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Preface

This research was accomplished because, in the author’s view, too much money is
being spent on environmental investigation. Additional studies are often requested with
little if any cost analysis or objective justification. With the magnitude of environmental
problems on the horizon and limited resources, less environmental resources need to be
applied to investigation and more need to be applied to remediating the risk. This research
is done in an effort to aid analysts and decision makers in evaluating the cost trade-off
between gathering additional information to reduce the uncertainty and making the
decision without additional information.
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Tim Clendennon and Mary Seitz were instrumental in gathering the information necessary
to accomplish the analysis. The members of the Aeronautical Systems Center/EM
Restoration Division were all very helpful and willing to help gather the information to
analyze Site 4. Special thanks goes to Bill Brown, Scott Dennis, and Sandra Elberts who
especially went out of their way to help me apply the methodology developed in this
research. The technical and professional guidance that I received from my thesis advisor,

LTC Jack Kloeber, was invaluable to the final product. The comments from my readers,
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Lt Col Shelley and Maj Brent Nixon, added to the clarity and organization of the research.
To all these people, I send my gratitude.

My deepest gratitude, though, goes to my wife Cari and my boys Cameron,
Alejandro, and Jacob who have been so patient in waiting for dad to return from the
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Abstract

The majority of remediation resources have been consumed by costly and lengthy remedial
investigation studies to characterize the human health risk (Lawrence, 1993:2963).
Unable to deal directly with the uncertainty resulting from the convolution of the
uncertainties in a multitude of variables, and heavily persuaded by the liabilities, decision
makers and regulators have relied on conservative assumptions and more studies to take
appropriate actions (Graham et al., 1992:411). The main objective of this research is to
provide tools and techniques to aid risk analysts in determining whether it would be
beneficial to gather additional information or whether the decision to take an appropriate
action can be made without further investigation. This research provides some
probabilistic risk assessment and decision analysis techniques to avoid using simple
conservative assumptions to deal with the complex uncertainties to evaluate the value of
information of additional studies in the complex remediation decision process. The
methodologies in this research were tested on Operable Unit 2, Wright-Patterson AFB,

Ohio, and Site 4, Air Force Plant 44, Arizona.
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APPLYING PROBABILISTIC RISK ASSESSMENT AND DECISION ANALYSIS
TECHNIQUES TO AVOID EXCESSIVE REMEDIAL INVESTIGATION COSTS
1 Introduction

1.1 Background

In the wake of the 1970’s environmental movement, Congress passed the
Comprehensive Environmental Response, Compensation, and Liabilities Act (CERCLA)
in December of 1980. Congress wanted to achieve two goals with the legislation: clean-
up of abandoned or uncontrolled hazardous waste sites and assurance that responsible
parties would bear the cost of clean-up. Knowing that responsible parties would not be
found for all sites, Congress authorized a *“Superfund” budget of $1.6 billion for the next
five years to begin the remediation of disposal. The Environmental Protection Agency
(EPA) was instructed to develop a National Priorities List (NPL) of at least 400 of the
nation’s worst sites that would be eligible for Superfund funding (Dienemann, 1992:166).

When CERCLA was up for reauthorization in 19835, it was obvious that the
hazardous waste disposal problem had been severely underestimated. The EPA had 538
sites on the NPL and estimated the final number would reach 2000. At the end of 1984,
the EPA predicted that only 10 of the 538 sites on the NPL would be remediated to an
acceptable human health risk level or closed-out by 1985. In disappointment with the
progress, Congress reauthorized CERCLA as the Superfund Amendments and
Reauthorization Act (SARA) of 1986 with mandates for EPA to clean up more sites.
Congress also increased the authorized funding from the original $1.6 billion to $8.5

billion (Dienemann, 1992:166).




By late 1994 the National Priorities List had grown to approximately 1200 sites
(Bredehoeft, 1994:98). A disappointing statistic is that it takes an average of 10 years to
clean up one NPL site. Of these ten years only three are used for on-site remediation
construction and actual clean-up. The first seven years are spent on prolonged studies to
characterize the potential human health risk. These prolonged studies resulted from a
pattern that has been called the “study to death” syndrome, which has been spurred on by
both attorneys, who fear lawsuit for improper characterization of the site or ineffective
remediation programs, and regulatory agencies, who would rather ask for another study
than commit to an appropriate solution (Duplancic, 1989:69). As of 1993, the average
cost was estimated at $25 million per site, of which the majority is spent on characterizing
the site as opposed to clean—ﬁp (Ember, 1993:19).

The extent of the environmental clean-up program described thus far only includes
those sites which were constructed prior to 1984 and considered a national priority under
CERCLA. The problem gets much larger when other sites are considered that are not a
national priority, but pose some human health risks that require clean-up. Additionally,
there are thousands of sites that were constructed after 1984 that do not fall under the
jurisdiction of CERCLA. Clean-up at these sites is governed by the Corrective Actions
Program under the Resource Conservation and Recovery Act (RCRA) of 1986. There are
some who believe that the clean-up of RCRA sites will approach the scope and magnitude
of the Superfund program (Lowrance, 1991:47). The magnitude of the current problem
and the anticipated growth indicate a more streamlined method of site characterization is

needed to move more rapidly to the clean-up phase of remediation.




1.2 Dealing with Complexity and Liability

Two causes of the high cost and extended duration of site characterization have
been the liabilities involved with policy and remediation decisions and the complexity of
the process. The first reason is a result of how uncertainty has been handled to deal with
the liabilities of improperly characterizing risk at a site (Duplancic, 1993:50). In this
research it is assumed that the reader comprehends the liabilities, for both the site owner
and regulating program manager, of improperly characterizing a hazardous waste site. To
discuss the first cause it is important to briefly address the concept of reasonable maximum
exposure (RME).

The methodology in the Superfund risk assessment guidelines for estimating risks
have been criticized for using conservative assumptions to deal with the uncertainties in.
estimated variables that result in risks that are significantly greater than the actual risk
present (Cullen 1994; Ember, 1993:19). EPA guidelines point out that remediation
decisions should be based on a reasonable maximum exposure (RME) expected to occur
presently or in future uses of the land (USEPA, 1989c:Ch 6, 4). The RME is defined as
the highest exposure that is reasonably expected to occur (USEPA, 1989¢:Ch 6, 5). The
definition of the RME is not further clarified in the guidelines and many of the definitions
such as ‘reasonable’ and ‘maximum’ have been left to interpretations of remedial project
managers (Duplancic, 1993:52). The RME is calculated with a series of exposure
variables according to the equations outlined in the guidelines (USEPA, 1989c).

| Most of the variables used to estimate the RME have some uncertainty associated

with their estimated values. Uncertainty can mean many things, but in decision making, it




has generally implied the inability to estimate the value of the variable due to several issues
outlined in Section 3.4. In risk assessment, uncertainty is divided into the categories of
variability and uncertainty (McKone, 1994:450). Variability is the natural difference that
exists between the members of the population of interest. Uncertainty, in contrast, is the
imprecision associated with our estimate of the variable and its real variability (Finley et
al., 1994:534). To deal with this uncertainty and variability, the guidelines have
recommended the use of high end percentiles for selected variables to ensure the variables
are not underestimated. If sufficient data exist, the EPA’s guidelines suggest that the
estimated 95th percentile be used for numerous exposure factors in the RME calculations
(USEPA, 1989c:Ch 6). Other percentiles are used for a limited number of factors. Using
the point estimate risk calculatiéns, these numbers would be combined in the appropriate
risk equation to determine the RME point estimate of risk. What is the probability that
any one individual would simultaneously possess all these extreme characteristics? Is it
reasonable to assume that this type of maximum exposure is likely to occur? These
questions can only be answered through further analysis.

Using a simple binomial trial to determine the probability that a sensitive individual
in the population would possess all the qualities estimated at the 95th percentile can shed
some light on the possible conservatism of the RME calculations. To keep the analysis
simple, assume that only three exposure factors are being estimated at the 95th percentile
in the risk calculations and that sufficient data has been gathered to confidently assume
that the distributions of the factors are as shown in Figure 1-2. Regardless of the

distribution, using the estimate of the 95th percentile there is approximately a 95% chance



that any randomly selected individual in the population would possess an exposure factor
value greater than the 95th percentile and a 5% chance that the individual would possess

an exposure factor value less than the 95th percentile.

95thile 95thile 95thile

Figure 1-1: Three Hypothetical Exposure Factor Distributions.

Assuming the exposure factors are independent, a binomial trial can be used to
estimate the probability that any given person would possess any number of the qualities
above the 95th percentile. Each exposure factor is considered a trial with a probability of
success equal to 0.05. The probability that any one individual would possess all three
exposure qualities above the 95th percentile is (.05)° = 0.000125. In other words, only
0.0125% of the population would possess all three characteristics above the 95th
percentile and experience a risk equal to or greater than the RME risk. The assumption
that only three exposure factors are estimated at the 95th percentile would probably be
satisfied in a single exposure pathway. When exposure factors are combined across
pathways, even more conservative estimates may result. Others have done more elaborate
calculations that have resulted in similar conclusions (Cullen, 1994: 391; Hattis and
Burmaster, 1994:715).

Is the 99.99th percentile a reasonable maximum exposure an individual might
experience or does it estimate a maximum possible exposure? Unable to deal directly with

uncertainty and heavily persuaded by the consequences of making mistakes, decision




makers have had to rely on these conservative assumptions to ensure that estimated risks
include individuals who might experience the quite conservatively estimated RME
(Graham et al., 1992:411). Many studies have been and are being conducted to show that
many sites, characterized using the EPA’s RME guidelines, have been characterized as
posing significantly greater human health risk than the actual risk present (Finley and
Paustenbach, 1994:70; Thompson et al., 1992:59; Katsumata, 1994:115; Keenan,
1994:229). This conservative estimate of the risk has assured decision makers that the site
has been conservatively characterized and has given them confidence to take appropriate
actions. Unfortunately this confidence in making the decision and minimizing the liabilities
has resulted in expenses that perhaps could have been avoided if the risk were more
objectively estimated.

The EPA has made efforts to clarify the concept of the RME. The guidance that
was sent out by F. Henry Habicht, Deputy Administrator, to the regional administrators in
February of 1992 specifies that EPA risk assessments will provide descriptions of the
individual risk that include the central tendency and high end portions of the risk
distribution (USEPA, 1992b:21). Specifically, the guidance conceptually defines the high
end risk as “the risks above the 90th percentile of the population distribution, but not
higher than the individual in the population who has the highest risk” (USEPA, 1992b:24).
Given that the population of interest is fairly homogeneous and that more sensitive
populations cannot be further delineated, the guidance assumes that high end risk will be

associated with the RME risk.




The second reason for the high costs and duration of the investigation phase has
been the complexity of the remediation decision process. The planning and investigative
portion of the remediation process for NPL sites, where the majority of the money and
time has been spent, is called the Remedial Investigation and Feasibility Study (RI/FS)
phase. The process is outlined in Title 40, Code of Federal Regulations Part 300, which is
called the National Contingency Plan (NCP). This phase consists of a series of data
gathering and analysis activities to determine the most appropriate remediation alternative.

The decisions made in the RI/FS phase must encompass a multitude of chemicals,
exposure pathways, exposure factors, additive risks across pathways, costs, durations,
liabilities, subsequent decisions, and many more variables simultaneously. Figure 1-1
shows a simplified decision tree that lays out the multitude of paths through the RI/FS that
can be selected. The possible decision strategies are thoroughly discussed in Section
2.5.1. The squares indicate that a major decision must be made and the triangles indicate
that the process terminates. The decision tree is condensed by the use of letter identifiers.
For instance, if the decision is made at the preliminary assessment (Prelim Assmt) to take
the ‘removal action’ (Removal) alternative, then the assessor moves to the decision block
C of the 60% remedial investigation (RI60%) phase and continues there. If the decision
tree were not condensed, it would be very complex because of the numerous paths that
could be taken. This complexity makes it difficult to make cost effective decisions without

the aid of analytical tools.
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Figure 1-2: RI/FS Decision Tree

As discussed above, each variable used in assessing the risk has associated with it
some variability and uncertainty. A significant portion of the RI resources is consumed
trying to reduce the uncertainty in the estimated risk by obtaining additional information
(Duplancic, 1993:51). Additional information serves to reduce the uncertainty in the
parameters of interest. Variability, on the other hand, occurs naturally and cannot be
reduced with more or better measurements (Finley et al., 1994:534). As variables, along
with their variability and uncertainty, are propagated through the risk calculations,
determining the variability and uncertainty in the final point estimate becomes very
complex. This complexity has caused decision makers and regulators to delay between
taking action and to request additional information with hopes of reducing the uncertainty
(Duplancic, 1993:52). Failing to recognize the difference between uncertainty and
variability, some decision makers may have expended resources on additional studies to
reduce the real variability in the risk or to marginally reduce the uncertainty without
considering the value of information (VOI) (Hattis and Burmaster, 1994:716). The VOI is

the added benefit of obtaining information that is not currently available. If VOI is not




considered in the RI/FS process, resources expended to further improve the
characterization of the site could be incurred for a marginal reduction in the uncertainty.

In the remedial investigation it is difficult to calculate the VOI because of the
magnitude and complexity of the problem. Environmental decision makers have not been
afforded the tools necessary to deal with the complexities involved in making decisions.
The slow development of computer software to efficiently manipulate the analysis
(Burmaster, 1989: 89) and the reluctance to adopt analytical tools used in other fields,
such as observational methods and presumptive remedies, has hindered the evolution of
the decision process (Duplancic, 1989:70). In order to deal with the current problems and
anticipated problems, the decision process must be streamlined by developing tools for
analysts and decision makers to manage this complexity.
1.3 The Need for Evolution

The concept of RME has been further clarified, but the decision maker is still left
with the complexities and liabilities in estimating the RME that will properly estimate the
high end risk. The assessor and regulator must determine what selected percentiles for
values in the risk calculation will adequately estimate the RME risk. At which point, the
subjective interpretations of ‘reasonable,” ‘maximum,’ and ‘adequately’ blur the distinction
between objective risk assessment and risk management.

The EPA has made considerable and commendable efforts to improve the
remediation decision process, but the process must continue to evolve to properly deal

with the complexities and Labilities without reliance on overly conservative assumptions.

Recent publications, such as the 1992 Environmental Protection Agency Guidelines for




Exposure Assessment and the 1993 Science Advisory Board draft review of the Risk
Assessment Guidance for Superfund: Volume 1 -- Human Health Evaluation Manual,
support such efforts (Keenan, 1994:226). Until the late 1980s computational methods for
assessing uncertainty with much complexity were too cumbersome, but with the arrival of
the powerful desktop workstations these computations have become practical (Burmaster,
1989:89). Software packages such as DPL (ADA Decision Systems, 1995) decision
analysis software and Crystal Ball (Decisioneering, 1993) have the capacity to improve the
operational inefficiencies in risk assessment that will be required to most efficiently handle
the environmental problems on the horizon.

By using these software to appropriately apply new probabilistic methods of risk
analysis and decision analysis techniqués, such as VOI, presumptive remedies, and
observational methods, tools can be developed to manage the inherent complexities and
minimize the conservative assumptions required to efficiently and more confidently
characterize a hazardous waste site. The growing magnitude of remediation sites and a
dwindling budget has prompted development of more accurate techniques to assess risk
and reevaluate how to most effectively spend limited resources on clean-up. As
recommended by the Science Advisory Board in their review of EPA’s risk assessment
guidelines, the decision process should be driven by opportunities for the greatest risk
reduction (USEPA, 1990:16). Methods addressed in this research can more objectively
estimate the risk distribution and high end risk, which provides much more information
than the point estimate, and maintain a better distinction between science and management

(Burmaster and Appling, 1995:2439-40).
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1.4 Current Model

A model has been developed using DPL decision analysis software, by Captain
Daniel Clairmont, as a tool for decision makers to optimize site characterization, minimize
the resources expended during the RI/FS, and still maintain acceptable levels of risk. “The
model uses site specific information and decision maker preferences to select the course of
action with the highest expected value at each step in the planning and investigation phase
of site remediation” (Clairmont, 1995:1). The model is a series of submodels that
represent the phases of the RI/FS process. They take into account VOI and offer other
state-of -the-art decision analysis tools such as observational methods and presumptive
remedies to streamline the process. The model has been tested using data from Operable
Unit 2, POL Storage Area, Wright-Patterson Air Force Base and has generated some
valuable results. In scenarios evaluated, the use of the models indicated that the further
acquisition of data would not significantly improve the characterization of the site and was
therefore, not worth the cost and time spent gathering the information.
1.5 Thesis Objective

The objective of this research is to improve Clairmont’s model through the use of ‘
probabilistic risk analysis methods and decision analysis tools to further facilitate the
remediation decision process to more efficiently allocate limited environmental resources.
The model will be improved in the following four ways: (1) use a Monte Carlo
probabilistic approach to better estimate the existing human health risk at a given sight, (2)
provide a decision analysis process to minimize resources spent on the investigation, (3)

offer a better method of estimating the pollutant mean concentration distribution, (4) and
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further verify and validate the model once the improvements have be implemented. The
research effort will test the value of using probabilistic risk assessment methods and other
decision analysis tools to avoid spending resources unnecessarily.
1.6 Thesis Content

The remainder of this thesis consists of four chapters. Chapter Two addresses
human health risk assessment and the concepts of probabilistic risk analysis through a
review of pertinent literature. It also presents how the current model used decision
analysis techniques to streamline the RI/FS decision process. Chapter Three focuses on
the improvements to the model that show how a probabilistic risk assessment using the
Monte Carlo method provides much more information from which to make more informed
decisions. Specifically, the methodology prbvides a method to quantify and separate
uncertainty and variability which is vital to risk analysis. Chapter Four is where the results
of testing the model on Operable Unit 2, Wright-Patterson Air Force Base, Ohio, and Site
4, Air Force Plant 44, Arizona will be presented to show how the model could have
limited resource expenditure if it had been used. The results also provide some analysis on
the conservatism of the RME guideline methods discussed here. Chapter Five provides

the conclusions of the research effort and discusses opportunities for follow on research.
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2. Literature Review

2.1 Introduction
The following chapter provides a general review of risk assessment (RA) and the

current state of affairs in the field as they pertain to the use of probabilistic risk assessment
(PRA). It begins with a brief historical review of how the field has evolved and why there
s need for more scientifically based methodologies. The basic theory of the EPA’s
guideline risk assessment methodology and an alternative Monte Carlo method for
characterizing risk are addressed. A review of how the original model makes its
recommendation is discussed. The fundamental theories established in this chapter lay the
foundation for Chapters 3 and 4.

2.2 Historical Review of Risk Assessment

Relative to other scientific disciplines, risk analysis is a new field (Covello,
1993:1). It has been developed within the last five decades and subsequently practiced in
the areas of finance, nuclear power plant construction, applications of medicines, human
health, and other areas where risks are involved. Specifically, human health risk due to
hazardous waste disposal is considered to be in its infancy stages as a scientific discipline
(Duplancic, 1989:68). The practices of RA are not as objective as other well established
disciplines and, as shown in Chapter 1, the current guidelines and procedures are not
widely accepted as appropriate within the field (Cullen, 1994). The following provides a
perspective of how the discipline has evolved to its current state.
2.2.1 Initial Guidelines to Risk Assessment Facing the environmental dilemma of the

1970’s, federal agencies developed their own procedures, specific to their own interest,
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for assessing human health risks due to chemicals. The subjective decision making process
of these procedures was scrutinized by congress, scientists, industry, and the public
(National Research Council, 1983:2). In response, Congress initiated a review of the
institutional methods of RA within the federal government in the early 1980’s. The
National Research Council (NRC), under direction of the National Academy of Science
(NAS), was instructed to evaluate the ad hoc methods of RA being used at the time. The
NRC concluded its study in 1983 with the publication of its landmark document Risk
Assessment in the Federal Government: Managing the Process, which made 10
recommendations to improve RA within the federal government (NRC, 1983). The NRC
réport has had a tremendous impact on the evolution of the science of human health RA as
shown by the adaptation and implementation of its recommendations by the EPA and
practically every state environmental regulatory agency (Burmaster and Appling,
1995:2431).

An objective of the study of particular interest was to assess the merits of
separating RA from risk management. The Council strongly encouraged a clear and
distinct separation between RA, which is the scientific and objective procedure of
estimating risk, from risk management, which is the decision process of considering
technical, social, economical, political, and other factors to determine a remediation
strategy (NRC, 1983:151). Prior to the study there was a lack of knowledge and
understanding in the field which created uncertainty about the estimated risk. A subjective
safety factor schema was devised by analysts who in their expert judgment, were supposed

to be objective, to ensure that even with the given uncertainty the risk would not be
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underestimated. This schema, though changing through the evolution discussed in this
tesearch, is still prevalent today. This type of safety adjustment is considered to cross the
boundary between RA, which considers the information objectively and scientifically, and
risk management, which considers the social and political aspects of risk analysis (Covello,
1993:233). To maintain a clear distinction between the two, the NRC recommended the
development of uniform inference guidelines to establish more objective methodologies for
conducting RA. This recommendation was the first major step to create a more
scientifically based RA process.

2.2.2 EPA’s Response to the NRC’s Recommendations In response to the NRC’s
recommendations and in efforts to meet the requirements of CERCLA, the EPA
developed a series of guidelines on human health RA. Since the focus of this research is
on the investigation phase of site remediation, emphasis is placed on guidelines governing
RA. The guidelines governing the process evolved primarily into a pair of documents

entitled the Human Health Evaluation Manual, which provides guidance for characterizing

human health risk, and the Environmental Evaluation Manual, which provides guidance for

characterizing environmental risk at Superfund sites (USEPA, 1989c:xv). These are
addressed primarily to risk assessors conducting the RAs, and provide a guiding structure
to ensure assessments are thorough and consistent with the agency’s view.

2.2.3 Relative Risk As the environmental era of the 1970’s and 1980’s progressed it
was clear the environmental problems had grown to a point beyond where anyone had
anticipated. This country was facing an environmental dilemma of unprecedented scope

(SAB, 1990:1). With limited resources, the EPA realized that its previous reactive
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posture would not suffice to manage the problems. Recognizing not every problem could
be or needed to be remediated, the EPA realized some sort of prioritization method had to
be devised. To deal with this burden, the EPA embraced the concept of relative risk in
1986 to aid in determining where to allocate scarce resources to numerous problems. A
group of 75 senior career managers were convened to compare the risks posed by 31
general environmental problems which resulted in a report titled Unfinished Business: A

Comparative Assessment of Environmental Problems (SAB, 1990:2). The objective of

relative risk is to quantify the risk posed by a problem to compare it to other problems for
prioritization purposes. Every environmental problem poses some level of risk to human
health. By prioritizing the risk, resources can be used on the highest priority risk first to
ensure that the greatest opportunity for risk reduction can be realized (SAB, 1990:16).

To evaluate its progress between 1986 and 1990, the EPA requested that the EPA
Science Advisory Board review the results of the report, review changes made to
implement its recommendations, and make further recommendations to improve the
relative risk process. One of the key findings of this review was the importance of the RA
methodology to the determination of relative risk. In order to assess health risks, compare
them, and determine the highest priority risks, the SAB recommended that improvements
should be made to the analytical methodologies for assessing risk (SAB, 1990:18). They
emphasized the need for the development of more rigorous, scientifically based
methodologies. It was clear that the RA methodology would play a dominant role and
partially drive this country’s $100 billion annual investment in environmental protection

(Graham et al., 1992:409). Recognizing the paramount importance of RA methodologies,
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the EPA has ma;de significant efforts to improve and develop the guidelines to foster more
objective methods of assessing risk.

The problems discussed in Section 1.1 resulted in pressure from academia,
industry, congress, and the public for the EPA to develop more scientifically based
procedures to further delineate RA from risk management (Graham ez al., 1992:409;
USEPA, 1992a:22888). As a result, the EPA went through a significant paradigm shift
with the publication of a memorandum titled “Guidance on Risk Characterization for Risk
Managers and Risk Assessors” in February of 1992. The view of the EPA shifted from a
deterministic point estimate to a focus on the high end risk of the risk distribution
(USEPA, 1992b:16,23). In May of 1992, the EPA officially adopted this new paradigm
with the publication of its Guidelines for Exposure Assessment in the Federal Register
(USEPA, 1992b). There were several techniques that were possible candidates to
improve the process. But before the introduction of powerful desktop computer work
stations, none was practical for application in the field. With the development of software
and computers as early as 1989, the Monte Carlo RA method (discussed in section 3.4)
became a potential solution (Burmaster and von Stackleberg, 1989). The EPA has
seriously considered this technique as the next step in the evolution of RA.

The EPA has sponsored a series of workshops to develop the application of Monte
Carlo simulation within human health risk (Graham ez al., 1992; Haimes ez al, 1993). The
most recent of these was the “Workshop on Monte Carlo Analysis” in May of 1996 which
was convened to discuss technical issues concerning how to perform the analysis. These

efforts provide evidence of the general acceptance of the technique as a possible option
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and the need for more objective methods to conduct RAs. In the past six years, literature
has been published concerning the Monte Carlo method (Burmaster and von Stackleburg,
1989; Burmaster and von Stackleburg, 1991; Thompson et al., 1992; Finley ez al., 1994;
Burmaster and Appling, 1995). Little has been published discouraging the use of this
technique; instead, the fundamental issue has been on whether the deterministic method is
too conservative or whether it approximately estimates the high end risk (Cullen, 1994).
Before the benefits and drawbacks of Monte Carlo method are discussed, a general review
of the EPA’s deterministic guideline structure for estimating risk is necessary.

2.3 EPA’s Deterministic Risk Assessment Structure

The following is a brief review of the structure for estimating the risk at a

Superfund site in accordance with the RA Guidance for Superfund (Volume 1) (USEPA,
1989c). For a more detailed explanation, the reader is encouraged to reference the
original document along with other documents that discuss the topic (NRC, 1983;
USEPA, 1992b; Covello, 1993; Burmaster and Appling, 1995). The Superfund guidelines
are followed in this research because other federal laws such as the Clean Air Act, Clean
Water Act, and Safe Drinking Water Act follow similar if not identical RA procedures
(Burmaster and Appling, 1995:2432). First it is critical that risk, as discussed in this
research, be defined. Risk has different meaning in different disciplines, but in this
research it refers to the possibility of an adverse human health effect due to exposure to
some environmental pollutant. There are two general types of risk that an individual could
be exposed to in a given scenario. The first is a risk of some noncarcinogenic adverse

effect that is often curable, but could be fatal. The other type of risk is a carcinogenic
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effect that is considered fatal. The method of assessing human health risk is complex and
is developed as its four fundamental components are addressed.

2.3.1 Hazard Identification Chemicals of particular interest are evaluated to determine
if they pose an adverse health risk. This risk can be either carcinogenic or
noncarcinogenic. Different conditions and events under which the agent may pose health
risks are evaluated to identify the hazards associated with the agent (Covello, 1993:5).
This type of analysis can be done on-site, but is usually done prior to the assessment in a
laboratory setting. Chemicals are classified as carcinogenic or noncarcinogenic once this
type of evaluation has been completed.

2.3.2 Dose Response Assessment After a chemical has been determined to pose some
health risk, the next step is to conduct a dose response assessment. The assessment
attempts to establish a relationship between the exposure dose in a given scenario and the
adverse health effect. The purpose of the dose response assessment is to determine either
a reference dose (RfD) for noncarcinogens or a slope factor (SF) for carcinogens to be
used in RAs (USEPA, 1989¢:Ch 7, 1).

In estimating the RfD, it is important to understand that any chemical that enters
the body has some effect. At some level the chemical begins to produce some adverse
effect the body can no longer alleviate through its normal physiological defenses. This
dose is referred to as the no-observed-adverse-effect-level (NOAEL) (USEPA, 1989¢:Ch
7, 1). Laboratory tests, epidemiological studies and other data are used to establish a
NOAEL for different chemicals. Since experimentation on humans is considered

unethical, animal experimental studies or inadvertent prolonged human exposure are used
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to extrapolate the NOAEL (Burmaster and Appling, 1995:2433). If available, both types
of studies are used to estimate the NOAEL. When there is sufficient data to establish a
NOAEL from human exposure, an uncertainty factor of 10 is used because of the lack of
control in the experiment and the uncertainty due to human variability (Covello,
1994:233). When animal studies are used, a safety factor of 100 is used due to the
uncertainty in extrapolating the effect between animals and humans (Covello, 1994:233).
The total uncertainty factor can be greater than 1000, for particular circumstances, and
practically always less than 10,000 (Kimmel, 1990:191). After the estimated NOAEL has
been divided by the appropriate uncertainty factor, the resulting number is the reference
dose (RfD). The RfD is considered an estimate of the daily dose per unit weight that an
individual can be exposed to with a substantial degree of safety of not experiencing an
adverse effect (USEPA, 1989¢:Ch 7, 3). Reference doses for different chemicals are

published in the Superfund Chemical Data Matrix (USEPA, 1994).

When considering carcinogenic effects, there is different underlying theory that
governs the dose response assessment. Because of our limited understanding of the
mechanism of cancer, carcinogens are considered no-threshold chemicals (USEPA,
1989c:Ch 7, 10). Unlike noncarcinogens that the body has a tolerance threshold against, it
is theorized that carcinogens at any dose, even one molecule, have the potential to cause
cancer (USEPA, 1989¢:Ch 7, 10). The question now might be: “why bother with a dose
response assessment if there is a zero threshold tolerance?” In the environment, it is not
currently economically feasible to either detect or clean up to a zero level. If a carcinogen

is introduced into the environment, it is not feasible to completely remove the risk agent,
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so some level of risk must be accepted. The remediation strategy is designed to remove
the carcinogen to an acceptable level of risk. Since there are other carcinogens possibly
present in any environment that produce some background cancer, a foreign risk agent
increases the probability of incurring cancer by some amount. The SF is an estimate of
this increased probability of incurring cancer per average unit dose of the chemical
(USEPA, 1989c:Ch 7, 10). It provides an indication of the chemicals carcinogenic
potency and is sometimes referred to as the cancer potency factor (CPF). Similar to
noncarcinogens, controlled human experiments for determining the SF are not an option
and the procedure for extrapolating a SFs from non-human data is rigorous (USEPA,
1989c:Ch 7, 11; Burmaster and Appling, 1995:2432).

Though the tolerance for carcinogens is a zero threshold, experimental animals are
dosed with high levels of carcinogens to differentiate between background cancer and to
ensure that cancer induced by the chemical is observed (USEPA, 1989¢:Ch 7, 11). An
experiment usually consists of an experimental group, which is exposed to the chemical,
and a control group, which is under identical conditions without exposure to the chemical.
Atlow doses few animals incur cancer in the experimental group and it is difficult to
determine whether the cancer observed in the experimental group is due to the risk agent
or the background risk of cancer. This also makes it difficult to determine an increased
probability of cancer above that of the control group. In order for scientists to observe a
substantial amount of cancer above the control group and make reasonable inferences

about the chemicals carcinogenic potency, high doses must be used on the animals.
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Elaborate models and techniques are used to estimate the increased probability (USEPA,
1989¢:Ch 7, 12).

This type of procedure produces two general types of uncertainties. There is
uncertainty in extrapolating from a high dose region to a low dose region of interest and
from extrapolating from animals to humans. To account for the uncertainty, the
procedure for estimating the SF includes various conservative assumptions (Covello,
1993:233). These uncertainties may account for the majority of the uncertainty within RA
and have been the issue of much debate within the field (Gaylor ez al., 1993). It is not the
intent of this research to discuss the validity of these procedures, but only to briefly point
out the source of the uncertainties in toxicological input parameters, which manifest
themselves in the final risk estimate. The SFs for chemicals that have been tested can be
found in the Integrated Risk Information System (IRIS) (USEPA, 1994).

2.3.3 Exposure Assessment For a risk to exist, there must be a chemical source, an
exposure route, and an exposure point, which make up the exposure pathway (USEPA,
1989¢:Ch 6, 8). The source is a point where the risk agent is released and allowed to
migrate into the environment. The exposure route is a transport medium by which the risk
agent is carried to the individuals in the population. Some direct transport media are soil,
tap-water, groundwater, surface water, and air. Indirect transport media include produce,
game food, fish, breast milk, and other non-direct transport methods. The location where
the population contacts the contaminated media is considered the exposure point and the

three exposure components determine the exposure pathway. There are three potential
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intake routes that an agent can use to enter the body: the inhalation, oral or ingestion, and
the dermal contact route (USEPA, 1989¢:Ch 6, 17).
2.3.3.1 General Exposure Intake Equation To calculate the estimated exposure

dose, the guidelines provide established exposure intake equations that all have a common

underlying theory that governs the method of calculating the exposure. The different
equations consist of variables that contain certain fundamental elements that are related to
the chemical, population behavior, and an assessment determined averaging time (USEPA,
1989c:Ch 6, 19). These elements provide information that allow the assessor to determine
the intensity and frequency of the exposure. The general Equation (2.1) for calculating
chemical intake is shown below (USEPA, 1989c:Ch 6, 21). The three basic categories of
information are broken down in the definition of the variables.

mg ,_C:CR-EFD @
kg-day’  BW-AT

Intake (

“Where:
Chemical-related variable
C = chemical concentration; the average concentration
contacted over the exposure period
Variables that describe the exposed population behavior
CR = contact rate; the amount of contaminated media
contacted per unit time or event
EFD = exposure frequency and duration; describes how long and
how often exposure occurs.
BW = body weight; the average body weight over the exposure
period
Assessment-determined variable
AT = averaging time; period over which exposure is averaged (days).”
(USEPA, 1989c:Ch 6, 21)

In accordance with the guidelines, when the risk manager considers the risk in the

decision making process, it should be the risk that is associated with the reasonable
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maximum exposure (RME) that is expected to occur in the present and in the future
(USEPA, 1989c:Ch 6, 4). All the factors in the exposure equations above should be
estimated such that, when combined, the result is an estimate of the RME. Most of the
variables have ranges, but it is not reasonable to use maximum values for all factors to
estimate the RME because doing so would surely result in an estimate that is too high
(USEPA, 1992a:22922).

2.3.3.1.1 General Exposure Intake Vafiables Certain values and percentiles of
values for each variable are recommended for use in the exposure equations. The average
chemical concentration is used because it is assumed that an individual will be exposed
over an extended period of time and experience the average concentration. There is
usually a significant amount of uncertainty in estimating the C. Because of the uncertainty
in estimating C, the 95% upper bound confidence limit (UBCL) of the arithmetic mean is
used for the variable (USEPA, 1989¢:Ch 6, 19).

The CR is a general term for the amount of contaminated media contacted per unit
time or event. Depending on the availability of data, the CR should represent the 90th or
the 95th percentile. When combining variables to estimate the contact rate, the individual
variables should be estimated such that their combination estimates the 95th percentile
contact rate.

The EFD is used to estimate the total time of actual exposure and includes an
exposure duration and frequency term. An estimate of the duration of the exposure time
per contact is sometimes used in the calculation of total exposure time. If statistical data

are available, the guidelines require the use of the 95th percentile for total exposure time
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(USEPA, 1989c¢:Ch 6, 22). If data is not available the guidelines suggest that a
conservative estimate be used for these input parameters. The factors in the numerator
describe the amount of chemical that an individual would experience over the duration of
the exposure. This value is normalized for body weight and averaging time to calculate an
average exposure rate per time unit. The guidelines recommend average weight of the
population for BW (USEPA, 1989c:Ch 6, 23). The AT is dependent on the toxicological
effect being assessed and is critical to properly assessing the potential risk (Hattis and
Burmaster, 1994.:720).

There are three types of effects that determine the appropriate AT. For
noncarcinogenic affects there are generally long-term toxic effects and short term acute
toxic effects. When a chemical is suspected to cause long-term toxic effects, the exposure
rate is averaged over the exposure duration. Because of the rapid effect of acute
toxicants, the exposure rate is averaged over the shortest exposure period that could
produce an effect (USEPA, 1989¢:Ch 6, 23). In accordance with the theory of the
mechanism of cancer, the exposure rate for carcinogens is prorated over a lifetime. There
is an entire section in the guidelines that addresses what to consider when selecting the
appropriate averaging time (USEPA, 1989¢:Ch 6, 23).

The scenario dictates which specific factors must be considered in the exposure
assessment and what values to use for each factor. The specific form of the exposure
equation depends on the exposure pathway and the intake route, but they are generally
classified by the three intake routes (Burmaster and Appling, 2435). A particular scenario

will be used to illustrate the equations for the three intake routes that will be useful for

25




understanding the calculations in the methodology in chapter 3. After the presentation of
the each equation, parameters specific to each equation will be discussed.

2.3.3.1.1.1 Ingestion Route Oral ingestion is one form in which a risk agent can
enter the body. The media containing the chemical is input into the body’s digestive
system where the risk agent can be absorbed into the blood stream through the digestive
process. There are many possible pathways with different equations for calculating the
intake due to ingestion of chemicals. The equation for ingestion of contaminated

groundwater (2.2) will be used to illustrate a common formula used for this intake route.

.Ing_R-EF-ED
Tntake (—2& - CW-Ine_

(2.2)
kg - day BW - AT

“Where

CW = Chemical concentration in water (mg/L)

Ing_R = Ingestion rate (L/day)

EF = Exposure frequency (days/year)

ED = Exposure duration (years)

BW = Body Weight (kg)

AT = Averaging Time (period over which exposure is averaged -- days).”

(USEPA, 1989c¢:Ch 6, 35)
CW and EF are pathway specific, and AT is dependent on the effect being assessed.
Conservative recommended point estimates are provided in the guidelines for all the other
exposure factors.

2.3.3.1.1.2 Dermal Contact Route A second possible entry into the body is

absorption through the skin. A chemical can come in contact with the skin directly or as a
contaminant within a media. Dermal contact can occur while showering, swimming, or

playing in soil. In calculating the intake for the ingestion and inhalation route it is assumed

that the amount of chemical, or dose, taken in is the amount that the body absorbs into the
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blood stream. This is not an accurate portrayal of reality (Finley et al., 1994:549). Some
percentage of the chemical is excreted before it enters the blood stream (such as in the
lungs) or never absorbed in the digestive tract. One hundred percent absorption is a
conservative, but reasonable, assumption because the percentage is usually small in these
two intake routes. The skin, however, is designed to repel water soluble chemicals.
Depending on the chemical, the skin absorbs only a fraction of the dose with which it
comes in contact. The amount that penetrates the skin is the contact dose multiplied by
the chemical’s absorption factor for soils or its permeability constant for water and is
called the absorbed dose (USEPA, 1989c:Ch 6, 4). The equation (2.3) for dermal contact
with chemicals in water is used to present the formula and other factors for estimating
dermal contact absorbed dose.

Absorbed Dose ( mg )=CW'SA'PC-ET-EF.ED.CF
kg - day BW-AT

(2.3)

“Where
CW = Chemical Concentration in Water (mg/L)
SA = Skin Surface Area Available for Contact (cm?)
PC = Chemical Specific Dermal Permeability Constant (cm/hr)
ET = Exposure Time (hours/day)
EF = Exposure Frequency (days/year)
ED = Exposure Duration (years)
CF = Conversion Factor (11./1000 cm®)
BW = Body Weight (kg)
AT = Averaging Time (period over which exposure is averaged -- days)”
(USEPA, 1989c:Ch 6, 41).

CW, PC, and EF are pathway and chemical specific, and AT is dependent on the effect
being assessed. Conservative recommended point estimates are provided in the guidelines

for all the other exposure factors.
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2.3.3.1.1.3 Inhalation Route Inhalation is the last route by which a foreign agent
can enter the body. It can be directly carried by the airor as a conta@inant of particulate
matter thét are breathed. Once again there are a multitude of exposure pathways and
equations that can be considered. The equation for inhalation of airborne chemicals (2.3)
is used to illustrate a typical intake calculation through this route.

mg )_CA-Inh_R-ET-EF-ED

24
g -day BW AT @4

Intake (
k

“Where

CA = Chemical Concentration in Air (mg/m’)

Inh_R = Inhalation Rate (m*/hour)

ET = Exposure Time (hours/day)

EF = Exposure Frequency (days/year)

ED = Exposure Duration (years)

BW = Body Weight (kg)

AT = Averaging Time (period over which exposure is averaged -- days).”

(USEPA, 1989c¢:Ch 6, 44)
CA, ET, and EF are all pathway specific, and AT is dependent on the effect being
assessed. Conservative recommended point estimates are provided in the guidelines for all
the other exposure factors.

2.3.3.2 Estimating the Reasonable Maximum Exposure The process of estimating

the RME is not entirely objective. The guidelines recognize that the recommended risk
variable percentiles cannot be fixed. If, in the opinion of the remedial project manager
(RPM), percentiles other than those recommended in the guidelines are a better value for
estimating the RME, then these percentiles can be used (USEPA, 1989¢:Ch 6, 19). More
subjectivity is introduced when the risk assessors must determine all the other pathway

specific factors to estimate the RME. The professional interpretation of “‘reasonable,”

“maximum,” and other key terms in the guidelines becomes critical to final risk estimate
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that is presented to the risk manager (Duplancic, 1993:52). Due to the problems
mentioned in Section 1.2, regulators have been criticized for making subjective
determinations that produce risks that are too conservative.

2.3.4 Risk Characterization The concluding component of RA is risk characterization
where all the information gathered in hazard identification, dose response, and exposure
assessment are integrated to evaluate the possibility and magnitude of risk. Once the
appropriate intake or absorbed dose is calculated for each possible intake route, the risks
can be calculated. For noncarcinogenic effects the dose is divided by the appropriate RfD
to calculate a noncancer hazard quotient (USEPA, 1989¢:Ch 8, 11). The hazard quotients
for the different intake routes and across pathways are summed to determine the
noncarcinogenic risk to a population due to a chemical. The hazard quotients for different
chemicals can be summed, as long as they are for the same population, to estimate a total
hazard quotient. Hazard quotients greater than 1 indicates the population is exposed to
doses of the chemicals that may produce unacceptable noncancerous effects (USEPA,
1989c:Ch 8, 11). For carcinogenic risks the chronic daily intake (averaged over a 70 year
life span) for each intake route is multiplied by the appropriate SF to determine the cancer
risk. The cancer risk for each chemical is found by adding the cancer risks for each
chemical specific exposure pathways. Then a total cancer risk is calculated by summing
the risks to a particular population for all the chemicals present. It is important to note
that the total estimated risk is specific to the population used to estimate the risk.

A vital element of risk characterization is presenting the estimated risk in a format

that encompasses the variability and uncertainty. The estimated RME risks for each
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population are usually presented in tabular format as a series of point estimates
representing the estimated risk for each exposure pathway for a specified population. The
tables may include the average estimated risk, but usually include little if any mention of
range or likelihood of the estimated risks . The discussion of the inherent uncertainties
and variability, if addressed, are usually buried in the volumes of documents associated
with the assessment (Haimes, 1993:671).

The field of RA has evolved to recognize that dealing with variability and
uncertainty as mentioned above is neither appropriate or efficient. Presenting risk as a
simplified numerical value when variability and uncertainty in the estimated risk inevitably
exist is always incomplete and can often be misleading (USEPA, 1992b:16). Though the
guidelines recognize that the input values have ranges and probabilities, these variable
descriptors are not used in the calculations (USEPA, 1989¢:Ch 8, 19). Calculations using
a single value to represent a variable that is random in nature have made it difficult to
quantify and distinguish between uncertainty and variability after the calculations have
been made. Another, subtle, but critical factor that must be addressed in accordance with
the new guidelines is the clear distinction between variability and uncertainty (USEPA,
1992a:22929). The analysis of uncertainty has consisted primarily of a qualitative
discussion about the uncertainty once the risk estimate has been calculated. Quantitative
uncertainty analysis using the guideline structure has proven very difficult because of the
difficulty in estimating the resulting uncertainties in the final risk estimate (Morgan and

Henrion, 1990:183).
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2.4 Monte Carlo Method

Many problems have been pointed out with the guideline structure for estimating
the full range of risks and quantifying the uncertainty and variability. Many have
suggested and criticized, as discussed in Section 1.2, that the guideline method generates
risks that are beyond a reasonable maximum (Hattis and Burmaster, 1994:715). It is not
the intention of this research to argue that the selected default values are appropriate or
too conservative, only that from the guideline deterministic method it is difficult to
quantify the uncertainty, variability, and conservatism. The Monte Carlo method provides
an alternative to the deterministic point estimate approach outlined in the guidelines. It
uses the guideline structure and enhances the process to what the EPA considers a new
level of refinement (Finley and Paustenbach, 1994:54). The Monte Carlo method is
specifically discussed in Section 3.3. The method offers a more scientifically based
process to utilize the estimated variability and uncertainty for each variable to estimate the
risk distribution, its variability, and its uncertainty. The results of the using the method
provide the decision makers more information from which to make informed decisions and
allows for the use of decision analysis tools to optimize the decision making process.
2.5 Drawbacks to Probabilistic Risk Assessment

There has been some discussion in the literature about the possible problems of
using the Monte Carlo method . Some professionals argue that there is security in the
fundamental consistency of the EPA guidelines (Hattis and Burmaster, 1994:714). To
move away from the structured guidelines could jeopardize the successful progress made

in the last two and a half decades. There is also concern that there has not been sufficient

31




testing and analysis of the method to ensure that it is protective of human health (Hattis
and Burmaster, 1994:714). The safety in the deterministic guideline structure is in the
simplicity of the calculations. All the calculations in the deterministic method could be
done on the back of an envelope with a hand-held calculator. The Monte Carlo method
relies heavily on the use of computers to run the simulation. The artificial processing
during the simulation is conducted by the computer and makes it difficult to conduct
quality assurance of the calculations (Finley and Paustenbach, 1994:55). The artificial
processing has raised the issue of greater possibility for misapplication, errors, or
purposeful manipulation of the simulation (Burmaster and Appling, 1995:477).

Another drawback has been the development of the individual distributions to use
within the simulation. To gather the information to develop the input distributions
requires a significant amount of resources that may not be worth the improved assessment.
Others have argued that the method has internal limitations due to some of the
assumptions made in the simulation (Thompson ez al., 1994:54). One assumption that has
been highly criticized is the assumption that all the input distributions are independent of
each other. Some of these limitations are addressed in the methodology of this research.
Though the Monte Carlo method has some limitations, critics do not fail to recognize that
if developed and applied with professional judgment, the Monte Carlo technique provides
a scientifically based approach to conduct RA. It allows the assessor to better quantify
uncertainty, separate uncertainty and variability, and present risk to encompass uncertainty

and variability (Thompson et al., 1992:53).
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2.6 How Clairmont’s Model Dealt with the Task

Clairmont’s model does an excellent job of encompassing the scope of the RI/FS
process in DPL (ADA Decision Systems, 1995). The following will be a review of how
the model uses decision analysis tools, the calculated risk, and decision maker inputs to
make its recommendations. For details of how the model accomplishes the analysis the
reader is encouraged to reference the original document (Clairmont, 1995). In the RI/FS
process, the risk manager is faced with determining the path through the remediation
process. The investigation phase of the process includes the preliminary assessment (PA),
site investigation (SI), and varying stages of the RI such as the 30% RI, 60%RI, and the
100% RI. Once a possible risk has been identified, a PA is performed to determine if a
RA is warranted. If sufficient evidence is found in the PA to ensure that a risk exists, the
manager can skip the SI and proceed directly to the RI (National Archives and Records
Administration, 1993:52). If additional information is required beyond the PA, the
manager can use the SI to ensure that a risk either does or does not exist (National
Archives and Records Administration, 1993:). Once it has been determined that there is a
possible risk, the RI is used to estimate the extent of the risk. After the risk has been
assessed and remediation is required, the feasibility study ensures proper remedial
strategies are developed and evaluated. A primary concern in the feasibility study is to
ensure that the selected remediation technology meets the remediation clean-up goals. If
the assessed risks are at an acceptable level, as defined by the owner, regulator, and other
interested parties, the manager can choose to take no further action (NFA). Anywhere

along the process where the manager feels there is a sufficient risk that requires immediate
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response, a removal action (RA) can be accomplished. Figure 2-1 will be used to illustrate

the range of decision strategies a manager can select.

Remedial Investigation Feasibility
Study
Site Remova | Presumptive | Investigate | NFA

Strategy | Investigation 30% 60% 100% | 1Action | Remedies All

Baseline +—b | ——» 2 —— 3—1» 4 > §—I> 6
Case
Shortened » 1 —F 2 » 3 >
Study

Quick > 1 >
Action

Figure 2-1: Strategy Generation Table for the PA Decision (Clairmont, 1995:37)

2.6.1 RIFS Decision Strategy The alternatives in the table are those available to the
manager after the PA has resulted in a possible risk. The baseline strategy is a path that
requires the most information to be gathered. After every study has been conducted all
feasible remediation alternatives are investigated to determine the one that will most likely
meet the clean-up goals for the site. No VOI analysis is performed to determine the
benefits of each additional study. It is the longest and most costly because it consists of
every possible study in the process, but it consists of less uncertainty than the other paths.
The manager can choose the shortened study strategy that is less costly and shorter in
duration, but with more uncertainty due to the lack of information from the missing
studies. The site is investigated using VOI tools so that information is gathered in
subsequent phases of the RI only if the benefit gained is expected to outweigh the cost of
the acquired information. The cost of gathering the additional information will be justified

only if the additional information is expected to change decision strategy, which results in
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a reduced total cost greater than the cost of the information. Uncertainty plays a major
role in this path strategy because if it cannot be quantified with some confidence then it is
difficult to determine the cost trade-offs between reducing uncertainty and proceeding to
clean-up. Both observational methods and presumptive remedies are used to streamline
the feasibility study. The method by which the model applies these techniques to the risk
assessment process is discussed in Section 2.6.3

The final strategy is a quick action, where no information is gathered and the
manager selects to remediate the site without regard to a risk assessment. The feasibility
study would be done with the available information after the PA. This is the most
conservative path because the site is remediated regardless of the extent of contamination.
This path is conservative but at the expense of incurring significant clean-up costs that
ﬁlay be unnecessary.

There is also a potential liability if the clean-up goals are not met by improperly
characterizing the site. Most Superfund site owners, who pay for the remediation, view
risk in economic terms (Elliot, 1992:272). There are unnecessary clean-up costs if the risk
is overestimated and future liability costs if the risk is underestimated, both of which can
be significant. The challenge for the manager is to take this complex process and
determine the most cost-effective path between the baseline and quick action strategies to
determine the optimal decision strategy.

2.6.2 Characterizing the Risk Distribution To use decision analysis tools it is
important to know the possible outcomes of the risk and their likelihood. The model

defined a low, medium, and high risk as the three possible outcomes of risk. Within a risk

35




assessment there is a clearly acceptable (CA) and clearly unacceptable (CUA) risk level
that are predetermined to establish a level at which action will definitely be taken. For a
noncarcinogenic risk, there are no guideline levels of CA or CUA levels only that at a HI
of one or greater there is an increased level of concern. In the model, they are defined by
decision maker preferences. The EPA has established standards of 10°° (a unitless
probability of an individual developing cancer [USEPA, 1989¢c:Ch 8, 11]) as CA and 10™
(unitless) as CUA for carcinogenic risks (NRC, 1994:3), but the site owner or RPM may
in their discretion use more conservative values if they choose or if it is warranted by the
circumstances. In this research, if the risk estimate is above CUA, then the risk is
considered high and the manager will decide to cleanup. If the risk estimate is below the
CA, then the risk is considered low and the manager can decide to take NFA. Because of
other factors involved with hazardous waste sites remediation, it is important to make
clear and understand that the decision maker can decide to clean up regardless of the
results of the RA. These decisions are from a perspective of what the decision support
model would recommend based on the likelihood of the risk outcomes. If the risk
estimate is between the CA and the CUA then the RPM and the site owner must use
professional judgment to decide what actions to take. In these cases the decisions are
usually conservative with clean-up as the alternative selected. The three alternatives are
mutually exclusive and collectively exhaustive so the next challenge was to quantify the
probability for each of three defined outcomes.

2.6.2.1 Distribution of the Mean Concentration In accordance with the

assumptions in the initial model, the conservative guideline recommended values are used
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for the majority of the exposure variables and other site spécific variables are represented
by conservative estimates. The information gathered in each subsequent phase of the RI
consists only of additional chemical concentration samples that are used to reduce the
uncertainty in the estimate of the mean concentration (Clairmont, 1995:84). The model
assumed that the estimated risk consists of a constant, termed the risk multiplier, made up
of all the deterministic input values in the risk equation multiplied by the estimate of the
mean concentration. The risk estimate changes when the estimate of the mean
concentration changes as more samples are gathered in each subsequent phase. To
establish the required probabilities for each outcome, the model focused on the
distribution of the mean concentration, which was the only variable represented as a
stochastic variable.

Clairmont made some simplifying assumptions about the distribution of the mean
concentration. Using the Central Limit Theorem (CLT), the model assumes that given a

random sample (X;,X;,....X;) of chemical concentration with mean u and variance o, if

the sample size n is sufficiently large, then X has approximately a normal distribution with
a mean equal to the population mean and a variance equal to the variance of the
population divided by the number of samples, n, or the standard error (Devore, 1995:232).
There is no discussion of when the sample size is sufficiently large enough to apply the
CLT (Clairmont, 1995:29). This assumption may or may not be appropriate when the
sample size is small and the distribution is highly skewed, such as those found for pollutant
concentrations (Gilbert, 1987:164; USEPA, 1992¢:4). The use of this simplifying

assumption is analyzed in section 3.5.3. The mean concentration therefore was defined by
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a normal distribution with a mean of X and the standard error found with the sample
concentrations samples available at each phase of investigation.

2.6.2.2 Estimating the Distribution of Risk The model then used the normal mean
concentration distribution described be the sample mean and the standard error to derive
an estimate of the risk distribution. By multiplying the estimated mean concentration
distribution by the risk multiplier, the model was able to estimate the risk distribution.
This type of mathematical operation is governed by the statistical rules of linear
combinations. The rules state that if a distribution is multiplied by a constant the
transformed distribution will maintain its shape with a mean equal to the original mean
multiplied by the constant and a variance equal to the original variance multiplied by the
square of the constant (Devore, 1995:238). The distribution of risk was used to establish
the probabilities that the risk would be high, middle, or low. The general scenario in
Figure 2-2 illustrates how this is done.
2.6.2.3 Risk Probabilities The CA and CUA levels are defined in the model according to
the decision maker preference. The area under the curve to the left of the CA level,
marked as area A, quantifies the probability that the risk is low. The area under the curve

between CA and CUA, marked as area B, quantifies the probability that the risk is

Highest Clearly

Acceptable (CA)Level of ) [Highest Clearly
[Risk . : Unacceptable (CUA) —
_ Level of Risk
 |Distribution of Risk a

.

Figure 2-2: Risk Probability Distribution Graph (Clairmont, 1995:85)
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medium and the area to the right of CUA, marked by area C, quantifies the probability that
the risk is high. All these areas and probabilities can be quantified with the estimates of
the risk distribution parameters as defined above. The distribution and the probabilities
are affected by changes in the standard error as the sample size increases in each
subsequent phase. This will have a tendency to tighten the variance and pull in the tails of
the risk distribution. If the distribution has a small probability of the risk being low, the
additional samples would more than likely pull in the low end tail and not make a
difference in the decision to clean up. In this case, the additional samples may not be
worth the cost. This analysis is based on the assumption that the estimated mean
concentration is the best available information at the time the decisions are being made.
2.6.3 Decision Analysis Tools DPL is used to manage the complex calculations
required to apply VOI, observational methods, and presumptive remedies to make
recommendations on the optimal path strategy at every stage in the decision process
(Clairmont, 1995:40-86). The model uses utility theory to calculate a utility value for a
large number of combinations of cost and duration. The utility value is based on the
weight the decision maker assigns to cost and duration (Clairmont, 1995:61-63). The
highest utility indicates a path strategy that outperforms other alternatives in accordance
with the importance of time and money to the decision maker. The recommendations are
made based on the path that maximizes the expected utility. Observational methods are
used to characterize the most probable site conditions instead of attempting to
characterize the exact conditions by uncertainty reduction (Clairmont, 1995:14). This

decision analysis technique has been used in other fields that involve the characterization
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of human health risk due to other activities and has proven very useful to more efficiently
characterize site conditions. Some authors suggest that these techniques can and should
be adopted to human health risk assessment to minimize the cost and duration of the RI
(Duplancic, 1989:68; Hattis and Burmaster, 1994:7 16).

Presumptive remedies are another decision analysis tool, often used in combination
with observational methods, to optimize the decision process of characterizing the risk at a
site (Clairmont, 1995:14). It involves the presumption that remediation technologies
successfully used at other sites with similar characteristics will be suitable for use at the
current site. It is presumed that there is no need to evaluate all possible remediation
alternatives because there is a remediation technology that has already worked at a site
with similar characteristics. The similarity between the two sites is based on two criteria.
First the site must be similar in nature or type such as a landfill or groundwater
contamination (Clairmont, 1995:68). The second criteria used in the model to determine
similarity is that the sites must have similar types of contamination. The specific techniques
and the calculations involved in objectively assessing the similarities are specifically

addressed in the original thesis (Clairmont, 1995:67-79).
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3. Methodology

3.1 Introduction

The following chapter presents a probabilistic risk assessment (PRA) methodology
used to more accurately assess and present risk and how this affects the decision support
model recommendations. Variability and uncertainty for the input variables are defined
and used in a Monte Carlo simulation to better assess the uncertainty of the risk
distribution. The specific input distributions and the criteria for selecting them is
discussed. An iterative process of evaluating and selecting variables for further
investigation is presented to aid the analyst through the investigation. Uncertainty and
Variability of the input variable distributions are assessed to determine contribution to
variance in the risk distribution, which are important to both value of information (VOI)
analysis and decisions made. A method is provided to determine the value of additional
chemical concentration samples for reducing uncertainty in the risk distribution. Finally,
the possible benefits gained from using a probabilistic risk assessment approach are
discussed.
3.2 Deterministic Risk Estimate

Before any probabilistic risk assessment can be conducted, the traditional point
estimate risk should be calculated using the default values recommended in the guidelines.
It is not required specifically by the guidelines, but it is common practice to compare the
deterministic value to the results of the probabilistic risk simulation (Burmaster and
Anderson, 1994:478). To better explain the methodology, a simple scenario from

Operable Unit 2, Wright-Patterson AFB, OH, will be used for illustrative purposes and for

41




further use in the analysis of Chapter 4. The assumptions underlying the exposure
correspond to a commercial worker exposed to benzene contaminated groundwater. The
input exposure values were taken from the actual risk assessment (Engineering Sciences,
1995: Appendix H). Table 3-1 shows the risk variables for the three viable intake routes
using Equations 2.2, 2.3, and 2.4. The only variable that was not taken from the original
risk assessment is the mean concentration. The calculations for the mean concentration
are shown in Appendix A.

The calculations were done in an Excel spreadsheet that will serve as the basic
building block of the methodology. From Table 3-1, the estimated reasonable maximum
exposure (RME) risk after the RI70% is 2.11-10° (a unitless probability of an individual
developing cancer [USEPA, 1989¢:Ch 8, 11]) from exposure to benzene contaminated
groundwater. Since the RME risk is between the clearly acceptable (CA) and the clearly
unacceptable (CUA) levels, clean-up would most likely be the remedial action, which was
the action taken in this case.

3.3 Monte Carlo Approach

As briefly discussed in Section 1.4, every variable estimated in the exposure
equations has some associated variability and uncertainty that manifests itself in the final
risk estimate. The term random variable will be used to describe a variable that has some
range of possible values. The different values in the range occur more or less frequently
according to their likelihood of occurrence. The simplified mathematical models used to
represent the likelihood of the values are discussed in the next section. A random variable

can be used to represent the uncertainty and/or variability of a variable in the risk
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equation. If the variability and/or uncertainty for every variable is discarded by the use of

a point estimate, then it is difficult to extract the variability and uncertainty in the risk

estimate beyond much more than a qualitative discussion (Morgan and Henrion,

1990:183). Even when uncertainty and variability for variables are quantified, their

propagation through mathematical operations for all but the simplest cases are intractable

and require elaborate numerical integration (Morgan and Henrion, 1990:183). To discuss

the Monte Carlo method, it is important to establish how variability and uncertainty for a

random variable can be represented within a probabilistic simulation.

Table 3-1: Deterministic RME Risk Calculations

Cancer Risk due to Benzene in

Contaminated Groundwater

Ingestion Route Dermal Absorption Inhalation

(tapwater) (showering) (showering)

CW (mg/L) 0.1722 |CW (mg/L) 0.1722 |CW (mg/L) 0.1722

Ing_R (L/day) 1 |SA(cmd) 23000 |Inh_R (m%hr) 0.6

EF (days/yr) 250 |PGC (cm/hr) 0.021 (ET (hours/day) 0.25

ED (yr) 25 |ET (hours/day) 0.25 |EF (days/yr) 250

BW (kg) 70 |EF (days/yr) 250 |ED(yr) 25

AT (days) 25550 |ED (yr) 25 |K (L/m) 0.5
CF (L/m®) 1E-3 |BW (kg) 70
BW (kg) 70 |AT (days) 25550
AT (days) 25550

Intake (mg/(kg-day)) 6.02E-4|Absorbed Dose (mg/(kg-day))  7.27E-5 |Intake (mg/(kg-day)) 4.51E-5

SF((kg-day)/mg)) 0.029 0.029 0.035

Intake Path Risk 1.75E-5 2.11E-6 1.58E-6

RME Risk after 211E-5

RI70%

3.3.1 Variability Every individual within a given population has a different weight,

inhalation rate, response to a chemical dose, exposure duration, and differing values for

other exposure variables. These differences constitute a natural variability due to the

heterogeneity of people (Burmaster and Appling, 1995:2437). Therefore, there exists
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some continuous distribution that represents how each of the random variables is
distributed. The distribution represent the range of values a variable can assume and the
likelihood that any given value will be found in a population. Ideally, an assessor attempts
to characterize these distributions and their parameters. Unfortunately this requires
perfect information which is not available, so the analyst must settle for imperfect
information which only estimates the distributions.

Some key features such as the central tendency, spread of the values, and the
extremes can be estimated for each variable using statistics. The data can be used to
develop an empirical distribution or a well known parametric distribution. Parametric
distributions are the analyst’s best estimate, within some resource constraint, of an
unknown distribution. The parametric distribution is used, not because it truly represents
the underlying distribution, but because it summarizes the data in a simple mathematical
model that is understood by others and when used in place of the true distribution it can
provide reasonable results (Hattis and Burmaster, 1994:717). An empirical distribution is
used when the data does not fit an established parametric distribution.

3.3.2 Uncertainty The difference between the true distribution and the parametric or
empirical distribution used to represent the variable constitutes the error in the model of
reality. This error is the uncertainty in the variable and stems from two sources (USEPA,
1992b:14). The first source is uncertainty due to measurement error or an insufficient
sample size of the population of the variable (USEPA, 1992b, 14; Hattis and Burmaster,
1994:714). In general this type of uncertainty is reducible by additional information. The

more information available to estimate the distribution the less uncertainty there is in the
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estimate of the variable and its variability. When a random variable is estimated it is
typically the most likely or the expected value that is reported. In the case of human
health risk assessment, it is the estimated RME risk value that is used. The second type of
uncertainty results from gaps in data that require an analyst to extrapolate the values of
interest (USEPA, 1992b:15). Uncertainties resulting from data gaps in dose response
assessment were addressed in Section 2.3.2. This type of uncertainty is difficult to
quantify because data for humans is very limited in most cases.

The quantification of uncertainty is crucial to the decision process because when it
is not quantified, it is difficult to make cost-effective decisions (Elliot, 1992:272). Risk
managers are hesitant to proceed to the cleanup phase without gathering as much
information as possible to reduce an unknown uncertainty. This has led to risk
assessments that take every possible step in the remedial investigation and feasibility study
(RI/FS), without considering the VOI, and expend tremendous amounts of resources. If
uncertainty could be approximately quantified, then decision analysis tools could be used
;o make better decisions about gathering additional information or making the decision
with the available information.

3.3.3 The Importance of Both Variability and Uncertainty Both variability and
uncertainty are critical to the decision maker (Smith, 1994:438). There are different
vantage points from which to make decisions. With each level of refined quantification of
the estimate of risk, the decision maker is placed in a better vantage point from which to
make an optimal decision. An optimal decision is defined as the decision that selects the

alternative that yields the highest expected benefit considering the available and attainable
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information and the costs (Finkel, 1987:1165). To make use of decision analysis tools to
make cost trade-off between gathering more information and taking action, both variability
and uncertainty must be identified and better quantified.

3.3.4 Monte Carlo Simulation Method Assuming that estimates of distributions for
the variables in the risk equation have been determined, the actual Monte Carlo method
can be explained. If all these distributions could be multiplied and divided, or in other
words mathematically convoluted to propagate the uncertainty and variability, in
accordance with a risk equation, a distribution of the risks could be produced. The high
end risks and their associated probabilities could be determined from this distribution.

This would provide more information about the range and probabilities of risks and
establish a richer context from which to make optimal decisions. If perfect information
were available about each of the distributions for each parameter and there was a simple
method for convoluting all the distributions, the risk distribution could be determined.
Unfortunately perfect information is never available (Haimes, 1993:692) and convoluting a
multitude of distributions is extremely difficult (Morgan and Henrion, 1990:183).

An alternative approach is to estimate the distributions and the result of
convoluting them through a Monte Carlo simulation. Every variable has associated with it
some distribution that defines the range of values and the corresponding likelihood of
seeing each value in its population. If random samples of a variable are taken from its
estimated distribution, the values with higher probabilities show up more frequently and
values with smaller likelihood show up less frequently. If all the distributions for the risk

input variables are sampled simultaneously and the samples were used in the risk equation,
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the result is one possible outcome on the risk distribution. If the simultaneous sampling is
done a large number of times, the values with higher probabilities for all the distributions
will occur more frequently, producing more likely risk scenarios, and the values with
lower probabilities will occur less frequently, producing less likely risk scenarios. With a
large number of samples, an empirical estimate of the frequency distribution of risk is
constructed. The more samples available, the better the risk distribution is characterized.
With the development of powerful desktop computers these complex simulations have
become a feasible task in the field. Instead of subjectively estimating the RME and the
high end risk, the laws of probability provide a more scientifically based method to
generate an approximation to the entire distribution of risk from which the high end risk is
estimated. The quantification and segregation of uncertainty and variability from the
empirical risk distribution are also possible and are addressed in Section 3.12.1.
3.4 Decision Analysis

To re-focus it is important to realize that the purpose of this research effort is to
aid the decision maker or analyst in allocating limited resources to maximize their return.
Decision analysis tools are used to choose how to allocate these resources in a complex
risk assessment process. In Section 3.3.4 it is implied that all the distributions in the risk
equation must be identified to use the Monte Carlo method. Though all the distributions
would be ideal, there are some parameters and their distributions that are more critical to
the risk distribution than others. A typical risk assessment may require over 100 variables,
but only a few drive the final risk distribution (Burmaster and Anderson, 1994:478). If the

variables could be identified from most important to least important, a hierarchy could be
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established for resource allocation. Every additional variable that is defined as a
distribution improves the assessment of the risk distribution, however, the number of
variables described as distributions would depend on the relative scope of the assessment
and available resources. The resources should be focused on those variables that merit
further field investigation. If the most critical variables are represented, then the
assessment will capture the most likely characteristics of the risk distribution. It is
important to note that the risk would not be underestimated because all variables not
described by a distribution would be set at their guideline recommended values or
conservative estimates.
3.5 Deterministic Sensitivity Analysis

Traditional sensitivity analysis is used as an initial screening tool to determine
which vatiables are critical to the estimated risk. The results of the sensitivity analysis
point the analyst toward certain variables to focus on when gathering information to
establish distributions for the initial probabilistic sensitivity analysis. This analysis may be
more valuable when there are a significant number of variables used in the risk
calculations. This step is optional if some information on the distribution of the variables
is available or if the analyst is already comfortable with the selection of influential
variables.

To conduct the initial deterministic sensitivity analysis, some initial research was
conducted to roughly estimate the possible range of values. Some information for the
range of certain variables was found in the literature. Table 3-2 provides information on

the possible range for each variable. The reasonable range for exposure frequency (EF) is
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derived from the possible number of days in a year. No information was found for the
range of the emission factor (K), permeability constant (PC), and the inhalation slope
factor for benzene, so the lower bound was established as zero and the upper bound was
set at twice their RME value for the sensitivity analysis. These values can be further
investigated if they show to be critical to the estimated risk. The range for the mean
concentration will be explained in Section 3.7.5. The sensitivity analysis was
accomplished in DPL using a conventional tornado diagram and can be seen in Figure 3-1.
The vertical line running through the horizontal bars represents the deterministic RME
estimate of 2.11E-5. The one way sensitivity analysis was accomplished by changing each
individual parameter over its range while maintaining the other variables at their RME
values. The horizontal bars show the range of risk corresponding to the range of each
input variable and are arranged with the most influential variable at the top and the least
influential at the bottom. The djagram shows which parameters have the most impact on
the final estimate of the risk. This type of one way sensitivity analysis has its limitations
because it only allows one variable to be tested at a time; therefore, probabilistic sensitivity
analysis will be used later in this chapter to account for higher order factors. In
conducting a PRA, there is also a concern with the likelihood of values in the range of the
outcome and the influence on the shape of the distribution. The assessor now has a place
to start gathering more information on the distributions of the critical variables for which
information is not currently available.

This type of sensitivity analysis should not be used in place of probabilistic

sensitivity analysis, but can be used as an initial step to focus the investigation in the
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iterative process. More investigation effort should be given to the more influential

variables.
Table 3-2: Initial Estimate of Range of Input Variables
Variable RME Value | Population and Site Specific Source
Mean CW 0.1722 0.030-0.170 RI70% Gamma(0.012, 7.608)
Ing IR (L/day) 1 042 --3.8 Ershow and Cantor, 1989*
EF (days/year) 250 50 -- 300 Workable Days in Year
ED (years) 25 0.1--65 Israeli and Nelson, 1992*
ET (hours/day) 0.25 0.017 -- 0.333 James and Knuiman, 1987
SA (cm?) 23000 11000 -- 39000 Phillips and Fares, 1993*
PC (cm/hr) 0.021 0.0--0.042 Reasonable Physical Constraints
Inh_IR (m%hour) 0.6 0.35 -- 0.80 Layton, 1993*
K (m*/kg) 0.5 0.0--1 Reasonable Physical Constraints
BW (kg) 70 51.6--114 Brainard and Burmaster, 1992*
AT (days) 25550 Assessment Specific Constant USEPA, 1989¢
SF (kg-day/mg) 0.029 0.003 -- 0.063 Thompson et al., 1992
(Oral)
SF (kg-day/mg) 0.035 0.0 --0.07 No available Range Cited
(Inhalation) (Twice the Estimated Value)

* .- Summarized by Finley et al., 1994

3.6 Non-site Specific Distributions

It is paramount that a better strategy be devised for determining how to gather

data in risk assessments. In 1987 it was estimated that this country spent $40 billion

gathering data in response to environmental regulations and it was forecast to increase to

$55 billion by 2000 (Berthouex, 1994:2). Despite the expenses incurred in the

investigation phase there has been a lack of information sharing. Different agencies are

known to conduct the same risk assessment on one site for their specific needs without

ever referring to information gathered in other assessments (Lawrence, 1993:2963-65).

The multiple risk assessments are dictated by regulation, but there is no law forbidding the
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Figure 3-1: Tornado Diagram of RME Point Estimate Risk after RI170%
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sharing of information and it should be encouraged. Some efforts such as the EPA’s Data
Quality Objective program and the Superfund Accelerated Cleanup Model have been
implemented to reduce this cost, but efforts fostering efficiency have to continue. A
resource that is tapped in this research is the exposure variable distributions that have been
established in the literature. Variables such as body weight, skin-surface area, and
inhalation rate are independent of the site being assessed and if distributions, developed
with sufficient quality and quantity of data, can be established, they can be used by risk
assessors to minimize resources expended during the remedial investigation (RI). The
criteria for establishing these non-site specific distributions should be stringent, but once
established these distributions can provide a resource for many assessments.

Much research and effort has been accomplished to establish and publish
distributions in the literature for non-site specific exposure parameters from an abundance
of existing data. Some of these distributions have been published and widely accepted as
being reasonably representative of the behavior and characteristics of certain populations.
By segregating the data and developing separate distributions by age, gender, residence
type, or other important descriptors, subpopulations are delineated to allow the
appropriate use of these non-site specific distributions. In the spirit of minimizing
expenditure, these distributions provide a tremendous amount of information. Seven of
the possible thirteen random variables in the risk calculations have been investigated in the
literature. These variables include ingestion rate, exposure duration, exposure time,

surface area, inhalation rate, body weight, and the oral slope factor. These distributions
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are addressed in Section 3.7. Non-site specific distributions cannot be assumed to always
be appropriate and it is critical that risk assessors understand the limitations of their use.

Certain criteria should be used to determine whether the data used to develop the
distribution are appropriate in quality and quantity to be applied to the general population.
Some authors have discussed general criteria for selecting data to fit and publish
distribution (Haimes ez al., 1993), but there were no specific citings of concrete criteria
except for a study by Finley et al. (1994), Finley et al.’s criteria were partially adopted
for this research. The criteria for selecting non-site specific distributions in this research
are that the distributions are consistent with other studies, have sufficient quality and
quantity of data to adequately characterize the extremes of the distribution (Finley ez al.,
1994:536-37), and that supporting research used to establish the distribution is published
in a peer-reviewed journal. To actually use these distributions in a risk assessment (RA),
the assessor would coordinate and justify the adequacy of the distributions with the RPM.
3.7 Initial Probabilistic Risk Assessment Input Distributions

An initial probabilistic risk simulation is run with the available information after the
remedial investigation 70% (RI70%). The initial simulation is done to determine the
sensitivity of the risk distribution to the input distributions and begin prioritizing the
variables. The seven non-site specific distributions, mentioned above and noted by an
asterisk in Table 3-3, were used in the initial PRA (Finley et al., 1994). Further research
was conducted if the variable was found to be critical in the initial probabilistic sensitivity
analysis. Each assessment is different and one criterion is established for determining

which variables are critical. The uniqueness of each scenario makes the judgment of the
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assessor critical to deciding which variables are most important (Haimes et al., 1993:670).
This research attempts to objectively guide the judgment of the assessor and assumes that
the number of variables that are further researched is dictated by the scope of the
assessment and the resources available. Some of the more critical input distributions for
OU2 will be discussed and presented individually, in order, according to their priority in
the tornado diagram.

3.7.1 Tapwater Ingestion Rate The distribution for the ingestion rate was developed
from the summarized percentiles in the study by Finley et al. (1994). The percentiles are
based on research done by Cantor and Ershow on the results of a 1978 Nationwide Food
Survey (1989). The distribution was developed in a similar manner as the ED distribution,

in the next section, and can be seen in Figure 3-2.
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Figure 3-2: Crystal Ball Empirical Frequency Distribution for
Tapwater Ingestion (L/day)

3.7.2 Exposure Duration The exposure duration in a RA is often times determined by
the residential occupancy period of a particular population. The conservative guideline
recommended value is 30 years (USEPA, 1989¢:Ch 6, 38). Exposure Duration is
considered non-site specific. Realizing the usual importance of the value of this variable

and its prolific use in RA, Israeli and Nelson did some research on distribution of
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residential occupancy period (Israeli and Nelson, 1992). The research was based on data
gathered over a ten year period in a 1985 and 1987 Report by the Bureau of Census and
the U.S. Department of Housing and Urban Development. In the study, approximately
94,000,000 occupancies were surveyed to investigate moving patterns of different U.S.
household types. The data was broken down into different types of residencies such as
renters, owners, farms, all houses and areas such as Mid-West, North-East, South, and
West regions so that the distributions could be applied to specific populations. There has
been little fluctuation in the U.S. residential mobility rates over the last 40 years and they
are not expected to change significantly in the future (Finley et al., 1994:547).

Initially a simple empirical distribution is used for ED because that was the
information available at the time the initial probabilistic simulation was run. An empirical
distribution is used because, the actual distribution is a complex distribution that is too
cumbersome to use in a Monte Carlo simulation. If this distribution or other similar
empirical distributions are shown to be critical to the estimated risk, the distribution can be
further researched and better approximated in Crystal Ball. The distribution was input
into Crystal Ball as an empirical approximation to the density function because that is what
the software requires as an input. The empirical probability density function shown in
Figure 3-2 was constructed by Crystal Ball using the percentiles for the distributions of
‘all-houses’ in Table 3-3 (Finley et al., 1994:541). The table shows the percentile of
households that will live in a residence for t years or less. Other empirical distributions

used in this scenario are developed in a similar manner.
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Table 3-2: Selected Distribution Percentiles of Residential Occupancy Period for All Houses

Percentile (yr)

All houses Sth 10th 25th 50th 75th 90th 95th 99th
Time 0.1 0.2 0.5 14 3.7 12.9 23.1 60.5
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years

Figure 3-3: Crystal Ball Empirical Frequency Distribution for Exposure Duration

3.7.3 Oral Slope Factor Using the results of earlier publications (Crouch et al., 1981;
Crouch, 1981; Crouch and Wilson, 1983) evaluated the carcinogenic potency of 153
chemicals tested by the National Toxicological Program and estimated the degree of
conservatism and uncertainty in the EPA’s default values (Gaylor et al., 1993:149;
Thompson et al., 1992:57). The slope factors (SF), normalized by weight, for each of the
chemicals for mice and rats were plotted against each other to determine the correlation
between the two slopes. The paired slope factor plot showed clear variation between the
dose response of mice and rats to the same normalized exposure dose under the same
protocols. To estimate the uncertainty and/or variability in extrapolating a dose response
for rats from a dose response for mice based on weight, a regression line was fit to the
plot. The standard deviation about the regression line represents the uncertainty and/or

variability in extrapolating the dose response from mice to rats (Crouch, 1981:324). The
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linear regression line was based on the mean values of the SFs for both species. The
estimate of the uncertainty and/or variability in cancer potency factor for the chemicals
evaluated was shown to be well represented by a lognormal distribution with a geometric
standard deviation of 1.57 about their mean values (Gaylor et al., 1993: 150). This was
used by Thompson et al., 1992, as an estimate of the uncertainties that could arise from
extrapoiating between rodent species and more importantly from rodent SF’s to human
SF’s based on weight or surface area. Based on these results, the distribution representing
the uncertainty for benzene has an arithmetic mean of 0.016 (kg-day/mg) and an arithmetic
standard deviation of 0.012 (kg-day/mg) and can be seen in Figure 3-3 (Thompson et al.,
1992:56). If the cancer slope factor is significantly influential after the deterministic and

probabilistic sensitivity analysis then the variable would merit further research.
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Figure 3-4: Estimated Distribution for Benzene Carcinogenic Slope Factor

3.7.4 Exposure Frequency The exposure frequency is bounded by the number of days
in a year. Since this variable was shown in the tornado diagram to be one of the more
influential variables it is estimated by a triangular distribution in the initial PRA for
sensitivity analysis purposes. The triangular distribution is a conservative distribution that
takes into account large amounts of uncertainty (Finley et al., 1994:535). It can be used

as an initial estimate when the lower, most likely, and upper values for a variable are
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known or estimated. The triangular distribution parameters are a lower bound of 50 days,
amode of 200 days and the upper bound estimate of 300 days. The mode was taken from
the actual estimate of the central tendency value from the risk assessment. The upper
bound was set above the RME value of 250 days, but still within a reasonable upper
bound estimate of the workable days in a year. The lower bound was subjectively
estimated as a reasonable estimate. This distribution can be further investigated if it is
shown to be critical.

3.7.5 Mean Concentration Distribution The first assumption evaluated from
Clairmont’s model was the simplifying assumption, discussed in section 2.6.2.1, used to
estimate the distribution of the mean concentration. Devore states that at a sample size, n
> 30 an analyst can confidently assume the CLT applies and that the distribution of mean
for any variable is approximately normally distributed regardless of the variable’s
distribution (Devore, 1995:232). Others claim that if the population distribution is highly
skewed that n may need to be as high as 50 before the CLT applies (Gilbert, 1987:140).
Many researchers have reported that environmental pollutants have distributions that are
highly skewed and approximated by lognormal distributions (Berthouex, 1994:41; Ott,

1990:1378; Gilbert, 1987:164; and Burmaster and Edelmann, 1996:4; USEPA, 1992¢:4).

To use the normal probability distribution as an effective approximation of X requires
large sample sizes for distributions that are skewed (Chen, 1995:189).

The mean concentration has a lower bound of zero, which is uncharacteristic of the
normal distribution, and often the lower bound is one or two standard deviations away

from the mean, instead of four or five as for a normal distribution. Also, using a normal
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distribution results in negative mean concentrations and negative risks that are unrealistic
(Haimes, 1993: 683). Nowhere in the literature was there found a procedure for
estimating a more appropriate estimate of the uncertainty in the sample mean
concentration with small samples sizes for highly skewed distributions; thus an alternative

method was developed to estimate the mean concentration distribution.

3.7.5.1 A More Appropriate Distribution for the Mean Concentration Actual data
from the risk assessment at Operable Unit 2 (OU2) for benzene concentration in
groundwater was used. OU2 covered a large geographical area so to assess the risk the
operable unit was divided into smaller areas. The area within QU2, that is evaluated in the
following analysis is the petroleum, oil, and lubricants (POL) storage area within OU2.
The data collected during the site investigation is excluded from the analysis because it
was collected across all of OU2 and may not correspond specifically to the POL storage
area.

An initial fourteen samples from the RI at the POL storage area are used to
estimate the distribution of the pollutant concentration distribution. The 14 samples
represents 70% of the data collected at the RI70%. Using ExpertFit, an optimization
curve fitting program, the best fit distribution was fit to the histogram of the data (Averill
M. Law & Associates, 1995). This distribution represents the best estimate of the actual
benzene concentration distribution (ARI70%) with the information available after the
RI70%. The ExpertFit tested 20 distributions and the results for the top distributions can
be seen in Appendix G. The graph of the best fit Gamma distribution overlaid on the

histogram of the 14 samples is shown in Figure 3-5. The gamma distribution is a versatile

59




distribution that can have many of the same characteristics as a lognormal distribution.

The parameters, from ExpertFit, for the Gamma distribution are scale parameter (J3 ),

which is equal to 0.17347, and the shape parameter (o ), which is equal to 0.53241.
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Figure 3-5: Best Fit Gamma Distribution for Benzene in Groundwater

The fourteen samples for benzene resulted in a mean concentration of 0.092
(mg/L). This is an estimate of the mean concentration for benzene, but there is a
significant amount of uncertainty in the estimate because only 14 samples are available.
The sample set available represent one set of 14 samples that could have resulted from
sampling the distribution for benzene. A program written in Mathcad 6.0 Plus (MathSoft,
1995) was used to generate 1000 14-sample set vectors to represent a possible range of
14 sample sets that could result from the ARI70% distribution for benzene. Using the
1000 vectors, 1000 means were calculated to estimate the uncertainty in the mean
(;oncentration. Once again, ExpertFit was used to estimate the best fit distribution of the
1000 means. The best fit distribution of the 1000 means represents an estimate of the

uncertainty in the mean concentration distribution (MRI70%) with 14 samples from
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ARI70%. The best fit distribution was a Gamma distribution with parameters B =
0.01214 and a =7.60837. The ExpertFit results for the top distributions can be seen in
Appendix B. Figure 3-6 shows the histogram of the 1000 means, the best fit Gamma
distribution, and the normal distribution that would result from using the CLT simplifying
assumption. The normal distribution has a mean of 0.092 (nig/L) and a standard deviation
of 0.037 (mg/L) which is the standard deviation of the 14 samples divided by the square
root of 14. The normal distribution is provided to compare it to the simulated mean

concentration distribution.
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Figure 3-6: Best Fit Simulated Mean Concentration Distribution vs Normal Distribution
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The graph shows how the Normal distribution does not adequately represent the
estimate of the frequency distribution of the data. The physical constrain of 0 is also
shown on the graph to highlight the fact that the Normal distribution contains unrealistic
values that are less than 0. The best fit Gamma distribution is a more appropriate estimate

of the uncertainty in the mean concentration distribution.
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Some authors argue that environmental data is usually spatially and serially
correlated, which results in an underestimation of the true variability of the contamination
at a site (Banks, 1996:442). There is also an argument that standard statistical techniques
used on a single data set reveal only a trivial portion of the uncertainty in the parameters
being estimated (Hattis and Burmaster, 1994:726). These are both valid arguments, but
they must be considered in light of how important the estimate of the variance of the mean
concentration is to the overall risk distribution. Appendix C shows some sensitivity
analysis of the estimate of mean and variance for the mean concentration distribution that
will show that as long as the sampling plan makes an attempt to randomize the sampling,
the effects of spatial and serial correlation and small sample sizes should not significantly
effect the estimate of the risk distribution.

3.7.6 Body Weight Body weight is probably the most well known of the common input
variable. This physiological characteristic has been studied extensively in human health
risk assessment and other disciplines. There is sufficient data to develop well fitted age
and gender specific distribution for the weight of individuals. The distribution used in this
research was developed by Brainard and Burmaster and has gained acceptance in the field
(1992). Unless the population under study is very much different from the general
population, these fitted distributions can be appropriate. The distribution for men above
the age of 18 was used. The fitted distribution is a normal distribution with a mean of

78.7 kg and a standard deviation of 13.5 kg and is shown in Figure 3-6.
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Figure 3-7: Distribution of Weight for Men Older Than 18 years of Age

3.7.7 Exposure Time The exposure time is used in the inhalation route and is
dependent on amount of time a person spends in the shower. The results of a study done
by James and Knuiman in 1987 of the shower duration for 2500 households was found in

the EPA’s ExposureFactors Handbook (USEPA, 1989¢:Ch 5, 35). If the distribution

proves to be critical further investigation could be conducted. The distribution was

developed in a similar manner as for the ED and can be seen in Figure 3-8.
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Figure 3-8: Crystal Ball Empirical Frequency Distribution for Exposure Time

3.7.8 Surface Area to Body Weight Ratio Because the surface area of the body is
dependent on body weight, a distribution for the ratio of SA to BW is used in the
simulation. The value of body weight sampled is multiplied by the sampled SA:BW ratio

to estimate an appropriate SA. The specific distributions for BW and the SA:BW ratio are
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both for men older than 18 years to ensure that the simulated BWs and SA’s are
reasonably matched. The fitted distribution for SA:BW ratio was shown by Phillips ez al.
(1993) to be represented by a normal distribution with a mean of 284 cm®/kg with a
standard deviation of 28 cm’/kg and can be seen in Figure 3-7.

3.7.9 Inhalation Rate The distribution for the inhalation rate was developed from the
summarized percentiles in the study by Finley ez al. (1994). The percentiles are based on
the research of Layton on chronic inhalation rates (1993). The distribution was developed

in a similar manner as the ED distribution and can be seen in Figure 3-10.

F -
T
€
q
u
€
n
c
y e
200.00 242.00 284.00 326.00 368.00

(cm®/kg)
Figure 3-9: Surface Area to Body Weight Ratio for Men Older than 18 years
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Figure 3-10: Crystal Ball Empirical Frequency Distribution of Inhalation
Rate for Men Between 18 and 30 years of Age
No information was found in the literature for the permeability constant (PC),

emission factor (K), or the inhalation slope factor. Based on the results of the




deterministic sensitivity analysis, it was assumed that even if the distributions for these
values were known, they would contribute little to the overall risk because the inhalation
route contributes only 7.4% of the total risk. These values were set at their conservative
RME values to ensure the risk was not underestimated. The focus was placed on those
variables that were more significant (Haimes et al., 1993:682). The distributions for
surface area and inhalation rate were used because they were available.
3.8 Initial Probabilistic Risk Assessment

The initial PRA was developed using the deterministic spreadsheet for the example
risk calculations. Clairmont’s estimated risk distribution was simulated first to compare it
to the results of the PRA. The calculations were done exactly like those in Table 3-1
except that the mean chemical concentration was assumed to have a normal distribution
with a mean of 0.092 mg/L and a standard error of 0.037 mg/L. In running the simulation
the number of random samples taken from the assumed distributions is vitally important to
the confidence in the results. It is recommended that at least 10,000 trials be used to gain
confidence in the results (Burmaster and Anderson, 1994:480). With a sample size of
10,000 the assessor can be more than 95% confident that any selected percentile above the
90th percentile is between the estimates for its two neighboring percentiles (Morgan and
Henrion, 1990:202). For example, with 10,000 samples the 94th and 96th percentiles are
at least a 95% confidence interval for the 95th percentile. This confidence holds
regardless of the shape of the final estimated distribution (Morgan and Henrion,
1990:202). The results of the simulation of Clairmont’s model can be seen in Figure 3-11.

The CA and CUA values, the RME point estimate (RME PE) are marked, and percentiles
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are shown in Figure 3-11 to give the reader a perspective of the simulation results. The
CA level established for the Operable Unit 2 was 5-107 (a unitless probability of an
individual developing cancer [USEPA, 1989c:Ch 8, 11]) and the CUA level was set at

5-10° (unitless) by the decision maker.
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Figure 3-11: Results of Simulation of Clairmont’s Initial Model

The initial PRA was done in much the same manner except that all the input
distributions described in Section 3.7 were used. The simulation was also run for 10,000
trials and the results of the initial risk distribution at the RI70% can be seen in Figure 3-12.
Because the risk distribution is very skewed, it difficult to show all the information on a
single graph, therefore, two graphs are used to represent the results. The first panel shows
the histogram of risk values from zero to the CUA level of 5- 107 (unitless), which

encompasses 99.51% of the values. The second panel zooms in on the range of values
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from zero to the CA level 5-107 (unitless) of risk. The graphs and corresponding

percentiles provide much more information about the possible variability in the risk to a

naturally variant population than does the point estimate of Section 3.3.2. The graphs are

good for visual presentation of the results, but are inadequate for accurately estimating the

distribution percentiles or comparing the graphs. The percentiles of the distributions can

be calculated from the cumulative frequency count. Key percentiles and statistics in

Tables 3-6 and 3-7 are used to more accurately compare the two distributions.
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Figure 3-12: Results of Initial RI70% Risk Distribution
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The probabilistic risk simulation significantly transformed the risk distribution. It
produced a highly skewed distribution as observed by others in the literature (Finley and
Paustenbach, 1994; Smith, 1994). The estimate of the risk distribution using Clairmont’s
method also resulted in risks less than zero which are considered unrealistic (Haimes et al.,
1993:683). The major difference is how the risk probabilities are altered as shown in
Table 3-7. For the initial RI70% risk distribution, the probabilities of the risk being high,
medium, and low were 0.6208, 0.3669, and 0.0123, which indicates a significant
differences in the assessed risk probabilities when more variables are considered as
stochastic. The initial simulation provides another phase in the iterative process of
prioritizing and selecting variables that are worthy of further investigation. Probabilistic
sensitivity analysis can provide better insight into what variables are most important to
determine the allocation of resources.

Table 3-4: Selected Percentiles From Initial RI70% Risk Distribution

Percentiles | 50% 60% 70% 80% 90% 95% | Max Value

™M 1.13E-5 | 1.24E-5 | 1.37E-5 | 1.51E-5 | 1.71E-5 | 1.89E-5 | 2.84E-5

RI70% 2.9E-7 | 4.56E-7 | 7.34E-7 | 1.32E-6 | 3.19E-6 | 6.57E-6 | 9.85E-5

IM -- Initial Model (Clairmont, 1995)
RI70% -- Initial Probabilistic Risk Distribution After R170%

Table 3-5: Key Statistics from Initial RI70% Risk Distribution

Simulation Percentiles Risk Probabilities
CA CUA RME PE* Low Med High
M 7.97% 100% 99.61 0.0797 0.9203 0.0000
RI70% 62.08 98.77 98.04 0.6208 0.3669 0.0123

*-- Reasonable Maximum Exposure Risk Point Estimate
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3.9 Initial Probabilistic Sensitivity Analysis

Traditional sensitivity is good for determining how the range of the output risk
changes as range of the input variable changes. In addition there is a vested interested in
the strength of the sensitivity to an assumed distribution and the effect on the shape of the
risk distribution. The strength of the influence of an assumed distribution is important to
evaluate the relative importance of one variable to another. It is also important to estimate
the influence of input distribution on the shape of the risk distribution, which is vital
because it can significantly effect the risk probabilities. For an analyst, this sense of
influence is important for committing limited resources. Probabilistic sensitivity analysis
(PSA) is relatively new, and common and approved techniques for accomplishing PSA
have not been established. Publications that offer discussions about PSA differ in how
they accomplish this analysis because there are different reasons for doing PSA (McKone,
1993; Burmaster and von Stackelberg, 1991). This section presents a method for
determining the strength of the variable’s influence on the values of the risk distribution
and how the shape of the risk distribution is effected by the presence of an assumed
distribution.

3.9.1 Probabilistic Sensitivity Analysis on Strength of Effect Simple, single variable
sensitivity analysis was done in Section 3.5, but more valuable sensitivity analysis can be
conducted to account for multi-variable dynamics to estimate the strength of influence of
each assumed distribution. The Spearman rank correlation coefficient between every
random variable that is input as a distribution and the calculated risk was used as a

measure of the strength of effect an assumed distribution has on the final distribution
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(Decisioneering, 1993:162). The coefficient is a relative value that ranges from minus one

to positive one. The magnitude of the absolute value of the coefficient gives an indication

of the degree to which the input variable and the calculated risk change together. The sign

of the coefficient indicates whether the relationship is positive or negative. A large

positive correlation coefficient suggests that large values of the variable are associated

with large values of risk and small values of the variable are associated with small values

of risk. A negative coefficient indicates that small values of the variable are associated

with large values of risk and large values of the variable are associated with small values of

risk. The coefficient provides a meaningful measure to determine the importance of a

variable in determining the estimated risk distribution in the simulation.
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Figure 3-13: Probabilistic Sensitivity Analysis Results of Initial RI70%

The sensitivity analysis was run with the distributions mentioned in Section 3.7 and

the results can be seen in Figure 3.13. The variables are ranked from most important to

least important so the variables can be easily prioritized. One limitation of this initial
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analysis is that it does not include a distributions PC, K, or the inhalation SF. From the
results of the deterministic sensitivity analysis it is assumed that the influence of these
variables would be outweighed by the influence of the other more important variables
(Haimes et al., 1993:682). When information was not available on the distribution of a
variable, this analysis relied on the conservative estimated values to at least ensure that the
risk was not underestimated

Figure 3-15 shows that the exposure duration, oral slope factor, ingestion rate,
mean concentration, and exposure frequency have a significantly greater impact on the
calculated risk than the other variables. Inaccurately assessing these variables would result
in greater error than inaccurately assessing the other variables. Thus, available resources
should be allocated to reduce the uncertainty in the critical variables first in the order
indicated by Figure 3-13.

3.9.2 Probabilistic Sensitivity Analysis on Shape of Risk Distribution Once a
simulation has been run, variables represented by distributions can be temporarily
represented by their RME constant value for the purposes of visualizing the effects of
input distributions on the final forecast distribution. This procedure is termed freezing the
distribution because the random variable is momentarily assumed to be a constant. Some
distributions may be more important than others in determining the shape of the final risk
distribution and it would be beneficial to know which ones they are. Four 10,000 trial
simulations were run while freezing the assumed distribution for the four most influential
variables in the initial probabilistic sensitivity analysis and the results can be seen in the

graphs in Figure 3-14.
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Figure 3-14: Results of Probabilistic Sensitivity Analysis on Shape of Risk Distribution
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Figure 3-14 provides a good visual aid for observing the effects of the input
distributions on the shape of the risk distribution. The key finding is that the assumed
exposure duration distribution is the only variable that is critical to the shape of the risk
distribution. It is the only distribution that significantly changes the shape of the highly
skewed risk distribution. Without the exposure duration distribution, the risk distribution
is skewed but still bell-shaped. Each graph has the same scale so it is easy to compare the
graphs. The other variables were not evaluated because it is assumed that they would
have less influence on the shape of the risk distribution than the CW.

Based on these results and the results of Section 3.9.1 the exposure duration, oral
slope factor, ingestion rate, mean concentration, and the exposure frequency were the only
variables whose distributions were further investigated. The other distributions have only
minor effects that improve the assessment but are not critical to the most likely risk
distribution. Variable distributions having a less significant influence on the risk
distribution can be further investigated after the more important variables have been
further characterized.

3.10 Considerations for Further Field Investigation

There are certain criteria to consider when conducting further investigation of
variables. The distributions representing the variables consist of variability and two
possible types of uncertainty, which were discussed in Section 3.3.2. If an abundance of
data exists, the distributions often consist primarily of variability, and additional
information may only marginally reduce the natural variability. Some variables such as the

slope factor or reference dose have inherent uncertainty due to extrapolation that cannot
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be significantly reduced by additional information. Additional information should be
gathered only if the uncertainty can be reduced, the distribution is critical to the assessed
risk, and the reduced uncertainty is beneficial in terms of potentially changing the decision
strategy (Haimes et al., 1993:682). The analyst must be aware of these criteria when
deciding what information to gather. Each of the five most critical distributions will be
addressed to determine if and how they should be improved to obtain more accurate
estimates of the risk distribution and for uncertainty analysis.

3.10.1 Exposure Duration To more accurately represent the distribution of exposure
duration the original published research, which was not available at the time of the initial
PRA, was referenced. The cumulative data was fit by a nonlinear regression curve to
calcuiate the probabilities for residential occupancy of t years or more. Because the
sample of homes was so large, the curve used to estimate the distribution of residential
occupation is assumed to consist primarily of interpersonal variability and little uncertainty
(Finley et al., 1994:548). There would be little benefit from gathering additional

information on the exposure duration, unless the population was very distinct from the

typical U.S. population.

The actual ED equation is cumbersome to use in a Monte Carlo simulation so a
more refined empirical distribution was used to represent the distribution for ED. The
distribution was reconstructed in Crystal Ball with a higher resolution than the distribution
in the initial PRA.

3.10.2 Oral Slope Factor Since the distribution of the slope factor showed to be very

influential in the initial sensitivity analysis, it was further investigated. The estimate of the
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uncertainty in extrapolating human toxicity values from rodent toxicity data, in Section
3.7.3, based on the study by Crouch (1983), was established from uncertainties from
interspecies extrapolations between mice and rates. Others suggest that to estimate the
uncertainties of extrapolating human toxicity values from rodent toxicity values, some
human data is necessary (Allen et al., 1988; Baird ez al., 1996). The difficulty in
quantifying the uncertainties is the insufficient amount of human data, but there are some
chemicals for which there does exist sufficient epidemiological data to estimate human
toxicity values.

In a study by Allen et al. (1988) 23 chemicals, for which there is sufficient human
and animal data to quantify a carcinogenic potency, were evaluated to determine the
correlation between the toxicity values of animals and humans. Thié was done in a similar
format of comparing the SFs of Animals to the SFs of humans and analyzing the
correlation between the two for each chemical. The study followed a methodology similar
to the study by Crouch (1983) discussed in Section 3.7.3. For a more thorough discussion
of the methodology and results the reader is encouraged to read Allen et al., 1988 and
Gaylor et al., 1993. Benzene was one of the chemicals included in the study. In a further
evaluation of Allen et al.’s study, Gaylor et al. (1993) found that the uncertainty and or
variability in the extrapolation of cancer potency factors for humans based on animal data
was well represented by a lognormal distribution with a geometric standard deviation of
2.35 about the mean toxicity value of the chemical evaluated by Allen et al. This
distribution represents an estimate of the varjability and uncertainty in human toxicity

values based on animal data.
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The distribution for the uncertainty and variability in the cancer slope factor for
benzene, based on these studies, is shown in Figure 3-16. It has an arithmetic mean of
0.016 and an arithmetic standard deviation of 1.491. Allen et al.’s distribution has a
significantly higher variability than the distribution defined by Crouch and Wilson in
Section 3.7.3, but is consistent with the findings of others. Baird et al. (1996) has
reported that the uncertainties in noncarcinogenic toxicity values extrapolated between
species are larger as the difference between interspecies size increases, which would
support the findings of Allen et al. Gaylor et al. make the same argument in justifying
Allen et al.’s increased variability in the uncertainty of extrapolating toxicity values (1993:
152). There is still a considerable amount of research required to better estimate the
uncertainty aﬁd variability of extrapolating toxicity value for humans from animal data.
This distribution was used as an estimate of the uncertainty in the cancer slope factor for

benzene.
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Figure 3-15: Final Estimate of Uncertainty in Human Toxicity Value of Benzene based on Animal Data

3.10.3 Tapwater Ingestion Rate Since the distribution proved to be significant and it

was a non-site specific distribution, it was further researched in the literature. Ershow and
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Cantor established an empirical distribution for tapwater ingestion from the data collected.
Rosenberry and Burmaster used the same data and fit a distribution to the data (1992).
With a sample size of

26,081 people, the results of the research suggested that tapwater ingestion distribution is
based more on interpersonal variability in preferences for water than uncertainty. A
lognormal distribution with a mean of 2.086 L/day and a standard deviation of 0.869
L/day fitted for the general population between the ages of 20 and 65 is used (Rosenberry
and Burmaster, 1993:102). This distribution is used as the improved distribution for
tapwater ingestion in the simulation. The risk assessor would not benefit from gathering
information on tapwater ingestion unless the exposure population differed significantly
from the general U.S. population.

3.10.4 Mean Concentration Distribution With 14 samples from the R170%, there is a
significant amount of uncertainty associated with the estimate of the mean concentration
distribution. The only way to reduce the uncertainty in the mean concentration is to
gather more samples in subsequent phases of the investigation. An analyst must evaluate
the importance of the estimate of the mean concentration distribution relative to other
variables. This is done in the uncertainty analysis of Section 3.12.1. The exposure
duration is approximately four times more influential and the slope factor is one and half
times as influential as the mean concentration. In light of the significantly strong influence
of these two variables, the exact value of the mean and standard deviation mean
concentration may not be as critical to the risk distribution. The analysis done in

Appendix B and section 3.11 will further demonstrate this point.
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3.10.5 Exposure Frequency The exposure frequency distribution was the only site
specific distribution that proved to be significant. Since the exposure population is a
future population of commercial workers it is difficult to sample the actual population. If
the anticipated type of future operations for the site were known, then an operation of
similar type could be sampled to attain a better estimate of the distribution. Since this is a
retrospective study and the site has been completely assessed no further information was
gathered on exposure frequency. The distribution for exposure frequency was not
improved for the PRA simulation. In an actual site assessment this variable may prove to
be critical, but the assessor must evaluate the variable for its contribution to variance as
shown in Section 3.11. If other site specific variables or non-site specific variables, not
found in the literature, show to be significantly influential variables, they should be
evaluated for further field investigation using the criteria in Section 3.10 and 3.12.1.

3.11 Final RI70% Risk Distribution

After improving the input distributions discussed in section 3.10, the simulation
was run with the available information after the RI70%. The simulation was run for
10,000 trials, and the results can be seen in Figure 3-16. The first panel shows the
histogram of risks from zero to the CUA level of 5-10° (unitless), which encompasses
99.51% of the values. The second panel zooms in on the range of values from zero to the
CA level of 5-107 (unitless) of risk. For a more detailed analysis of the risk distribution,
the percentiles in Figure 3-16 and the key statistics in Table 3-10 are provided. The

simulation results provide much more information than the RME point estimate.
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Table 3-6: Key Statistics from PRA Simulation after RI70%

Simulation Percentiles Risk Probabilities
CA CUA RME PE Low Med High
RI70% 90.46% 99.51% 99.32% 0.9046 0.0905 0.0049

The distribution allows the decision maker to estimate the likelihood of the RME
point estimate and any other risk to make decisions that are appropriate for the given site
(Smith, 1994:438). The decision maker can now analyze the distribution of risks and
make decisions based on all the available information instead of single point estimate,
accompanied by discussion of possible uncertainties, that is provided by the deterministic
point estimate approach.

3.12 The Need for Uncertainty Analysis of the Risk Distribution

The second key area of review of the Clairmont’s model was the uncertainty
analysis of the risk distribution. Sensitivity analysis is used to evaluate the effect of
uncertainty in each variable on the decision strategy. Clairmont’s model did not conduct
sensitivity analysis of the assessed risk distribution. Sensitivity analysis of the risk
distribution is important if the decision maker is going to accept the recommendations of
the model. Clairmont’s representation of the risk distribution is an accurate portrayal if
only the mean concentration is considered a stochastic variable. Others have
demonstrated that as the number of variables represented as distributions increases, the
risk distribution becomes less Gaussian in shape and becomes increasingly more skewed
(USEPA, 1992b:22921; Burmaster and von Stackelberg, 1989:95). A more appropriately
assessed risk distribution, including uncertainty and variability analysis, will lend credibility

to the decision support model recommendations.
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Figure 3-16: Final Results of PRA for OU2 with 14 Samples from R170%

3.12.1 Probabilistic Uncertainty Analysis Now that a better estimate of the risk

distribution has been assessed it is important to quantify how much of the risk distribution

consists of variability and how much consists of uncertainty. The percent contribution to

variance for each variable is calculated by squaring the Spearman Rank correlation

coefficient for the variable. This approximation is used because the calculations of

variance contribution can be very complex to perform (McKone, 1994:458). Other more
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complex analytical methods discussed by Morgan and Henrion (1990, 185) and McKone

(1994) were considered, but were assumed to be too complex for practical field
application. This estimate, though not exact, provides a simple method of approximating
the contribution to variance that is feasibly calculated in the field. Figure 3-17 shows the
approximate contribution to variance for each of the input variables in the final simulated
risk distribution using the Crystal Ball approximation.

From section 3.10, it is known that the exposure duration and ingestion rate
consist primarily of variability and the oral slope factor, mean concentration, and the
exposure frequency consist primarily of uncertainty. The sensitivity analysis provides an
estimate of the uncertainty and variability of the risk distribution as suggested by the
guidelines (USEPA, 1992a:22929). Figure 3-17 shows that between the exposure
duration, ingestion rate and the exposure time, 67.1% of the variance in the risk
distribution is primarily attributed to natural variability. 32% is attributable to uncertainty
in the slope factor, mean concentration, and exposure frequency. Approximately 3.8% is
reducible within the scope of the risk assessment through additional chemical
concentration samples and a better estimate of the exposure frequency. The other
variables contribute approximately 0.9% of the variability, which was considered
negligible. The assessor can use these type of results to present the risk distribution and
determine variables for further field investigation to reduce the uncertainty in the risk
distribution in subsequent phases.

3.12.2 Reducing the Uncertainty with Additional Samples Usually the only

information gathered in a risk assessment is chemical concentration samples. The
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uncertainty in the estimate of the mean concentration is reduced with additional samples,
but it is important to consider the value of additional samples taken in subsequent RI
phases. It is also important to note that the percent contribution to variance of the mean
concentration distribution is only 3.8% in this case. This indicates that the accuracy of the

estimate of the mean concentration is not critical as was demonstrated in Appendix B.
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Figure 3-17: Percent Contribution of Variability by Each Variable

The expected reduction in uncertainty in the mean concentration distribution from
a projected number of additional of samples can be simulated with the current available
information. In Section 3.7.5, 1000, 14 sample vectors were generated from the best fit
distribution for the actual benzene concentration in groundwater after the RI70%, which is
shown as ARI70% in Figure 3-5. The 1000 vectors were used to calculate 1000 possible
means from ARI70% and to estimate the distribution of the uncertainty in the mean
concentration with 14 samples from the RI70%, which is shown as MRI70% in Figure 3-

6. Itis assumed that ARI70% is not going to significantly change with additional samples
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from subsequent phases. Therefore, ARI70% is used to predict the expected reduction in
the uncertainty of the mean concentration distribution with any number of additional
samples. In the RI100% phase of the actual OU2 RI six additional samples were
collected. Assuming that the analyst was at the RI70% and the six samples were
projected, the predicted reduction in the uncertainty of the mean concentration could be
estimated with 1000, 20 sample, vectors from ARI70%. Using the 1000, 20 sample
vectors from ARI70%, 1000 means are calculated to predict the 1000 possible means that
could result from a 20 sample set from the actual distribution for benzene concentration
after the RI100% (ARI100%), which is information not available at the RI70%. This is
based on the assumption that ARI70% is not going to be significantly different from
ARI100%.

Figure 3-18 is used to illustrate the concept. It is important to note that all the
histograms shown are generated from ARI70%, which is based on 14 samples that were
available at the RI70%. The first panel shows the histogram of the estimated uncertainty
in mean concgntration with 14 samples from the R170%. It is used as the baseline for
comparison. The second panel shows the histogram of the predicted mean concentration
distribution for a total of 20 samples, expected to be available after the R1100%, using
ARI70%. This distribution is called the predicted mean concentration for the RI100%
(PMRI100%) phase and is used in the analysis of Chapter 4. Hypothetically assuming 10
more samples were taken after the RI100%, the third panel shows the histogram of the
predicted mean concentration distribution for a total of 30 samples. It is provided to show

the diminishing reduction in uncertainty with additional samples. The number of
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bins in the histograms were all set to 15 and the range on the abscissa was fixed from 0.0
to 0.3 in order to easily compare the three graphs. The graphs show that the variance of
the distribution is becoming smaller with additional samples and approaching a Gaussian
shape, but it is definitely not normal.

The predicted mean concentration distributions could be put into a probabilistic
risk simulation to predict the reduction in uncertainty or predict the change in the risk
probabilities. Using Clairmont’s decision support model to consider cost, duration, and
other decision maker preferences, an analyst can determine if the predicted reduction in
the uncertainty in the risk distribution from additional samples, or the value of the
information, is worth the expected cost of the additional samples.

3.13 Benefits of Methodology The methodology, herein, demonstrates an iterative
process to guide an analyst through the investigation phase. It is not intended to be a
step-by-step approach, but instead, a process to objectively guide the analyst on how to
most efficiently gather additional information to minimize cost and time. The resulting
estimation of the risk distribution effectively describes the range of risks and their
likelihood and provides the following benefits above that of the point estimate method:

¢ Maintains the distinction between risk management and risk assessment
(Burmaster and Appling, 1995:2440)

» Avoids the debate over what percentiles are appropriate to estimate the
estimate the RME

e Quantifies the variability and uncertainty in the final risk estimate

¢ Provides a wealth of information to make better, more informed decisions
(Morgan and Henrion, 1990:44)

¢ Flexibility to estimate the risk distribution appropriate for the decision being
made
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4. Analysis and Findings

4.1 Introduction

This chapter focuses on the benefits from the application of the methodology
developed in Chapter 3. A portion of two National Priorities List sites are assessed using
the probabilistic approach. The risk assessment for a future commercial worker at
Operable Unit 2, Wright-Patterson Air Force Base, Ohio, and a current worker at Site 4,
Air Force Plant 44 (AFP44), Arizona, are used. Portions of the risk assessments for these
two sites are evaluated retrospectively to demonstrate the possible benefits gained from a
probabilistic risk assessment and decision analysis tools.
4.2 Future Commercial Worker, QU2

The exposure scenario for a commercial worker exposed to benzene contaminated
groundwater was discussed and developed in Chapter 3. The distributions discussed in
Section 3.7 still apply and are used in the analysis to conduct a probabilistic risk
assessment. The only input risk variable adjusted in the analysis of Chapter 4 is the
distribution of the mean concentration.

4.2.1 Benzene Mean Concentration Distributions at QU2 The distribution of the
mean concentration at the remedial investigation 70% (R170%) phase was developed in
Section 3.7.5 from the actual best fit distribution for the benzene concentration
(ARI70%). The mean concentration distribution at the R170% is shown in Figure 3-6 as
MRI70%. The histogram of the predicted mean concentration for the R1100%
(PMRI100%) was discussed and developed in Section 3.12.2 and is shown in Figure 3-17

as PMRI100%. The simulated means used to estimate PMRI100% were input into
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ExpertFit, to estimate the best fit distribution (Averill M. Law & Associates, 1995). The
20 samples available at the RI100% phase were also input into ExpertFit to estimate the
actual benzene concentration distribution after the R1100% (ARI100%). The estimate of
the mean concentration distribution at the RI100% was estimated from ARI100% using
the methodology discussed in Section 3.7.5. The best fit distributions, using ExpetFit, for
OU?2 at the RI70% and RT100% are defined and summarized in Table 4-1. The Experfit
results for all the distributions and the samples available at the RI70% and the RI1100% are
available in Appendix B. The gamma distribution is a versatile distribution that can have
many of the same characteristics as a lognormal distribution. The parameters shown are
the scale parameter ( ) first and the shape parameter (o ) second.

Table 4-1: Concentration Distributions used for QU2

Mean Concentration Distribution Benzene
ARI70% Gamma(0.173347, 0.53410)
MRI170% Gamma(0.01214, 7.60837)
PMRI1100% Gamma(0.00797, 11.58195)
ARI100% Gamma((.17747, 0.46796)
MRI100% Gamma(0.00864, 9.52396)

ARI70% -- Fitted distribution to actual 14 samples

MRI70% -- Simulated mean concentration distribution with 14 samples ARI70%

PMRI100% -- Predicted R1100% mean concentration distribution with 20 samples from ARI70%
ARI100% -- Final fitted distribution with all 20 samples

MRI100% -- Final simulated mean concentration distribution with 20 samples from ARI100%

Figures 4-1 and 4-2 provide a visual summary of some of the key distributions.
Figure 4-1 shows the ARI100% best fit distribution overlaid on the histogram of the 20
samples from the RI100%. This distribution is provided as the baseline distribution from
which all the other distributions are compared. Figure 4-1 also shows the MRI70% and

MRI100% distributions to present the simulated reduction in uncertainty gained from an
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Figure 4-1: The Reduction in Uncertainty of the Mean Concentration Distribution
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Figure 4-2: A Comparison of the PMRI100% and the MRI100%
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additional 6 samples from the RI100%. This is in essence is what the decision maker gains
for the cost of the RI100% for benzene.

Figure 4-2 shows the same RI1100% best fit distribution overlaid on the histogram
of the 20 samples, but in this figure the PMRI100% and the MRI100% distributions are
given for comparison. The figure shows that the simulation predicted mean concentration
distribution for the RI100% and simulation mean concentration distribution after the
RI100% are approximately the same. There is a slight discrepancy between the two that is
discussed in Section 4.4

4.2.2 Probabilistic Risk Simulation for QU2 Three different probabilistic risk
simulations were run to estimate the risk probabilities to input into Clairmont’s decision
support model. At the R170%, when only 14 samples were available, two simulations
were run to estimate the information known at the RI70%. The first simulation used the
MRI70% distribution to estimate the risk distribution and the risk probabilities with the
available information after the RI70%. The RI70% risk distribution and percentiles are
shown in Figure 4-3. The risks shown are unitless probabilities of an individual
developing cancer (USEPA, 1989c¢: Ch 8, 11) within the population of concern due to
exposure to benzene in the groundwater. The first panel shows the histogram of risks
from zero to the CUA level 5-10° (unitless), which encompasses 99.51% of the values.
The second panel zooms in on the range of values from zero to the CA level of
5-107 (unitless) of risk. Key percentiles and statistics for the distribution are shown in

Tables 4-2 and 4-3.
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Figure 4-3: Results of Initial RI70% Risk Distribution
The second risk simulation used the predicted mean concentration distribution for
the RI100% (PMRI100%) to predict the reduction in the uncertainty of the final R1100%
risk distribution from a projected additional 6 samples. The predicted R1100% risk
distribution (PRI100%) is not provided because, as expected, it is almost identical to the
actual RT100% risk distribution. If the PRI100% risk distribution were provided it would
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be identical to the distributions representing the actual RI100% distribution in Figure 4-4.
The only way to distinguish the PRI100% and RI100% risk distributions is to evaluate the
key percentiles and statistics for the two distributions, which are shown in Tables 4-2 and
4-3.

The third risk simulation used the actual estimated mean concentration distribution
(MRI100%) as an input to estimate the actual final risk distribution (RI100%). The
results of the risk simulation using MRI100% are shown in Figure 4-4 in a similar format
to Figure 4-3. The first panel shows the histogram of risks from zero to the CUA level
5-10” (unitless), which encompasses 99.76% of the values. The second panel zooms in on
the range of values from zero to the CA level 5-107 (unitless) of risk. The RME risk at
the RI100% estimated in the actual risk assessment was 5.1-10” (unitless) (Earth Sciences,
1993:Appendix H). The estimated RME risk is used to compare the results of the
probabilistic risk assessment to a deterministic risk assessment. Key percentiles and
statistics are provided in Table 4-2 and 4-3 for the R170%, predicted R1100%, and the
actual RI100% risk distribution. They are provided together for a more detailed
comparison of the distributions and simulation results.

The risk probabilities were explained in detail in Section 2.6.2.2, but basically the
probability the risk is low is the area under the risk distribution to the left of the CA level,
the probability the risk is medium is the area under the curve petween the CA and the
CUA levels, and the probability the risk is high is the area to the right of the CUA level.

These are used as inputs to the decision support model discussed in Section 2.6.
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Figure 4-4: Results of PRA for OU2 with 20 Samples from RI100%

There are three significant findings to point out from the results of the risk

simulation. All of the findings are based on the RI100% risk distribution because it is

derived from all the information available. The first is the significant difference between
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the risk probabilities assessed in Clairmont’s model, shown in Table 3-7, and the
probabilistic risk assessment probabilities in Table 4-3. Clairmont, like most risk
assessors, used default conservative values that, when combined, produced extreme risk

scenarios. The RI100% risk distribution is very skewed so the high risks on the

distribution are present, but have a very small likelihood of occurring. The combination of
these two effects produced probabilities of a high risk that differed by a factor of 322 and
probabilities of a low risk that differed by a factor of 61. The difference in the

probabilities has serious implications on the recommended decision as shown in the third

finding,
Table 4-2: Selected Percentiles From PRA Simulations for QU2

Percentiles 50% 60% 70% 80% 90% 95% | Max Value
RI70% 2.18E-8 | 3.74E-8 | 7.03E-8 1.58E-7 | 4.55E-7 | 1.27E-6 4.55E-4
PRI100% 2.26E-8 | 3.81E-8 | 6.82E-8 1.51E-7 | 4.47E-7 | 1.20E-6 2.14E-3
RI100% 2.05E-8 | 3.53E-8 | 6.43E-8 1.35E-7 | 4.25E-7 | 1.11E-6 1.46E-3
RI70% -- Risk Distribution with information available after 14 samples
PRI100% -- Predicted Final Risk Distribution with 14 samples
RI100% -- Final Risk Distribution with all 20 samples

Table 4-3: Key Statistics from PRA Simulations for QU2
Simulation Percentiles Risk Probabilities

CA CUA RME PE Low Med High

RI170% 90.46% 99.51% 99.52% 0.9046 0.0905 0.0049
PRI100% 90.62% 99.74% 99.74% 0.9062 0.0912 0.0026
RI100% 90.92% 99.76% 99.76% 0.9092 0.0884 0.0024

The second finding is the information about the likelihood of the reasonable-

maximum-exposure (RME) risk estimated in the actual risk assessment (Engineering

Science, 1995: Appendix H). As discussed in Section 1.2, the EPA conceptually defines

the high end risk as the “ri

sks above the 90th percentile of the population distribution, but
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not higher than the individual in the population who has the highest risk” (USEPA,
1992b:24). Using a Monte Carlo approach with distributions that have no upper bound,
the guidelines also assume that any exposure values on the exposure distribution between
the 99.5th and 99.9th percentile, depending on the population size, could be the maximum
exposures the population might experience (USEPA, 1992a:22923). All exposure values
above the 99.9th percentile on the risk distribution are considered maximum exposures
(USEPA, 1992a:22923). The guidelines assume the high end exposures are associated
with the high end risks (USEPA, 1992b: 24). The results in Table 4-3 show that the
estimated RME risk of 5.1-10” (unitless) may be very close to the maximum risk an
individual in the population may experience. The simulation estimated that 99.76% of the
risk values would be less than the RME risk.

The 95th percentiles of the risk distribution is generally considered to be a good
estimator of a reasonable maximum risk (Burmaster and Appling, 1995:2439; Finley and
Paustenbach, 1994:70; Smith, 1994:438; Thompson et al., 1994:56). The RME risk is 46
times greater than the 95th percentile risk value of 1.11-10°° (unitless). At the 99.76th
percentile, which results in probability of 0.0024 of any risk being greater to or equal to
the RME risk of 5.1-107 (unitless), the estimated RME risk is more likely to be a
maximum risk and a significantly conservative estimate of the risk present to a commercial
worker. The RME risk is possible, but with a probability of 0.0024 that any risk would be
equal to or greater than the RME risk it is highly unlikely that an individual would receive
this combination of events (USEPA, 1992b:23). This finding supports the assumptions

and findings of Chapter 1.
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4.2.3 Decision Analysis for QU2 The third finding results from using the risk
probabilities in Clairmont’s decision support model. To aid the RPM in considering the
multitude of uncertainties in the complex remedial investigation, discussed in Section 1.2,
the risk probabilities shown in Tables 4-3, along with the other factors in Appendix D,
were input into Clairmont’s decision support models. Two different decision support
models were run to represent the R170% and R1100% phases. dnly the information
available after the RI70% was used in the RI70% decision support model. All the
information available was used in the RI100% decision support model. In the first run, the
risk probabilities for the RI70% distribution and the probabilities for the PRI100% were
used in the decision support model to determine the recommendation of the R170%
decision support model. The cost, duration, and decision maker preference inputs to the
model are shown in Appendix D.

Considering all the information, the recommendation at the RI1100%, based on the
analysis of the decision support model, is to take no further action (NFA). The results of
the decision support model are shown in the decision tree in Figure 4-5. For a review of
the use of decision trees, the reader is encouraged to read Winston (1994) or Clemen
(1991). Briefly, the squares indicate a major decision that must be made, the circles
indicate an uncertain value that results after the preceding decision is made, and the
triangles indicate a possible final outcome. In this particular decision tree, the major
decision is what action to take at the RI70%. The dark line shows the recommended path.

In this case, the NFA alternative is recommended at the R170%.
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RI7O_NFA_Duration _Long [0.417328] <]
High [0.4883] 638 0,163
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923 1500,0 Short []
RLT0_ 970 o,o.5<]

RI_100_
RI100 [0.852477:
240000,7.5
RI60_Site_Sim_Report

Feas_Stdy [0.951 086]0

Removal_Action
Removal [0.950327),
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Figure 4-5: Recommendation for OU2 After RI70%

If a NFA is taken, there are two uncertain results (cost and duration) and four
possible combinations of those results. The costs and durations shown are expected costs
and durations. If NFA is the wrong decision, a high cost ($3.75 million) and long duration
(153 months) are incurred due to improperly characterizing the risk. These calculations
are made according to the logic presented by Clairmont (1995, 57). The other possible
outcome of NFA decision is that it is the correct decision in which case a cost of $1500
and a duration of 0.5 months are incurred. The possible outcomes of cost and duration
result in a utility of 0.9550 for the NFA alternative that outperforms the other decision
strategies. This makes the NFA decision the optimal decision based on the decision
makers preference for money and time. This RI70% decision support model
recommendation takes into account the predicted reduction in the uncertainty of the risk
distribution from an additional 6 samples. This indicates that the predicted reduction in
the uncertainty of the risk distribution gained from the predicted reduction in the
uncertainty of the mean concentration is not worth the cost of gathering the additional

information.
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The RI100% decision support model was tun with the risk probabilities from the
final RT100% risk distribution, and the inputs from Appendix E to determine the
recommendation at the RI100%. Once again the recommendation, with a slightly better
utility of 0.9711, is that NFA be taken as shown in Figure 4-6. The information is
presented in a format similar to Figure 4-5. The recommendation comes as no surprise,
since the percentiles and statistics for the predicted (PRI100%) risk distribution and the
actual (RI100%) risk distribution are very similar. It is critical to point out that the
recommendation made with the information available at the RI70% phase is consistent

with the recommendation made with all the information available after the R1100%.

RI100_NFA_Duration Long [0.606743] Q
High [0.679203{:( 624 0,138
RNO0_NFA_Cost / g73 2.16+006,0 Short [0.783643] <
.971146 376 0,0.5
RI100_NFA_Duration Long [0.823099) q
Low [0.994738) 030 0,138
927 1500,0 Short [ <]
970 0,05

RI100_Site_Sim_Report

Feas_Stdy [0.954842]0
Figure 4-6: Recommendation for OU2 After RI100%

One difference in the recommendations in Figures 4-5 and 4-6 is the costs and
durations of making the NFA decision at the RI70% versus the RI100%. It is assumed
that the cost of making the same wrong decision at the RI100% ($2.1 million and 138
months) is less because less of the remedial investigation would have to be redone
(Clairmont, 1995, 57). Using equations 4-1 and 4-2, Clairmont calculated the cost and
duration for the possibility of making the wrong decision at any phase in the RL. It is

assumed that if a high NFA cost and duration are incurred, the wrong decision was made.

NFA_Cost_High = NFA_Cost _High_Multiplier-((Xhigh estimate of remaining study costs) + (4-1)
max(high estimate of remediation costs)
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NFA_Dur_High = NFA_Dur _High_Multiplier-((Zhigh estimate of future study costs) + 4-2)
max(high estimate of remediation durations)
(Clairmont, 1995:57)

The NFA_Cost_High is an estimate of the NFA cost if the NFA decision strategy
is the wrong alternative. The NFA_Dur_High is an estimate of the NFA duration if the
NFA decision strategy is the wrong alternative. Clairmont assumes that if the NFA
decision is the wrong decision, the responsible parties will be able to reinitiate the remedial
investigation and the studies that were not conducted will have to be completed to make
the right decision (Clairmont, 1995:56). Clairmont also recognized that, if a mistake was
made in deciding to take NFA, some time would pass before the effects of the risk had a
chance to manifest themselves in the population of concern. Because it is difficult to
estimate the future cost of making the wrong NFA decision, Clairmont assumed the worst
case scenario for the high cost and duration of the NFA alternative. All the highest
expected costs and durations for the subsequent phases are used to calculate the high NFA
cost and duration.

Clairmont also took into account the fact that, if the NFA decision is the wrong
decision, the future costs of the remaining remediation investigations will be greater than
the estimated present day costs, by using the NFA_Cost_High_Multiplier and
NFA_Dur_High_Multiplier. These multipliers also take into account other costs such as
“potential lawsuits, bad public relations, health problems and other intangible effects of
making the wrong decision” (Clairmont, 1995:56). Because these cost are difficult to
quantify, they are discussed with the decision maker and they decide the values of the

multipliers. The cost multipliers for OU2 can be seen in Appendix D and E. The cost and
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duration multipliers are assumed to be within the range of 1 to 2 (see appendix D and E
for justification). The high NFA cost and duration are recalculated for every phase of the
remedial investigation and feasibility study (RI/FS).

The importance of the assumptions and calculation for the high cost and duration
of a NFA decision is that there is worst-case cost and duration scenario that must have a
small likelihood of occurring before the NFA action alternative is selected by the decision
support model. This cost gets smaller as more studies are completed because there is less
studies that have to be reinitiated and there less chance of making the wrong decision with
more information. This is why the high cost and duration of makin g the same NFA
recommendation is less when it is made the RI1100% phase as opposed to the RI70%
phase.

Another important result is that the action recommended from a better estimation
of the risk distribution, as shown in Figure 4-5 and 4-6, differs from the recommendation
derived in Clairmont’s model for benzene contaminated groundwater, which consisted of a
removal action followed by a feasibility study to determine the best remediation alternative
(Clairmont, 1995:97). The difference in the recommendations is based on the difference
between the risk probabilities discussed on page 91. A removal action in this case
indicates any action that reduces the exposure to the benzene contaminated groundwater,
such as limited access to the contaminated area.

One of the purposes of this research is to minimize the cost of the investigation
phase by providing a method for determining whether additional information should be

gathered or whether the decision to take appropriate action should be made without
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further investigation. According to the decision support model, the recommendation to
take NFA could have been made at the RI70% without the additional 6 samples from the
RI100%. This is a limited analysis in that it only took into account one chemical, but,
based on the extensive research done by Clairmont, the probabilistic risk approach and the
decision support model together might have saved at least $2.4 million (in 1995 dollars)
and 17 months in the remedial investigation (Clairmont, 1995:101).

Whether any time or money could have been saved in clean-up due to the low
probabilities of unacceptable risks is dependent on two things. First, other chemicals that
showed a significant risk would have to be assessed to determine their risk probabilities
and the decision support model recommendations. Second, it is difficult to assess whether
the expected cost of groundwater remediation of $875,000 (Clairmont, 1995:F-4) could
have been avoided based on substantially lesser risks because the decision maker must take
account other social and political factors into account, which are not considered in the
decision support models, when making the decision.

4.3 Commercial Worker, AFP44

The second risk assessment that was evaluated was the noncancer risk to a current
commercial worker at AFP44 exposed to contaminated soils. Dermal absorption and
inhalation of contaminated dust were the two intake routes identified in the original risk
assessment (Earth Technology Corporation, 1993: Ch3, 213). Antimony (Sb), Cadmium
(Cd), and Chromium (Cr) are evaluated because 95% of the total hazard index was
attributed to these metals. The initial deterministic point estimate values and calculations

were taken from the actual risk assessment (Earth Technology Corporation, 1993: Ch 3,
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213). The input values, individual intake route hazard indices, and total hazard index are

shown in Table 4-4. The equations used to calculate the intakes were taken from the
guidelines (USEPA, 1989c:Ch 6, 41; USEPA, 1991a:53). All exposure variables in the
risk assessment were represented by the guideline recommended values. With the
exception of the mean concentration, all the chemical specific variables were taken from
the Integrated Risk Information System (IRIS) (USEPA, 1994). The referehce doses
(RfD) are based on the information available in IRIS in 1992 when the assessment was
conducted. The total RME hazard index of 12.55 indicates that the commercial worker
was being exposed to a daily intake that was 12.55 times more than the regulated safe
RiD. Since the unacceptable level of noncancer risk is 1.00, according to the remedial
project manager, any RME hazard index greater than or equal to 1.00 should result in
clean-up, which was exactly the action taken in this case.

4.3.1 Site 4 Input Distributions To assess the risk using probabilistic techniques, the
variables were researched in the similar iterative process described as in Chapter 3. The
distributions for exposure frequency (EF), exposure duration ED (ED), and body weight
(BW) explained in Section 3.7 were used because they applied to this scenario. The air
concentration (AC) was estimated through underlying calculations not shown in the Table
4-4. These calculations were broken down, according to the risk assessment, to estimate
the uncertainty in the AC and are explained in Section 4.3.1.3. The IR point estimate was
taken from the guidelines (USEPA, 1991b: Attachment A). Because information on this

variable was available in the literature, it was evaluated according to a study by Layton
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(1993) and is discussed in Section 4.3.1.4. Each of the distributions not addressed in the

risk simulation model for OU2 is addressed individually.

Table 4-4: RME Risk Calculations for Commercial Worker at Site 4

Reasonable Maximum Exposure Hazard Index

Dermal Absorption of Chemicals from Surface Soils

Antimony (Sb) | Cadmium (Cd) | Chromium (Cr)
CS - Mean Soil Concentration (mg/kg) 39.0 11.8 939.0
(Normal 95% UBCL of mean)
CF - Conversion Factor (kg/mg) 1E-6 1E-6 1E-6
SA - Surface Area (cm?*/event) 3120 3120 3120
AF - Skin Adherence Factor (mg/cm2) 1.45 145 145
ABS - Absorption Factor (unitless) 0.01 0.01 0.01
EF - Exposure Frequency (days/year) 250 250 250
ED - Exposure Duration (year) 25 25 25
BW - Body Weight (kg) 70 70 70
AT - Averaging Time (days) 9125 9125 9125
CDI - Chronic Daily Intake (mg/kg-day) 1.73-10° 5.22-10°¢ 4.16-10*
DRID - Dermal Reference Dose (mg/kg-day) 8.40-10° 1.2510° 1.05-10*
RME Noncancer Hazard Index 2.06 0.42 3.96
Inhalation of Contaminated Dust
Antimony (Sb) | Cadmium (Cd) | Chromium (Cr)

AC - Mean Concentration in Air (mg/m3) * * 8.40-10°
IR - Inhalation Rate (m3/8hr-day) * * 20
EF - Exposure Frequency (days/year) * * 250
ED - Exposure Duration (year) * * 25
BW - Body Weight (kg) * * 70
AT - Averaging Time (days) * * 9125
CDI - Chronic Daily Intake (mg/kg-day) * * 3.48-10°
IR{D - Inhalation Reference Dose (mg/kg-day) NA NA 5.70-107
RME Noncancer Hazard Index * * 6.11
Total Hazard Index for Commercial Worker Population 12.55

102




4.3.1.1 Mean Soil Concentration The following is a brief review of the sampling
strategy and the method for calculating the mean concentration for each chemical used in
the risk assessment and Table 4-4. Forty-five surface soil samples were collected at a
depth of one foot in accordance with a systematic grid sampling plan (Gilbert, 1987:21).
Twenty additional samples were collected from soil borings at the suspected points of
contamination in accordance with a search sampling plan (Gilbert, 1987:23). In the risk
assessment, the 95% upper bound confidence limits (UBCL) of the mean concentration
were calculated with the 65 soil samples collected. To calculate the 95% UBCL, the
analysts assumed the mean concentrations were normally distributed (Earth Technology
Corporation, 1993:Ch 3, 74).

The 45 surface soil samples encompassed 70% of the data and were used as the
information known at the remedial investigation (RI) 70%. The 65 samples encompassed
100% of the data and were used as the information known at the remedial investigation
(RI) 100%. The distributions required for the analysis at Site 4 were all derived according
to the same logic and methodology outlined in Section 4.2.1 for OU2. The distributions
used for the chemicals at Site 4 are summarized in Table 4-5. The Expertfit (Averill M.
Law & Associates, 1995) results for the distributions of each chemical can be seen in
Appendix G. The parameters shown for the Weibull and Gamma distributions of
Antimony are the scale parameter () first and the shape parameter (o ) second. The
parameters for the lognormal distributions of Cadmium and Chromium shown in Table 4-5

are the arithmetic mean first and arithmetic standard deviation of the log-transformed data.
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The graphical summaries like those provided in Section 4.2.1 for benzene are provided in
Appendix G.

Since the 20 additional samples were biased high because they were taken at points
of known or suspected contaminatioﬁ, the parameters for the RI100% distributions tend to
be slightly higher than those for the RI70% distributions. This contributes to the
difference in the predicted (PMRI100%) and actual (MRI100%) mean concentration
distribution for all three chemicals, which impacts the risk simulations as shown in Section
43.2

Table 4-5: Distributions used for Risk Simulation at Site 4

Distributio | Antimony Cadmium Chromium

ARI70% Weibull(6.6306, 0.7463) Lognormal(-0.110, 1.631) Lognormal(3.461, 1.629)

MRI70% Gamma(24.1588, 0.3304) | Lognormal(1.066, 0.407) Lognormal(4.787, 0.446)

PMRI100% | Gamma(38.3902, 0.2045) | Lognormal(1.101, 0.361) Lognormal(4.803, 0.385)

AR100% Weibull(6.6582, 0.7992) Lognormal(3.772, 1.745) Lognormal(3.604, 1.713)

MRI100% | Gamma(42.5576,0.1782) | Lognormal(1.434,0.406) Lognormal(4.985, 0.393)

ARI70% -- Fitted distribution to actual data after R170%

MRI70% -- Simulated mean concentration distribution with 45 samples from ARI70%
PMRI100% -- Predicted R1100% mean concentration distribution with 65 samples from ARI70%
ARI100% -- Final fitted distribution with all 65 samples

MRI100% -- Final simulated mean concentration distribution with 65 samples from ARI100%

4.3.1.2 Surface Area The skin surface area for a commercial worker was based on the
surface area of hands and arms for men. The distributions of these body parts have been
developed by the USEPA (1991). The distributions for the surface area of arms and hands
are estimated by normal distributions in Figures 4-7 and 4-8 respectively. The
distributions for the surface area of arms has a mean of 2280 cm” and a standard deviation
of 374 cm? (USEPA, 1991:Ch 4, 10). The distributions for the surface area of hands has a

mean of 840 cm? and a standard deviation of 127 cm? (USEPA, 1991:Ch 4, 10). The
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default estimate was based on the sum of the means of the two distributions. These two
distributions were randomly sampled in the risk simulation and their samples were summed
to propagate the uncertainty in the exposure surface area..

No correlation between these two variables was used because it has been shown
that correlations between variables that have little influence on the risk distribution can
safely be ignored (Smith ez al., 1992:473). The Spearman .rank correlation coefficient, an
indicator of the relative importance, was 0.04 for the distribution of the surface area of
arms and 0.00 for the distribution of hands. The Spearman rank correlation coefficients
compared to the correlation coefficients of other variables for all the risk simulation at site
for can be seen in Table 4-8 of Section 4.4. Another reason why ignoring the correlations
between these two variables and other variables within the risk simulation is appropriate is
that all the distributions used in the risk simulation are for men between the ages of 30 and
60. Using specific distributions based on age and sex, where most of the
interdependencies arise, reduces the effect of neglecting correlations between variables

significantly (Finley and Paustenbauch, 1994:57).
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Figure 4-7: Distribution for Surface Area of Arms for Men
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4.3.1.3 Air Concentration Since metals do not volatilize, it is assumed that they are
transported into the air through contaminated fugitive dust. The concentration in the air is
directly related to amount of dust in the air. The dust in the air was quantified with
measurements taken on particulate with aerodynamic diameters less than or equal to
10 m (PM10) (Masters, 1991, 273). The aerodynamic diameter is used to determine
how far a particulate is likely to penetrate into the lungs where it is possibly absorbed or
fixed. The PM10 is generally the amount of airborne soil per cubic meter of air. An
estimate of the concentration of metals in the air was calculated in the actual risk
assessment using Equation 4.1 (Earth Technology Corporation, 1993: A3, 185). A
maximum PM10 of 1.90-10°° kg/m’-air and an average PM10 of 1.26-10°° kg/m’-air were
reported in 1991 for the local AFP44 area (Earth Technology Corporation, 1993: A3,
185).

AC (mg/m®) = CS(mg/kg-soil)-PM10(kg-soil/m™-air) 4.1

The 95% UBCL of the air concentration (AC) was found by multiplying the 95% UBCL
of the mean concentration for chromium with the maximum PM10 of 1.90-10® kg-soil/m>-

air, which resulted in an air concentration 8.40-10° mg/m® of chromium (Earth
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Technology Corporation, 1993: A3, 185). Since the PM10 is physically constrained to
values greater than zero, three points were available to estimate a conservative triangular
distribution shown in Figure 4-7. This distribution was used to conservatively represent
the uncertainty in the PM10 value with limited information. The PM10 distribution was
not significantly influential so the triangular distribution is an adequate representation of
the variability and/or uncertainty in PM10. The soil concentration for Chromium was
repeatedly sampled and multiplied by a random sample from the PM10 distribution to
estimate the distribution of uncertainty and/or variability of the AC. The equation for the
mode of a triangular distribution when the minimum, average, and the maximum are
known is provided in Equation 4.2.

mode = 3-(average) - minimum - maximum “4.2)
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Figure 4-9: Distribution of Uncertainty in PM10
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4.3.1.4 Inhalation Rate According to Layton, 1993, the inhalation rate is a function of
the three variables described in Equation 4.3. The variables are briefly defined below, but
the reader is encouraged to reference the article for a more detailed discussion of the

variables and derivations.

IR =EHVQ 4.3)
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Where,

“E = energy expenditure rate, kJ/day;

H = volume of oxygen (at standard temperature and pressure , dry air; or STPD)

consumed in the production of 1 kJ of energy expended, L/kJ and
VQ = the ventilatory equivalent, ratio of the minute volume to oxygen uptake
rate, unitless” (Layton, 1993:25)
The energy expenditure rate is a function of the basal metabolic rate (BMR) and an
activity level multiplier (A) as shown in Equation 4.4.
E =BMR-A (4.4)

The BMR is dependent on body weight, sex, and age. Some specific functions for men
and women were developed and presented by Layton. The function of BMR for men
between the ages of 18 and 30 was found to be best estimated by 0.063-BW+2.896. The
body weight, in kilograms, was sampled and used to determine the appropriate BMR.
According to the personnel at AFP44, the activity of the commercial worker was defined
as light to moderate, which corresponds to an activity multiplier of 1.3 to 1.8 with the
most likely value of 1.6 (Layton, 1993:28). The triangular distribution in Figure 4-10 is
used to conservatively account for the variability and uncertainty in A with limited
information. The value for H is presented as a constant equal to 0.05 L O2/kJ, which is
based on an average of multiple studies (Layton, 1993:26). The VQ for adults was
statistically fit and shown to be well represented by a lognormal distribution with an
arithmetic mean of 27.53 (unitless) and an arithmetic standard deviation of 4.56 (unitless)
(Layton, 1993:26). The distribution for VQ is shown in Figure 4-11. The function for

BMR and the distributions for A and VQ were used to propagate the uncertainty in the

inhalation rate.
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4.3.1.5 Reference Doses As was discussed in Section 2.3.2, the RfD is based on an
experimental no-observed-adverse-effect level (NOAEL) that has been modified by
uncertainty factors. The following is a brief overview of how the uncertainty in the RfD
can be represented (Baird et al., 1996). For a more detailed discussion of the use of
uncertainty factors to extrapolate a RfD the reader is encouraged to reference Kenneth
and Erdreich, 1989; Kimmel, 1990; and Barnes and Dourson, 1988. To extrapolate an
RfD the USEPA begins with some experimental threshold (ET) dose. The term ET is
used because it may be the NOAEL or the lowest-observable-adverse-effect level
(LOAEL), if a NOAEL is not available, that is used to extrapolate the RfD (Kimmel,

1990: 191). The ET is then divided by a number of uncertainty factors that apply. The
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possible number of uncertainty factors used to derive the RfD are shown in Equation 4.5
(Baird ez al., 1996: 82).

ET

RfD =
UF,, - UF, - UF, - UF, - UF, - MF

“4.5)

Where,

UFy -- the uncertainty for extrapolating from animal to human

UFny -- the uncertainty for extrapolating from average human to sensitive human

UF;s -- the uncertainty for extrapolating from subchronic to chronic

UF. -- the uncertainty factor from a LOAEL to NOAEL

UFp -- the uncertainty factor when there is limited data for a chemical

MF -- a modifying factor for any other particular uncertainties that may apply

These uncertainty factors typically take on the value of 10, which is based on a
study by Dourson and Stara (1983) that established the EPA’s 10-fold uncertainty factor
(Baird ez al., 1996:81). Because there is variability in the response to a dose by
individuals in a population, these uncertainty factors must also have some natural
variability. The 10-fold factor is a conservative upper bound value used to account for the
variability in the uncertainty factors (Kimmel, 1990: 192). Instead of using a conservative
point estimate that requires risk assessment and risk management to determine an
appropriate value, a probabilistic approach attempts to maintain the separation of science
and policy (Baird et al., 1996:82).

To estimate the uncertainty in the RfD, Baird et al. broke down equation 4.5 and
evaluated the uncertainty factors individually. Baird et al. incorporated much of the same
data used to estimate the EPA’s 10-fold uncertainty factor to derive a distribution for

UFan, UFny, UFs, and UF,.. The two other uncertainty factors were not evaluated

because the study excluded compounds for which the EPA had used limited data or
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modifying uncertainty factors (Baird ez al., 1996:90). For a complete justification of the
following distributions the reader is encouraged to read the study by Baird ez al. (1996).
The parameters of the distributions are the arithmetic mean first and arithmetic standard
deviations, respectively.

UFau ~ Lognormal (20.505, 69.535)

UFuy ~ Lognormal (5.609, 1.942)
UFs ~ Lognormal (2.634, 2.256)
UF. ~ Lognormal (3.914, 2.232)

The reported RfD in the actual risk assessment (Earth Technology Corporation,
1993:Ch 3, 213) for each compound was multiplied by the total uncertainty factor, which
was also provided in the risk assessment (Earth Technology Corporation, 1993:Ch 3, 145,
147) to determine the initial NOAEL for the chemical in 1992 when the information was
taken from the Integrated Risk Information System (IRIS) (USEPA, 1994). As was
mentioned earlier, these uncertainty factors are typically set at a value of 10. In some
cases, of the risk assessment for Site 4, a value less than 10 was used for a particular
uncertainty factor. The distributions presented above were still used in an attempt to

maintain the separation of science and policy. These calculations are shown below. The

underscore indicates the UFs are random variables that follow their particular distribution

defined above.
_6 _— .
DRfDs, ~ (4-10" mg/ kg — day) - (1000)
. —5 — .
DRfDq; ~ (1-10” mg / kg — day) - (10)

(UEy)
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. _4 —_ .
DRID, . {1107 mg/ kg — day)- (500)

(Dermal)
(UEy)- (UFy)- (UE,)
. _7 — .
IRfD¢, ~ O 10" mg/ kg~ day)- (300) (Inhalation)

(UEyy1)- (UEyy, ) - (UK, )
The numerator is an estimate of the NOAEL in 1992, which is divided by an estimate of
the distribution for the appropriate uncertainty factors. These equations were used in the
simulation to estimate the distribution of uncertainty in the noncancer toxicity values in the
probabilistic risk assessment.

4.3.2 Risk Distribution Results for Site 4 Al the distributions presented m Section
4.3.1 were used to estimate the uncertainty in the estimated risk. Like OU2, three PRA
simulations were run. The only distributions that were changed between the three
simulations are the distributions for the mean concentration for each chemical in
Table 4-5. The MRI70% distribution was used to estimate the risk distribution with the
45 samples available at the R170%. The PMRI 100% distribution was used in the second
simulation to predict the RI100% risk distribution and risk probabilities with an expected 6
additional samples. The MRI100% distribution was used in the third PRA simulation to
estimate the R1100% risk distribution.

Like the results for QU2, only the RI70% and R1100% risk distributions and
percentiles are shown in Figures 4-12 and 4-13 respectively because the predicted R1100%
risk distribution (PRI100%) looks very similar to final risk distribution with the
information available after the R1100%. The clearly acceptable (CA) and clearly
unacceptable (CUA) levels of noncancer risk were both set at one by the remedial project

manager, therefore, there is only a low and high probability of risk. The probability that

112




[cA]

Frequency Chart

CUA RME
937 A - 9366
02 e et i cdaaiiieeeiiemanscccmaacaaaaan
-
= o
Lo I -1 B o e - =
= [~
] o
Q -
P S SR - &
000 L ' 0
0.00 6.25 9.38 50
Uniless Ratio of Intake Ddse to Reference Dose
Frequency Chart
663 - 6627
L R -
= .y
— [y ]
R I e R P PP PP -+ =
B =
Bh 166 - d-mm s mre e -+ &
.000 4||In. 0
0.00 0.25 0.50 0.75 1.00
Uniless Ratio of Intake Dose to Reference Dose
Frequency Chart
222 - 2223
-
.167 . =
= =
= - =
- <
=]
& 056 - 555
.000 ' 0
0.00 0.02 0.04 0.06 0.08
Uniless Ratio of Intake Dose to Reference Dose
| Range and Percentiles I
Min 10% 20% 30% 40% 50% 60% 70% 80% 90% Max
0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.08 22.56

Figure 4-12: Results of PRA from Site 4 with 45 Samples from RI170%
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the risk is low (or CA) is the area under the risk distribution curve to the left of one and
the probability that the risk is high (or CUA) is the remaining area to the right of the one.
The first panel of Figures 4-12 and 4-13 shows the histogram of the risk values from zero
to the RME point estimate of 12.55. The second panel shows the risk values from zero to
the CA and CUA level of one. The third panel shows the risk values from zero to 0.08,
which encompasses 90% of the risk values in both graphs. The key percentiles and
statistics for all three distributions are shown in Table 4-6 and 4-7 for a more detailed
comparison of the distributions and results.

Table 4-6: Selected Percentiles From PRA Simulations for Site 4

Percentiles 50% 60% 70% 80% 90% 95% | Max
Value
RI70% 0.00 0.01 0.01 0.03 0.08 0.18 22.56
PRI100% 0.00 0.01 0.01 0.03 0.07 0.17 46.36
R1100% 0.00 0.01 0.02 0.03 0.08 0.19 57.41
RI70% -- Risk Distribution with information available after 45 samples
PRI100% -- Predicted R1100% Risk Distribution with 45 samples from ARI170%
RI100% -- Final Risk Distribution with all 65 samples
Table 4-7: Key Statistics from PRA Simulations for Site 4

Simulation Percentiles Risk Probabilities

- CA CUA RME PE CA CUA
RI70% 99.05 0.95 99.71 0.9905 0.0095
PRI100% 99.29 0.71 99.72 0.9848 0.0071
R1100% 98.07 0.93 99.69 0.9907 0.0093

The results of the PRA simulation for Site 4 are similar to the results of QU?2.

There are only two findings evaluated for Site 4 because the site cannot be compared to

any previous evaluation like OU2. The findings are all based on the RI100% risk

distribution, since it is based on the most information available. The first finding is that the

risk simulation shows that approximately 99.69% of all the risks are below the RME.
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Because of the large skewness in the distribution the 95th percentile risk value and the
RME risk value differ by a factor of 66. Once again, in accordance with the logic
presented in Section 4.2.2, this shows that the RME risk is possible, but highly unlikely.
With a probability of 0.0031 that any risk is equal to or greater than the RME risk, the
RME hazard index of 12.55 is more likely a maximum risk and is assumed to significantly
overestimate the risk to a commercial worker due to the contaminated soil. This finding
also corresponds to the assumptions and findings of Chapter 1.

4.3.3 Decision Analysis for Site 4 The second finding results from the decision
analysis of Site 4. In this case the recommendations are quite obvious because the
probabilities of CUA risks are so low. The cost, duration, decision maker preferences, and
other input information can be seen in Appendix F. Considerin g the probabilities for the
RI70%, the predicted probabilities for the R1100%, and the inputs in Appendix G, the
recommendation shown in Figure 4-14 was made at the RI70% phase. Using the
probabilities for the actual R1100%, the recommendation to take no further was made and
is shown in Figure 4-15. As with the OU2 scenario, the recommendations are consistent
in both phases.

The recommended optimal decision strategy presented in a similar format
described in Section 4.2.1. The results show that, as with OU2, the decision to take an
appropriate NFA could have been recommended at an earlier stage in the RI process. The
additional information gathered to reduce the uncertainty in the mean exposure
concentration was not expected to significantly change either the risk probabilities or

optimal decision strategy.
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Figure 4-14: Decision Support Model Recommendations at the RI70% for Site 4
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Figure 4-15: Decision Support Model Recommendations at the RI100% for Site 4

The potential for savings presented by using the probabilistic approach and the
decision support model can only be analyzed from the resources spent in the RI. The cost
saving for Site 4 might have been at least $200,000 (in 1996 dollars) and 2 months from
the additional 20 samples taken. The cost analysis based on an average cost of $10,000
per sample for the total RI at Site 4 . This was for one site of the 15 at AFP44. Whether
the expected cost of clean up of $4,500,000 (in 1996 dollars) could have been avoided
based on lesser risks is difficult to determine because not all risks were evaluated and the
decision maker must take into account other economical, social, and political factors when

making the final decision.
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4.4 Marginal Returns of Reducing the Uncertainty The results show that when value
of information is not considered resources may be expended unnecessarily. The results in
Table 4-3 and Table 4-7, indicate that the added information from the additional samples
from subsequent RI100% studies, in both cases, did not significantly change the risk
distribution or the risk probabilities. This is due to the fact that the investigation phase is
typically focused on one variable. Concentration samples are taken in order to reduce the
uncertainty in the estimated risk. After the uncertainty in the mean concentration is
reduced to some point a continued reduction results in only marginal returns. Finkel and
Evans in their article “Evaluating the Benefits of Uncertainty Reduction in Environmental
Health Risk Management” explained it best:

This reflects the common-sense notion that the “weakest link” in a chain of

uncertainties will limit the benefits of research. If one variable affecting the risk

cannot be known with more precision than a factor of 1000, for example, the
benefit of refining the estimate of another variable will diminish rapidly once it is

known within a factor of 100 or so. (Finkel and Evans, 1987)

In both examples presented, it is demonstrated that the benefit of the continued
investigation on the chemical concentration rapidly diminished after the R170%.

One tool that can be used to determine whether the mean concentration
distribution is a “weak link” in the chain of uncertainties is to use the sensitivity analysis
techniques discussed in Section 3.10. Table 4-8 provides the Spearman rank correlation
for every variable for every simulation. The coefficient provides a metric on how the
range of a random variable correlates to the range of risks in the risk simulation. The

variables representing the mean concentrations are highlighted. The mean concentration

distribution (CW) at OU2 had a Spearman rank correlation coefficient of 0. 15,0.12, and
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0.15 for the three simulations. Note that when these correlation coefficient are compared
to the coefficients of other, more influential, variables, it suggests that the CW is relatively
less influential to the risk distribution. This may explain why, even though the actual mean
concentration distribution (MRI100%) and predicted mean concentration distribution
(PMRI100%) for the RI100% phase in Figure 4-2 were slightly different, there was not a
significant difference in the predicted risk probabilities (PRI100%) and the actual risk
probabilities (RI100%) of the risk distribution for OU2. Also in the RI100% simulation,
the ED is almost five times as influential, and the Oral-SF is three times as influential as
the mean concentration.

Table 4-7: Spearman Rank Correlation Coefficients

Location 0OU2, WPAFB Site4, AFP44
Variable Simulation Variable Simulation
RI70% PRI70% RI100% RI70% PRI70% RI100%
ED 0.73 0.74 0.73 ED 0.71 0.71 0.72

0.44 0.43 0.41
0.38 0.36 0.37
EF 0.17 0.17 0.17
UF, 0.15 0.15 0.13

Inh R
Ing R

SA

vVQ 0.02 0.03 0.03
Arms 0.02 0.03 0.04

Hands 0.00 0.00 0.00
A 0.00 -0.02 0.00

In the case of Site 4 the difference is a little more apparent and the point is more

obvious. The chromium mean concentration (Cr-MC) had the highest correlation
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coefficient of 0.09. At this site the estimate of each individual mean concentration
distribution is not as critical as mean concentration at OU2. A good example of this is the
set of estimates of the Cadmium mean concentration distributions (Cd-MC), which had a
correlation coefficient of 0.08. From Table 4-6 and Appendix B, it is apparent that the
MRI100% distribution was not predicted very well. This is in part because of the biased
sampling in the last 20 samples. Regardless of the difference in the mean concentration
distributions, however, there was not a significant effect on results of the risk distribution
or the risk probabilities. This is due to the fact that the Cd-MC is not a very influential
variable, compared to other variables.

This analysis does not indicate that the mean concentration will always be a less
influential variable only that an analyst must be aware of how influential it is in the risk
simulation. In a case where the risk is an acute toxicity risk and the exposure duration is
measured in minutes and the exposure frequency is one, the exposure concentration may
be the only influential variable. It is important to keep a perspective of which variables are
driving the risk distribution when considering the possibility of gathering additional
information. By not considering value of information or the relative importance of the
mean concentration, the marginal returns of reducing the uncertainty in the mean

concentration beyond the RI70% were gained at a considerable cost.
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5 Conclusions and Recommendations
5.1 Conclusions

In the past 25 years a considerable amount of resources have been spent on the
remediation of past hazardous waste disposal sites governed under the Comprehensive
Environmental Response, Compensation, and Liabilities Act of 1980. The majority of the
remediation resources have been consumed by costly and lengthy remedial investigation
studies to characterize the human health risk present (Lawrence, 1993:2963; Ember,
1993:19). The excessive cost and duration of characterizing the site has been spurred on
by two reasons.

The first reason is the liabilities for improperly characterizing the risk at a site. To
deal with the liabilities of improperly characterizing the risks, decision makers and
regulators have relied on conservative assumptions to ensure the risks were not
underestimated. In estimating the reasonable maximum exposure risk many of the risk
variables are represented by conservative, recommended guideline values. When
combined in the risk calculations, these conservative values produce risk scenarios that
may significantly overestimate the risk. Two examples were evaluated in Chapter 4 to
show that the RME risk using the default guideline values significantly overestimate the
risk. Using a probabilistic risk assessment it was shown the RME risk estimate for a
commercial worker at Operable Unit 2 (OU2), Wright-Patterson Air Force Base, Ohio,
was approximately at the 99.76th percentile of the estimated risk distribution. A
probabilistic risk assessment of the risk to a commercial worker at Site 4, Air Force Plant

44, Arizona, also showed that the RME risk estimate, based on the guideline
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recommended value is approximately at the 99.51th percentile of the estimated risk
distribution.

Generally the 95th percentile of the risk distribution is considered to be an estimate
of the RME risk (Burmaster and Appling, 1995:2439; Finley and Paustenbach 1994: 70).
In the case of OU2, the RME risk was 46 times greater than the 95th percentile of the risk
distribution and for Site 4 the RME risk was 66 times greater than the 95th percentile.
Though the remedial decision at Site 4 and OU2 were made much more confidently with
an extremely conservative estimate of the risk, they may have been made at the with
significant remedial investigation and clean-up costs that may have been avoided if the risk
were estimated using a more scientifically based methodology.

The second reason for the seemingly excessive cost and duration of remedial
investigations is the complexity of making the remedial decisions. Unable to deal directly
with the uncertainty resulting from the convolution of the uncertainties in a multitude of
variables, and heavily persuaded by the liabilities, decision makers and regulators have
relied on conservativ¢ assumptions and more studies to take appropriate actions. The
value of the information (VOI) from additional studies is often not evaluated or
considered. This is partially due to the fact that when decisions are complex, VOI is
difficult to assess without the aid of analytical tools, which environmental analysts have
not been afforded. As demonstrated in Sections 4.2.3 and 4.3.3 for OU2 and Site 4
respectively, if VOI is not considered, a substantial amount of resources may be expended

on subsequent remedial investigation studies to marginally reduce the uncertainty in the

estimated risk.
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The environmental problems of the future are expected to grow and resources to
deal with those problems will be limited. The remediation of hazardous waste sites under
CERCLA and the more current sites under the Resource Conservation and Recovery
Act’s Corrective Action Program is expected to carry the need for an efficient remediation
decision process well into the next century (Bredehoeft, 1994:95). The remediation
decision process must evolve toward a more objective methodology to ensure that
resources are applied to the greatest opportunity for risk reduction (SAB, 1990:16).
Studying the site does not reduce any risks so risk analysts and decision makers must be
afforded tools and techniques to move as quickly and efficiently as possible from the
investigation phase to an appropriate remedial action.

The main objective of this research is to provide tools and techniques to aid risk
analysts in determining whether it would be beneficial to gather additional information or
whether the decision to take an appropriate action can be made without further
investigation. This research provides some probabilistic risk assessment and decision
analysis techniques to avoid using simple conservative assumptions to deal with the
complex uncértainties and evaluate the VOI of additional studies in the complex
remediation decision process. There are three underlying objectives in this research,
which support the main research objective, including: (1) provide a better method for
estimating the uncertainty in the pollutant mean concentration distribution, (2) provide a
method for estimating the reduction in the uncertainty of the estimate in the mean
concentration from additional samples (3) provide a method to avoid using conservative

assumptions to deal with the uncertainty in the risk variables and the final risk value, (4)
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and verify the possible benefits gained from using a probabilistic risk assessment over the
EPA’s current deterministic point estimate approach. Each objective and how it was

achieved is briefly discussed below.

The first objective was important because statistical assumptions are usually made
about the pollutant concentration that may not be valid with environmental data. Due to
the underlying theory of risk assessment, the mean pollutant concentration is used in the
risk calculation. Using the Central Limit Theorem, the assumption is typically made that
the uncertainty in the estimate of the mean concentration is normally distributed and
respective statistics are used to calculate the 95% upper bound confidence limit (UBCL)
of the arithmetic mean. It was shown, Section 3.7.5 that this assumption may not be valid
with highly skewed environmental data and small sample sizes, which are common in the
initial stages of the remedial investigation.

A methodology for more appropriately estimating the distribution of the
uncertainty in the estimate of the mean concentration of highly skewed distributions and
small sample sizes is provided in Section 3.7.5.1. Using an optimal best fit distribution of
the actual pollutant concentration samples, 1000 n-size sample vectors were generated,
from which 1000 means were calculated, to estimate a range of means that could result
from a set of n samples from the actual pollutant concentration distribution. Where n is
the number of samples available to the risk analyst when the mean concentration is being
estimated. An optimally fit distribution was fit to the histogram of the 1000 means, which
represents an estimate of the uncertainty in the estimate of the mean concentration. A

distribution provides much more information and allows for uncertainty analysis that is not
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available with point estimate approach of using the 95% UBCL of the mean. This
methodology also allowed for the accomplishment of the third objective. A method for
predicting the reduced uncertainty from additional samples showed to be quite accurate in
Sections 4.2.1 and 4.3.1.1. Predictions of uncertainty reduction are necessary to
determine the VOL

The second underlying objective is necessary for the risk assessment process to
evolve toward a more scientifically based methodology, as recommended by the National
Research Council (NRC, 1983). For the evolution to continue, there must be a clear
distinction between risk assessment, which is the scientific and objective procedure of
estimating the risk, and risk management, which is the decision process of considering
technical, social, economical, political, and other factors to determine a remediation
strategy. Establishing an appropriate conservative point estimate value for the risk
variables requires both science and policy.

The probabilistic risk assessment techniques presented in this research provide an
objective method for the risk analyst to account for the uncertainty using distributions as
opposed to conservative point estimates. This research also provides a methodology for
estimating the uncertainty in the risk variables and propagating the uncertainty in each
variable through the risk calculations to estimate the uncertainty in the final risk estimate.
This offers a method to minimize the need for conservative assumptions and maintains a
separation of science and policy. Variables that have not been researched in the literature
or for which there is no data available may still need to be estimated using conservative

assumptions, but as was shown in Section 3.7.9 of this research, those variables are
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typically variables that are less influential and the conservative assumptions may not make
a difference.

In order to move from one paradigm of risk analysis to another paradigm, there
must be substantial benefits to be gained from the new methodology. The third objective
was to present and validate the possible benefits from using the probabilistic risk
assessment (PRA) approach. There are five possible benefits, that were shown and
addressed throughout Chapters 3 demonstrated in Chapter 4, and summarized in Section
3.14, that can be gained from using the probabilistic risk assessment (PRA) approach over
the current deterministic point estimate. First, the PRA approach maintains a better
separation between risk assessment and risk management. The risk analyst can be
objective about estimating the uncertainty in the risk variables and propagate that
uncertainty through the risk calculations using the Monte Carlo method. This allows the
risk analyst to objectively present all the information, and let the decision maker determine
the level of conservatism in the risk value or risk percentile that is appropriate for the site.
The second benefit stems from the first in that the PRA approach avoids the debate that
exists in the literature over how conservative the risk variables must be to estimate the
RME risk.

The third, fourth, and fifth benefits are distinct but tied together in that they allow
for more analysis of the estimated risk to apply the tools and techniques necessary to
accomplish the overall research objective. The third benefit of the PRA approach was that
it provides a better method of estimating the unceytainty and variability in the final risk

distribution. As was demonstrated in Section 3.13, it is important for the risk analyst to be
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aware of which variables consist primarily of variability or uncertainty and which ones
contribute the most to the overall variance of the risk distribution. If the difference
between uncertainty and variability is not considered, resources may be expended in
efforts to reduce an irreducible natural variability or to marginally reduce the uncertainty.
The fourth benefit is the wealth of information that is provided from a probabilistic
risk assessment above that of a point estimate. Figure 5-1 shows what is typically given to
a decision maker in the point estimate approach (Thompson et al., 1994:58). The risk
analyst provides the decision maker with an RME point estimate of the risk, represented
by the black point on the continuum of risks in Figure 5-1 The risk analyst knows the
RME risk is a conservative estimate of the high end of the risk distribution, but is unable
to answer the question of how conservative the point estimate might be or the likelihood

that it might actually occur within the population of concern.

Possible Range of Risks

|
N
ol

Figure 5-1: Information Typically Provided From Deterministic
Point Estimate Approach

As discussed in Section 2.3.4, the EPA recognizes that a point estimate of the risk
is both misleading and incomplete (USEPA, 1992b:16) because all the uncertainties in the
risk variables used to estimate the RME risk point estimate cannot be adequately
represented by a single point. Figure 5-2 shows a general probability density function of

the range of risks that can be generated using a probabilistic risk assessment approach.
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The distribution provides much more information about the possible range of risks and an
estimate of the likelihood that the risks will occur. The RME point estimate shown in
Figure 5-1 is provided in Figure 5-2 to show that the decision maker can be given an
estimate of the likelihood of any risk along the range or risk, including the RME point

estimate.

L2

Figure 5-2: General Probability Density Function for a Range of Risks

The risk distribution graphs, statistics, percentiles, and sensitivity analysis charts
provided in Chapter 4 from a probabilistic risk assessment of the risks at OU2 and Site 4
provide information that is critical to both the analyst and the decision maker. This
information would be impossible to attain using the point estimate approach. Unless
uncertainty and variability in both the risk variables and the risk estimate are quantified, it
is difficult to make optimal decisions to maximize the benefit to cost ratio of resources
expended during the investigation. The fifth benefit is that the analyst is not bound to
Clairmont’s analysis of a risk distribution for one chemical in one media. The
methodology is flexible in that it can estimate a chemical-specific risk distribution, as
shown for OU2 in Section 4.2.2, or the total risk due to all chemicals in all media to the

population of interest as shown for Site 4 in Section 4.3.2. It provides flexibility to meet
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the specific needs of the analyst and decision maker. The five possible benefits of the
methodology discussed above were tested and demonstrated in Chapter 4.

Thus far the three underlying objectives of this research have been reviewed. The
purpose of the underlying objectives was to accomplish the main objective of this research,
which was to aid the risk analyst and decision maker to more efficiently and objectively
characterize the risk at a site. To accomplish this objective, there was a need for a
decision support model to encompass the complexity of the remedial investigation and
feasibility study (RI/FS). The decision support model also needed to determine, in an
optimal manner, based on some decision maker preferences, whether additional
information should be‘gathered or an appropriate remedial action could be recommended
without additional information.

Clairmont developed a decision support model that accomplished the main
objective, but he made some simplifying assumptions to estimate the risk distribution.
This research evaluated some of these assumptions and found that they may not be
appropriate for environmental data. Clairmont’s uncertainty analysis of the risk
distribution was limited to the final risk probabilities in the decision support model.
Uncertainty analysis of the risk distribution and the presentation of this uncertainty
analysis to the decision maker are both vital to the decision process. By providing a more
appropriately assessed risk distribution, including uncertainty and variability analysis, the
recommendations of the decision support model will be more credible when presented to a
decision maker. The three underlying objectives of this research were all driven by a need

to more appropriately assess the risk distributions which would be input into the decision

129




support models. The risk distribution along with the recommendations of the decision
support model could be provided to the decision maker for consideration along with other
social and political factors.

The use of the methodology along with Clairmont’s models resulted in some key
findings in Chapter 4 that support the assumptions of this research. By not considering
VOI or the relative importance of the mean concentration, the marginal returns of
reducing the uncertainty in the mean concentration and the risk were gained at a
considerable and possibly unnecessary cost. In the case of OU2 the marginal reduction in
the uncertainties of the mean concentration (shown in Appendix B) and the estimated risk
(shown in Figure 4-3, Figure 4-4, and Table 4-3), from the additional information from the
RI100% were gained at an expected cost or $240,000 (in 1996 dollars). In the case of
Site 4 the marginal reduction in the uncertainty of the mean concentrations (shown in
Appendix B for each chemical) and the estimated risk (shown in Figure 4-12, Figure 4-13,
Table 4-6) were gained at an estimated cost of $200,000 (in 1996 dollars). This seems
like a high price to pay for such a marginal reduction in the uncertainty of the risk. A
price that may no longer be affordable in the future.

5.2 Recommendation for Further Research

There are certain areas of this research that may be potential issues of further
research. In this research, a lower limit of 10 samples was used to estimate the
distribution of the a pollutant in the environment. This was based on the minimum
requirement of ExpertFit. Some analysis could be done to determine an optimal level of

samples specific to environmental data that are required to begin estimating the
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distribution. The analysis of contribution to variance used in this research is only an
approximation. There may be other methods of analytically estimating the contribution to
variance, such as linear regression, that were beyond the scope of this research. In
evaluating the two sites in this research the author speculated a trend that may exist.
Contractors are typically hired by the Air Force to do risk assessments. Some of the
assumptions made by these contractors in assessing the risks seemed to be ultra
conservative. Because the contractor does not bear the cost of clean-up, it is to the
contractors benefit to use every conservative assumption that can be reasonably justified
to estimate the risk. By using more conservative assumptions, the contractor is more
confident that their assessment has not improperly characterized the risk present at the
site. Unfortunately, for the Air Force, as the number of conservative assumptions used
increases so does the likelihood that sites are being cleaned up unnecessarily. It might be
valuable to the Air Force to evaluate a number of risk assessments done by contractors to
see if other overly conservative assumptions are being made by contractors who may

benefit from conservative assumptions.
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Appendix A

The following are the calculations for the 95% upper bound confidence limit (UBCL) of

the mean concentration with 14 samples from the POL area after the RI70%. The

calculations were done in Mathcad 6.0 Plus (MathSoft, 1995) and imported into a Word

document.

The 14 samples and pertinent statistics are as follows:

BnDatal4 :=(.002 .075 .051 .002 .120 .100 .044 .053 .500 .002 .039 .280 .002 .023)

Sample_Mean :=mean(BnDatal4) Sample_Mean =0.0924

Sample_Variance ::w Sample_Variance =0.0191
n-1

Sample_Stan_Dev = ,\/ Sample_Variance Sample_Stan_Dev =0.1382

Sample_Stan_Dev
StanErr ;= StanErr = 0.0369

A

The 95% UBCL assuming the mean concentration is both normally and lognormally

distributed were calculated.

Assuming the mean concentration is normally distributed

t95::qt(.975,11— 1) t95=21604

t g5-Sample_Stan_Dev

A

Assuming the actual pollutant concentration is lognormally distributed. The

UCL 5 95:= Sample_Mean + UCL.,95=0.1722

following calculations are based on the recommended guideline procedures

(USEPA, 1989c:Ch 6, 19) out of Gilbert (1987:170).
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In order to calculate the estimate of the 95%UBCL the data must be lognormally

transformed.

Transformed_Data1 i:=ln(BnData141 i)

Sample_Mean 1 =-3.5636

_ var( Transformed_Data )-n

Sample_Variance- : 7
n -

Sample_Variance. =3.6381

Sample_Stan_Dev - i= ,J Sample_Variance

Sample_Stan_Dev  =1.9074

The following is the H statistic discussed in Gilbert (1987).

H uppergs =442

Sample_Stan_Dev T'H 5
Sample_Mean 7 +-.5-Sample_Variance  + upper?

Arithmetic UBCL :=e n—1

Arithmetic_UBCL =1.8125

The 95% UBCL assuming the mean concentration is normally distributed was used
because the 95% UBCL using the calculations from Gilbert resulted in an excessively large
95% UBCL. The UBCL of 1.8125 mg/L is approximately 20 times greater than the
sample mean of 0.0924 mg/L. Others have analyzed the methodology outline in Gilbert
(1987) and have shown that this methodology may result in significant overestimation of

the mean concentration (Burmaster and Edelmann, 1996).
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Appendix B

All the values that were below the minimum detection limit (MDL) values in the
sample set for all the chemicals analyzed were set at the MDL. This resulted in all the
values in the sample set equal to or greater than the MDL, which biased the best fit
distributions. Some of the better fitted distributions have location parameters that are
heavily influenced by the fact that there were no values below the MDL. It was assumed
that a distribution having the location parameter at zero would probably be a more
reasonable distribution than one with the location parameter close to the MDL. This is

why some of the less-than-best-fit distributions were used in the simulation.
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1 Distributions for Benzene at OU2, WPAFB

ExpertFit Results
Risk Simulation Best-Fit Distribution Rank Score
Distribution
ARI70% Pearson Type 6 (0.00, 1.00, 0.56, 7.11) 1 89.47
Gamma (1.03e-3, 0.20, 0.46) 2 86.84
Gamma (0.17, 0.53)* 3 85.53
MRI70% Erlang (0.00, 0.01, 8.00) 1 99.04
Gamma (0.01, 7.61)* 2 97.12
| PMRI70% Gamma(7.97e-3, 11.58)* 1 100
ARI100% Gamma (9.98¢-4, 0.23, 0.35) 1 96.05
Pearson Type 6 (9.97¢-4, 1.00, 0.37, 5.32) 2 90.79
Gamma (0.18, 0.47)* 3 81.58
MRI100% Johnson SU (1.52¢-3, 0.06, -4.28, 3.89) 1 100.00
Erlang (0.00, 8.22¢-3, 10.00) 2 95.19
Gamma (8.64¢-3, 9.53)* 3 93.27
* -- distribution used in probabilistic risk simulation
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2, Distributions for Cadmium in Soil at Site 4, AFP44

ExpertFit Results
Risk Simulation Best-Fit Distribution Rank Score
Distribuiton
ARI70% Weibull (0.25, 0.46, 0.28) 1 92.65
Gamma (0.25, 22.88, 0.18) 2 91.18
Lognormal (0.25, -2.69, 3.79) 3 85.29
Lognormal (-0.16, 1.63)* 4 79.41
MRI70% Log-Logistic (0.97, 1.82) 1 98.08
Pearson Type (0.00, 17.72) 2 97.35
Pearson Type 6 (0.00, 1.00, 24.55, 8.78) 3 91.00
Lognormal (1.07, 0.41)* 5 81.00
PMRI70% Johnson SU (1.78, 0.73, -1.60, 1.34) 1 97.12
Pearson Type 5 (0.00, 23.64) 2 94.23
Log-Logistic (1.21, 1.67, 2.69) 3 92.31
Lognormal (1.10, 0.36)* 9 71.15
ARI100% Gamma (0.25, 29.57, 0.18) 1 91.18
Weibull (0.25, 0.58, 0.27) 2 89.71
Lognormal (0.25, 0.58, 0.27) 3 82.35
Lognormal (3.79¢-3, 1.74)* 41/2 77.94
MRI100% Johnson SU (2.21, 1.03, -1.77, 1.34) 1 100.00
Pearson Type 5 (0.00, 26.14, 6.72) 2 92.31
Log-Logistic (1.55, 2.46, 2.53) 3 90.38
Lognormal (1.43, .41)* 7 75.96
* -- distribution used in probabilistic risk simulation
1 T T T T T T T
ARI70%
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3. Distributions for Chromium in Soil at Site 4, AFP44

ExpertFit Results
Risk Simulation Best-Fit Distribution Rank Score
Distribuiton
ARI70% Lognormal (6.29, 2.65, 2.90) 1 97.06
Weibull (6.30, 50.94, 0.39) 2 97.06
Lognormal (3.46, 1.63)* 3 85.29
MRI170% Log-Logistic (37.55, 76.02, 2.64) 1 98.91
Pearson Type 5 (639.69, 5.90) 2 96.74
Log-Logistic (115,4.11) 3 89.13
Lognormal (4.77370, 43233) 5 82.61
PMRI70% Log-Logistic (45.35, 71.54,2.79) 1 100
Pearson Type 5 (0.00, 858.49, 7.54) 2 92.71
Inverted Weiball (0.00, 101.80, 3.02) 3 89.58
Lognormal (4.81, 0.38) 8 71.88
ARI100% Lognormal (6.30, 2.87,2.77) 1 98.53
Weibull (6.30, 63.06, 0.40) 2 95.59
Inverse-Gaussian (326.69, 19.29) 3 86.76
Lognormal (3.60, 1.71) 4 82.35
MRI100% Johnson SU (75.42, 35.86, -1.90, 1.40) 1 100.00
Pearson Type 5 (971.65,7.14) 2 92.71
Log-Logistic (55.47, 84.51,2.58) 3 91.67
Lognormal (4.99, 0.39)* 6 76.04
* -- distribution used in probabilistic risk simulation
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4. Distributions for Antimony in Soil at Site 4, AFP44

ExpertFit Results
Risk Simulation Best-Fit Distribution Rank Score
Distribuiton
ARI70% Log-Logistic (-2.29, 5.52, 4.59) 1 83.93
Log-Logistic (0.00, 3.16, 3.78) 2 81.25
Log-Laplace (3.00, 3.78) 3172 80.80
Weibull (6.63, 0.74)* 5 85.29
MRI170% Erlang (0.00, 0.33, 24) 1172 98.15
Gamma (0.33, 24.16)* 112 98.15
PMRI70% Erlang (0.00, 0.21, 38.00) 112 98.21
Gamma (0.20, 38.39)* 11/2 98.21
ARI100% Log- Logistic (1.58, 1.58,2.64) 1172 81.25
Weibull (1.58, 3.90, 0.65) 1172 81.25
Log-Logistic(0.00, 3.26, 3.38) 3 80.36
Weibull ( 6.66, 0.80)* 6 76.79
[ MRI100% Lognormal (2.01, 0.15)* 1 96.43
* .- distribution used in probabilistic risk simulation
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Appendix C

Determining the Relative Importance of Accurately Estimating
the Uncertainty in the Mean Concentration

Some authors argue that environmental data is usually spatially and serially
correlated, which results in an underestimation of the true variability of the contamination
at a site (Banks, 1996:442). There is also an argument that standard statistical techniques
used on a single data set reveal only a trivial portion of the uncertainty in the parameters
being estimated (Hattis and Burmaster, 1994:726). Given that 14 biased samples are
available from OU2 after the R170%, both are valid arguments. The samples are biased in
that the extraction wells are placed at suspected points of contamination. These
arguments, however, must be considered in light of how important the estimate of the
uncertainty of mean concentration is to the uncertainty of the final value being estimated.
The following sensitivity analysis shows the minimal effect of possibly underestimating the
uncertainty in the estimate of the mean concentration distribution for the QU2 scenario.

The function E-1 shows the best fit gamma distribution for benzene concentration
(x) in the groundwater, where o is estimated as 0.53241 and P is estimated as 0.17347.
The values are taken from the ARI70% distribution for benzene in Appendix B.

x ~Gamma (B, ) (E-1)

For a gamma distribution the mean is equal to o - B and the standard deviation is equal to

w/oc -B 2, Using these equations, the estimate of the mean, X , and the estimate of the
standard deviation, s_, from the best fit gamma distribution are equal to 0.09236 (mg/L)

and 0.1266 (mg/L) respectively. The mean and standard deviation from the 14 samples,
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based on the analysis done in Appendix A, are 0.0923 (mg/L) and 0.1382 (mg/L)
respectively. The results of the two estimates coincide and are used as a comparison to
the simulated distribution of the uncertainty in the mean concentration below.

Function E-2 shows the best-fit gamma distribution for the uncertainty in the

estimate of the mean concentration (;) for benzene with 14 samples, which was simulated

from ARI70% in Section 3.7.5.2. Where 0. is estimated as 7.60837 and [3- is estimated

as 0.01214, which are taken from the MRI70% distribution for benzene in Appendix B.

x ~Gamma(B_, o) (E-2)

The estimate of the mean (;) and standard deviation (s; ) of the optimally-fit distribution

of uncertainty in the mean concentration are equal to 0.09237 (mg/L.) and 0.03349
(mg/L). These results are consistent with the estimates of the distribution for “x.” The
distribution of the uncertainty in the estimate of the mean concentration is expected to

have the same mean as “x™ and a standard deviation approximately equal to the standard

deviation of “x” divided by the square root of the number of samples, 0711%%6— , which

equals 0.03384 (mg/L).
It is argued though, that because of serial correlation and a small sample size, the

estimate s, has underestimated the true value ¢ _. Subsequently, the estimate s- has
underestimated the true value of ¢ = which is the value of interest in the risk simulation.

The question is, how does this possible underestimation effect the estimate of the risk
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distribution? Figure E-1 shows three gamma distributions with the same mean of 0.0924

mg/L a standard deviation of s-, 2 times s_,and 3 times s-.
If s_ underestimates G, it was assumed that it would not underestimate it by

more than a factor of 2 as shown by the dashed gamma distribution in Figure E-1. If the

value of s underestimates the true value of ¢ - by a factor of 3, then the value of 5=

would be close to the value of s, of 0.1265 mg/L. This distribution, as shown by the

dotted line in Figure E;l would look similar to the actual benzene concentration,
ARI700% in Appendix B, which is probably not the case. Assuming that the distribution
for the uncertainty in the mean concentration would have a standard deviation of 4 or
greater assumes that x hasa greater standard deviation than “x,” which is inconsistent

with the laws of statistics.

2 T T | | T I T

All distributions have mean equal to 0.0923
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Figure E-1: Range of Possible Gamma Distributions for x If ¢ - is Underestimated

* _- distribution used in the R170% risk simulation

To conduct some sensitivity analysis of the estimate of & -, the three mean

concentration distributions shown in Figure E-1 were input into the risk simulation to
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estimate the effects of underestimating the uncertainty in the mean concentration. The risk
distribution generated from the solid gamma mean concentration distribution will be called
the RI70% risk distribution because it was the actual distribution used in the probabilistic

risk assessment simulation. The other two risk distributions will be called R170%-2 s_ and
RI70%-3 5. for a2 and 3 fold overestimation of s- respectively and are used only for this
sensitivity analysis. Figure E-2 and E-3 show the R170%-2 s. and RI70%-3 s risk

distributions. Comparing the RI70%-2 s- and R170%-3 s- risk distributions in Figure E-2

and E-3 to the actual RI70% risk distribution in Figure 3-12, a significant difference
between the three is not obvious.

The only way to accurately compare the three distributions is to compare some key
percentiles, statistics, and the risk probabilities for the three risk distributions, which are
provided in Tables E-1 and E-2. The results in Tables E-1 and E-2 show that even if the
uncertainty in the estimate of the mean concentration is underestimated, the risk
distribution will not significantly change.

Frequency Chart
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Figure E-2: R170%-2 5. Risk Distribution
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Figure E-3: RI70%-3 5. Risk Distribution
Table E-1: Selected Percentiles From Sensitivity Analysis of s-
Percentiles 50% 60% 70% 80% 90% 95% | Max Value
RI70% 293E-7 |4.56E-7 | 7.34E-7 | 1.32E-6 | 3.19E-6 | 6.57E-6 | 9.85E-5
RI70%-2s; | 1.69E-7 | 2.92E-7 | 5.35E-7 | 1.09E-6 | 2.83E-6 | 6.11E-6 | 3.29E-4
RI70%-3s- | 2.41E-7 | 3.83E-7 | 6.65E-7 | 1.25E-6 | 3.04E-6 | 6.19E-6 | 2.06E-4
Table E-2: Key Statistics From Sensitivity Analysis of s-
Simulation Percentiles Risk Probabilities
CA CUA RME PE Low Med High
RI70% 62.08% 98.77% 98.04% 0.6208 0.3669 0.0123
RI70%-2 s 64.88% 99.83% 98.87% 0.6488 0.3495 0.0017
RI70%-3 s- 69.04% 99.67% 98.91% 0.6904 0.3063 0.0033

The results of the sensitivity analysis show that the overestimation of ¢ — results in

a higher likelihood for the smaller values of the risk distribution. There is a greater

probability that the risk is low, or in other words acceptable, and a lesser probability that

the risk is medium or high, or in other words unacceptable, as shown in Table E-2. The

concept of risk probabilities was discussed in Section 2.6.2.3. It is assumed that the
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decision maker would prefer a greater probability of the risk being acceptable and a lesser

probability that the risks are unacceptable. The possible underestimation of 6 slightly

biases the risk distribution high, which is better than slightly biasing it low from a liabilities
viewpoint. In essence the effect of possibly underestimating the uncertainty in the
estimate of the mean concentration due to serial correlation and a small sample size results
in a more conservative estimate of the risk distribution. Thus, the effects of serial
correlation and small samples sizes may be a possible benefit. This is due to the fact that
the influence of the distribution of the uncertainty in the mean concentration on the overall
risk distribution is minor compared to other more influential risk variables. This effect is
thoroughly discussed and analyzed in Section 4.4.

These conclusions are specific to this scenario and should be accomplished when
cbnducting a probabilistic risk assessment. They are important from both an estimating
point of view and when using the estimate to predict the reduction in the uncertainty as in

Section 3.12.2.
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while running the model.

This section is provided for clarity so the user may keep track of the specific media and chemical types

Input the name of MEDIA: Groundwater

Input the name of CHEMICAL: Benzene

This section contains the general parameters included in the model.

COST WEIGHT = 0.67 MAX COST = 6500000

MIN COST = 1500

PROBABILITY NFA COST IS HIGH GIVEN RISK IS HIGH = 1.000

PROBABILITY NFA COST IS HIGH GIVEN RISK IS IN THE MID RANGE=  0.700
PROBABILITY NFA COST IS HIGH GIVEN RISK IS LOW=  0.010

PROBABILITY NFA DURATION IS LONG GIVEN RISK IS HIGH = 1.000
PROBABILITY NFA DURATION IS LONG GIVEN RISK IS IN THE MID RANGE =  0.700
PROBABILITY NFA DURATION IS LONG GIVEN RISK IS LOW = 0.010

MAX DURATION = 257.00
MIN DURATION = 0.50

This portion of the spreadsheet contains the cost and duration values for the various stages of the
characterization process. The cost is in dollars and the duration is in months only.

COSTS DURATIONS
Expected Expected
Low High Value Low High Value
Site Investigation NA NA NA NA NA NA
30% Remedial Investigation NA NA NA NA NA NA
60% Remedial Investigation NA NA NA NA NA NA
100% Remedial Investigation| 700000 | 1100000 | 900000 5.000 10.000 7.500
Removal Action
Media 1
Media 2f 10000 30000 20000 1.000 3.000 2.000
Media 3
Feasibility Study] 300000 | 400000 | 350000 6.000 8.000 7.000
Presumptive Remedy| 20000 40000 30000 2.000 4.000 3.000
Recommend No Further Action] 1500 3750000 NA 0.500 153.0 NA
Remediation Effort
Media 1
Media 2| 100000 150000 125000 3.000 6.000 4.500
Media 3
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The following section contains the decision maker's inputs on the levels of acceptable and unacceptable levels of
risk.
Values below which the cancer risk is CLEARLY ACCEPTABLE (i.e.: 10E-6) = 5.0E-07
Values below which the hazard index is CLEARLY ACCEPTABLE (i.e.: 1.0) = 0.95
Value above which the cancer risk is CLEARLY UNACCEPTABLE (i.e.: 10E-4) = 5.0E-05
Values above which the hazard index is CLEARLY UNACCEPTABLE (i.e.: 1.0) = 1.05

The following section lists the probabilities associated with the feasibility study.

Probability the TRUE SITE CONDITION is SIMILAR to other sites is 0.5600
FEASIBILITY STUDY PROBABILITIES
EVENT STATES 60% Rl | 100% Rl | Removal
Action
Site Similarity Report predicts similar given the
true condition is similar 0.8000 0.9500 0.9800
Site Similarity Report predicts similar given the
true condition is not similar 0.0500 0.0100 0.0100
Remedy technically acceptable given all
remedies are investigated®
Media 1
Media 2 0.9900 0.9900 0.7000
Media 3
Remedy technically acceptable given presump-
tive remedy is used and the site is similar
Media 1
Media 2 0.9500 0.9500 0.6000
Media 3
Remedy technically acceptable given presump-
tive remedy is used and site is not similar** 0.000 0.000 0.000
Cleanup goal is met given the technology
is acceptable™** Media 1
Media2 | 0.9500 0.9800 0.6000
Media 3
Cleanup goal is met given the technology
is not acceptable**** 0.0 0.0 0.0

150




Operable Unit 2 Appendix D 70% Remedial Investigation

* Technically acceptable refers to the technology being appropriate for the type of contamination.

** The probability that the selected remedy is technically acceptable given that a presumptive remedy is
used and the site is not similar is assumed to be constant for all decision points. This is because a
presumptive remedy assumes that the site is similar. If the presumptive remedy is technically
acceptable when the site is not similar to any other then it would have to be assumed to be a lucky
outcome.

*** These probabilities refer to the fact that the correct technology may be chosen but there is not
enough information available to do a proper design. If the design is faulty the cleanup goal will not
be met.

**** The probability that the cleanup goal is met given that the technology is not acceptable is assumed

to be constant for all decision points.

Factors associated with making the wrong decision during the feasibility study and relative to the no
further action decision. They adjust the cost and duration associated with mistakes. See thesis text for
more details.

Feasibility Study Adjustment Factors
Duration factor for a technically unacceptable remedy given all options were investigated 0.50
Cost factor for a technically unacceptable remedy given all options were investigated 0.50
Duration factor for a technically unacceptable remedy given a presumptive remedy was used 1.00
Cost factor for a technically unacceptable remedy given a presumptive remedy was used 1.00

Remediation Adjustment Factors
Duration factor given the technology was acceptable but did not meet the cleanup goals 1.40
Cost factor given the technology was acceptable but did not meet the cleanup goals 1.40
Duration factor given the technology was not appropriate 2.50
Cost factor given the technology was not appropriate 2.50

No Further Action Adjustment Factors
Duratlon factor for the high duration of the NFA alternative after an improper decision 1.50
Cost factor for the high cost of the NFA alternative after an improper decision 1.5

Unlike Clairmont's Model, the only risk parameters entered into the decision support mode! are the risk
probabilities from the probabilistically assessed risk distribution.

70% Remedial Investigation

Cancer Risk Probabilities Hazard Index Probabilities
High Middle Low NA High Middle Low NA
Type 1
Media 1
Media 2| 4.90E-03 9.05E-02 9.05E-01 0.000 0.00E+00 O0.00E+00 0.00E+00 1.000
Media 3
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100% Remedial Investiggtion

Cancer Risk Probabilities Hazard Index Probabilities
High Middle Low NA High Middle Low NA
Type 1
Media 1
Media 2| 2.60E-03 9.12E-02 9.62E-02 0.000 0.00E+00 0.00E+00 0.00E+00 1.000
Media 3
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This section is provided for clarity so the user may keep track of the specific media and chemical types
while running the model.

Input the name of MEDIA: Groundwater

Input the name of CHEMICAL in MEDIA: Benzene

This section contains the general parameters included in the model.

COST WEIGHT = 0.67 MAX COST = 6500000

MIN COST = 1500

MAX DURATION = 257.00
MIN DURATION = 0.50

PROBABILITY NFA COST IS HIGH GIVEN RISK IS HIGH =

1.000

PROBABILITY NFA COST IS HIGH GIVEN RISK IS IN THE MID RANGE =  0.700
PROBABILITY NFA COST IS HIGH GIVEN RISK IS LOW=  0.010

PROBABILITY NFA DURATION IS LONG GIVEN RISK IS HIGH = 1.000
PROBABILITY NFA DURATION IS LONG GIVEN RISK IS IN THE MID RANGE =  0.700
PROBABILITY NFA DURATION IS LONG GIVEN RISK IS LOW = 0.010

This portion of the spreadsheet contains the cost and duration values for the various stages of the
characterization process. The cost is in dollars and the duration is in months only.

COSTS DURATIONS
Expected Expected

Low High Value Low High Value

Feasibility Study| 300000 400000 350000 6.000 8.000 7.000

Presumptive Remedy| 20000 40000 30000 2.000 4.000 3.000

Recommend No Further Action 1500 2100000 NA 0.500 138.0 NA

Remediation Effort
Media 1

Media 2| 100000 | 150000 | 125000 3.000 6.000 4.500
Media 3

4

The following section contains the decision maker's inputs on the levels of acceptable and unacceptable levels
of risk.

Values below which the cancer risk is CLEARLY ACCEPTABLE (i.e.: 10E-6) = 5.0E-07
Values below which the hazard index is CLEARLY ACCEPTABLE (i.e.: 1.0) = 0.95
Value above which the cancer risk is CLEARLY UNACCEPTABLE (i.e.: 10E-4) = 5.0E-05
Values above which the hazard index is CLEARLY UNACCEPTABLE (i.e.: 1.0) = 1.05
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The following section lists the probabilities associated with the feasibility study.

Probability the TRUE SITE CONDITION is SIMILAR to other sites is 0.5600

FEASIBILITY STUDY PROBABILITIES

EVENT STATES 100% Rl
Site Similarity Report predicts similar given the
true condition is similar 0.9500
Site Similarity Report predicts similar given the
true condition is not similar 0.0100

Remedy technically acceptable given all
remedies are investigated™

Media 1
Media2 | 0.9900
Media 3
Remedy technically acceptable given presump-
tive remedy is used and the site is similar
Media 1
Media 2 0.9500
Media 3
Remedy technically acceptable given presump-
tive remedy is used and site is not similar** 0.000
Cleanup goal is met given the technology
is acceptable™* Media 1
Media2 | 0.9800
Media 3
Cleanup goal is met given the technology
is not acceptable™*** 0.0

* Technically acceptable refers to the technology being appropriate for the type of contamination.

** The probability that the selected remedy is technically acceptable given that a presumptive remedy is
used and the site is not similar is assumed to be constant for all decision points. This is because a

presumptive remedy assumes that the site is similar. If the presumptive remedy is technically
acceptable when the site is not similar to any other then it would have to be assumed to be a lucky
outcome.

*** These probabilities refer to the fact that the correct technology may be chosen but there is not
enough information available to do a proper design. If the design is faulty the cleanup goal will not
be met.

**** The probability that the cleanup goal is met given that the technology is not acceptable is assumed

to be constant for all decision points.

154



Site 4 Appendix F 70% Remedial Investigation

This section is provided for clarity so the user may keep track of the specific media and chemical types
while running the model.

Complete Risk Distribution to Commercial Worker at AFP44 Site 4

Media of Contamination: Surface Soil

This section contains the general parameters included in the model.

COST WEIGHT = 0.67

MAX COST = 6500000
MIN COST = 1500

MAX DURATION = 257.00
MIN DURATION = 0.50

PROBABILITY NFA COST IS HIGH GIVEN RISK IS HIGH = 1.000

PROBABILITY NFA COST IS HIGH GIVEN RISK IS IN THE MID RANGE=  0.700
PROBABILITY NFA COST IS HIGH GIVEN RISKISLOW = 0.010

PROBABILITY NFA DURATION IS LONG GIVEN RISK IS HIGH = 1.000
PROBABILITY NFA DURATION IS LONG GIVEN RISK IS IN THE MID RANGE=  0.700
PROBABILITY NFA DURATION IS LONG GIVEN RISKISLOW =  0.010

This portion of the spreadsheet contains the cost and duration values for the various stages of the
characterization process. The cost is in dollars and the duration is in months only.

COSTS DURATIONS
Expected Expected
Low High Value Low High Value
Site Investigation NA NA NA NA NA NA
30% Remedial Investigation NA NA NA NA NA NA
60% Remedial Investigation NA NA NA NA NA NA
100% Remedial Investigation| 200000 | 250000 | 225000 5.000 10.000 7.500
Removal Action
Soill 10000 30000 20000 1.000 3.000 2.000
Feasibility Study| 300000 400000 350000 6.000 8.000 7.000
Presumptive Remedy| 20000 40000 30000 2.000 4.000 3.000
Recommend No Further Action| 2000 2100000 NA 0.500 153.0 NA
Remediation Effort
Soill 100000 150000 125000 3.000 6.000 4.500

of risk.

The following section contains the decision maker's inputs on the levels of acceptable and unacceptable levels

Values below which the hazard index is CLEARLY ACCEPTABLE (i.e.: 1.0) = 1.00

Values above which the hazard index is CLEARLY UNACCEPTABLE (i.e.: 1.0) = 1.00
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Factors associated with errors during the making the wrong decision during the feasibility study and
relative to the no further action decision. They adjust the cost and duration associated with mistakes.
See thesis text for more details.

Feasibility Study Adjustment Factors
Duration factor for a technically unacceptable remedy given all options were investigated 0.50
Cost factor for a technically unacceptable remedy given all options were investigated 0.50
Duration factor for a technically unacceptable remedy given a presumptive remedy was used 1.00
Cost factor for a technically unacceptable remedy given a presumptive remedy was used 1.00

Remediation Adjustment Factors
Duration factor given the technology was acceptable but did not meet the cleanup goals 1.40
Cost factor given the technology was acceptable but did not meet the cleanup goals 1.40
Duration factor given the technology was not appropriate 2.50
Cost factor given the technology was not appropriate 2.50

No Further Action Adjustment Factors
Duration factor for the high duration of the NFA alternative after an improper decision= 1.50
Cost factor for the high cost of the NFA alternative after an improper decision= 15

Unlike Clairmont's Model, the only risk parameters entered into the decision support model are the risk
probabilities from the probabilistically assessed risk distribution.

100% Remedial Investigation
Cancer Risk Probabilities Hazard Index Probabilities
High Middle Low NA High Middle Low NA

Type 1
Media 2| 2.40E-03 8.84E-02 9.09E-01 | 0.00E+00| 0.00E+00 0.00E+00 0.00E+00 1.000
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The following section lists the probabilities associated with the feasibility study. T

Probability the TRUE SITE CONDITION is SIMILAR to other sites is 0.5600

FEASIBILITY STUDY PROBABILITIES

EVENT STATES 60% Rl | 100% Rl | Removal
Action
Site Similarity Report predicts similar given the
true condition is similar 0.8000 0.9500 0.9800
Site Similarity Report predicts similar given the
true condition is not similar 0.0500 0.0100 0.0100

Remedy technically acceptable given all
remedies are investigated*

[ Soil 0.9900 | 0.9900 | 0.7000

Remedy technically acceptable given presump-
tive remedy is used and the site is similar

[ Sail 0.9500 0.9500 0.6000

Remedy technically acceptable given presump-
tive remedy is used and site is not similar** 0.000 0.000 0.000
Cleanup goal is met given the technology

is acceptable*™*

[ Soil 0.9500 | 0.9800 | 0.6000

Cleanup goal is met given the technology
is not acceptable™** 0.0 0.0 0.0

* Technically acceptable refers to the technology being appropriate for the type of contamination.

** The probability that the selected remedy is technically acceptable given that a presumptive remedy is
used and the site is not similar is assumed to be constant for all decision points. This is because a
presumptive remedy assumes that the site is similar. If the presumptive remedy is technically
acceptable when the site is not similar to any other then it would have to be assumed to be a lucky
outcome.

*** These probabilities refer to the fact that the correct technology may be chosen but there is not
enough information available to do a proper design. If the design is faulty the cleanup goal will not
be met.

**** The probability that the cleanup goal is met given that the technology is not acceptable is assumed

to be constant for all decision points.

Factors associated with errors during the making the wrong decision during the feasibility study and
relative to the no further action decision. They adjust the cost and duration associated with mistakes.
See thesis text for more details.
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Feasibility Study Adjustment Factors
Duration factor for a technically unacceptable remedy given all options were investigated 0.50
Cost factor for a technically unacceptable remedy given all options were investigated 0.50
Duration factor for a technically unacceptable remedy given a presumptive remedy was used 1.00
Cost factor for a technically unacceptable remedy given a presumptive remedy was used 1.00

Remediation Adjustment Factors
Duration factor given the technology was acceptable but did not meet the cleanup goals 1.40
Cost factor given the technology was acceptable but did not meet the cleanup goals 1.40
Duration factor given the technology was not appropriate 2.50
Cost factor given the technology was not appropriate 250

No Further Action Adjustment Factors
Duration factor for the high duration of the NFA alternative after an improper decision= 1.50
Cost factor for the high cost of the NFA alternative after an improper decision= 1.5

Unlike Clairmont's Model, the only risk parameters entered into the decision support model are the risk
probabilities from the probabilistically assessed risk distribution.

70% Remedial Investigation

Cancer Risk Probabilities Hazard Index Probabilities
High Middle Low NA High Middle Low . NA
Comm Worker 0.0000 0.00E+00 O0.00E+00 1.00E+00 0.0095 0.00E+00 9.91E-01 0.0000

100% Remedial Investigation
Cancer Risk Probabilities Hazard Index Probabilities
High Middle Low NA High Middle Low . NA

Comm Worker 0.0000 0.00E+00 0.00E+00 1.00E+00 0.0071 0.00E+00 9.93E-O1 0.000

Removal Action
Cancer Risk Probabilities Hazard Index Probabilities
High Middle Low NA High Middle Low NA

Comm Worker| 0.0000 0.00E+00 0.00E+00 1.00E+00 0.0095 0.00E+00 9.91E-01 0.000
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This section is provided for clarity so the user may keep track of the specific media and chemical types
while running the model.

Complete Risk Distribution to Commercial Worker at AFP44 Site 4

Media of Contamination: Surface Soil

This section contains the general parameters included in the model.

COST WEIGHT = 0.67 MAX COST = 6500000

MIN COST = 1500

MAX DURATION = 257.00
MIN DURATION = 0.50

PROBABILITY NFA COST IS HIGH GIVEN RISK IS HIGH = 1.000

PROBABILITY NFA COST IS HIGH GIVEN RISK IS IN THE MID RANGE =  0.700
PROBABILITY NFA COST IS HIGH GIVEN RISKISLOW = 0.010

PROBABILITY NFA DURATION IS LONG GIVEN RISK IS HIGH = 1.000
PROBABILITY NFA DURATION IS LONG GIVEN RISK IS IN THE MID RANGE=  0.700
PROBABILITY NFA DURATION IS LONG GIVEN RISKISLOW = 0.010

This portion of the spreadsheet contains the cost and duration values for the various stages of the
characterization process. The cost is in dollars and the duration is in months only.

COSTS DURATIONS
Expected Expected
Low High Value Low High Value
Feasibility Study| 300000 400000 350000 6.000 8.000 7.000
Presumptive Remedy| 20000 40000 30000 2.000 4.000 3.000
Recommend No Further Action| 2000 2100000 NA 1.000 138.0 NA
Remediation Effort
Media 1| 750000 0 375000 60.000 0.000 30.000
Media 2| 100000 150000 125000 3.000 6.000 4.500
Media 3] 200000 0 100000 6.000 0.000 3.000
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The following section lists the probabilities associated with the feasibility study.

Probability the TRUE SITE CONDITION is SIMILAR to other sites is 0.5600

FEASIBILITY STUDY PROBABILITIES

EVENT STATES 100% Rl
Site Similarity Report predicts similar given the
true condition is similar 0.9500
Site Similarity Report predicts similar given the
true condition is not similar 0.0100

Remedy technically acceptable given all
remedies are investigated*

Soll 0.9900

Remedy technically acceptable given presump-
tive remedy is used and the site is similar

[ Soil 0.9500

Remedy technically acceptable given presump-
tive remedy is used and site is not similar** 0.000
Cleanup goal is met given the technology

is acceptable***

[ Soil 0.9800

Cleanup goal is met given the technology
is not acceptable™*** 0.0

* Technically acceptable refers to the technology being appropriate for the type of contamination.

** The probability that the selected remedy is technically acceptable given that a presumptive remedy is
used and the site is not similar is assumed to be constant for all decision points. This is because a

presumptive remedy assumes that the site is similar. If the presumptive remedy is technically
acceptable when the site is not similar to any other then it would have to be assumed to be a lucky
outcome.

*** These probabilities refer to the fact that the correct technology may be chosen but there is not
enough information available to do a proper design. If the design is faulty the cleanup goal will not

be met. ‘

**** The probability that the cleanup goal is met given that the technology is not acceptable is assumed

to be constant for all decision points.
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Factors associated with errors during the making the wrong decision during the feasibility study and |
relative to the no further action decision. They adjust the cost and duration associated with mistakes.
See thesis text for more details.

Feasibility Study Adjustment Factors
Duration factor for a technically unacceptable remedy given all options were investigated 0.50
Cost factor for a technically unacceptable remedy given all options were investigated 0.50
Duration factor for a technically unacceptable remedy given a presumptive remedy was used 1.00
Cost tactor for a technically unacceptable remedy given a presumptive remedy was used 1.00

Remediation Adjustment Factors
Duration factor given the technology was acceptable but did not meet the cleanup goals 1.40
Cost factor given the technology was acceptable but did not meet the cleanup goals 1.40
Duration factor given the technology was not appropriate 2.50
Cost factor given the technology was not appropriate 2.50

No Further Action Adjustment Factors
Duration factor for the high duration of the NFA alternative after an improper decision= 1.50
Cost factor for the high cost of the NFA alternative after an improper decision= 15

This portion of the spreadsheet contains the probability of the risk posed by a particular chemical being
clearly high, being clearly low, or being in the middle ground between the two points. The NA column is an
indicator of the chemical effect the chemical. For example, under the cancer probabilities, if the probability
of NA = 1.0, that particular chemical does not have a carcinogenic effect. If NA is 0.0 it indicates there is a
carcinogenic effect and you will find probabilities listed in the High, Middle, and Low categories that sum to
1.0.

100% Remedial Investigation
Cancer Risk Probabilities Hazard Index Probabilities
High Middle Low NA High Middle Low NA

Comm Worker 0.0000 0.00E+00 0.00E+00 1.00E+00 0.0093 0.00E+00 9.91E-01 0.000
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