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Abstract

This research develops a general methodology for designing neural network classi-

fiers for real-world environmental problems. This methodology is demonstrated through

the design of a multi-layer perceptron to classify stainless steel and actinide samples. This

research provides techniques for selecting architecture and training parameters, choosing

the number of training epochs, reducing the feature sets, and evaluating classifier per-

formance. For the stainless steel data, the feature set is reduced from 196 features to 54

features and the average training set error and test set error are .6% and 5.5%, respectively.

The best results attained on the actinide data set are 24% training set error and 26% test

set error. The actinide feature set is reduced from 18 feature to 9 features. The products

of this effort are a concise methodology for developing neural network classifiers and the

specifications for a multi-layer perceptron classifier for each of the data sets.

x



Neural Network Classification of Environmental Samples

L Introduction

1.1 Background

Like many Air Force organizations, the Air Force Technical Applications Center

(AFTAC) has a mission, insuring Nuclear Test Ban Treaty compliance, which involves

monitoring of the environment. This environmental monitoring often requires identification

of unknown chemical compounds and, for AFTAC, often requires determining the origin

of environmental samples.

The traditional method used to identify environmental samples is to determine the

individual components of the sample, thereby elucidating the identity of the sample it-

self. The field of analytical chemistry has conceived numerous instrumental methods to

identify the constituents of a sample including mass spectrometry, raman spectroscopy,

fluorescence spectroscopy, and gas chromatography [16]. Each of these methods produces

spectra from which the relative quantities of the sample's constituents may be determined.

Consequently, these quantities may be used to classify the sample by comparison to those

of known samples. However, the task of classifying a sample given these quantities is often

complicated by similarity of samples and the large number of known chemical compounds.

Consequently, automated methods of classifying environmental samples are necessary.

Neural networks, sometimes called artificial neural networks, have been shown ca-

pable of classifying complex patterns such as those mentioned above [4]. Artificial neural

networks are physiologically motivated computer algorithms which attempt to mimic the

function of the large interconnected network of neurons in the human brain, which has

extraordinary pattern recognition capabilities[23]. These artificial neural networks learn

to map a set of input features, elemental composition, onto a set of outputs such as a

binary node whose output (1 or 0) represents steel or not steel. For this reason, neural

networks may be used to classify the given environmental data.
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Numerous efforts have illustrated the use of neural networks for classifying chemical

spectra. A thorough review of these efforts is provided by Burns and Whitesides [4]. How-

ever, the efforts focus primarily on the chemical analyses and the neural network results,

rather than the methodology for designing the neural network classifiers. In addition,

classifiers are unique to the data being classified and must be designed specifically for the

given data. Furthermore, all efforts thus far have used the analytical spectra as input

features rather than the relative quantities which may be derived from the spectra, and

no effort has been made to correlate samples to the location from which they were taken.

As a result, this thesis focuses on classification by name and by location using elemental

percentages (by weight) and radioactive particle percentages (by atom) as input features.

1.2 Problem Statement

A methodology for the design of neural network classifiers for environmental appli-

cations is developed and is demonstrated through the classification of stainless steel and

actinide samples given the relative quantities of the constituent elements and particles of

each sample.

1.3 Scope

Elemental percentage by weight and radioactive particle percentage by atom for the

stainless steel samples and radioactive particle percentages alone for the actinide samples

have been provided by the Air Force Technical Applications Center. A neural network is

designed to classify this data and the salient features (features most useful in classification)

are determined. Once designed, the performance of the classifiers is evaluated by estimating

the Bayes error bounds. While the results obtained herein are unique to this particular

data set, the methodology is general enough to be applied to other environmental data

sets.

1.4 Research Objectives

The research objectives for this thesis are as follows:
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1. Provide a methodology for developing neural network classifiers for environmental

applications.

2. Demonstrate the ability of neural networks to classify real-world environmental data.

3. Design a neural network to classify the given data sets.

4. Determine the salient features for the given data sets.

5. Evaluate the performance of each classifier.

1.5 Approach

The approach taken in this effort consists of several distinct steps. Initially, the data

is preprocessed. This preprocessing consists of several steps including normalizing the data.

The second step is to develop a multi-layer perceptron for classifying the stainless steel and

actinide data sets. This includes selection of architecture and parameter values as well as

training and testing the classifier to achieve an acceptable level of performance. Following

testing of the multi-layer perceptron, a technique known as forward sequential selection

is used to rank the input features in the order of decreasing importance to classification.

Then, another classifier is trained and tested using subsets of the input features in order

to enhance the performance of the classifier. Finally, the performance is evaluated by

comparing the classifier error to Bayes error bounds.

1.6 Thesis Overview

The remainder of this thesis is organized as follows: Chapter II provides an overview

of the neural networks employed in this research. Chapter III describes the implementation

and evaluation of these networks and presents the results of this effort. Finally, a summary

of these results and conclusions are presented in Chapter IV.
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II. Theory

2.1 Introduction

The purpose of this chapter is to provide an introduction to pattern recognition and

neural networks, and to overview the theory -necessary to understand the methods presented

in Chapter III. Only concepts relevant to this research are covered in this chapter. The

topics covered in the following sections are:

* Introduction to Pattern Recognition

e The Single Perceptron

e The Multi-Layer Perceptron

• Feature Selection

* Bayes Error Bounding

2.2 Introduction to Pattern Recognition

According to Duda and Hart, pattern recognition is the assignment of an object to

any of several categories based on measurements of the object's features. More specifically,

pattern recognition is selecting the actual state of nature w of an object from a set of

possible states wi based on some measurement x [9].

The process of selecting the class of an object based on some analog measurement of

that object amounts to drawing a decision boundary in the feature space which separates

the members of competing classes. For example, suppose that indoor air samples are to

be classified as hazardous or non-hazardous based on average particle size x1 . If a number

of samples for which the class memberships are known are plotted in the feature space,

the optimal decision boundary is the line which absolutely separates the two classes as

shown in Figure 2.1a. If, however, the samples are to be classified based on both average

particle size x, and radon concentration x2, the decision boundary must be drawn in a

two-dimensional feature space as shown in Figure 2.lb.

2-1



x-class o X2I x - Decision
0 - class 1 X x x Boundary

X X /"
x X x x-class 0

X ' 0 -class I
Decision x 0

Boundary 0 0 0
0 00 00

00
0 000

(a) (b)

Figure 2.1 Two-class classification problem: (a) one-dimensional case (b) two-

dimensional case.

Once the decision boundary has been set, any subsequent samples of unknown class

membership are then classified according to their position in the feature space relative to

the decision boundary.

This is a grossly oversimplified representation of real-world pattern recognition prob-

lems for several reasons. Classification of objects will usually be based on multiple features.

In general, x will be a vector containing measurements of multiple features. In this thesis

for example, each sample is represented by a vector containing the percentages of each

periodic element and the percentages of certain radioisotopes which compose the sample.

Furthermore, it may be impossible to draw a decision boundary which completely separates

the class data. In reality, the boundary is drawn such that the probability of classification

error is minimized. This concept is discussed further in section 2.6. The boundary may

also be more complex (consisting of multiple lines or non-linear boundaries) in many cases

such as non-linearly separable problems and multi-class problems. The classic example of

non-linearly separable data is the XOR problem shown in Figure 2.2a. Clearly, the two

classes of data cannot be separated by a single line rather it requires a complex decision

boundary as shown. Similarly, Figure 2.2b shows a three-class problem which also requires

a complex boundary. As the dimensionality (the number of features) of a classification

problem or the number of classes grow, the decision boundary becomes even more complex
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consisting of surfaces, rather than lines, in the feature space. In this case, sophisticated

algorithms must be used to derive decision boundaries.

11 x - Class 0 JA x- Class o
0 - Class 1 o- Class 1

S+- Class 2
X X X 00X X X I

XX 0000 X X X / 00 0

x 000 x / 000

++
0 " X 1.-++

0 X X X +

00000 \ X X + ++
\ X I _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _

\ X

X2  X2

(a) (b)

Figure 2.2 Complex decision boundaries: (a) XOR data (b) three-class data.

Automated pattern classification may be accomplished using machines or algorithms

known as pattern classifiers, or simply classifiers. Further, automated pattern recognition

consists of two distinct stages: determining the decision boundaries based on existing

data (training the classifier), and classifying new data (testing the classifier). Numerous

statistical classifiers exist which utilize the probability distributions associated with the

state of nature wi, p(wj), and the measurement x, p(x), and the conditional probability

distributions p(wiIx) to determine the decision boundaries. An overview of Bayes Decision

Rule, which is the fundamental basis of statistical classifiers, is provided in section 2.6. For

a thorough treatment of statistical classification methods, the reader is referred to Duda

and Hart [9].

Artificial neural networks may also be employed for pattern classification problems.

These classifiers were precipitated by the realization that animals, especially humans, have

the ability to rapidly classify complex patterns. This led to much research in the 1950's

and 1960's out of which came mathematical models which were intended to elucidate the

function of the human brain (an overview of these research efforts is given by Rogers et
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al [23] and by Lippmann [17]). The value of these models as problem-solving machines

soon became apparent and the study of pattern recognition branched into two subfields,

the study of human and animal pattern recognition and the development of mathematical

analogs of biological systems capable of pattern recognition [31]. The latter has become a

large field concerned with the development of artificial neural network architectures and

learning/training algorithms.

Although many different architectures and algorithms have been developed [15, 6, 12],

the most popular is the multi-layer perceptron and its various training algorithms. This

popularity is due to its ease of implementation and its ability to represent any decision

boundary[8]. Furthermore, the multi-layer perceptron is a Bayes optimal classifier (see

Section 2.6), which means it cannot be outperformed, on average, by other types of clas-

sifiers on the same data set [26]. For these reasons, the multi-layer perceptron is used

throughout this research.

2.3 The Perceptron

The perceptron, which was introduced by Rosenblatt in 1959 [24], is the simplest

neural network and is the basic functional unit of the more complex multi-layer perceptron

that will be used in Chapter III. The single perceptron may be used to solve two-class

problems in which the class data is linearly separable. This section covers the architecture

and operation of the single perceptron and provides an overview of the perceptron training

algorithm.

2.3.1 Architecture and Operation. The function of the perceptron (Figure 2.3) is

analogous to that of the biological neuron [23]. The perceptron computes a weighted sum

of its inputs.
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y

f

X1  xio XI  XI+1-1

Figure 2.3 Single perceptron.

More specifically, the perceptron multiplies each of its inputs, the input features xO ... x

and a bias xi+t, by its respective weight wi and computes the sum. The sum may then

be transformed by an activation function, which forces the output between a high value

(typically 1) and a low value (typically -1 or 0). The bias is typically set equal to 1

resulting in a bias term in the sum which is simply the weight w,+,. This calculation may

be represented mathematically as

I

y= f( Wixi + WI+I) (2.1)

or
I+1

y = f( wixi) (2.2)
i=1

where f(9) is the activation function and I + 1 is the number of input features including

the bias value of 1.
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f( x)

Linear

. • (x)

Sigrnoid

f( x)

., ,.(x)

Hyperbolic Tangent

Figure 2.4 Activation functions.

While any number of functions may be used, the activation functions typically asso-

ciated with the single perceptron are shown in Figure 2.4. The mathematical formulations

of these functions are as follows:

linear: f(x) = x

sigmoid: f(x)- 1
l+e--T

hyperbolic tangent: f(x) = tanh(x)

2.3.2 Training. The single perceptron may be trained to classify input vectors

in a two-class problem. This training is accomplished by randomly initializing the weights

to some small value (usually in the range [-0.5,0.5]), presenting class-labeled input vectors

to the perceptron and adjusting the weights such that the output of the perceptron tends

toward 1 for members of class w, and toward 0 or -1, depending on the activation func-

tion, for members of class w2 . The error between the perceptron output and the desired

perceptron output is used to accomplish this weight adjustment. Mathematically this is
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represented by

w+ = w r/0 w  (2.3)

where w + represents the adjusted weight vector, w- is the previous weight vector, r is a

weight adjustment factor commonly referred to as the learning rate, and E is the error.

Derivation of the functional form of the weight update is done only for the multi-layer

perceptron (Appendix A). The learning rate is a value in the range (0,1). All of the

vectors in the training data set are repeatedly presented to the network, and the weights

are adjusted until a suitable level of error is reached. Each pass through the training data

set is known as an epoch.

Although the perceptron is easy to implement and train using this algorithm, it is

limited to two-class problems in which the data are linearly separable. To overcome this

limitation, a more complex structure must be implemented, the multi-layer perceptron.

2.4 The Multi-Layer Perceptron

The multi-layer perceptron is the most frequently implemented of all neural network

architectures. Unlike the single perceptron which only draws a single line or plane in

the feature space, the multi-layer perceptron is capable of drawing complex surfaces to

separate class data. The remainder of this section provides an overview of the architecture,

operation, and training of the multi-layer perceptron.

2.4.1 Architecture and Operation. The multi-layer perceptron is, as the name

implies, nothing more than two or more layers of perceptrons as shown in Figure 2.5.

Although multi-layer perceptrons may consist of more than two layers, it has been shown

that two layers are sufficient for any arbitrary classification problem[8].
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Figure 2.5 Multi-layer perceptron.

Each perceptron, or node, in the first layer, often referred to as the hidden layer,

computes a weighted sum of the inputs (as described in Section 2.3.1) using its own weight

vector. The weight vectors of the hidden layer nodes comprise the weight matrix w'. This

operation is represented by
1+1

=j fA (EWIJxi) (2.4)
i=1

or, in matrix/vector notation,

y = f1(w'x') (2.5)

where x' is the transpose of x, and fj is the transformation function for the hidden layer

nodes. Similarly, each output layer node computes a weighted sum of the hidden layer

outputs and a bias term, Yi ... yj+, producing the multi-layer perceptron output vector

z. The weight vectors for the output layer nodes are given by w'. This operation is

represented by

J+1

Zk = f(E W'kYj) (2.6)
i='

or, in matrix/vector notation,

Z = fk(w 2y') (2.7)
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where y' is the transpose of y, and fk is the transformation function for the output layer

nodes.

The activation functions used with the single perceptron are also used in multi-

layer architectures with all nodes in a layer employing the same function. For example,

all hidden layer nodes may use the sigmoid function, while all output layer nodes use

a linear transformation, sigmoid-linear. Although many different combinations may be

used, common combinations of activation functions are sigmoid-sigmoid, sigmoid-linear,

tanh-tanh, tanh-linear.

In designing a multi-layer perceptron for a particular problem, several parameters

must be chosen. Among them are the number of hidden layer nodes (J), the number of

output layer nodes K, and the activation functions to be employed. While K is usually set

to the number of classes in the problem so that each node represents a class, J is somewhat

arbitrary. A common rule of thumb is that the number of hidden layer nodes should be

selected such that the number of samples is at least 10 times the number of weights in

the network [2]. In addition, the activation functions must also be selected. Selection of

architecture parameters for this research are covered in Chapter III.

2.4.2 Training. As with the single perceptron, training is accomplished by ini-

tializing the weight matrices to some small value, presenting the class labeled input vectors,

and adjusting the weight matrices until a suitable level of error is reached.

The multi-layer perceptron is most often trained using the backpropagation algorithm

which was independently discovered by three different researchers [32, 20, 28]. Although nu-

merous efforts have been made to improve the backpropagation algorithm(backpropagation

with momentum[28], conjugate gradient[29], and newton's method[3], to name a few), the

addition of momentum is the least difficult improvement to implement and is, therefore,

the most common. The complexity of the latter two algorithms and their intense compu-

tation time often eclipse their improvement in generalization (ability to classify data which

was not used in training) and convergence time (number of epochs required to reach an

acceptable level of error)[1]. For this reason, backpropagation with momentum is used to

train the multi-layer perceptrons implemented throughout this research.

2-9



Backpropagation adjusts the weights based on the error between the desired output

of the network and the actual output for each input vector in the training data set. The

most common measure of this error is the sum-squared error which is given by

E= 1 (dk -- zk)2 , (2.8)
k=1

where dk is the desired output, and zk is the actual output.

Training may be conducted in one of two modes, instantaneous or batch. In instan-

taneous training, the weights are adjusted after the presentation of each input vector. The

general weight update rule for such training is

aE

W + = W- -7 W- (2.9)

where W + is the updated weight matrix, W- is the old weight matrix, and 77 is the

learning rate. The learning rate is a variable which may assume values between zero and

one. The learning rate may remain constant throughout training or it may be varied in

this range during training. Algorithms which vary the training parameters during training

are known as adaptive algorithms [7]. When performing batch training, each input vector

is presented and the update portion of the equation is computed for each input vector.

However, the weights are not updated after each input vector presentation. An average

update is computed over all of the input vectors, and the weights are updated at the end

of the epoch. In batch mode, the general update rule becomes

i B E
= W- - n (2.10)

where n is the number of input vectors. For ease of notation, the remainder of the weight

update equations in this chapter are shown in their instantaneous form. These equations

may be transformed to their batch form by simply averaging the update portion of the

equation over all of the input vectors.

In either mode, backpropagation training is simply a gradient descent which seeks the

minimum in the weight space error surface by adjusting the weights in a negative gradient
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direction. Figure 2.6 shows an error surface in a one-dimensional weight space, while

Figure 2.7 illustrates an error surface in a two dimensional weight space. Note that as the

number of weights increases beyond two, which is the case for any problem of significance,

the error surface becomes impossible to visualize.

IDirect

- . Oscillatory

a)

Desired Point

-.5 0 -.5
Wi

Figure 2.6 Error surface in one-dimensional weight space.
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Figure 2.7 Error surface in two-dimensional weight space.

It is desirable for the algorithm to adjust the weights such that the most direct path

to the error surface minimum is taken. However, the error surface descent is dependent on

the learning rate 77. As a result, the algorithm may skip back and forth over the minimum,

increasing the time required to converge. This oscillation may be dampened by adding

a momentum term which is a constant a multiplied by the previous weight update AW.

The momentum may be constant during training or may be adapted during training like

the learning rate.
aE

W + = W- - 77-W- + ayAW (2.11)

This has the effect of increasing the weight update when moving down the error surface or

decreasing the update when moving up the error surface. This improves backpropagation

learning by allowing a more smooth and timely descent on the error surface.

The complexity of the backpropagation algorithm comes in deriving the derivative

of the error with respect to the weights for the hidden layer and the output layer to arrive

at a functional form of the weight update rule. The generic, functional form of the output
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layer weight update is

W0k -ko + r(dko - fko)fifJo (2.12)

while the hidden layer update is given by

K

t Wojo +7"(dk -fk)fkWj okj0 Xi (2.13)
k=1

Note that the outputs of the hidden layer and the output layer are denoted by the trans-

formation functions fj and fk respectively; fk0 is the derivative of the activation function

evaluated at node k0. The general derivations of the hidden layer and output layer updates

are given in Appendix A along with the transformation function specific derivations. The

momentum term (not shown here or in the derivations) is simply the difference between

the weight matrix from the previous input presentation and the current weight matrix

multiplied by a.

2.5 Feature Selection

One of the most important tasks in classifier design is selecting the appropriate

feature set for classification. This is critical for several reasons. According to the "Curse

of Dimensionality" posited by Foley, a larger number of input features requires a larger

number of training samples [10]. In addition, a larger feature set increases the number of

weights that must be used when employing neural network classifiers. Both a larger training

set and an increased number of weights lead to longer training times. Finally, Kabrisky

has suggested that there is an optimal number of features in terms of error for some data

sets [13]. Ultimately, the goal of feature selection is to reduce the feature set without a

significant decrease, if any, in the accuracy. Many techniques exist for determining the

saliency (importance for classification) of input features [27, 21, 30, 21] and, subsequently,

for reducing the feature set. The method used for feature reduction in this research is

forward sequential selection.

Forward sequential selection is commonly used to rank features according to their

saliency. This techniques begins by training a classifier for each input feature from the set

of candidate features. The feature which results in the highest classification accuracy is
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added to a feature nucleus which is initially empty, and the feature is removed from the

set of candidate features. Subsequently, a classifier is trained using the nucleus and each

feature from the candidate set. Again, the feature whose addition to the nucleus results

in the best classification accuracy is added to the nucleus and removed from the candidate

set. This process is repeated until the desired number of features have been ranked or the

candidate feature set is empty.

2.6 Introduction to Bayes Error Bounding

Bayes error is the minimum average probability of error associated with any classi-

fication problem [9]. This means that Bayes error represents the best performance that a

classifier may achieve on average. As such, it is the benchmark of performance for statis-

tical classifiers, and any classifier with an error rate approaching Bayes error is considered

to be Bayes optimal. Consequently, Ruck et al have shown that a multi-layer perceptron

trained using sum-squared error as the error measurement approximates Bayes discrimi-

nation [27]. Thus, Bayes error is also used to evaluate the performance of the multi-layer

perceptron classifier.

The remainder of this section discusses Bayes Decision Theory to the extent necessary

to understand Bayes error and describes methods for estimating Bayes error.

2.6.1 Bayes Decision Theory. The stated purpose of pattern classifiers is to

determine objects' classes, w, based on some feature or set of features, x, such that the

probability of misclassification (error) is minimum. According to Bayes Decision Theory,

the minimum probability of error is achieved by selecting the class wi which has the high-

est probability given the measurement x, P(wilx). According to Bayes theorem, the a

posteriori probability P(wilx) is given by

P(plx) = X

where p(xlwi) is class conditional probability of x , P(w i ) is the a priori probability of class

wi, and p(x) is the probability density function (pdf) for the measurement x. The class

conditional probability of x is the probability of observing values of x given a specific class
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wi and the a priori probability of class wi represents the proportion of the total number

of objects in the sample set which belong to class wi. As an example consider a two class

problem in one dimension. Bayes decision rule becomes

select w, if P(wlIx) > P(w 21x) otherwise select w2

As shown in Figure 2.8a, Bayes decision rule produces a boundary at the intersection

of the two distribution which results in the area under the two curves (the error) being

minimized. Clearly, any other boundary will produce higher probability of error as shown

in Figure 2.8b.

F(COx)X) Fo 21xx

RR2RI 17 R2

Decision Boundwy Decision Bound.wy

(a) (b)

Figure 2.8 Probability distributions with decision boundaries: (a) optimal boundary set

by Bayes decision rule (b) non-optimal boundary.

As stated, there is some probability of error associated with selecting the class wi

given x. Because error is define as choosing the wrong state of nature w, the probability

of error is the sum of the a posteriori probabilities of the states of nature not chosen. For

example in a two-class problem, the probability of error given x is given by

P(error Ix) p( 1 i x), ifW2 is chosen;

) P(w2 x), if w, is chosen.

The average probability of error is calculated over the entire range of x as follows:

P(error) = P(errorlx)p(x)dx (2.15)
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This represents Bayes error when the decision boundary is chosen according to Bayes

decision rule.

2.6.2 Bounding Bayes Error. Because the sample set for any classification prob-

lem is finite and the underlying probability distributions are not often known, Bayes error

cannot be calculated using the mathematical formulations given and may be estimated

by calculating upper and lower bounds on the error. Any classifier whose error rate falls

within these bounds is considered to be at optimal performance for the given problem. The

most common error bounding technique employs the Leave-One-Out method to estimate

the upper bound and the Resubstitution method to estimate the lower bound [11, 18].

0
Y-Leave-One-Out

---------------------------------- Bayes Error

SResubstituion

# of Hidden Nodes

Figure 2.9 Bayes error bounding: Resubstitution and Leave-One-Out.

2.6.2.1 Leave-One Out. In the Leave-One-Out method, the entire data set

minus one sample is used to train a classifier and the remaining sample is then used to test

the classifier. This process is repeated until each sample has been left out and used to test

the classifier. The error is proportion of the total number of test samples misclassified.

Error estimates are performed in this manner over a range of a classifier parameter, such

as number of hidden layer nodes. This produces an upper bound for Bayes error as shown

in Figure 2.9.
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2.6.2.2 Resubstitution. Using the Resubstitution method, the entire data

set is used for both training and testing the classifier. The error is, again, the number of

test samples misclassified and the error estimates are calculated for a range of classifier

parameter values. The Resubstitution method produces a lower bound as shown in Figure

2.9.

2.7 Summary

This chapter provides the theoretical basis for the methods used throughout this

research effort. The use of neural networks for pattern recognition problems is discussed

with particular attention given to the multi-layer perceptron. Furthermore, the impor-

tance of properly selecting the learning rate and the momentum constant for multi-layer

perceptron classifiers and the need to reduce the input feature set in order to achieve a

suitable classifier is stressed. Finally, the evaluation of such a classifier using Bayes error

is also presented.
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III. Methods & Results

3.1 Introduction

This chapter presents the methodology used to design and evaluate a multi-layer

perceptron to classify the given environmental data sets. Because this methodology is

sequential and some of the steps in the process require results from the previous step,

the intermediate results and the final results are also presented in this chapter. All tech-

niques discussed are based on the theory presented in Chapter II and are implemented in

MATLAB®. Appendix B contains all MATLAB® functions employed in this research.

3.2 Data Description

This thesis demonstrates the classifier design methodology using two data sets which

were provided by AFTAC. The first data set consists of measurements of three classes

of stainless steel: ss304, ss316, and ss400. The input features for the stainless steel data

(shown in Table 3.1) are the percent by atom of six radioisotopes, percent by weight of

the elements from Lithium to Californium, and the associated measurement errors.

Radioisotopes % by Atom Measurement Error

Uranium 234 U234P U23 4E

Uranium 235 U235P U23 5E

Uranium 236 U236P U2 3 6 E

Plutonium 240 Pu 240P Pu 240E

Plutonium 241 Pu 241 P Pu 241E

Plutonium 242 Pu 242 P Pu 242 E

Elements % by Weight Measurement Error

Lithium thru Californium X XE

Table 3.1 Stainless steel features. Note: X is the elemental symbol for the elements

between Lithium and Californium inclusive in the periodic table; a full listing

of these elements and symbols is provided in Appendix C.
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This results in a 196-dimensional feature set. The features for the actinide data consist only

of the radioactive particle percentages and the associated measurement errors (Table 3.2),

resulting in an 18-dimensional feature set. Unlike the three-class stainless steel data, the

actinide class membership may be determined in one of two ways. Due to the sensitive

nature of AFTAC's mission, the samples are labeled by generic, hyphenated alphanumeric

descriptors (A-i, A-2, B-i, C-1, ... , M-1) which represent the sample origin. Allowing

each descriptor to represent a different class results in 55 classes. However, allowing the

class structure to be based solely on the alphabetic part of the descriptors,(A, B, C, ... ,

M) results in 15 classes. This research performs classification using both class structures.

Therefore, essentially three data sets are used for classification, a stainless steel data set

and two actinide data sets.

Radioisotopes % by Atom Measurement Error % Measurement Error

Uranium 234 U234P U234 E U234 PE

Uranium 235 U235P U235 E U23 5PE

Uranium 236 U236P U 2 3 6 E U2 3 6 PE

Plutonium 240 Pu 240P Pu24oE Pu 24oPE

Plutonium 241 Pu 241P Pu 241E Pu 241PE

Plutonium 242 Pu 24 2P Pu 2 42E Pu 24 2PE

Table 3.2 Actinide features.

The data is configured in matrix form such that the first column contains an integer

class designator, the remaining columns represent input features, and each row represents

an individual sample. The configurations for each data set are given in Equations 3.1 -

3.3. In Equation 3.1, classes one, two, and three represent ss304, ss316, ss400, respectively.

The full set of alphanumeric descriptors and the associated integer class values are given
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in Appendix E.

Class Feature 1 Feature 2 ... Feature 196

1 U234P U23 5P ... CfE

Steel = 1 ... Cf (3.1)

3 U234P U23 5P ... CfE

3 U23 4P U235P ... CfE

Class Feature 1 Feature 2 -. Feature 18

1 U234 P U23 4E ... Pu 24 2 PE

1 U234P U234E ... PU242PEActinide, (3.2)

55 U23 4P U2 34 E ... PU 2 4 2 PE

55 U234 P U23 4 E ... Pu 242 PE

Class Feature 1 Feature 2 ... Feature 18

1 U234 P U23 4 E ... Pu 242 PE

1 U234 P U23 4 E ... Pu 242 PE
Actinide2 = (3.3)

15 U234 P U23 4E ... Pu 242 PE

15 U234 P U23 4E ... Pu 242 PE

3.3 Process Overview

For each of the data sets described, the process illustrated in Figure 3.1 is used to

develop a neural network classifier. The data is first preprocessed and the neural network

architecture is selected. The parameters for the selected architecture and training algo-

rithm are chosen. The network is trained, the feature set is reduced, and the classifier is

trained again using this reduced set. Finally, the performance of the classifier is evalu-

ated by comparing the accuracy of the classifier to the Bayes error bounds. The following

sections provide a thorough treatment of each stage of the process.
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Preprocess Data

Architecture Selection

Parameter Selection

I

Initial Training Bayes Error Bounding

Evaluate classifier
performance

Perform feature selection; Retrain using
reduce feature set reduced feature

set

Figure 3.1 Process overview.

3.4 Data Preparation

The data provided by AFTAC is preprocessed for two reasons. First, the data con-

tains gaps where values for features in some samples were not given. Two methods of

dealing with these data gaps are considered: (1) omit any samples which contain gaps

or (2) replace missing values with zeros. Because there are many gaps in the data and

because omitting entire samples means losing potentially useful data, the second option is

employed. The data is also preprocessed to remove any features for which all values are

identical; these homogeneous features are useless in classification (MATLAB® function

removeh.m, Section B.1). This results in a stainless steel data set which contains only the

50 features shown in Table 3.3. Unlike the steel data, the actinide data set contains no

homogeneous features and, therefore, remains unchanged.
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After removing the homogeneous features, the remaining input features are normal-

ized using the following simple normalization

data,3 data - (3.4)17j

where i represents the sample, j represents the feature, yj is the mean of the feature j,

and oj is the standard deviation of feature j (MATLAB® function normal.m, Section B.2).

This is done to prevent classes with features of high magnitude from disproportionately

affecting the weight update (Equation 2.9) during training.

Features

U2 3 4 P U 2 3 5 P U 2 3 6 P U 2 3 4 E

U23 5E U23 6E Pu 2 40 P Pu 240 E

Pu 241E Pu 242P C 0

F Na Mg Al

Si P S Cl

K Ca Ti V

Cr Mn Fe Co

Ni Cu Zn Zr

Mo Ru Rh Ag

Cd Sb Nd Sm

Gd W Pb Bi

Th U Pu OE

CrE FeE

Table 3.3 Steel: feature set after homogeneous feature removal.

3.5 Architecture Parameter Selection

For reasons discussed in Section 2.4, the multi-layer perceptron is used for this re-

search effort. Because the number of input features, I, and the number of output nodes,
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K, are determined by the data set, the only free architecture parameters are the number

of hidden layer nodes, J, and the type of activation functions to be used.

A larger number of hidden layer nodes allow decision regions of higher complexity to

be drawn in the feature space but also diminishes the generalization capability of the multi-

layer perceptron. This loss of generalization is due to the memorization of the training data

allowed by a large number of hidden nodes. To insure good generalization, the number of

training samples, n, in the data set should be at least ten times the number of weights

in the network [2, 18]. Using this rule-of-thumb, the following upper bound for J may be

derived:

10 (3.5)JI+K+I

Table 3.4 shows the suggested J values using this rule-of-thumb along with the parameters

actually used in implementing the classifiers. Because the suggested values for J are low,

a value of five is chosen arbitrarily for each data set with the intention to show, through

demonstration, that good generalization and reasonable training times are possible using

this number of hidden layer nodes.

Data Set I K n Suggested J Actual J Number of Weights

StainlessSteel 50 3 473 < 1 5 273

Actinide, 18 55 1151 < 1 5 425

Actinide2  18 15 1151 2 5 185

Table 3.4 Multi-layer perceptron architecture parameters.

In addition to selecting the number of hidden layer nodes, the activation functions

must be selected for both the hidden layer and the output layer. Although it has been

suggested that the Hyperbolic Tangent has properties which may make it more desirable

for training [14], the activation functions for all classifiers in this research are chosen to be

Sigmoid - Sigmoid. That is, both the hidden layer nodes and the output layer nodes use the

Sigmoid transformation function. AFIT has successfully implemented the Sigmoid-Sigmoid

combination on other data sets [25].
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3.6 Backpropagation Parameter Selection

The backpropagation with momentum algorithm is used to train all multi-layer per-

ceptrons in this research. The only parameters for which values must be chosen when

using this method are the learning rate, 77 , and the momentum, a. Using standard back-

propagation with momentum, learning rate and momentum remain constant throughout

training. Because the quality of learning using this algorithm is highly dependent on these

parameters, it is critical to properly select the learning rate and momentum values.

Fallside suggests training several classifiers using different combinations of learning

rate and momentum values and selecting the parameter values which give rise to the

smoothest learning curve (Classification Error versus Epoch) with the smallest error [7].

In general, a smoother learning curve indicates a more direct descent on the weight space

error surface and it suggests more stable learning, which is less sensitive to the initial values

of the weights. By plotting the learning curves of the different learning rate-momentum

combinations on a single graph, the parameters which give rise to the best learning may

be selected manually. These collections of learning curves are referred to collectively as

Fallside plots.

For each of the data sets, learning rate and momentum are allowed to vary from .1 to

.9 in .2 increments, producing twenty-five combinations of learning rate and momentum.

Twenty-five classifiers, one for each combination of learning rate and momentum, are

trained for each data set; all training is performed over 1000 epochs (MATLAB® function

fallside.m, Section B.4). The data sets are not divided into training and test sets, rather

the entire data sets are used for training each combination. One learning curve is produced

for each combination of learning rate and momentum. In order to compare these twenty-

five traces, five plots consisting of five traces are produced for each data set (MATLAB®

function postf.m, Section B.5). For clarity, only the best and worst learning curves for

each data set are shown here (Figures 3.2-3.4). The full set of Fallside plots for each data

set are shown in Appendix D.

3.6.1 Steel Results. For the Steel data set (Figure 3.2), training with q = a = .1

is clearly better than 77 = .3 and a = .9. Although the latter curve contains very little
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oscillation, it levels off at epoch 397 with a classification error of 8.2%. This classification

error may indeed decline again if the network is trained for more epochs (200,000 epochs

for example) but there is no reason to select these parameter values because the best case

parameter values (17 = a = .1) produce a 0.63% error within the first 1000 epochs. The

oscillations around epoch 200 and between epochs 600 and 800 are of little consequence

with respect to the overall learning of the classifier using these parameters. Consequently,

the best case parameters, 7= a = .1, are used for subsequent classifiers for the Steel data

set.

Fallside Plots
100 ,

- 7 = -1; ce = .1
90 '7 = .3; c = .9

80

70

~60I

o 50

30

20

0 200 400 600 800 1000 1200
Epoch

Figure 3.2 Steel: learning curves for the best and worst combinations of learning rate

and momentum.

It should be noted that the parameter selection process may be repeated using a

refined range of values such as (0,1). The accuracy will be no better, on average, if the

error rates are already within the Bayes error bounds. It may, however, provide some

improvement in training times.
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3.6.2 Actinidel Results (55-class). Unlike the best Steel learning curve which

approaches .60% classification error, none of the Actinidel classifiers (Figure 3.3) perform

better than 60% error. The worst learning curve (7 = .9; a = .3) reaches a minimum of

86% error under 200 epochs, while the best learning (17 = .1; a = .5) curve reaches 60%

error by epoch 800 at which point it levels off and begins oscillating. Although this level of

error is not acceptable for a final classifier, the goal here is to select the best combination

of parameters to continue in the design of the classifier. The overall performance of the

classifier is evaluated in later analysis. Therefore, a learning rate of .1 and a momentum

of .5 are selected for subsequent classifiers for this data set.

Fallside Plots
100

90- -- -.-........

80

20

10

C I I I

0 200 400 600 800 1 1200
Epoch

Figure 3.3 Actinide, (55-class): learning curves for the best and worst combinations of

learning rate and momentum.

3.6.3 Actinide2 Results (15-class). With the 15-class Actinide2 data set, the

error rates achieved by all of the classifiers are lower than those of the Actinide, classi-

fiers. The best learning curve (,q = a = .1) approaches 20% error but oscillates heavily

throughout training. Though this is not usually desirable, all of the Fallside traces which

give comparable error values also oscillate heavily (see Appendix D). The poorest learning
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occurs with 71 = a = .9 in which the error drops immediately to 45% and where it remains

throughout the remainder of the training. Based on these plots, the learning rate and the

momentum are both set to .1 for further classifier training.

Fallside Plots
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Figure 3.4 Actinide2 (15-class): learning curves for three combinations of learning rate

and momentum.

3.7 Initial Training

Once the parameters for each data set are selected, initial training is performed. This

training provides an initial indication of the performance of the classifiers, and allows the

selection of appropriate training times. By training a multi-layer perceptron for a large

number of epochs, the training data may be memorized. That is, the network can classify

the entire training set with 100% accuracy. Initially this may seem to be a desirable

outcome, however, when this is done the network loses its ability to generalize (classify

samples which were not used in training). The number of training epochs should be selected

at the point where this loss of generalization begins to occur.
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The method used to determine the point at which the network begins to lose its

generalization ability is to divide the data set into two sets (training and test) and track

the classification error for the test set while training the network with the training set.

After each epoch of training, each sample in the test set is classified using the current

set of weights and the percentage of samples misclassified is stored (MATLAB® function

tev.m, Section B.8). The number of training epochs is chosen where the test set error

begins to increase.

As noted above, the data sets are each divided into two subsets, training and testing

(MATLAB® function randchoose.m, Section B.3). The training subset of each data set

contains two thirds of the samples by class, while the test set contains the remaining third

by class. This splitting of the data sets for training and testing presents a slight problem in

the case of the actinide data sets. In these data sets, many of the classes contain only one

sample. For the classes in which this is true, the sample is duplicated in both the training

and test subsets.

In order to insure that the results obtained by this method are insensitive to the

initial values of the weight matrices, each data set is trained ten times beginning each

training run with different initial weight matrices (randomly chosen values as discussed

in Section 2.4.2). The Steel classifier is trained for 500 epochs on each run, while the

Actinide, and the Actinide2 classifiers are trained for 20,000 epochs on each run. The

mean of the training curves and the mean of the test curves for each data set are shown

in Figures 3.5-3.7.

3.7.1 Steel Results. For the Steel data, the test set error reaches a minimum

of 11% at epoch 65 at which point it begins to increase and the training set error is still

declining. Therefore, the number of epochs for training the Steel data is selected as 65. It

should be noted that this value is the point at which the average curve is at a minimum.

The individual training curves reach minimum error at different points in training. The

range of epochs at which the minimum error is reached for the different learning curves is

[25 180].
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Figure 3.5 Steel: training and test set error traces over 500 epochs.

The confusion matrices after 65 training epochs for both the training and the test sets

are computed (Tables 3.5 and 3.6). Each row in these matrices indicates the actual class

of samples in the data set, while columns represent the class assigned to the samples by

the classifier. A value in the table at row i and column j indicates the number of samples

of class i which are classified as class j by the classifier. Therefore, values on the main

diagonal represent the number of samples correctly classified in each class. For example,

in Table 3.5, 148 samples of class one are classified as class one, while six are misclassified

as class two and two are misclassified as class three.

Assigned Class

Actual Class 1 [2 3 % Correct

1 148 6 2 95

2 4 78 0 95

3 0 0 76 100

Table 3.5 Steel: confusion matrix for the training set.
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Assigned Class

Actual Class 1 2 3 % Correct

1 69 9 0 88

2 9 33 0 79

3 1 2 36 92

Table 3.6 Steel: confusion matrix for the test set.

The purpose of the confusion matrices is to illustrate the accuracy by class. For a data

set in which the samples are not evenly distributed among the classes, the classifier may

sacrifice accuracy in the classes which contain few samples, while achieving high accuracy

in classes which contain many samples and maximizing the overall accuracy. The Steel

samples are evenly distributed over the classes and the accuracy is consistent across the

classes.

3.7.2 Actinide, Results (55-class). The Actinide, training and test set error

curves (Figure 3.6) asymptotically approach 57% and 59% respectively. At 20,000 epochs,

the error curves are still on a downward trend but have leveled off significantly by this point.

As a result, these error rates are considered to be indicative of the classifier performance

on this data set.

The poor performance of the multi-layer perceptron classifier on this data set is due

to the large number of classes and the small number of samples per class. Although the

confusion matrices are too large to display (55x55), Tables 3.7 and 3.8 show the number

of samples per class and the percentage of samples misclassified within each class. It is

obvious that the more heavily populated classes are classified more accurately and that, in

general, classes containing less than ten samples have zero accuracy. According to Foley, if

the ratio of the number of samples per class to the number of features is greater than three,

the training set error is approximately the test set error and they both approach Bayes error

rate [10]. For the Actinide, data set, there are only 18 features and the average number of

samples per class is 21 with only six of the 55 classes containing more than 54 samples (the

number of samples per class required to meet the Foley ratio requirement for the given
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data). Therefore, it is doubtful that further training of the network will improve either

the training set error or the test set error. As a result, further analysis of this data, with

the exception Bayes error bounding, is abandoned in favor of the 15-class Actinide2 data.

Bayes error bounding is still performed on the Actinide, data set (Section 3.9) to confirm

the assertion that additional training will not significantly increase the performance of the

classifier using this data.
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Figure 3.6 Actinide, (55-class): training and test set error traces plotted over 20,000

epochs.
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Class Samples/Class Correct ffClass[ Samples/Class % Correct

1 6 0 28 2 100

2 1 0 29 12 0

3 10 0 30 12 17

4 1 0 31 1 0

5 1 0 32 1 0

6 1 0 33 2 0

7 2 0 34 4 0

8 1 0 35 2 0

9 1 0 36 1 0

10 4 0 37 1 0

11 4 0 38 1 0

12 48 90 39 1 0

13 1 0 40 1 0

14 6 0 41 1 0

15 2 0 42 14 0

16 1 0 43 1 0

17 4 0 44 2 0

18 1 0 45 6 0

19 1 0 46 16 69

20 1 0 47 1 0

21 2 0 48 8 0

22 50 4 49 144 94

23 58 79 50 1 0

24 16 0 51 8 0

25 96 68 52 1 0

26 48 33 53 1 0

27 130 58 54 8 0

55 1 0

Table 3.7 Actinide, (55-class): training set accuracy by class.
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Class Samples/Class % Correct IIClass Samples/Class %Correct

1 5 0 28 2 0

2 1 0 29 6 0

3 5 0 30 7 0

4 1 0 31 1 0

5 1 0 32 1 0

6 1 0 33 2 0

7 1 0 34 4 0

8 1 0 35 1 0

9 1 0 36 1 0

10 3 0 37 1 0

11 2 0 38 1 0

12 26 85 39 1 0

13 1 0 40 1 0

14 3 0 41 1 0

15 3 0 42 7 0

16 1 0 43 1 0

17 3 0 44 3 0

18 1 0 45 3 0

19 1 0 46 10 60

20 1 0 47 1 0

21 1 0 48 6 0

22 27 0 49 74 86

23 29 76 50 1 0

24 8 0 51 5 0

25 48 54 52 1 0

26 26 8 53 1 0

27 65 49 54 4 0

55 1 0

Table 3.8 Actinidej (55-class): test set accuracy by class.
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3.7.3 Actinide2 Results (15-class). Unlike the Actinide, learning curves, the

training and test error traces (Figure 3.7) for the Actinide2 data drop to 21% and 26%,

respectively, within the first 3,000 epochs, but each only drops an additional .1% over the

next 17,000 epochs. Although the minimum error in the test error curve (24%) occurs at

epoch 15,399, training for this number of epochs greatly increases the computation time

on a data set of this size (1151 samples) without a significant decrease in the test set error.

To avoid this increase in computation time, the number of training epochs is selected as

3,000.
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Figure 3.7 Actinide2 (15-class): training and test set error traces over 20,000 epochs.

The confusion matrices for the Actinide2 data set are shown in Tables 3.9 and 3.10.

The accuracy is clearly lower in the classes which contain fewer samples. Classes 12 and

13, which contain the majority of the samples in the entire data set, dominate the training

and, as a result, the classifier performs well on these classes in both the training and test

sets. In addition, the next most populated class, class 5, is the only other class with an

accuracy greater than zero. This suggests that training may be more successful on the

remaining classes if they are more heavily populated.
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Assigned Class

Actual Class 1 123 41 5 167 18 9110 [11 12 13 I,14115 %Correct

1 0 0 0 0 3 0 0 0 0 0 0 4 17 00 0

2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0

4 0 0 0 0 3 0 0 0 0 00 0 1 0 0 0

5 0 0 0 0 22 0 0 0 0 0 0 3 23 0 0 46

6 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

7 0 0 0 0 2 0 0 0 0 0 0 2 2 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 2 6 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 197 23 0 0 90

13 0 0 0 0 3 0 0 0 0 0 0 44 385 0 0 89

14 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Table 3.9 Actinide2 (15-class): confusion matrix for the training set.
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Assigned Class
Actual Class 1 2 11 1415 Correct

1 0 0 0 0 0 0 0 0 0 0 0 1 11 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 '1 2 0 0 0

4 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

5 0 0 0 0 9 0 0 0 0 0 0 0 17 0 0 35
6 0 0 0 0 0 0 0 0 0 0 0 0 1 00 0

7 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 94 18 0 0 87

13 0 0 0 0 7 0 0 0 0 0 0 28 183 0 0 84
14 0 0 0 0 1 0 0 0 0 0 0 0 0 0

15 00000 0000000 1 0 0 0

Table 3.10 Actinide2 (15-class): confusion matrix for the test set.

3.7.4 Additional Analysis. It should be noted that two other neural network al-
gorithms, fuzzyARTmap [5] and Multi-layer perceptron Iterative Construction Algorithm
(MICA, developed at AFIT)[22], were usedto classify the actinide data sets. The fuzz-
yARTmap architecture, which is particularly well suited for data with only a few sam-
ples per class, performs no better than the multi-layer perceptron on either the 55-class
Actinide, data or the 15-class Actinide2. Conversely, the MICA network, which adds
hidden layer nodes until it is able to separate the training data, classifies the Actinide2

training set data with 100% accuracy but it requires 851 hidden layer nodes to do so and
the test error is 92%. This indicates that the feature set for this data is not sufficient to
separate the data and maintain generalization; good features are required to produce good
classifiers. Although the 55-class Actinide, classification using MICA was not completed
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due to computation time, the error rates would be higher because of the larger number

of classes. From this additional analysis, it is concluded that the poor performance of the

multi-layer perceptron on the data is due not only to the large number of classes and the

small number of samples per class but also to overlap in the feature space.

3.8 Feature Reduction & Classifier Retraining

Once initial training is complete, the features for each data set are ranked according

to their saliency, the least salient features in each data set are removed, and the classifiers

are retrained using the reduced data sets. As discussed in Section 3.7.2, the Actinide,

data set is not considered in this section.

The general process in this portion of the research is to rank order the features by

forward sequential selection and plot the error associated with the addition of each feature

to the feature nucleus (MATLAB ® function fselct.m, Section B.9). As each additional

feature is added to the nucleus, the classification error decreases. At some point, a mini-

mum error is reached. The number of features, f, at this point is the number of features

which should be used to classify the given data set. Given this, the first f features of the

nucleus are considered to be the salient features and all other features are removed from

the data set under consideration. Finally, a classifier, using the parameters determined

previously, is trained on the reduced data set.

3.8.1 Steel Results. The classifiers in the forward sequential search are trained

for 65 epochs with a learning rate and a momentum of .1. The resulting ranking of features

is shown in Table 3.11. Figure 3.8 shows the classification error as features are added to the

nucleus. Labels on the x-axis correlate to the ranks in Table 3.11. For example, after the

first pass through all of the features, the addition of Ni to the nucleus (which is initially

empty) results in the best classification error (24.1%). So, Ni is added to the nucleus. On

the second pass, the addition of Mo to the nucleus (which now contains Ni) results in the

best classification error (6.8%). The minimum error (3.8%) is achieved with the addition

of feature 34 to the nucleus. Therefore, the feature set is reduced to include only the top

34 features out of the original 50 features.
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After selecting an appropriate feature set, the classifier is retrained on the reduced

feature set. Although the classifier could be satisfactorily trained in 65 epochs, it is trained

for 500 epochs in order to compare the results to Figure 3.5. Making this comparison, it is

clear that reducing the feature set does not diminish the performance of the classifier. On

the contrary, reducing the feature set improves the training and test set error (at epoch

500) from 4% to .6% and 13% to 5.5%, respectively.
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Rank Symbol Rank Symbol

1 Ni 26 K

2 Mo 27 Co

3 U234P 28 Cu

4 Mg 29 Ti

5 Cr 30 Mn

6 Pu 240P 31 Fe

7 U236 E 32 Ag

8 S 33 Zn

9 U235P 34 Sb

10 Ca 35 Ru

11 Zr 36 Nd

12 U236P 37 V

13 U 2 3 4 E 38 Pb

14 Pu 241E 39 Cd

15 U235E 40 Sm

16 Pu 240E 41 Th

17 Na 42 U

18 F 43 Pu

19 Si 44 P

20 Pu 242P 45 Gd

21 Al 46 W

22 C 47 Bi

23 Cl 48 OE

24 0 49 CrE

25 Rh 50 FeE

Table 3.11 Steel: features ranked by saliency.

Apparent abnormalities in the feature ranking, such as the error in a measurement

ranking higher than the measurement itself, may be resolved by running feature selection
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multiple times and determining the relative frequency of each feature's ranks. Doing this,

Ruck et al showed, for a given data set, that the ranking of the most salient and the

least salient features were more consistent than features in the middle of the rankings

[27]. The rankings of features in the middle varied widely over feature selection runs. For

example, the top five and the bottom five Steel features may rank consistently in the top

and bottom, respectively, over multiple runs. However, the rank of the middle features

(feature 6 to feature 45 in Table 3.11) may vary widely over multiple runs. Therefore, it

may be insignificant that U236 E outranks U2 36 P for the one feature selection run shown.

Multiple runs could be used to verify the rankings.
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Figure 3.8 Steel: classification error versus feature added to the nucleus during forward

sequential selection.
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Classification Error versus Epoch
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Figure 3.9 Steel: training and test set error traces over 500 epochs.

The confusion matrices are shown for one training run on the reduced feature set (Ta-

bles 3.12 and 3.13). Using the reduced feature set, the classifier shows marked improvement

on all classes of both the training and the test sets.

Assigned Class

Actual Class 1 2  3 %0 Correct

1 155 1 0 99

2 0 82 0 100

3 0 0 76 100

Table 3.12 Steel (reduced feature set): confusion matrix for the training set.
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Assigned Class

Actual Class 1 2 3 % Correct

1 71 2 5 91

2 2 40 0 95

3 0 38 97

Table 3.13 Steel(reduced feature set): confusion matrix for the test set.

Overall the feature selection is successful. The feature set is reduced from 50 features

to 34 features with no decrease in the overall accuracy of the classifier. In fact, on this data

set, the reduced feature set provides better classification than the full feature set. This

improvement in accuracy results from omission of features which, in terms of classification,

are analogous to noise. As with most systems, noise results in diminished performance.

3.8.2 Actinide2 Results (15-class). The classifiers in the forward sequential

selection on the Actinide2 data are trained for 3,000 epochs. Table 3.14 shows the features

ranked by saliency. Again, plotting the features against the classification error, as shown

in Figure 3.10, indicates an appropriate number of features. In this case, the ninth feature

added to the nucleus results in the lowest overall classification error. Therefore, the feature

set is reduced to the first nine features listed in Table 3.14.

The classifier is retrained on the reduced feature set. The training and test set

learning curves are shown in Figure 3.11. The overall error of both the training set (24%

error) and test set (26%) is higher than the associated error when using the full feature

set. However, the ultimate goal of feature selection/reduction is to reduce the feature set

to reduce training times without significantly reducing the accuracy of the classifier. If the

reduced feature set error is greater than that of the full feature set error, but both are less

than the upper bound on Bayes error, the difference in the accuracy using the two feature

sets may be considered insignificant. This comparison is made in Section 3.9 where the

Bayes error bounding procedure and results are presented.
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Rank Symbol Rank Symbol

1 U236 P 10 Pu 24 0E

2 U23 4PE 11 U235E

3 Pu 2 42 P 12 Pu 24 1E

4 PU24oPE 13 U234P

5 Pu 240P 14 U23 6PE

6 U236 E 15 U23 5P

7 Pu 24 2 E 16 Pu 2 41 PE

8 Pu24 2PE 17 U23 5PE

9 Pu 24 1 P 18 U234E

Table 3.14 Actinide2 (15-class): features ranked by saliency.
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Figure 3.10 Actinide2 (15-class): Classification error versus feature added to the nucleus

during forward sequential selection.
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Classification Error versus Epoch
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Figure 3.11 Actinide2 (15-class): training and test set error traces over 3,000 epochs.

The confusion matrices for the Actinide2 data set are shown in Tables 3.15 and 3.16.

The confusion matrices show that there are shifts in the by-class accuracies in both the

training and test sets. However, the shift in overall accuracy is less than 1% in both

sets. Although this seems to be contrary to the decrease in the error of both sets as

demonstrated by Figures 3.7 and 3.11, it should be noted that the confusion matrices are

computed for one training run, while each curve in the figures represent an average of ten

classifier training runs. The confusion matrices show that, even with the reduced feature

set, the classifier still focuses on and performs well on the classes which are more heavily

populated.
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Assigned Class

Actual Class 1234I5 6I 7~ 8 19110 J1112 13 14]15 % Correct

1 0 0 0 0 1 0 0 0 0 0 0 3 20 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

30 0 0 0 0 0 0 0 0 0 2 2 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0

5 0 0 0 0 6 0 0 0 0 0 0 2 40 0 0 12

6 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 2 4 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 2 6 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 189 31 0 0 98

13 0 0 0 0 3 0 0 0 0 0 0 44 385 0 0 89

14 0 0 0 0 0 0 0 0 0 0 0 2 4 2 0 25

15 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Table 3.15 Actinide2 (reduced feature set): confusion matrix for the training set.
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Assigned Class

Actual Class 12134156 7 8910 11 121 13 14115 %oCorrect

1 0 0 0 0 0 0 0 0 0 0 0 1 11 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0

5 0 0 0 0 2 0 0 0 0 0 0 0 24 0 0 8

6 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 97 15 0 0 87

13 0 0 0 0 3 0 0 0 0 0 0 23 191 1 0 88

14 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Table 3.16 Actinide2 (reduced feature set): confusion matrix for the test set.

3.9 Bayes Error Bounding & Classifier Evaluation

In order to evaluate the performance of the classifiers, the error rates achieved are

compared to the Bayes error bounds for each data set. Because Bayes error rate represents

the best performance that any classifier can achieve on average, the classifier is considered

to be a good classifier for the given data set if its test set error falls within the Bayes error

bounds.

In estimating the Bayes error bounds for the given data sets, only the upper bound

(determined by the Leave-One-Out Method) is calculated. The lower bound using the

multi-layer perceptron is rather useless because it approaches zero as the number of hid-

den nodes and the training times are increased[19]. Because Bayes error bounding is so
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computationally intense, the upper bound is computed using one to ten hidden layer nodes

for each of the data sets.

3.9.1 Steel. The Bayes error bound for the Steel data is shown in Figure 3.12.

Over the range of hidden layer nodes from 3 to 6, the error remains at approximately 10%.

Both the training set error (.60%) and the test set error (5.5%) are clearly less than the

10% upper bound. Therefore, the multi-layer perceptron performs as well, on average, as

any other classifier, statistical or neural, for the Steel data set.
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Figure 3.12 Steel: Bayes error bounds.

3.9.2 Actinide, (55-class). The upper bound on Bayes error for the Actinide,

data set is shown in Figure 3.13. At five hidden layer nodes, the upper bound on Bayes

error is 63%. Comparing this to the training error (57%) and the test error (59%), the

classifier performance approaches Bayes optimality for the data set as given. This confirms

the assertion made in Section 3.7.2 that further training will not significantly increase the

accuracy on this 55-class data structure. Therefore, the decision to drop the Actinide,

data set from consideration is fully justified.
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Figure 3.13 Actinide, (55-class): Bayes error bounds.

3.9.3 Actinide2 (15-class). The Bayes error bound for the Actinide2 data set is

shown in Figure 3.14. At five hidden layer nodes, the upper bound on Bayes error is 29%.

Using the full feature set, the training and test set errors (21% and 26%, respectively)

are within this upper bound. Furthermore, the reduced feature set classification error also

approaches Bayes error, though it results in slightly higher training and test set errors

(24% and 26%, respectively). Because Bayes error represents the best that any classifier

can perform on average on a given data set, the features measured and the number of

samples per class in the Actinide2 data are sufficient to allow only 74% to 79% accuracy.
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Figure 3.14 Actinide2 (15-class): Bayes error bounds.

3.10 Summary

This chapter has presented the methods used to design multi-layer perceptron clas-

sifiers for three data sets as well as all results obtained by these methods. A classifier was

designed for each data set by selecting the appropriate classifier parameters, conducting

initial training, reducing the feature set/retraining, and comparing the performance of each

to Bayes error. Table 3.17 shows the final results of this research effort.

Data Set # Features Training Error Test Error Bayes Error

Steel 50 .6% 5.5% 11%

Actinide, 18 57% 59% 63%

Actinide2  9 24% 26% 29%

Table 3.17 Summary of results: the Bayes error value is the upper bound at five hidden

layer nodes.
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The training and test set errors are the lowest average values of ten training runs with

each run beginning with different random weight matrices. The Bayes error values are the

upper bound estimates using five hidden layer nodes. The results are fully summarized

and conclusions are drawn in Chapter IV.
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IV. Conclusion

4.1 Introduction

The primary objective of this research is to provide a methodology by which environ-

mental professionals may design neural networks to classify environmental samples. The

secondary goals are to design a multi-layer perceptron to classify two environmental data

sets which were provided by AFTAC, to determine the salient features for the given data

sets, and to evaluate the performance of each classifier produced.

4.2 Methodology Summary

The methodology implemented in this research may be summarized as follows:

1. Select the architecture parameters.

2. Select the training parameters for the given data using Fallside plots.

3. Train the classifier tracking the test set error and select an appropriate number of

training epochs.

4. Perform forward sequential selection and reduce the feature set.

5. Train the classifier again using the reduced feature set.

6. Calculate the Bayes error bounds and evaluate the classifier performance.

4.3 Summary of Results

4.3.1 Stainless Steel. The stainless steel data provided by AFTAC consists of

196 input features. By removing the homogeneous features, the data is pared down to 50

features. Using Falside plots, the learning rate and momentum for the backpropagation

algorithm used to train on this data are both chosen as .1. By tracking the test set error

while training with these parameters, an adequate training time is determined to be 63

epochs. The classifier performance at this point is 6.8% on the training set and 11% on

the test set. Subsequently, the feature set is reduced, using forward sequential selection,
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to 34 input features. Retraining on this reduced data set results in a final error on the

training and test sets of .6% and 5.5%, respectively. For evaluation purposes, the upper

bound on Bayes error is computed over ten hidden layer nodes. The upper bound at five

hidden layer nodes, which is the number of hidden layer nodes used on all classifiers in this

research, is 11%.

4.3.2 Actinide. AFTAC provided a single actinide data set labeled with al-

phanumeric descriptors representing the locations from which the samples were taken. By

allowing each descriptor to represent a class, 55 classes result. Because many of the classes

contain very few samples, the class structure is altered to allow only 15 larger classes.

Therefore, the two actinide data sets are identical with the exception of the class struc-

ture. Each contains 18 input features.

4.3.2.1 55-class Actinide. As with the steel data, the training parameters

are selected using Fallside plots. A learning rate of .1 and a momentum of .5 are chosen.

The data is divided into training and test sets and a classifier is trained using these pa-

rameters. The training set error approaches 57%, while the test set error approaches 59%.

Because this level of error is unacceptable for real-world application and it is not clear

that further training will improve performance, no additional analysis is conducted with

the exception of bounding Bayes error. The upper bound on Bayes error for this data set

is 63% (at 5 hidden layer nodes).

4.3.2.2 15-class Actinide. The training parameters for this data set are

a learning rate and momentum of .1. Training with these parameters on the full feature

set results in a training error of 21% and a test error of 26%. During forward sequential

selection, the classifiers are trained for 3,000 epochs each and the feature set is reduced

from 18 to 9 features. Upon retraining, the test set error is unchanged, while the training

set error increases to 24%. The Bayes error upper bound at five hidden layer nodes is

found to be 29%.
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4.4 Conclusions

The following conclusions may drawn from this thesis:

e The multi-layer perceptron is capable of classifying different type of stainless steel

samples with a high degree of accuracy.

* The multi-layer perceptron performs as well as any other classifier when classifying

actinide by location, given the data set provided. The overall accuracy of the multi-

layer perceptron is unacceptably low for both the 55-class and the 15-class structures.

However, the error rates are within the upper bound of Bayes error in both cases.

Furthermore, the poor performance is linked to the number of classes containing few

samples. On the classes containing an adequate number of samples, the multi-layer

perceptron performed well.

a The number of features used in classifying the given environmental data can be

significantly reduced with little or no decrease in the classification accuracy.

Considering the results and conclusions presented in this chapter and the method-

ology outlined throughout this work, this thesis has met all of the objectives set forth in

Section 1.4.

4.5 Recommendations for Follow-on Research

The possibilities for additional research related to this thesis are:

1. Develop training algorithms capable of minimizing by-class error and overall error

simultaneously.

2. For the actinide data, gather more samples in the less populated classes and perform

the analysis outlined in this research.

3. Measure alternative features for the actinide data and perform the analysis outlined.

4-3



Appendix A. Backpropagation Learning Law Derivations

A.1 General Learning Law Derivation

For the MLP to be trained to classify, a general learning law for each set of weights

can be derived independent of the type of transformation function applied at the nodes.

Backpropagation is the most common technique, and the one used here, to update the

matrix of weights, W. Backpropagation requires that the partial derivative of the error,

E, be computed with respect to each weight. A widely accepted measurement of the error

is the sum squared error, defined by:

E= Z(dk - k)', (A.1)
k=1

where dk is the desired output and fk is the actual output. If 8E describes a matrix

whose elements are given as:

8E OE

-OW~ - aWij

then the learning law for each set of weights is generally written as:

OEW + = W- 77OW-

where W + is the updated weight set, W- is the old weight set and 77 is the learning rate.

In the next two sections, the weight update equations for a two-layer perceptron are

derived.

A.1.1 Derivation of Output-Layer Weight Updates. The update equations for the

output layer are considered in this section followed by a section containing the derivation

of the update equations for the hidden layer. An output-layer weight is designated by

subscripts j and k, specifying the connection between the jth node in the hidden layer and

the kth node in the output layer. Each output from the output layer is designated by fk.

From the generalized form of the learning law, the updated weight is established as:
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+ OE

jko Wjoko - 'I Owjo

where the error E for the two-layer perceptron is defined as:

E = 2 (dk- fk)21
k=l

To implement the update equation, the partial derivative of the error, E, with respect

to the weight Wjoko is evaluated.

K8E = -I { -'(dk- fk)2}

Owjo 9wjo 2 /=1

In the partial derivative of the summation from the above equation, the summation's

dependency on Wjokfl must be isolated.

2 (dk - A) = 2f(d,- skl)2 + ...+ (dk - fko) 2 + + (dk- fk) 2 }
k= 1

Taking the partial derivative of the equation above, the only part to survive the

differentiation will be variables that involve both subscripts jo and ko. This reasoning

identifies the terms fkco and dk0,. While the desired output dk0 is a constant, the actual

output fk0 is a function of the summation of weighted outputs from the hidden layer. The

partial derivative of the summation simplifies to:

O9(dk _ fk)2 0 :(fl k 54 ko
Od -f) _(-ffo : kko

OWjoko 2(dko - fk 0 ) 'Wjoko k =

and therefore:

{- Yd. - f) 2 } = (dk0 - 0(-fk )

o 0  k=1 OWjoko
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As stated above, fko is a function of the summation of weighted outputs from the

hidden layer. The partial derivative of fko can be written in the generalized form as:

Ofko a J+1

awjoko 9uwjoko j= 1

where fk0 (a) is the transformation employed at node k0. By substitution:

OE a J+l

OZw - -(do - fko)0 fko (E Wjkofj)Ojo ko Wjoko j=1

-
fko o J+-- k -- o wj- EWjko0 fj

Ooko j=1

- -(dko -fko)f 0 ofjo

The notation A, represents the derivative of fko (a) with respect to a. After the differen-
J+1

tiation, the argument a is replaced by the activation function E Wjko fj.
j=1

Therefore, the output-layer weight update equation reduces to:

Wt0 = W7o, + r(dko - fko)fkofjo (A.2)

A.1.2 Derivation of Hidden-Layer Weight Updates. The hidden-layer weight is

designated by subscripts i and j, specifying the connection between the ith node in the

input layer and the jth node in the hidden layer. Each output from the hidden layer is

designated by fj. Similar to the updated weight for the output layer, the hidden-layer

updated weight is established as:

w+. _ OE
oo -"W oo - _ ioJo

The error term here is identical to that discussed in the last section. To implement

the update equation, the partial derivative of the error E must be evaluated with respect

to the old weight Wiojo for this layer rather than Wj0 ko.
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Because the partial derivative depends only on the links containing the io and Jo

nodes and because fk is a function of the summation of weighted outputs fj from the

hidden layer, the partial derivative of the error term is given as:

OEK K Ao(-fk)OE~~ : (dk - fk)'I = 1:(dk-:) ~ j
wio.o - Ow1030 2 k=1 k=1 )

Substituting this along with the equation for fk from the previous section, the fol-

lowing equation for the partial derivative of the error term may be derived:

OE a 1 Kg k2
OFo~o - O0o7 {- E(dk - fk)2}

O O wi o 2 k=1

K o(-fk)
= ( fk) Ow- 0A 0

k=1l9ii

K a J+1

- Z(dk - fk)S sfk(wakf3
k=1 j=

K a J+1

KY d ' (fJ)- E (dk - fk)f' Jk'w oo

k=1

where f,' represents the derivative of fk(a) with respect to a.

The output of a hidden-layer node is given by fj, (a) where

1+1

i=1

Substituting the above equation for fjo and realizing that

O(wijoxi) - : i io

awiQjo xio i =io
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gives

aEK a I+1
E - (dk - k) fWjok y (i f , WijoXi)aWioJo k=1 i=1

K a I+1
- - (dk - fk)f'w Ej kfj

k=1 =

K

= -Z(dk - fk)fwjokfjoxi,
k=1

Therefore, the hidden-layer weight update equation reduces to:

K

wt . = w[ + (dk -fk)f WjokfjoXio (A.3)
k=1

A.1.3 Conclusion. In sum, the general equations for updating the output-layer

and hidden-layer weights are provided in Equations A.2 and A.3. In the next section, the

weight update equations will be derived for MLP structures tailored for specific transfor-

mation functions.

A.2 Transformation Function Specific Derivation of Learning Laws

A.2.1 Transformation Functions. In the following section, learning laws for both

layers will be derived for the output defined for the sigmoid, tanh, and linear transforma-

tions:

" SIGMOID: fko 1
E j= W ko fJ

TANH: fk0 = tanh(Ejff Wjkkofj);

LINEAR: fk 0 = EJ+ kf.

The combination of transformations to be considered at the output and hidden layers

is shown in Table A.1.
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Table A. 1 Transformation Function Case Table

Layer Case
Hidden Sigmoid Sigmoid Tanh Tanh
Output Sigmoid Linear Tanh Linear

A.2.2 Case I. Sigmoid-Sigmoid. For the output layer,

+ 
aE

Now, just analyzing the partial derivative term in the expression above yields the

following:

= -f Z (dk -f)}=(dko k)0 )j'

19wJoko 19Wj~k0 2 k= W 0 ko

and substituting the sigmoidal transformation function for fkO in the derivative yields:

019 39JIjoj-
19Wjoko (dk, -k ~j,, (1 + e zt'wkf)

-(dk fk)(l)( + e'wikofi (e- +Ijkofi) a ko)

aE e(-=1 ikofj)

-= - (dko fk 0) eZ.]J+kof

j k(1 + e- Z=1 wikofi)2

aE - -k fk,)(fk0)1 fkO)(fjo)
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Therefore, for the output layer of the Sigmoid-Sigmoid Case:

W wk wk o + r/(dko - fko)(fko)(1- fko)(fjo) (A.4)

Now, the hidden layer weights must be updated.

+ _ E
Wiojo = Wiojo - r7 Ooo

The partial derivative term of the above expression will be analyzed as before.

OE 1 K K Ofk

Wiojo - OWioJo f _(dk - fk) 2 } = -:(dk - fk_)_o__o_

substituting the sigmoidal transformation function for fk in the derivative yields:

OE K a -J+ 1 -
_ EZ(dk-fk)-(1+e-s-=Ik-) -

O ~ o o k= l OW i Ja 1 +

E K 9 J+1
awE = "-(dk - fk)(fk)(1 - )E (- Wj/ fj)

O ° k=l j=j

OE K 9
S (dk - fk)(fk)(1 - fk)(-Wjok) (fio)

'9 W l~ j ° k = l

substituting the sigmoidal transformation function for fjo in the derivative and evaluating

it yields:

OE K

aw__o- Z(dk - fk)(fk)(1 - fk)(-Wjok)(fjo)(1- fio)(-Xio)
7k=1
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Therefore, for the hidden layer of the Sigmoid-Sigmoid Case:

K

wt =wo + 77ZE(dk - Ak)(fk) (1 - A)( -)(f, f,(i (A.5)
k=1

A.2.3 Case II, Sigmoid-Linear. For the output layer,

Wiko = Woko - 7

Now, just analyzing the partial derivative term in the expression above yields the

following.

,9E a I0 'fE__ _ ___ - fk)2 d- fko) (-1) "2
OWjoko 19Wjoko 2 Zkdk 19do Wj ko

and substituting the linear transformation function for fko in the derivative yields:

O-~k = -(dko -fk,) u~k EZWako fa
t9Wjoo '9iokO3=1

OE = - (dk - fk)(fJ 0 )

Therefore, for the output layer of the Sigmoid-Linear Case:

= Wt + 77(dko - fko)(fio) (A.6)

The hidden layer weights must be updated as shown below.

Wi0= i. - ____
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The partial derivative term of the above expression will be analyzed as before.

aE a 1K K 9fk

E~0~ (d - fk)2 } = (dk - fA)

and substituting the linear transformation function for fk in the derivative yields:

aE K a J+1

awi~i k=1i~j =1

aE Ka

-w~j - >(dk - fk)(Wjok4 (fj,)

substituting the sigmoidal transformation function for f3,o in the derivative and evaluating

it yields:

,9E K

aWO E (dk - fk)(Wjok)(fjo)(1 - j(X,

Therefore, for the hidden layer of the Sigmoid-Linear Case:

K

Wio~o 203 0 + 77 ~d - fk)(Wjok)(fjo)(1 -f 3 0 )(Xio) (A.7')

A.2.4 Case III. Tanh-Tanh. For, the output layer,

joko 0  ok - 0719

Just analyzing the partial derivative term in the expression above yields the following.

19Wjoko EWjoko 2 k=1 fko(-loko
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and substituting the hyperbolic tangent transformation function for fko in the derivative

yields:

,J+1
S= -(dko - fk0 ) {tanh E Wjkofd}

WjokWjko j=

OE J+1 2 J+l

O~oo= -(dko - ko,)(cosh j-- ofj°Y)- y o-- (j-  jo
a~~j,,k j=1 jok 0  E j-o

i9E 
J+1

= -(dk, - fko)(cosh E wjkof)- 2 (fjo)
OWjoko j=1

J+1
Wto =WiJko + 77(dko - fko)(cosh E Wjk.fj)- 2 (f/.)

j--1

Therefore, for the output layer of the Tanh-Tanh Case:

W+ko = Wko + (d fko - fo)(1 - (fko) 2 )(f 3 0 ) (A.8)

The hidden layer weights must be updated as shown below.

8E
ZOjo = Wi -Jo - 17 _ioj

The partial derivative term of the above expression will be analyzed as before.

81 a 1 K K Ofk
s _.(dk - k) } -- (dk - f) O 9 _ oJo

w0-W o wjo {,wi07  2 k=1 k=1
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substituting the hyperbolic tangent transformation function for fk in the derivative and

evaluating it yields:

OE K J+1 a J+1
= _Z(dk -fk)(cosh :Wjkf )-2  Ei Wikfi

aw~" k=1 j=1 Oij =

9E K J+1 J+

... - (dk-fk)(CoshEWjikfj) ~ Wjkf,
'wj k=1 j= .1j =1

aE K J+1 a
- (dk - fk)(cosh E Wjkfa)-2 (Wj. k)a - (j'

substituting the hyperbolic tangent transformation function for fj,, in the derivative yields:

,9E K J+1 -21+1 WjX-2a 1+1

=- EJdk - fAk)(cosh : wJkfj) (Wjok)(coshZ 5.-7~) a i.x
49=1i IO3O j= " =

9E K J+1 -21+1 WOX)-2(,

______ - (dk - fk)(cosh 1: Wjfj) 2(Wjk)(cosh
k=1 j=j =

K J+1 I+1

wty ~ + ?Zj(dk -fk)(cosh j wJkf 3) 2 (wjok)(cosh Ej woX,)- 2 (X,0)
k=1 j=1 i=1

Therefore, for the hidden layer of the Tanh-Tanh Case:

K

wt= w ±i Zd fk)(l _ (fk)2)( k ( - 2(XO (A.9)
k=1
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A.2.5 Case IV: Tanh-Linear. For the output layer, the learning law is the same

as the learning law derived earlier in Case II (Equation A.6).

Wt - r(dk, - fko)(fj o )jo ko =Wjo ko

For the hidden layer weights the derivation is provided below.

Wtoo = W io 0  - _ io_

The partial derivative term of the expression above is analyzed below.

aE _ L90 1 -(dk_ fk) 2 } =_Z(dk - 'fk9WioJo '9WioJo {2 k=1 k=1lwij

substituting the linear transformation function for fk in the derivative, evaluating it, and

substituting the hyperbolic tangent transformation function in the resulting derivative for

fjo yields:

K I+1

= - (dk - fk)(WJk) {tanh
k=i=1

O9E K 1+1

- (dk - fk)(Wjok)(cosh W~ijoX)-2(Xo)'9Wi°J° k=1 =

Therefore, for the hidden layer of the Tanh-Linear Case:

K

Wiojo = WioJo + 77 Z(dk - fk)(WJok)(1 - (fj,)2 )(Xo) (A.10)
k=1
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Appendix B. Matlab Code

B. 1 remnoveh.mr

% This function removes the homogenous features in the data set

% "datain". The reduced data set is "dataout". The features

%A that were deleted are stored in "featsdel", while the the

% features that were kept are in "featskept".

%. syntax: [dataout featsdel featskept]=removeh~datain);

function Edataout,featsdel,featskeptJ removeh(datain)

[row col]=size~datain);

targetdatain(l,:);

featsdel==zeros(i,col);

featskept==zeros(i,col);

for j=2:col,

if isempty~temp),

featsdel(1,J)=1;

else

f eat skept i, j )=l;

end;

end;

indexfind~featskept);

dataout=[datain(:,4) datain(: ,index)];

B.2 normal.m

% This function performs a simple normalization of the

Y% data "datain".

%. syntax: dataout=normal~datain);

function EdatainJ = normal(datain)

[row col] =size(datain);

means=mean(datain);

stds=std(datain);

for i1l:col
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if (stds(1,i)==O),

stds(I,i)=1e-15;

end;

end;

for i1l:row,

datain(i, :)=(datain(i, :)-means) ./stds;

end;

B.3 randchoose.m

% This function divides the data set "'datain" into two

%. subsets "train" and "test" by randomly selecting

'% members by class for each subset.

%syntax: [train test] randchoose(train)

function [train, test] =randchoose(datain)

train= [];

test=[];

[row collsize~datain);

Order~randperm(row);

dataindatain(Order,:);

for i=I:max(datain(: , )),

index=f ind(datain(:, ,)=)

Nsize~index,i);

if N==1,

train= [train; datain (index, :J

test=[test; datainindex,:]

elseif N==2,

train=[train;datain(index~l),:)];

test= [test; datain(index(2),:]

else

interval=2*fix(N/3);

train= [train;datain(index(i: interval), :)

test=[test;datain(index(interval+1:N), :)J;

end;
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end;

B.4 fallside.m

% This function creates fallside plots.

% sytntax: Ex y] = fallside(datain,fid,J,K,fl,f2,l,m,df,me);

% x - matrix containing the classification error curves

% y - matrix containing the SSE curves

% datain - matrix containing the input data

% fid - file id for the log file (fid=1 writes to standard output)

% J - number of hidden nodes for the neural network to be used

% K - number of output nodes for the neural network to be used

% (K is usually equal to the number of classes in the data)

% fl - hidden layer transfer function

% f2 - output layer transfer function

% 1 - vector containing the initial lr, the lr increment, and the final lr

m - vector containing the initial mc, the mc increment, and the final mc

% df - number of epochs between writes to the log file

me - max number of epochs for training

function Ececurves,ssecurves] = fallside(datain,fid,J,K,fl,f2,l,m,df,me);

% Initialize the expected output matrix,t, and the min,max matrix P

P=[I];

% Create the t matrix based on the data classes in column 1 of the data matrix

t=zeros(datain(size(datain,l),.),size(datain,l));

for i=1:size(datain,1),

t(datain(i,l),i)=1;

end;

% Remove the class column from the input data matrix

datain=datain(:,2:size(datain,2));

% Transpose the matrix to for use with Matlab neural network functions
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datain~datain;

% Initalize the neural network architecture

I=size(datain, I); %.Number of input nodes

% Initialize the errror vectors for training, testing and evaluation classification error

cecurves=E];

ssecurves= 5;

%I Initialize the weight and bias matrices

Wl=feval~fi,rand(J,I));

W2=feval(f2,rand(K,J));

Bl=feval~fl,rand(J, 1));

B2=feval~f2,randCK, 1));

Wlold=Wl;

W2old=W2;

Blold=Bl;

B2old=B2;

% Let learning rate and momentum vary from .1 to

% .9 in .2 increments

for 1r=1C1):l(2):l(3),

for mcm(1) :m(2) :m(3),

% Set input parameters for backpropagation learning

TP=Edf me 0 lr 1 1 mc 1.04);

%. Train the neural network

EWI B1 W2 B2 TE TR CEIbpm(fid,Wi,Bl,fl,...

W2,B2,f2,datain,t,TP);

TR=TR(1,:);

% Augment the ce and sse vectors

cecurves= Ececurves; Elr mc CE))I;

ssecurves=[ssecurves;Elr mc TRJ];

%. Reset the biases and weights to the original intial

%. values for the next pass

Wl=Wlold;
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W2=W2old;

BI=Blold;

B2=B2old;

fprintf('\n');

end;

end;

B.5 postf.m

function postf(datain,frame,ptype)

for i=1:5:25,

ep3d2dxy(O:1000,.1:.2:.9,datain(i:i+4,3:1003)...

,'xlabel','ylabel',...

'zlabel',frame,ptype);

end;

B.6 bpm.m

function Ewl,bl,w2,b2,i,tr,ce] = bpm(fid,wl,bi,fl,w2,b2,f2,p,t,tp)

% This funtion trains a MLP via backpropagation with momentum.

% The inputs are as follows:

% wl: Matrix of hidden layer weights

% bl: Matrix of hidden layer bias weights

% fl: String variable denoting hidden layer output function

% w2: Matrix of output layer weights

% b2: Matrix of output layer bias weights

% f2: String variable denoting output layer output function

. p: Matrix of input data

% t: Matrix containing the desired output vector for each

%input vector

. tp: Vector containing the input parameters for training

% The outputs are as follows:

% wl: Hidden layer weights after training

% bl: Hidden layer bias weights after training

% w2: Output layer weights after training
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% b2: Output layer bias weights after training

% Note - these parameters may be used to classify data using the "simuff" command

% i: Number of epochs trained

% tr: Matrix of sum sqared error during training

ce: Vector containing classification error during training

% Note - this function is a modfied version of the "trainbpx" function which is

%part of the neural network toolbox. It has been modified to include

%classification error calculations

% TRAINING PARAMETERS

df = tp(l); % Number of epochs between displays

me = tp(2); % Maximum number of epochs

eg = tp(3); % Threshold Error

lr = tp(4); % Learning rate or eta

im = tp(5); % Learning rate and Momentum adaptation parameter - not used in this version

dm = tp(6); % Learning rate and Momentum adaptation parameter - not used in this version

mc = tp(7); % Momentum or alpha

er = tp(8); % Error ratio - not used in this version

% Determine the delta functions for each layer

dfl = feval(fl,'delta');

df2 = feval(f2,'delta');

Initalize the weight changes to zero

dwl = w1*O; dbl = b1*O;

dw2 = w2*0O; db2 = b2*O;

% Initialize the classification error vector

ce=[];

% Calculate the initial network output

al = feval(fl,wi*p,bl);

a2 = feval(f2,w2*al,b2);

% Calculate the initial sum squared error and classification error
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e = t-a2;

[temp ItJ=max(t);

[temp 1a2] =max(a2);

I=find(It==1a2);

ce=[ce (1-size(I,2)/size(t,2))]J

SSE = sumsqr(e);

%. Initialize the training record

tr = zeros(2,me+i);

tr(1:2,1) = [SSE; 1r];

% Print the ouput message

message = sprintfC'TRAINBPX: %YgI%g epochs, lr %%'/g, mc=/.%g SSE =%~lm)

fprintf~fid,message,O,lr,mc,SSE);

%. BACKPROPAGATION PHASE

% Calculate error derivatives

d2 = feval(df2,a2,e);

dl =feval~df1,a1,d2,w2);

for i1l:me

%I CHECK PHASE

if SSE < eg, ii-1; break, end

% LEARNING PHASE

% Calculate the weight changes for each layer according

% to the backpropagation learning rule

[dwi] = learnbpm(p,dl,lr,mc,dwl);

Edw2] = learnbpm(a1,d2,lr,mc,dw2);

new-wl = wi + dwi; new-bi = bi;

new..w2 =w2 + dw2; new-b2 =b2;

% PRESENTATION PHASE

% Calculate the network output and error

new-al =feval(fl1,new.wl*p,new-bl);

new-a2 = feval(f2,new.y2*new.a1 ,new-b2);
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new-e = t-new-a2;

new-SSE = sumsqr(new-e);

wl = new-wl; bl = new-bl; al = newal;

w2 = new-w2; b2 = new-b2; a2 = newa2;

Etemp It]=max(t);

[temp Ia2]=max(a2);

I=find(It==Ia2);

ce=[ce (1-size(I,2)/size(t,2))];

e = new.e; SSE = newSSE;

% BACKPROPAGATION PHASE

Calculate the derivative of the error

d2 = feval(df2,a2,e);

dl = feval(dfl,al,d2,w2);

% TRAINING RECORD

tr(:,i+l) = [SSE; ir];

if rem(i,df) == 0

fprintf(fid,message,i,lr,mc,SSE);

end

end;

% TRAINING RECORD

tr = tr(l:2,1:(i+l));

if rem(i,df) -= 0

fprintf(fid,message,i,lr,SSE);

end

B. 7 bpmte.m

function Ewl,bi,w2,b2,i,tr,ce,tsce] bpm(fid,wl,bl,fl,...

w2,b2,f2,p,p2,t,t2,tp)

This funtion trains a MLP via backpropagation with momentum.

% The inputs are as follows:

% wl: Matrix of hidden layer weights

% bi: Matrix of hidden layer bias weights

% fi: String variable denoting hidden layer output function

% w2: Matrix of output layer weights
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% b2: Matrix of output layer bias weights

% f-2: String variable denoting output layer output function

% p: Matrix of input data

% t: Matrix containing the desired output vector for

%each input vector

.tp: Vector containing the input parameters for training

% The outputs are as follows:

% wl: Hidden layer weights after training

% bi: Hidden layer bias weights after training

% w2: Output layer weights after training

% b2: Output layer bias weights after training

% Note - these parameters may be used to classify data using the "simuff" command

% i: Number of epochs trained

% tr: Matrix of sum sqared error during training

ce: Vector containing classification error during training

% Note - this function is a modfied version of the "trainbpx" function which is

%part of the neural network toolbox. It has been modified to include

%classification error calculations

% TRAINING PARAMETERS

df = tp(1); % Number of epochs between displays

me = tp(2); % Maximum number of epochs

eg = tp(3); % Threshold Error

lr = tp(4); % Learning rate or eta

im = tp(C); % Learning rate and Momentum adaptation parameter - not used in this version

dm = tp(6); % Learning rate and Momentum adaptation parameter - not used in this version

mc = tp(7); % Momentum or alpha

er = tp(8); .Error ratio - not used in this version

% Determine the delta functions for each layer

dfl = feval(f2,'delta');

df2 = feval(f2,'delta');

% Initalize the weight changes to zero

dwl = w1*0O; dbi = b1*O;
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dw2 = w2*O; db2 = b2*O;

% Initialize the classification error vectors for training, test, and eval

tsce=[];

% Calculate the initial network output

al =feval(fl,wl*p,bl);

a2 = feval(f2,w2*al,b2);

%I Calculate the initial sum squared error and classification error

e = t-a2;

[temp Itlmax~t);

[temp 1a2j=max~a2);

ce=Ece (1-size(I,2)/size~t,2))];

[tsal tsa2j=simulff~p2,wl,bl,fl,w2,b2,f2);

[temp It] =max~t2);

[temp Ia] max(tsa2);

I=find(It==Ia);

tsce=[tsce (1-size(I,2)/size(t2,2))];

SSE = sumsqr~e);

% Initialize the training record

tr =zeros(2,me+l);

tr(1:2,I) =[SSE; 1rJ;

% Print the ouput message

message = sprintf(&TRAINBPX: %%g/%Ig epochs, lr % /%g, mc'/.%g SSE %%g trce=%%3.lf tsce=%I%3.lf\n'

f printf (f id,message,0, lr,mc, SSE, ce (1) *100,tsce(i) *100);

% BACKPROPAGATION PHASE

%h Calculate error derivatives

d2 = feval~df2,a2,e);

dl =feval(dfi,a1,d2,w2);
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for i=i:me

% CHECK PHASE

if SSE < eg, ii-i; break, end;

%. LEARNING PHASE

% Calculate the weight chaniges for each layer according

%A to the backpropagation learning rule

[dwi] = learnbpm~p,d1,lr,mc,dwi);

[dw2] = learnbpm(ai,d2,lr,mc,dw2);

new-vi = wi + dwi; new..bi =bi;

ne....2 =w2 + dw2; new-b2 = b2;

%I PRESENTATION PHASE

% Calculate the network output and error

new-ai = fevalf,new.w*p,new-bi);

new.a2 =feval(f2,ne..w2*new-ai new-b2);

nev..e =t-nev-a2;

new-S.SE =sumsqr(new-e);

vi new..wi; bi = nev-bi; ai = nev-ai;

w2 = nevvw2; b2 = new-b2; a2 = newae2;

Etemp Itlmax~t);

Etemp Ia2]=max(a2);

ce=[ce (i-size(I,2)/size(t,2))J;

[tsai tsa2]=simuff~p2,wi,bi,fi,w2,b2,f2);

[temp Itlmax(t2);

[temp Ialmax(tsa2);

e = new-e; SSE = new-SSE;

% BACKPROPAGATION PHASE

% Calculate the derivative of the error

d2 =feval~df2,a2,e);

di =feval(dfi,a1,d2,w2);

% TRAINING RECORD

tr(:,i+i) = [SSE; lr];
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if rem(i,df) == 0

fprintf(fid,message,i,lrmc,SSE,ce(i)*100,tsce(i)*100);

end

end;

% TRAINING RECORD

tr = tr(1:2,1:(i+l));

if rem(i,df) -= 0

fprintf(fid,message,i,lr,mc,SSE,ce(i)*100,tsce(i)*100);

end

B.8 tev.m

function [TRCEtot,TSCEtotJ=tev(train,test,fid,J,K,...

fl,f2,lr,mc,df,me)

% This function calculates the classification error

% for the test and evaluation sets during training.

% This is accomplished numerous times to compute the

% 956% confidence bounds for the mean error. The

% number of iterations is specified by "passes"

% syntax : [x y]=tev(infile,fid,N,J,K,fl,f2,lr,mc,df,me,passes);

x - matrix containing mean training set classification error

%curve with 95% confidence bounds

row 1 - lower bound

row 2 - mean

row 3 - upper bound

% y - matrix containing mean test set classifcation error curve w/95%

%confidence bounds

z - matrix containing mean eval set classifcation error curve w/95%

%confidence bounds

% infile - name of the file tobe used for random data selection

% fid - file id for the log file (fid=1 writes to standard output)

% J - number of hidden nodes for the neural network to be used

% K - number of output nodes for the neural network to be used

% (K is usually equal to the number of classes in the data)
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%A fl1 - hidden layer transfer function

%A f2 - output layer transfer function

% lr - learning rate

%mc - momentum

% df - number of epochs between writes to the log file

%A me - max number of epochs for training

YI. Initialize the test and eval error matrices

TSCEtot=[];

TRCEtot=EJ;

% Initialize the desired output matrices for each data set

t=zeros~train(size (train, 1), 1), size (train, 1));

t2=zeros (test (size (test,i1), 1), size (test, 1));

f printf(f id,'ICreating t matrix... n)

'I. Determine the desired output matrices for each data set

for i=1:size(train,1),

end;

for i=1:size(test,1),

end;

% Remove the class information from each data set and

% transpose each data set

traintrain(: ,2:size(train,2));

train=train';

testtest(: ,2:size(test,2));

testtest';

% Initalize neural network parameters

Isize(train,i); %/Number of input nodes

W2=feval(f2,rand(K,J));

Bi=feval(fl,rand(J,1));
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B2=feval(f2,rand(K,));

TP=[df me .02 ir I I mc 1.04];

% Train the neural network

EWI Bi W2 B2 TE TR CE TSCE]=bpmte(fid,W,B,fl,W2,B2,f2,train,test,t,t2,TP);

save weights W1 BI W2 B2;

% Augment the classification error for the current run with those of previous runs

TSCEtot=ETSCEtot;TSCE];

TRCEtot=ETRCEtot;CE];

B.9 fselct.m

function Efeats,Eperfeat]=fselct(datain,fidnumfeats,J,K,fl,f2 ....

lr,mc,df,me)

% This function performs forward sequential feature selection

% syntax:

% Efeats,Eperfeat]=fselct(infile,fid,numfeats,J,K,fl,f2,lr,mc,df,me)

% feats - vector containing the prioritized features

% Eperfeat - vector containing the error as each feature is

% added to the nucleus

% numfeats - the number of features to select out of the total

% infile - mat filename specifies data to use

% fid - file id for the log file (fid=1 writes to standard output)

% J - number of hidden nodes

. K - number of output nodes for the neural network to be used

% (K is usually equal to the number of classes in the data)

% fl - hidden layer transfer function

% f2 - output layer transfer function

. lr - learning rate
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%mc - momentum

% df - number of epochs between writes to the log file

%me - max number of epochs for training

% Initialize vectors

nucleus=[];

Eperfeat=[J;

errors=[];

f printf (f id,'IBuilding t Matrix... .\n');

t=zeros (datain~size (datain, 1), ),size (datain, 1));

for i=1:size(datain,l),

end;

dat aindat ain( ,2: siz e(dat ain, 2))

dataindatain';

Crow colj size(datain);

feats=[];

nucleus=[];

availfeats=1:row;

W2 =f eval (f 2, rand(K, J))

B1=feval(fi ,rand(J, 1));

B2=fevalf2,randCK, 1));

Wiold<J;

W2old=W2;

Biold=Bl;

B2old=B2;

fprintf(fid,,'Performing feature selection... n)

while size(feats,2)<numfeats,

fprintf(fid, '\n');

errors=D;

Wl=[Wlold feval(fi,rand(J,1))J;

Wlold=Wl;

for z=1: size (availf eats, 2),
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nucleus= [feats availfe-ats(l,z)];

newdata=datain~nuclels,:);

Isize(newdata,l); %Numiber of input nodes

tJ1=Wlold;

W2=W2old;

B1=Blold;

B2=B2old;

TP=Edf me .02 ir 1 1 mc 1.04];

[WI B1 W2 B2 TE TR CEJ=bpm(0,W1,Bl,fl,W2,B2,f2,newdata,tTP);

errors=[errors CE(1,sizeCCE,2))];

fprintf~fid, 'Nucleus:')

fprintf~fid,' %g' ,nucleus);

fprintf~fid,' ce= %g \n',CE(1,size(CE,2)));

end;

[temp minl]=min(errors);

Eperfeat=[Eperfeat errors C1,minI)J;

feats=[feats availfeats~l,minI)J;

if minI==size(availfeats,2).

availfeats=availfeats(1, 1:minl-1);

else,

availfeats=[availfeats(1,1:minI-1) availfeats(minl+l:size~availfeats,2))];

end;

end;

B-10 bbayes.m

function [UpperJ=Bbayes(datain,fid,Nodes,K,fl,f2,lr,mc,df,me)

% This scpript estimates bounds the Bayes Error rate

% Upper - vector containing upper Bayes bound

% datain - matrix containing the input data

% fid -file id for the log file Cfid1l writes to standard output)

% Nodes -max numiber of hidden nodes

%. K - number of output nodes for the neural network to be used

% (K is usually equal to the number of classes in the data)

% fl - hidden layer transfer function
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% f2 - output layer transfer function

% lr - learning rate

mc - momentum

% df - number of epochs between writes to the log file

me - max number of epochs for training

% Initialize vectors

Upper=[];

t=[] ;

fprintf(fid,'Building t Matrix...\nl);

% Create the t matrix based on the data classes in column I of the data matrix

t=zeros(datain(size(datain,1),1),size(datain,1));

for i=l:size(datain, 1),

t(datain(i,l),i)=1;

end;

fprintf(fid, 'Normalizing Data... \n');

datain=datain(:,2:size(datain,2));

datain=datain';

I=size(datain,l); %Number of input nodes

fprintf(fid, 'Calculating Upper Bound\n');

B2=feval(f2,rand(K,1));

Wlold=[];

W2old=[];

Blold=[];

B2old=B2;

for J=1:Nodes,

fprintf(fid,'Number of Nodes = %g \n',J);

misses=O;

WI=[Wlold; feval(fl,rand(1,I))];

W2=EW2old feval(f2,rand(K,1))];

Bl=[Blold; feval(fl,rand(1,1))];

B2=B2old;

W1old=W1;

W2old=W2;
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Blold=Bl;

for L=1 size(datain, 2);

f printf(f id,'ISample Lef t Out =%g \n',L);

newsteel=[datainC:,1:(L-1)) datainC: ,C(L+1): size (datain, 2))];

newt=[Et(: ,1: (L-1)) t(: ,(L+1): size (t,2))];

sample=datain(: ,L);

santplet=tC: ,L);

Wl=Wlold;

W2=W2old;

B1=Biold;

B2=B2old;

TP=[df me .02 ir 1 1 mc 1.04];

[WI B1 W2 B2 TE TB. CE]=bpm(fid,W1,B1,f1,W2,B2,f2,....

newsteel ,newt ,TP);

[al a2>simuff~sanple,W1,Bl,fl,W2,B2,f2);

[temp It] max(samplet);

[temp Ia2]=max(a2);

missesmisses+1;

end;

clear Wi W2 B1 B2$,

end;

Upper= [Upper misses/size(datain,2)J;

end;

B.11 ep3d2dxy.m

function ep3d2dxy~x,y,z,xstr,ystr,zstr,makesqTF,logyTF);

%EP3D2DXY Handy utility for printing 3D data onto 2D plot

,ep3d2dxy(x,Y,z,xstr,ystr,zstr,makesqTF~logyTF);

%by: Capt Toby Reeves, Capt. Edward M. Ochoa, GEO-96D

y=y(:);
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f igure

if -logyTF

h=plot~x,z(l,:)');

hold on

for i=2:size(z,i)

h=Eh;plot(X,Z~i, :) ')J;

end

else

h=semilogyC~c,z~i,:)');

hold on

for i=2:size~z,l)

h=[h;semilogy(x,z(i, :)')];

end

end

hold off

colorstr2mat'y,'m),'c','r','g','b'))

slen=size(style, 1);

clensize(color,l);

for i=1:length(h)

set(h~i), ' LineStyle ',style (rem(i-i, slen) +1,:

if (rem(i,4) I -rem(i,4)),

linewidthlinewidth+ .25;

linecolrcolor(rem(i-1,clen)+1,:)

end

set (h~i), 'LineWidth' ,linewidth)

set (h(i), 'Color' ,linecolr)

end

ylabel (zstr)
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xlabel (xstr)

Ytitle~sprintfC'QIs, %s) vs. %s' ,xstr,ystr,zstr))

if makesqTF

axis square

end

lgnd=[J;

lgnd =nium2str~y~l));

for i=2:size~y,l)

lgnd =str2mat(lgnd,num2str~y~i)));

end

hlegend~lgnd,-l);

axes Cl);

title~sprintf C'%s' ,ystr))

B.12 errorbars.m

function Edevs ~means] =errorbars~datain,features ,classes)

%A syntax Edevs means] =errorbars~datain,features ,classes)

devs=[]

means<];

for i=1:max~datain(: ,1)),

indexfind~datainC: ,J)=

if size~index,l)-=l,

tempstd~datain~index,:));

devs=Edevs;temp];

means=means;meandatain~index,:))];

else

devs=Edevs;zerosl,sizedatain,2))];

means=means;datainindex,:)1;

end;

end;
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for i=1:size(features,2),

figure;

for j=l:size~classes,2),

m=means(classes(1,j) ,features(l,i)+1);

sdevs(classes(l,j) ,features(l,i)+1);

ym-s:2*s/1O :m+s;

x=ones(1,size~y,2))*classes~l,j);

plot~classes(1,j) ,m-s, 'w+');

hold on;

plot(classes(1,j),m+s,'w+');

plot(classes(I,j),m,'r*');

plot(x,y)

end;

xlabel('Class');

titleCE'Mean and Standard Deviation of Feature 'int2str(features(l,i))

Ivs. Class']);

end;

B.13 removec.m

function [dataout ,sizesj removec~datain,N)

% syntax: [dataout class-sizeslremovec~datain, Target-N-per.class);

dataout=j;

cnt=O;

F classesdatainC: ,l);

f eaturesdatainC: , 2: size (datain,2));

sizes=[]

for i1:max(classes),

indexfind(classes==i);

sizes=[sizes size(index,l)J;

if size(index,l) > N,

cnt~cnt+l;

dataout=[dataout; Eones(size(index,l),1)*cnt features~index, :XI];

end;

end;
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Appendix C. Elemental Symbols

Element Symbol Element Symbol

Lithium Li Antimony Sb

Beryllium Be Tellurium Te

Boron B Iodine I

Carbon C Polonium Po

Nitrogen N Cesium Cs

Oxygen 0 Barium Ba

Fluorine F Lanthanum La

Dysprosium Dy Cerium Ce

Sodium Na Praseodymium Pr

Magnesium Mg Neodymium Nd

Aluminum Al Promethium Pm

Silicon Si Samarium Sm

Phosphorus P Europium Eu

Sulfur S Gadolinium Gd

Chlorine Cl Terbium Tb

Potassium K Holmium Ho

Calcium Ca Erbium Er

Scandium Sc Thulium Tm

Titanium Ti Ytterbium Yb

Vanadium V Lutetium Lu

Chromium Cr Hafnium Hf

Manganese Mn Tantalum Ta

Iron Fe Tungsten W

Cobalt Co Rhenium Re

C-1



Element Symbol Element Symbol

Nickel Ni Osmium Os

Copper Cu Iridium Ir

Zinc Zn Platinum Pt

Gallium Ga Gold Au

Germanium Ge Mercury Hg

Arsenic As Thallium TI

Selenium Se Lead Pb

Bromine Br Bismuth Bi

Rubidium Rb Astatine At

Strontium Sr Californium Cf

Yttrium Y Francium Fr

Zirconium Zr Radium Ra

Niobium Nb Actinium Ac

Molybdenum Mo Thorium Th

Technetium Tc Protactinium Pa

Ruthenium Ru Uranium U

Rhodium Rh Neptunium Np

Palladium Pd Plutonium Pu

Silver Ag Americium Am

Cadmium Cd Curium Cm

Indium In Berkelium Bk

Tin Sn
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Figure D.1 Steel Fallside plots: classification error versus epoch for (a) 77=.l and (b)rq=.3

over a range of a values.
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(Epoch, ae) versus Classification Error (77=.5)
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Figure D.2 Steel Failside plots: classification error versus epoch for (a)77=.5 and (b)i 7=.7

over a range of a values.
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(Epoch, a) versus Classification Error (77=.9)
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Figure D.3 Steel Fallside plots: classification error versus epoch for 7=.9 over a range

of a values.
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D.2 Actinide,

(Epoch, a) versus Classification Error (7.1)
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Figure D.4 Actinide, Fallside plots: classification error versus epoch for (a),=.l and

(b)77=3 over a range of a values.
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(Epoch, a) versus Classification Error (7=.5)
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Figure D.5 Actinide, Fallside plots: classification error versus epoch for (a)mq=.5 and

(b)17=.7 over a range of a values.
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(Epoch, a) versus Classification Error (?=.9)
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Figure D.6 Actinide, Fallside plots: classification error versus epoch for 7=.9 over a

range of a values.
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D.3 Actinide2

(Epoch, a) versus Classification Error (77=.1)
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Figure D.7 Actinide2 Fallside plots: classification error versus epoch for (a)rq=.1 and

(b)rq=.3 over a range of a values.

D-8



(Epoch, a) versus Classification Error (7=.5)
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Figure D.8 Actinide2 Fallside plots: classification error versus epoch for (a)97=.5 and

(b),/=.7 over a range of a values.
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(Epoch, a) versus Classification Error (7=.9)
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Figure D.9 Actinide2 Fallside plots: classification error versus epoch for 7=.9 over a

range of a values.
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Appendix E. Actinide Classes

Class Location Class Location
1 A-1 29 M-11
2 A-2 30 M-12
3 A-3 31 M-13
4 A-4 32 M-14
5 A-5 33 M-15
6 A-6 34 M-16
7 A-7 35 M-17
8 A-8 36 M-18
9 B 37 M-19
10 C 38 M-2
11 D-1 39 M-20
12 E 40 M-21
13 F 41 M-22
14 G 42 M-23
15 H 43 M-24
16 I-1 44 M-25
17 J 45 M-26
18 J-1 46 M-27
19 J-2 47 M-3
20 J-3 48 M-4
21 K 49 M-5
22 L 50 M-6
23 L-1 51 M-7
24 L-2 52 M-8
25 L-3 53 M-9
26 M 54 M-N
27 M-1 55 P-1
28 M-10 I

Table E.1 Actinide Classes
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