					The SAS Syst	em 16:10 Fri	day. August	20 23, 1996
		The SAS Syst	em 16:10 Fri	dav. August	15 t 23, 1996			Genera	l Linear Models	Procedure	aay, nagase	20, 1990
	Genera	l Linear Models	Procedure		,		Tu	kev Groupi	.ng	Mean N	AGE	
	Tukey Groupin	.g I	Mean NE	DUC					- A 4	.0000 9	4	
		A 1.	8974 39 2						A A 3	.9483 58	3	
	в	A A 1.	5294 17 3						A A 3	.9074 54	1	
	B B	A A 1.	4889 90 5						A A 3	.6882 186	2	
	B . B	A A 1.	3656 93 6									
	B B	A A 1.	3636 55 4						The SAS Syst	em		21
	В В	1.	2308 13 1							16:10 Fri	aay, August	23, 1996

	Genera Cl	l Linear Models ass Level Info	s Procedure rmation				AGE	c 4	1234		
	Cla	ss Levels	Values				Number of	observations in	n data set = 30	7	
	AGE	4	1234					The SAS Sys	tem		27
	Number of a	observations in	n data set = 30	7				-	16:10 Fri	day, August	23, 1996
							Genera	al Linear Model:	s Procedure		
		The SAS Syst	tem 16:10 Fri	day, August	22 23, 1996	Dependent Va	riable: CARBEH1	Sum of	Mean		
	Genera	l Linear Model:	s Procedure			Source	DF	Squares	Square	F Value	Pr > F
Dependent Variab	le: ENBEH1					Model	3	3.15429873	1.05143291	1.38	0.2498
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	Error	303	231.36035925	0.76356554		
Model	3	6.47781539	2.15927180	3.04	0.0291	Corrected To	otal 306	234.51465798			
Error	303	214.92283607	0.70931629				R-Square	c.v.	Root MSE	CAR	BEH1 Mean
Corrected Total	306	221.40065147					0.013450	59.35032	0.873822		1.472313
	R-Square	c.v.	Root MSE	ĒN	BEH1 Mean			The SAS Sys	tem 16:10 Fri	day, August	28 23, 1996
	0.029258	23.04440	0.842209		3.654723		Genera	al Linear Model:	s Procedure		
		The SAS Syst	tem		23	Dependent Va	riable: CARBEH1				
			16:10 Fri	day, August	23, 1996	Source	DF	Type I SS	Mean Square	F Value	Pr > F
	Genera	1 Linear Model:	5 Procedure			AGE	3	3.15429873	1.05143291	1.38	0.2498
Dependent Variab.	Ie: ENBEHI		Marin (5-11-1-1-1	17 17-1		Source	DF	Type III SS	Mean Square	F Value	Pr > F
Source	DF	Type 1 55	nean Square	r value	PT > F	AGE	3	3.15429873	1.05143291	1.38	0.2498
AGE	3	6.4//81539	Z.1592/180	J.U4	0.0291 Dr > F						
ACE	ru S	6 A7781539	2 15927180	2 Value	0 0291			The SAS Syst	tem 16:10 Fri	dav. August	29 23, 1996
AGE	5	0.4//01009	2.13527100	5.04	0.0291		Genera	1 Linear Model:	s Procedure	Aug / Indgabe	20, 2000
		The SAS Syst	-em		24	Tu	kev's Studentized	l Range (HSD) Te	est for variable	e: CARBEH1	
		1110 DILD 070.	16:10 Fri	day, August	23, 1996	NOT	E: This test cont	rols the type :	I experimentwis	e error rat	e, but
	Genera	l Linear Models	s Procedure				generally has	a higher type :	II error rate th	ıan REGWQ.	
Tukey': NOTE: Th	s Studentized	Range (HSD) Te rols the type l	est for variable (experimentwise	e: ENBEH1 e error rate	e, but		Alpha= C Critical Va Minimum S	0.05 df= 303 1 alue of Student: Significant Dif:	MSE= 0.763566 ized Range= 3.6 ference= 0.6228	53	
ge	enerally has a	a higher type 1	[I error rate t]	han REGWQ.			WARNING Harmonic	: Cell sizes an Mean of cell si	re not equal. izes= 26.27303		
	Alpha= 0 Critical Va	.05 df= 303 N lue of Studenti	ISE= 0.709316 ized Range= 3.6	53		Mea	ns with the same	letter are not	significantly o	different.	
	Minimum S: WARNING Harmonic N	ngnificant Diff : Cell sizes an Mean of cell si	terence= 0.6003 re not equal. izes= 26.27303					The SAS Syst	tem 16:10 Frid	lay, August	30 23, 1996
Means wi	ith the same :	letter are not	significantly o	different.			Genera	l Linear Models	5 Procedure		
		The SAS Syst	em 16:10 Fri	lav August	25		Tukey Groupi	ng	Mean N A	\GE	
	Genera	l Linear Models	Procedure	auj, nagase	20, 1990			A 1 A	1.5517 58 3	3	
	Tukey Groupin	ם חמ	Mean N	AGE				A 1 A	L.5108 186 2	2	
	j <u>F</u>	-s A 4	L.0000 9 4	1				A 1 A	L.3148 54 3	-	
		A A 3	3.8621 58 3	3				A 1	L.1111 9 4	1	
		A A 3	3.7593 54 :	1							
		A A 3	1.5430 186 2	2				The SAS Syst	em 16:10 Frid	lav. August	31 23, 1996
							Genera	l Linear Models	Procedure		
		The SAS Syst	em		26		Cl	ass Level Infor	rmation		
		-	16:10 Frid	day, August	23, 1996		Class	Levels \	Jalues		
	General Cla	l Linear Models ass Level Infor	Procedure mation				EDUC	6 1	L 2 3 4 5 6		
	Clas	55 Levels	Values				Number of	observations ir	n data set = 30'	ſ	

									16:10 Fri	day, August	23, 1996
		The SAS Syst	em 16:10 Fri	day, August	32 23, 1996		Genera	al Linear Models	Procedure		
	Genera	al Linear Models	Procedure			Dependent Varia	ole: ENINT1	Come of	Maan		
Dependent Varia	able: RECINT1					Source	DF	Squares	Square	F Value	Pr > F
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	Model	5	7.94870470	1.58974094	1.98	0.0810
Model	5	6.93624792	1.38724958	1.67	0.1416	Error	301	241.32816827	0.80175471		
Error	301	250.02792146	0.83065755			Corrected Total	306	249.27687296			
Corrected Total	L 306	256.96416938					R-Square	c.v.	Root MSE	EN	NINT1 Mean
	R-Square	c.v.	Root MSE	REC	CINT1 Mean		0.031887	22.81246	0.895408		3.925081
	0.026993	22.33049	0.911404		4.081433			The SAS Syst	em 16:10 Fri	dav. August	38 23, 1996
		The SAS Syst	em 16-10 Fri	day August	33 - 23, 1996		Gener	al Linear Models	Procedure	1, 2	·
	Genera	l Linear Models	Procedure	.uuj, nuguot	. 20, 2000	Dependent Varia	ble: ENINT1				
Donendent Varia	ble: RECINT1	IT BINCUL HOUCED	Tibboudio			Source	DF	Type I SS	Mean Square	F Value	Pr > F
Source	DF	Type I SS	Mean Square	F Value	Pr > F	EDUC	5	7.94870470	1.58974094	1.98	0.0810
EDUC	5	6,93624792	1.38724958	1.67	0.1416	Source	DF	Type III SS	Mean Square	F Value	Pr > F
Source	DF	Type III SS	Mean Square	F Value	Pr > F	EDUC	5	7,94870470	1.58974094	1.98	0.0810
EDUC	5	6.93624792	1.38724958	1.67	0.1416						
								The SAS Syst	em		39
		The SAS Syst	em		34		_		16:10 Fri	day, August	: 23, 1996
			16:10 Fri	.day, August	23, 1996		Gener	al Linear Models	Procedure		
	Genera	1 Linear Models	Procedure			Tukey	's Studentize	d Range (HSD) Te	st for Variabl	e: ENINII	o hut
Tukey	y's Studentized	i Range (HSD) Te	st for variabl	e: RECINTI		NOTE:	generally has	a higher type I	I error rate t	han REGWQ.	e, but
NOTE :	generally has	a higher type I	I error rate t	han REGWQ.	te, but		Alpha= Critical V	0.05 df= 301 M	(SE= 0.801755 zed Bange= 4 0	56	
	Alpha= ().05 df= 301 M	SE= 0.830658	156			Minimum	Significant Diff	erence= 0.6655		
	Minimum S Winimum S	Significant Diff	erence= 0.6774	1			Harmonic	Mean of cell si	zes= 29.78654		
	Harmonic	Mean of cell si	zes= 29.78654			Means w	with the same	letter are not	significantly	different.	
Means	with the same	letter are not	significantly	different.				The SAS Syst	em 16:10 Fri	day, August	40 23, 1996
		The SAS Syst	em 16:10 Fri	.day, August	35 23, 1996		Gener	al Linear Models	Procedure		
	Genera	al Linear Models	Procedure				Tukey Groupi	ng	Mean N E	DUC	
	Tukey Groupin	ığ	Mean N E	DUC				A 4.	4706 17 3		
		A 4.	2353 17 3	I			B	A 4.	1026 39 2		
		A 4.	2258 93 6	i			B	A 3.	8925 93 6		
		A 4.	1222 90 5	i			B	A 3.	8889 90 5		
		A 3.	9636 55 4				B	3.	7818 55 4		
		A 3.	8718 39 2	!			B	3.	7692 13 1		
		А А 3.	6923 13 1					The SAS Syst	em		41
		The SAS Syst	em		36				16:10 Fri	day, August	23, 1996
	Gonora	l Lincer Models	16:10 Fri	day, August	23, 1996		Gener C	al Linear Models lass Level Infor	Procedure mation		
	Cl	ass Level Infor	mation				Class	s Levels V	alues		
	Class	s Levels V	alues				EDUC	6 1	23456		
	ÉDUC	6 1	23456				Number of	observations in	data set = 30	7	
	Number of	observations in	data set = 30	17				m1			
		m) 01			~=			The SAS Syst	em 16:10 Fri	day, August	42 23, 1996
		The SAS Syst	em		37	I					

	Genera	l Linear Models	s Procedure			Dependent	Variabl	le: RECINT1	Cum of	Moon		
Dependent Vari	able: CARINT1					Source		DF	Squares	Square	F Value	Pr > F
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	Model		3	2.75733463	0.91911154	1.10	0.3512
Model	5	8.98274876	1.79654975	1.60	0.1601	Error		303	254.20683475	0.83896645		
Error	301	338.17034570	1.12348952			Corrected	Total	306	256.96416938			
Corrected Tota	al 306	347.15309446						R-Square	c.v.	Root MSE	REC	INT1 Mean
	R-Square	c.v.	Root MSE	CAF	RINT1 Mean			0.010730	22.44190	0.915951		4.081433
	0.025875	60.93708	1.059948		1.739414				The SAS Syst	:em 16:10 Fri	day, August	48 23, 1996
		The SAS Syst	tem 16:10 Fri	day, August	43 23, 1996			Genera	l Linear Models	s Procedure		
	Genera	l Linear Models	s Procedure			Dependent	Variabl	le: RECINT1				
Dependent Vari	able: CARINT1					Source		DF	Type I SS	Mean Square	F Value	Pr > F
Source	DF	Type I SS	Mean Square	F Value	Pr > F	AGE		3	2.75733463	0.91911154	1.10	0.3512
EDUC	5	8.98274876	1.79654975	1.60	0.1601	Source		DF	Type III SS	Mean Square	F Value	Pr > F
Source	DF	Type III SS	Mean Square	F Value	Pr > F	AGE		3	2.75733463	0.91911154	1.10	0.3512
EDUC	5	8.98274876	1.79654975	1.60	0.1601							
									The SAS Syst	tem 16:10 Fri	day, August	49 23, 1996
		The SAS Syst	tem 16:10 Fri	.day, August	44 23, 1996			Genera	al Linear Models	s Procedure		
	Genera	l Linear Models	s Procedure				Tukey's	s Studentized	l Range (HSD) Te	est for variabl	e: RECINT1	
Tuke	ey's Studentized	Range (HSD) Te	est for variabl	e: CARINT1			NOTE: T	his test cont	rols the type l	E experimentwis	e error rat han REGWO.	e, but
NOTE :	This test cont generally has	rols the type] a higher type]	I experimentwis II error rate t	e error rat han REGWQ.	ce, but		ġŧ	Alpha= (Critical Vi	0.05 df= 303 N	1SE= 0.838966	53	
	Alpha= Critical Va	0.05 df= 301 lue of Studenti	MSE= 1.12349	156				Minimum S WARNIN	Significant Diff S: Cell sizes an	ference= 0.6529 ce not equal.		
	Minimum S WARNING Harmonic	ignificant Diff Cell sizes an Mean of cell si	ference= 0.7878 re not equal.	1			Means w ¹	Harmonic	Mean of cell si letter are not	izes= 26.27303	different.	
Means	s with the same	letter are not	significantly	different.					The SAS Syst	tem		50
		The SAS Syst	tem		45					16:10 Fri	day, August	: 23, 1996
			16:10 Fri	day, August.	23, 1996			Genera	l Linear Models	s Procedure	1.05	
	Genera	l Linear Models	5 Procedure					Tukey Group:	.ng	Mean N	AGE	
	Tukey Groupin	g	Mean N E	DUC					A 4	1.4444 9	4	
		A 2. A	.1282 39 2						A 4	1.2222 54	1	
		A 1. A	.7647 17 3						A 4 A	1.0517 58	3	
		A 1. A	.7556 90 5						A 4	1.0323 186	2	
		A 1. A	.7455 55 4									
		A 1. A	.6923 13 1						The SAS Syst	em 16:10 Fri	day, August	51 23, 1996
		A 1.	.5591 93 6					Genera Cl	l Linear Models ass Level Infor	Procedure mation		
		The SAS Syst	em 16:10 Fri	day, August	46 23, 1996			Cla	ss Levels	Values		
	Genera Cl	l Linear Models ass Level Infor	s Procedure mation					AGE	: 4	1234		
	Cla	ss Levels	Values					Number of	observations in	n data set = 30	7	
	AGE	4	1234						The SAS Syst	em	, _	52
	Number of	observations in	n data set = 30	7				Concer	1 Linear Models	16:10 Fri	aay, August	23, 1996
		ምኩል ሮችሮ ሮ	- O.W.		4.2	Dopordert	Variati	Genera	T DIMEST MODELS	, rroceante		
		ine SAS Syst	16:10 Fri	day, August	23, 1996	Source	VariaDi	DE. DNINII	Sum of	Mean	F Value	Dr N F
	Genera	l Linear Models	s Procedure			Model		3	8.90174422	2.96724807	3.74	0.0115

_		040 07510074	0. 20001206				R-Square	C.V.	Root MSE	CAR	INT1 Mean
Error	303	240.37512874	0.79331726				0.001160	61.50131	1.069762		1.739414
Corrected Total	306 R-Square	249.27687296 C.V.	Root MSE	EN	INT1 Mean			The SAS Syst	em 16:10 Frid	day, August	58 23, 1996
	0.035710	22.69210	0.890684		3.925081		General	l Linear Models	Procedure		
		The SAS Sys	tem		53	Depender	nt Variable: CARINT1				
			16:10 Fri	day, August	23, 1996	Source	DF	Type I SS	Mean Square	F Value	Pr > F
	Gener	al Linear Model	s Procedure			AGE	3	0.40261039	0.13420346	0.12	0.9499
Dependent Variab	le: ENINT1					Source	DF	Type III SS	Mean Square	F Value	Pr > F
Source	DF	Type I SS	Mean Square	F Value	Pr > F	AGE	3	0.40261039	0.13420346	0.12	0.9499
AGE	3	8.90174422	2.96724807	3.74	0.0115						
Source	DF	Type III SS	Mean Square	F Value	Pr > F			The SAS Syst	em		59
AGE	3	8.90174422	2.96724807	3.74	0.0115				16:10 Frid	lay, August	23, 1996
							Genera	l Linear Models	Procedure		
		The SAS Sys	tem 16,10 Fri	day August	54		Tukey's Studentized	Range (HSD) Te	st for variable	≥; CARINT1	
	Gener	al Linear Model	s Procedure	.uay, August	23, 1990		NOTE: This test cont: generally has a	rols the type I a higher type I	experimentwise I error rate th	error rate nan REGWQ.	e, but
Tukey': NOTE: Th ge	s Studentize his test con enerally has	d Range (HSD) T trols the type a higher type	est for variabl I experimentwis II error rate t	e: ENINT1 e error rat than REGWQ.	e, but		Alpha= 0 Critical Va Minimum S: WARNING Harmonic	.05 df= 303 M lue of Studenti ignificant Diff : Cell sizes ar Mean of cell si	SE= 1.144391 zed Range= 3.65 erence= 0.7625 e not equal. zes= 26.27303	53	
	Alpha= Critical V	0.05 df= 303 1 alue of Student	MSE= 0.793317 ized Range= 3.6	53			Means with the same :	letter are not	significantly of	different.	
	Minimum WARNIN Harmonic	Significant Dif G: Cell sizes a Mean of cell s	ference= 0.6348 re not equal. izes= 26.27303	1				The SAS Syst	em 16:10 Frid	day, August	60 23, 1996
Means wi	ith the same	letter are not	significantly	different.			General	l Linear Models	Procedure		
		The SAS Sys	tem		55		Tukey Groupin	ng	Mean N A	4GE	
		-	16:10 Fri	.day, August	23, 1996			A 1	.8148 54 1	L	
	Gener	al Linear Model	s Procedure					A A 1	.7258 186 2	2	
	Tukey Group	ing	Mean N	AGE				A A 1	.7241 58 3	3	
		A A	4.4444 9	4				A A 1	.6667 9 4	1	
	B B	A A	4.1034 58	3							
	B B	A	4.0926 54	1							
	В	:	3.7957 186	2							
		The SAS Sys	cem 16:10 Fri	day, August	56 23, 1996						
	Gener C	al Linear Model: lass Level Info:	s Procedure mation								
	C1	ass Levels	Values								
	AG	E 4	1234								
	Number of	observations in	n data set = 30	7							
		The SAS Syst	tem 16:10 Fri	day, August	57 23, 1996						
	Gener	al Linear Models	s Procedure								
Dependent Variabl	le: CARINT1	Sum of	Mean								
Source	DF	Squares	Square	F Value	Pr > F						
Model	3	0.40261039	0.13420346	0.12	0.9499						
Error	303	346.75048408	1.14439104								
Corrected Total	306	347.15309446									

APPENDIX G

RAW DATA

This appendix contains the raw data collected. A total of 307 sample responses

were collected from active duty Air Force members assigned to Wright-Patterson AFB,

OH. The actual data used in the analysis begins with column 41, corresponding to the first

question in the survey.

Raw Data Collected

555000	001001070196001	5326	#0001	42141411 643421535555555533333511311555555313131111531333333
555000	002001070196001	5326	#0001	43121225215244144255553333333544455555534333333112221222222111434334
555000	003001070196001	5326	#0001	42111511 51541541555522444411554444555555444422222551444333111544445
555000	004001070196001	5326	#0001	42221311 61431432433333223211353355434333221211224441543333112444433
555000	005001070196001	5326	#0001	533215251151441552555521224411544255555542433321111533443333222324345
555000	027001070196001	5326	#0001	471213252342231321555523444444224243555555343434222221322322322344434
555000	001001072596001	5326	#0001	422213114642321331444411333322444412333333212111111431312222111534311
555000	002001072596001	5326	#0001	463215221162331441555552244442323222244444332333322244343333333
555000	003001072596001	5326	#0001	482223252242331331444433333333121244444433333333
555000	004001072596001	5326	#0001	4212142522524415515555223333355555555555
555000	005001072596001	5326	#0001	4112132523524315224434443333334444444444
5550000	006001072596001	5326	#0001	4912132521624214215533443333334344445544343232321114224444444454545454
555000	007001072596001	5326	#0001	4312142512624314414444233333334433544444333332222111441343233122544445
5550000	008001072596001	5326	#0001	533224251162521521444423443322444443344443332321342244422222524322
5550000	009001072596001	5326	#0001	233313251121441441444433334433444455444433222222333444442442222333321
5550000	010001072596001	5326	#0001	43112325116255255355555233333342444455555533333311144211111111515142
5550000	011001072596001	5326	#0001	23421211463154344355553345453344345544553353533311144444544433422235
5550000	012001072596001	5326	#0001	33431325111244144155441155551144445555551444331111144112411111214111
5550000	013001072596001	5326	#0001	43121425124242142154334344222222445544242222221114224442222222444444
5550000	014001072596001	5326	#0001	43121525226155155155554544442255335555555333333111442344344222555355
5550000	015001072596001	5326	#0001	431114252262441555555443333333333333333333333333333
5550000	016001072596001	5326	#0001	4322132521424414415555554444334444555555333333311155243333333554433
5550000	017001072596001	5326	#0001	4311142523523314434444442222224432554555533333322222222
5550000	018001072596001	5326	#0001	2333132411334414414444113343334444444444
5550000	019001072596001	5326	#0001	431112252142441442444443333334444224444431313122254344343333333333
5550000	020001072596001	5326	#0001	4312131146614414414444334444224443444443444443444423222442434444222424233
5550000	021001072596001	5326	#0001	5343152511624415514444333343222423444545354343232222441333333111434334
5550000	022001072596001	5326	#0001	4332132511425315315544333333334444444545453333333222422244222222444343
5550000	023001072596001	5326	#0001	334313251132453554555544444442224444444444
5550000	024001072596001	5320	#0001	4322142521613213213333223333334444552222113333333322243333333333
5550000	023001072396001	5320	#0001	432214251162441551555225553342444255555444433111442344334222545344
5550000	026001072596001	5320	#0001	33531325112134134144443333344334444224444433333333
5550000	02/0010/2596001	5320	#0001	23111211 2144155555553444443444355555555555444423111443333333333
3330000	020001072590001	5320	#0001	3331323142344114134442333333243434353333343311122333333333444423
5550000	029001072596001	5320	#0001	431112251152441444441144533355555555442434313115441443424111524211
5550000	030001072596001	5320	#0001	232112114022542551545422444433243455555544434222222442444444222434422
5550000	031001072596001	5320	#0001	4321142511614415515555333333554455454544444422111552322444222552444
5550000	032001072596001	5320	#0001	431213232202491441444414333334344444444444444242422224424444444
5550000	033001072596001	5320	#0001	432213231142421431553313333333555555444433333333113411233133333524222
5550000	034001072596001	5320	#0001 *	
5550000	035001072596001	5320	#0001	43221323234144144244442233333335344333344433333311344134333311333233
5550000	030001072596001	5326	#0001	4322232321024413313333333333333444433333333344443233333333
5550000	38001072596001	5326	#0001	225215251525515515515555555555555555555
5550000	030001072596001	5226	#0001	525315114042445445445444435333353544445555555555
5550000	0.0001072596001	6226	#0001	3233142311014324323332233443333333333333
5550000	041001072596001	5326	#0001	53301/11/660//0//3/////2233332////000//3/4444444444
5550000	042001072596001	5326	#0001	0002141140024424404444444000000004444440000000222222
5550000	0.15001012330001	0,20	#0001	101100500101010050555550101005555055101010222233433233023223
2220000	0/3001072506001	5324	#0001	
5550000	043001072596001	5326 5326	#0001	4311122522425535555555555555555554444345555544535333223342244343222555422 A3112A251151543555555544443333344442555555445353332233422443432222555422
5550000	043001072596001 044001072596001	5326 5326 5326	#0001 #0001 #0001	43111225224253535555554443333454444455555443333222342244343222555442 4311242511515435535555444333344444255555443333222432444333233223334 4311125516334134144442333334444425555544333322243244333233223334
5550000 5550000	043001072596001 044001072596001 045001072596001	5326 5326 5326 5326	#0001 #0001 #0001 #0001	43111225224255355555544443333444445555544535332233422443432225555422 43112425115154355355554444333344442555554433332224324434323223334 43111225216234134144442233333424244444444323232224324333333

555000002001072596001	5326 #0001	422226251162541541554411231111555555553355211111115441222222111555511
555000003001072596001	5326 #0001	42221425216244155155555533333312211155555533333311132111322222255555
5550000050010725500001	5326 #0001	4 122625115211111114943332222221111444444333333111112221111222444444
555000004001072596001	5326 #0001	
555000005001072596001	5326 #0001	4122231146524415515555555555555555555555555555
555000006001072596001	5326 #0001	4212142521423413314444114444444444444444
555000007001072596001	5326 #0001	473225114652444444555555533333342224455555533333322244344433133444344
EEE0000000001072506001	5326 #0001	4442122522415525525555333333335555555555
555000000001072550001	5326 #0001	4323132523523213214444111331115555544444313131222222111111111555522
555000009001072596001	5526 #0001	
555000010001072596001	5326 #0001	4222232512522213315555553333355555555555
555000011001072596001	5326 #0001	42121411515134144144443333333555444455555333333222441333433233545444
555000012001072596001	5326 #0001	42221525115123233233443333333344433333344443333334433333443423332334344433
555000013001072596001	5326 #0001	431214252352431432555555444444343355555553333333222333343444334544344
555000018001072596001	E326 #0001	42221311465144344355554433442234234244444433323222442444444222444444
5550000140010725980001	5326 #0001	
555000015001072596001	5326 #0001	431213252562441441535582222255555555555555555555555555555
555000016001072596001	5326 #0001	4112132511525415515555443333315555555555
555000017001072596001	5326 #0001	44121211465244144155555554444332252555555555434333111433444444233152444
555000018001072596001	5326 #0001	5 43152522623413414444114444334343114444234343232253432553555555545411
555000020001072596001	5326 #0001	214312114612541543554433553333154444555555555553311152212222222554443
555000020001072590001	E326 #0001	4632142511424314424444444444322335533333444333222444444233444555554
555000021001072596001	5326 #0001	
555000022001072596001	5326 #0001	4 2213251142331441444443333334444224444433333311144233222224434343
555000023001072596001	5326 #0001	47122312464223123133442222222424344444424232323232
555000024001072596001	5326 #0001	563216114662551551555533222225555435555532322223334323323323222233344
555000025001072596001	5326 #0001	422213114642442442555433234422442255555555443322111442232222111555545
555000026001072596001	5326 #0001	431213252552441551555521111111554455554444333333112442332222111232355
5550000200010725500001	5326 #0001	412212114642121131444422224422114444444423433322222222
222000051001012280001	5320 #0001	AN101011 ACONNECT STEECONN NOONNA NOOTEECONDAOO110NNONNA NAOON1421
555000028001072596001	5326 #UUUI	44121211403244133133333444422444442333334344343344343344344
555000029001072596001	5326 #0001	4232142511624414413355223344334422552244444334413222553333444333525233
555000030001072596001	5326 #0001	4722132522514425525555443333333422242454545323232111432222222122544444
555000031001072596001	5326 #0001	4232131146515415415555443333335555554444443333333222433433333233433355
55500032001072596001	5326 #0001	41112225124233133254545443233322445555555555
EEE00032001072550001	5326 #0001	4212232523523313314444222222222445544444222222222443222222525214
2220000330010/2296001	3320 #UUUI	410020270272727272727272727242472727272727
555000034001072596001	5326 #0001	41221411406242143155442154221155555555533435522311111541555342111422224
555000035001072596001	5326 #0001	421113252342442543555555333333555544555555434343111432243233222444455
555000036001072596001	5326 #0001	482223252262241441545423333333444445545443333332221111111111
555000037001072596001	5326 #0001	41221425114243153154431133231145425545454545442313111441343211333544255
EEE000020001072596001	5326 #0001	423214114641321331443211233333344455444443434222115542433433333544454
555000038001072596001	5326 #0001	
555000001001072596001	5326 #0001	52321525116244145552144442245444454545444454425225441454422221544445
555000002001072596001	5326 #0001	4122131146414425434544334344332323234344443321212121212432333224242424
555000003001072596001	5326 #0001	43121325214244355334552244443322324434434333333334422222223333553335
555000004001072596001	5326 #0001	482214252142342442444422334411334355444411123333333344233333333434311
555000005001072596001	5326 #0001	4211122523523423423343223344224242553444334343242244222232222544455
555000006001072596001	5326 #0001	1321411465144154144422444224442554544334343332224424444442224444322
555000000000000000000000000000000000000	5326 #0001	
555000007001072596001	5326 #0001	4/1213252353521321445321535353444222535255555522244244444353424242
555000008001072596001	5326 #0001	424214251142431432444434333322243321444444323222224433333333
555000009001072596001	5326 #0001	41121311464254254255552455552255545555555555424222111521422221111524211
555000010001072596001	5326 #0001	4 22132521524324425453233334324242445555534423232222443234343333424242
555000011001072596001	5326 #0001	451216251152341331443322333333554455444433333323112431444333323424225
555000012001072596001	5326 #0001	421224252252331441555511222222435455444433212121111221143443111555511
555000012001072596001	5326 #0001	42221 20511 525 41 541 555 4424 421 1 552 555 54 44 32 321 1 2224 1 44 2221 33555555
555000013001072596001	5320 #0001	4222132311323413334435443544421133223333444432321122244144222213333333
555000014001072596001	5326 #0001	41111211465244144144442222222444344333323424222222442444444
555000015001072596001	5326 #0001	46221325115255155255555553333355555555555
555000016001072596001	5326 #0001	44121311464143154155552344332244545545555534342211144233323333544455
555000017001072596001	5326 #0001	463213252141431442555555342333545451555555313131111432422222111442255
555000018001072596001	5326 #0001	432213253342442442555523333353224522555555313131112535444322545525245
555000019001072596001	5326 #0001	4212122 23515415415555352333335555555555555131333331111122123113555511
FFF000020001072506001	5326 #0001	12111225215154155552233333555522
555000020001072550001	5320 #0001	
555000021001072596001	5326 #0001	4211121240324414414444114444414444444444
555000022001072596001	5326 #0001	473215252641441551555534444422255345555555554523111551442222111424255
555000023001072596001	5326 #0001	41111225235243143144441254333322254244444332332311142255522222423344
555000024001072596001	5326 #0001	4222142522525415515555335544224443554545454544422114432444443222322244
555000025001072596001	5326 #0001	4111142 115234244255511144441144444543444244414222442343344222552222
555000026001072596001	5326 #0001	4222132521512212213333113333334141411111131313155144133333333
555000027001072596001	5326 #0001	4343141146523323324444223333335555554444333333311155344444335242421
EEE000020001072590001	5326 #0001	
2220000500010/2280001	1320 #UUUL	A000101146514004200100001220002100000404044400000000
2220000520010/2226001	5320 #UUU1	423213114051432432444333333333444444444443333333333
555000030001072596001	5326 #0001	4243151146514414414444113333334444555555334343232224444444444
555000031001072596001	5326 #0001	4332142 1142331333444444333333344422444443333333222233222332222444444
555000032001072596001	5326 #0001	53321425116133232244442233333333344244413333333334423333333444444
555000033001072596001	5326 #0001	43321425214144144155552333433344445555443333333311444433333333555534
555000034001072596001	5326 #0001	422213252152442442444432333135444324444433333331444444
55500001001072590001	5326 #0001	A010000 00505415415555000400010010010000000000
55555555555555555555555555555555555555	5320 #0001	REFERENCE REFERENCE AND REPORT AND R
355000002001072596001	5320 #0001	432213114002542552444422333335555455444444431313133344244444442233424211
555000003001072596001	5326 #0001	2343121146215535535555445555441515555555555535333111553555555222515131
555000004001072596001	5326 #0001	2 221211442235235355554455553345453255555135533111551144144111355235
555000005001072596001	5326 #0001	2 32121146215525524444224444115555555443312333311333321323222111544411
555000006001072596001	5326 #0001	432213114661531531554433333333555555444411313131113442434444111525255
555000007001072596001	5326 #0001	324313114632441442444444343333444354444110101011104243444111020203
55555555555555555555555555555555555555	5326 #0001	011011420441444444444444444444444444444
222000000001015230001	5320 #UUUI	4311131140034414413434343444442223224444444444
555000009001072596001	5326 #0001	422213114662431441445555333335555555555555333333111441443333433422223
555000010001072596001	5326 #0001	421213114653443444444455334433554443444555343434222432323323211443344
555000012001072596001	5326 #0001	3 5312114622441441555533444433555555555555323232111432234234233544433
555000013001072596001		5242141146621515515555311155111111555555555111511111511115551115555
2220000120010122220001	5326 #0001	
555000001001073096001	5326 #0001 5326 #0001	23222325112343543555554455333354245555555333333111431314333333554333
55500001001073096001 555000002001073096001	5326 #0001 5326 #0001 5326 #0001	23222325112343543555554455333354245555555333333111431314333333554333 13112125252244144144441133333332425534444333313331143132333333444111
55500001001073096001 555000002001073096001 555000002001073096001	5326 #0001 5326 #0001 5326 #0001	$2322232511234354355555445533335424555555533333111431314333333554333\\13112125252244144144411333333242553444433331331143123333333444111\\4311133214555555444443123123333333444111\\431113323145555544444312312333333344411233333333444111\\4311133331455555544444313333333456554444431333333333444111\\431113333445535555544444313333333333$
55500001001073096001 555000002001073096001 555000003001073096001	5326 #0001 5326 #0001 5326 #0001 5326 #0001	$\begin{array}{c} 23222325112343543555554455333354245555555333333111431314333333554333\\ 131121252522441441444411333333242553444433331331143132333333444111\\ 43111325235322132144441133331155555544444121212224324222222544411\\ 353125114254555554444412122224324222222544411\\ 35312511425455555454444412122224324222222544411\\ 353125455555454444412122224324222222554411\\ 35312545555545444441222224324222222554411\\ 353125455555444441222224324222222554411\\ 35312545555545444441222224324222222554411\\ 3532545555545444441222224324222222554411\\ 3532545555545444441222224324222222554411\\ 35325455555545444441222224324222222554411\\ 35325455555545444441222224324222222554411\\ 353254555555555555555555555555555555555$
55500001001073096001 555000002001073096001 555000003001073096001 555000004001073096001	5326 #0001 5326 #0001 5326 #0001 5326 #0001 5326 #0001	$\begin{array}{c} 2322232511234354355555445533334245555555533333111431314333333554333\\ 1311212525243144144411333333242553444433333114312333333444111\\ 4311135253532132144441133331155555454444412121222224324222222544111\\ 33531525132124441551444332222224444444343333333232233333333$
55500001001073096001 55500002201073096001 55500003001073096001 55500004001073096001 555000005001073096001	5326 #0001 5326 #0001 5326 #0001 5326 #0001 5326 #0001 5326 #0001	$\begin{array}{c} 232223251123435435555544553333542455555553333311143131433333554333\\ 1311212525224414414441133333324255344443333133114312333333444111\\ 4311132525235322132144441133331155555444443333333333$
55500001001073096001 55500002001073096001 55500003001073096001 555000005001073096001 555000005001073096001	5326 #0001 5326 #0001 5326 #0001 5326 #0001 5326 #0001 5326 #0001 5326 #0001	$\begin{array}{c} 232223251123435435555544553333542455555533333111431314333333554333\\ 131121252522441441444113333332425534444333313311431323333344111\\ 43111325235322132144411333311555555444441212122224324222222454411\\ 33531525114244155144443322222244444443433333332233334333333$
55500001001073096001 55500002001073096001 55500003001073096001 55500005001073096001 55500005001073096001 55500007001073096001	5326 #0001 5326 #0001 5326 #0001 5326 #0001 5326 #0001 5326 #0001 5326 #0001 5326 #0001	$\begin{array}{c} 232223251123435435555544553333424555555533333111431314333333554333\\ 1311212525243124141444411333333242553444433331331143123333333444111\\ 3311325235322132144441333311555554444441212122224322422222254411\\ 33531525114244155144433222224444444444412121222234324222222254411\\ 3353152511424155144433323333555555444442323222233233333333$

555000009001073096001	5326	#0001	233213251121351341534311333311333355555553313331113553553443111513311
555000010001073096001	5326	#0001	3353122511224413325555233333335555555555
EEE000011001073006001	5226	#0001	2311221146223313314442233332244444555543333322224322222222
555000011001073096001	5526	#0001	
555000012001073096001	5326	#0001	2342121146223323244443333333444444444444
555000013001073096001	5326	#0001	2311111246133313314333233333323333344443334443322233232233222433333
555000014001073096001	5326	#0001	231212114622222242545533333433444444454444334433223334422333332544433
555000015001073096001	5326	#0001	3364162511314413313333333333333444443333333333
555000015001075050001	5320	#0001	E2221 A2E2161 F120E1610E160 A2A222EE22EE26 A3A213111541555545111513215
2220000100010/3030001	5326	#0001	33331423216134334339343434339362232353544343131113413554566666666666
555000017001073096001	5326	#0001	3253152511414414415455154441124333455555553431111115555555555
555000018001073096001	5326	#0001	434314251161441441455511444411433355555534333333113333344444333545433
555000019001073096001	5326	#0001	4312142525524415415544224433114444444444
555000019001073096001	6226	#0001	41111222215254155255554433441145554445554444322111441434422222515141
222000050001012036001	3320	#0001	
555000021001073096001	5326	#0001	4222162 2251442552555555533333544454555545434333112442433333322443444
555000022001073096001	5326	#0001	422224252251441442555522344433555555455524333333111421222333111511112
555000023001073096001	5326	#0001	422214114651331441444412333322444355444433443422334441443444333444422
555000024001073096001	5326	#0001	423213111151441331444421111111444255524242331313144544243434444444424211
555000024001073050001	5326	#0001	422214252151441424444244442244442244444233333223442444444
555000025001073096001	5320	#0001	422214232131441442444434444334444444444
555000026001073096001	5326	#0001	4212152522513333344444433333222222322222333334332444444
555000027001073096001	5326	#0001	421222252151422432543322123211444322554423422322111221232112111544355
555000028001073096001	5326	#0001	42111225215344244255555533333322222244444433333322222222
555000020001073096001	5326	#0001	4212132523524315514444113333235553334434553233332224414444433353535334
555000023001073030001	5320	#0001	
222000030001013036001	5326	#0001	4/12142523515333355555544444435345455555555444444222442444444454455555
555000031001073096001	5326	#0001	4411141146513113334444113333344444444444
555000032001073096001	5326	#0001	42111225215154255355443455552155555443415544421122442332333111524534
555000033001073096001	5326	#0001	412215252351431431554422443333224355444444433321122422444322321554422
555000034001073096001	5326	#0001	42121325225144244155553455553455422454434434333111542544222111554455
22200022001012020001	5320	#0001	10101010111111111111111111111111111111
222000032001013036001	5326	#0001	424221140214444430201020202444444020101010101010101010101
555000036001073096001	5326	#0001	421214114652431433554332443322344444454433443323123542443433222534354
555000037001073096001	5326	#0001	422224252251432553545442343422433244453445524222112442244342122424343
555000038001073096001	5326	#0001	421213114641341332454423322211555555444444422222244222322222222445434
555000039001073096001	5326	#0001	42121311465133155155555444433555233454545444423111542444434222545454
555000039001075090001	5320	#0001	
555000001001073096001	5326	#0001	432214252362443553555553333433444455555555555
555000002001073096001	5326	#0001	23222325112214344355554533332253224335555532222211111113533322355555
555000003001073096001	5326	#0001	53321625116144144144441144441123435544444433311114443444333333535311
555000004001073096001	5326	#0001	43111525236144244344443333333333344444443333332211144444444
EEE00000E001073086001	5326	#0001	2322232521224454455555555333335555555555
555000005001075090001	5320	#0001	
2220000000001013030001	5320	#0001	33431211403153143331433313333344444435353535131312253535353535353442222
555000007001073096001	5326	#0001	23221311461133133244443333332233333444433222222333442333333
555000008001073096001	5326	#0001	23331225231155155155551155551135355555555
555000009001073096001	5326	#0001	1311112523114414414444333333224444444444
555000010001073096001	5326	#0001	4332162511524414415555223333355555555555523444422111442222222222
555000010001073090001	5320	#0001	E2641625116254144205656522444465555544444331114434444433522222
2220000110010/3080001	5326	#0001	5364162311623425323534422353534444435553444443311144344444435552222
555000012001073096001	5326	#0001	4333142511624315415553233333554455554545333331114414444433333544333
555000013001073096001	5326	#0001	43321425216155355555555553333334444444444433333332224444224224222222
555000014001073096001	5326	#0001	2333121146443133313332334443334225544444313131111443433434224222233
555000015001073096001	5326	#0001	4311152 225223133153531134541155335535533444411111441243333111535311
555000015001075096001	5320	#0001	E2216251162512620100100011020201142422044441223222222441323323112544455
2220000100010120300001	5526	#0001	333310231102331331444311333311424244441223232222441323231102341444
555000017001073096001	5326	#0001	4333142511624415515552433333555555454545323232111442433233223424242
555000018001073096001	5326	#0001	5333141146614415515555333333344444443333423232111553444444333525233
555000019001073096001	5326	#0001	233313252322442442444434444332222444544443333222244344444333344444
555000020001073096001	5326	#0001	534314251161432442544444444334333444444444444444332224423444444
EEE000021001073096001	5326	#0001	4322142523415515515555114444114445555555444443311344344444222555533
555000021001073090001	5320	#0001	
5550000220010/3096001	5326	#000T	4332132521525415414544235344114552555552544442111544244444435242445
555000023001073096001	5326	#0001	432213114642441552444421242411131355444443424211111443344444244533355
555000024001073096001	5326	#0001	23111325231143133143333323443344445444434333111113333423433111423311
555000025001073096001	5326	#0001	5332142511624424424444224444224444554444433332222233333333
555000026001073096001	5326	#0001	4311131146535525525554244442254445555554444442211155144444422254545445
555000020001073090001	5000	#0001	
333000027001073096001	5320	#0001	40111222230202121004125303220003553553221223034333222443322
555000028001073096001	5326	#0001	4322162511624424425555334444422342355455555424222111332433333222423245
555000029001073096001	5326	#0001	5364152521615415514444114444334422552344424343332224424444444444
555000030001073096001	5326	#0001	33531425215234444455552222222422242444444222222224222222
555000031001073096001	5326	#0001	5353162511615315215543114422115555555554423432222435421443433111441111
555000032001073096001	5326	#0001	2322122521224314314444224444334443554444334343232224414344343434222434333
555000022001072006001	5320	#0001	3330205621221111111121111111111111111111111
55500033001073096001	5320	#0001	ADD1222202240241001404410000022404400000000
555000034001073096001	5326	#0001	45121025210253455555555555555552545555553232321112211111111555214
555000035001073096001	5326	#0001	334324251121552552555521555533151533555555515333113553555555333555133
555000036001073096001	5326	#0001	4311132523624415415555323333344445555554443433311144222222233234322
555000037001073096001	5326	#0001	4212122522424514415543454444335412555555533324432225535435453333444434
555000038001073096001	5326	#0001	2 321225212244255255551144551144225555545333313111441112444111433311
555000039001073096001	5206	#0001	23221311622443333444333443334444333444444423332222333444423222222
555000039001073090001	5320	#0001	23221911405244393444335444339443444444442333223333444444433332222
555000040001073096001	5326	#0001	13111323232255155133331133331111155555511311311113331334434111511111
555000041001073096001	5326	#0001	4311132525534415515555553333335555555555
555000042001073096001	5326	#0001	433214252152454444444444333343422243455555433331144443433344543432533
555000043001073096001	5326	#0001	534314251162442442434333111111443344443412111111222431433333333
555000044001073096001	5326	#0001	336414251132431442554433444433433334444444444
555000045001073006001	5320	#0001	A30015051160A30254419333334AAA5545A553033111433333324444333
2222000420010/202000101	5320	#0001	4301011043243254320344123535344463946466666666666666666666666666
555000046001073096001	5326	#0001	432213114652432433555345455545545555455455455442545544442545544442545545
555000047001073096001	5326	#0001	432113251142551551555511333311452144555554334424111542224444433544411
555000048001073096001	5326	#0001	432214251162431441443322333322444444433444333332222443243322222433322
555000001001073096001	5326	#0001	233213114641331331444422333333322255444444322332222442333344222444411
555000002001073096001	5326	#0001	421213114652544544554454443333335555555555553333322233333333
EEE000000000107000001	2220	#0001	
	5000		33351511402244144153535315151535353535351111111111
555000003001073096001	5326	#0001	
555000004001073096001	5326 5326	#0001 #0001	431225114662221331444422333333223432244444433333332224322322
555000004001073096001 555000005001073096001	5326 5326 5326	#0001 #0001 #0001	4312251146622213314444223333332343224444443333332224322322
555000005001073096001 555000005001073096001 555000006001073096001	5326 5326 5326 5326	#0001 #0001 #0001	431225114662221331444422333332343244444433333332224322322222444444
55500000501073096001 555000005001073096001 555000006001073096001 555000006001073096001	5326 5326 5326 5326 5326	#0001 #0001 #0001 #0001	4312251140622213514444223533323432249444433333322243223222222444444 4232131146414325424444455555553334445454444545444545443334422343333344424 43121211466213314344444411444411444414444
555000003001073096001 555000005001073096001 555000006001073096001 555000006001073096001 555000001001081326001	5326 5326 5326 5326 5326 5326	#0001 #0001 #0001 #0001 #0001	437225114062221351444422333332343224444443335332224322322222322222444444 423221311464142445555553334445444445444563333422233333444442 431212114662133143444444515455535335445454444444444
55500000301073096001 555000005001073096001 555000006001073096001 555000007001073096001 555000001001081296001	5326 5326 5326 5326 5326 5326 5326	#0001 #0001 #0001 #0001 #0001	4312251146622213314444223333322432244444433333322243223222222
55500005001073096001 555000005001073096001 55500006001073096001 555000007001073096001 555000001001081296001	5326 5326 5326 5326 5326 5326 5326 5326	#0001 #0001 #0001 #0001 #0001 #0001	437225114002213514444223333323432244444433333322243222222
35500003001073096001 555000005001073096001 555000006001073096001 555000007001073096001 555000001001081296001 555000002001081296001	5326 5326 5326 5326 5326 5326 5326 5326	#0001 #0001 #0001 #0001 #0001 #0001 #0001	$\begin{array}{c} 4312251140622213514444223333322432244444433333322243222222$

.

555000005001081296001	5326 #0001	334322252332541542554422334433444445555544323313113441332332111333333
555000006001081296001	5326 #0001	233213114612111131333333122211111115555555511111111
555000000000000000000000000000000000000	5326 #0001	4312142511615415415555555333311555555555555533331111111443433333333
EEE00000000000000000000000000000000000	5326 #0001	23322325113144155244443322333224444444444
555000008001081296001	5326 #0001	2322222234244155255442233332244444444444
555000009001081296001	5320 #0001	535222232342413523542413333335555555555124232111121111
555000010001081296001	5326 #0001	3322423210144133334153334133333333522555555553333311154253342322344445
555000011001081296001	5326 #0001	4222132323134134134333333333242433044044044044111113424232222331144
555000012001081296001	5326 #0001	493210201101342402440342444423023324344343241113424323332331114423333323515111
555000013001081296001	5326 #0001	535415114661241341555532111111555555555555555555555
555000014001081296001	5326 #0001	432213252362441441555522434442222244444444442422222444424424242424
555000015001081296001	5326 #0001	4312232523622213113333223333355445533444553535322432435453522444424
555000016001081296001	5326 #0001	53331411466243144144443444443344444444444
555000017001081296001	5326 #0001	42322625236254454455555533333344444444545453131311143144433312222422
555000018001081296001	5326 #0001	5343242 116243143155442233311542255555444313131111531443222233433311
555000019001081296001	5326 #0001	5343262 116255155255553544332255555555555524343313222552444444333223322
555000020001081296001	5326 #0001	43221325234254354355444444443344424445444333223222443424424343422224
555000021001081296001	5326 #0001	4312121146524414425454322222224444444444444232323222332211222111544233
555000022001081296001	5326 #0001	43431425116243144155451133333555225555553233331111541433333133555511
555000023001081296001	5326 #0001	53321411466242143144441144443344444333313313111113431444444
555000024001081296001	5326 #0001	4 1213251162551542555554433333112135555543333333513551333333333555544
555000025001081296001	5326 #0001	334214252132241341444434444433442422444433333333
555000025001081296001	5326 #0001	4322152511514414155544114444115555555555
555000020001081290001	5326 #0001	23222311462144555544444333333344444454545333333222244344444333233333
555000027001081290001	5326 #0001	222112021114021410014141105550233332222355555443333333222442433333322533322
555000028001081296001	5326 #0001	332132213141444355555233332222251455555324433111342233244233535354
555000029001081296001	5326 #0001	431210231102344443555504334343555223143335522314333552231111111111
555000030001081296001	5326 #0001	4322142 2102441441444415555512222554444445242111144143444441552521
555000031001081296001	5326 #0001	4322131146615315425544333333225522554434444342221144413353442224354
555000032001081296001	5326 #0001	43221525116142154155551133332255225555555555323222211443242222111325222
555000033001081296001	5326 #0001	1311111246114445554444443333355545544442222222244444444
555000034001081296001	5326 #0001	422213252151441441554422333322422242444444232222112222233333333
555000035001081296001	5326 #0001	33432425112243144144331132221145425535224431313122344113322111555521
555000036001081296001	5326 #0001	53432525226154355455553333332155555555555443131111111111
555000037001081296001	5326 #0001	23321311461244144154545244444444444455555544424242111222233233223444433
555000038001081296001	5326 #0001	2343231144215525535554444444335555555554443333335553442433434223333355
555000001001081296001	5326 #0001	431213252342441452544433334422554455445544323222111444223223222433355
555000002001081296001	5326 #0001	422213114652352551555555555535555355555555555335333222442552422222543255
555000003001081296001	5326 #0001	2321122 $11113313334444444444444444444444444444$
555000004001081296001	5326 #0001	63431225115144155155441111111552355555511322222111441422444233555511
555000005001081296001	5326 #0001	5344151146624515515555114444222424555555542444433111541555333333524214
555000006001081296001	5326 #0001	4322132 1162441551555522333333555555455543323232222443333333222423224
555000007001081296001	5326 #0001	334314251121541552555533444422242255555544513121111541545444133444344
555000008001081296001	5326 #0001	2311222522224525555555555555555555555555
555000009001081296001	5326 #0001	233214252252441441444411333333344445544444313131222222233233233555555
55500001001081296001	5326 #0001	431122252352221442555522553322444455555555443333115531443222222424423
555000011001081296001	5326 #0001	33531411462244144144444433344245444444444444444444
555000011001081290001	5320 #0001	3143514235455255555533333344445555443333332224424444422242424
555000012001081296001	5320 #0001 5326 #0001	514514525115534235255555555555474740004405555555555555555
555000013001081296001	5326 #0001	
555000014001081296001	5326 #0001	
555000016001081296001	5326 #0001	13111311402144144135554355555555555555555555555554541355541155554
555000017001081296001	5326 #0001	233213251131441551555534444435444445555555555
555000018001081296001	5326 #0001	432214252262431441555522444422442255555543444422111442445544233544435
555000019001081296001	5326 #0001	431112251153431441555533333333444443444344434333333222333332333342333
555000001001081296001	5326 #0001	4 321311464313112244543333333333214344555555334333111242222222333444444
555000002001081296001	5326 #0001	3 2141546234513334444443333335555115555353333331115555545542534311144
555000003001081296001	5326 #0001	4322131556525525545555542222225555435555533333311133122211111322222
555000004001081296001	5326 #0001	53532311463313123154442211111155545555555143413111222152443144555555
555000005001081296001	5326 #0001	$2 \ 111 \ 1146123313313444333333344224455555532323211143343333333444422$
555000006001081296001	5326 #0001	3 3225114632554554555555445544555521555555114333111122111444223111124
555000007001081296001	5326 #0001	234312114632352471334432233411222445444433222311222332212223111242255
555000008001081296001	5326 #0001	4 1113114642431555555533555533443244555555434333111531544444223525233
555000009001081296001	5326 #0001	2343121146223433434344443334334444444444
555000010001081296001	5326 #0001	4312131146613313314343113333355555544444434343434111444443433333333
555000011001081296001	5326 #0001	3743131246523313313333323333344445544444343434242224423332333
555000012001081296001	5326 #0001	43221311466222122144442422221155555545454522222211122122222222
555000013001081296001	5326 #0001	3342131146211314415555443333335454554444342222222222
555000014001081296001	5326 #0001	23221211462314333354444422222211324355555533333355533334333333444444
555000015001081296001	5326 #0001	433323114661441442544334444422523311555534513111111441244234113524222
555000016001081296001	5326 #0001	43321325226153153155231131111155515555555555
555000001001081396001	5326 #0001	43321311466123133132441132332155555322222424231443442243444333444422
555000002001081396001	5326 #0001	1312162523423213315555554444332244115555552121211112222222222
555000003001081396001	5326 #0001	536414114262451561555555555555555555555555
555000004001081396001	5326 #0001	A 11122521524414413434333333334444444333333322233433333222334
555000005001081396001	5326 #0001	43111225216243153255443433333555532444444443333355222554555535553
555000006001001396001	5326 #0001	23301002110070101010040300403000000244440440200001124420020222220202444
222000000000000000000000000000000000000	0020 #UUUI	₽₼₼₽₮₽₽₼₮₮₭₭₦₦₮₦₦₮₦₦₦₦₼₼₼₦₦₦₽₼₦₽₦₽₦₽₽₽₽₽₽₽₽₽₽

.

APPENDIX H

ATTITUDE/BEHAVIOR THEORY DEVELOPMENT

Attitudes and Personality Traits Involved in Understanding Behavior. It is common practice to explain human behavior by reference to stable underlying dispositions. When people are caught cheating they are considered dishonest and when people discriminate they are termed prejudiced. Dispositional explanations of behavior have a long and distinguished history in personality and social psychology. In the domain of personality psychology, the trait concept has carried the burden of dispositional explanation. In a similar fashion, the concept of attitude has been the focus of attention in explanations of human behavior offered by social psychologists. Personality traits and attitudes are latent, hypothetical characteristics that can only be inferred from external, observable cues. The most important such cues are the individual's behavior, verbal or nonverbal, and the context in which the behavior occurs. An individual's favorable or unfavorable attitude toward an object, institution, or event can be inferred from verbal or nonverbal responses toward the object, institution, or event in question. These responses can reflect perceptions of the object, or beliefs concerning its likely characteristics; they can be of an affective nature, reflecting the person's evaluations and feelings; and they can be of a cognitive nature, indicating how a person does or would act with respect to the object (Ajzen, 1988).

Consistency in Understanding Behavior. Dispositional explanation of human behavior presupposes a degree of coherence among thoughts, feelings, and actions. If people's reactions toward a given target were completely inconsistent across time and context, we could not attribute them to such stable underlying dispositions as attitudes or personality traits. Inconsistency in human behavior is the reason for the large amount of work in the field of psychology in order to better understand humans, and "the only completely consistent people are the dead," as stated by Aldous Huxley (Ajzen, 1988: 25). Most theorists, however, maintain the position that consistency is a fundamental property of human thoughts, feelings, and actions (Ajzen, 1988).

The Use of Aggregation in Understanding Behavior. A remedy for the poor predictive validity of attitudes and traits is the aggregation of specific behaviors across occasions, situations, and forms of action (Ajzen, 1991: 180). Regularities, patterns, or tendencies cannot be discerned in single instances of behavior. Rather, to obtain a measure of a behavioral tendency, we must aggregate observations made on different occasions. The aggregate measure represents the influence of factors consistently present across different occasions (the disposition to perform the particular behavior in question). In short, general behavioral dispositions can be inferred by applying the principle of aggregation to the varied types of specific response tendencies, thus eliminating the contaminating influence of variables other than the disposition of interest. In addition to aggregating repeated observations of a given action to obtain a high degree of consistency across occasions, it is possible to aggregate different actions in a given behavioral domain, observed on various occasions and in diverse contexts. Based on a representative set of responses, such a multiple-act index will serve as a valid indicator of the underlying disposition. Neither single-act criteria nor the tendency to perform a specific behavior over time are representative of general traits or attitudes, according to the theory of aggregation. Only multiple-act criteria are sufficiently general to reflect such broad underlying dispositions (Ajzen, 1988).

The Presence of Moderating Variables in Behavioral Analysis. The application of the aggregation principle postulates broad attitudinal and personality dispositions, dispositions that are stable over time and that permit reasonably accurate prediction of multiple-act behavioral indices. Also, it has become clear that broad attitude and personality trait measures correlate very poorly with individual behaviors or behavioral tendencies. Situational variables impact specific behavior independent of whatever stable dispositions people bring to the situation, as well as moderating the effects of attitudes or personality traits. That is, people's characteristic traits or attitudes may influence their behavior in some situations but not in others. With the exception of an attitude's internal consistency, such secondary characteristics of attitude as the confidence with which it is held, the amount of information on which it is based, involvement with the attitude object, and the way in which the attitude is acquired, all seem to have a systematic impact on the accuracy of behavioral prediction (Ajzen, 1988).

Approaches Involved in the Attitude-Behavior Relationship. Explaining human behavior in all its complexity is a difficult task. It can be approached at many

levels, from concern with physiological processes at one extreme to concentration on social institutions at the other. Social and personality psychologists have tended to focus on an intermediate level, the fully functioning individual whose processing of available information mediates the effects of biological and environmental factors on behavior. Various theoretical frameworks have been proposed to deal with the psychological processes involved, as well as concepts referring to behavioral dispositions. Because of the trend in the study of attitude-behavior relationships proposed by Kim and Hunter (1993), it is important to look at the various approaches that have developed throughout the years concerning the attitude-behavioral relationship.

The theories involved in attitude change or persuasion, which is any instance in which an active attempt is made to change a person's mind, have developed over the last fifty years, and are grouped into seven major approaches for the further understanding of the attitude-behavioral relationship: *conditioning and modeling approaches, message-learning approach, judgmental approaches, motivational approaches, attributional approaches, self-persuasion approaches,* and *combinatory approaches* (Petty and Cacioppo, 1981). Each of these approaches focuses on a different basic process to explain how and why people's attitudes change, and are presented roughly in the order in which they appeared.

<u>Conditioning and Modeling Approaches</u>. Conditioning and modeling approaches are rudimentary learning principles that focus on the direct administration of rewards and punishments to the target of influence or on the effects of the target observing others being rewarded or punished for expressing certain attitudes (Petty and Cacioppo, 1981). Learning can be described as a relatively stable change in behavior that results from prior experiences, with associative learning occurring when a connection is drawn between two events in the environment. There are four explanations developed in the literature on how attitudes are learned: classical conditioning, operant conditioning, observational learning, and vicarious classical conditioning (Petty and Cacioppo, 1981).

Classical conditioning occurs when an initially neutral stimulus (the conditioned stimulus) is associated with another stimulus (the unconditioned stimulus) that is connected inherently or by prior conditioning to some response (the unconditioned response). It is the conditioning (learning) of reflex responses. According to Petty and Cacioppo (1981), people tend to like objects and recommendations that previously have been paired with unconditioned stimuli that elicit positive affective responses (e.g., pleasant scenery) and to dislike objects and recommendations that previously have been paired with unconditioned stimuli that elicit negative affective responses (e.g., unpleasant odors).

Operant conditioning is a second type of associative learning that occurs when some response becomes more (or less) likely because of its positive (or negative) consequences. Operant conditioning is based upon the supposition that people act to maximize the positive and minimize the negative consequences of their behavior (Skinner, 1938). From a series of studies on the verbal conditioning of attitudes suggests that people actually do change their attitudes as a result of rewards and that these attitudes persist (Petty and Cacioppo, 1981).

Observational learning occurs when people learn which responses are rewarded and which are not by observing (rather than directly experiencing) consequences of the behaviors of other people. According to Bandura (1965), people must believe that the rewards associated with the model hold for them as well, and that these outcomes are worth the relative costs of performing the response (e.g., driving to the store and buying a particular product). Unless both of these conditions are met, observational learning may not lead to performance of the modeled behavior.

The last explanation developed in the literature on how attitudes are learned is the *vicarious classical conditioning* method, which represents a combination of classical conditioning and observational learning principles. Vicarious classical conditioning operates when a neutral stimulus, initially incapable of eliciting a strong emotional reaction from observers, gradually acquires that ability when paired with signs of strong emotional reactions on the part of another person (i.e., the model). In other words, the emotional response on the part of one person acts as a unconditioned stimulus and is capable of eliciting an unconditioned response in the form of a similar emotional response in an observer (Petty and Cacioppo, 1981). Research conducted by Petty and Cacioppo (1981) suggests that an initially neutral stimulus (such as a tone or a light) can become capable of eliciting a strong positive or negative attitude from people simply because they repeatedly observe others responding positively or negatively to it.

H-6

It is clear from these four explanations on how people form attitudes that there is no single way in which attitudes are learned, that people can develop and change their attitudes even though they are not purposely trying to do so, and that most support for conditioning models of attitudes comes from research that has been unfamiliar and/or neutral stimuli as attitude objects (meaning most of the research pertains to the formation of new attitudes rather than the changing of old ones).

Message-Learning Approach. The message-learning approach developed by Hovland, Janis, and Kelley (1953) examines how different variables affect a person's attention to, comprehension of, yielding to, and retention of the arguments in a persuasive message. Hovland and his colleagues never proposed a formal "theory" of attitude change, but rather they were guided by "working assumptions." They suggested that a persuasive communication must gain a person's attention and must be comprehended. The person must then mentally rehearse the message arguments and conclusions, thereby establishing a link between the issue and these implicit responses. Attending, comprehending, and remembering are important, but incentives are also of relevance. Hence, retention of the message arguments is important because it indicates that the person has attended, comprehended, and learned the persuasive communication. But Hovland and his colleagues believed that attitude change would occur only if the incentive for the new attitudinal position outweighed those associated with the initial attitude (Petty and Cacioppo, 1981). Thus, attention, comprehension, and retention are necessary but not sufficient preconditions for attitude change.

H-7

According to the message-learning approach, persuasive contexts (e.g., sources, messages) question a recipient's initial attitude, recommend the adoption of a new attitude, and provide incentives for attending to, understanding, yielding to, and retaining the new rather than the initial attitude. Important components that must be considered in this approach are the source, message, and recipients (Petty and Cacioppo, 1981). The source of a persuasive communication may be a person, a group, an institution, and so forth. The important factors that will influence the source include credibility, attractiveness, similarities, and communication power of the source. An effective message provides incentives for learning and accepting the advocated attitudinal position, with the most effective means of delivering the message being comprehensibility, having a large number of arguments, clearly stating rewards and fears, using a two-sided approach, using the conclusion-drawing technique, identifying the sources early, and repeating the message. The last component that must be considered in the message-learning approach is the recipient, with the factors that affect recipient retention including intelligence and self-esteem. The working assumption underlying the message-learning approach is that the message learning portended attitude change, particularly when incentives were provided in the persuasive message for accepting the recommended position.

<u>Judgmental Approaches</u>. A third approach in the understanding of attitudes are the judgment theories of persuasion, which focus on how a person perceives the message and how attitude judgments are made in the context of a person's past experiences (Petty and Cacioppo, 1981). These past experiences can lead a person to distort the position of a persuasive message. The judgmental approaches include adaptation level theory, social judgment theory, and perspective theory (Petty and Cacioppo, 1981).

The underlying postulate of judgmental theories, including *adaptation level theory* as elaborated by Helson (1959; 1964), is that all stimuli can be arranged in some meaningful order. Adaptation level theory gets its name from the point on the dimension of judgment that corresponds to the psychological neutral point, and is defined as a weighted geometric average of all the stimuli that a person takes into account when making a particular judgment. The adaptation level is important because other stimuli are judged in relation to it. The theory has not led to much research on social influence or attitude change, and to date there is not a single persuasion study that can be explained exclusively by adaptation level principles (Petty and Cacioppo, 1981).

Social judgment theory represents an ambitious attempt to derive specific persuasion predictions by the application of judgmental principles (Sherif and Hovland, 1961). The theory assumes, like adaptation level theory, that people tend to arrange stimuli in a meaningful order on a psychological dimension (i.e., youngest to oldest). Judgments about physical as well as social stimuli are subject to two judgmental distortions: contrast and assimilation (Petty and Cacioppo, 1981). Contrast refers to a shift in judgment away from an anchor or reference point, and assimilation refers to a shift in judgment toward an anchor. In the realm of attitudes, one's own attitude is

H-9

thought to serve as a powerful anchor, and the opinions and attitudes expressed by others displaced either toward or away from one's own position. Those attitudes that are relatively close to one's own are assimilated (seen as closer than they actually are), but attitudes that are very discrepant from one's own are contrasted (seen as further than they actually are) (Petty and Cacioppo, 1981). Unlike adaptation level theory, which has seen little application to persuasion or attitude understanding, the social judgment approach has generated a considerable amount of research. Although the theory is quite clear about predicting the judgmental distortion effects - assimilation and contrast - it is less clear about how and why these processes affect attitude change.

A final judgmental approach, *perspective theory*, as outlined by Upshaw (1969) and Ostrom and Upshaw (1968), distinguishes between the content of an attitude and the judgmental language a person uses to describe his or her attitude. The content of an attitude refers to all of the various ideas, beliefs, images, and other elements associated with the attitude object or issue. The rating of an attitude refers to how the person presents his or her position on an evaluative dimension (e.g., pro-con). The perspective mediates the relationship between the content and the rating of one's attitude, referring to the range of content alternatives that an individual takes into account when an attitude object is rated. For any attitude issue, then, an individual's perspective is defined by what he or she considers to be the most positive and the most negative content positions that are reasonable (Petty and Cacioppo, 1981).

Adaptation level theory, social judgment theory, and perspective theory all deal with the same type of phenomena, but differ where the attitude rating scale is anchored. Adaptation level theory posits that the subjective neutral point on the scale is the most important anchor; social judgment theory holds that the person's own attitude is the most important anchor; and perspective theory contends that the extreme end points of the scale serve as anchors (Petty and Cacioppo, 1981). Evidence reveals that there is evidence indicating that a rating scale is anchored at all of these places (Ostrom and Upshaw, 1968). Another difference in the three approaches is that adaptation level theory and social judgment theory view judgmental distortions (assimilation and contrast) as representing a fundamental shift in the perception of an object or issue, while perspective theory views these distortions as representing only a change in response language. Adaptation level theory and social judgment theory share the view that assimilation and contrast effects represent a fundamental shift in how an object or issue is perceived. Perspective theory, however, views assimilation and contrast effects as a shift in how an object or issue is described (Petty and Cacioppo, 1981). It is important to note that assimilation and contrast effects cannot be attributed to mere changes in judgmental language, and how a person judges the position of an incoming message is a crucial determinant of the nature and amount of attitude change that results.

Motivational Approaches. Motivational approaches relate to the general notion of consistency, which are those attitudes that favor a strong tendency for people to maintain consonance among the elements of a cognitive system. The characteristics that

consistency theories of attitudes have in common include: each describing the conditions for equilibrium and disequilibrium among cognitive elements, each asserting that disequilibrium motivates the person to restore consistency among the elements, and each describing procedures by which equilibrium might be accomplished (Petty and Cacioppo, 1981). There are five motivational/consistency theories that are of importance: balance theory, congruity theory, cognitive dissonance theory, impression management theory, and psychological reactance theory.

Balance theory, as defined by Heider (1958), is concerned with the operation of consistency. Balance is a harmonious state in which all of the elements appear to the individual to be internally consistent...and is the most pleasant, desirable, stable, and expected state of relationships among any set of elements to which a person attends (Heider, 1958). Heider (1958) focuses on triads (three elements), labeling the elements as p, representing the subject or self; o, representing the other person; and x, symbolizing some stimulus or event. There are eight possible configurations that exist among the three cognitive elements, with balance occurring when you agree with a person you like and you disagree with a person you like. Balance is the preferred and stable state, and balance exists in a person's mind rather than in objective fact (Heider, 1958). When all three elements of the triad (p-o-x) are salient, balance theory predicts that its pleasantness, stability, and so forth are maximal when the product of the relations is positive. This tendency is termed the balance effect.

The balance model is less determinate in its predictions than the congruity model, and it does not undertake to specify the particular effect of new information but only a set of effects from which the particular one will be drawn (Brown, 1965b). The model predicts the occurrence of one from a small number of possible changes - all of them working in the direction of increased consistency. Elements in the balance model are the objects of attitudes, assuming values in someone's mind. They are given signs that are either negative (-), zero (0), or positive (+). There is equilibrium in the model so long as elements of identical sign are linked by positive relations or by null relations, and so long as elements of opposite sign are linked by negative relations or by null relations. A condition of imbalance alone is not sufficient to generate change in the balance model, rather a person must think about the elements and relations in question before he or she will be motivated to change (Brown, 1965b).

The *congruity theory*, first proposed by Osgood and Tannenbaum (1955), overcomes a major criticism of Heider's balance theory that there are no provisions for degrees of liking or belongingness between elements by quantifying gradations of liking. Although congruity theory is more limited than balance theory, it does make very specific, quantitative predictions about the effects of imbalance (incongruity). Congruity theory focuses on two elements: the source and a concept, and one relation (the assertion made by the source about the concept). It has pressures that exist to motivate a person to restore congruity by changing attitudes toward both elements, and if a person feels strongly about one of the elements, that element will change less than the other. The congruity model is the most detailed and explicit model, forming a model or abstract simulation of attitude change (Brown, 1965a). This model says in effect that when certain kinds of information are fed into the human psychological apparatus, certain perfectly determinate changes of attitude will result. The congruity model offers a generalized attitude scale that is content-free, a line from -3 to +3, on which any object whatsoever can be placed (Brown, 1965a). Anything that can be named and valued can go on such a scale, and that includes almost everything. The model predicts, also, that evaluation of concepts will rise when associative bonds are created with highly valued sources, whereas the evaluation will fall when associative bonds are created with dislike sources. Dissociative bonds, on the other hand, result in a rise for the concept when the source is disliked and fall when the source is admired. Since both source and concept are objects of evaluation in the congruity model, the predictions for change of attitude toward sources with favorable and unfavorable assertions are the same as the predictions for concepts. The congruity model also holds that susceptibility to attitude change is inversely proportional to the polarization or extremity of the attitude. The congruity theory improves on Heider's (1958) balance theory by specifying precise, directional, and testable predictions and by quantifying sentiment toward another person (source) and object (concept) (Petty and Cacioppo, 1981).

Cognitive dissonance theory, proposed by Leon Festinger (1957), has generated more research and debate in social psychology than balance and congruity theory put together, or any other theory discussed (Petty and Cacioppo, 1981). According to Festinger (1957), two elements are consistent (consonant) when one follows from the other, and inconsistent (dissonant) when knowledge of one suggests the opposite of the other. Relations among elements in dissonance theory are determined by a person's subjective expectations regarding them rather than by their logical interrelationships. The magnitude of the dissonance within a set of many elements is determined by the proportion of relevant elements that are dissonant and by the importance of the elements to the person. "To limit the investigation to the observation of action alone would be to ignore the paramount fact that the actor is constantly registering awareness what is happening to him and that this alters his subsequent acts" (Stotland and Canon, 1972: 65). Cognitive theory deals "with the problem of how man gains information and understanding of the world about him, and how he acts in and upon his environment on the basis of such cognitions" (Stotland and Canon, 1972: 65). A cognition can be identified as a centrally mediated process of representing external and internal events. An approach which focuses on cognitive activity, then, stresses the role which these sorts of perceptual organizations play as mediators between the stimuli which impinge upon the individual and the response he makes to them. Cognitions are viewed as an example of what have been called mediating variables in that, though they may not be directly observed, they are held to shape and influence in important ways the relationship between an observable stimulus and a measurable response. Their functioning is presumed to intervene between stimulus and response and to be involved in an important way in determining the meaning which the stimulus has for the individual, and it is in terms of

this meaning that a response is initiated. Thus, there is greater concern with developing an understanding of the nature and operation of internal, cognitive processes than with a focus on the physical characteristics of the stimuli to which the individual ultimately responds.

Dissonance is described by Festinger (1957) as a motivational state that energizes and directs behavior, and is aroused when a person is forced to conclude that he or she is the willing causal agent of some discrepant and personally significant decision that leads predictably to some form of negative consequences. Cognitive dissonance will give rise to activity oriented toward reducing or eliminating the dissonance. A person can rid themselves of dissonance by changing one of the elements to make two elements more consonant, by adding consonant cognitions, and by changing the importance of the cognitions. Experimental manipulations of cognitive dissonance induce a generalized drive similar in some respects to that produced by traditional motivational states, physiological activity similar to that found in individuals under stress, and an unpleasant subjective feeling (Petty and Cacioppo, 1981). Cognitive dissonance theory serves as a heuristic for a wide variety of observations.

Another motivational/consistency theory is the *impression management theory*, which deals with how people present an image to others in order to achieve a particular goal (Goffman, 1959). Impression management theory assumes that a primary goal in presenting oneself to others is the attainment of social approval (Arkin, 1981). One of the most interesting applications of impression management theory is as an alternative to dissonance theory (Tedeschi et al, 1971). The impression management theorists agree with Festinger (1957) that tension is produced when people act publicly in a manner contrary to their attitudes; however, the theorists argue that the tension is not produced by dissonant cognitions but rather by people's knowledge that they appear inconsistent to others. People then manage more carefully the impression they are making on others by restoring consistency to their actions or to their expression of attitudes.

A final motivational/consistency theory is the *psychological reactance theory* developed by Brehm (1966). According to Brehm (1966), threatening to restrict or actually eliminating a person's freedom to act as he or she chooses arouses in that person a motivational drive called psychological reactance. This psychological reactance motivates a person to reestablish the lost or threatened free behavior or attitude. To arouse reactance in people, Brehm (1966) asserted that: people must first perceive it as likely that they are no longer free to think or do something that they previously could; the less important the threatened behavior is to an individual, the less reactance aroused by its elimination; reactance is aroused in direct proportion to the extent to which the free behavior is limited; the extent of reactance arousal depends upon the similarities of the alternatives to the restricted behavior; and reactance is not aroused if the individual feels inadequate, incompetent, or controlled by external events.

Motivational/consistency approaches as they relate to attitude change have been discussed in relation to several theories. The balance and congruity theories of

H-17

attitude change address the need or desire to maintain cognitive consistency, or what people consider to be "logical" consistency among their beliefs. Cognitive dissonance theory addresses the attitudinal effects of the drive to maintain cognitive consistency between pairs of elements, such as between one's attitude and one's behavior. Impression management theory, another consistency theory of sorts, details how our attitudes are influenced by the desire to maintain a consistency in social behaviors (including attitude expressions) across situations. Finally, psychological reactance theory outlines the effects of threatening or eliminating our freedom to choose freely how to think, feel, and act.

Attributional Approaches. An attribution is an inference made about why something happened, why someone did or said something, or why one acted or responded in a particular way. The basis of the attributional approach is that people infer underlying characteristics, such as attitudes and intentions, from the verbal and overt behaviors they observe (Petty and Cacioppo, 1981). The most common feature of the attributional approaches is that an inference about the cause of a response is the most direct antecedent of attitude change. The inference might be that there is something internal (person's attitude) or external (threat to person's life) to the person that caused an observed behavior. The former type of inference is called a dispositional attribution, whereas the latter is called a situational attribution. The three important theories developed on attribution include the self-perception theory, emotional plasticity, and bogus physiological feedback.

The self-perception theory was developed by D.J. Bem (1967), and suggested that people infer their own attitudes in much the same way as they infer the attitudes of others - by the behavior they observe. Bem (1967) reasoned that an individual's attitude statements may be viewed as inferences from observations of his or her own behavior and its accompanying stimulus variables. As such, statements are functionally similar to those any outside observer could make. The foot-in-the-door technique for inducing compliance illustrates how self-perception influences attitudes and behaviors by presuming people become more likely to perform a large and costly favor for you if they have previously agreed to perform or have performed a smaller favor (Freedman and Fraser, 1966). Complications in this technique include the fact that acceding to the small request must occur in a situation that does not provide obvious external justification for doing the small favor, and people are more likely to comply with a second, larger request only if there is a time delay between their agreement to comply with the initial, small request and the second request. Bem's theory of self-perception holds that, to the extent that plausible external causes for an act are absent or nonobvious, the person who engaged in the act infers his or her attitude toward the topic on the basis of his or her behavior. Explanation of the subtle adjustments in attitudes that follow acts that are generally consistent with a prior attitude is accomplished by the attributional approach, but it does not account as well for attitude change following insufficiently justified behavior that is highly discrepant from the person's initial attitude.

The theory concerning *emotional plasticity* developed by Schachter and Singer (1962) reasons that when people experience an unexplained and diffuse change in their bodily responses, such as a surge of arousal, they search for external cues that might help them to identify what these changes mean. If the situation in which they find themselves contains cues indicating that they are angry, then they surmise that the unusual bodily responses they are feeling are due to their being angry. If however, the situation contains cues indicating that they are happy, then they deduce that they must be happy (Schachter and Singer, 1962). The fundamental concept of emotional plasticity is that experiencing unexplained and neutral arousal causes one to search the situational context for cues to determine the meaning of the felt arousal.

The effects of *bogus physiological feedback*, as proposed by Valins in 1966, developed out of Schachter and Singer's (1962) work. Valins (1966) suggested that people need not perceive actual physiological changes in order to be affected by these cues, but need only to believe that their bodily responses changed. The research on bogus physiological feedback provides several important qualifications to the attributional approach to attitudes. First, self-perception theory must be broadened to encompass perceived internal cues and accord them the same theoretical status as behavioral and environmental cues in the attitude-inference process. And second, selfperception processes are operative primarily when the attitudes involved are on issues that are low in personal relevance or importance (Petty and Cacioppo, 1981). The attributional approach to attitudes and persuasion characterizes people as active problem solvers and focuses on changes in attitudes that result from reasoned inferences. A person's inferences or attributions about the cause of a behavior are the most important determinants of the resulting attitude change, and is a notion common to the attributional theories.

Self-Persuasion Approach. The self-persuasion approach emphasizes the information that people generate themselves, either in response to a persuasive message or in the absence of a persuasive message (Petty and Cacioppo, 1981). The focus is on the persuasive impact of information that originates internally, with the self-generated information resulting from a specific role-playing request (Janis, 1959, 1968; Janis and King, 1954; Janis and Mann, 1977), from merely thinking about an attitude object (Tesser, 1978; Tesser and Leone, 1977), or from specific cognitive responses to the arguments in a persuasive message (Greenwald, 1968; Petty, Ostrom, and Brock, 1981; McGuire and Papageorgis, 1962). Depending upon the nature of these self-generated thoughts, a person's attitude can become either more positive or more negative toward the attitude object. Self-persuasion is so potent because people appear to have a higher regard for the information they generate themselves than information that originates externally, and people can better remember arguments that originate internally than externally.

<u>Combinatory Approaches</u>. A person's attitude about some person, object, or issue is determined by the information the person has about the stimulus and by how

H-21

that information is combined or integrated to form one overall impression. The various combinatory approaches in the understanding of attitudes and persuasion (behavioral change) include probabilogical approaches to belief change, information integration theory (cognitive algebra), the theory of reasoned action (TRA), and the theory of planned behavior (TPB).

The *probabilogical approaches to belief change* are structured to view beliefs as existing in an interconnected syllogistic network containing both a vertical and a horizontal structure (Bem, 1970; McGuire, 1960). Beliefs are thought to provide the cognitive foundation of an attitude, and in order to change an attitude it is necessary to modify the information on which the attitude rests. Change can occur by way of directly changing a person's beliefs, eliminating old beliefs, or introducing new beliefs (Petty and Cacioppo, 1981). A belief syllogism is a set of three statements, two of which serve as premises that lead psychologically to a conclusion. The conclusion is an inferential belief that is derived or makes sense on the basis of the two premises. It is likely that the premises of the syllogism serve as the conclusions of other syllogisms in the belief structure. It must be noted that if a belief high in the vertical structure is changed, then it would have implications for beliefs that are further down the chain of reasoning. In addition to the vertical structure, belief systems are thought to possess a horizontal structure that draws conclusions on one syllogism serving as the conclusion of other syllogisms (Petty and Cacioppo, 1981). It must be noted that the more extensive the horizontal structure of a belief, the less susceptible a belief will be to change when one of
the premises in its vertical structure is changed. The most important contributions of the probabilogical models of Wyer (1970, 1974) and McGuire (1960b, 1981) are that there is a strain toward hedonic as well as logical consistency in beliefs, and that an induced change in one belief is capable of producing a change in a logically related belief, even though the related belief is never mentioned or attacked directly by a persuasive message.

Norman Anderson (1971) proposed a general combinatory theory of human judgment and decision called *information integration theory (cognitive algebra)*. This theory has considerable relevance to the study of attitudes and behavior, and has as its basic tenet that much of human judgment and decision, including attitude judgment, obeys simple algebraic models - specifically weighted averaging models. According to the information integration theory, attitude judgments are determined by several beliefs, with the belief information generated from memory or external sources (Anderson, 1971). Each piece of information is represented by two parameters - a scale value and a weight. The scale value represents how favorably or unfavorably a person is towards the information, and the weight represents how important the information is to the person. In attitude judgments, the person's initial attitude is always one piece of information that is considered along with any other salient information. A weakness of Anderson's model is its inability to anticipate many effects in advance, although the algebraic model can account for virtually any data set after it is collected.

APPENDIX I

BREAKDOWN OF QUESTIONS IN SURVEY

Breakdown of Questions in Survey					
Demographic Questions					
1. What is your pay-grade?					
2. Which organization are you assigned to?					
3. How long have you been in the Air Force?					
4. What is your age?					
5. What is your gender?					
6. What is your gross annual FAMILY income (all family members including yourself)?					
7. Do you live on base?					
8. If you live on-base, what type of on-base housing do you occupy?					
9. If you live off-base, do you own or rent your housing?					
10. If you live off-base, what type of housing do you occupy?					
11. What is the highest educational level, credential, or degree that you have completed?					
12. Have you ever attended an environmental training class sponsored by the Air Force?					
Questions Concerning Specific Environmental Behavior					
13. I recycle at work.					
14. I conserve energy at work.					
15. I carpool to work.					

	Questions Concerning Intention						
16	. I intend to recycle at work.						
17	I intend to conserve energy at work.						
18	I intend to carpool to work.						
	Questions Corresponding to Attitude						
19	. I like the idea of recycling at work.						
20	. I have a good attitude toward recycling at work.						
21	. I like the idea of energy conservation at work.						
22	. I have a good attitude toward energy conservation at work.						
23	. I like the idea carpooling to work.						
24	. I have a good attitude towards carpooling to work.						
	Questions Corresponding to Subjective Norm						
25	. People who influence my decisions at work think I should recycle at work.						
26	. People who are important to me at work think I should recycle at work.						
27	. People who influence my decisions at work think I should conserve energy at work.						
28	. People who are important to me at work think I should conserve energy at work.						
29	. People who influence my decisions at work think I should carpool to work.						
30	. People who are important to me at work think I should carpool to work.						
	Questions Corresponding to Perceived Behavioral Control (Theory of Planned Behavior)						
31	. Whether or not I recycle at work is entirely up to me.						
32	. I have complete control over the amount of recycling that I do at work.						
33	. Whether or not I conserve energy at work is entirely up to me.						
34	. I have complete control over the energy conservation that I do at work.						
35	. Whether or not I carpool to work is entirely up to me.						
36	. I have complete control over my use of carpools to work.						
	Questions Corresponding to Behavioral Beliefs (and Outcome Evaluation)						
37	. My recycling at work will help the environment.						
38	. Helping the environment by recycling at work is good.						
39	. My conservation of energy at work will help the environment.						
40	. Helping the environment by conserving energy at work is good.						
41	. My carpooling to work will help the environment.						
42	. Helping the environment by carpooling to work is good.						

Questions Corresponding to Normative Beliefs (and Motivations to Comply)

43. My co-workers think I should recycle at work.

- 44. With respect to recycling at work, I want to do what my co-workers think I should do.
- 45. My co-workers think I should conserve energy at work.
- 46. With respect to conserving energy at work, I want to do what my co-workers think I should do.
- 47. My co-workers think I should carpool to work.
- 48. With respect to carpooling to work, I want to do what my co-workers think I should do.

Questions Corresponding to Economic Motivation

49. Recycling at work is worthwhile only if I get paid to do so.

50. Conserving energy at work is worthwhile only if I get paid to do so.

51. Carpooling to work is worthwhile only if I get paid to do so.

Questions Corresponding to Awareness Programs

- 52. My organization has programs that promote recycling awareness.
- 53. My organization has programs that promote energy conservation awareness.
- 54. My organization has programs that promote carpooling awareness.

Questions Corresponding to Organizational Commitment

- 55. There is adequate information about recycling at my place of work.
- 56. There is adequate concern for recycling among my co-workers.
- 57. There is adequate concern for recycling among my supervisors.
- 58. There is adequate information about energy conservation at my place of work.
- 59. There is adequate concern for energy conservation among my co-workers.
- 60. There is adequate concern for energy conservation among my supervisors.

61. There is adequate information about carpooling at my place of work.

- 62. There is adequate concern for carpooling among my co-workers.
- 63. There is adequate concern for carpooling among my supervisors.

Questions Corresponding to Resource-Facilitating Conditions

- 64. I have convenient access to a recycling container at work.
- 65. Having the time to recycle at work is an important part of my decision whether to engage in the behavior.
- 66. It is convenient for me to conserve energy at work.
- 67. Having the time to conserve energy at work is an important part of my decision whether to engage in the behavior.
- 68. I have convenient access to a carpool group to work.
- 69. Having the time to carpool to work is an important part of my decision whether to engage in the behavior.

BIBLIOGRAPHY

- Abbott, C. and G. Harris. "Environmentalism as Cultural Paradigm," Journal of Environmental Systems, 15: 219 - 232 (1985 - 1986).
- Air Combat Command. <u>Environmental Management Self Assessment Checklist</u>. Langley AFB, VA: Air Combat Command Headquarters, 1995.
- Air University. <u>Sampling and Surveying Handbook</u>. Maxwell AFB, AL: Air Command and Staff College, 1985.
- Ajzen, I. Attitudes, Personality, and Behavior. Chicago, IL: The Dorsey Press, 1988.
- Ajzen, I. "The Theory of Planned Behavior," <u>Organizational Behavior and Human</u> <u>Decision Processes, 50</u>: 179 - 211 (1991).
- Ajzen, I. and M. Fishbein. <u>Understanding Attitudes and Predicting Social Behavior</u>. Englewood Cliffs, NJ: Prentice-Hall, Inc, 1980.
- Allen, J. "Military Engineers Education, Energy, and the Environment A Progress Report," <u>The Civil Engineer, 2</u>: 2 5 (November December 1994).
- Anderson, N.H. "Integration Theory and Attitude Change," <u>Psychological Review, 78</u>: 171 206 (1971).
- Arcury, T.A. "Environmental Attitude and Environmental Knowledge," <u>Human</u> Organization, 49: 300 - 304 (Winter 1990).
- Arcury, T.A., S.J. Scollay, and T.P. Johnson. "Sex Differences in Environmental Concern and Knowledge: The Case of Acid Rain," <u>Sex Roles, 16</u>: 463 - 472 (1987).
- Arkin, R.M. "Self-Presentation Styles," <u>Impression Management: Theory and Social</u> <u>Psychological Research</u>. New York, NY: Academic Press, 1981.
- Azzone, G. and R. Manzini. "Measuring Strategic Environmental Performance," <u>Business Strategy and the Environment, 3</u>: 1 - 10 (Spring 1994).
- Bandura, A. "Influence of Models' Reinforcement Contingencies on the Acquisition of Imitative Responses," <u>Journal of Personality and Social Psychology</u>, 1: 589 - 595 (1965).

- Baumer, R. Air Force Material Command Pollution Prevention Specialist (AFMC/ CEVV), Wright-Patterson AFB, OH. Personal Interview. 12 April 1996.
- Bem, D.J. "Self-Perception: An Alternative Interpretation of Cognitive Dissonance Phenomena," <u>Psychological Review</u>, 74: 183 - 200 (1967).
- Bem, D.J. Beliefs, Attitudes, and Human Affairs. Belmont, CA: Brooks/Cole, 1970.
- Brehm, J.W. <u>A Theory of Psychological Reactance</u>. New York, NY: Academic Press, 1966.
- Brody, C.J. "Differences by Sex in Support for Nuclear Power," <u>Social Forces, 63</u>: 209 228 (1984).
- Brown, R. "Homeostatic Theory of Social Organization," <u>Social Psychology</u>. New York, NY: The Free Press, 1965 (a).
- Brown, R. "The Principle of Consistency in Attitude Change," <u>Social Psychology</u>. New York, NY: The Free Press, 1965 (b).
- Cartwright, D. and F. Harary. "Structural Balance: A Generalization of Heider's Theory," Psychological Review, 63: 277 293 (1956).
- Chung, S.S. and C.S. Poon. "Hong Kong Citizens' Attitude Towards Waste Recycling and Waste Minimization Measures," <u>Resources, Conservation, and Recycling, 10</u>: 377 - 400 (June 15, 1994).
- Cook, S.W. and J.L. Berrenberg. "Approaches to Encouraging Conservation Behavior: A Review and Conceptual Framework," <u>Journal of Social Issues</u>, <u>37</u>: 73 - 107 (1981).
- Department of the Air Force. <u>Pollution Prevention Program</u>. Air Force Instruction (AFI) 32-7080. Washington D.C.: Office of the Secretary of the Air Force (1994) (a).
- Department of the Air Force. <u>Resource Management and the Environment</u>. Air Force Pamplet (AFPAM) 36-2241. Washington D.C.: Office of the Secretary of the Air Force (b).
- Department of the Air Force. <u>Reusing and Disposing of Material</u>. Air Force Policy Directive (AFPD) 23-5. Washington D.C.: Office of the Secretary of the Air Force, 16 April 1993 (c).

- Department of the Air Force. <u>Environmental Compliance and Pollution Prevention</u>. Air Force Policy Directive (AFPD) 32-71. Washington D.C.: Office of the Secretary of the Air Force (d).
- Department of the Air Force. <u>Pollution Prevention</u>. Air Force Policy Directive (AFPD) 32-73. Washington D.C.: Office of the Secretary of the Air Force (e).
- Devore, J.L. <u>Probability and Statistics for Engineering and the Sciences</u>. New York, NY: Duxbury Press, 1995.
- De Young, R. "Encouraging Environmentally Appropriate Behavior: The Role of Intrinsic Motivation," Journal of Environmental Systems, 15: 281 - 292 (1985 -1986).
- De Young, R. "Some Psychological Aspects of Recycling: The Structure of Conservation Satisfactions," Environment and Behavior, 18: 435 449 (1986).
- De Young, R. and S. Kaplan. "Conservation Behavior and the Structure of Satisfactions," Journal of Environmental Systems, 15: 233 - 242 (1985 - 1986)
- Dillman, D.A. <u>Mail and Telephone Surveys: The Total Design Method</u>. New York, NY: Wiley, 1978.
- Dillon, P.S. and K. Fischer. <u>Environmental Management in Corporations</u>: <u>Methods and</u> <u>Motivations</u>. New York, NY: Center for Environmental Management, 1992.
- Drescher. "The Development of an Instrument to Predict Compliance with Self-Care Behaviors in a Spinal Cord-Injured Population Using the Theory of Planned Behavior," <u>Rehabilitation R & D Progress Reports</u>: 358 -359 (1992 - 1993).
- Dunlap, R.E. "Public Opinion in the 1980s: Clear Consensus, Ambiguous Commitment," <u>Environment, 33</u>: 10 22 (October 1991).
- Dunlap, R.E. "Trends in Public Opinion Toward Environmental Issues: 1965 1990, "Society and Natural Resources, 4: 285 - 313 (July - September 1991).
- Dunlap, R.E., G.H. Gallup, Jr, and A.M. Gallup. <u>Health of the Planet A George H.</u> <u>Gallup Memorial Survey</u>. Englewood Cliffs, NJ: The George H. Gallup International Institute, 1993.
- Dunlap, R.E. and R. Scarce. "The Polls Poll Trends: Environmental Problems and Protection," Public Opinion Quarterly, 55: 651 672 (1991).

- Dunlap, R.E. and K.D. Van Liere. "Commitment to the Dominant Social Paradigm and Concern for Environmental Quality," <u>Social Science Quarterly</u>, 65: 1013 - 1028 (December 1984).
- Dunlap, R.E. and K.D. Van Liere. "The New Environmental Paradigm," <u>The Journal of Environmental Education</u>, 9: 10 20 (Summer 1978).
- Dunlap, R.E. and K.D. Van Liere. "Environmental Concern: Does It Make a Difference How It's Measured?," <u>Environment and Behavior, 13</u>: 651 - 676 (November 1981).
- Eckel, L., K. Fisher, and G. Russell. "Environmental Performance Measurement," <u>CMA</u> <u>Magazine, 66</u>: 16 - 23 (March 1992).
- Edwards, D.C. General Psychology. New York, NY: The MacMillan Company, 1968.
- Emory, C. W. and D.R. Cooper. <u>Business Research Methods</u>. Homewood, IL: Irwin, 1991.
- Evans and Taylor. "Understanding Violence in Contemporary and Earlier Gangs: An Exploratory Application of the Theory of Reasoned Action," Journal of Black Psychology, 21: 71 81 (February 1995).
- Festinger, L. <u>A Theory of Cognitive Dissonance</u>. Stanford, CA: Stanford University Press, 1957.
- Fischer, K. and J. Schot. <u>Environmental Strategies for Industry</u>. Washington D.C.: Island Press, 1993.
- Flynn, J., P. Slovic, and C.K. Mertz. "Gender, Race, and Perception of Environmental Health Risks," <u>Risk Analysis, 14</u>: 1101 1108 (December 1994).
- Freedman, J.L. and S.C. Fraser. "Compliance without Pressure: The Foot-In-The-Door Technique," Journal of Personality and Social Psychology, 4: 195 - 202 (1966).
- Frunzi, G.L. and J. Halloran. <u>Supervision: The Art of Management</u>. Englewood Cliffs, NJ: Prentice Hall, Inc, 1991.
- Geller, E.S., R. Winett, and P. Everett. <u>Preserving the Environment: New Strategies for</u> <u>Behavioral Change</u>. New York, NY: Pergamon, 1982.
- Geller, J.M. and P. Lasley. "The New Environmental Paradigm Scale: A Reexamination," <u>The Journal of Environmental Education, 17</u>: 9 - 12 (1985).

- Gigliotti, L.M. "Environmental Attitudes: 20 Years of Change?," <u>The Journal of Environmental Education, 24</u>: 15 27 (Fall 1992).
- Goffman, E. <u>The Presentation of Self in Everyday Life</u>. New York, NY: Doubleday, 1959.
- Gooch, G.D. "Environmental Beliefs and Attitudes in Sweden and the Baltic States," Environment and Behavior, 27: 513 - 537 (July 1995).
- Greenwald, A.G. "Cognitive Learning, Cognitive Response to Persuasion, and Attitude Change," <u>Psychological Foundations of Attitudes</u>. New York, NY: Academic Press, 1968.
- Gutteling, J.M. and O. Wiegman. "Gender-Specific Reactions to Environmental Hazards in the Netherlands," <u>Sex Roles, 28</u>: 433 447 (1993).
- Hamid, P.N. and S.T. Cheng. "Predicting Antipollution Behavior: The Role of Molar Behavioral Intentions, Past Behavior, and Locus of Control," <u>Environment and</u> <u>Behavior, 27</u>: 679 - 698 (1995).
- Harris, L. and H. Taylor. "Attitudes to Our Environment," <u>World Health Forum, 11</u>: 32 38 (1990).
- Hatcher, L. and E.J. Stepanski. <u>A Step-by-Step Approach to Using the SAS System for</u> <u>Univariate and Multivariate Statistics</u>. Cary, NC: SAS Institute Inc., 1994.
- Heider, F. "Attitudes and Cognitive Organization," Journal of Psychology, 21: 107 112 (1946).
- Heider, F. The Psychology of Interpersonal Relations. New York, NY: Wiley, 1958.
- Helson, H. "Adaptation Level Theory," <u>Psychology: A Study of a Science</u>. New York, NY: McGraw-Hill, 1959.
- Helson, H. <u>Adaptation-Level Theory: An Experimental and Systematic Approach to</u> <u>Behavior</u>. New York, NY: Harper and Row, 1964.
- Hoffman, A.J. "The Importance of Fit Between Individual Values and Organisational Culture in the Greening of Industry," <u>Business Strategy and the Environment</u>: 10 - 18 (Winter 1993).

- Holt, D. "The Relationship Between Environmental Attitudes and Environmental Behaviors Among Air Force Members," MS Thesis, AFIT/GEE/ENV/95D-06. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH, December 1995.
- Honnold, J.A. "Age and Environmental Concern: Some Specification of Effects," Journal of Environmental Education, 16: 4 - 9 (Fall 1984).
- Horvat, R.E. and A.M. Voelker. "Using a Likert Scale to Measure 'Environmental Responsibility'," <u>The Journal of Environmental Education, 8</u>: 36 48 (Fall 1976).
- Hovland, C.I., I.L. Janis, and J.J. Kelley. <u>Communication and Persuasion</u>. New Haven, CT: Yale University Press, 1953.
- Hunt, S.D. and R.M. Morgan. "Organizational Commitment: One of Many Commitments or Key Mediating Construct?," <u>Academy of Management Journal</u>, <u>37</u>: 1568 - 1587 (1994).
- James, P. "Business Environmental Performance Measurement," <u>Business Strategy</u> and the Environment, 3: 59 - 67 (Summer 1994).
- Janis, I.L. "Motivational Factors in the Resolution of Decisional Conflicts," <u>Nebraska</u> <u>Symposium on Motivation, 6</u>. Lincoln, NE: University of Nebraska Press, 1959.
- Janis, I.L. "Attitude Change Via Role Playing," <u>Theories of Cognitive Consistency: A</u> <u>Sourcebook</u>. Chicago, IL: Rand McNally, 1968.
- Janis, I.L. and B.T. King. "The Influence of Role-Playing on Opinion Change," Journal of Abnormal and Social Psychology, 49: 211 218 (1954).
- Janis, I.L. and L. Mann. <u>Decision Making: A Psychological Analysis of Conflict</u>, <u>Choice. and Commitment</u>. New York, NY: The Free Press, 1977.
- Kachigan, S.K. Multivariate Statistical Analysis. New York, NY: Radius Press, 1991.
- Kim, M.S. and J.E. Hunter. "Relationships Among Attitudes, Behavioral Intentions, and Behavior," <u>Communications Research, 20</u>: 331 364 (June 1993).
- Kuhn, T. "Road Trip, Carpool Style," Airman: 24 29 (April 1995).
- Kurland. "Sales Agents and Clients: Ethics, Incentives, and a Modified Theory of Planned Behavior," <u>Human Relations, 49</u>: 51 74 (January 1996).

- Lee, Y.J., R. De Young, and R.W. Marans. "Factors Influencing Individual Recycling Behavior in Office Settings," <u>Environment and Behavior, 27</u>: 380 - 403 (1995).
- Line, B. "What Voters Say About the Environment Today," <u>EPA Journal, 21</u>: 17 (Winter 1995).
- MacDonald, W.L. and N. Hara. "Gender Differences in Environmental Concern Among College Students," <u>Sex Roles, 31</u>: 369 374 (September 1994).
- Macey, S.M. and M.A. Brown. "Residential Energy Conservation: The Role of Past Experience in Repetitive Household Behavior," <u>Environment and Behavior, 15</u>: 123 - 141 (1983).
- Marans, R.W., Y.J. Lee, G. Guagnano, and R. De Young. "A Cross-Cultural Comparison of Office Recycling in Taiwan and the U.S.," Paper Presented at the International Association for People-Environment Studies, 12th International Conference, Marmaras, Chalkidiki, Greece (1992).
- Marans, R.W. and Y.J. Lee. "Linking Recycling Behavior to Waste Management Planning: A Case Study of Office Workers in Taiwan," <u>Landscape and Urban</u> <u>Planning, 26</u>: 203 - 214 (1993).
- Marumoto, G. "The Study of Personal Values of Selected Senior U.S. Army and U.S. Air Force Officers," MS Thesis, AFIT/GLM/LSR/88S-44. School of Systems and Logistics, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH, September 1988.
- McClelland, L. and R.J. Canter. "Psychological Research on Energy Conservation: Context, Approaches, Methods," <u>Advances in Environmental Psychology</u>, <u>3</u>. Hillsdale, NJ: Lawrence Erlbaum (1981).
- McGuire, W.J. "A Syllogistic Analysis of Cognitive Relationships," <u>Attitude</u> <u>Organization and Change</u>. New Haven, CT: Yale University Press, 1960.
- McGuire, W.J. "The Probabilogical Model of Cognitive Structure and Attitude Change," <u>Cognitive Responses in Persuasion</u>. Hillsdale, NJ: Erlbaum, 1981.
- McGuire, W.J. and D. Papageorgis. "Effectiveness of Forewarning in Developing Resistance to Persuasion," <u>Public Opinion Quarterly, 26</u>: 24 - 34 (1962).

- Mohai, P. "Men, Women, and the Environment: An Examination of the Gender Gap in Environmental Concern and Activism," <u>Society and Natural Resources</u>, 5: 1 -19 (1992).
- Noe, F.P. and R. Snow. "The New Environmental Paradigm and Further Scale Analysis," <u>The Journal of Environmental Education, 8</u>: 20 - 26 (1990).
- Osgood, C.E. and P.H. Tannenbaum. "The Principle of Congruity in the Prediction of Attitude Change," <u>Psychological Review, 62</u>: 42 55 (1955).
- Oskamp, S., M.J. Harrington, T.C. Edwards, D.L. Sherwood, S.M. Okuda, and D.C. Swanson. "Factors Influencing Household Recycling Behavior," Environment and Behavior, 23: 494-519 (1991).
- Ostman, R.E. and J.L. Parker. "Impact of Education, Age, Newspapers, and Television on Environmental Knowledge, Concerns, and Behaviors," <u>The Journal</u> <u>of Environmental Education, 19</u>: 3 - 10 (Fall 1987).
- Ostrom, T.M. and H.S. Upshaw. "Psychological Perspective and Attitude Change," <u>Psychological Foundations of Attitudes</u>. New York, NY: Academic Press, 1968.
- Ostlund, S. "The Limits and Possibilities in Designing the Environmentally Sustainable Firm," <u>Business Strategy and the Environment, 3</u>: 21 - 33 (Summer 1994).
- Petty, R.E., T.M. Ostrom, and T.C. Brock. "Historical Foundations of the Cognitive Response Approach to Attitudes and Persuasion," <u>Cognitive Responses in</u> <u>Persuasion</u>. Hillsdale, NJ: Erlbaum, 1981.
- Petty, R.E. and J.T. Cacioppo. <u>Attitudes and Persuasion: Classic and Contemporary</u> <u>Approaches</u>. Dubuque, IA: Wm. C. Brown Company Publishers, 1981.
- Randall, D.M. "Why Students Take Elective Business Ethics Courses: Applying the Theory of Planned Behavior," Journal of Business Ethics, 13: 369 378 (1994).
- Rasanen, K., S. Merilainen, and R. Lovio. "Pioneering Descriptions of Corporate Greening: Notes and Doubts on the Emerging Discussion," <u>Business</u> <u>Strategy and the Environment, 3</u>: 9 - 16 (1995).
- Rockland, D.B. and G.L. Fletcher. "The Economy, the Environment, and Public Opinion," <u>EPA Journal, 20</u>: 39 40 (Fall 1994).

- Rohrschneider, R. "Citizens' Attitudes Toward Environmental Issues," <u>Comparative</u> <u>Political Studies, 21</u>: 347 - 367 (October 1988).
- Rothenberg, S., J. Maxwell, and A. Marcus. "Issues in the Implementation of Proactive Environmental Strategies," <u>Business Strategy and the Environment, 1</u>: 1 12 (Winter 1992).
- Schachter, S. and J.E. Singer. "Cognitive, Social, and Physiological Determinants of Emotional State," <u>Psychological Review</u>, 69: 379 399 (1962).
- Schwartz, J. and T. Miller. "The Earth's Best Friends," <u>American Demographics, 13</u>: 26 34 (February 1991).
- Scott, D. and F.K. Willits. "Environmental Attitudes and Behavior: A Pennsylvania Survey," Environment and Behavior, 26: 239 260 (March 1994).
- Sherif, M. and C.I. Hovland. <u>Social Judgment: Assimilation and Contrast Effects in</u> <u>Communication and Attitude Change</u>. New Haven, CT: Yale University Press, 1961.
- Skinner, B.F. <u>The Behavior of Organisms: An Experimental Analysis</u>. New York, NY: Appleton-Century-Crofts, 1938.
- Smart, B. "Beyond Compliance: A New Industry View of the Environment," <u>World</u> <u>Resources Institute</u>: 1 - 257 (April 1992).
- Snyder, M. "Self-Monitoring," Advances in Experimental Social Psychology, 12. New York, NY: Academic Press, 1979.
- Staats, A.W. and C.K. Staats. "Attitudes Established by Classical Conditioning," Journal of Abnormal and Social Psychology, 57: 37 40 (1958).
- Steger, M.E. and S.L. Witt. "Gender Differences in Environmental Orientations: A Comparison of Publics and Activists in Canada and the U.S.," <u>Western Political</u> <u>Ouarterly, 42</u>: 627 - 649 (1989).
- Stern, P.C., T. Dietz, and L. Kalof. "Value Orientations, Gender, and Environmental Concern," <u>Environment and Behavior, 25</u>: 322 348 (May 1993).
- Stern, P.C., S. Oskamp. "Managing Scarce Environmental Resources," <u>Handbook</u> of Environmental Psychology: 1043 - 1087 (1987).

- Stewart, General T. "AFMC: On the Leading Edge of Air Force Environmental Protection," <u>Leading Edge</u>: 2 (April 1996).
- Stone, G., J.H. Barnes, and C. Montgomery. "ECOSCALE: A Scale for the Measurement of Environmentally Responsible Consumers," <u>Psychology and Marketing</u>, 12: 595 - 612 (October 1995).
- Stotland and Canon. "The Cognitive Approach," <u>Social Psychology</u>. Philadelphia, PA: W.B. Saunders Company, 1972 (a).
- Stotland and Canon. "Decision and Action," <u>Social Psychology</u>. Philadelphia, PA: W.B. Saunders Company, 1972 (b).
- Tannenbaum, A.S. <u>Social Psychology of the Work Organization</u>. Belmont, CA: Wadsworth Publishing Company, Inc, 1966.
- Taylor, S.R. "Green Management: The Next Competitive Weapon," <u>Futures, 24</u>: 669 680 (1992).
- Tedeschi, J.T., B.R. Schlenker, and T.V. Bonoma. "Cognitive Dissonance: Private Ratiocination or Public Spectacle?," <u>American Psychologist, 26</u>: 685 695 (1971).
- Tesser, A. "Self-Generated Attitude Change," <u>Advances in Experimental Social</u> <u>Psychology, 11</u>: 289 - 338 (1978).
- Tesser, A. and C. Leone. "Cognitive Schemas and Thought as Determinants of Attitude Change," Journal of Experimental Social Psychology, 13: 340 356 (1977).
- Triandis, H.C. "Values, Attitudes, and Interpersonal Behavior," <u>Nebraska Symposium on</u> <u>Motivation, 27</u>. Lincoln, NE: University of Nebraska Press, 1980.
- Ungar, S. "Apples and Oranges: Probing the Attitude-Behavior Relationship for the Environment," <u>Canadian Review Society and Anth.</u>: 288 304 (May 1994).
- United States Council on Environmental Quality & U.S. Department of State. <u>The</u> <u>Global 2000 Report to the President: Entering the Twenty-First Century</u>. Washington D.C.: U.S. Government Printing Office, 1980.
- Upshaw, H.S. "The Personal Reference Scale: An Approach to Social Judgment," <u>Advances in Experimental Social Psychology, 4</u>. New York, NY: Academic Press, 1969.

- Uusitalo, L. "Are Environmental Attitudes and Behavior Inconsistent? Findings from a Finnish Study," <u>Scandinavian Political Studies, 13</u>: 211 226 (Spring 1990).
- Valins, S. "Cognitive Effects of False Heart-Rate Feedback," Journal of Personality and Social Psychology, 4: 400 - 408 (1966).
- Vanlandingham, Grandjean, and Sittitrai. "Two Views of Risky Sexual Practices Among Northern Thai Males: The Health Belief Model and the Theory of Reasoned Action," Journal of Health and Social Behavior, 36: 195 - 212 (March 1995).
- Vining, J. and A. Ebreo. "What Makes a Recycler?," <u>Environment and Behavior, 22</u>: 55 73 (1990).
- Vining, J. and A. Ebreo. "Predicting Recycling Behavior from Global and Specific Environmental Attitudes and Changes in Recycling Opportunities," <u>Journal of</u> <u>Applied Social Psychology, 22</u>: 1580 - 1607 (1992).
- Vining, J., N. Linn, and R. Burdge. "Why Recycle?," <u>Environmental Management, 16</u>: 785 797 (1992).
- Wall, G. "Barriers to Individual Environmental Action: The Influence of Attitudes and Social Experiences," <u>CRSA/RCSA, 32.4</u>: 465 491 (1995).
- Wankel, L.M., W.K. Mummery, T. Stephens, and C.L. Craig. "Prediction of Physical Activity Intention from Social Psychological Variables: Results from the Campbell's Survey of Well-Being," Journal of Sport and Exercise Psychology, <u>16</u>: 56 - 69 (1994).
- White House. <u>Procurement Requirements and Policies for Federal Agencies for Ozone-Depleting Substances</u>. Executive Order 12843. Washington D.C.: Office of the Press Secretary, 21 April 1993 (a).
- White House. <u>Federal Use of Alternative Fueled Vehicles</u>. Executive Order 12844. Washington D.C.: Office of the Press Secretary, 23 April 1993 (b).
- White House. <u>Requiring Agencies to Purchase Energy Efficient Computer Equipment</u>. Executive Order 12845. Washington D.C.: Office of the Press Secretary, 21 April 1993 (c).
- White House. <u>President's Council on Sustainable Development</u>. Executive Order 12852. Washington D.C.: Office of the Press Secretary, 29 June 1993 (d).

- White House. <u>Federal Compliance with Right-To-Know Laws and Pollution Prevention</u> <u>Requirements</u>. Executive Order 12856. Washington D.C.: Office of the Press Secretary, 4 August 1993 (e).
- White House. <u>Federal Acquisition, Recycling, and Waste Prevention</u>. Executive Order 12873. Washington D.C.: Office of the Press Secretary, 20 October 1993 (f).
- White House. <u>Energy Efficiency and Water Conservation at Federal Facilities</u>. Executive Order 12902. Washington D.C.: Office of the Press Secretary, 8 March 1994 (g).
- White House. <u>Federal Acquisition and Community Right-To-Know</u>. Executive Order 12969. Washington D.C.: Office of the Press Secretary, 8 August 1995 (h).
- Widnall, S.E. Secretary of the Air Force. "The United States Air Force: Working for a Greener World." Address to DOD Biodiversity Initiative. National Wildlife Visitor Center, Laurel, MD, 1 March 1995 (a).
- Widnall, S.E. Secretary of the Air Force. "U.S. Air Force -- A Vision of the Future."Address to Air Force Association National Convention. Washington D.C., 19 September 1995 (b).
- Widnall, S.E. and General R.R. Fogleman. "Focus Shifts to Pollution Prevention." Statement to the Air Force. Washington D.C., 1995.
- Wyer, R.S. "The Quantitative Prediction of Belief and Opinion Change: A Further Test of a Subjective Probability Model," <u>Journal of Personality and Social Psychology</u>, <u>16</u>: 550 - 571 (1970).
- Wyer, R.S. <u>Cognitive Organization and Change: An Information Processing Approach</u>. Potomac, MD: Erlbaum, 1974.
- Zeffane, R.M., M.J. Polonsky, and P. Medley. "Corporate Environmental Commitment: Developing the Operational Concept," <u>Business Strategy and the Environment, 3</u>: 17 - 28 (Winter 1994).

REPORT D	Fo Ol	orm Approved MB No. 0704-0188				
Public reporting burden for this collection of in gathering and maintaining the data needed, ar collection of information, including suggestion Davis Highway, Suite 1204, Arlington, VA 2220	formation is estimated to average 1 hour per id completing and reviewing the collection of i s for reducing this burden, to Washington Hea 24302, and to the Office of Management and	response, including the time for r nformation. Send comments reg dquarters Services, Directorate fo Budget, Paperwork Reduction Pro	eviewing instruction of this burden or Information Ope ject (0704-0188), V	ons, searching existing data sources, estimate or any other aspect of this erations and Reports, 1215 Jefferson Vashington, DC 20503.		
1. AGENCY USE ONLY (Leave blad	CY USE ONLY (Leave blank) 2. REPORT DATE 1996 3. REPORT TWESTER'S PRESS COVERED					
4. TITLE AND SUBTITLE Environmental Attitudes and of Behavior Among Air Ford	5. FUNDING	S NUMBERS				
6. AUTHOR(S) MARK S. LAUDENSLAGE	R, 1st Lt, USAF					
7. PERFORMING ORGANIZATION N Air Force Institute of Techn Wright Patterson AFB, OH	8. PERFORM REPORT AFI	MING ORGANIZATION NUMBER [/GEE/ENV/96D-11				
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				RING/MONITORING REPORT NUMBER		
11. SUPPLEMENTARY NOTES	STATEMENT	- Not 244	126. DISTRI	BUTION CODE		
Approved for public release	distribution unlimited					
13. ABSTRACT (Maximum 200 words) A questionnaire was randomly distributed to members of the United States Air Force at Wright-Patterson AFB, OH, with 307 returned. The survey was designed to test the Theory of Planned Behavior (TPB) model developed by Icek Ajzen, and the Organizational Theory of Planned Behavior (OTPB) model explored in this research effort. Validation and measurement of the TPB in relation to an organizational setting was accomplished, with the Organizational Theory of Planned Behavior (OTPB) developed. The behaviors and intentions individuals have towards recycling, energy conservation, and carpooling were examined, with the demographic variables of gender, age, and education also investigated. Regression analysis revealed that the TPB is supported by this research, while the OTPB is not well supported. However, the organizational commitment component of the OTPB does account for significant variance, and seems to support a portion of the OTPB. The demographic variables of gender, age, and education provide useful insight into the organization. Women show a greater tendency to carpool to work than men, and are more likely to participate in the behavior. Also, having some college education influences energy conservation behavior, energy conservation intention, and carpooling behavior at work. It was also shown that those who are older have a greater tendency to conserve energy at work, and are more likely to participate in the behavior.						
 14. SUBJECT TERMS environmental, behavior, attitude, recycle, carpool, energy conservation, organizations, organizational, theory of reasoned action (TRA), theory of planned behavior (TPB), organizational theory of planned behavior (OTPB) 15. NUMBER OF PAGES 267 16. PRICE CODE 						
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIF OF ABSTRACT Unclassified	CATION 20	D. LIMITATION OF ABSTRAC		
NSN 7540-01-280-5500			Stand	ard Form 298 (Rev. 2-89)		

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to <i>stay within the lines</i> to meet <i>optical scanning requirements</i> .					
Block 1. Agency Use Only (Leave blank). Block 2. Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.	Block 12a. <u>Distribution/Availability Statement</u> . Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).				
 Block 3. Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88). Block 4. Title and Subtitle. A title is taken from the part of the report that provides the most 	 DOD - See DoDD 5230.24, "Distribution Statements on Technical Documents." DOE - See authorities. NASA - See Handbook NHB 2200.2. NTIS - Leave blank. 				
meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.	Block 12b. <u>Distribution Code</u> . DOD - Leave blank. DOE - Enter DOE distribution categories from the Standard Distribution for				
Block 5. <u>Funding Numbers</u> . To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:	Unclassified Scientific and Technical Reports. NASA - Leave blank. NTIS - Leave blank.				
C- ContractPR- ProjectG- GrantTA- TaskPE- ProgramWU- Work UnitElementAccession No.	Block 13. <u>Abstract</u> . Include a brief (<i>Maximum</i> 200 words) factual summary of the most significant information contained in the report.				
Block 6. <u>Author(s)</u> . Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).	Block 14. <u>Subject Terms</u> . Keywords or phrases identifying major subjects in the report. Block 15. Number of Pages. Enter the total				
Block 7. <u>Performing Organization Name(s) and</u> <u>Address(es)</u> . Self-explanatory. Block 8. <u>Performing Organization Report</u> <u>Number</u> . Enter the unique alphanumeric report number(s) assigned by the organization	number of pages. Block 16. <u>Price Code</u> . Enter appropriate price code (<i>NTIS only</i>).				
performing the report. Block 9. <u>Sponsoring/Monitoring Agency Name(s)</u> and Address(es). Self-explanatory. Block 10. <u>Sponsoring/Monitoring Agency</u> <u>Report Number</u> . (If known)	explanatory. Enter U.S. Security Classifications. Self- explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.				
Block 11. <u>Supplementary Notes</u> . Enter information not included elsewhere such as: Prepared in cooperation with; Trans. of; To be published in When a report is revised, include a statement whether the new report supersedes or supplements the older report.	Block 20. <u>Limitation of Abstract</u> . This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.				